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Hybrid beamforming is a promising approach to alleviate hardware complexity in multi-user multiple-
input single-output (MU-MISO) systems while maintaining high data rate performance. Unfortunately, 
hybrid beamforming architecture design is a challenging non-convex optimization problem due to 
stringent hardware constraints. However, traditional hybrid beamforming design methods, such 
as alternating minimization (AltMin) algorithms, rely on iterative optimization procedures that 
introduce heavy computational overhead and make them impractical for real-time applications. In 
this paper, we propose a deep learning (DL)-based hybrid beamforming method (DL-HBF) that aims 
to reduce computational latency while achieving acceptable sum-rate performance. Furthermore, 
we evaluate these methods based on a realistic channel model to ensure practical significance and 
their performance on imperfect channel state information (CSI). Additionally, we propose dataset 
generation procedures, which reduce the dataset creation and training overhead compared to existing 
DL-based hybrid beamforming methods that help in rapid deployment and scalability. Simulation 
results show that the proposed DL-HBF achieves an acceptable sum rate compared to traditional 
methods while reducing the computational complexity and maintaining robustness against channel 
estimation errors, which provides a practical solution for real-time hybrid beamforming for next-
generation wireless systems.
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Vehicular communications aim to improve safety and traffic efficiency, as well as real-time data collection and 
sharing, which demands high data rates and low latency. These demands motivate the use of millimeter waves 
(mmWave) for the next generations of wireless systems1. The mmWave communication technology represents 
a new approach to solve spectrum congestion problems because it possesses a wide frequency range between 
30 and 300 GHz. Despite this potential, its signal suffers from high path loss and atmospheric absorption2. 
However, the short wavelength of mmWave makes it suitable for deploying a large number of antennas in a 
small dimension and opens the possibility of beamforming techniques to mitigate path loss and increase spectral 
efficiency3.

In practical mmWave systems, the base station (BS) is equipped with a large antenna array, while user 
terminals often employ a single antenna due to hardware complexity and power consumption. Therefore, it 
leads naturally to a multi-user multiple-input single-output (MU-MISO) architecture. Compared to single-user 
systems, MU-MISO mmWave systems have additional challenges related to inter-user interference management, 
simultaneously serving multiple single-antenna users via spatial beamforming, and beamforming design under 
stringent hardware constraints4. Consequently, the development of efficient beamforming strategies is essential 
for MU-MISO to achieve a high sum rate while maintaining low computational and hardware complexity.

The concept of analog beamforming was introduced in5,6, where analog phase shifters were used to set 
signal phases between individual antenna elements. However, this system architecture, which has a single 
RF chain, lacks the capability to support spatial multiplexing and is unsuitable for transmitting parallel data 
streams or simultaneously serving multiple users. Nonetheless, it has less hardware complexity and less power 
consumption. On the other hand, digital beamforming provides full control over magnitude and phase values 
within the baseband domain. Digital beamforming requires individual RF chains and both digital-to-analog 
(DACs) and analog-to-digital (ADCs) for every antenna element. Despite its flexibility and providing parallel 
data streams for multiple users, the use of separate RF chains, DACs, and ADCs for each antenna element leads 
to substantial hardware costs and high power consumption, making the approach unsuitable for large-scale 
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antenna systems7. Therefore, a demand for hybrid beamforming has appeared, which represents an energy-
efficient and cost-effective structure that integrates the advantages of analog and digital beamforming methods8. 
This balanced architecture provides sufficient flexibility for advanced multiplexing and multi-user strategies, 
while reducing hardware complexity and power consumption9.

In addition, it provides a higher sum rate than analog beamforming and approaches the performance of 
digital beamforming10. The design of hybrid beamforming requires decomposing the fully digital precoder 
into analog and digital precoders under strict hardware constraints such as unit-modulus phase shifters and 
coupling between analog and digital precoders in the signal-to-interference-plus-noise ratio (SINR) expression, 
resulting in a bilinear structure that leads to a non-convex optimization problem. Existing approaches found 
optimal hybrid beamforming solutions based on iterative algorithms, which solve the non-convex problem, such 
as the manifold optimization alternating minimization (MO-AltMin) algorithm, the semidefinite relaxation 
alternating minimization (SDR-AltMin) algorithm, and phase extraction alternating minimization (PE-
AltMin)11, which first two use a MATLAB optimization software package such as Manopt12 and CVX13. For a 
fully connected structure, where all RF chains are connected to all antennas via phase shifters, the MO-AltMin 
algorithm alternately updates the digital beamforming using least squares and refines the analog beamforming 
through conjugate gradient descent on the manifold and repeats until convergence. This method achieves a near-
optimal spectral efficiency, despite the high cost of complexity. On the other hand, the PE-AltMin algorithm 
reduced this complexity by enforcing the orthogonality constraint and updating the analog beamforming from 
simple phase extraction to an equivalent digital beamforming, which also significantly improves performance. 
For the partially connected structure, in which each RF chain is connected to a subset of antennas, the SDR-
AltMin algorithm is developed, which exploits the block-diagonal structure of the analog beamforming and 
provides closed-form phase updates and optimal digital beamforming via convex optimization, and makes a 
significant improvement over only analog beamforming. However, these existing iterative approaches for hybrid 
beamforming face limitations of prohibitive computational complexity and excessive latency. Therefore, they 
cannot satisfy the demanding real-time needs of vehicular communications because they fail to address the 
requirements of latency-sensitive mission-critical communications14.

