
Soil carbon, micronutrients and microbiological dynamics under cash crop-based cropping systems in semi-arid National Capital Region of India

Received: 26 August 2025

Accepted: 2 January 2026

Published online: 08 January 2026

Cite this article as: Preeti , Sheoran S., Prakash D. et al. Soil carbon, micronutrients and microbiological dynamics under cash crop-based cropping systems in semi-arid National Capital Region of India. *Sci Rep* (2026). <https://doi.org/10.1038/s41598-026-35142-z>

Preeti, Sunita Sheoran, Dhram Prakash, Ankit, Todarmal, Sonia Rani, Rameshwar Singh, Parmod Kumar Yadav & Rajni Kant Sharma

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

1 **Soil carbon, micronutrients and**
 2 **microbiological dynamics under cash crop-**
 3 **based cropping systems in semi-arid**
 4 **National Capital Region of India**

6 **Preeti^{a,✉}, Sunita Sheoran^{a,✉}, Dhram Prakash^{a,✉,*}, Ankit^{ab,✉},**
 7 **Todarmal^c, Sonia Rani^a, Rameshwar Singh^a, Parmod Kumar Yadav^a,**
 8 **Rajni Kant Sharma^d**

9 ^aDepartment of Soil Science, CCS Haryana Agricultural University, Hisar-125004,
 10 Haryana, India

11 ^bDivision of Soil and Crop Management, ICAR-CSSRI, Karnal-132001, Haryana, India

12 ^cDepartment of Agronomy, CCS Haryana Agricultural University, Hisar-125004, Haryana,
 13 India

14 ^dDepartment of Chemistry, CCS Haryana Agricultural University, Hisar-125004,
 15 Haryana, India

16 [✉]Authors contributed equally

17 *Corresponding Author E-mail address: dhramprakashtoia@gmail.com;

18 [\(S.S.\),](mailto:sheoransunita27@gmail.com)

19 [\(P., Preeti\), \[\\(D.P.\\),\]\(mailto:dhramprakashtoia@gmail.com\)](mailto:pritisaini864@gmail.com)

20 [\(A., Ankit\), \[\\(T.\\),\]\(mailto:todarmal.poonia@gmail.com\)](mailto:ankityadav13419@gmail.com)

21 [\(S.R.\), \[\\(R.S.\\),\]\(mailto:rssinsinwar@gmail.com\)](mailto:sagwalsonia18@gmail.com)

22 [\(P.K.Y.\), \[\\(R.K.S\\)\]\(mailto:rajniorganic@gmail.com\)](mailto:pparmodyadava@rediffmail.com)

25 *Tel.

26 Office: +91 1284 297200

27 Home: +91 1284 297015

28 Mobile: +91 9779943372

30 **ABSTRACT**

31 Cropping systems and nutrient management practices potentially alter
 32 microbiological properties and nutrients bioavailability in soils. This study
 33 evaluated the footprints of prevalent cash crops-based cropping systems at
 34 farmers' fields (>10 years) on total carbon (TC), total inorganic carbon (TIC), soil
 35 organic carbon (SOC), micronutrients as well as biological activities. The soils
 36 faced rice-wheat (RW) cropping system exhibited significant accrual in SOC
 37 (29.16%) over pearl millet-wheat (PW). Higher dissolved organic carbon (DOC)
 38 content was obtained in soils from sugarcane-sugarcane (SS) mono-cropping with
 39 a magnitude of 4.75, 9.01, 11.71 and 45.35% with respect to PW, RW, cotton-
 40 wheat (CW) and pearl millet-mustard (PM), respectively. Accretion of TIC (4.92 g

41 kg⁻¹) and TC (11.26 g kg⁻¹) contents were acquired in soils experienced PM and
 42 SS cropping systems, respectively. DTPA-extractable micronutrients except
 43 copper (Cu) were found in higher concentration under RW compared to other
 44 cropping systems. In soils of RW cropping system, SOC, microbial biomass carbon
 45 (MBC), dehydrogenase activity (DHA) and DTPA-extractable Zn, Mn and Fe were
 46 higher by 3.33 to 58.97, 1.94 to 27.40, 23.81 to 51.59, 12.12 to 85.00, 25.73 to
 47 58.05 and 15.17 to 83.44%, over other persisted systems. Despite the lesser
 48 chemical fertilization and manure addition, soils faced SS mono-cropping
 49 statistically reflected similar values to RW cropping system for most of studied
 50 properties. Two main canonical discriminant functions (CDFs), based on SOC,
 51 DOC, TIC, TC, DTPA-extractable micronutrients (Mn, Zn, Fe, and Cu), MBC and
 52 DHA, clearly differentiated the cropping systems and both CDFs explained 92.3%
 53 variance of the total variation. Principal component analysis (PCA) picked out
 54 MBC, SOC, pH and EC as most influential variables in evaluating soil status
 55 across various cropping systems. Additionally, two principal components (PCs)
 56 explained 73.7% of total variance in original dataset, underscored the major
 57 factors influencing soil properties under varied cropping techniques. Among the
 58 studied cropping systems, RW was found superior in relation to the soil microbial
 59 activity and nutrient availability. However, SS mono-cropping also exhibited
 60 comparable results to RW and proved better over other aerobic cropping systems,
 61 especially in terms of carbon dynamics and microbiological properties of soils.

62 **Keywords:** Cropping system, Soil carbon fraction, Biological activity,
 63 Micronutrient

64 **Introduction**

65 The RW is a major cropping system in Indo-Gangetic Plains (IGP) of India
 66 covering around 10 million hectares area [1] of Punjab, Haryana, Bihar, Uttar
 67 Pradesh and Madhya Pradesh; and accounts for 75% of nation's staple food
 68 production [2]. However, ceaseless RW cultivation created several issues,
 69 including soil degradation, nutrient depletion, declining water table due to over-
 70 extraction of groundwater, thus strongly posing a challenge to its sustainability
 71 [3-4]. Following RW, PW is the second important food production system and
 72 spanning approximately 2.26 million hectares area. Among oil seeds cultivation
 73 in India, mustard is the second important crop and is practiced over 5.6 million
 74 ha area [5]. The CW cropping system is cultivated in about 3.22 million hectares
 75 of Punjab, Haryana and Rajasthan, and has become increasingly significant in
 76 north-western IGP because of high profitability [6]. The SS cropping system is

77 notably cultivated on approximately 4.85 million hectares in India and plays vital
78 role in Haryana's agricultural landscape [7]. Cropping systems not only ruminate
79 the agronomic choices of local farmers but also effectively shape the soil
80 functioning, particularly in terms of fertility and organic matter status in soil [8].
81 In recent past, the emphasis is continuously increasing for sustainable
82 agricultural practices to enhance productivity while ensuring the environmental
83 quality, and ecosystem resilience [9].

84 The dynamics of SOC in soil is controlled by several components such as
85 land use pattern, cropping systems, management practices and antecedent level
86 of soil health [10-12]. Different cropping systems add on varying rates of organic
87 materials with different chemical composition into soil, thus modulates the soil
88 organic matter (SOM) turnover [13]. Apart from maintaining the soil productivity,
89 SOM dynamism significantly contributes for soil structure formation and
90 biological properties [14]. Therefore, understanding of SOM transformations is
91 essential to plan the sustainable agricultural practices that would improve all the
92 aspects of soil health [15]. In semi-arid regions, the varyingly exacerbation of
93 SOM from agricultural lands contributes about one fifth of total CO_2 release [16].
94 Further, variations in management practices, moisture regimes, quality of crop
95 residues and rhizo-deposition exert significant alterations in C pools [17].
96 Therefore, a precise evaluation of carbon (C) pools as source or sink under
97 different land uses or management practices is imperative that ultimately
98 contribute towards international C budgeting [18]. Dissolved organic carbon
99 (DOC) represents the water-soluble fraction of SOC and controls the
100 availability/mobility/leaching processes of nutrients and pollutants in soil [19].
101 The concentration of DOC in soil is influenced by plant root exudates, carbon
102 inputs, residue decomposition, microbial activity and soil properties [20]. The soil
103 inorganic carbon (SIC) fraction profoundly constitutes about 90 % of total carbon
104 pool especially in arid and semi-arid areas [21] and is susceptible to disturbances
105 such as land use pattern, intensive cropping, soil acidification, and moisture
106 regimes changes [22]. The formation and dissolution of TIC; primarily the
107 carbonate minerals; influence soil pH, buffering capacity, and long-term carbon
108 sequestration [23]. Long-term field experiments advocate that integrating crop
109 diversity, organic amendments, and minimal soil disturbance can significantly
110 improve the TC levels, soil fertility and carbon sequestration potential [24].
111 Microbial biomass and enzymes activity regulate the transformations and bio-
112 availability of nutrients in soil [25], thus facilitates early reflection of SOM

113 decomposition and considered as most sensitive indicators of alteration in
114 management practices than total SOM [26]. Although the microbial biomass
115 carbon (MBC) is around only 1-3% of total SOC, yet extensively reflects the status
116 of soil microbial activity [25, 27]. The geographical position, weather variables,
117 soil factors and nature of adopted crop species collectively control the MBC
118 dynamics in soil. Among soil enzymes, dehydrogenase activity (DHA) is one of the
119 most valuable indicators for assessing the oxidative status or microorganism's
120 activity in soil [28-29].

121 Analyzing the nutrient status in soil is helpful to formulate the effective
122 fertilizer and soil management strategies, thereby enhancing agricultural
123 sustainability and economic viability for local farmers [30]. Indiscriminate
124 nutrients application leads to the deterioration of soil functions and ultimately
125 declined the agricultural outputs [31-32]. In recent past, micronutrients
126 deficiency has been considered as major constraint in crop production as well as
127 produce quality especially in neutral to alkaline soils [33]. Through chelation,
128 SOM retards the formation of insoluble precipitates of micronutrients and
129 preserve their availability particularly in alkaline soils [34-35]. [6] monitored the
130 higher SOC (0.56%), DOC (33.17 mg kg⁻¹), MBC (262.04 mg kg⁻¹) and DHA (30.77
131 µg TPF g⁻¹ 24h⁻¹) under RW cropping system over other studied crop production
132 scenarios in north-western regions of India. Augmented levels of SOC, DTPA-
133 extractable-Mn and Fe under submerged soils of RW cropping system were also
134 documented by [13]. After thirteen years of experimentation, the highest SOC
135 (8.62 g kg⁻¹) and MBC (493 mg kg⁻¹) under basmati-rice-sesbania and maize-
136 mustard-sesbania, respectively, was recorded in organically managed plots over
137 other nutrition and cropping techniques [36].

138 Aforementioned facts demonstrated that several studies have been done to
139 quantify the left-out footprints of different cropping systems on soil health and
140 confined literature is available on comparative analysis of cropping systems on
141 nutrient dynamics and biological properties. But the relative impact of various
142 cropping systems (RW, CW, PW, PM and SS) on soil micronutrients availability,
143 as well as microbial and enzymatic activities in dry areas are incompletely
144 grasped. For example: parallel analysis of aerobic and anaerobic crop lands with
145 mono-cropping of perennial cash crop especially sugarcane has not been studied
146 yet. Therefore, the studies on alteration in soil properties under different
147 cropping systems would help to overcome this knowledge gap. It was
148 hypothesized that different cropping systems with varying moisture regimes

149 would left out noticeable signature on physico-chemical and biological properties
 150 in soils of semi-arid region. Thus, underlying hypothesis suggests that a thorough
 151 insight of major cropping systems and their associated management techniques
 152 could influence agricultural sustainability via governing the nutrient dynamics in
 153 soil. Considering the facts, this study was planned to estimate how different cash
 154 crop-based cropping systems and their related management ways at farmers'
 155 fields control the footprints of soil C fractions (TC, TIC, SOC and DOC),
 156 micronutrients availability (Fe, Mn, Cu and Zn,), soil microbiological activities,
 157 and their inter-relationships in semi-arid soils of district Palwal in National
 158 Capital Region of India.

159 **Materials and Methods**

160 **Details of Study Area**

161 The current evaluation was done for the soils of southern Haryana, India.
 162 Specifically, the study locations in district Palwal extend from 28°00'00" to
 163 28°30'00" N latitude and 77°05'00" to 77°37'30" E longitude, comprising an area
 164 of 1359 square kilometres along with an altitude of 195 m. The district
 165 experiences distinct seasonal variations in temperature, and mean summer,
 166 winter, and annual temperatures are observed as 36, 15 and 34.4 °C,
 167 respectively. The climate of Palwal district is semi-arid with an average annual
 168 rainfall of 520 mm.

169 **Details of Sampling Locations**

170 Soil sampling was conducted from 100 geographically distinct farmers' fields,
 171 with 20 fields representing each cropping system: RW: rice (*Oryza sativa* L.)-
 172 wheat (*Triticum aestivum* L.), CW: cotton (*Gossypium hirsutum* L.)-wheat, PW:
 173 pearl millet (*Pennisetum glaucum* L.)-wheat, PM: pearl millet-mustard (*Brassica*
 174 *juncea* L.) and SS: sugarcane-sugarcane mono cropping (*Saccharum*
 175 *officinarum*). A composite soil sample was collected from each field and the field
 176 was considered as a unit of replication for statistical analysis. The selection
 177 criteria ensured that all sites represented alike physical geographic situations
 178 and conventional agricultural practices within system coupled with a regular
 179 cropping record of ten years or more. Farmers adopted crop specific nutrition
 180 management techniques to fed different crops. Rice crop was nourished with 135-
 181 180 kg N, 40-60 kg P₂O₅, 30-40 kg K₂O and 15-30 kg ZnSO₄ ha⁻¹. In addition to
 182 chemical fertilizers, farm yard manure (FYM) @ 10-12 Mg ha⁻¹ was applied before
 183 rice transplanting in alternate year. Sugarcane crop was fertilized with 130-160
 184 kg N, 30-40 kg P₂O₅, 20-30 kg K₂O and 10-20 kg ZnSO₄ ha⁻¹ in first year; and 220-

