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Abstract

This study aimed to investigate the association between XRCC1 Arg399GIn and
Argl194Trp single nucleotide polymorphisms (SNPs) and the risk and severity of
polyneuropathy (DPN) in patients with type 2 diabetes mellitus (T2DM). The
genotyping of SNPs was achieved in 732 contributors, including diabetic subjects
with and without polyneuropathy and controls, using polymerase chain reaction-
restriction fragment length polymorphism (PCR-RFLP). In addition, by using
advanced statistical techniques, including machine learning methodologies, to analyze
the data.The results indicated a significant link between both SNPs and DPN risk
under both codominant and dominant models, respectively, with the A and T alleles
as risk variants. Haplotype analysis further established the A-T haplotype as a
prominent risk factor. The disease severity was associated with the 399A/A and
combined (G/A+A/A) genotypes, as well as the 194C/T and combined (C/T+T/T)
genotypes. In advanced DPN stages, random Forest (RF) highlighted both XRCC1
SNPs, and disease durationi as the top three contributing factors. SHAP analysis
corroborated the 194C/T genotype of and the 399A/A genotype were strongly linked
to severe disease manifestations, particularly when coexisting with prolonged illness
duration, advanced age, elevated HDL, and reduced LDL levels. Our findings
substantiate the association of XRCC1 Arg399GIn and Arg194Trp SNPs with both
susceptibility to and progression of DPN in T2DM patients. The integration of
machine learning methodologies augments clinical decision-making by refining

diagnostic precision and facilitating personalized treatment strategies.



Introduction

Diabetic peripheral neuropathy (DPN) represents a significant microvascular
complication of T2DM [1], in which vascular issues, metabolic abnormalities, and
oxidative stress (OS) significantly contribute to its development [2, 3]. Evaluating the
incidence and prevalence rate of DPN is challenging, and the discrepancies in the
reported prevalence of DPN among several countries are mainly attributed to
variations in diagnostic standards between studies, differences in study populations,
including disease duration and clinical settings, as well as regional and temporal
variations [4]. According to epidemiology, up to 50% of diabetic people have DPN
[5]. The overall prevalence of DPN from Europe and the United Siates approximately
from 6% to 51% based on the population studied [6]. I contrast, the prevalence of
DPN was found to be 71.2% in China [7], and from 18.8% to 61.9% in India [8].
However, the percentage in Tanzania was 72.2% [9]. Nevertheless, in the Middle East
, the general DPN rate was 53.7% [10]. In Sudan, the prevalence was 42% [11].
Current literature carriad out in Saudi Arabia displays that 39% of diabetic individuals
have DPN [12]. In Egypt, based on the national data, the development of DPN is
about more than 60% of diabetic’s patients [13].

Numerous genetic variations in candidate genes have been examined as potential risk
factors, with many linked to several mechanisms such as the generation of reactive
oxygen species (ROS) [14]. Os, which is an essential pathophysiological pathway of
DPN, has gained considerable attention. The excessive generation of ROS, coupled
with a reduction in antioxidant defenses, leads to disrupted redox homeostasis, which
subsequently results in OS and ROS-mediated damage to critical biomacromolecules,
including DNA in DPN [15, 16]. DNA repair genes play a crucial role in maintaining

genome integrity by restoring intact DNA through various mechanisms like



nucleotide excision repair, double-strand break, and repair base excision repair (BER)
[17, 18].

The X-ray cross complementary repair gene 1 (XRCC1), a member of the BER
pathway, is responsible for repairing defects in DNA single-strand breaks and
facilitating sister chromatid exchange, which occurs following exposure to ROS,
alkylating agents, or ionizing radiation (IR) [19]. It is located on the long arm of
human chromosome 19q13.2-13.3 [20]. The gene comprises 17 exons and encodes a
70 kDa protein (approximately 633 amino acids). XRCC1 protein organizes the BER
pathway, serving as a scaffold for specific repair enzymes and facilitating subsequent
enzymatic processes [21]. The deactivation of the XRCC1 gene through genetic
alterations leads to a decline in genetic stability, accompanied by an increase in the
occurrence of spontaneous and/or induced chromosome deletions and translocations
and as a result influence the risk of T2DM and its vascular complications [22]. Recent
studies on XRCC1 gene polymorphisms focus primarily on three nonsynonymous
SNPs: Arg399GIn (rs254537), Argl94Trp (rs1799782), and Arg280His (rs25489)
SNPs[23]. These SNPs, especially Arg399GIn (rs25487), Argl94Trp (rs1799782)
SNPs, could influence susceptibility to diabetes, through reducing DNA repair
capacity in diabetic patients, resulting in reduced oxidative DNA damage repair and
heighted sensitivity to OS [24-26]. Numerous studies indicate that polymorphisms in
the XRCC1 gene may play a role in the pathogenesis of various cancer types [27- 29];
however, research on T2DM and its complications, particularly DPN, remains
relatively limited [26, 30]. Moreover, given the high prevalence of T2DM and DPN in
the Egyptian population [31, 32], and yet no previous studies regarding XRCC1 gene
polymorphisms in our cohort, this study aims to enhance the understanding of DPN

pathogenesis by investigating the roles of XRCC1 Arg399GIn and Arg194Trp SNPs



in susceptibility to T2DM and DPN among Egyptian individuals. We aimed to
develop accurate predictive models using advanced machine learning algorithms,
addressing existing research gaps and identifying novel genetic and clinical risk
factors. Furthermore, we examined the relationship between these SNPs and the
severity of DPN using established scoring systems. This study integrates genetic
predisposition, clinical factors, and ML-driven insights to facilitate more personalized
approaches to the early detection, prevention, and targeted treatment of DPN.
Subjects and methods

Study patients selection

This study included a total of 732 participants, comprising 503 patients diagnosed
with Type 2 Diabetes Mellitus (T2DM) and 229 healthy coritrols. The diabetic
patients were divided into two groups: group 1.247 patients with uncomplicated
T2DM, group 2: 256 patients with T2DM complicated by Diabetic Polyneuropathy
(DPN). The control group consisted of 229 apparently healthy individuals with
normal glucose metabolism and matched by age and sex.. The overall case-to-control
ratio was approximately 2.2:1 (503 cases to 229 controls). Among the cases, the ratio
of DPN complicated to uncomplicated T2DM was approximately 1.04:1 (256 DPN to
247 uncomplicated).