Deep learning (DL) has emerged as a promising paradigm for communication system applications because it 
differs from other iterative methods in behavioral applications15. In addition, it has a significant role in dealing 
with difficult problems in the physical layer16, including channel estimation17, global navigation satellite system 
(GNSS) jamming detection18,19, and beamforming20–22. However, solving complicated non-convex optimization 
problems that usually affect beamforming design is not the only achievement. On the other hand, DL models 
require a lot of offline training, and after training, they can make low-latency decisions during real-time 
operation owing to their powerful pattern recognition and regression capabilities. The main advantage of DL 
in beamforming is supposed to be apparent in 5G/6G cellular networks23, where instead of just overcoming 
the severe computational bottleneck limitations found in traditional algorithms, it also achieves real-time 
requirements in applications such as autonomous vehicular communications.

The application of DL in hybrid beamforming was introduced in20, which uses a convolutional neural 
network (CNN)-based beamforming design to map imperfect channel state information (CSI) matrices to 
the analog beamforming matrix trained by exhaustive labeled data from perfect CSI to obtain high spectral 
efficiency while reducing computational complexity for a single user. However, it cannot support multi-user 
beamforming where inter-user interference plays a major role and there is no enforcement to make sure of the 
unit-modulus constraint, which hinders the implementation of the analog beamforming matrix. Additionally,21 
proposed a DL method that jointly selects antennas and hybrid beamforming for a single user by two CNN 
models, in which the first model selects the subarrays of antennas that maximize the spectral efficiency, and the 
second model predicts the analog and digital beamforming matrices. It was trained offline with exhaustive label 
data to be robust against imperfect CSI. Moreover, in22, a CNN-MIMO-based hybrid beamforming method 
is used in a multi-user mmWave massive MIMO system, where the model learns a mapping between the 
imperfect CSI and analog beamforming matrix in the transmitter and the receiver with perfect CSI label data. 
All of the aforementioned algorithms require a long training time, which complicates retraining when system 
configuration changes. Moreover, they are data-hungry in the training phase22, which demands a large memory 
allocation for storage. Additionally, they didn’t use realistic channel models, which may produce suboptimal 
beamforming matrices upon application in a practical scenario.

In this paper, the problem of designing hybrid beamforming in MU-MISO mmWave systems is addressed. 
Beyond this, scalability and durability are critical system-level considerations for large-scale or resource-
constrained wireless deployments. Recent research has shown that abstraction-based modeling, such as 
geographical abstraction in mega-constellation networks24 and connectivity analysis in wireless-powered sensor 
networks25, can greatly improve scalability and robustness in large-scale and resource-constrained wireless 
networks at the system level. These perspectives strengthen the proposed DL-HBF framework’s applicability 
for large or resource-constrained deployments, where system resilience and observation-space abstraction are 
critical. The key contributions are:

•	 Structured procedures are developed to generate the supervised learning dataset. The input data consists of 
the angle, real and imaginary components of the channel matrices, while the output labels correspond to the 
indices of the optimal analog beamforming matrices. This dataset is generated based on DeepMIMO with a 
detailed configuration of environmental parameters, BS and user antenna arrays, and the specification of the 
number of users in MU-MISO mmWave systems.

•	 A DL-based hybrid beamforming method (DL-HBF) is proposed to design hybrid beamforming matrices in 
MU-MISO mmWave systems. It employs a CNN model to classify the optimal analog beamforming matrix 
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directly from the input channel matrices. Subsequently, the digital beamforming matrix is calculated, ena-
bling a complete hybrid beamforming design.

•	 A Comprehensive performance evaluation and robustness analysis of the proposed DL-HBF method and the 
traditional hybrid beamforming algorithms, such as MO-AltMin, PE-AltMin, SDR-AltMin, and orthogonal 
matching pursuit (OMP). This analysis employs a realistic ray-tracing-based mmWave channel model captur-
ing practical propagation characteristics, demonstrating an acceptable sum rate while significantly reducing 
execution time and maintaining robustness under imperfect CSI—highlighting its real-world applicability 
and suitability for real-time deployments in future wireless systems.

Notation: Throughout this paper: A is a matrix, a is a vector, a is a scalar, and A is a tensor. |A| is the determinant 
of A, where AT, AH, A∗ are its transpose, hermitian (conjugate transpose), and conjugate, respectively. IK  is 
the identity matrix of dimension K and CN (m, R) is a complex Gaussian random vector with mean m and 
covariance R. For a matrix A, [A]i,j  denotes the (i, j)th entry. Furthermore, [A]i,j,k,l refers to the (i, j, k, l)-th 
element of a tensor A. E{·} denotes the statistical expectation and ∥ · ∥F is the Frobenius norm. The notation 
(·)† denotes the Moore-Penrose pseudo-inverse, while ∠{·} denotes the angle of a complex scalar/vector/
matrix. The operator ℜ{·} denotes the real part, while ℑ{·} denotes the imaginary part of a complex quantity. 
The symbol ⊙ is the Hadamard product, and ∗ is the convolution operation.