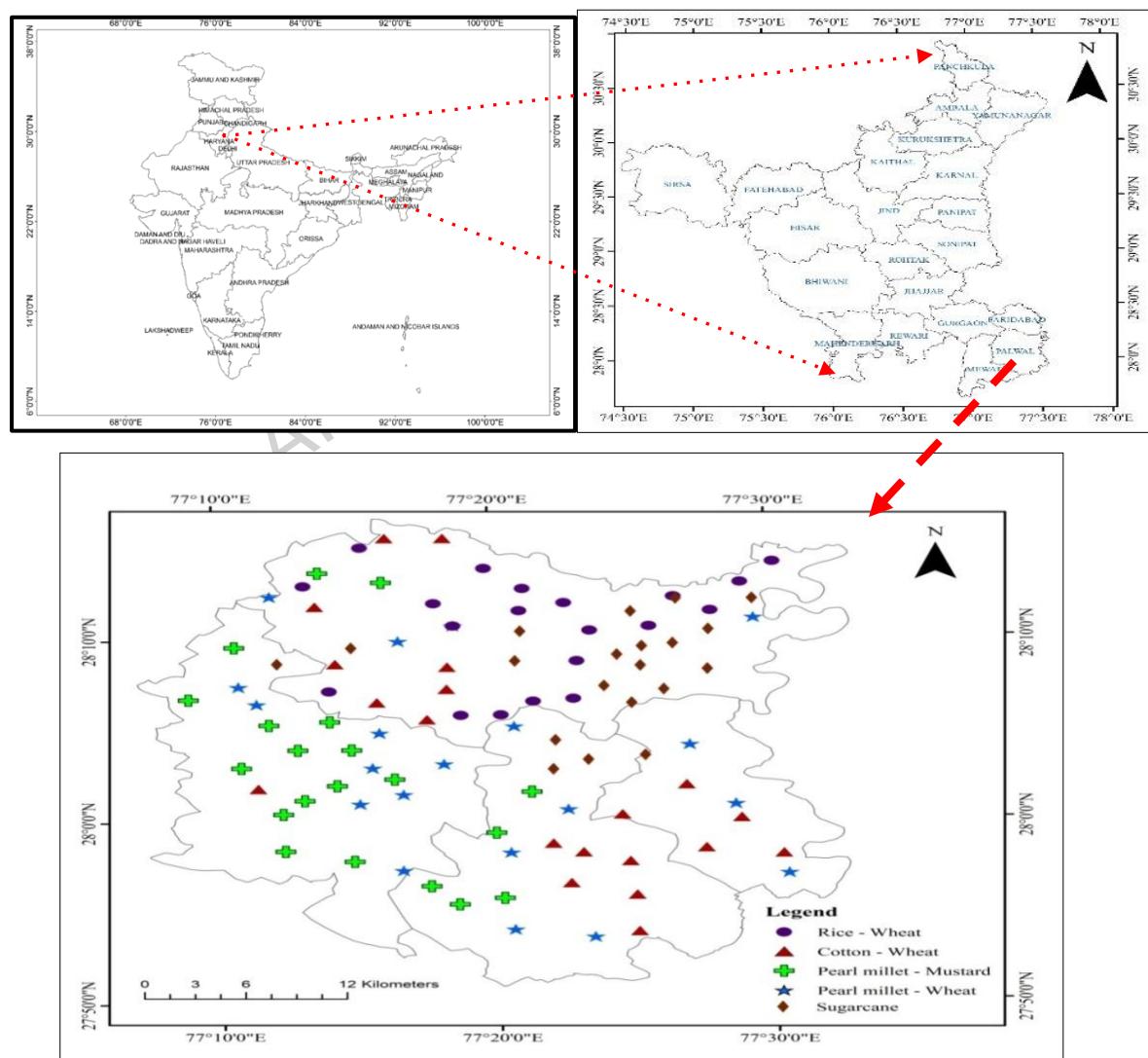
185 250 kg N, 10-20 kg P₂O₅, 10-20 kg K₂O ha⁻¹ in second and third year. In addition,
 186 FYM @ 10-12 Mg ha⁻¹ was also applied in alternate year. Pearl millet crop was
 187 fertilized with 120-160 kg N, 50-60 kg P₂O₅, 20-30 kg K₂O, 10-15 kg ZnSO₄ ha⁻¹
 188 every year, and FYM @ 8-10 Mg ha⁻¹ was applied in alternate years. Cotton crop
 189 was dressed with 140-180 kg N, 50-60 kg P₂O₅, 40-60 kg K₂O and 15-25 kg ZnSO₄
 190 ha⁻¹ yr⁻¹, and FYM @ 10-12 Mg ha⁻¹ was applied in alternate years. Soils under
 191 wheat crop was treated with 135-180 kg N, 40-60 kg P₂O₅, 30-40 kg K₂O, 15-30
 192 kg ZnSO₄ ha⁻¹ yr⁻¹, and FYM @ 8-10 Mg ha⁻¹ was applied in alternate years. Total
 193 40-60 kg N, 25-35 P₂O₅, 15-20 kg K₂O and 10-15 kg ZnSO₄ ha⁻¹ every year was
 194 given to mustard, and FYM @ 5-7 Mg ha⁻¹ was also applied at alternate years.
 195 Average doses of chemical nutrient and FYM applied annually in different
 196 cropping systems of Palwal are presented in Supplementary table 1. Harvesting
 197 of sugarcane was done at maturity, and thereafter ratoon crop was raised for
 198 consecutive two years. Irrigation was provided through canal water and
 199 groundwater in all the cropping systems. The crops were irrigated as and when
 200 required, however, in rice fields, submerged conditions were maintained for
 201 initial four to five weeks after transplanting followed by flood irrigation.

202 **Collection of Soil Sampling and Investigation**

203 **Soil Sampling**

204 A total of 100 surface soil samples (0-15 cm depth) i.e. 20 samples from
 205 each system were collected by choosing different sites for a system and these
 206 distinct sampling sites, geographically located in district Palwal (Southern
 207 Haryana, India), have been illustrated using Fig. 1. [The map of district Palwal](#)
 208 [was generated by taking the geo-coordinates \(latitude and longitude angles\) of](#)
 209 [sampling points through Arc-GIS 10.3 software](#)
 210 [\(<https://www.arcgis.com/home/index.html>\)](https://www.arcgis.com/home/index.html). Followed by harvesting of *Rabi*
 211 season crops, soil samples were gathered using a metallic core sampler during
 212 the month of May 2023. Each composite sample was composed of three sub-
 213 samples obtained from 0.4-hectare field. A pair of composite soil samples were
 214 collected per location and separated in two groups. One group of collected
 215 samples were naturally dehydrated, powdered, filtered through 2 mm mesh, and
 216 shifted in polythene bags under congenial conditions for further soil chemical
 217 testing, including the assessment of available Fe, Mn, Zn and Cu concentrations.
 218 However, second group constituted fresh and moist soil samples which were kept
 219 at 4 °C in a deep freezer for determination of microbial biomass carbon and
 220 dehydrogenase activity.

221 **Determination of Soil Basic Parameters**


222 Soil reaction ($\text{pH}_{1:2}$) was tested using a glass electrode via potentiometric
 223 method [37]. Following the settling of suspension, the supernatant was used to
 224 measure the electrical conductivity ($\text{EC}_{1:2}$) by adopting conductometric method
 225 [37]. Soil texture was classified by "feel method", wherein moist soil samples were
 226 rubbed to evaluate their texture based on tactile perception.

227 The SOC content was determined using wet digestion method [38] in which
 228 1N potassium dichromate ($\text{K}_2\text{Cr}_2\text{O}_7$) and concentrated sulphuric acid (H_2SO_4)
 229 were used to oxidize the soil organic matter. In presence of diphenyl amine
 230 indicator and sodium fluoride, excess of $\text{K}_2\text{Cr}_2\text{O}_7$ was determined by titrating with
 231 0.5N ferrous ammonium sulphate solution.

232

233

234

236

237 **Fig. 1** Locations of soil samples collected from different cropping systems in district Palwal,

238 Haryana, India

239 **Analysis of Dissolved Organic Carbon, Total Inorganic Carbon, Total**
 240 **Carbon**

241 The DOC content was analysed by following the method proposed by [39].
 242 Ten grams of soil mixed with 50 ml de-ionized water was shaken for one hour in
 243 a horizontal shaker followed by centrifugation of suspension for 30 minutes at
 244 800 rpm. Filtered solution was further analyzed in same way as for SOC content.

245 Total carbon was determined by TOC analyzer Multi N/C 3100 (Analytik
 246 Jena) at 1200°C. For TC, 200 to 250 mg of soil was taken in ceramic boat and
 247 placed in auto sampler. Readings were noted through [multiWin pro software](https://www.analytik-jena.in/products/sum-parameter-analysis/toctnb-analysis/toc-tnb-analyzer-multi-nc-x300-series/)
 248 [4.12.1.0](https://www.analytik-jena.in/products/sum-parameter-analysis/toctnb-analysis/toc-tnb-analyzer-multi-nc-x300-series/) (<https://www.analytik-jena.in/products/sum-parameter-analysis/toctnb-analysis/toc-tnb-analyzer-multi-nc-x300-series/>). The difference between TOC
 249 and TC was considered as TIC.

251 **Analysis of Soil Available Micronutrients (Fe, Zn, Cu and Mn)**

252 The method proposed by [40] was followed for analyzing the DTPA
 253 extractable micronutrients. Soil sample was mixed with DTPA extracting solution
 254 buffered at pH 7.3 with triethanolamine to prevent dissolution of CaCO_3 . After 2
 255 hours shaking, the solution was filtered through Whatman no. 42 filter paper. The
 256 content of micronutrients was measured in filtrate using their respective cathode
 257 lamps on atomic absorption spectrophotometer (AAS).

258 **Characterization of Soil Microbial and Enzymatic Activity**

259 The MBC was measured by adopting the fumigation extraction method
 260 proposed by [41]. Ten-gram soil from each moist sample was fumigated with
 261 ethanol-free methyl tri-chloride (CHCl_3) for 24 hours at 25°C. After fumigation
 262 removal, the soil was extracted with 0.5 M K_2SO_4 and then filtered. Similarly,
 263 non-fumigated samples were also extracted. Soil MBC was computed by
 264 deducting extracted carbon between fumigated and non-fumigated samples, and
 265 this difference was multiplied with a transformation factor of K_{EC} (2.64).

266 The rate of tri-phenyl formazan (TPF) synthesis from tri-phenyl
 267 tetrazolium chloride (TTC) was used to estimate the soil dehydrogenase activity
 268 [42]. Five grams of soil sample was mixed with 1 ml TTC solution (3%) and 2.5 ml
 269 distilled water, and incubated at 37°C for 24 hours. To eliminate the reddish
 270 colour, soil was extracted with methanol after incubation. The intensity of red or
 271 orange colour was measured at 485 nm using a spectrophotometer.

272 **Statistical Analysis**

273 Twenty geographically distinct fields were selected for each cropping
 274 system, and one composite sample per field was taken, thus the field number
 275 (n=20 per system) was used as unit of replication for statistical analysis. Mean
 276 values for various cropping systems were separated and assessed at 95%
 277 confidence interval employing the Duncan's multiple range test (DMRT). The
 278 statistical analysis was done with SPSS 16.0 for Windows (SPSS Inc., Chicago,
 279 U.S.A) [43]. Discriminant Function Analysis (DFA) was conducted to identify the
 280 key soil physico-chemical or biological parameters that effectively differentiate
 281 among RW, CW, PW, PM and SS cropping systems. The analysis, performed using
 282 [44], facilitated group separation by identifying the most influential variables.
 283 The results were visualized in a two-dimensional space, representing the first two
 284 canonical discriminant functions (CDFs), which captured the highest proportion
 285 of variance among cropping systems. Additionally, Principal Component Analysis
 286 (PCA) was utilized to examine the variance explained by the principal components
 287 (PCs) using R statistical software [45]. Two most significant PCs, accounting for
 288 the greatest variance, were illustrated in a two-dimensional plot, providing
 289 insights into the primary factors driving variability among soil properties.

290 Results

291 Impact of five major cropping systems (RW, CW, PW, PM and SS),
 292 practiced more than 10 years at farmers' fields on soil properties were precisely
 293 assessed.

294 Basic Soil Properties

295 Soil pH of RW, CW, PW, PM and SS cropping system ranged from 7.01-
 296 7.84, 7.01- 8.17, 7.21-8.51, 7.30-8.26 and 7.10-7.90, respectively with mean
 297 values as 7.37, 7.54, 7.78, 7.93 and 7.50, respectively (Table 1). Soils under PM
 298 cropping system showed higher mean soil pH (7.93) followed by PW cropping
 299 system. Numerically, soils experienced RW cropping system, exhibited lowest soil
 300 reaction among studied cropping systems. Soils experienced rice and sugarcane-
 301 based systems of crop cultivation had significantly lower soil pH as compared to
 302 pearl millet-based systems. Soil EC fluctuated between 0.11-0.75, 0.13-0.72,
 303 0.11-0.94, 0.16-1.02 and 0.13-0.90 dSm⁻¹ for RW, CW, PW, PM and SS cropping
 304 system with a mean of 0.35, 0.41, 0.47, 0.49 and 0.43 dSm⁻¹, respectively (Table
 305 1). Upon examination of data, the lowest soil EC was recorded under RW and
 306 highest in PM cultivated soils, however soil EC did not differ significantly among
 307 various cropping systems. The SOC content in RW, CW, PW, PM and SS cropping
 308 systems varied from 0.45-0.78, 0.29-0.72, 0.27-0.80, 0.29-0.49 and 0.25-0.84 %

309 with mean values of 0.62, 0.56, 0.48, 0.39 and 0.60%, respectively (Table 2).
 310 Significantly raised SOC level was noticed in soils from RW followed by SS and
 311 CW cropping system than to soils of PW system. However, soils under PW (0.48%)
 312 were significantly superior to accrue SOC than PM cropping system. The soil
 313 texture of Palwal district also found varied across different cropping systems.
 314 Under RW, PW and SS systems, the soil texture was found sandy loam to sandy
 315 clay loam. In contrast, the soils under CW and PM systems exhibit a texture
 316 variation from loamy sand to sandy loam.

317 **Table 1.** Soil properties (0-15 cm) under different cropping systems of district
 318 Palwal, Haryana.

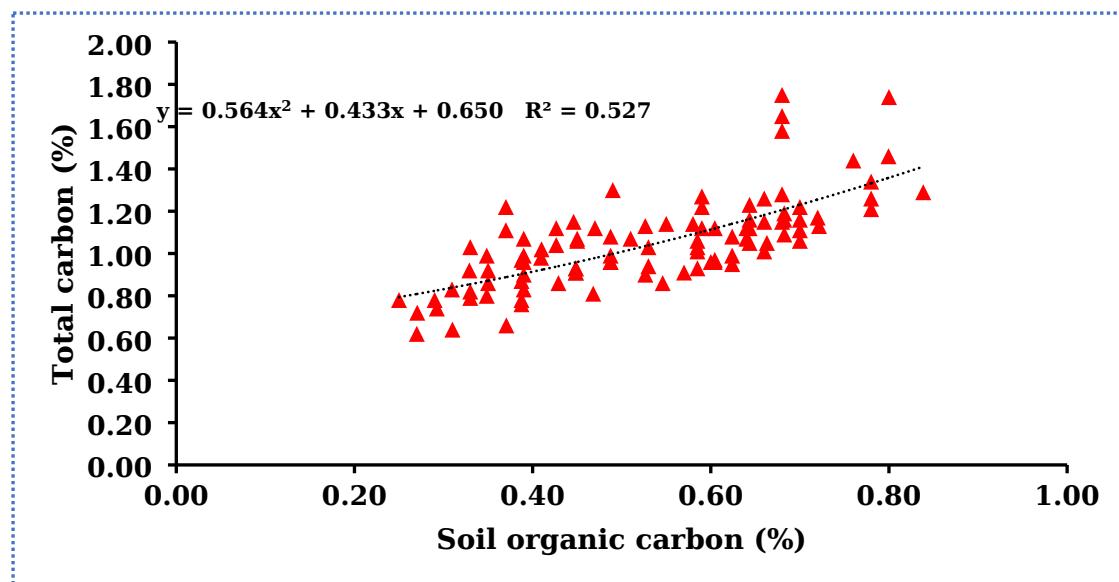
Soil Property	Cropping Systems [Mean (range) \pm standard error of mean]				
	PW	PM	RW	CW	SS
Soil pH _{1:2}	7.78 ^a (7.21- 8.51) ± 0.07	7.93 ^a (7.30-8.26) ± 0.06	7.37 ^b (7.01-7.84) ± 0.04	7.54 ^b (7.01-8.17) ± 0.07	7.50 ^b (7.10- 7.90) ± 0.06
EC _{1:2} (dSm ⁻¹)	0.47 ^a (0.11- 0.94) ± 0.06	0.49 ^a (0.16-1.02) ± 0.06	0.35 ^a (0.11-0.75) ± 0.05	0.41 ^a (0.13-0.72) ± 0.04	0.43 ^a (0.13- 0.90) ± 0.05
Texture	Sandy loam to sandy clay loam	Loamy sand to sandy loam	Sandy loam to sandy clay loam	Loamy sand to sandy loam	Sandy loam to sandy clay loam

319 PW: pearl millet-wheat; PM: pearl millet-mustard; RW: rice-wheat; CW: cotton-wheat; SS:
 320 sugarcane-sugarcane. EC: electrical conductivity. Distinct letters connected with mean
 321 values of various cropping systems indicates significant difference ($p < 0.05$) and those
 322 connected with alike letter are at par ($p < 0.05$) by Duncan's multiple range test (DMRT).

