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Abstract 

This study aimed to investigate the association between XRCC1 Arg399Gln and 

Arg194Trp single nucleotide polymorphisms (SNPs) and the risk and severity of 

polyneuropathy (DPN) in patients with type 2 diabetes mellitus (T2DM). The 

genotyping of SNPs was achieved in 732 contributors, including diabetic subjects 

with and without polyneuropathy and controls, using polymerase chain reaction-

restriction fragment length polymorphism (PCR‐RFLP). In addition, by using 

advanced statistical techniques, including machine learning methodologies, to analyze 

the data.The results indicated a significant link between both SNPs and DPN risk 

under both codominant and dominant models, respectively, with the A and T alleles 

as risk variants. Haplotype analysis further established the A-T haplotype as a 

prominent risk factor. The disease severity was associated with the 399A/A and 

combined (G/A+A/A) genotypes, as well as the 194C/T and combined (C/T+T/T) 

genotypes. In advanced DPN stages, random Forest (RF) highlighted both XRCC1 

SNPs, and disease duration as the top three contributing factors. SHAP analysis 

corroborated the 194C/T genotype of and the 399A/A genotype were strongly linked 

to severe disease manifestations, particularly when coexisting with prolonged illness 

duration, advanced age, elevated HDL, and reduced LDL levels. Our findings 

substantiate the association of XRCC1 Arg399Gln and Arg194Trp SNPs with both 

susceptibility to and progression of DPN in T2DM patients. The integration of 

machine learning methodologies augments clinical decision-making by refining 

diagnostic precision and facilitating personalized treatment strategies. 
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Introduction 

Diabetic peripheral neuropathy (DPN) represents a significant microvascular 

complication of T2DM [1], in which vascular issues, metabolic abnormalities, and 

oxidative stress (OS) significantly contribute to its development [2, 3]. Evaluating the 

incidence and prevalence rate of DPN is challenging, and the discrepancies in the 

reported prevalence of DPN among  several countries are mainly attributed to 

variations in diagnostic standards between studies, differences in study populations, 

including disease duration and clinical settings, as well as regional and temporal 

variations [4]. According to epidemiology, up to 50% of diabetic people have DPN 

[5]. The overall prevalence of DPN from Europe and the United States approximately 

from 6% to 51% based on the population studied [6]. In contrast, the prevalence of 

DPN was found to be 71.2% in China [7], and from 18.8% to 61.9% in India [8]. 

However, the percentage in Tanzania was 72.2% [9]. Nevertheless, in the Middle East 

, the general DPN rate was 53.7% [10]. In Sudan, the prevalence was 42% [11]. 

Current literature carried out in Saudi Arabia displays that 39% of diabetic individuals 

have DPN [12]. In Egypt, based on the national data, the development of DPN is 

about more than 60% of diabetic’s patients [13]. 

Numerous genetic variations in candidate genes have been examined as potential risk 

factors, with many linked to several mechanisms such as the generation of reactive 

oxygen species (ROS) [14]. Os, which is an essential pathophysiological pathway of 

DPN, has gained considerable attention. The excessive generation of ROS, coupled 

with a reduction in antioxidant defenses, leads to disrupted redox homeostasis, which 

subsequently results in OS and ROS-mediated damage to critical biomacromolecules, 

including DNA in DPN [15, 16]. DNA repair genes play a crucial role in maintaining 

genome integrity by restoring intact DNA through various mechanisms like 
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nucleotide excision repair, double-strand break, and repair base excision repair (BER) 

[17, 18].  

The X-ray cross complementary repair gene 1 (XRCC1), a member of the BER 

pathway, is responsible for repairing defects in DNA single-strand breaks and 

facilitating sister chromatid exchange, which occurs following exposure to ROS, 

alkylating agents, or ionizing radiation (IR) [19]. It is located on the long arm of 

human chromosome 19q13.2-13.3 [20]. The gene comprises 17 exons and encodes a 

70 kDa protein (approximately 633 amino acids). XRCC1 protein organizes the BER 

pathway, serving as a scaffold for specific repair enzymes and facilitating subsequent 

enzymatic processes [21]. The deactivation of the XRCC1 gene through genetic 

alterations leads to a decline in genetic stability, accompanied by an increase in the 

occurrence of spontaneous and/or induced chromosome deletions and translocations 

and as a result influence the risk of T2DM and its vascular complications [22]. Recent 

studies on XRCC1 gene polymorphisms focus primarily on three nonsynonymous 

SNPs: Arg399Gln (rs25487), Arg194Trp (rs1799782), and Arg280His (rs25489) 

SNPs[23]. These SNPs, especially Arg399Gln (rs25487), Arg194Trp (rs1799782) 

SNPs, could influence susceptibility to diabetes, through reducing DNA repair 

capacity in diabetic patients, resulting in reduced oxidative DNA damage repair and 

heighted sensitivity to OS [24-26]. Numerous studies indicate that polymorphisms in 

the XRCC1 gene may play a role in the pathogenesis of various cancer types [27- 29]; 

however, research on T2DM and its complications, particularly DPN, remains 

relatively limited [26, 30]. Moreover, given the high prevalence of T2DM and DPN in 

the Egyptian population [31, 32], and yet no previous studies regarding XRCC1 gene 

polymorphisms in our cohort, this study aims to enhance the understanding of DPN 

pathogenesis by investigating the roles of XRCC1 Arg399Gln and Arg194Trp SNPs 
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in susceptibility to T2DM and DPN among Egyptian individuals. We aimed to 

develop accurate predictive models using advanced machine learning algorithms, 

addressing existing research gaps and identifying novel genetic and clinical risk 

factors. Furthermore, we examined the relationship between these SNPs and the 

severity of DPN using established scoring systems. This study integrates genetic 

predisposition, clinical factors, and ML-driven insights to facilitate more personalized 

approaches to the early detection, prevention, and targeted treatment of DPN. 

Subjects and methods 

Study patients selection   

This study included a total of 732 participants, comprising 503 patients diagnosed 

with Type 2 Diabetes Mellitus (T2DM) and 229 healthy controls. The diabetic 

patients were divided into two groups: group 1:247 patients with uncomplicated 

T2DM, group 2: 256 patients with T2DM complicated by Diabetic Polyneuropathy 

(DPN). The control group consisted of 229 apparently healthy individuals with 

normal glucose metabolism and matched by age and sex.. The overall case-to-control 

ratio was approximately 2.2:1 (503 cases to 229 controls). Among the cases, the ratio 

of DPN complicated to uncomplicated T2DM was approximately 1.04:1 (256 DPN to 

247 uncomplicated). 