System and channel models
A narrowband MU-MISO mmWave downlink system with a fully connected hybrid beamforming architecture 
is considered, as shown in Fig. 1. The BS is equipped with Nt antennas and NRF RF chains. Without loss of 
generality, we assume each user needs only a single stream. Because the total number of streams, Ns, equals 
the number of users, K, thus K ≤ NRF ≤ Nt, and this affects the maximum number of users, which are 
limited by the number of RF chains. In the hybrid downlink beamforming architecture, the BS processes the 
data streams in baseband using a digital precoder, VBB = [vBB1 , ..., vBBK ] ∈ CNRF×K , such that vBBk  is 
associated as a digital precoder for the data stream, which is intended for each user to transmit the symbol vector 
s = [s1, ..., sK ]H ∈ CK . That is satisfying E{ssH} = P

K
IK , where P is the total average transmitted power, 

under the assumption of equal power allocation across different users’ streams. Subsequently, the analog precoder 
VRF ∈ CNt×NRF , is implemented via analog phase shifters where |VRF(i, j)|2 = 1, ∀i, j, which governs the 
direction of transmission across the Nt antenna elements. The transmitted signal x can be constructed by:

	
x = VRFVBBs =

K∑
k=1

VRFvBBk sk,� (1)

where x ∈ CNt  and sk  is the transmitted symbol for the kth user. Consequently, the received signal of the kth 
user is yk :

	

yk = hH
k VRFvBBk sk︸ ︷︷ ︸
desired signals

+ hH
k

∑
ℓ̸=k

VRFvBBℓ sℓ

︸ ︷︷ ︸
interference signals

+ nk︸︷︷︸
noise

,

� (2)

where hk ∈ CNt  is the channel vector between BS and the kth user and nk  is a complex number that denotes 
the complex additive white Gaussian noise (AWGN) with nk ∼ CN

(
0, σ2)

.

Fig. 1.  A block diagram of MU-MISO system with hybrid beamforming architecture at BS and a single 
antenna K users.
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Here, a flat-fading, narrow-band geometric mmWave channel model is considered with limited scattering. 
Therefore, we assume that the channel vector hk  has L scattering paths. Taking into account that we use a 
uniform linear array (ULA), therefore the channel vector can be expressed as8:

	
hk =

√
Nt

Lk

Lk∑
l=1

αk,lat(θk,l),� (3)

where Lk  is the number of scattering paths for the kth user, αk,l ∼ CN (0, 1) is the complex gain for the lth path 
for the kth user, θk,l is the angle of departure (AoD) of the lth path for the kth user and at(θk,l) ∈ CNt  is the 
antenna array response vector of the transmitter at the BS, which is given by:

	

at(θk,l) = 1√
Nt




1
ej 2π

λ
d sin(θk,l)

...
ej 2π

λ
d(Nt−1) sin(θk,l)


 ,� (4)

where λ is the wavelength of the signal and d is the antenna spacing.

Problem formulation
For vehicular communications to serve high-throughput and latency-sensitive applications, real-time data 
interchange between automobiles and BS must be supported. As a result, the hybrid beamforming architecture 
of the MU-MISO system is required to optimize the sum rate, which can be defined as9:

	

max
VRF, VBB

Rsum =
K∑

k=1

log2 (1 + SINRk) ,

subject to ∥VRFVBB∥2
F = K,

|[VRF]i,j | = 1, ∀i, j

� (5)

where the SINR for the kth user is:

	

SINRk =
P
K

|hH
k VRFvBBk |2

P
K

∑
j ̸=k

|hH
k VRFvBBj |2 + σ2

.� (6)

In this manuscript, the main objective is to find the optimal matrix VRF and VBB, which maximizes the sum 
rate. This problem poses some challenges: firstly, it is a nonconvex problem because of the coupled variables VRF 
and VBB, which result in bilinear and unit modulus constraints. Secondly, interference-dominant environments 
for low SINR, and finally, dynamic conditions for users that need real-time adaptability.

The optimal analog and digital beamforming matrices—in terms of maximizing the sum rate – can be 
obtained using a variety of conventional methods, including manifold optimization, successive convex 
approximation, alternating optimization, and semidefinite relaxation11. Unfortunately, most of these methods 
are computationally complex and are unable to adapt in real time to changing conditions11. DL, therefore, has a 
promising potential for solving this issue.

Dataset generation
Obtaining the dataset is the first step in training DNNs. This dataset can be gathered for real deployments by 
the BS using real-time channel readings26. But in this instance, the system model is used to simulate the training 
dataset as mentioned in the previous section.

Channel generation
First, we use the DeepMIMO framework27 to generate a suitable dataset for the MU-MISO mmWave system. 
This dataset is parameterized, which can be used in various configurations of wireless systems with the ability to 
adjust the channel parameters and represents environmental channels. It is generated with the aid of the Wireless 
InSite ray-tracing simulator and validated by channel measurements28. By specifying a particular simulation 
scenario, the realistic channel model is produced using the MU-MIMO system model. The active BS, the group 
of chosen users, the antenna arrangement at the BS and users, and the pertinent bandwidth are all important 
parameters of this simulation. Thus, each system and environmental characteristics are required to generate the 
appropriate channel impulse response and accurately mimic the required propagation environment.

Input data
The input channel matrix H for the K users is constructed as follows:

	 H = [h1 h2 · · · hK ]H ∈ CK×Nt .� (7)

where hk  is the channel impulse response vector of the kth user.
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Three matrices are then obtained from H forming XA, XR, XI . The first matrix is [XA]i,j = ∠[H]i,j , which 
is the angle of the channel matrix elements. The second and third matrices are the real and imaginary parts 
of H, i.e., [XR]i,j = ℜ{[H]i,j} and [XI ]i,j = ℑ{[H]i,j}. This representation enables the CNN model to 
accurately capture the spatial structure of the complex-valued channel impulse response. Therefore, the model 
gains direct access to the linear components of the channel by providing both the real and imaginary parts. In 
addition, the inclusion of phase information, formulated via the nonlinear arctangent relationship of the real 
and imaginary components, enhances the model’s ability to capture the inherent nonlinearity of the channel 
structure29. Furthermore, through simulation results, which will be shown shortly in the result section , we 
noticed that this representation demonstrates a notable improvement in the model’s accuracy.