323 Soil carbon fractions

324 The DOC content under RW, CW, PW, PM and SS cropping system varied
 325 from 23.79-51.65, 18.49-47.56, 28.38-51.63, 12.78-39.50 and 18.65-50.15 mg kg⁻¹
 326 with a mean value of 34.42, 33.57, 35.80, 25.80 and 37.65 mg kg⁻¹, respectively
 327 (Table 2). The highest (37.50 mg kg⁻¹) and lowest (25.80 mg kg⁻¹) DOC level was
 328 obtained in soils under SS and PM cropping system, respectively. Soils of PM
 329 cropping were found statistically inferior for DOC content than remainder
 330 cropping systems.

331 The TIC content in various soils extended from 1.10-5.79, 2.47-3.94, 1.54-
 332 7.45, 3.14-6.27 and 1.39-5.01 g kg⁻¹ and reflected the mean value of 2.40, 3.19,
 333 3.41, 4.92 and 2.93 g kg⁻¹ for RW, CW, PW, PM and SS system, respectively (Table


334 2). Soils from PM cultivation demonstrated significant accrual in TIC content than
 335 remainder systems.

336 The perusal of data in table 2 showed that the TC content ranged from
 337 8.10-17.50, 7.40-11.90, 7.20-17.40, 6.40-13.00 and 6.20-16.50 g kg⁻¹ in soils
 338 under RW, CW, PW, PM and SS cropping system with corresponding mean value
 339 of 11.05, 10.08, 10.09, 10.04 and 11.26 g kg⁻¹, respectively. The TC content
 340 among different cropping systems followed the order as: SS>RW>PW≈CW>PM,
 341 however did not differ significantly. A polynomial relationship ($R^2= 0.527$) was
 342 observed between SOC and TC under different cropping systems (Fig.2).

343 **Table 2.**Carbon content in soils under different cropping systems of district
 344 Palwal, Haryana

Soil Proper- ty	Cropping Systems [Mean (range) ± standard error of mean]				
	PW	PM	RW	CW	SS
SOC (%)	0.48 ^b (0.27-0.80) ±0.03	0.39 ^c (0.29-0.49) ±0.01	0.62 ^a (0.45-0.78) ±0.02	0.56 ^a (0.29-0.72) ±0.03	0.60 ^a (0.25-0.84) ±0.04
DOC (mg kg ⁻¹)	35.80 ^a (28.38- 51.63) ±1.27	25.80 ^b (12.78- 39.50) ±1.26	34.4 ^a (23.79- 51.65) ±1.55	33.57 ^a (18.49- 47.56) ±1.83	37.50 ^a (18.65- 50.15) ±2.01
MBC (mg kg ⁻¹)	176.00 ^{ab} (110.48- 271.64) ±9.02	150.32 ^b (94.00- 185.42) ±5.18	191.51 ^a (130.57- 294.41) ±9.36	182.70 ^a (90 .47-254.67) ±10.62	187.86 ^a (77.54- 253.14) ±11.45
TIC (g kg ⁻¹)	3.41 ^b (1.54-7.45) ±0.31	4.92 ^a (3.14-6.27) ±0.18	2.40 ^c (1.10-5.79) ±0.23	3.19 ^b (2.47-3.94) ±0.07	2.93 ^{bc} (1.39-5.01) ±0.21
TC (g kg ⁻¹)	10.09 ^a (7.20-17.40) ±0.54	10.04 ^a (6.40- 13.00) ±0.36	11.05 ^a (8.10- 17.50) ±0.49	10.08 ^a (7.40- 11.90) ±0.26	11.26 ^a (6.20-16.50) ±0.60

345 PW: pearl millet-wheat; PM: pearl millet-mustard; RW: rice-wheat; CW: cotton-wheat; SS:
 346 sugarcane-sugarcane. SOC: soil organic carbon; DOC: dissolved organic carbon, MBC:
 347 microbial biomass carbon; TIC: total inorganic carbon; TC: total carbon (TC). Distinct
 348 letters connected with mean values of various cropping systems indicates significant
 349 difference ($p < 0.05$), and those connected with alike letter are at par ($p < 0.05$) by
 350 Duncan's multiple range test (DMRT).

351

352 **Fig. 2.** Relationship between soil organic carbon (SOC) and total carbon (TC) of soils under
 353 different cropping systems.

354

355 **DTPA Extractable Micronutrients (Fe, Zn, Mn and Cu)**

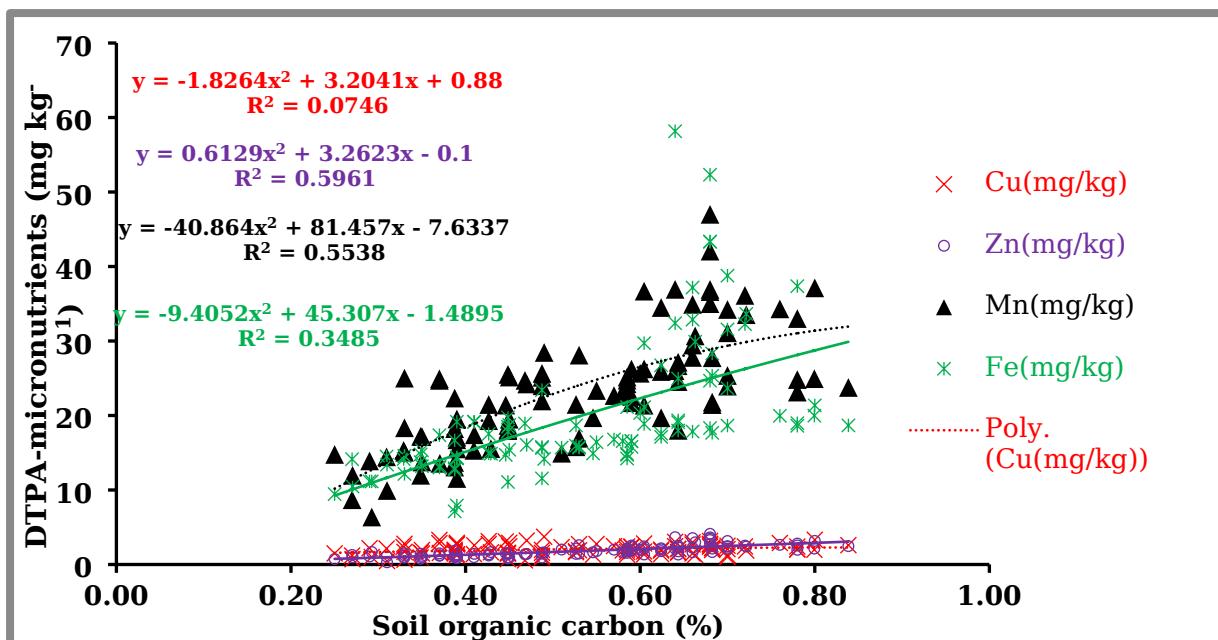
356 Soils withstand RW system exhibited significantly larger concentrations of
 357 DTPA-extractable iron (Fe), zinc (Zn), and manganese (Mn) compared to other
 358 cropping systems, whereas the DTPA-extractable copper (Cu) content was
 359 greatest in the soils of PM cropping (Table 3). Across the cropping systems,
 360 available Fe content expanded between 7.13 to 58.16 mg kg⁻¹. Specifically, the
 361 Fe concentration varied between 14.71-52.32 mg kg⁻¹ in RW, 7.91-58.16 mg kg⁻¹
 362 in CW, 10.47-21.36 mg kg⁻¹ in PW, 7.13-19.15 mg kg⁻¹ in PM and 9.45-24.67 mg
 363 kg⁻¹ in SS cropping, with respective mean values of 27.02, 23.46, 15.51, 14.73
 364 and 17.53 mg kg⁻¹ (Table 3). Data indicated that soils under RW and CW cropping
 365 accommodated significantly greater quantity of bio-available Fe than remaining
 366 systems. The various systems of crop production followed the descending order
 367 for DTPA-extractable Fe concentration as: RW > CW > SS > PW > PM. A
 368 polynomial relationship ($R^2 = 0.348$) was observed between SOC and available Fe
 369 under studied cropping systems (Fig.3).

370 Available Zn concentration (DTPA-extractable) in soils fluctuated between
 371 0.30 to 4.12 mg kg⁻¹ across different cropping systems. The Zn concentrations
 372 ranged from 0.94-4.12 mg kg⁻¹ in RW, 0.82-3.67 mg kg⁻¹ in CW, 0.77-3.17 mg kg⁻¹
 373 in PW, 0.30-1.62 mg kg⁻¹ in PM and 0.74-3.47 mg kg⁻¹ in SS cropping system,
 374 with corresponding mean values of 2.22, 1.98, 1.75, 1.20 and 1.91 mg kg⁻¹,
 375 respectively (Table 3). The highest and lowest concentrations of soil available Zn
 376 were observed in RW (4.12 mg kg⁻¹) and PM (0.30 mg kg⁻¹) systems, respectively.

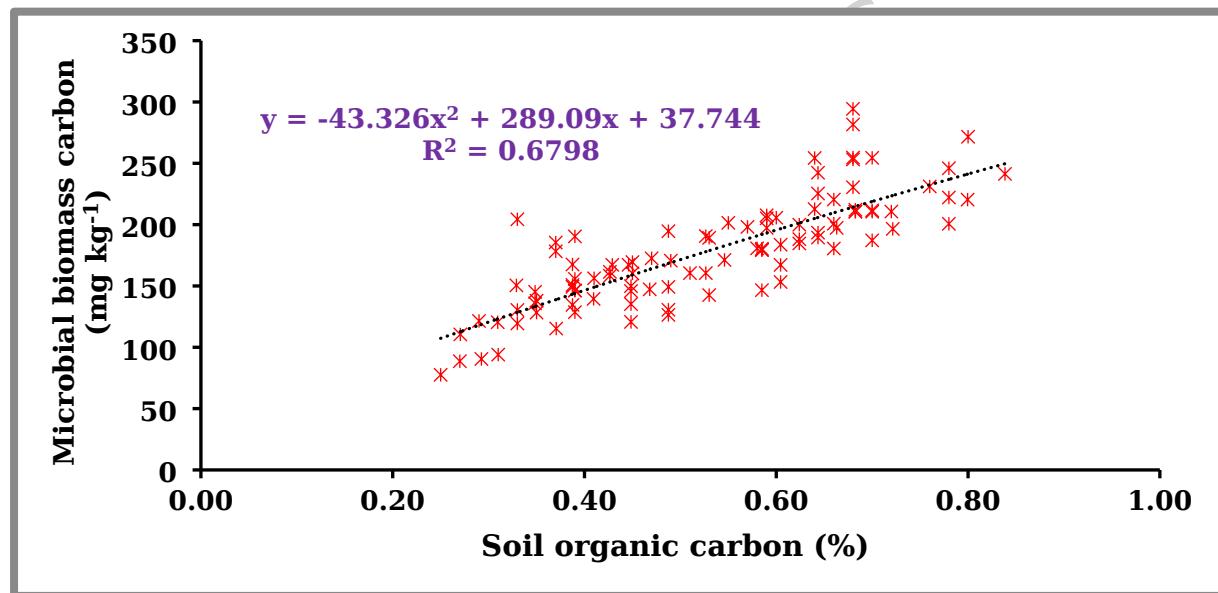
377 The Zn concentration in RW soils was significantly elevated over PW and PM
 378 cropping systems. However, bio-available Zn was statistically at par among RW,
 379 CW and SS cropping systems. Additionally, the inclusion of mustard in cropping
 380 system (PM) exhibited a significant decrease in available Zn as compared to PW
 381 system. A polynomial relationship ($R^2= 0.596$) was acquired between SOC and
 382 DTPA-extractable Zn under different cropping systems in semi-arid region of
 383 Palwal (Fig.3).

384 Results indicated that available Cu concentrations in soils expanded
 385 between 0.55 to 3.72 mg kg⁻¹ across different cropping systems. Specifically, Cu
 386 concentrations ranged from 0.55–2.76 mg kg⁻¹ in RW, 1.01–3.04 mg kg⁻¹ in CW,
 387 0.65–3.32 mg kg⁻¹ in PW, 0.46–3.72 mg kg⁻¹ in PM and 1.20–3.16 mg kg⁻¹ in SS
 388 cropping systems, with respective mean values of 1.53, 2.06, 2.01, 2.55 and 1.98
 389 mg kg⁻¹ (Table 3). Soils from PM system showed significantly greater values of
 390 Cu concentrations over wheat and sugarcane-based cropping. Although Cu level
 391 in CW (2.06 mg kg⁻¹) was numerically higher than those in PW (2.01 mg kg⁻¹) and
 392 SS (1.98 mg kg⁻¹), but the differences were not statistically significant.
 393 Additionally, the RW system reported a significantly lower DTPA-extractable Cu
 394 concentration than studied aerobic cropping systems. The SOC and available Cu
 395 displayed a weak polynomial relationship ($R^2= 0.074$) in studied cropping
 396 systems (Fig.3).

397 The concentrations of available Mn (DTPA-extractable) in soils varied from
 398 6.37 to 47.00 mg kg⁻¹ in evaluated cropping systems. The Mn concentration
 399 ranged from 18.13–47.00 mg kg⁻¹ in RW, 6.37–36.93 mg kg⁻¹ in CW, 11.97–37.13
 400 mg kg⁻¹ in PW, 9.93–28.46 mg kg⁻¹ in PM and 8.69–36.92 mg kg⁻¹ in SS cropping
 401 systems, with respective mean values of 29.95, 23.82, 21.17, 18.95 and 21.85 mg
 402 kg⁻¹, accordingly (Table 3). The RW soils evidenced significantly higher soil
 403 available Mn concentrations than other studied cropping systems. Relatively, CW
 404 soils contained higher Mn concentrations than SS and PW, but, differences were
 405 not statistically significant. The order of available Mn concentrations in various
 406 cropping systems was as follows: RW > CW > SS > PW > PM. A polynomial
 407 relationship ($R^2= 0.553$) was found between SOC and Mn availability under
 408 diverse systems of crop production (Fig.3).