Patients were enrolled sequentially during routine visits at diabetes outpatient clinics, 

diabetic neuropathy clinic, and inpatient wards of Zagazig Specialized Medical 

Hospital, Zagazig University, Zagazig, Egypt. Patients with T2DM were diagnosed 

according to the classification and criteria established by the American Diabetes 

Association (ADA) [33]. The individuals in the control group were selected from 

those attending general check-ups at the hospital. Patients involving autonomic or 

peripheral neuropathies due to factors other than diabetes, advanced-stage peripheral 
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arterial disease, type 1 diabetes mellitus (T1DM), and severe comorbidities such as 

cancers, recent cardiovascular diseases, heart failure, advanced liver disease, or renal 

failure were excluded from the study. Additionally, cases administrating long-term 

immunomodulatory or immunosuppressive treatment were excluded from the study. 

Data collection involved collecting detailed personal information, such as age, sex, 

smoking status, and disease history, through discussions with all participants. In 

addition, clinical investigations such as comorbidity, blood glucose level at the time 

of neurological examination, calculated body mass index (BMI), the circumference of 

the waist, and disease duration were obtained from outpatient medical records. 

Routine clinical-laboratory data such as fasting blood glucose (FBG) level, lipid 

profile, and Hemoglobin A1C (HbA1c) were retrieved from the medical record sheet. 

By using protocols of calibrated devices and standardized measurement, the body 

weight and height were recorded on the verge of 0.1 kg and 0.1 cm, respectively [34]. 

At the level of the iliac crest, waist circumference (WC) was recorded to the nearest 

0.1 cm while the participant was in standing position and breathing normally [35]. 

Following a minimum fasting period of 11 hours, blood samples were obtained to 

evaluate serum cholesterol, triglycerides, lipoproteins, fasting glucose levels, and The 

Hemoglobin A1c (HbA1c) as detailed in aprior reports [35, 36]. 

Nerve conduction studies (NCS) were performed in the electrophysiology unit at the 

Neurology Department- Zagazig Specialized Medical Hospital using an EMG 

Machine (Nicolet, Natus Neurology, USA). Furthermore, neuropathy was assessed in 

diabetic patients according to the Toronto Clinical Neuropathy Scoring System 

(TCNS) and Modified Neuropathy Disability Score (NDS).  

The Institutional Ethics Committee of the Faculty of Medicine of Zagazig University 

in Egypt approved the study protocol. In addition, the study adhered to the ethical 
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criteria of the Declaration of Helsinki (ZU-IRB #496/25 Aug-2024). Prior to 

participation in the study, each participant provided written informed consent. 

Methods 

DNA isolation and Molecular Genetic analysis 

The QIAamp DNA Blood Mini kit (Cat-No: #51104; Qiagen, Valencia, California, 

USA) was used to isolate the genomic DNA from collected samples with 

anticoagulant (EDTA) according to the manufacturer's information. A NanoDrop 

spectrophotometer (ND1000; NanoDrop Technologies, Wilmington, Delaware, USA) 

was used to measure the purity and concentration of isolated DNA and frozen at -

80°C until genetic testing. 

The polymerase chain reaction-restriction fragment length polymorphism (PCR-

RFLP) analysis was conducted to detect polymorphic sites in the XRCC1 gene using 

specific primer pairs for Arg399Gln (rs25487) SNP [37] and Arg194Trp (rs1799782) 

SNP [38]. In brief, considering details on the determination of the SNP alleles, 

successful amplification of the Arg399Gln (rs25487) and Arg194Trp (rs1799782) 

SNPs, were demonstrated by the presence of PCR amplified products with sizes of 

615bp, and 485bp, respectively. Regarding Arg399Gln (rs25487) SNP, after digestion 

by MpsI restriction enzyme, the PCR-RFLP results were the Arg/Arg genotype (G/G 

wild type homozygous) (digested product) (375bp and 240-bp), the Arg/Gln genotype 

(G/A heterozygous) (615bp, 375 bp, and 240 bp), and the Gln/GLn genotype (A/A 

mutant homozygous) (undigested product) (615 bp) (Fig. 1). In the case of Arg194Trp 

(rs1799782) SNP, after digestion by PvuII restriction enzyme, the PCR-RFLP results 

were the Arg/Arg genotype (C/C wild type homozygous) (undigested product) (485 

bp), the Arg/Trp genotype (C/T heterozygous) (485 bp, 396 bp, and 89 bp), and the 
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Trp/Trp genotype (T/T mutant homozygous) (digested product) (396 bp, and 89 bp) 

(Fig. 2). 

For carrying out the first step of RFLP technique (PCR reaction), template DNA was 

amplified to generate PCR products for both SNPs in a total volume of 20 μL 

consisting of 10 μL Taq PCR Master Mix (Thermo Fisher Scientific, Massachusetts, 

USA), 1.5 μL of each of forward and reverse primers (10 pmol/μL), 4.5 μL sterile 

deionized water, and 2.5 μL of template DNA (about 30ng). PCR Cycling conditions 

were performed in a thermal cycler (Biometra, Gottingen, Germany) as follows: For 

the Arg399Gln SNP, the protocol includes an initial denaturation at 94°C for 5 

minutes, followed by 40 cycles consisting of denaturation at 94°C for 30 seconds, 

annealing at 57°C for 30 seconds, and extension at 72°C for 30 seconds, concluding 

with a final extension at 72°C for 7 minutes. For the Arg194Trp SNP, the protocol 

involved an initial denaturation at 94°C for 5 minutes, followed by 35 cycles 

consisting of denaturation at 94°C for 30 seconds, annealing at 59°C for 30 seconds, 

and extension at 72°C for 30 seconds, concluding with a final extension of 7 minutes 

at 72°C. Following the PCR reaction, for performing the second step of RFLP 

technique, the PCR products underwent digestion with FastDigest MpsI and PvuII 

restriction enzymes for Arg399Gln (rs25487) and Arg194Trp (rs1799782) SNPs, 

respectively (New England Biolabs, Massachusetts, USA) and were incubated for 15 

minutes at 37°C. The specific fragments were separated on a 1.5% agarose gel, 

stained with Ethidium Bromide, and visualized under UV light using a gel 

documentation system. 