Output data
According to Algorithm  1, to generate the training labels required for the proposed DL-HBF method, an 
offline exhaustive search explored all feasible analog beamforming matrices in a predefined codebook 
V = {V(1)

RF, V(2)
RF, . . . , V(Ncb)

RF } where Ncb is the number of codewords that maximize the sum rate of our 
system model. The analog beamforming codebook V  is constructed based on the discrete Fourier transform 
(DFT) matrix U ∈ CNt×Nt 30, which is defined as:

	
[U]s,c = 1√

Nt

e−j2π(s−1)(c−1)/Nt , 1 ≤ s, c ≤ Nt,� (8)

where each column vector v of U is orthogonal and represents beams for analog beamforming matrix 
VRF. The codebook is generated by selecting unique combinations of NRF columns from U, yielding the analog 
beamforming matrix:

	
V(b)

RF =
[
v(b)

1 , . . . , v(b)
NRF

]
, b = 1, . . . , Ncb.� (9)

Then it is normalized:

	
V(b)

RF =
V(b)

RF

∥V(b)
RF∥F

.� (10)

Given a channel matrix H, we select the analog beamforming matrix, VRF, from the codebook that maximizes 
the sum rate and compute the optimal digital precoder VBB. Assuming Heff = HVRF is the effective channel 
matrix and using minimum mean square error (MMSE)31:

	
VBB = (HH

effHeff + 1
SNR

IK)−1Heff,� (11)

where SNR is the signal-to-noise ratio. By normalizing vBBk , such that vBBk = vBBk
∥VRFvBBk

∥F
. To sum up, 

the output label data is calculated by specifying the index of the optimal analog beamforming matrix in the 
codebook, which leads to maximum sum rate due to Algorithm 1, and then digital beamforming is calculated 
by (11). Training and testing data are constructed from input data and output data mentioned previously to 
combine them as follows:

	 DNi =
((

X (1), z(1)) , . . . ,
(
X (Ni), z(Ni)

))
,� (12)

and

	 DM =
((

X (1), z(1)) , . . . ,
(
X (M), z(M)))

,� (13)

where X (Ni) ∈ RK×Nt×3 is the input data for each Ni sample, z(Ni) is the index of the optimal analog 
beamforming matrix VRF class for Ni sample, DNi  is the training dataset, Ni is the number of samples in the 
dataset which is divided into training and validation, DM is the testing dataset, and M is number of samples in 
the test dataset.

Based on the procedures illustrated in Fig. 2, the dataset can be generated as follows. Firstly, specifying the 
raytracing scenario that shows the BS’s location, the users’ positions geographically distributed in a certain 
outdoor environment, BS and users are selected, design the BS and users’ antenna configurations (how many 
antennas, and antenna spacing and rotation) and system bandwidth then the DeepMIMO generator is used 
to generate channel parameters (angles of arrival/departure, path gains, · · ·  etc.) between the BS and users. 
Secondly, we specify how many users are assumed in our case of the MU-MISO system to group the new 
channel matrix as in (7). Thirdly, the output will have two paths, first path is to create the input data with 
∠[H], ℜ{[H}, ℑ{[H} and the second path will be input to algorithm 1 to select the optimal analog beam-
forming matrix (codeword) that maximizes the sum rate of the MU-MISO system according to Algorithm 1. 
Finally, the input and output data will create the dataset needed for training the proposed DL-HBF method. 
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Algorithm 1.  Hybrid Precoding for MU-MISO

The proposed DL-HBF method
To address the limitations mentioned in the proplem formulation section, we propose a DL-HBF method to 
obtain the optimal analog and digital beamforming matrices that maximize the sum rate based on DL. The 
objective of the CNN model shown in Fig. 3 is to classify the input data X  into the index of the optimal analog 
beamforming matrix VRF selected from the codebook V . This approach will be illustrated in the upcoming 
subsections.

Fig. 2.  A block diagram of the procedures of dataset generation.
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Input representation and normalization
The input data X (Ni), which has encapsulated features and characteristics of the channel between the BS and 
users is divided into ∠[H], ℜ{H}, ℑ{H} angle, real part and imaginary part of the channel matrix, respectively. 
To enhance numerical stability and speed up convergence, the Z-score normalization method will be used to 
normalize the input features along the sample axis, which enforces a zero mean and a variance of unity. Input 
elements [X (Ni)]i,j,c are normalized by Z-score: 

	

[
X (Ni)

]norm

i,j,c
=

[
X (Ni)

]
i,j,c

− µi,j,c

σi,j,c + ϵ
, � (14a)

	
µi,j,c = 1

Ni

Ni∑
n=1

[
X (n)]

i,j,c
� (14b)

	

σi,j,c =

√√√√ 1
Ni

Ni∑
n=1

(
[X (n)]i,j,c − µi,j,c

)2 � (14c)

 where µi,j,c is the mean of the input data, σi,j,c is the standard deviation of the input data across the sample 
dimension Ni for each element (i, j, c) and ϵ is a small constant to avoid division by zero.

Model architecture
A convolutional neural network is designed in order to deal effectively with the spatial and temporal characteristics 
and features of the CSI. As shown in Fig. 3, the designed architecture contains three consecutive convolutional 
blocks, which perform hierarchical feature extraction and then connect to fully connected layers that reduce 
dimensionality before ending with a Softmax activation function (output layer) for multi-class classification.

•	 Convolutional layer The hierarchical feature extraction ability of CNNs learn very particular kinds of local 
spatial patterns and combines them to form increasingly abstract features that will help optimize beamform-
ing matrices. 