Patients were enrolled sequentially during routine visits at diabetes outpatient clinics,
diabetic neuropathy clinic, and inpatient wards of Zagazig Specialized Medical
Hospital, Zagazig University, Zagazig, Egypt. Patients with T2DM were diagnosed
according to the classification and criteria established by the American Diabetes
Association (ADA) [33]. The individuals in the control group were selected from
those attending general check-ups at the hospital. Patients involving autonomic or

peripheral neuropathies due to factors other than diabetes, advanced-stage peripheral



arterial disease, type 1 diabetes mellitus (TLDM), and severe comorbidities such as
cancers, recent cardiovascular diseases, heart failure, advanced liver disease, or renal
failure were excluded from the study. Additionally, cases administrating long-term
immunomodulatory or immunosuppressive treatment were excluded from the study.
Data collection involved collecting detailed personal information, such as age, sex,
smoking status, and disease history, through discussions with all participants. In
addition, clinical investigations such as comorbidity, blood glucose level at the time
of neurological examination, calculated body mass index (BMI), the circumference of
the waist, and disease duration were obtained from outpatient medical records.
Routine clinical-laboratory data such as fasting blood glucose (FBG) level, lipid
profile, and Hemoglobin A1C (HbA1c) were retrieved from the medical record sheet.
By using protocols of calibrated devices and standardized measurement, the body
weight and height were recorded on the verge of 0.1 kg and 0.1 cm, respectively [34].
At the level of the iliac crest, waist circumference (WC) was recorded to the nearest
0.1 cm while the participant was in standing position and breathing normally [35].
Following a minimum fasting period of 11 hours, blood samples were obtained to
evaluate serum cholesterol, triglycerides, lipoproteins, fasting glucose levels, and The
Hemoglobin Alc (HbA1c) as detailed in aprior reports [35, 36].

Nerve conduction studies (NCS) were performed in the electrophysiology unit at the
Neurology Department- Zagazig Specialized Medical Hospital using an EMG
Machine (Nicolet, Natus Neurology, USA). Furthermore, neuropathy was assessed in
diabetic patients according to the Toronto Clinical Neuropathy Scoring System
(TCNS) and Modified Neuropathy Disability Score (NDS).

The Institutional Ethics Committee of the Faculty of Medicine of Zagazig University

in Egypt approved the study protocol. In addition, the study adhered to the ethical



criteria of the Declaration of Helsinki (ZU-IRB #496/25 Aug-2024). Prior to
participation in the study, each participant provided written informed consent.
Methods

DNA isolation and Molecular Genetic analysis

The QIAamp DNA Blood Mini kit (Cat-No: #51104; Qiagen, Valencia, California,
USA) was used to isolate the genomic DNA from collected samples with
anticoagulant (EDTA) according to the manufacturer's information. A NanoDrop
spectrophotometer (ND1000; NanoDrop Technologies, Wilmington, Delaware, USA)
was used to measure the purity and concentration of isolated DNA and frozen at -
80°C until genetic testing.

The polymerase chain reaction-restriction fragment length poiymorphism (PCR-
RFLP) analysis was conducted to detect polymorpiic siies in the XRCC1 gene using
specific primer pairs for Arg399GIn (rs25487) SNP [37] and Arg194Trp (rs1799782)
SNP [38]. In brief, considering details on the determination of the SNP alleles,
successful amplification of the Arg399GIn (rs25487) and Argl94Trp (rs1799782)
SNPs, were demonsiraied by the presence of PCR amplified products with sizes of
615bp, and 485bp, respectively. Regarding Arg399GIn (rs25487) SNP, after digestion
by Mpsl restriction enzyme, the PCR-RFLP results were the Arg/Arg genotype (G/G
wild type homozygous) (digested product) (375bp and 240-bp), the Arg/GIn genotype
(G/A heterozygous) (615bp, 375 bp, and 240 bp), and the GIn/GLn genotype (A/A
mutant homozygous) (undigested product) (615 bp) (Fig. 1). In the case of Arg194Trp
(rs1799782) SNP, after digestion by Pvull restriction enzyme, the PCR-RFLP results
were the Arg/Arg genotype (C/C wild type homozygous) (undigested product) (485

bp), the Arg/Trp genotype (C/T heterozygous) (485 bp, 396 bp, and 89 bp), and the



Trp/Trp genotype (T/T mutant homozygous) (digested product) (396 bp, and 89 bp)
(Fig. 2).

For carrying out the first step of RFLP technique (PCR reaction), template DNA was
amplified to generate PCR products for both SNPs in a total volume of 20 pL
consisting of 10 pL Taqg PCR Master Mix (Thermo Fisher Scientific, Massachusetts,
USA), 1.5 pL of each of forward and reverse primers (10 pmol/uL), 4.5 pL sterile
deionized water, and 2.5 pL of template DNA (about 30ng). PCR Cycling conditions
were performed in a thermal cycler (Biometra, Gottingen, Germany) as follows: For
the Arg399GIn SNP, the protocol includes an initial denaturation at 94°C for 5
minutes, followed by 40 cycles consisting of denaturation at 94°C for 30 seconds,
annealing at 57°C for 30 seconds, and extension at 72°C for 20 seconds, concluding
with a final extension at 72°C for 7 minutes. For the Arg194Trp SNP, the protocol
involved an initial denaturation at 94°C for 5 minutes, followed by 35 cycles
consisting of denaturation at 94°C for 30 seconds, annealing at 59°C for 30 seconds,
and extension at 72°C for 30 seconds, concluding with a final extension of 7 minutes
at 72°C. Following the PCR reaction, for performing the second step of RFLP
technique, the PCR products underwent digestion with FastDigest Mpsl and Pvull
restriction enzymes for Arg399GIn (rs25487) and Argl94Trp (rs1799782) SNPs,
respectively (New England Biolabs, Massachusetts, USA) and were incubated for 15
minutes at 37°C. The specific fragments were separated on a 1.5% agarose gel,
stained with Ethidium Bromide, and visualized under UV light using a gel
documentation system.