409 The DTPA-extractable micronutrients (Fe, Cu, Zn and Mn) were
 410 significantly affected by the variegated systems of cultivation practices. The
 411 highest Zn, Fe and Mn content was observed under RW cropping system having
 412 mean values of 2.22, 27.02 and 29.95 mg kg⁻¹, respectively. As per the results

413 achieved, all the soil samples collected from RW, CW, PW and SS cropping
 414 systems had sufficient bio-available Zn, Fe, Mn and Cu concentration. However,
 415 only 5% of collected soil samples were deficient in available Zn ($<0.6 \text{ mg kg}^{-1}$)
 416 under PM cropping system. Overall, soil samples under studied cropping systems
 417 reflected sufficient amount of available Fe ($>4.5 \text{ mg kg}^{-1}$), Mn ($>1.0 \text{ mg kg}^{-1}$) and
 418 Cu ($>0.2 \text{ mg kg}^{-1}$).


419 **Table 3.** Available micronutrients, microbial biomass carbon and enzyme activity
 420 in soils under different cropping systems of district Palwal, Haryana.

Soil Property	Cropping Systems [Mean (range) \pm standard error of mean]				
	PW	PM	RW	CW	SS
DTPA-Fe (mg kg ⁻¹)	15.51 ^b (10.47- 21.36) ± 0.51	14.73 ^b (7.13- 19.15) ± 0.64	27.02 ^a (14.71- 52.32) ± 2.15	23.46 ^a (7.91- 58.16) ± 2.94	17.53 ^b (9.45- 24.67) ± 0.69
DTPA-Zn (mg kg ⁻¹)	1.75 ^b (0.77-3.17) ± 0.16	1.20 ^c (0.30-1.62) ± 0.07	2.22 ^a (0.94-4.12) ± 0.17	1.98 ^{ab} (0.82-3.67) ± 0.19	1.91 ^{ab} (0.74-3.47) ± 0.15
DTPA-Cu (mg kg ⁻¹)	2.01 ^b (0.65-3.32) ± 0.17	2.55 ^a (0.46-3.72) ± 0.16	1.53 ^c (0.55-2.76) ± 0.13	2.06 ^b (1.01-3.04) ± 0.13	1.98 ^b (1.20-3.16) ± 0.11
DTPA-Mn (mg kg ⁻¹)	21.17 ^{bc} (11.97- 37.13) ± 1.64	18.95 ^c (9.93- 28.46) ± 1.08	29.95 ^a (18.13- 47.00) ± 1.52	23.82 ^b (6.37- 36.93) ± 1.84	21.85 ^{bc} (8.69- 36.92) ± 1.44
DHA ($\mu\text{g TPF g}^{-1} 24\text{h}^{-1}$)	30.23 ^{bc} (21.70- 47.80) ± 1.37	32.04 ^b (18.50- 43.90) ± 1.45	39.67 ^a (20.60- 69.40) ± 2.65	29.80 ^{bc} (19.60- 40.80) ± 1.23	26.17 ^c (15.70- 38.70) ± 1.22

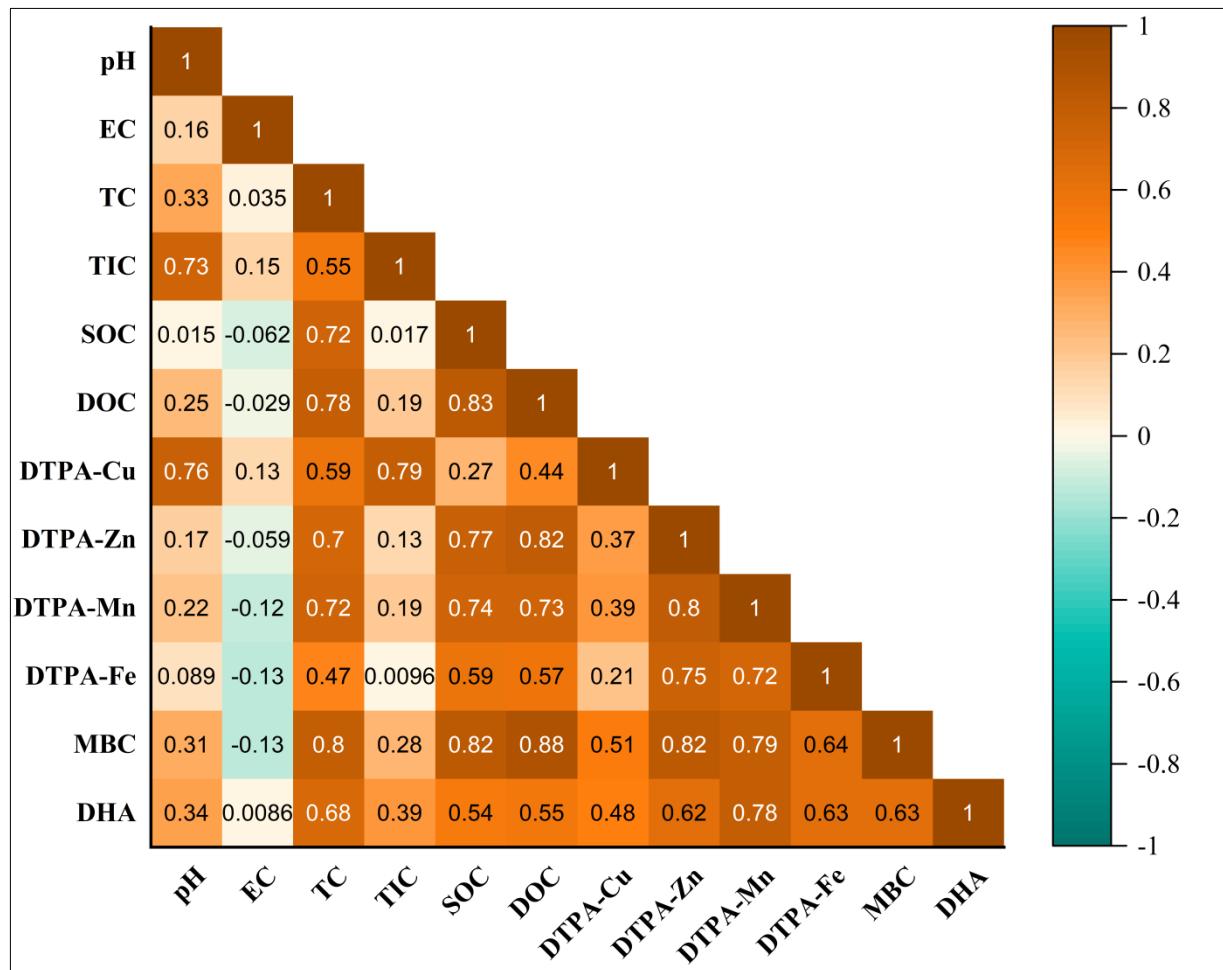
421 PW: pearl millet-wheat; PM: pearl millet-mustard; RW: rice-wheat; CW: cotton-wheat; SS:
 422 sugarcane-sugarcane. DHA: Dehydrogenase activity. Distinct letters connected with
 423 mean values of various cropping systems indicates significant difference ($p < 0.05$) and
 424 those connected with alike letter are at par ($p < 0.05$) by Duncan's multiple range test
 425 (DMRT).

426
427 **Fig. 3.** Relationship between soil organic carbon (SOC) and available micro nutrients in soils under
428 different cropping systems.

429
430 **Fig. 4.** Relationship between soil organic carbon (SOC) and microbial biomass carbon (MBC) in
431 soils under different cropping systems.

432

433 **Fig. 5.** Relationship between dissolved organic carbon (DOC) and microbial biomass carbon (MBC)
 434 in soils under different cropping systems.


435 **Soil Microbiological and Enzymatic Activity**

436 The MBC content in soils under RW, CW, PW, PM and SS cropping system
 437 positioned between 130.57-294.41, 90.47-254.67, 110.48-271.64, 94.00-185.42
 438 and 77.54-253.14 mg kg⁻¹ with their parallel mean value of 191.51, 182.70,
 439 176.00, 150.32 and 187.86 mg kg⁻¹, respectively. Significantly higher MBC
 440 content was observed in soils under RW system over PM cropping, however non-
 441 significantly numerically higher over SS, CW and PW cropping. Amidst different
 442 cropping systems, MBC content in soils followed the order as:
 443 RW>SS>CW>PW>PM (Table 2). A polynomial relationship ($R^2= 0.679$) of MBC
 444 with SOC (Fig.4); and MBC with DOC ($R^2= 0.776$) was expressed among studied
 445 cropping systems (Fig.5).

446 The DHA activity in RW, CW, PW, PM and SS cropping system ranged from
 447 20.60-69.40, 19.60-40.80, 21.70-47.80, 18.50-43.90 and 15.70-38.70 µg TPF g⁻¹24h⁻¹ with the mean value of 39.67, 29.80, 30.23, 32.04 and 26.17 µg TPF g⁻¹24h⁻¹, respectively (Table 3). The highest and lowest DHA activity was observed in
 448 RW (69.40 µg TPF g⁻¹24h⁻¹) and SS (15.70 µg TPF g⁻¹ 24h⁻¹) cropping systems,
 449 respectively. The RW cropping system showed significantly higher DHA (39.67
 450 µg TPF g⁻¹24h⁻¹) as compared to PM (32.04 µg TPF g⁻¹24h⁻¹), PW (30.23 µg TPF
 451 g⁻¹24h⁻¹), CW (29.80 µg TPF g⁻¹24h⁻¹) and SS (26.17 µg TPF g⁻¹24h⁻¹) cropping
 452 systems. Additionally, soils from PW, PM, and CW; and soils of SS, CW and PW
 453 cropping systems did not differ significantly for DHA activity. Numerically,
 454 impact of different cropping systems at farmers' fields on DHA levels in soil
 455 demonstrated the order as: RW>PM>PW>CW and SS.

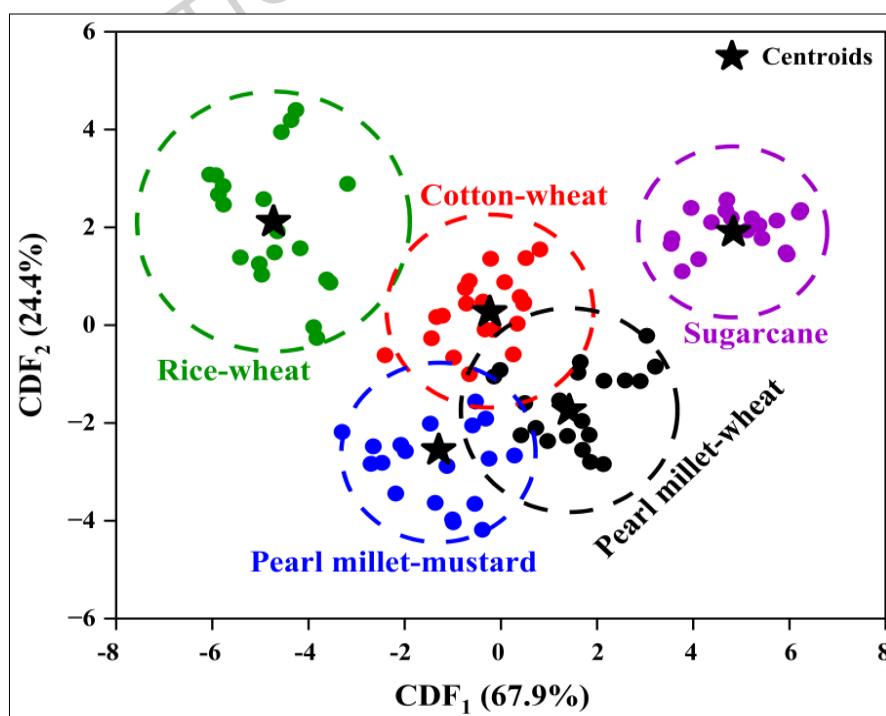
458 **Correlation**

459 The correlation matrix provided key insights of interactions among soil
 460 physico-chemical properties (pH, EC, TC, TIC, SOC, and DOC), micronutrients
 461 availability (DTPA-extractable Cu, Zn, Mn, Fe) and microbial activity indicators
 462 (MBC and DHA) (Fig.6). Soil pH was highly positively correlated with TIC
 463 ($r=0.73$; $p< 0.05$) and DTPA-Cu ($r=0.76$; $p< 0.05$). Conversely, soil pH showed a
 464 non-significant correlation with SOC and DTPA-Fe. Soil EC exhibited weak
 465 correlations with most of the variables, including negative correlation with SOC,
 466 DOC and DTPA-Zn. SOC was strongly positively correlated with TC ($r=0.72$; $p<$
 467 0.05), DOC ($r=0.83$; $p< 0.05$), DTPA-Zn ($r=0.77$; $p< 0.05$), Mn ($r=0.74$; $p< 0.05$)
 468 and MBC ($r=0.82$; $p< 0.05$). Similarly, moderate and significant correlation of
 469 SOC was found with DTPA-Fe and DHA, however, a non-significant correlation
 470 was observed between SOC and TIC. TC showed a highly significant positive
 471 correlation with SOC ($r=0.72$; $p< 0.05$), DOC ($r=0.78$; $p< 0.05$), Zn ($r=0.70$; $p<$
 472 0.05), Mn ($r=0.72$; $p< 0.05$), MBC ($r=0.80$; $p< 0.05$) and DHA ($r=0.68$; $p< 0.05$),
 473 and also exhibited a positive correlation with soil pH ($r=0.33$; $p< 0.05$), TIC
 474 ($r=0.55$; $p< 0.05$), DTPA-Cu ($r=0.59$; $p< 0.05$) and Fe ($r=0.47$; $p< 0.05$). The TIC
 475 under divergent cropping systems showed a highly significant positive
 476 correlation with soil pH and DTPA-Cu ($r=0.79$; $p< 0.05$). DOC indicated highly
 477 positive correlation with TC, SOC, DTPA-Zn ($r=0.82$; $p< 0.05$), Mn ($r=0.73$; $p<$
 478 0.05) and MBC ($r=0.88$; $p< 0.05$). Micronutrients availability was significantly
 479 influenced by organic matter, as confirmed by the strong correlations between
 480 SOC and DTPA-Zn, DTPA-Mn and DOC and DTPA-Fe. Additionally, DTPA-Zn, Mn
 481 and Fe exhibited strong inter-correlations, suggesting the similar geochemical
 482 behaviour. The DTPA-Cu content under different cropping systems was positively
 483 correlated with all the studied soil parameters. Similarly, DTPA-Zn, Mn and Fe
 484 were positively correlated with all the studied soil parameters except soil EC.
 485 DTPA-Fe and Mn was strongly correlated with SOC, DOC, DTPA-Zn, MBC and
 486 DHA. The MBC content showed highly significant positive correlation with TC,
 487 SOC, DOC, DTPA-Zn, Mn, Fe and DHA. Likewise, DHA exhibited significant
 488 positive correlation with all the studied soil parameters under diverse cropping
 489 systems.

490
491 **Fig. 6.** Correlation matrix illustrating relationships among soil physico-chemical and
492 microbiological properties

493 Data pooled for soils from different cropping systems. EC = Electrical conductivity, TC: Total
494 carbon; TIC: Total inorganic carbon; SOC: Soil organic carbon; DOC: Dissolved organic carbon;
495 MBC: Microbial biomass carbon; DHA: Dehydrogenase activity. Correlation is significant at $p < 0.05$
496 level (2-tailed).