	

[
Z(k)]

i,j,n
=

Din∑
c=1

R∑
u=1

R∑
v=1

[
A(k−1)]

i+u−1,j+v−1,c
·
[
W(k)]

u,v,c,n
+ b(k)

n , � (15)

 where Z(k) ∈ RK×Nt×Dout  is the output of the convolutional layer, Dout is the output depth, 
W(k) ∈ RR×R×Din×Dout  is the filter weights of kth layer, each filter has a spatial dimention of R × R which 
is a learnable weight matrix that slides over the input data and performs the convolutional operation to extract 
features and spatial pattern, Din is the input depth, A(k−1) ∈ RK×Nt×Din  is the output of previous activation 
layer, A(0) = X norm, besides, it is the input to the kth layer and b(k)

n ∈ RDout  is the bias term of kth layer. There 
are three convolutional layers with increasingly larger feature maps: W(1) has 32 filters with size 3×3, W(2) has 
64 filters of size 3×3, and W(3) has 128 filters of size 3×3. The three layers have the same filter size but double 
the channel depth at each stage to enable hierarchical feature learning as in32.

•	 Batch normalization layer and activation function It normalizes the activations of a layer in a mini-batch, 
stabilizes, accelerates the training process, and reduces internal covariate shift by allowing each layer to learn 
from inputs of a fixed distribution33. 

Fig. 3.  A block diagram of the proposed DL model. The model depends on the input of (Angle, Real, Imag) 
channel tensor X  to predict the class of optimal analog beamforming matrix.
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[
Z(k)

B

]norm

i,j,n
= γ(k)

n


 [Z(k)

B ]i,j,n − µ
(k)
n√

(σ2)(k)
n + ϵ


 + β(k)

n ,� (16)

 where [Z(k)
B ]norm is the normalized output of the kth batch normalization layer for mini-batch size per depth n, 

Z(k−1)
B  is the input to the batch normalization layer for mini-batch size of depth n, µ(k)

n , (σ2)(k)
n  are the mean and 

variance of the kth batch normalization layer, which is computed per depth n over mini-batch size, respectively, 
and γ(k)

n , β(k)
n  are learnable scale and shift parameters for depth n in the kth batch normalization layer. Rectified 

linear unit (ReLU) activation is used as an activation function, which adds non-linearity to the model so that it 
has the capability to learn complex mappings between input and output, and is less computationally expensive 
than tanh and sigmoid functions. 

	

[
A(k)

B

]
i,j,n

= max
(

0,
[
Z(k)

B

]norm

i,j,n

)
,� (17)

 where [Z(k−1)
B ]norm is the ReLU activation input at the kth layer and A(k)

B  is the ReLU activation output in the 
kth layer.

•	 Fully connected layer Upon feature extraction via convolutional layers, fully connected layers are then used 
for projecting the learned features to the output, and they help integrate information from different parts of 
the input and then make the final choice. 

	 u(k) = F(k)o(k-1) + d(k),� (18)

 where u(k) ∈ RQ is the output of the kth fully connected layer, o(k−1) ∈ RG is the input for the fully connected 
layer which is flattened and G is total number of elements after flattening and dropout, d(k) ∈ RQ is the bias 
term of kth fully connected layer and F(k) ∈ RQ×G is the associated weights of the kth fully connected layer.

•	 Dropout layer To minimize overfitting, dropout regularization is applied during the training process when a 
fraction p of the neuronal units is randomly shut down with probability p at each training iteration, forcing 
the network to learn robust features. The model uses a dropout rate of p = 0.334. 

	 u(k)
dropout = m(k) ⊙ u(k). mi ∼ Bernoulli(1 − p)� (19)

•	 Softmax activation function (Output Layer) It’s the final step for multi-class classification, and Softmax 
converts the raw output scores (logits) into probabilities, which are defined as 

	
P (ui) = eui

∑Ncb

j=1 euj
, i = 1, . . . , Ncb� (20)

 where ui is the raw score for class i, Ncb is the number of classes, which equals 64 in our case.
Subsequently, the optimal analog beamforming index can be obtained by selecting the index corresponding to 
the highest predicted probability calculated by the Softmax activation function, which is given by:

	
û = arg max

i
P (ui) i = 1, . . . , Ncb,� (21)

where û denotes the index of the predicted codeword V̂RF.

Training and loss function
Cross-entropy loss L, which has a probabilistic foundation and provides smooth gradients, making it suitable for 
multi-class classification tasks, is used to train the classification model. The objective is to minimize this loss by 
adjusting the weights of the network during the training phase as follows35:

	
L = −

Ncb∑
i=1

ūi log P (ui),� (22)

where ūi ∈ {0, 1} is the one-hot encoded ground-truth label for class i and P (ui) is the predicted probability 
for class i.

The adaptive moment estimation (Adam) optimizer is used to optimize the model parameters because of its 
efficient handling of sparse gradients, adaptability to different learning rates, and better convergence rate.

	
θt+1 = θt − η

m̂t√
v̂t + ϵ

,� (23)
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where θt denotes an individual model parameter (weight or bias) in the time step t, η is the learning rate, m̂t is 
the bias-corrected first moment estimate and v̂t is the bias-corrected second moment estimate.

The CNN model has two stages as shown in Fig. 4. The first stage (training stage), where input channel tensor 
including ∠[H], ℜ{[H}, ℑ{[H} and optimal analog beamforming VRF codewords are used to train the model. 
After training the CNN model, the second stage will appear (the classification or online stage), which will classify 
the optimal analog beamforming matrix VRF then the digital beamforming matrix VBB will be calculated as 
mentioned before in the output data subsection.