Statistical analyses

First, data were screened for outliers using boxplots and assessed for missing values,

which were absent. Numeric data are presented as mean * standard deviation (SD),



whereas categorical variables are reported as frequencies (%). Hardy-Weinberg
equilibrium (HWE) was evaluated using Pearson’s y? test. ANOVA (for three-group
comparisons) and independent t-tests (for two-group comparisons) were applied to
normally distributed data. Skewed or heteroscedastic data were analyzed with a
generalized linear gamma model incorporating a log-link function. Genetic
associations of XRCC1 Arg399GIn and XRCC1 Argl94Trp polymorphisms were
evaluated under codominant, dominant, overdominant, and recessive genetic models,
with the optimal model selected based on the lowest Akaike Information Criterion
(AIC) value. Genotype and allele frequencies were computed, and univariate logistic
regression was employed to estimate odds ratios (ORs) with 95% confidence intervals
(Cls). Haplotype analysis was performed using the SHEsis online platform

http://shesisplus.bio-x.cn/SHEsis.html, based on the expectation—maximization (EM)

algorithm.

Machine Learning (ML) Models

Data were randomly partitioried (80:20 ratio) into training and testing sets.
Hyperparameter optimization was performed via grid search using the XGBoost
model (hyperparameters are provided in the supplementary materials), and 10-fold
cross-validation was implemented to mitigate overfitting. Feature selection was
conducted using Random Forest, while XGBoost was utilized to predict DPN risk
factors. SHAP (SHapley Additive exPlanations) analysis enhanced model
interpretability by identifying and ranking key predictors. ML models were
implemented in R (R Core Team) [39] using the randomForest and xgboost packages.
Results

Demographical and clinical-laboratory data of studied groups


http://shesisplus.bio-x.cn/SHEsis.html

As shown in Table 1, patients with DPN had a significantly higher age than those in
the uncomplicated T2DM and control groups (P< 0.05). Fasting blood glucose (FBG)
levels were also significantly higher in the DPN group compared with both the
uncomplicated T2DM and control groups (P < 0.001). All clinical-laboratory data
were also significantly elevated in the DPN group compared to both other groups
except high-density lipoprotein (HDL) levels were at their lowest in the DPN group.

Disease duration was notably longer in the DPN group than in the uncomplicated

group.

Genetic model analysis of the association between XRCC1 SNPs and the risk of
DPN among studied groups (adjusted for age, sex, and smoking status)

Both SNPs were in Hardy-Weinberg equilibrium (HWE, P > 0.05) among T2DM
patients, including both complicated and uncomplicated groups, as well as in the
control group. The genotyping of both SNPs is presented in Figures 1 and 2,
respectively. As shown in Table 2, illustrates that the codominant model most
effectively accounted for the association between the XRCC1 Arg 399 GIn SNP and
the risk of DPN [P*<0.0001], as indicated by the lowest AIC values (AIC* = 511.1)
when comparing the DPN group to control group, indicating that the G/A and A/A
genotypes are associated with an approximate 2-fold and 8-fold increase in DPN risk,
respectively. Compared to the uncomplicated T2DM group, the DPN group exhibited
significant associations across the codominant, dominant, recessive, and
overdominant models, with the codominant model [P?*= 0.00009, and AIC® = 614.9]
demonstrating the best fit. Under this model, the G/A and A/A genotypes were
associated with an approximate 2-fold and 4-fold increase in DPN risk, respectively.
No significant associations were observed in any genetic model when comparing the
uncomplicated T2DM group to the control group. The XRCC1 Arg399GIn A allele

was associated with a nearly threefold increase in the risk of DPN [P'< 0.00001]



compared to controls and a twofold increase [P = 0.00004] compared to the
uncomplicated T2DM group. These findings indicate that the observed associations
are independent of age, sex, and smoking, which were adjusted for to control
confounding and ensure that the genetic effects reflect true associations with DPN
risk.

Table 3 illustrates that the dominant genetic model most effectively accounted for the
association between the XRCC1 Arg194Trp SNP and the risk of DPN, as indicated by
the lowest AIC values [AIC' = 531.0, AIC? = 648.2, AIC® = 626.5] when comparing
the DPN group to both the uncomplicated T2DM and control groups. The C/T or T/T
genotypes were associated with a significantly increased risk of DPN by 2-fold
compared to controls [P' = 0.0008], by 1.57-fold compared to the uncomplicated
T2DM group [P® = 0.02], and by 1.57-fold compared to controls in the uncomplicated
group [P? = 0.018]. The results suggest that vossessing a single copy of the T allele
(C/T or T/T genotypes) is adequate to elevate the risk of DPN. Furthermore, allele
analysis demonstrated a significaiit correlation between the T allele and susceptibility
to DPN, indicating & 1.78-fold increased risk for complicated DPN (P! = 0.001) and a
1.48-fold increased risk for uncomplicated DPN [P? = 0.01]. The findings indicate
that the T allele of XRCC1 Arg194Trp may function as a genetic risk factor for the

development of DPN.

Haplotype analysis
Haplotype analysis supports the genetic associations between XRCC1 SNPs and the

risk of DPN (Table 4). The 'A-T' haplotype was associated with a 1.28-fold increase
in DPN susceptibility relative to the reference 'G-C' haplotype [P = 0.000001],
reflecting the risk attributed to the Arg399GIn variant. In addition, the 'A-C' and 'G-T'

haplotypes demonstrated a significant association with an increased risk of T2DM in



patients without DPN [P = 0.0027, and P < 0.00001, respectively]. The 'A-T'
haplotype was identified as a significant predictor of DPN risk [P < 0.00001], while
'G-T' and 'A-C' haplotypes exhibited protective effects [P = 0.0389, and P = 0.0001,
respectively] when comparing DPN group to the uncomplicated group. These results
emphasize that haplotype-based analysis captures multi-locus interactions that single
SNP analyses may overlook. Although the T and A alleles individually conferred risk,
their combined presence within the G-T and A-C haplotypes likely exerted
compensatory or non-additive effects, resulting in a net protective influence. This
underscores the role of linkage disequilibrium and inter-allelic interactions in
modulating genetic susceptibility to DPN. These findings highlight the pivotal role of
XRCC1 haplotypes in shaping susceptibility to T2DM and its complications,

particularly DPN.