Statistical analyses 

First, data were screened for outliers using boxplots and assessed for missing values, 

which were absent. Numeric data are presented as mean ± standard deviation (SD), 
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whereas categorical variables are reported as frequencies (%). Hardy-Weinberg 

equilibrium (HWE) was evaluated using Pearson’s χ² test. ANOVA (for three-group 

comparisons) and independent t-tests (for two-group comparisons) were applied to 

normally distributed data. Skewed or heteroscedastic data were analyzed with a 

generalized linear gamma model incorporating a log-link function. Genetic 

associations of XRCC1 Arg399Gln and XRCC1 Arg194Trp polymorphisms were 

evaluated under codominant, dominant, overdominant, and recessive genetic models, 

with the optimal model selected based on the lowest Akaike Information Criterion 

(AIC) value. Genotype and allele frequencies were computed, and univariate logistic 

regression was employed to estimate odds ratios (ORs) with 95% confidence intervals 

(CIs). Haplotype analysis was performed using the SHEsis online platform 

http://shesisplus.bio-x.cn/SHEsis.html, based on the expectation–maximization (EM) 

algorithm. 

Machine Learning (ML) Models 

Data were randomly partitioned (80:20 ratio) into training and testing sets. 

Hyperparameter optimization was performed via grid search using the XGBoost 

model (hyperparameters are provided in the supplementary materials), and 10-fold 

cross-validation was implemented to mitigate overfitting. Feature selection was 

conducted using Random Forest, while XGBoost was utilized to predict DPN risk 

factors. SHAP (SHapley Additive exPlanations) analysis enhanced model 

interpretability by identifying and ranking key predictors. ML models were 

implemented in R (R Core Team) [39] using the randomForest and xgboost packages. 

Results 

Demographical and clinical-laboratory data of studied groups 
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As shown in Table 1, patients with DPN had a significantly higher age than those in 

the uncomplicated T2DM and control groups (P< 0.05). Fasting blood glucose (FBG) 

levels were also significantly higher in the DPN group compared with both the 

uncomplicated T2DM and control groups (P < 0.001). All clinical-laboratory data 

were also significantly elevated in the DPN group compared to both other groups 

except high-density lipoprotein (HDL) levels were at their lowest in the DPN group. 

Disease duration was notably longer in the DPN group than in the uncomplicated 

group. 

Genetic model analysis of the association between XRCC1 SNPs and the risk of 

DPN among studied groups (adjusted for age, sex, and smoking status) 

Both SNPs were in Hardy-Weinberg equilibrium (HWE, P > 0.05) among T2DM 

patients, including both complicated and uncomplicated groups, as well as in the 

control group. The genotyping of both SNPs is presented in Figures 1 and 2, 

respectively. As shown in Table 2, illustrates that the codominant model most 

effectively accounted for the association between the XRCC1 Arg 399 Gln SNP and 

the risk of DPN [P
1
<0.0001], as indicated by the lowest AIC values (AIC

1
 = 511.1) 

when comparing the DPN group to control group, indicating that the G/A and A/A 

genotypes are associated with an approximate 2-fold and 8-fold increase in DPN risk, 

respectively. Compared to the uncomplicated T2DM group, the DPN group exhibited 

significant associations across the codominant, dominant, recessive, and 

overdominant models, with the codominant model [P
3
= 0.00009, and AIC

3
 = 614.9] 

demonstrating the best fit. Under this model, the G/A and A/A genotypes were 

associated with an approximate 2-fold and 4-fold increase in DPN risk, respectively. 

No significant associations were observed in any genetic model when comparing the 

uncomplicated T2DM group to the control group. The XRCC1 Arg399Gln A allele 

was associated with a nearly threefold increase in the risk of DPN [P
1
< 0.00001] 
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compared to controls and a twofold increase [P
3
 = 0.00004] compared to the 

uncomplicated T2DM group. These findings indicate that the observed associations 

are independent of age, sex, and smoking, which were adjusted for to control 

confounding and ensure that the genetic effects reflect true associations with DPN 

risk. 

Table 3 illustrates that the dominant genetic model most effectively accounted for the 

association between the XRCC1 Arg194Trp SNP and the risk of DPN, as indicated by 

the lowest AIC values [AIC
1
 = 531.0, AIC

2
 = 648.2, AIC

3 
= 626.5] when comparing 

the DPN group to both the uncomplicated T2DM and control groups. The C/T or T/T 

genotypes were associated with a significantly increased risk of DPN by 2-fold 

compared to controls [P
1
 = 0.0008], by 1.57-fold compared to the uncomplicated 

T2DM group [P
3
 = 0.02], and by 1.57-fold compared to controls in the uncomplicated 

group [P
2
 = 0.018]. The results suggest that possessing a single copy of the T allele 

(C/T or T/T genotypes) is adequate to elevate the risk of DPN. Furthermore, allele 

analysis demonstrated a significant correlation between the T allele and susceptibility 

to DPN, indicating a 1.78-fold increased risk for complicated DPN (P
1
 = 0.001) and a 

1.48-fold increased risk for uncomplicated DPN [P
2
 = 0.01]. The findings indicate 

that the T allele of XRCC1 Arg194Trp may function as a genetic risk factor for the 

development of DPN. 

Haplotype analysis 

Haplotype analysis supports the genetic associations between XRCC1 SNPs and the 

risk of DPN (Table 4). The 'A-T' haplotype was associated with a 1.28-fold increase 

in DPN susceptibility relative to the reference 'G-C' haplotype [P = 0.000001], 

reflecting the risk attributed to the Arg399Gln variant. In addition, the 'A-C' and 'G-T' 

haplotypes demonstrated a significant association with an increased risk of T2DM in 

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



 

patients without DPN [P = 0.0027, and P < 0.00001, respectively]. The 'A-T' 

haplotype was identified as a significant predictor of DPN risk [P < 0.00001], while 

'G-T' and 'A-C' haplotypes exhibited protective effects [P = 0.0389, and P = 0.0001, 

respectively] when comparing DPN group to the uncomplicated group. These results 

emphasize that haplotype-based analysis captures multi-locus interactions that single 

SNP analyses may overlook. Although the T and A alleles individually conferred risk, 

their combined presence within the G–T and A–C haplotypes likely exerted 

compensatory or non-additive effects, resulting in a net protective influence. This 

underscores the role of linkage disequilibrium and inter-allelic interactions in 

modulating genetic susceptibility to DPN. These findings highlight the pivotal role of 

XRCC1 haplotypes in shaping susceptibility to T2DM and its complications, 

particularly DPN.  