Results and discussion
In this section, the performance of the proposed DL-HBF method is evaluated and compared with other 
benchmark methods in the MU-MISO system, including fully digital MMSE, MO-AltMin, SDR-AltMin, and 
PE-AltMin algorithms. Here, an MU-MISO downlink transmission system is considered with a BS that has a fully 
connected hybrid beamforming architecture with transmitting antennas Nt = 8, RF chains NRF = 4, Ns = 4, 
and every user has a single stream of data. The BS serves K = 4 users with a single antenna. We implement the 
proposed DL-HBF algorithms using MATLAB R2024a on a computer with an E5-1650 V3 CPU, 32 GB RAM, 
and an Nvidia Quadro K2200 4 GB GPU.

Fig. 5.  The top view of environment setup in which BS serves users located in the user grid 1, highlighting 
their locations and regions for training and testing datasets.

 

Fig. 4.  The training and prediction phases of the proposed DL-HBF model.
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Environment setup
As shown in Fig. 5, an mmWave system is adopted, where the BS simultaneously serves multiple users over 60 
GHz. A DeepMIMO scenario (O1_60), which shows the environment geometry, is used where:

•	 Site plan: The grid for users is in a 300 m long and 40 m wide street, the heights of all buildings are indicated, 
the buildings along the street have bases with 30 m x 60 m dimensions and two other far buildings with bases 
60 m x 60 m dimensions, and a 60 GHz 3-layer dielectric material for the buildings, as shown on Fig. 5. A 60 
GHz single-layer dielectric for the ground proves the importance of ray-tracing parameters such as reflection 
and penetration coefficients that accurately describe the model of the mmWave system. Each channel can 
undergo a maximum of 4 reflections before reaching the receiver.

•	 BS: BS 1 is 6 m in height, it has a ULA with 8 antennas where each antenna is an isotropic antenna. They use 
30 dBm transmitter power, half-wavelength antenna spacing, and the bandwidth is 50 MHz.

•	 Users: The user has a single isotropic antenna at a height of 2 m. Users are uniformly distributed in the user 
grid (UG1) in the main street with a length of 550 m and a width of 35 m, has 2751 rows, and each row has 
181 users and 20 cm spacing between adjacent users.

Model evaluation and tuning
Here, we evaluate the CNN model by calculating the accuracy, precision, recall, and F1-score, respectively:

•	 Accuracy: which directly indicates how the model predicts the right index of classes. 

	
Accuracy =

(Number of Correct Predictions
Total Number of Predictions

)
× 100 � (24)

•	 Precision: which provides the percentage of correct positive predictions among all positive predictions. 

	
Precisioni = T Pi

T Pi + F Pi
� (25)

•	 Recall (sensitivity): which provides the percentage of correct positive predictions among all actual positives. 

	
Recalli = T Pi

T Pi + F Ni
� (26)

•	 F1-score: which combines precision and recall in one metric and avoids the model when it is very selective 
(high precision with low recall) or catches many positives but with wrong ones (high recall with low preci-
sion). 

	
F1-scorei = 2 × Precisioni × Recalli

Precisioni + Recalli
� (27)

where i denotes the class index, TP is true positive, FP is false positive and FN is false negative. After the parameters 
are selected as input to the DeepMIMO generator as mentioned before, an output channel is generated for every 
user, then a new channel matrix is created by combining 4 users’ channels and Algorithm 1 is used to generate 
the dataset as shown in Fig. 2. Users from “active_user_first” = 1 to “active_user_last” = 560 were used for the 
first dataset with 10000 samples. The dataset is split into 80% for training and 20% for validation. The second 
dataset, which is dedicated to testing, uses users from “active_user_first” = 561 to “active_user_last” = 610 and 
takes 2000 samples.

Parameter Set value

Mini-batch size 128

Initial learning rate 0.0001

Number of epochs 50

Optimizer Adam

Dropout rate 0.3

Filter size 3 × 3
Zero padding 1

Number of convolutional layers 3

Loss function Cross-Entropy

Batch normalization momentum 0.99

Batch normalization ϵ 10−3

Table 1.  Proposed DL_HBF hyper-parameters.
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As shown in Table 1, the hyperparameters of our CNN model used in the proposed DL-HBF method are 
listed to obtain the optimal analog beamforming class.

Figure 6 illustrates the learning curves, which demonstrate the critical insights of the stability and convergence 
behavior of the proposed DL-HBF model. As observed from Fig. 6, the training loss decreases steadily, which 
indicates that the model is learning from the training data. Moreover, the validation loss also decreases and 
closely follows the training loss, which indicates the model is generalizing well to unseen channel realizations 
and not significantly overfitting. Consequently, both curves appear to converge to a low stable value, which is a 
strong indicator of success and a stable training process.

As shown in Table 2, the proposed DL-HBF model achieves a classification accuracy of 93.2% in validation 
and 91.6% in testing, demonstrating strong learning and generalization capability. Additionally, it has high 
precision, which indicates that the model reliably predicts the correct analog beamforming class and effectively 
minimizes false selections, which is essential to avoid power leakage toward unintended directions. Despite the 
low recall values, this reflects the model’s conservative decision behavior, favoring precision to maintain stable 
performance. On the other hand, the F1-score confirms the trade-off between precision and recall.

These metrics, while standard in classification tasks, are also indirectly related to hybrid beamforming 
performance. Specifically, accurate classification leads to the selection of analog beamforming matrices whose 
corresponding digital beamforming matrices maximize the achievable sum-rate.

As shown in Fig. 7, which presents a comprehensive evaluation of how dropout rate and learning rate 
influence the accuracy of the proposed DL-HBF model. For the learning rate, the highest accuracy is obtained 

Fig. 7.  The model’s accuracy of different learning rates and dropout rates.

 

Metric Validation dataset Testing dataset

Accuracy (%) 93.2 91.6

Precision (%) 91.0 90.0

Recall (%) 79.0 71.0

F1 Score (%) 84.0 79.0

Table 2.  Performance metrics.