Genotypic distribution of XRCC1 SNPs based on TCNS and NDS and their
association with severity of DPN

Table 5 displays the chi-square test results evaluating the association between the
genotypic distribution o both SNPs and the severity of DPN, as measured by TCNS
and NDS scores. The results demonstrate that the G/G and C/C wild-type genotypes
were predominantly found in mild cases, while the A/A (and combined G/A+A/A)
genotypes for XRCC1 Arg399GIn SNP and the C/T (and combined C/T+T/T)
genotypes for XRCC1 Argl94Trp SNP were most frequently linked to severe DPN
cases. Table 6 presents the evaluation of the XGBoost algorithm, indicating that
TCNS (96%) demonstrates superior predictive performance compared to NDS (90%)
in the assessment of DPN severity. TCNS demonstrated significantly higher accuracy,
sensitivity, specificity, precision, Fl-score, and AUC, highlighting its enhanced

effectiveness in predicting DPN severity.



Logistic Regression Analysis of Risk Factors and Genetic Polymorphisms in
DPN

Logistic regression analysis identified several independent risk factors for DPN,
including age, BMI, FBG, LDL, TG, G/A, and A/A genotypes of XRCC1 Arg399GIn
SNP and C/T and T/T genotypes of XRCC1 Arg194Trp SNP. In contrast, sex and
smoking showed no significant association with DPN risk (Table 7).

Machine Learning Approaches for Key Risk Predictor Selection

In addition to traditional statistical models such as logistic regression, we applied
machine learning algorithms to further investigate the associations between key

variables and DPN risk, overcoming the limitations of conventional approaches.

Random Forest (RF) Analysis

RF demonstrated exemplary performance, achieving 98-100% accuracy in both
training and test sets with optimized hyperparameters (ntree = 110, mtry = 7). Feature
importance analysis identified LDL, FBG, HDL, TG, age, and BMI as the primary
determinants of DPN risk, whereas smoking exhibited negligible impact. Notably, the
XRCC1 Arg399GIn SNP demonstrated a more significant classification impact than
the XRCC1 Argl94Trp SNP (Figure 3). Additionally, RF effectively identified
XRCC1 Argl94Trp SNP, disease duration, and XRCC1 Arg399GIn SNP as
significant factors influencing DPN severity (Figure 4), highlighting the interaction
between genetic predisposition and clinical variables in disease progression.

XGBoost Model Insights

Utilizing RF-selected features, XGBoost identified XRCC1 Argl94Trp SNP
genotypes (C/T, C/C) as the most significant predictors of DPN, followed by

biochemical markers (HDL, HbAlc, LDL). The XRCC1 Arg399GIn SNP genotypes



(A/A, G/A, G/G) improved prediction accuracy (Figure 5), underscoring the

significant influence of genetic and metabolic factors in DPN development.

SHAP (SHapley Additive exPlanations) Analysis for Feature Interpretation

SHAP analysis, an additive explanatory framework quantifying both the magnitude
and directionality of effects, was applied to gain a deeper understanding. Figure 6
demonstrates that HDL has a negative association with the risk of DPN, while FBG,
TG, LDL, BMI, age, and the XRCC1 Arg399GIn SNP show positive associations.
Although the XRCC1 Argl194Trp CT and CC genotypes exhibited high overall
importance in the XGBoost model (Figure 5), their near-zero SHAP values in Figure
6 suggest that their influence on DPN risk varies across individuals. This contrast
emphasizes that global feature importance and SHAP analysis provide
complementary perspectives: the former reflects the general contribution of each
variable to model performance, while the latter captures how these effects differ at the
individual level. Figure 7 highlighted the significant correlations between the XRCC1
Argl94Trp SNP (notably the C/T genotype) and the XRCC1 Arg399GIn SNP (A/A
genotype), as well as disease duration, age, and lipid profiles, with severe DPN. The
findings indicate that genetic susceptibility, metabolic dysregulation, and clinical
variables significantly affect disease complications.

Discussion

Numerous studies have highlighted the significant role of various genetic loci in
predisposing individuals to DPN [40-42]. Therefore, ongoing identification and
refinement of genetic factors affecting disease susceptibility are essential. Previous
studies suggest that increased OS, along with subsequent DNA damage and impaired
repair mechanisms, significantly contributes to the pathogenesis, progression, and

severity of diabetes mellitus (DM) and its associated complications [43- 42]. This



study aimed to investigate the association of XRCC1 DNA repair gene
polymorphisms Arg399GIn (rs25487) and Argl94Trp (rs1799782) SNPS with the
risk of T2DM and DPN in the Egyptian population while also examining correlations
with clinical parameters and disease severity. This study is the first in Egypt to
investigate XRCC1 polymorphisms in T2DM and DPN, utilizing machine learning
algorithms to enhance predictive modeling and risk stratification.

Our findings indicate a significant association between the XRCC1 Arg399GIn SNP
(rs25487) and an elevated risk of DPN. However, no association was found regarding
the risk of developing T2DM. Further analysis revealed that the A allele elevated the
risk of DPN approximately threefold when comparing the complicated group with the
control group and twofold when compared to the uncomplicated T2DM group. These
findings suggest that the XRCC1 Arg399GIn SNP may contribute to DPN
pathogenesis rather than T2DM susceptibility. Our results align with prior research.
For instance, Kasznicki et al. [46] and A!-Musawi et al. [47] observed no association
between XRCC1 Arg399GIn SNP and T2DM susceptibility in a Polish and Iraqi
populations, respectively. Consistent with our findings, Merecz et al. [48] documented
an elevated frequency of the XRCC1 Arg399GIn SNP in DPN patients, correlating
with a 1.85-fold increased risk relative to controls. However, Yesil-Devecioglu et al.
[26] reported a significant association with T2DM (OR 3.09), contrasting our
findings. In addition to DPN, various studies have associated XRCC1 Arg399Gin
SNP with other complications of diabetes, such as diabetic retinopathy and
nephropathy [26, 49]. The discrepancy in T2DM association may arise from genetic
or environmental differences among populations.