Genotypic distribution of XRCC1 SNPs based on TCNS and NDS and their 

association with severity of DPN 

Table 5 displays the chi-square test results evaluating the association between the 

genotypic distribution of both SNPs and the severity of DPN, as measured by TCNS 

and NDS scores. The results demonstrate that the G/G and C/C wild-type genotypes 

were predominantly found in mild cases, while the A/A (and combined G/A+A/A) 

genotypes for XRCC1 Arg399Gln SNP and the C/T (and combined C/T+T/T) 

genotypes for XRCC1 Arg194Trp SNP were most frequently linked to severe DPN 

cases. Table 6 presents the evaluation of the XGBoost algorithm, indicating that 

TCNS (96%) demonstrates superior predictive performance compared to NDS (90%) 

in the assessment of DPN severity. TCNS demonstrated significantly higher accuracy, 

sensitivity, specificity, precision, F1-score, and AUC, highlighting its enhanced 

effectiveness in predicting DPN severity. 
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Logistic Regression Analysis of Risk Factors and Genetic Polymorphisms in 

DPN 

 

Logistic regression analysis identified several independent risk factors for DPN, 

including age, BMI, FBG, LDL, TG, G/A, and A/A genotypes of XRCC1 Arg399Gln 

SNP and C/T and T/T genotypes of XRCC1 Arg194Trp SNP. In contrast, sex and 

smoking showed no significant association with DPN risk (Table 7). 

Machine Learning Approaches for Key Risk Predictor Selection 

In addition to traditional statistical models such as logistic regression, we applied 

machine learning algorithms to further investigate the associations between key 

variables and DPN risk, overcoming the limitations of conventional approaches.  

Random Forest (RF) Analysis 

RF demonstrated exemplary performance, achieving 98–100% accuracy in both 

training and test sets with optimized hyperparameters (ntree = 110, mtry = 7). Feature 

importance analysis identified LDL, FBG, HDL, TG, age, and BMI as the primary 

determinants of DPN risk, whereas smoking exhibited negligible impact. Notably, the 

XRCC1 Arg399Gln SNP demonstrated a more significant classification impact than 

the XRCC1 Arg194Trp SNP (Figure 3). Additionally, RF effectively identified 

XRCC1 Arg194Trp SNP, disease duration, and XRCC1 Arg399Gln SNP as 

significant factors influencing DPN severity (Figure 4), highlighting the interaction 

between genetic predisposition and clinical variables in disease progression. 

XGBoost Model Insights 

Utilizing RF-selected features, XGBoost identified XRCC1 Arg194Trp SNP 

genotypes (C/T, C/C) as the most significant predictors of DPN, followed by 

biochemical markers (HDL, HbA1c, LDL). The XRCC1 Arg399Gln SNP genotypes 
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(A/A, G/A, G/G) improved prediction accuracy (Figure 5), underscoring the 

significant influence of genetic and metabolic factors in DPN development. 

SHAP (SHapley Additive exPlanations) Analysis for Feature Interpretation 

SHAP analysis, an additive explanatory framework quantifying both the magnitude 

and directionality of effects, was applied to gain a deeper understanding. Figure 6 

demonstrates that HDL has a negative association with the risk of DPN, while FBG, 

TG, LDL, BMI, age, and the XRCC1 Arg399Gln SNP show positive associations. 

Although the XRCC1 Arg194Trp CT and CC genotypes exhibited high overall 

importance in the XGBoost model (Figure 5), their near-zero SHAP values in Figure 

6 suggest that their influence on DPN risk varies across individuals. This contrast 

emphasizes that global feature importance and SHAP analysis provide 

complementary perspectives: the former reflects the general contribution of each 

variable to model performance, while the latter captures how these effects differ at the 

individual level. Figure 7 highlighted the significant correlations between the XRCC1 

Arg194Trp SNP (notably the C/T genotype) and the XRCC1 Arg399Gln SNP (A/A 

genotype), as well as disease duration, age, and lipid profiles, with severe DPN. The 

findings indicate that genetic susceptibility, metabolic dysregulation, and clinical 

variables significantly affect disease complications. 

Discussion 

Numerous studies have highlighted the significant role of various genetic loci in 

predisposing individuals to DPN [40-42]. Therefore, ongoing identification and 

refinement of genetic factors affecting disease susceptibility are essential. Previous 

studies suggest that increased OS, along with subsequent DNA damage and impaired 

repair mechanisms, significantly contributes to the pathogenesis, progression, and 

severity of diabetes mellitus (DM) and its associated complications [43- 42]. This 
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study aimed to investigate the association of XRCC1 DNA repair gene 

polymorphisms Arg399Gln (rs25487) and Arg194Trp (rs1799782) SNPS with the 

risk of T2DM and DPN in the Egyptian population while also examining correlations 

with clinical parameters and disease severity. This study is the first in Egypt to 

investigate XRCC1 polymorphisms in T2DM and DPN, utilizing machine learning 

algorithms to enhance predictive modeling and risk stratification. 

Our findings indicate a significant association between the XRCC1 Arg399Gln SNP 

(rs25487) and an elevated risk of DPN. However, no association was found regarding 

the risk of developing T2DM. Further analysis revealed that the A allele elevated the 

risk of DPN approximately threefold when comparing the complicated group with the 

control group and twofold when compared to the uncomplicated T2DM group. These 

findings suggest that the XRCC1 Arg399Gln SNP may contribute to DPN 

pathogenesis rather than T2DM susceptibility. Our results align with prior research. 

For instance, Kasznicki et al. [46] and Al-Musawi et al. [47] observed no association 

between XRCC1 Arg399Gln SNP and T2DM susceptibility in a Polish and Iraqi 

populations, respectively. Consistent with our findings, Merecz et al. [48] documented 

an elevated frequency of the XRCC1 Arg399Gln SNP in DPN patients, correlating 

with a 1.85-fold increased risk relative to controls. However, Yesil-Devecioglu et al. 

[26] reported a significant association with T2DM (OR 3.09), contrasting our 

findings. In addition to DPN, various studies have associated XRCC1 Arg399Gln 

SNP with other complications of diabetes, such as diabetic retinopathy and 

nephropathy [26, 49]. The discrepancy in T2DM association may arise from genetic 

or environmental differences among populations. 