 

Fig. 6.  The model’s training and validation loss curves.
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at learning rates 0.0001 and 0.001, as these values achieve the appropriate balance between convergence speed 
and stability. Conversely, the performance is degraded at a learning rate of 0.1, which indicates potential 
instability or divergence during training. The dropout rates of 0.2 and 0.3 yield a relatively high accuracy, which 
indicates effective regularization and improved performance. This aligns with the regularization theory in DL to 
mitigate overfitting and encourage the model to learn robust features that generalize effectively to unseen data. 
Additionally, it shows that the optimal dropout rate depends on the learning rate, and these accuracy values 
support the importance of tuning hyperparameters rather than optimizing them in isolation.

Figure 8 shows the different optimization techniques such as Adam, stochastic gradient descent with 
momentum (SGDM) and root mean square propagation (RMSProp) which provide a full picture of classification 
effectiveness by metrics’ evaluation such as Accuracy, Precision, Recall and F 1_score. Adam optimizer yields 
the best performance because it combines the advantages of the adaptive gradient algorithm (AdaGrad) and 
RMSProp, which uses adaptive learning rates and estimate the moment to speed up convergence and avoid local 
minima. On the other hand, the SGDM relies on the fixed learning rate and lacks adaptive gradient scaling, 
which results in the lowest performance. Furthermore, RMSProp provides intermediate performance that is 
better than SGDM due to its ability to adapt the learning rate and slightly lower than Adam, as it lacks the 
momentum terms. Overall, Adam optimizer proves most effective in capturing the nonlinear relationship of 
the input channel matrix and the optimal beamforming class, which highlights the importance of choosing the 
optimizer in DL models.

The input channel tensor X  is divided into different matrices, which will be the features of the model. As 
shown in Fig. 9, which illustrates that ∠[H], ℜ{H}, ℑ{H} offers better accuracy than the other representations 
due to the |H| ,∠[H] lack of directly providing real and imaginary, which reduced the ability of the model 
to capture complex spatial correlation in the input data. In addition, |H| , ℜ{H}, ℑ{H} have redundant 
information, which potentially confuses the network, despite ∠[H], which requires a nonlinear operation that is 
not easy for CNN to learn, and by providing it directly, it will be more effective.

The training time is a crucial aspect of the system’s overall efficiency and complexity in offline mode. The 
relevant metric to measure that is the number of trainable parameters and an indication of the complexity 
of the model in offline mode. From Table 3, which illustrates that the proposed model has fewer parameters, 
resulting in a reduced training overhead and shorter training time. To ensure objective comparison for different 
models, the same system configuration is used: K = 4, NRF = 4, and Nt = 8. Additionally, in21, the dataset 
generation time was approximately 2 hours and 2 minutes dedicated to this task to generate 10000 samples 
with the publicly available code and the author’s permission. However, our dataset generation required 53.7 

Fig. 9.  The model’s accuracy of different input representations.

 

Fig. 8.  The model’s accuracy of different optimizers.
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seconds to generate the same samples. This comparison was implemented under the same system model and 
hardware setup mentioned before to ensure fairness. In contrast, this reduction in time is attributed to different 
data preparation methodologies. Our dataset relies on precomputed ray-tracing results generated by Recom 
Wireless InSite, which retrieved and processed depending on specific configurations, plus Algorithm  1 to 
construct the output data, reducing computational overhead. On the other hand, 21 generates the dataset from 
scratch, including random data generation, numerous nested loops to construct the channel matrix, and the 
optimization algorithm to construct output data, considering delay and computational complexity. Therefore, 
the time efficiency of our method proves especially advantageous in the training phase, including scalability and 
retraining new configurations and scenarios.

System performance
To evaluate the proposed model’s performance in terms of maximizing sum rate, it should be compared with 
traditional methods. Algorithms such as the MO-AltMin algorithm, the SDR-AltMin algorithm, and the PE-
AltMin algorithm in11 and the OMP algorithm in8, we adopt these algorithms in the MU-MISO system to suit 
our multiple users case and apply them on the channel generated from DeepMIMO. These algorithms require 
a fully digital beamforming matrix as input to construct the analog and digital beamforming matrices, except 
the OMP algorithm, which additionally requires a predefined DFT codebook. The minimum mean square error 
(MMSE) is used as the optimal digital beamforming matrix needed for these traditional algorithms.

Figure 10 illustrates that the DL-HBF method performs better than the PE-AltMIN, SDR-AltMin and OMP 
algorithms but less than the MO-AltMin algorithm in identifying the optimal hybrid beamforming matrices that 
maximize the sum rate in the MU-MISO system. However, the performance gap of the MO-AltMin algorithm 
is primarily attributed to advanced optimization techniques, including computationally intensive procedures 
such as the conjugate gradient algorithm on a Riemannian manifold to get the nearest optimal solutions. In 
contrast, the PE-AltMIN algorithm is a simpler algorithm but with limited performance due to enforcing an 
orthogonality constraint on the digital beamforming matrix. Additionally, the SDR-AltMin algorithm adopts 
a partially connected structure, which inherently reduces beamforming gains. For the OMP algorithm yields 
the lowest performance due to its ignorance of the joint effect of NRF  columns which can’t capture interactions 
between RF chains, and also the lack of iterative refinement.