Regarding the XRCC1 Arg194Trp SNP (rs1799782), while this variant has been

implicated in several diseases [50- 53], its direct association with T2DM and DPN



remains understudied. While Merecz et al. [48] reported no significant association,
our research identified the XRCC1 Arg194Trp variant as a risk factor for T2DM and
DPN, showing risk increases of up to twofold in most comparisons. The findings
suggest that XRCC1 Arg194Trp is a genetic risk factor for DPN and T2DM specific
to certain populations.

Furthermore, haplotype analysis has been explored in prior research, with studies such
as Przybylowska-Sygut et al. [54] identifying an association between the 194Trp and
399GIn variants and heightened breast cancer risk. Conversely, Salimi et al. [55]
reported no correlation with systemic lupus erythematosus. This study is the first to
investigate the association of their haplotypes with the risk of DPN and T2DM. We
identified the ‘A-T’ haplotype as significantly associated with an increased risk of
DPN, whereas the ‘A-C’ and ‘GT’ haplotypes were correlated with a higher risk of
T2DM in patients without DPN. In contrast, the ‘G-T’ and ‘A-C’ haplotypes were
linked to a reduced risk of DPN. The findings underscore the utility of XRCC1
haplotype analysis in identifying individuals at high risk, facilitating personalized risk
assessments, and facilitating early interventions. A clarification for our results could
be that although each allele independently contributes to the increased risk of DPN,
the combinations of alleles (a haplotype) on the same chromosome create different
effects based on a phenomenon named non-additive effect, in which the above-
mentioned combinations significantly mask the risk effect of individual alleles or
offer a protective effect as observed in our results [56, 57].

Concerning XRCC1 Arg399GIn, this polymorphism is found in exon 10 in the
conserved BRCAL carboxyl-terminal domain (BRCT1 domain and/ or PARP’s
central domain) of the gene, which includes 301-402 codons; thus, codon 399 is

situated within this binding region. The XRCC1 gene serves as a common target for



poly(ADP-ribosyl)ation in the BER and single-strand break repair (SSBR) pathways.
Poly(ADP-ribose) polymerase 1 (PARP1) detects DNA damage, binds to the BRCT1
domain of XRCC1, and activates its function as a scaffold for assembling BER/SSBR
machinery [58]. Prior reports demonstrated that the Arg399GIn polymorphism arises
from a G-to-A substitution resulting in a non-conservative amino acid change
(arginine to glutamine at codon 399), and the wild type (G/G) genotype is associated
with normal gene activity, while the polymorphic (A/A) genotype alters protein repair
activity by decreasing the capacity to remove oxidized DNA damage by 3-4 times
and this alteration is connected to DNA repair efficiency and contributes to the risk of
several diseases [59, 60.].

In terms of XRCC1 Arg194GIn SNP results from a C-to-T substitution at codon 194
(position 26,304), leading to an Arg-to-Trp amino acia change [27, 61]. In the wild-
type genotype, XRCC1 interacts with DNA ligase III, DNA polymerase B (polyp),
and poly (ADP-ribose) polymerase (FARP) to form repair complexes. However, this
polymorphism alters XRCC1i’s structure and function, compromising DNA repair
efficiency. Located near phosphothreonine-198 and within the linker region between
the NH2-terminal and BRCT1 domains (positions 315-403), it may disrupt XRCC1’s
interaction with proliferating cell nuclear antigen (PCNA), further affecting genomic
stability [62].

Regarding DPN severity, our study investigated the genotypic distribution of the
aforementioned SNPs in relation to the TCNS and NDS systems or their association
with DPN progression. We found that mild DPN complications correlated with wild-
type genotypes, whereas severe DPN was predominantly associated mutant genotypes

of both SNPs. These results suggest that the XRCC1 SNPs, when combined with



DPN severity scores, could predict individuals at high risk of developing severe DPN.
However, prior studies were in contrast with our outcomes [47, 63].

These findings prompted a comparison of TCNS and NDS efficacy in classifying
DPN severity (mild, moderate, severe) using the XGBoost algorithm. TCNS
demonstrated superior predictive performance. Its enhanced sensitivity facilitates
early detection, while its specificity minimizes misclassification, underscoring its
clinical utility for timely diagnosis and targeted treatment. These results align with
prior studies [64, 65]. Conversely, Nogueira et al. [66] reported that NDS exhibited
excellent sensitivity and specificity, correlating strongly with neuropathy severity.
Furthermore, we conducted traditional logistic regression analysis to identify risk
factors influencing DPN. Our findings indicated that age, BM!, FBG, LDL, TG,
399G/A, and 399A/A genotypes, along with the 184C/T and 194T/T genotypes, were
significantly correlated with an elevated risk of DPN. Consistent with our findings,
numerous previous studies have demonstrated the relationship between age and the
onset of DPN [67- 69]. Callaghan et al. [70] demonstrated that a higher BMI
correlates with an zlevated risk of DPN, as obesity is a recognized risk factor for
complications associated with diabetes. Furthermore, the prevalence of neuropathy is
significantly greater among obese individuals, including those without diabetes.
Alshammari et al. [5] reported that participants with diabetic neuropathy exhibited
elevated BMI, FBG levels, cholesterol, LDL, and TG compared to those without
neuropathy. Recent studies have corroborated our findings [61, 71- 73]. Nonetheless,
numerous studies have contradicted our results [74- 76].