Regarding the XRCC1 Arg194Trp SNP (rs1799782), while this variant has been 

implicated in several diseases [50- 53], its direct association with T2DM and DPN 
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remains understudied. While Merecz et al. [48] reported no significant association, 

our research identified the XRCC1 Arg194Trp variant as a risk factor for T2DM and 

DPN, showing risk increases of up to twofold in most comparisons. The findings 

suggest that XRCC1 Arg194Trp is a genetic risk factor for DPN and T2DM specific 

to certain populations. 

Furthermore, haplotype analysis has been explored in prior research, with studies such 

as Przybylowska-Sygut et al. [54] identifying an association between the 194Trp and 

399Gln variants and heightened breast cancer risk. Conversely, Salimi et al. [55] 

reported no correlation with systemic lupus erythematosus. This study is the first to 

investigate the association of their haplotypes with the risk of DPN and T2DM. We 

identified the ‘A-T’ haplotype as significantly associated with an increased risk of 

DPN, whereas the ‘A-C’ and ‘GT’ haplotypes were correlated with a higher risk of 

T2DM in patients without DPN. In contrast, the ‘G-T’ and ‘A-C’ haplotypes were 

linked to a reduced risk of DPN. The findings underscore the utility of XRCC1 

haplotype analysis in identifying individuals at high risk, facilitating personalized risk 

assessments, and facilitating early interventions. A clarification for our results could 

be that although each allele independently contributes to the increased risk of DPN, 

the combinations of alleles (a haplotype) on the same chromosome create different 

effects based on a phenomenon named non-additive effect, in which the above-

mentioned combinations significantly mask the risk effect of individual alleles or 

offer a protective effect as observed in our results [56, 57]. 

Concerning XRCC1 Arg399Gln, this polymorphism is found in exon 10 in the 

conserved BRCA1 carboxyl-terminal domain (BRCT1 domain and/ or PARP’s 

central domain) of the gene, which includes 301-402 codons; thus, codon 399 is 

situated within this binding region. The XRCC1 gene serves as a common target for 
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poly(ADP-ribosyl)ation in the BER and single-strand break repair (SSBR) pathways. 

Poly(ADP-ribose) polymerase 1 (PARP1) detects DNA damage, binds to the BRCT1 

domain of XRCC1, and activates its function as a scaffold for assembling BER/SSBR 

machinery [58]. Prior reports demonstrated that the Arg399Gln polymorphism arises 

from a G-to-A substitution resulting in a non-conservative amino acid change 

(arginine to glutamine at codon 399), and the wild type (G/G) genotype is associated 

with normal gene activity, while the polymorphic (A/A) genotype alters protein repair 

activity by decreasing the capacity to remove oxidized DNA damage by 3–4 times 

and this alteration is connected to DNA repair efficiency and contributes to the risk of 

several diseases [59, 60.].  

In terms of XRCC1 Arg194Gln SNP results from a C-to-T substitution at codon 194 

(position 26,304), leading to an Arg-to-Trp amino acid change [27, 61]. In the wild-

type genotype, XRCC1 interacts with DNA ligase III, DNA polymerase β (polyβ), 

and poly (ADP-ribose) polymerase (PARP) to form repair complexes. However, this 

polymorphism alters XRCC1’s structure and function, compromising DNA repair 

efficiency. Located near phosphothreonine-198 and within the linker region between 

the NH2-terminal and BRCT1 domains (positions 315–403), it may disrupt XRCC1’s 

interaction with proliferating cell nuclear antigen (PCNA), further affecting genomic 

stability [62]. 

Regarding DPN severity, our study investigated the genotypic distribution of the 

aforementioned SNPs in relation to the TCNS and NDS systems or their association 

with DPN progression. We found that mild DPN complications correlated with wild-

type genotypes, whereas severe DPN was predominantly associated mutant genotypes 

of both SNPs. These results suggest that the XRCC1 SNPs, when combined with 
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DPN severity scores, could predict individuals at high risk of developing severe DPN. 

However, prior studies were in contrast with our outcomes [47, 63]. 

These findings prompted a comparison of TCNS and NDS efficacy in classifying 

DPN severity (mild, moderate, severe) using the XGBoost algorithm. TCNS 

demonstrated superior predictive performance. Its enhanced sensitivity facilitates 

early detection, while its specificity minimizes misclassification, underscoring its 

clinical utility for timely diagnosis and targeted treatment. These results align with 

prior studies [64, 65]. Conversely, Nogueira et al. [66] reported that NDS exhibited 

excellent sensitivity and specificity, correlating strongly with neuropathy severity. 

Furthermore, we conducted traditional logistic regression analysis to identify risk 

factors influencing DPN. Our findings indicated that age, BMI, FBG, LDL, TG, 

399G/A, and 399A/A genotypes, along with the 194C/T and 194T/T genotypes, were 

significantly correlated with an elevated risk of DPN. Consistent with our findings, 

numerous previous studies have demonstrated the relationship between age and the 

onset of DPN [67- 69]. Callaghan et al. [70] demonstrated that a higher BMI 

correlates with an elevated risk of DPN, as obesity is a recognized risk factor for 

complications associated with diabetes. Furthermore, the prevalence of neuropathy is 

significantly greater among obese individuals, including those without diabetes. 

Alshammari et al. [5] reported that participants with diabetic neuropathy exhibited 

elevated BMI, FBG levels, cholesterol, LDL, and TG compared to those without 

neuropathy. Recent studies have corroborated our findings [61, 71- 73]. Nonetheless, 

numerous studies have contradicted our results [74- 76]. 

Machine learning (ML) models were utilized to identify risk factors and assess their 

interactions collectively, yielding greater accuracy than logistic regression while 

maintaining all variable information and providing a comprehensive interpretation of 
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the most influential predictors of DPN risk. This aligns with Ravì et al. [77] who 

highlighted the growing use of ML in medicine for predicting disease progression and 

offering significant insights. Similarly, Kavakiotis et al. [78] emphasized the 

effectiveness of ML in diabetes prediction to mitigate disease progression and 

complications.  

Our analysis showed  that both RF and XGBoost attained high accuracy, reaching up 

to 98%, in the detection of complications. The SHAP method revealed that LDL, 

FBG, HDL, TG, BMI, and the XRCC1 399A/A genotype are the primary factors 

influencing complication risk. The findings are consistent with those of Shiren et al. 