497 **Discriminant Analysis (DA) and Data Reduction Technique (Principal 498 Component Analysis (PCA))**


499 The analysis was performed to differentiate the different cropping systems
500 (RW, CW, PW, PM and SS) using soil physico-chemical parameters (pH, EC, TC,
501 TIC, SOC and DOC), micronutrient availability (DTPA-extractable Cu, Zn, Mn, Fe)
502 and biological properties (MBC and DHA) as discriminating variables. The scatter
503 plot presented the canonical discriminant functions (CDF_1 and CDF_2) (Table 4),
504 which explained 67.9 and 24.4% of the total variance, respectively, indicating
505 that these two functions account for a significant proportion of the differences
506 among cropping systems and classified the soils into five groups (Fig.7). Two
507 canonical functions (Function 1, 0.955**, $p < 0.05$, and Function 2, 0.888*, $p <$
508 0.05) depicted significant correlations among studied variables. The canonical
509 structure matrix indicated that CDFs' soil properties were statistically significant
510 ($p < 0.05$). The identified parameters effectively differentiated the RW and SS

511 cropping systems from pearl millet-based systems (PW and PM) and CW cropping
 512 system. However, there was a noticeable overlap in soil characteristics among
 513 PW, PM and CW cropping systems, indicated by closely aligned centroids.

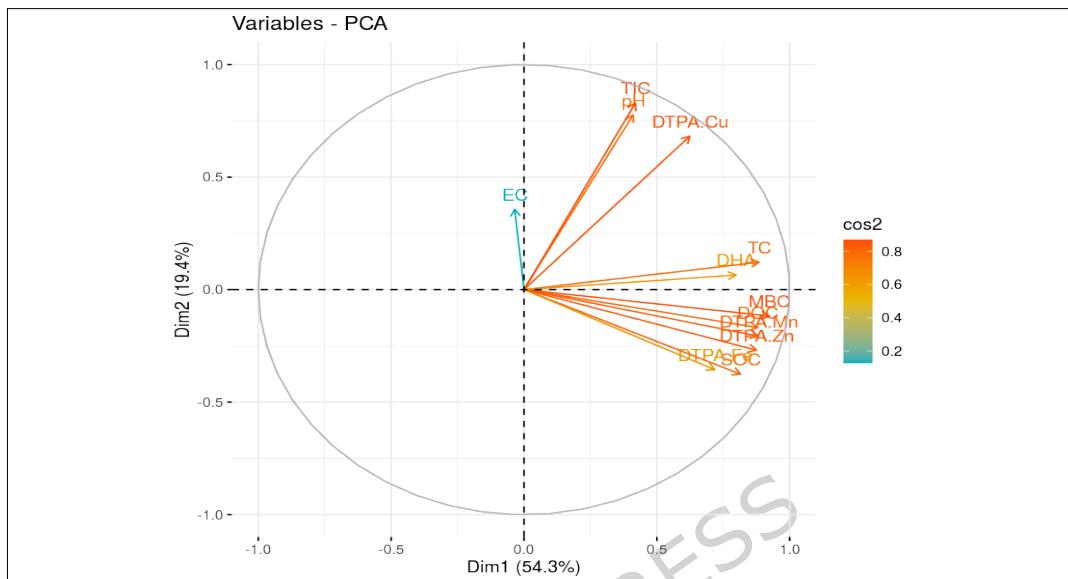
514 **Table 4.** Canonical discriminant function coefficients for classified groups and
 515 structure matrix.

Variable	Standardized canonical discriminant functions		Non- standardized canonical discriminant functions		Structure matrix	
	Funct.1	Funct.2	Funct.1	Funct.2	Funct.1	Funct.2
pH	0.415	-0.272	1.598	8.737	0.238	0.013
EC	0.107	-0.011	0.469	-1.047	0.063	-0.028
TC	-2.017	-0.783	-9.683	-0.051	-0.060	-0.028
TIC	2.112	0.745	21.976	-3.760	0.267	0.111
SOC	-0.313	0.674	-2.561	7.759	-0.213	-0.070
DOC	0.784	-2.435	0.108	5.505	-0.122	-0.213
DTPA-Cu	0.399	-0.183	0.631	-0.338	0.156	0.010
DTPA-Zn	-0.311	-0.074	-0.457	-0.290	-0.153	-0.032
DTPA-Mn	-0.464	0.660	-0.068	-0.109	-0.159	0.110
DTPA-Fe	-0.082	0.515	-0.010	0.097	-0.166	0.147
MBC	-0.032	0.308	-7.809	0.067	-0.103	-0.060
DHA	-0.399	1.159	-0.053	0.007	-0.082	0.2538
Constant			-8.743	8.737		

516 EC: Electrical conductivity; TC: Total Carbon; TIC: Total inorganic carbon; SOC: Soil
 517 organic carbon; DOC: Dissolved organic carbon; MBC: Microbial biomass carbon; DHA:
 518 Dehydrogenase activity.

519

520 **Fig. 7.** Canonical discriminant functions (CDFs) plot for separating rice-wheat, cotton-wheat, pearl
 521 millet-wheat, pearl millet-mustard and sugarcane-sugarcane cropping systems in Palwal, Haryana.
 522


523 Further, PCA of different soil properties under studied cropping systems
 524 reflected that the first two principal components had eigen value >1 (Table 5).
 525 The plot represents the locations of various soil variables in orthogonal space
 526 (Fig.8). The first principal component (PC_1) accounted for 54.3% of the total
 527 variance, while the second principal component (PC_2) provided an additional
 528 19.4%, resulting in a cumulative variance of 73.7% in total data set. The PC_1 and
 529 PC_2 had eigen value of 6.51 and 2.33, respectively. For PC_1 , MBC, TC, DTPA-Mn
 530 and DOC had the highest contributions with loading values of 0.362, 0.347, 0.346
 531 and 0.345, respectively, suggesting their significant role in explaining soil
 532 variability, however, soil EC had a negative weighted loading value of -0.014. In
 533 contrast, for PC_2 , TIC and soil pH were the most influential variables with
 534 negative loading values of -0.543 and -0.509, respectively.

535 **Table 5.** Loading values of soil properties and the percentage contribution of
 536 principal components on the axis recognized by principal component analysis
 537 (PCA).

Soil variables	PC1/Dim1		PC2/Dim2	
	Loading values	Contribution of variables (%)	Loading values	Contribution of variables (%)
pH	0.161	2.592	-0.509	25.898
EC	-0.014	0.019	-0.234	5.489
TC	0.347	12.032	-0.08	0.637
TIC	0.164	2.701	-0.543	29.512
SOC	0.319	10.207	0.247	6.081
DOC	0.345	11.901	0.111	1.226
DTPA-Cu	0.245	5.979	-0.447	19.965
DTPA-Zn	0.343	11.775	0.177	3.121
DTPA-Mn	0.346	11.967	0.136	1.843
DTPA-Fe	0.281	7.915	0.233	5.451
MBC	0.362	13.117	0.077	0.597
DHA	0.313	9.794	-0.042	0.18
Eigen value		6.51		2.33
Variability (%)		54.3		19.4
Cumulative variability (%)		54.3		73.7

538 PC: Principal component; Dim: Dimension; EC: Electrical conductivity; TC: Total Carbon;
 539 TIC: Total inorganic carbon; SOC: Soil organic carbon; DOC: Dissolved organic carbon;
 540 MBC: Microbial biomass carbon; DHA: Dehydrogenase activity.

541 The inter-correlation highly weighted loading values of soil variables
 542 among different PCs disclosed that MBC in PC₁, and TIC and soil pH in PC₂ with
 543 the highest correlation might be selected for MDS. Computed percentage of total
 544 variance ranged between 0.26 and 0.74 based on weight of each PC. For three
 545 distinct MDSs, the weighted factor followed PC₁ (0.74) > PC₂ (0.26) (Table 5).

546
 547 **Fig. 8.** Principal component analysis (PCA) plot of soil properties comprising pH, electrical
 548 conductivity (EC), soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass
 549 carbon (MBC) and dehydrogenase activity (DHA) in soils experienced rice-wheat, cotton-wheat,
 550 pearl millet-wheat, pearl millet-mustard and sugarcane-sugarcane cropping systems of Palwal,
 551 Haryana. Dim: Dimension.

552

553 Discussion

554 Land uses and cropping systems play a significant role in nutrient
 555 availability via influencing the SOC dynamics, variations in plant-derived carbon
 556 inputs, crop management practices, and microbial activity in soil, consequently
 557 impacting the overall soil quality [46]. Therefore, a comprehensive knowledge of
 558 aerobic and anaerobic agricultural systems is crucial for developing the farming
 559 systems that sustain or improve soil health on long term basis. The results
 560 achieved during this study are discussed under the following headings:

561 Basic Soil Properties

562 Soils under RW cropping system reported the lowest pH compared to the
 563 soils of aerobic cropping systems i.e. CW, PW, PM and SS (Table 1). Apart from
 564 the released organic acids through organic matter decomposition, evidently
 565 higher SOC content under submerged conditions of rice resulted into more
 566 decrement in soil pH as compared to aerobic cultivation systems [47]. The lower
 567 soil pH might be linked to the specific management practices like high FYM
 568 addition in RW (Supplementary table 1, and higher in-situ residue retention in SS

569 system that increases the SOC and MBC in soil (Table 2). Soils faced RW cropping
 570 system recorded 14.63, 18.60, 25.53 and 28.57 % lower soil EC compared to the
 571 soils under CW, SS, PW and PM cropping systems, respectively. The increased
 572 solubility coupled with higher leaching losses of soluble salts under submerged
 573 conditions of rice fields might cause the reduction in soil EC as supported by the
 574 findings of [48]. However, in aerobic cropping systems, regular incorporation of
 575 manures raised the levels of calcium, magnesium and related salts in soils; and
 576 further less leaching losses resulted in accumulation of these salts in soil,
 577 ultimately associated with higher soil EC [49]. The semi-arid climatic conditions
 578 of the study area having low annual rainfall also restrict the complete leaching of
 579 these salts from root zone, especially under aerobic systems, and causes
 580 accumulation of these salts in surface soil layer.

581 **Carbon Dynamics**

582 The soil samples from RW system reported 3.33, 10.71, 29.16, 58.97 %
 583 higher SOC as compared to SS, CW, PW and PM cropping systems, respectively.
 584 Under RW cropping system, 95 and 5% soil samples fall under medium and high
 585 category, respectively, and no sample from tested soils was found in low SOC
 586 category. The higher SOC in RW cropping system might be a combined effect of
 587 anaerobic conditions and frequent addition of organic manure/FYM in higher
 588 doses, therefore slow decomposition rates are linked with higher SOC status in
 589 these soils [50-51]. The accretion of SOC in SS system is likely due to regular and
 590 high-rate addition of organic matter via leaf litter fall, leftover sugarcane tops
 591 and below ground biomass. The rate of crop residues decomposition is also
 592 regulated by lignin, cellulose, and poly phenols content of the crops that led to
 593 the variations in SOC build up [52]. Under PW cropping system, 50, 45 and 5%
 594 soil samples exhibited low, medium and high category of SOC, respectively. In
 595 CW cropping system, 10 and 90% of studied soil samples were under low and
 596 medium category, respectively, and no sample from tested soils showed high SOC
 597 category. Similar to SS cropping, considerably higher SOC level of soils under
 598 CW over PW cropping might be primarily due to greater above and below ground
 599 biomass accumulation in addition to higher FYM (Supplementary table 1)
 600 application rates [53]. About 60 and 40% soil samples from PM cropping system
 601 fall under low and medium category, respectively. The addition of lower FYM
 602 doses coupled with low antecedent soil fertility, associated with sandy texture,
 603 collectively reduced the SOC retention in soil [17].

604 The DOC serves as a vital medium for substance transport and an essential
605 energy source for microbial communities [54]. Regular SS mono cropping
606 reflected higher DOC level in soil followed by PW, RW, CW and PM cropping
607 system. Enhanced DOC in soils of SS cropping might be related to higher
608 retention of low C:N ratio crop residues over longer duration that promotes
609 carbon stocks in soil, and consequently released more labile carbon in soil like
610 DOC [55]. Despite the higher residual retention in CW, less DOC released as
611 compared to SS could be explained by resistant nature of cotton residues like
612 hard twigs with wide C:N ration. In contrast, lesser litter deposition and low
613 humification rate in soils under other aerobic cropping systems might be the
614 possible reason for lower DOC. Furthermore, despite the higher SOC content
615 under RW system, the increased leaching loss due to anaerobic submerged
616 conditions attributed to retain lesser DOC in soil relative to SS cropping system
617 [56]. As per the outcomes of experimental study, 44.28, 54.23, 67.92 and 105%
618 higher TIC content in soils of PM system over PW, CW, SS and RW cropping
619 system, respectively, might be attributed due to the positive relationship of soil
620 pH with calcium carbonate content [57]. The lower TIC content in soils of RW
621 system might be related to the collective impact of higher SOC content and lower
622 soil pH under anaerobic conditions of rice [58]. [59] also reported a negative
623 relation of SIC with SOC. Another reason for lower TIC content in RW system
624 might be the dissolution and leaching of carbonates under flooded conditions of
625 rice [60-61]. Significantly higher TIC content under pearl millet based cropping
626 systems may be associated with low SOC, high pH and lesser N fertilization, in
627 contrast, relatively reduced TIC of CW cropping system is attributed to intensive
628 agricultural management techniques and soil acidification by higher N fertilizer
629 (Supplementary table 1) application [62]. As per the observations of present
630 study, the TC content among various cropping systems did not differ significantly,
631 however, soils from SS mono cropping showed 1.90, 11.60, 11.70 and 12.15%
632 higher TC content over RW, PW, CW and PM cropping system, respectively. The
633 perennial aerobic SS system reflected higher soil TC because of constant organic
634 matter inputs through leaf litter fall and rhizo-deposition over longer time span
635 as compared to other cropping systems [63-65]. Although, SOC content was
636 higher under RW, however, lower TC could be ascribed to more leaching of labile
637 carbon pools under anaerobic condition of submerged rice. Lower TC content in
638 soils of aerobic cropping systems (especially PM and PW) than RW might be
639 linked to the combined impacts of fast SOM decomposition rate, less external

640 nutritional supply through FYM and fertilizers (Supplementary table 1) that
 641 ultimately causing lower biomass addition in soils. Thus, cumulative impact of
 642 inherent soil fertility, texture, nutritional demand and management practices of
 643 specific cropping systems, and existing moisture conditions (aerobic/anaerobic)
 644 could lead to the differential level of soil carbon stocks [6,17,66-68].