Machine learning (ML) models were utilized to identify risk factors and assess their
interactions collectively, yielding greater accuracy than logistic regression while

maintaining all variable information and providing a comprehensive interpretation of



the most influential predictors of DPN risk. This aligns with Ravi et al. [77] who
highlighted the growing use of ML in medicine for predicting disease progression and
offering significant insights. Similarly, Kavakiotis et al. [78] emphasized the
effectiveness of ML in diabetes prediction to mitigate disease progression and
complications.

Our analysis showed that both RF and XGBoost attained high accuracy, reaching up
to 98%, in the detection of complications. The SHAP method revealed that LDL,
FBG, HDL, TG, BMI, and the XRCC1 399A/A genotype are the primary factors
influencing complication risk. The findings are consistent with those of Shiren et al.
[79] who established the efficacy of RF in predicting diabetic complications (AUC =
82%) and highlighted the significance of monitoring key biomarkers. Similarly, Wu et
al. [80] and Lian et al. [81] reported that XGBoost demonstrates strong predictive
power in DPN, achieving accuracies of 85.4% and 74.6%, respectively. The well-
balanced cohort in our study, cornprising 256 controls, 247 individuals with
uncomplicated diabetes, and 225 with diabetic complications, likely enhanced the
model's performance. Conversely, Shin et al. [82] examined DSPN prediction
utilizing a limited and imbalanced dataset, specifically within the "probable™ group
(n=31), resulting in reduced machine learning accuracy (<74%). This emphasizes the
benefit of our study's comprehensive dataset in increasing predictive accuracy and
improving the management of diabetic complications, highlighting the necessity of

well-structured data to develop reliable models and draw significant conclusions.

Conclusions
The association between the examined SNPs and DPN risk suggests that these genetic
variants may play a role in individual susceptibility to DPN. Identifying individuals

with genetic predispositions, such as carriers of the XRCC1 Arg399GIn and



Arg194Trp polymorphic variants, and subjecting them to regular follow-ups may aid
in disease prevention or facilitate early diagnosis. Moreover, comprehending the
genetic underpinnings of DPN offers significant insights for prognosis and
personalized medicine, enabling early interventions for individuals at high risk.
Moreover, machine learning models are essential for evaluating the risk of DPN by
synthesizing genetic and clinical data, enhancing predictive accuracy, and informing

targeted prevention strategies.

Recommendations
Further studies are needed to elucidate the intricate relationship between genetic and
environmental influences on disease severity. Furthermore, it is crucial to examine
additional SNPs in the XRCC1 gene such as Arg280His (rs25489) SNP and their
interaction with the aforementioned SNPs to ideniify more reliable predictive genetic
factors. Additionally, the analysis of antiocxidant enzyme activities such as catalase
(CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX) and total
antioxidant status (TAS) and their relationship with DPN should be incorporated into
future research .
Data availability
The datasets produced and/or analyzed throughout this current investigation are not
available to the public but can be taken from the corresponding author upon a
reasonable request.
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Table (1): Demographical and clinico-laboratory data of studied groups

T2DM Patients (N=340)

T2DM group complicated | Uncomplicated T2DM | Control group | P-value
with DPN (IN=256) group (N=247) (N=229)

Demographical Data QA
Age® 50.00+0.48 * 44.3+0.44° 42.3+0.43° | <005
Gender® M/F 120/136 110/137 126/103 P=0.056
Smoking/ Y/N 46/210 38/209 53/176 P=0.08
Clinico-laboratory Data
FBG (mg/dI)® 233.60+1.84° 115.60+0.92" 82.3+0.68° | <0.001
HBAIC? 9.20+0.08 7.03+0.07 -—-- <0.001
BMI (Kg/m?)* 29.9 +0.25° 23.6 +0.20° 24.6£0.22" <0.05
TG 939.00+1.64° 190.00+1.33" 181.00+¢1.32° | <0.05
LDL cholesterol * 176.7+0.96° 118.00+0.65° 91.7+0.52c <0.05
HDL cholesterol * 37.4020.23" 47.00+0.29° 47.6£031° | <005
Duration of disease * 10.08+0.21 4.3240.09 < 0.0001
TCNS 10.28+0.22
NDS 7.11£0.15

Abbreviations: DPN, Diabetic peripheral neuropathy; BMI, Body mass index; FBG, Fasting blood glucose; LDL, Low density
lipoprotein; HDL, High density lipoprotein; TG, Triglyceride; HBAIC, Hemoglobin A1C; TCNS, Toronto Clinical Neuropathy
Score; NDS, Neuropathy Disability Score. Data were reported as mean +SD. ® Data were reported as number and percentage(%).

dCNeans carrying different superscripts within same row are statistically different.




Table (2): Genetic model analysis of the association between XRCC1 Arg399GIn SNP and the risk of DPN among studied groups (adjusted for age, sex and smoking)

Model Genotype complicated Uncomplicated control 8R(95'%C|)1 OR(95%.C|)2 oR(95%C|)3 P-value! | AICE P-Z AIC? P-3 AlIC®
omplicated vs. | UnComplicated Complicated vs. value value
control vs. control uncomplicated
Codominant GIG 81 (31.6%) 107 (43.3) 113 (49.3%) 1.0 (ref) 1.0 (ref) 1.0 (ref.)
GIA 133 (52%) 121(49.0) 99 (43.2%) 2.26 (L42- 3.62) 136 (0.02-199) | 165 (L.08251) | ~0.0001 | 5111 1 024 ) 6529 | 0.00009 | 614.9
AIA 42 (16.4%) 19 (7.7) 17 (7.4%) 8.04 (3.65 — 17.68) 1.47 (0.71-3.07) | 4.10 (2.09-8.03)
Dominant GIG 81 (31.6%) 107 (43.3) 113 (49.3%) 1.0 (ref.) 1.0 (ref.)
GIA-AIA 175 (68.4%) 140 (56.7) 116 (50.7%) 2.79 (1.79-4.37) 137(0.95-1.99) | 1.94(129-2.90) | ~0-0001 | 5209 | 0.9 651 0.001 | 6211
Recessive GIG-GIA 214 (83.6%) 228 (92.3) 212 (92.6%) 1.0 (ref) 1.0 (ref) 1.0 (ref)
AA 42 (16.4%) 19077 17 (7.4%) 4.95 (2.40- 10.19) 126 (0.62-2.55) | 3.03(1.63-562) | ~0-0001 | 521.3 | 052 | 6533 | 0.0003 | 6184
Overdominant | G/G-A/A 123 (48%) 126 (51) 130 (56.8%) 1.0 (ref) 1.0 (ref) 1.0 (ref.)
GIA 133 (52%) 121 (49) 99 (43.2%) 141 (0.93- 2.14) 128 (0.89-1.86) | 1.15(0.79-168) | Ot [ 5396 | 018 | 652 | 0.0004 | 6311
Allele G 295 (57.62) 335 (67.81) 325(70.96) 1.0 (ref) 1.0 (ref) 1.0 (ref)
Alleles Allele A 217 (42.30) 159 (32.19) 133(29.04) 2.59 (1.84 —3.64)*** | 1.18 (0.89-1.57)"° 1.89 ()1.39- <0.0001 0.27 0.00004
2.57)***