[79] who established the efficacy of RF in predicting diabetic complications (AUC = 

82%) and highlighted the significance of monitoring key biomarkers. Similarly, Wu et 

al. [80] and Lian et al. [81] reported that XGBoost demonstrates strong predictive 

power in DPN, achieving accuracies of 85.4% and 74.6%, respectively. The well-

balanced cohort in our study, comprising 256 controls, 247 individuals with 

uncomplicated diabetes, and 229 with diabetic complications, likely enhanced the 

model's performance. Conversely, Shin et al. [82] examined DSPN prediction 

utilizing a limited and imbalanced dataset, specifically within the "probable" group 

(n=31), resulting in reduced machine learning accuracy (≤74%). This emphasizes the 

benefit of our study's comprehensive dataset in increasing predictive accuracy and 

improving the management of diabetic complications, highlighting the necessity of 

well-structured data to develop reliable models and draw significant conclusions. 

Conclusions  

The association between the examined SNPs and DPN risk suggests that these genetic 

variants may play a role in individual susceptibility to DPN. Identifying individuals 

with genetic predispositions, such as carriers of the XRCC1 Arg399Gln and 
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Arg194Trp polymorphic variants, and subjecting them to regular follow-ups may aid 

in disease prevention or facilitate early diagnosis. Moreover, comprehending the 

genetic underpinnings of DPN offers significant insights for prognosis and 

personalized medicine, enabling early interventions for individuals at high risk. 

Moreover, machine learning models are essential for evaluating the risk of DPN by 

synthesizing genetic and clinical data, enhancing predictive accuracy, and informing 

targeted prevention strategies. 

Recommendations 

Further studies are needed to elucidate the intricate relationship between genetic and 

environmental influences on disease severity. Furthermore, it is crucial to examine 

additional SNPs in the XRCC1 gene such as Arg280His (rs25489) SNP and their 

interaction with the aforementioned SNPs to identify more reliable predictive genetic 

factors. Additionally, the analysis of antioxidant enzyme activities such as catalase 

(CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX) and total 

antioxidant status (TAS) and their relationship with DPN should be incorporated into 

future research . 

Data availability 

The datasets produced and/or analyzed throughout this current investigation are not 

available to the public but can be taken from the corresponding author upon a 

reasonable request. 
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Table (1): Demographical and clinico-laboratory data of studied groups  

 T2DM Patients (N=340)   

 T2DM group complicated 

with DPN (N=256) 

Uncomplicated T2DM 

group (N=247 ) 

Control group 

(N=229) 

P-value 

Demographical Data 

Age
a
 50.00±0.48 

a
 44.3±0.44 

b
 42.3±0.43 

c
 < 0.05 

Gender
b 
M/F 120/136 110/137 126/103 P=0.056 

Smoking/ Y/N 46/210 38/209 53/176 P=0.08 

Clinico-laboratory Data 

FBG (mg/dl)
a
 233.60±1.84

a
 115.60±0.92

b
 82.3±0.68

c
 < 0.001 

HBAIC
a
 9.20±0.08 7.03±0.07 ---- < 0.001 

BMI (Kg/m
2
)

a
 29.9 ±0.25

a
 23.6 ±0.20

c
 24.6±0.22 

b
 < 0.05 

TG
a
 239.00±1.64

a
 190.00±1.33

b
 181.00±1.32

c
 < 0.05 

LDL cholesterol 
a
 176.7±0.96

a
 118.00±0.65

b
 91.7±0.52c < 0.05 

HDL cholesterol 
a
 37.40±0.23

b
 47.00±0.29

a
 47.6±0.31

a
 < 0.05 

Duration of disease 
a
 10.08±0.21 4.32±0.09  < 0.0001 

TCNS 10.28±0.22    

NDS 7.11± 0.15    
Abbreviations: DPN, Diabetic peripheral neuropathy; BMI, Body mass index; FBG, Fasting blood glucose; LDL, Low density 

lipoprotein; HDL, High density lipoprotein; TG, Triglyceride; HBAIC, Hemoglobin A1C; TCNS, Toronto Clinical Neuropathy 

Score; NDS, Neuropathy Disability Score. aData were reported as mean ±SD. b Data were reported as number and percentage(%). 
abcMeans carrying different superscripts within same row are statistically different. 
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Table (2): Genetic model analysis of the association between XRCC1 Arg399Gln SNP and the risk of DPN among studied groups (adjusted for age, sex and smoking) 

Model Genotype complicated Uncomplicated control 
OR (95% CI)1 

Complicated vs. 

control 

OR (95% CI)2 

UnComplicated 

vs. control 

OR (95% CI)3 

Complicated vs. 

uncomplicated 

P-value1 AIC1 P-

value2 

AIC2 P-

value3 

AIC3 

Codominant G/G 81 (31.6%) 107 (43.3) 113 (49.3%) 1.0 (ref.) 1.0 (ref.) 1.0 (ref.)  

<0.0001 
 

511.1 

 

0.24 

 

652.9 

 

0.00009 
 

614.9 
G/A 133 (52%) 121(49.0) 99 (43.2%) 2.26 (1.42- 3.62) 1.36 (0.92-1.99) 1.65 (1.08-2.51) 

A/A 42 (16.4%) 19 (7.7) 17 (7.4%) 8.04 (3.65 – 17.68) 1.47 (0.71-3.07) 4.10 (2.09-8.03) 

Dominant G/G 81 (31.6%) 107 (43.3) 113 (49.3%) 1.0 (ref.) 1.0 (ref.)   

<0.0001 

 

520.9 

 

0.09 
 

651 

 

0.001 

 

621.1 
G/A-A/A 175 (68.4%) 140 (56.7) 116 (50.7%) 2.79 (1.79-4.37) 1.37 (0.95-1.99) 1.94(1.29-2.90) 

Recessive G/G-G/A 214 (83.6%) 228 (92.3) 212 (92.6%) 1.0 (ref.) 1.0 (ref.) 1.0 (ref.)  

<0.0001 

 

521.3 

 

0.52 

 

653.3 

 

0.0003 

 

618.4 
A/A 42 (16.4%) 19 (7.7) 17 (7.4%) 4.95 (2.40- 10.19) 1.26 (0.62-2.55) 3.03(1.63-5.62) 

Overdominant G/G-A/A 123 (48%) 126 (51) 130 (56.8%) 1.0 (ref.) 1.0 (ref.) 1.0 (ref.)  