As shown in Table  4, the computational complexity of the proposed DL-HBF method is analyzed by 
considering its two stages. The first stage, the prediction of the analog beamforming matrix via the CNN model, 
is dominated by the convolution layer, which has a complexity of O(KNtR

2DinDout). The second stage, 
the calculation of the digital beamforming matrix, involves several matrix operations, which is dominated by 
O(K3). Therefore, the overall complexity of the proposed DL-HBF method is driven by these two stages, which 
is the forward pass that does not depend on IL iterations. Conversely, the traditional hybrid beamforming 
algorithms such as MO-AltMIN, PE-AlTMin, and SDR-AltMin are iterative in nature, and their computational 
complexity scales linearly with the number of iterations IL. This highlights the competitive advantage of the 
proposed DL-HBF method at computational complexity in systems where low-latency beamforming is required. 
For the execution time of the system mentioned before, the proposed DL-HBF method will execute the optimal 

Fig. 10.  The sum rate of the proposed DL-HBF in MU-MISO system at Nt = 8, NRF = K = 4.

 

Model Number of parameters

Proposed DL-HBF 626,368

CNN-MIMO22 11,053,481

HBDL20 1,887,136

CNNAS + CNNRF
21 951,226

Table 3.  Parameters in DL-based hybrid beamforming models.
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analog beamforming matrix and then calculate the digital beamforming matrix in 0.0042 s, the MO-AltMIN 
algorithm in 0.4397 s, the PE-AlTMin algorithm in 0.0022 s, the SDR-AltMin algorithm in 3.18774 s, and the 
OMP algorithm in 0.00025 s. Therefore, the SDR-AltMin algorithm is out of the comparison.

As shown in Fig. 11, which presents the average execution time of the proposed DL-HBF method, the MO-
AltMIN, the PE-AlTMin and the OMP algorithms for different values of NRF and constant Nt = 16. Results 
show that the MO-AltMIN algorithm has more execution time than others due to its exhaustive iterations, and 
this time increases significantly as NRF increases. However, the PE-AlTMin algorithm has less execution time 
than the proposed DL-HBF method in NRF = 2 and 4, it will take more execution time than the proposed DL-
HBF method by increasing NRF and iterative updates. Additionally, the OMP algorithm achieves the lowest 
execution time due to its simplicity, but it increases proportionally to NRF. This highlights the robustness and 
scalability of the proposed DL-HBF method, which maintains a nearly constant execution time as NRF increases. 
These merits underscore the potential of the proposed method for real-time applications.

The availability of perfect CSI is unrealistic due to estimation and feedback errors. To analyze the robustness 
of algorithms for imperfect CSI cases and evaluate their performance in terms of normalized mean square error 
(NMSE). The estimated channel matrix Ĥ can be expresed as:

	 Ĥ = H + E,� (28)

where E ∼ CN
(
0, σ2

eI
)

 represents the channel estimation error matrix. Therefore, the degree of imperfection 
is characterised by:

	
NMSEH = ∥Ĥ − H∥2

F

∥H∥2
F

.� (29)

To assess the approximation quality of hybrid beamforming matrices, NMSE is computed with respect to the 
optimal fully digital beamforming matrix by:

	
NMSEV = ∥VRFVBB − Vopt∥2

F

∥Vopt∥2
F

,� (30)

where Vopt is the optimal fully digital beamforming matrix. When the hybrid beamforming is designed based 
on imperfect CSI instead of perfect CSI, its performance deteriorates. This degradation represented by the 
difference between the NMSE values obtained under imperfect and perfect CSI:

	 ∆NMSE = NMSEVi − NMSEVp ,� (31)

Fig. 11.  The execution time of the proposed DL-HBF in MU-MISO system at Nt = 16.

 

Method Computational complexity

Proposed DL-HBF O(KNtR2DinDout + K3)

MO-AltMIN algorithm11 O(IL(NtN2
RF + NtNRFK))

PE-AlTMin algorithm11 O(IL(KNtNRF + K2NRF)

SDR-AltMin algorithm11 O(IL(KNRF)6)

OMP algorithm8 O(NRFNcbNtK)

Table 4.  The computational complexity of the proposed DL-HBF.
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where NMSEVi  calculated related to imperfect CSI and NMSEVp  calculated related to perfect CSI. As shown 
in Fig. 12, all algorithms experience a degradation in performance as the CSI error increases. However, the extent 
of degradation varies significantly across algorithms. The proposed DL-HBF method consistently achieves the 
lowest ∆NMSE across all NMSEH, demonstrating superior robustness to channel estimation error due to its 
training on some noisy channels. On the other hand, other algorithms result in high degradation increases 
proportionally with estimated channel error. This confirms their reliance on perfect CSI and their limitations 
with noisy and imperfect CSI.

Conclusion
In this paper, we presented a proposed DL-HBF method to get the optimal beamforming matrices designed for 
MU-MISO systems to maximize the sum rate. Unlike traditional algorithms, such as MO-AltMin, SDR-AltMin, 
and PE-AltMin—which suffer from high computational complexity—and OMP, which achieves lower sum 
rate performance, all conventional algorithms exhibit degradation and limited adaptability to imperfect CSI, 
making them impractical for real-time implementation. In contrast, the proposed DL-HBF method achieves an 
acceptable sum rate with low latency and its superior robustness to channel estimation errors, which makes it 
suitable for practical deployment in real-time wireless systems. We validate these methods in a realistic channel 
model to ensure robustness and applicability. On the other hand, we make procedures to generate the dataset in 
a short time and reduce the training time compared to existing DL-based hybrid beamforming methods. Our 
results underscore the potential for DL in hybrid beamforming to provide next-generation wireless systems 
with high sum rates, low execution time and its strong capability in mapping imperfect CSI to the near-optimal 
hybrid beamforming matrices, where its application demands that. Future work may discuss extending this 
system to a complex system configuration, such as multi-cell and massive MIMO scenarios.

Data availability
All data generated or analysed during this study are included in this published article
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