645 **Micronutrients Availability**

646 The concentrations of bio-available micronutrients (Fe, Zn, Cu and Mn)
 647 were significantly impacted by the studied cropping systems and soils of RW
 648 cropping system recorded 15.17, 54.14, 74.21 and 83.44 % higher DTPA
 649 extractable Fe compared to CW, SS, PW and PM cropping system, respectively.
 650 Soil pH, redox potential (Eh) and chelates formation are the major chemical
 651 processes which typically regulates the Fe availability [69]. The increased soil
 652 available Fe under RW cropping system might be associated with anaerobic
 653 moisture regimes, which facilitated the conversion of iron to soluble ferrous
 654 (Fe^{2+}) form [11,70]. Increased chelation of Fe associated with higher organic
 655 matter under anaerobic rice crop also reduces its losses and enhances its bio-
 656 availability for plants [71]. In addition, the decay of crop stubbles further
 657 facilitates Fe mobilization and sustained release of available Fe in soil [72]. The
 658 lesser availability DTPA-Fe in soils under aerobic cropping systems might be due
 659 to high pH (Table 1) and oxidised state of soil system that reduces the Fe
 660 solubility and availability. The soils of RW cropping system exhibited 12.12,
 661 16.23, 26.86 and 85.00% higher DTPA extractable Zn concentration compared to
 662 CW, SS, PW and PM cropping system, respectively. Similar to Fe, positive
 663 correlation of DTPA extractable Zn with SOC content may be the possible reason
 664 for its higher levels in anaerobic soils of rice crop [73]. Another probable reason
 665 may correspond to the accumulation and recycling of Zn added via organic
 666 residues, crop litter and root residues [74]. Furthermore, application of Zn
 667 fertilizers in rice crop as common practice by farmers in present investigation
 668 also elevated its concentrations [75]. The lowest Zn level in soils under PM
 669 cropping system might be due to exhaustive absorption by the pearl millet in
 670 addition to less Zn fertilizer application [76]. Soils under RW cropping system
 671 exhibited 25.73, 37.12, 41.47 and 58.05% higher DTPA extractable Mn content
 672 over CW, SS, PW and PM cropping, respectively. A positive and significant
 673 relationship among DTPA-extractable Mn, SOC and clay content of soils
 674 increased the DTPA-extractable Mn in rice soils [77]. Substantial increase of soil
 675 available Mn with RW system might be ascribed to lower soil pH that increases

676 the solubility and availability of micronutrients in soil as compared to aerobic
 677 cropping systems with higher soil pH (Table 1) [78-79]. Prolonged soil flooding
 678 or anaerobic conditions in RW system lowered down the redox potential of soil
 679 and promotes the conversion of Mn⁴⁺ to soluble Mn²⁺ ions [80-81]. The higher
 680 soil EC of aerobic cropping systems also negatively influence the DTPA-
 681 extractable Mn availability [77].

682 The soils undergone PM system showed 23.79, 26.87, 28.79 and 66.67%
 683 higher DTPA-extractable Cu content as compared to CW, PW, SS and RW
 684 cropping system, respectively. The lower concentration of available Cu in soils of
 685 RW system might be attributed to increased formation of Cu organo-complexes
 686 due to higher organic matter content under anaerobic conditions of rice [82-83].
 687 The Cu is recognized to be the most easily bound cation with organic matter
 688 among micronutrients [69]. Higher available Cu in aerobic CW system compared
 689 to SOM rich RW cropping was also reported by [84]. Significantly lower DTPA-
 690 extractable Cu concentration in anaerobic RW system compared to aerobic
 691 cropping systems might be due to higher Cu immobilization through sulphide
 692 formation (CuS, Cu₂S) because of increased sulphur solubilisation under reduced
 693 conditions of rice [85-86]. Further, intensive mining without balanced
 694 micronutrients replenishment also reduces the Cu availability under RW system
 695 [87]. The relatively higher Cu availability in soils under PM cropping system with
 696 low SOC and high pH can be explained by the reduced role of organic matter in
 697 Cu immobilization. [88] also demonstrated that soil organic matter act as
 698 dominant sink for Cu through complexation; consequently, in soils with low SOC,
 699 fewer Cu-organic complexes are formed, leaving a greater proportion of Cu as
 700 labile pools despite the high soil pH. Pearl millet roots release phytosiderophores
 701 having strong affinity for Cu into the rhizosphere, which mobilize Cu from weakly
 702 bound soil pools; and these rhizosphere-mediated mobilisation strategies
 703 increase Cu availability in pearl millet soils. [89] also reported that aerobic crops
 704 with extensive root systems and high biomass, such as mustard, can mobilize Cu
 705 from soil matrices through root exudates and rhizospheric interactions, thus
 706 enhancing its bioavailability. Furthermore, mustard residues contributes to
 707 higher DTPA-extractable Cu by adding Cu-rich leachates which upon
 708 decomposition release Cu into soil [90-91]. The present study also displayed a
 709 weak polynomial relationship between SOC and available Cu ($R^2= 0.074$) in
 710 evaluated cropping systems (Fig.3).

711 **Microbiological parameters**

Microbial diversity, their populations and activities are controlled by soil parameters (texture, moisture, aeration, manures and fertilizer applications), environmental factors (temperature, rainfall and humidity) and crop production techniques [92]. The MBC content in RW cropping system was 1.94, 4.82, 8.81, and 27.40% higher compared to SS, CW, PW, and PM cropping systems, respectively. The higher SOM accumulation under anaerobic conditions of rice exhibited a highly positive and statistically significant association with MBC and other soil microbiological properties [15, 93, 94, 95]. The incorporation of bio-fertilizers, green manures, and high doses of organic manures associated with slow decomposition rate also enhanced the MBC levels in RW cropping system [96]. The higher MBC level in soils undergoing SS mono-cropping as compared to other aerobic systems might be attributed to higher accumulation of above and below ground biomass [97]. In semi-arid soils, the improvement in MBC level in CW could be associated with accrual of SOC content under intensive nutrient management (Supplementary table 1), and positive relationship of SOC with MBC [98]. The DHA was significantly affected by different cropping systems in accordance with the findings of [99] and soils possessed RW cropping had 23.81, 31.23, 33.12 and 51.58% higher DHA over PM, PW, CW and SS system, respectively. In soils from RW cropping system, the elevated DHA may be connected to higher biomass accumulation as substrate along with moisture conditions that provides favourable environment for microbes' proliferation [81, 100]. [101] also demonstrated a higher DHA level in soils linked with more residue addition because the SOC acts as precursor for enzyme synthesis through increased activity of microbe and encourages physical protection of carbon in soil. Comparatively, lesser DHA in soils under aerobic cropping systems may be related to high pH, less moisture coupled with low SOC content (Table 2). The lowest DHA in SS perennial mono cropping could be collective effects of more nutrients mining by crop; heavy use of pesticides that suppress microbial activity and production of enzymes like DHA; multi ratoon systems without proper soil and nutrient management that might gradually reduce microbial population over time; soil compaction disturbs soil structure and negatively impact microbial habitat and activities [102].

The correlation studies revealed that SOC had robust and positive association with TC, DOC, DTPA-Zn, Mn, MBC, DTPA-Fe and DHA [103-104], however, a weak connection was observed between SOC and TIC. The soil microbiological parameters (MBC and DHA) were highly positive and

748 significantly correlated with soil pH, TC, TIC, SOC, DOC; and have positive
 749 significant influence on post-harvest available micronutrients, however, showed
 750 non-significant correlation with soil EC.

751 Analysing the complex interactions of different cropping systems with soil
 752 parameters could help better to achieve desired level of crop production and to
 753 ensure long-term agricultural sustainability. Especially in areas like Haryana or
 754 across India, where intensive farming practices dominate, estimating soil health
 755 is crucial for obtaining high yields and readdressing the environmental issues
 756 through adopting the standard particle size analysis method which was the
 757 limitation of present study. Additionally, this is the first report of the region, so
 758 has limitations of initial baseline data for comparison, however, this data would
 759 be utilized as a base line data set for the future studies in the region. Among the
 760 widely practiced cropping systems, RW system was found superior in relation to
 761 the soil microbial activity and nutrient retention. Followed by RW system, SS
 762 mono-cropping system also proved better than other aerobic cropping systems,
 763 mainly in terms of DOC and soil biological properties. Sustainability facet of RW
 764 system needs a multifaceted approach that reviews important issues such as soil
 765 degradation, nutrient depletion, declining SOM and subsurface water table. The
 766 promotion of sustainable and conservational agricultural practices such as
 767 minimal tillage, crop diversification, use of bio-fertilizers, integrated nutrient
 768 management, organic farming and judicious residue management must be
 769 prioritized that offer promising avenues to reduce environmental harm, improve
 770 water use efficiency, maintain soil health and enhance crop production. Need
 771 based region-specific research across India's diverse agro-ecological zones can
 772 better help to guide for the development of targeted and resilient farming
 773 strategies. Ultimately, the integration of conservation-based cropping systems
 774 with supportive policy frameworks is incumbent for advancing soil restoration,
 775 fostering climate-resilient agriculture and securing long-term food and
 776 environmental sustainability.

777

778 **Conclusions**

779 This study gave prominence that SOC, available micronutrients and
 780 microbial characteristics serve as key measures to estimate the footprints of
 781 dominant cropping systems (RW, CW, PW, PM and SS mono-cropping) on soil
 782 quality and functioning. Soils under RW cropping system exhibited lower soil pH
 783 (7.37) and EC (0.35 dS m⁻¹) compared to those under CW, PW, PM and SS

systems. The RW cropping system soils demonstrated higher SOC (0.62%), MBC (191.51 mg kg⁻¹) and DHA (39.67 µg TPF g⁻¹ 24h⁻¹), contributing to improved soil fitness. Although the implementation of carbon rehabilitation in RW cropping system has been proven effective in sustaining better soil biological health and micronutrients (Zn, Fe and Mn) availability, but this system is widely recognized to face serious long-term sustainability challenges, particularly related to groundwater depletion and soil degradation. Therefore, despite the relatively favourable impacts, long-term sustainability of RW requires cautious evaluation. Thus, integrated approaches that combine the strengths of different cropping systems together with innovations like direct-seeded rice (DSR), balanced nutrient management and legume-based intercropping, may be undertaken to enhance soil health while mitigating environmental trade-offs. This research also provides critical evidence for developing region-specific, sustainable intensification strategies, while highlighting the need for continued investigation of long-term sustainability of RW, SS and CW systems.

799 **CRediT authorship contribution statement**

800 **Preeti, Dhram Prakash, Sunita Sheoran, Todarmal, Rajni Kant**
 801 **Sharma** - Conceptualization, methodology, investigation, resources, data
 802 curation, project administration, formal analysis, writing-original draft
 803 preparation, **Preeti, Dhram Prakash, Sunita Sheoran, Ankit,**
 804 **Todarmal, Sonia Rani, Rameshwar Singh and Parmod Kumar Yadav**
 805 - software, supervision, validation, visualization, writing-review and editing.
 806 All authors have read and agreed to the published version of the manuscript.

807 **Acknowledgements**

808 The authors sincerely acknowledge Chaudhary Charan Singh Haryana
 809 Agricultural University, Hisar, India (29.1427° N, 75.7040° E), for providing the
 810 financial and necessary resources. [For providing help in generating maps, the](#)
 811 [authors would like to thank Dr. Sanjay Kumar \(Ex. Head\), Department of Soil](#)
 812 [and Water Engineering, COAE&T, CCSHAU, Hisar, India.](#)

813

814 **Data availability**

815 The datasets used and/or analyzed during the current study are available
 816 from the corresponding author upon reasonable request.

817

818 **Declaration of competing interest**

819 The authors declare that they have no known competing financial interests
 820 or personal relationships that could have influence the outcomes or
 821 interpretation reported of this manuscript.

822 **Funding sources**

823 Not applicable

824 **References**

1. Mishra, J. S. et al. An impact of agronomic practices of sustainable rice-wheat crop intensification on food security, economic adaptability, and environmental mitigation across eastern Indo-Gangetic Plains. *Field Crops Res.* 267, 108164. <https://doi.org/10.1016/j.fcr.2021.108164>(2021).
2. Jha, R. K. et al. Managing climatic risks in rice-wheat cropping system for enhanced productivity in middle Gangetic plains of India. *Front. Sustain. Food Syst.* 7, 1259528. <https://doi.org/10.3389/fsufs.2023.1259528>(2023).
3. Kumar, N. et al. Challenges and opportunities in productivity and sustainability of rice cultivation system: a critical review in Indian perspective. *Cereal Res. Commun.* 50, 573-601. <https://doi.org/10.1007/s42976-021-00214-5> (2021).
4. Damatirca, C. et al. Residue incorporation and organic fertilisation improve carbon and nitrogen turnover and stabilisation in maize monocropping. *Agric. Ecosyst. Environ.* 342, 108255. <https://doi.org/10.1016/j.agee.2022.108255>(2023).
5. Prakash, D., Sheoran, S. & Ankit. Effect of different levels of phosphorus through varying sources on productivity and oil content of mustard. *J. Plant Dev. Sci.* 13, 603-608. (2021).
6. Ankit et al. Different cropping systems impact soil health by improving soil biological activities and total organic carbon content. *Arch. Agron. Soil Sci.* 70, 1-24. <https://doi.org/10.1080/03650340.2024.2419035>(2024a).
7. Agarwal, D., Chahal, P. K., Ghanghas, B. S., Ishita, M. & Akansha, J. Assessing Farmers' Knowledge of Sugarcane Production Technology in Haryana, India. *J. Sci. Res. Rep.* 30, 132-138. <https://doi.org/10.9734/jsrr/2024/v30i112541>(2024).
8. Gorooei, A., Aynehband, A., Rahnama, A., Gaiser, T. & Kamali, B. Cropping systems and agricultural management strategies affect soil organic carbon dynamics in semi-arid regions. *Front. Sustain. Food Syst.* 6, 1016000. <https://doi.org/10.3389/fsufs.2022.1016000>(2023).
9. Davis, A. G., Huggins, D.R. & Reganold, J. P. Linking soil health and ecological resilience to achieve agricultural sustainability. *Front. Eco. Environ.* 21, 131-139. <https://doi.org/10.1002/fee.2594>(2023).
10. Singh, P. & Prakash, D. Phosphorus dynamics in soils as influenced by the application of organic sources: A review. *Indian J. Fertil.* 10, 16-26.(2014).

857 11. Prakash, D., Benbi, D. K. & Saroa, G. S. Effect of rate and source of phosphorus
 858 application on soil organic carbon pools under rice (*Oryzasativa*)-wheat
 859 (*Triticumaestivum*) cropping system. *Indian J. Agric. Sci.* 86, 1127-1132.
 860 [https://doi.org/10.56093/ijas.v86i9.61417\(2016a\)](https://doi.org/10.56093/ijas.v86i9.61417).

861 12. Sheoran, S., Prakash, D. & Grewal, K. S. Effects of long-term application of
 862 different modes and levels of farmyard manure and fertilizer nitrogen on soil
 863 properties and wheat grain yield. *J. Com. Mob. Sus. Dev.* 18, 452-460. (2023).

864 13. Hu, Q. et al. Soil organic carbon fractions in response to soil, environmental and
 865 agronomic factors under cover cropping systems: a global meta-analysis. *Agric.*
 866 *Eco. Environ.* 355, 108591. [https://doi.org/10.1016/j.agee.2023.108591\(2023\)](https://doi.org/10.1016/j.agee.2023.108591).

867 14. Sheoran, S. et al. Long-term organic and N fertilization influence the quality and
 868 productivity of pearl millet under PW sequence in north India. *Sci. Rep.* 14, 19503.
 869 <https://doi.org/10.1038/s41598-024-70009-1> (2024a).