0.11 

 

539.6 

 

0.18 

 

652 

 

0.0004 

 

631.1 
G/A 133 (52%) 121 (49) 99 (43.2%) 1.41 (0.93- 2.14) 1.28 (0.89-1.86) 1.15(0.79-1.68) 

 

Alleles 

Allele G 295 (57.62) 335 (67.81) 325(70.96) 1.0 (ref.) 1.0 (ref.) 1.0 (ref.)       

Allele A 217 (42.30) 159 (32.19) 133(29.04) 2.59 (1.84 – 3.64)*** 1.18 (0.89-1.57)NS 1.89 (1.39-

2.57)*** 

<0.0001  0.27  0.00004  

AIC: Akaike Information Criterion; ref.: reference category; OR: odds ratio; CI: confidence interval; significant difference:*P < 0.05,***P< 0.001; NS: non-significant difference: P> 0.05; P-value1,2,and3 of ORs and AIC1,2, and3 

are for complicated vs. control, uncomplicated vs. control, and complicated vs uncomplicated, respectively. P-values were calculated by logistic analysis after adjusting for age, gender, smoking status. 
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Table (3): Genetic model analysis of the association between XRCC1 Arg194Trp SNP and the risk of DPN among studied groups (adjusted for age, sex and smoking) 

Model Genotype complicated Uncomplicated control OR (95% CI)1 

Complicated vs. 

control 

OR (95% CI)2 

UnComplicated 

vs. control 

OR (95% CI)3 

Complicated vs. 

uncomlicated 

P-

value1 

AIC1 P-

value2 

AIC2 P-

value3 

AIC3 

Codominant C/C 116 (45.31) 114 (46.15) 130 (56.77) 1.0 (ref.). 1.0 (ref.). 1.0 (ref.)  

0.003 

 

532.7 

 

0.057 

 

650 

 

0.07 

 

628.2 
C/T 122 (47.66) 117(47.37) 91 (39.74) 1.99 (1.28- 3.10) 1.54 (1.04-2.27) 1.63 (1.08-2.47) 

T/T 18 (7.03) 16 (6.48) 8 (3.49) 2.57 (1.03-6.46) 1.88(0.76-4.61) 1.27 (0.59-2.71) 

Dominant C/C 116 (45.30) 114 (46.2) 130 (56.8) 1.0 (ref.) 1.0 (ref.) 1.0 (ref.)  

0.0008 

 

531.0 

 

0.018 

 

648.2 

 

0.02 

 

626.5 
C/T-T/T 140 (54.70) 133 (53.8) 99 (43.2) 2.06 (1.34- 3.16) 1.57 (1.08-2.29) 1.57 (1.06-2.34) 

Recessive C/C-C/T 238 (93.00) 231 (93.5) 221 (96.5) 1.0 (ref.) 1.0 (ref.) 1.0 (ref.)  

0.16 

 

540.3 

 

0.308 

 

652.7 

 

0.98 

 

631.6 
T/T 18(7.00) 16 (6.5) 8 (3.50) 1.86 (0.76 - 4.54) 1.57 (0.65-3.80) 0.99 (0.48-2.05) 

Overdominant C/C-T/T 134(52.30) 130 (52.6) 138(60.30) 1.0 (ref.) 1.0 (ref.) 1.0 (ref.)  

0.007 

 

535.1 

 

0.05 

 

650 

 

0.02 

 

626.6 
C/T 122 (47.7) 117 (47.4) 91 (39.7) 1.79 (1.16-2.74) 1.46 (0.99-2.14) 1.57 (1.06-2.34) 

Alleles C 354 (69.14) 345(69.84) 351 (76.64) 1.0 (ref.) 1.0 (ref.) 1.0 (ref.)       

T 158 (30.86) 149 (30.16) 107 (23.36) 1.78 (1.25 – 2.54)*** 1.48 (1.09-2.02)** 1.33 (0.97-1.83)NS 0.001  0.01  0.07  

AIC: Akaike Information Criterion; ref.: reference category; OR: odds ratio; CI: confidence interval; significant difference:*P < 0.05,***P< 0.001; NS: non-significant difference: P> 0.05; P-value1,2,and3 of ORs and AIC1,2, 

and3 are for complicated vs. control, uncomplicated vs. control, and complicated vs uncomplicated, respectively. P-values were calculated by logistic analysis after adjusting for age, gender, smoking status. 
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Table (4): Impact of haplotypes of XRCC1 Arg399Gln (G/A) and XRCC1 Arg194Trp (C/T) on 

T2DM and DPN risk 

 frequency  OR 95% C.I. P-value 

 Control Vs. complicated 

G-C 0.5323   Reference haplotype  

A-C 0.1945  1.09 (0.99 - 1.19 ) 0.06 

A-T 0.1664  1.28 (0.91 - 1.12 ) 0.000001 

G-T 0.1068  1.002 (0.84 - 1.05 ) 0.97 

 Control Vs. uncomplicated 

G-C 0.5134   Reference haplotype 

A-C 0.2177  1.12 (1.05 - 1.26 ) 0.0027 

A-T 0.089  0.97 (0.84 - 1.12 ) 0.7052 

G-T 0.1799  1.23 (1.12 - 1.36 ) < 0.00001 

 Complicated Vs. uncomplicated 

G-C 0.4582   Reference haplotype 

A-C 0.2366  0.90 (0.83 - 0.98 ) 0.0389 

A-T 0.1372  1.34 (1.19 - 1.49 ) < 0.00001 

G-T 0.168  0.84 (0.76 - 0.91 ) 0.0001 

 

 

 

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



 

Table (5): Genotypic distribution of XRCC1 Arg399Gln and Arg194Trp SNPs based on TCNS and NDS and their 

association with severity of DPN 

SNPs TCNS NDS 

XRCC1 Arg3991Gln (G/A P-value XRCC1 Arg3991Gln (G/A P-value 

 Mild Moderate Severe   Mild Moderate Severe  

G/G 54 

(66.7%) 

22 (27.2%) 5 (6.2%)  

< 0.0001** 
G/G 54 (66.7%) 17 (21.0%) 10 (12.3%)  

< 0.0001** 

G/A 36 

(27.1%) 

50 (37.6%) 47 (35.3%) G/A 36 (27.1%) 36 (27.1%) 61 (45.9%) 

A/A 4 (9.5%) 14 (33.3%) 24 (57.1%) A/A 4 (9.5%) 4 (9.5%) 34 

(81.0%) 