AIC: Akaike Information Criterion; ref.: reference category; OR: odds ratio; Cl: confidence intervai; significant difference:*P < 0.05,***P< 0.001; NS: non-significant difference: P> 0.05; P-value>?®® of ORs and AIC?? %
are for complicated vs. control, uncomplicated vs. control, and complicated vs uncomplicated, respectively. P-values were calculated by logistic analysis after adjusting for age, gender, smoking status.




Table (3): Genetic model analysis of the association between XRCC1 Arg194Trp SNP and the risk of DPN among studied groups (adjusted for age, sex and smoking)

Model Genotype | complicated Uncomplicated control OR (95% CI)* OR (95% CI)* OR (95% CI)® P- AlC! P- AIC? P- AIC?
Complicated vs. | UnComplicated Complicated vs. | value! value? value®
control vs. control uncomlicated

Codominant Cc/C 116 (45.31) 114 (46.15) 130 (56.77) 1.0 (ref.). 1.0 (ref)). 1.0 (ref.)

cIT 122 (47.66) 117(47.37) 91 (39.74) 199 (128-310) | 154 (1.04227) | 1.63 (108247 | °0003 | 5327 ) 0057 1 650 | 007 | 6282
T 18 (7.03) 16 (6.48) 8 (3.49) 2.57 (1.03-6.46) 188(0.76-461) | 1.27 (059-2.71)

Dominant C/C 116 (45.30) 114 (46.2) 130 (56.8) 1.0 (ref) 1.0 (ref.) 1.0 (ref)

CIT-TIT 140 (54.70) 133 (53.8) 99 (432) 206 (1.34-316) | 157(108229) | 157 (106234 | %0008 | 5310 | 0018 | 6482 | 0.02 | 6265

Recessive cicciT 238 (93.00) 231 (935) 221 (96.5) 1.0 (ref) 1.0 (ref) 1.0 (ref)

T 18(7.00) 16 (6.5) 8 (3.50) 186(0.76-454) | 157(0.65-2.80) | 099 (048-205 | 016 | 5403 | 0308 | 6527 | 098 | 6316

Overdominant | CIC-T/T 134(52.30) 130 (52.6) 138(60.30) 1.0 (ref) 1.0 (ref) 1.0 (ref)

T 122 (47.7) 117 (47.4) 91 (39.7) 179 (1.16-2.74) 146 (099-2.14) | 157 (Los234) | 007 | 5311 005 | 650 | 002 | 6266

Alleles C 354 (69.14) 345(69.84) 351 (76.64) TO(ref) | 10 (ref) 1.0 (ref)

T 158 (30.86) 149 (30.16) 107 (2336) | 1.78 (125254 * | 148 (L.09-2.02) | 1.33(0.97-1.83) | 0.001 0.01 0.07

AIC: Akaike Information Criterion; ref.: reference category; OR: odds ratio; CI: confidence interval; significant difference:*P < 0.05,***P< 0.001; NS: non-significant difference: P> 0.05; P-value™**™ of ORs and AIC*?
%3 are for complicated vs. control, uncomplicated vs. control, and complicated vs uncomplicated, respeciively. P-values were calculated by logistic analysis after adjusting for age, gender, smoking status.




Table (4): Impact of haplotypes of XRCC1 Arg399GiIn (G/A) and XRCC1 Argl94Trp (C/T) on
T2DM and DPN risk

| frequency | | OR | 95% C.I. | P-value
| Control Vs. complicated

G-C 0.5323 Reference haplotype
A-C 0.1945 1.09 (0.99-1.19) 0.06
A-T 0.1664 1.28 (091-1.12) 0.000001
G-T 0.1068 1.002 (0.84-1.05) 0.97

Control Vs. uncomplicated
G-C 0.5134 Reference haplotype
A-C 0.2177 1.12 (1.05-1.26) 0.0027
A-T 0.089 0.97 (0.84-1.12) 0.7052
G-T 0.1799 1.23 (1.12-1.36) < 0.00001

Complicated Vs. uncomplicated
G-C 0.4582 Reference haplotype
A-C 0.2366 0.90 (0.83-0.98) 0.0389
A-T 0.1372 1.34 (1.19-1.49) | < 0.00001
G-T 0.168 0.84 (0.76-0.91) 0.0001