870 15. Kumari, M. et al. Long-term application of organic manures and chemical
 871 fertilizers improve the organic carbon and microbiological properties of soil under
 872 PW cropping system in North-Western
 873 India. *Helijon*, 10. [https://doi.org/10.1016/j.helijon.2024.e25333\(2024a\)](https://doi.org/10.1016/j.helijon.2024.e25333).

874 16. Hag Husein, H., Lucke, B., Baumler, R. & Sahwan, W. A contribution to soil fertility
 875 assessment for arid and semi-arid lands. *Soil Syst.* 5, 42.
 876 [https://doi.org/10.3390/soilsystems5030042\(2021\)](https://doi.org/10.3390/soilsystems5030042).

877 17. Ankit et al. Sustainable Cropping Sequences to Improve Soil Fertility and
 878 Microbiological Properties. *Sustain.* 16, 9821.
 879 [https://doi.org/10.3390/su16229821\(2024b\)](https://doi.org/10.3390/su16229821).

880 18. Bhattacharyya, S. S., Ros, G. H., Furtak, K., Iqbal, H. M. & Parra-Saldívar, R. Soil
 881 carbon sequestration-An interplay between soil microbial community and soil
 882 organic matter dynamics. *Sci. Total Environ.* 815, 152928.
 883 [https://doi.org/10.1016/j.scitotenv.2022.152928\(2022\)](https://doi.org/10.1016/j.scitotenv.2022.152928).

884 19. Chen, L. et al. Molecular transformation of dissolved organic carbon of
 885 rhizosphere soil induced by flooding and copper pollution. *Geoderma* 407, 115563.
 886 [https://doi.org/10.1016/j.geoderma.2021.115563\(2022\)](https://doi.org/10.1016/j.geoderma.2021.115563).

887 20. Ren, T., Ukalska-Jaruga, A., Smreczak, B. & Cai, A. Dissolved organic carbon in
 888 cropland soils: A global meta-analysis of management effects. *Agric. Eco.*
 889 *Environ.* 371, 109080. [https://doi.org/10.1016/j.agee.2024.109080\(2024\)](https://doi.org/10.1016/j.agee.2024.109080).

890 21. Filippi, P., Cattle, S. R., Pringle, M. J. & Bishop, T. F. A two-step modelling
 891 approach to map the occurrence and quantity of soil inorganic
 892 carbon. *Geoderma* 371, 114382.
 893 [https://doi.org/10.1016/j.geoderma.2020.114382\(2020\)](https://doi.org/10.1016/j.geoderma.2020.114382).

894 22. Ball, K. R. et al. Soil organic and inorganic carbon interactions under tillage and
 895 cover cropping determine potential for carbon accumulation in temperate,

896 calcareous soils. *Soil Tillage Res.* 247, 106369.
897 [https://doi.org/10.1016/j.still.2024.106369\(2025\).](https://doi.org/10.1016/j.still.2024.106369)

898 23. Wang, T. et al. The Process of Soil Carbon Sequestration in Different Ecological
899 Zones of Qingtu Lake in the Arid-Semi-Arid Region of Western China. *Microorganisms*
900 12, 2122.
901 [https://doi.org/10.3390/microorganisms12112122\(2024\).](https://doi.org/10.3390/microorganisms12112122)

902 24. Dhamu, V. N., Somenahally, A. C., Paul, A., Muthukumar, S. & Prasad, S.
903 Characterization of an In-situ soil organic carbon (SOC) via a smart-
904 electrochemical sensing approach. *Sensors* 24, 1153.
905 [https://doi.org/10.3390/s24041153\(2024\).](https://doi.org/10.3390/s24041153)

906 25. Purohit, H. J., Pandit, P., Pal, R., Warke, R. & Warke, G. M. Soil microbiome: An
907 intrinsic driver for climate smart agriculture. *J. Agric. Food Res.* 101433.
908 [https://doi.org/10.1016/j.jafr.2024.101433\(2024\).](https://doi.org/10.1016/j.jafr.2024.101433)

909 26. Sheoran, S. et al. Long-term application of FYM and fertilizer N improve soil
910 fertility and enzyme activity in 51st wheat cycle under PW. *Sci. Rep.* 14, 21695.
911 [https://doi.org/10.1038/s41598-024-72076-w\(2024b\).](https://doi.org/10.1038/s41598-024-72076-w)

912 27. Dutta, D. et al. Influence of different nutrient management practices and cropping
913 systems on organic carbon pools in typicustochrept soil of Indo-Gangetic Plains in
914 India. *J. Soil Sci. Plant Nutr.* 22, 1403-1421. [https://doi.org/10.1007/s42729-021-00741-4\(2022\).](https://doi.org/10.1007/s42729-021-00741-4)

915 28. Zawadzka, K., Oszust, K., Pylak, M., Panek, J., Gryta, A. & Frąc, M. Beneath the
916 apple trees-Exploring soil microbial properties under *Malusdomestica* concerning
917 various land management practices. *Appl. Soil Ecol.* 203, 105642.
918 [https://doi.org/10.1016/j.apsoil.2024.105642\(2024\).](https://doi.org/10.1016/j.apsoil.2024.105642)

919 29. Sheoran, S. et al. Organic manure and fertilizer N management strategies improve
920 soil health at different growth stages of pearl millet under pearl millet-wheat
921 sequence. *BMC Plant Biol.* 25, 117. [https://doi.org/10.1186/s12870-025-06128-2\(2025\).](https://doi.org/10.1186/s12870-025-06128-2)

922 30. Al-Shammary, A. A. G., Al-Shihmani, L. S. S., Fernandez-Galvez, J. & Caballero-
923 Calvo, A. Optimizing sustainable agriculture: A comprehensive review of
924 agronomic practices and their impacts on soil attributes. *J. Environ. Manage.* 364,
925 121487. [https://doi.org/10.1016/j.jenvman.2024.121487\(2024\).](https://doi.org/10.1016/j.jenvman.2024.121487)

926 31. Prakash, D., Sheoran, S. & Yadav, P. K. Effect of Organic and Conventional System
927 of Nutrient Management in Basmati-Wheat Sequence on Soil Properties. *J. Commun. Mob. Sustain. Dev.* 18, 109-119. (2023).

928 32. Kumari, M. et al. Long-Term Manuring and Fertilization Influence on Soil
929 Properties and Wheat Productivity in Semi-Arid Regions. *Agronomy* 14, 2383.
930 [https://doi.org/10.3390/agronomy14102383\(2024b\).](https://doi.org/10.3390/agronomy14102383)

931 33. Rathi, D., Antil, R. S., Sharma, M. K. & Sheoran, S. Effect of fym and gypsum on
932 distribution of micronutrient in soil under sodic water irrigation: A long-term
933 [https://doi.org/10.3390/agronomy14102383\(2024\).](https://doi.org/10.3390/agronomy14102383)

934

936 study. *J. Indian Soc. Soil Sci.* 68, 100-106. 10.5958/0974-
 937 0228.2020.00011.0(2020).

938 34. Dhaliwal, S. S., Naresh, R. K., Mandal, A., Singh, R. & Dhaliwal, M. K. Dynamics
 939 and transformations of micronutrients in agricultural soils as influenced by
 940 organic matter build-up: A review. *Environ. Sustain. Ind.* 1, 100007.
 941 <https://doi.org/10.1016/j.indic.2019.100007>(2019).

942 35. Van Eynde, E., Groenenberg, J. E., Hoffland, E. & Comans, R. N. Solid-solution
 943 partitioning of micronutrients Zn, Cu and B in tropical soils: Mechanistic and
 944 empirical models. *Geoderma* 414, 115773.
 945 <https://doi.org/10.1016/j.geoderma.2022.115773>(2022).

946 36. Dutta, A. et al. Impact of long-term residue burning versus retention on soil
 947 organic carbon sequestration under a rice-wheat cropping system. *Soil Till. Res.* 221, 105421. <https://doi.org/10.1016/j.still.2022.105421>(2022).

949 37. Jackson, M. L. Soil chemical analysis. Prentice Hall of India Pvt. Ltd. New Delhi,
 950 498, 151-154. (1973).

951 38. Walkley, A.J. & Black, C. A. Estimation of soil organic carbon by the chromic acid
 952 titration method. *Soil Sci.* 37, 29-38. (1934).

953 39. Ciavatta, C., Antisari, L. V. & Sequi, P. Determination of organic C in soils and
 954 fertilizers. *Commun. Soil Sci. Plant Anal.* 20, 759-773.
 955 <https://doi.org/10.1080/00103628909368115>(1989).

956 40. Lindsay, W. L. & Norvell, W. Development of a DTPA soil test for zinc, iron,
 957 manganese and copper. *Soil Sci. Soc. Am. J.* 2, 421-448.
 958 <https://doi.org/10.2136/sssaj1978.03615995004200030009x>(1978).

959 41. Vance, E. D., Brooks, P. C. & Jenkinson, D. S. An extraction method for measuring
 960 soil microbial biomass carbon. *Soil Bio. Biochem.* 19, 703-707.
 961 [https://doi.org/10.1016/0038-0717\(87\)90052-6](https://doi.org/10.1016/0038-0717(87)90052-6)(1987).

962 42. Casida, L. E., Klein, D. A. & Santoro, T. Soil dehydrogenase activity. *Soil Sci.* 98,
 963 371-376. (1964).

964 43. Tallarida, R. J. & Murray, R. B. Duncan multiple range test. In Manual of
 965 pharmacologic calculations. Springer, New York, NY, 125-127.
 966 https://doi.org/10.1007/978-1-4612-4974-0_38(1987).

967 44. Origin (Pro) Version Origin (2024) Origin Lab Corporation Northampton, MA,
 968 USA.

969 45. R Core Team (2013) R A language and environment for statistical computing R
 970 foundation for statistical computing. Vienna Austria. <http://wwwR-projectorg/>.

971 46. Kuht, J. et al. Soil microbial activity in different cropping systems under long-term
 972 crop rotation. *Agriculture* 12, 532.
 973 <https://doi.org/10.3390/agriculture12040532>(2022).

974 47. Jia, B., Niu, Z., Wu, Y., Kuzyakov, Y. & Li, X. G. Waterlogging increases organic

975 carbon decomposition in grassland soils. *Soil Bio. Biochem.* 148, 107927.
 976 [https://doi.org/10.1016/j.soilbio.2020.107927\(2020\).](https://doi.org/10.1016/j.soilbio.2020.107927)

977 48. Omar, M. D. M., Massawe, B. H., Shitindi, M. J., Pedersen, O., Meliyo, J. L. & Fue,
 978 K. G. Assessment of salt-affected soil in selected rice irrigation schemes in
 979 Tanzania: understanding salt types for optimizing management
 980 approaches. *Front. Soil Sci.* 4, 1372838.
 981 [https://doi.org/10.3389/fsoil.2024.1372838\(2024\).](https://doi.org/10.3389/fsoil.2024.1372838)

982 49. Sheoran, S., Raj, D., Antil, R. S. & Mor, V. S. Effect of long-term use of manures
 983 and fertilizers on soluble salts in soil and mineral composition of wheat
 984 (*Triticumaestivum*). *Ann. Plant Soil Res.* 24, 245-249.
 985 [https://doi.org/10.47815/apsr.2022.10156 \(2022\).](https://doi.org/10.47815/apsr.2022.10156)

986 50. Ranjan, S. et al. Influence of 36 years of integrated nutrient management on soil
 987 carbon sequestration, environmental footprint and agronomic productivity of
 988 wheat under rice-wheat cropping system. *Front. Environ. Sci.* 11, 1222909.
 989 [https://doi.org/10.3389/fenvs.2023.1222909\(2023\).](https://doi.org/10.3389/fenvs.2023.1222909)

990 51. Hassani, A., Smith, P. & Shokri, N. Negative correlation between soil salinity and
 991 soil organic carbon variability. *PNAS* 121, e2317332121.
 992 [https://doi.org/10.1073/pnas.2317332121\(2024\).](https://doi.org/10.1073/pnas.2317332121)

993 52. Ntonta, S., Mathew, I., Zengeni, R., Muchaonyerwa, P. & Chaplot, V. Crop residues
 994 differ in their decomposition dynamics: Review of available data from world
 995 literature. *Geoderma* 419, 115855.
 996 [https://doi.org/10.1016/j.geoderma.2022.115855\(2022\).](https://doi.org/10.1016/j.geoderma.2022.115855)

997 53. Yadav, R., Goyal, V., Bhardwaj, K. K., Kumar, R., Rani, M. & Devi, S. Effect of soil
 998 nutrient management and land configuration on rhizospheric microbial diversity
 999 under cotton (*Gossypium* spp.)-wheat (*Triticumaestivum*) cropping system in semi-
 1000 arid region. *Indian J. Agric. Sci.* 94, 198-204.
 1001 [https://doi.org/10.56093/ijas.v94i2.141855 \(2024\).](https://doi.org/10.56093/ijas.v94i2.141855)

1002 54. Guo, C., Liu, X. & He, X. A global meta-analysis of crop yield and agricultural
 1003 greenhouse gas emissions under nitrogen fertilizer application. *Sci. Total
 1004 Enviro.* 831, 154982. [https://doi.org/10.1016/j.scitotenv.2022.154982\(2022\).](https://doi.org/10.1016/j.scitotenv.2022.154982)

1005 55. Tandon, V. et al. The Role of Sugarcane Trash in Soil Fertility and Plant Growth:
 1006 A Review. *Asian J. Soil Sci. Plant Nutr.* 11, 67-79.
 1007 [https://doi.org/10.9734/ajsspn/2025/v11i1462 \(2025\).](https://doi.org/10.9734/ajsspn/2025/v11i1462)

1008 56. Gmach, M.R. et al. Soil dissolved organic carbon responses to sugarcane straw
 1009 removal. *Soil Use Manage.* 37, 126-137.
 1010 [https://doi.org/10.1111/sum.12663\(2021\).](https://doi.org/10.1111/sum.12663)

1011 57. Li, T. et al. Contrasting responses of soil organic and inorganic carbon pools under
 1012 plant invasion in tropical coral islands. *Biological Diversity* 1, 124-135.
 1013 [https://doi.org/10.1002/bod2.12024\(2024\).](https://doi.org/10.1002/bod2.12024)

1014 58. Prabakaran, S., Kaleeswari, R. K., Backiyavathy, M. R., Jagadeeswaran, R., Selvi,
 1015 R. G. & Bama, K. S. Estimation of soil carbon pools under major cropping systems
 1016 of Mayiladuthurai district of Cauvery Delta Zone, Tamil Nadu, India. *J. App. Natur.*
 1017 *Sci.* 15, 802-810. <https://doi.org/10.31018/jans.v15i2.4600>(2023).

1018 59. Naorem, A., Jayaraman, S., Dalal, R. C., Patra, A., Rao, C. S. & Lal, R. Soil inorganic
 1019 carbon as a potential sink in carbon storage in dryland soils—a
 1020 review. *Agriculture* 12, 1256. <https://doi.org/10.3390/agriculture12081256>(2022).

1021 60. Kolosz, B. W., Sohi, S. P. & Manning, D. A. CASPER: A modelling framework to
 1022 link mineral carbonation with the turnover of organic matter in soil. *Comput.*
 1023 *Geosci.* 124, 58-71. <https://doi.org/10.1016/j.cageo.2018.12.012>(2019).