G/A+A/A 40 

(22.90%) 

64 (36.57%) 71 (40.53%) 0.01* G/A+A/

A 

40(22.85%) 40 (22.85%) 95 

(54.29%) 

< 0.0001** 

XRCC1 Arg194Trp (C/T) P-value XRCC1 Arg194Trp (C/T) P-value 

 Mild Moderate Severe   Mild Moderate Severe  

C/C 88 

(75.9%) 

28 (24.1%) 0 (0.0%)  

< 0.00001 
C/C 88 (75.9%) 28 (24.1%) 0  

<0.00001**

** C/T 0 47 (38.5%) 75 (61.5%) C/T 0 20 (16.4%) 102 

(83.6%) 

T/T 6 

(33.3%) 

11 (61.10%) 1 (5.6%) T/T 6 (33.3%) 9 (50.0%) 3 (16.7%) 

C/T+T/T 6(4.3%) 58(41.43%) 76 (54.29%) < 0.00001 C/T+T/T 6 (4.3%) 29(20.71%) 105 

(75%) 

<0.0001*** 

TCNS: Mild (5-8), Moderate (9-11), Severe (≥12); NDS: Mild (3-5), Moderate 6-8), Severe (9-10) 

 

 

Table (6): Comparison between performance of TCNS and NDS in evaluating DPN based on XGBoost 

algorithm. 

 TCNS NDS 

 Mild Moderate Sever Mild Moderate Severe 

Overall Acuuracy 96% 90% 

Sensitivity 1.00 0.94 0.95 1.00 0.86 0.87 

Spescificty 0.97 0.97 1.00 0.97 0.92 0.96 

percision 0.93 0.94 1.00 0.93 0.80 0.95 

F1 score 0.96 0.94 0.97 0.97 0.83 0.91 

AUC 0.98 0.96 0.97 0.98 0.89 0.92 
AUC: Area under the curve. 
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Table (7): Logistic regression analysis on the association between risk of DPN, and potential risk 

factors and genetic polymorphisms  

Variables Odd ratio 95% CI P-value 

Age 1.19 1.15-1.23 < 0.000001 

sex Male Ref. 

Female 1.39 0.97 – 1.99 0.07
NS

 

Smoking Non smoker Ref. 

Smoker 0.73 0.47 – 1.13 0.15
NS

 

BMI 1.67 1.54 – 1.84 < 0.000001 

FBG  1.71 (1.67-1.76) <0.0001 

LDL  2.55 (2.42-2.71) < 0.0001 

HDL 0.3 0.22 – 0.38 < 0.0001 

TG 1.11 1.09-1.13 < 0.0001 

XRCC1 Arg3991Gln (G/A) 1.87 1.28-2.76 0.001 

AA 3.45 1.86-6.62 0.0001 

XRCC1 Arg194Trp (C/T) 1.50 1.04-2.18 0.03 

TT 2.52 1.09-6.35 0.03 
Abbreviations: DPN, Diabetic peripheral neuropathy; BMI, Body mass index; FBG, Fasting 

blood glucose; LDL, Low density lipoprotein; HDL, High density lipoprotein; TG, 

Triglyceride; NS, Non significant. P<0.05 is considered significant. P>0.05 is considered non- 

significant. 
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Table (8) Summary of previous findings investigating XRCC1 Arg399Gln and Arg194Trp SNPs in T2DM and its complications across different 

populations. 

Study (Year) Population SNPs Disease Genotypes Assocaition observed 

Kasznicki et al. [46] Polish Arg399Gln 

(G/A) SNP 

T2DM AA genotype No association with T2DM. 

Al-Musawi et al. [47] Iraq Arg399Gln 

(G/A) SNP 

T2DM AA genotype No association with T2DM. 

Yesil-Devecioglu et al. [26] Turkish Arg399Gln 

(G/A) SNP 

T2DM and DN AA genotype Significant association with with T2DM 

and diabetic nephropathy (DN). 

Narne et al. [49] South Indian Arg399Gln 

G/A) SNP) 

T2DM and DR AA genotype Significant association with diabetic 

retinopathy (DR). 

GÖKÇE et al. [83] Turkish Arg194Trp 

C/T) SNP) 

T2DM TT genotype No association with T2DM. 

Guo et al. [84] Asian Arg194Trp 

C/T) SNP) 

CAD TT genotype Significant association with CAD. 

T2DM : Type 2 diabetes mellitus, DN: Diabetic nephropathy, DR: Diabetic retinopathy. CAD: Coronary artery disease. No prior study has employed a 

machine learning approach to analyze the association between the investigated XRCC1 SNPs and DPN risk. In addition, a limited number of studies have 

addressed XRCC1 SNPs in DPN. Moreover, to date, no study conducted in Egypt study also has investigated this association. 
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Figure (1): Agarose gel electrophoresis presenting the PCR amplification outcomes 

of Arg399Gln (rs25487) SNP in XRCC1 gene. M: DNA marker (100 bp); Lines 2,4,7: 

GG gentype (375 bp and 240 bp); lines 3,5: PCR products ans AA genotypes (615bp); 

lines 6,8: GA genotypes (615bp, 375 bp, abd 240bp). 
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Figure (2): Agarose gel electrophoresis presenting the PCR amplification outcomes 

of Arg194Trp (rs1799782) SNP in XRCC1 gene. M: DNA marker (100 bp); Lines 

2,3,6,7,8,10: PCR products and CC gentypes (485 bp); line 4: TT genotypes (396bp 

and 89bp); lines 5,9: CT genotypes (485bp, 396 bp, abd 89bp). The small fragment of 

89 bp was invisible in the gel 

 

Figure (3): Variable importance plot generated by Bruta random forest analysis. 

ShadowMin, ShadowMean, and ShadowMax are non-sense variables, generated by 

randomly shuffling the original values of the predictors. The predictors above the 

shadow variables, marked by green boxplots, are important. 

 

 

 

 

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



 

 
 

 
Figure (4): Variable importance plot for features used to predict complication based 

on TCNS. The predictors above the shadow variables, marked by green boxplots, are 

important. 

 

 

 

 

 

 

 

  

Figure (5): Variable importance of XGboost, with clustering features according to 

their closeness into one cluster.   
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Figure (6): SHAP values for the XGBoost model. Each point represents a sample. 

The higher the SHAP value the higher the risk of DPN, and vice versa. 

 

Figure (7): SHAP values for the XGBoost model of TCNS 
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