Table (5): Genotypic distribution of XRCC1 Arg399GIn and Argl194Trp SNPs based on TCNS and NDS and their

association with severity of DPN

_SNPs TCNS NDS
XRCC1 Arg3991GIn (G/A P-value XRCC1 Arg3991GIn (G/A P-value
Mild Moderate Severe Mild Moderate Severe
G/G 54 22 (27.2%) 5 (6.2%) G/G 54 (66.7%) 17 (21.0%) | 10 (12.3%)
(66.7%) < 0.0001** < 0.0001**
G/A 36 50 (37.6%) 47 (35.3%) G/A 36 (27.1%) 36 (27.1%) | 61 (45.9%)
(27.1%)
AlA 4(9.5%) | 14 (33.3%) 24 (57.1%) AlA 4 (9.5%) 4 (9.5%) 34
(81.0%)
G/A+AIA 40 64 (36.57%) | 71 (40.53%0) 0.01* G/A+A/ 40(22.85%) | 40 (22.85%) 95 < 0.0001**
(22.90%) (54.29%)
XRCC1 Argl94Trp (C/T) P-value XRCC1 Argl94Trp (C/T) P-value
Mild Moderate Severe Mild Moderate Severe
C/IC 88 28 (24.1%) 0 (0.0%) C/C 88 (75.9%0) 28 (24.1%) 0
(75.9%) < 0.00001 <0.00001**
CIT 0 47 (38.5%) 75 (61.5%0) CIT 0 20 (16.4%) 102 el
(83.6%)
T/T 6 11 (61.10%) 1 (5.6%) T/T 6 (33.3%) 9 (50.0%) 3 (16.7%)
(33.3%)
C/IT+TIT 6(4.3%) | 58(41.43%) | 76 (54.29%) | <0.00001 | C/T+T/T 6 (4.3%) 29(20.71%) 105 <0.0001***
(75%)

TCNS: Mild (5-8), Moderate (9-11), Severe (>12); NDS: Mild (3-5), Moderate 6-8), Severe (9-10)

Table (6): Comparison between performance of TCNS and NDS in evaluating DPN based on XGBoost

algorithm.
FCNS NDS
Mild | Moderate | Sever | Mild [ Moderate | Severe
Overall Acuuracy N\, 96% 90%
Sensitivity 1.00 0.94 0.95 1.00 0.86 0.87
Spescificty 0.97 0.97 1.00 0.97 0.92 0.96
percision 0.93 0.94 1.00 0.93 0.80 0.95
F1 score 0.96 0.94 0.97 0.97 0.83 0.91
AUC 0.98 0.96 0.97 0.98 0.89 0.92

AUC: Area under the curve.



Table (7): Logistic regression analysis on the association between risk of DPN, and potential risk
factors and genetic polymorphisms

Variables Odd ratio 95% ClI P-value
Age 1.19 1.15-1.23 < 0.000001
sex Male Ref.

Female 1.39 | 097-1.99 | 0.07"°
Smoking | Non smoker Ref.

Smoker 0.73 0.47 —1.13 0.15"°
BMI 1.67 1.54 -1.84 < 0.000001
FBG 1.71 (1.67-1.76) <0.0001
LDL 2.55 (2.42-2.71) <0.0001
HDL 0.3 0.22 -0.38 < 0.0001
TG 1.11 1.09-1.13 <0.0001
XRCC1 Arg3991GIn (G/A) 1.87 1.28-2.76 0.001
AA 3.45 1.86-6.62 0.0001
XRCC1 Argl94Trp (C/T) 1.50 1.04-2.18 0.03
TT 2.52 1.09-6.35 0.03

Abbreviations: DPN, Diabetic peripheral neuropathy; BMI, Body mass index; FBG, Fasting
blood glucose; LDL, Low density lipoprotein; HDL, High densiiy lipoprotein; TG,
Triglyceride; NS, Non significant. P<0.05 is considered significant. P>0.05 is considered non-
significant.



Table (8) Summary of previous findings investigating XRCC1 Arg399GIn and Arg194Trp SNPs in T2DM and its complications across different

populations.

Study (Year) Population SNPs Disease Genotypes Assocaition observed

Kasznicki et al. [46] Polish Arg399Gin T2DM AA genotype No association with T2DM.
(G/A) SNP

Al-Musawi et al. [47] Iraq Arg399GIn T2DM AA genotype No association with T2DM.
(G/A) SNP

Yesil-Devecioglu et al. [26] Turkish Arg399GiIn T2DM and DN AA genotype Significant association with with T2DM
(G/A) SNP and diabetic nephropathy (DN).

Narne et al. [49] South Indian Arg399GIn T2DM and DR AA genotype Significant association with diabetic
(G/A) SNP retinopathy (DR).

GOKCE et al. [83] Turkish Argl94irp T2DM TT genotype No association with T2DM.
(C/T) SNP

Guo et al. [84] Asian Argl94Trp CAD TT genotype Significant association with CAD.
(CIT) SNP

T2DM : Type 2 diabetes mellitus, DN: Diabetic nephropathy, DR: Diabetic retinopathy. CAD: Coronary artery disease. No prior study has employed a
machine learning approach to analyze the association between the investigated XRCC1 SNPs and DPN risk. In addition, a limited number of studies have
addressed XRCC1 SNPs in DPN. Moreover, to date, no study conducted in Egypt study also has investigated this association.



Figure (1): Agarose gel electrophoresis preseniing the PCR amplification outcomes
of Arg399GiIn (rs25487) SNP in XRCC1 gene. M: DNA marker (100 bp); Lines 2,4,7:
GG gentype (375 bp and 240 bp); iines 3,5: PCR products ans AA genotypes (615bp);
lines 6,8: GA genotypes (615hp, 375 bp, abd 240bp).



Figure (2): Agarose gel electrophoresis presenting the PCR ampiification outcomes
of Arg194Trp (rs1799782) SNP in XRCC1 gene. M: DNA imnarker (100 bp); Lines
2,3,6,7,8,10: PCR products and CC gentypes (485 bp); line 4. TT genotypes (396bp
and 89bp); lines 5,9: CT genotypes (485bp, 396 bp, abd 89bp). The small fragment of
89 bp was invisible in the gel
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Figure (3): Variable importance plot generated by Bruta random forest analysis.
ShadowMin, ShadowMean, and ShadowMax are non-sense variables, generated by

randomly shuffling the original values of the predictors. The predictors above the
shadow variables, marked by green boxplots, are important.
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Figure (4): Variable importance plot for features used to predict complication based
on TCNS. The predictors above the shadow variables, marked by green boxplots, are
important.
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Figure (5): Variable importance of XGboost, with clustering features according to
their closeness into one cluster.
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Figure (6): SHAP values for the XGBoost model. Each point represents a sample.
The higher the SHAP value the higher the risk of DPN, and vice versa.
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Figure (7): SHAP values for the XGBoost model of TCNS
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