1024 61. Ferdush, J., Paul, V., Varco, J., Jones, K. & Sasidharan, S. M. Consequences of
 1025 elevated CO₂ on soil acidification, cation depletion, and inorganic carbon: A
 1026 column-based experimental investigation. *Soil Till. Res.* 234, 105839.
 1027 <https://doi.org/10.1016/j.still.2023.105839>(2023).

1028 62. Raza, S. et al. Inorganic carbon is overlooked in global soil carbon research: A
 1029 bibliometric analysis. *Geoderma* 443:116831.
 1030 <https://doi.org/10.1016/j.geoderma.2024.116831>(2024).

1031 63. Srivastava, T. K. et al. Effect of bio-manures on soil quality, cane productivity and
 1032 soil carbon sequestration under long-term sugarcane (*Saccharum officinarum*)
 1033 plant-ratoon system in Indian sub-tropics. *Indian J. Agric. Sci.* 88, 1696-
 1034 1703. <https://doi.org/10.56093/ijas.v88i11.84902> (2018).

1035 64. Shang, Y., Olesen, J. E., Lærke, P. E., Manevski, K. & Chen, J. Perennial cropping
 1036 systems increased topsoil carbon and nitrogen stocks over annual systems—a
 1037 nine-year field study. *Agric. Ecosyst. Environ.* 365, 108925.
 1038 <https://doi.org/10.1016/j.agee.2024.108925>(2024).

1039 65. Wei, Y. et al. Transformation of litter carbon to stable soil organic matter is
 1040 facilitated by ungulate trampling. *Geoderma* 385:114828.
 1041 <https://doi.org/10.1016/j.geoderma.2020.114828>(2021).

1042 66. Prakash, D., Benbi, D. K. & Saroa, G. S. Impacts of rate and source of phosphorus
 1043 application on properties of typichaplustept under the RW system. *Indian J.*
 1044 *Fertilisers* 13, 36-42. (2017).

1045 67. Sheoran, S., Prakash, D. & Kumar, A. Changes in soil properties and carbon
 1046 sequestration potential under intensive agriculture and agroforestry. *J. Plant*
 1047 *Devel. Sci.* 9, 59-68. (2017).

1048 68. Prakash, D., Benbi, D. K. & Saroa, G. S. Land-use effects on phosphorus fractions
 1049 in Indo-Gangetic alluvial soils. *Agroforestry Systems* 92, 437-448.
 1050 <https://doi.org/10.1007/s10457-016-0061-6> (2018).

1051 69. Palmer, B., Guppy, C., Nachimuthu, G. & Hulugalle, N. Changes in micronutrient
 1052 concentrations under minimum tillage and cotton-based crop rotations in irrigated
 1053 Vertisols. *Soil Till. Res.* 228, 105626.

1054 https://doi.org/10.1016/j.still.2022.105626(2023).

1055 70. Dhaliwal, S. S., Dhaliwal, J. K., Shukla, A. K., Sharma, V. & Dhaliwal, M. K. Effect
1056 of different organic manures on build-up of soil organic carbon and DTPA-
1057 extractable micronutrients in soil profile under basmati rice-wheat system. *J.
1058 Indian Soc. Soil Sci.* 68, 91-99. 10.5958/0974-0228.2020.00010.9(2020).

1059 71. Bhatt, M. K. et al. Effect of long-term balanced and imbalanced inorganic fertilizer
1060 and FYM application on chemical fraction of DTPA-extractable micronutrients and
1061 yields under rice-wheat cropping system in mollisols. *Soil Use Manage.* 36, 261-
1062 273.https://doi.org/10.1111/sum.12560(2020).

1063 72. Laik, R., Eltahira, E. B. A., Pramanick, B., Nidhi, Singh, S. K. &Es, H.V. Enhancing
1064 Soil Health in Rice Cultivation: Optimized Zn Application and Crop Residue
1065 Management in Calcareous Soils. *Sustain.* 17, 489.https://doi.org/10.3390/su17020489 (2025).

1067 73. Kachhiyapatel, K. A., Patel, K. H., Vasoya, M. H., Kotadiya, R. H., Patel, D. M.
1068 &Gorasiya, C. A. Spatial variability of DTPA-extractable micronutrients and their
1069 correlation studies with important soil properties in the soils of Narmada district
1070 of Gujarat. *Pharma Innovation* 12,1966-1968. (2023).

1071 74. Dhaliwal, S. S. et al. The pedospheric variation of DTPA-extractable Zn, Fe, Mn,
1072 Cu and other physicochemical characteristics in major soil orders in existing land
1073 use systems of Punjab, India. *Sustain* 14, 29.
1074 https://doi.org/10.3390/su14010029(2021).

1075 75. Adhikary, S. et al. Field evaluation of Zincatednanoclay polymer composite
1076 (ZNCPC): Impact on DTPA-extractable Zn, sequential Zn fractions and apparent
1077 Zn recovery under rice rhizosphere. *Soil Till. Res.* 201, 104607.
1078 https://doi.org/10.1016/j.still.2020.104607(2020).

1079 76. Singh, P. &Benbi, D. K. Soil organic carbon pool changes in relation to slope
1080 position and land-use in Indian lower Himalayas. *Catena* 16, 171-180.
1081 https://doi.org/10.1016/j.catena.2018.04.006(2018).

1082 77. Nisab, C. M., Sahu, M. & Ghosh, G. K. Distribution of DTPA-extractable
1083 micronutrient cations (Zn, Fe, Mn, and Cu) and its relationship with physico-
1084 chemical properties in soils of Birbhum district, West Bengal. *Int. J. Chem. Stud.* 8,
1085 253-257. https://doi.org/10.22271/chemi.2020.v8.i3d.9236(2020).

1086 78. Mittal, S., Saini, S.P. & Singh, P. Manganese availability and transformations in
1087 soil profiles under different wheat based cropping systems in north-western India.
1088 *Indian J. Agric. Sci.* 92:689-694. https://doi.org/10.56093/ijas.v92i6.101593(2022).

1089 79. Barrow, N. J. &Hartemink, A. E. The effects of pH on nutrient availability depend
1090 on both soils and plants. *Pl. Soil* 487, 21-37. https://doi.org/10.1007/s11104-023-
1091 05960-5(2023).

1092 80. Prakash, D., Benbi, D. K. &Saroa, G. S. Dependence of soil organic carbon on
1093 available iron and manganese concentrations in submerged rice soils. *Vegestos*29,

1094 35-42. <http://dx.doi.org/10.4172/2229-4473.1000117> (2016b).

1095 81. Sharma, S., Singh, P. & Sodhi, G. P. S. Soil organic carbon and biological indicators
1096 of uncultivated vis-a-vis intensively cultivated soils under rice-wheat and cotton-
1097 wheat cropping systems in South-Western Punjab. *Carbon Manag.* 11, 681-695.
1098 <https://doi.org/10.1080/17583004.2020.1840891>(2020).

1099 82. Nadeem, F. & Farooq, M. Application of micronutrients in rice-wheat cropping
1100 system of South Asia. *Rice Sci.* 26, 356-371.
1101 <https://doi.org/10.1016/j.rsci.2019.02.002>(2019).

1102 83. Cang, L., Xing, J., Liu, C., Wang, Y. & Zhou, D. Effects of different water
1103 management strategies on the stability of cadmium and copper immobilization by
1104 biochar in rice-wheat rotation system. *Ecotoxicol. Environ. Saf.* 202, 110887.
1105 <https://doi.org/10.1016/j.ecoenv.2020.110887>(2020).

1106 84. Kahlon, P., Yadav, B. K., Sharma, S. & Dhaliwal, S. S. Soil micronutrient indexation
1107 under cotton-wheat and rice-wheat cropping systems in sangat block of district
1108 Bathinda, Punjab. *Agric. Res. J.* 60. 10.5958/2395-146X.2023.00055.8 (2023).

1109 85. Pan, Y. et al. Temporal variability in trace metal solubility in a paddy soil
1110 not reflected in uptake by rice (*Oryza sativa* L.). *Environ. Geochem. Health*
1111 38, 1355-1372. <https://doi.org/10.1007/s10653-016-9803-7>(2016).

1112 86. Rinklebe, J., Shaheen, S. M. & Yu, K. Release of As, Ba, Cd, Cu, Pb, and Sr
1113 under pre-definite redox conditions in different rice paddy soils originating
1114 from the USA and Asia. *Geoderma* 270, 21-32.
1115 <https://doi.org/10.1016/j.geoderma.2015.10.011>(2016).

1116 87. Shankar, T. et al. Productivity and nutrient balance of an intensive rice-
1117 rice cropping system are influenced by different nutrient management in
1118 the red and lateritic belt of West Bengal, India. *Plants* 10, 1622.
1119 <https://doi.org/10.3390/plants10081622>(2021).

1120 88. Vega, F. A., Covelo, E. F., Chao, I., & Andrade, M. L. Role of different soil
1121 fractions in copper sorption by soils. *Commun. Soil Sci. Plant Anal.* 38,
1122 2887-2905. <https://doi.org/10.1080/00103620701663131>(2007).

1123 89. Napoli, M., Cecchi, S., Grassi, C., Baldi, A., Zanchi, C. A. & Orlandini, S.
1124 Phytoextraction of copper from a contaminated soil using arable and
1125 vegetable crops. *Chemosphere* 219, 122-129.
1126 <https://doi.org/10.1016/j.chemosphere.2018.12.017>(2019).

1127 90. Rossi, G., Figliolia, A., Socciarelli, S., & Pennelli, B. Capability of *Brassica*
1128 *napus* to accumulate cadmium, zinc and copper from soil. *Acta
1129 biotechnol.* 22, 133-140. [https://doi.org/10.1002/1521-3846\(200205\)22:1/2<133::AID-ABIO133>3.0.CO;2-3](https://doi.org/10.1002/1521-3846(200205)22:1/2<133::AID-ABIO133>3.0.CO;2-3)(2002).

1131 91. Kloss, S. et al. Trace element concentrations in leachates and mustard
 1132 plant tissue (*Sinapis alba* L.) after biochar application to temperate
 1133 soils. *Science Total Environ.* 481, 498-508.
 1134 [https://doi.org/10.1016/j.scitotenv.2014.02.093\(2014\)](https://doi.org/10.1016/j.scitotenv.2014.02.093).

1135 92. Koninger, J., Lugato, E., Panagos, P., Kochupillai, M., Orgiazzi, A. & Briones, M. J.
 1136 Manure management and soil biodiversity: Towards more sustainable food
 1137 systems in the EU. *Agric. Syst.* 194, 103251.
 1138 [https://doi.org/10.1016/j.agsy.2021.103251\(2021\)](https://doi.org/10.1016/j.agsy.2021.103251).

1139 93. Xiong, J. et al. Soil organic carbon accumulation and microbial carbon use
 1140 efficiency in subalpine coniferous forest as influenced by forest floor vegetative
 1141 communities. *Geoderma* 424, 116648.
 1142 [https://doi.org/10.1016/j.geoderma.2023.116648\(2023\)](https://doi.org/10.1016/j.geoderma.2023.116648).

1143 94. Saurabh, K. et al. Influence of tillage based crop establishment and residue
 1144 management practices on soil quality indices and yield sustainability in rice-wheat
 1145 cropping system of Eastern Indo-Gangetic Plains. *Soil Tillage Res.* 206, 104841.
 1146 [https://doi.org/10.1016/j.still.2020.104841\(2021\)](https://doi.org/10.1016/j.still.2020.104841).

1147 95. Wei, L. et al. Paddy soils have a much higher microbial biomass content than
 1148 upland soils: A review of the origin, mechanisms, and drivers. *Agri. Ecosyst.*
 1149 *Environ.* 326, 107798. [https://doi.org/10.1016/j.agee.2021.107798\(2022\)](https://doi.org/10.1016/j.agee.2021.107798).

1150 96. Rajput, R., Pokhriya, P., Panwar, P., Arunachalam, A. & Arunachalam, K. Soil
 1151 nutrients, microbial biomass, and crop response to organic amendments in rice
 1152 cropping system in the Shiwaliks of Indian Himalayas. *Int. J. Recycl. Org. Waste*
 1153 *Agric.* 8, 73-85. [https://doi.org/10.1007/s40093-018-0230-x\(2019\)](https://doi.org/10.1007/s40093-018-0230-x).

1154 97. Zhang, T., Liu, Y., Ge, S., Peng, P., Tang, H. & Wang, J. Sugarcane/soybean
 1155 intercropping with reduced nitrogen addition enhances residue-derived labile soil
 1156 organic carbon and microbial network complexity in the soil during straw
 1157 decomposition. *J. Integr. Agric.* 23, 4216-4236.
 1158 [https://doi.org/10.1016/j.jia.2024.02.020\(2024\)](https://doi.org/10.1016/j.jia.2024.02.020).

1159 98. Jindo, K. et al. Effects of local farming practices on soil organic carbon content,
 1160 enzymatic activities, and microbial community structure in semi-arid soils of
 1161 Morocco. *Front. Soil Sci.* 4, 1369971.
 1162 [https://doi.org/10.3389/fsoil.2024.1369971\(2024\)](https://doi.org/10.3389/fsoil.2024.1369971).

1163 99. Datta, A. et al. Climate smart agriculture influences soil enzymes activity under
 1164 cereal-based systems of north-West India. *J. Indian Soc. Soil Sci.* 69, 86-95.
 1165 [10.5958/0974-0228.2021.00024.4\(2021\)](https://doi.org/10.5958/0974-0228.2021.00024.4).

1166 100. Singh, V. et al. Soil type and integrated nitrogen nutrient-rice straw residue
 1167 management techniques affect soil microbes, enzyme activities and yield of wheat
 1168 crop. *Helijon* 9. [https://doi.org/10.1016/j.heliyon.2023.e16645\(2023\)](https://doi.org/10.1016/j.heliyon.2023.e16645).

1169 101. Ramalakshmi, C. S., Sreelatha, T., Sireesha, A. & Kumari, M. B. G. S. The

1170 potential impact of succeeding crops on soil carbon pools, carbon sequestration,
1171 beneficial microbes and enzyme activities under intensive sugarcane-based
1172 cropping systems. *J. Indian Soc. Soil Sci.* 71, 41-49. 10.5958/0974-
1173 0228.2023.00007.5(2023).

1174 102. Wang, S. et al. Microbial formation and stabilisation of soil organic carbon
1175 is regulated by carbon substrate identity and mineral
1176 composition. *Geoderma* 414,115762.
1177 [https://doi.org/10.1016/j.geoderma.2022.115762\(2022\)](https://doi.org/10.1016/j.geoderma.2022.115762).

1178 103. Malobane, M. E., Nciizah, A. D., Mudau, F. N. & Wakindiki, I.I.C. Soil
1179 organic carbon and labile carbon pools attributed by tillage, crop residue and crop
1180 rotation management in sweet sorghum cropping system. *Sustain.* 12, 9782.
1181 [https://doi.org/10.3390/su12229782\(2020\)](https://doi.org/10.3390/su12229782).

1182 104. Dhaliwal, S. S. et al. Effect of addition of organic manures on basmati yield,
1183 nutrient content and soil fertility status in north-western India. *Helijon* 9.
1184 10.1016/j.heliyon.2023.e14514 (2023).