SCientiﬁc Reports https://doi.org/10.1038/s41598-026-35285-z
Article in Press

Active guidance in ultrasound bladder scanning
using reinforcement learning

Received: 5 June 2025 Hao-Lun Hsu, Mohsen Zahiri, Gary Y. Li, Rashid Al Mukaddim, HyeonWoo Lee, Martha
Accepted: 5 January 2026 Grewe Wilson, Joyce Grube, Stephen Schmidt, Goutam Ghoshal & Balasundar Raju

Published online: 15 January 2026

We are providing an unedited version of this manuscript to give early access to its
findings. Before final publication, the manuscript will undergo further editing. Please
note there may be errors present which affect the content, and all legal disclaimers

Cite this article as: Hsu H., Zahiri M.,
Li G.Y. et al. Active guidance in

ultrasound bladder scanning using
reinforcement learning. Sci Rep apply.
(2026). https://doi.org/10.1038/

If this paper is publishing under a Transparent Peer Review model then Peer
s41598-026-35285-z

Review reports will publish with the final article.

©The Author(s) 2026. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do

not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.


https://doi.org/10.1038/s41598-026-35285-z
https://doi.org/10.1038/s41598-026-35285-z
https://doi.org/10.1038/s41598-026-35285-z
http://creativecommons.org/licenses/by-nc-nd/4.0

Active Guidance in Ultrasound Bladder Scanning
Using Reinforcement Learning

Hao-Lun Hsul*, Mohsen Zahiri>*~, Gary Li?, Rashid Al Mukaddim?, Hyeonwoo Lee?,
Martha Grewe Wilson?, Joyce Grube?, Stephen Schmidt?, Goutam Ghoshal?, and
Balasundar Raju?

IDepartment of Computer Science, Duke University, Durham, NC, USA. Work completed during internship at
Philips North America

2Philips North America, Cambridge, MA, USA

*corresponding author email: mohsen.zahiri@philips.com

*these authors contributed equally to this work

ABSTRACT

Accurate measurement of bladder volume is essential for diagnosing urinary retention and voiding dysfunction. However,
finding optimal view can be challenging for less experienced operators, potentially leading to suboptimal imaging and potential
misdiagnoses. This study proposes an intelligent guidance system leveraging reinforcement learning (RL) to improve the
acquisition of ultrasound images in ultrasound bladder scanning procedure. We introduce a novel pipeline that incorporates
a practical variant of Deep Q-Networks (DQN), known as Adam LMCDQN, which is theoretically validated within linear
Markov Decision Processes. Our system aims to offer real-time, adaptive feedback to operators, improving image quality and
consistency. We also present a novel domain-specific reward design for reinforcement learning (RL), incorporating domain
knowledge to enhance performance. Our results demonstrate a promising $1% success rate in reaching target points along the
transverse direction and 67% along the longitudinal direction, significantly outperforming supervised deep learning models,
which achieved 58% and 32%, respectively. This work is among the first to apply RL in ultrasound guidance for bladder
assessment, demonstrating the technical feasibility of optimai-view localization in a simulated environment and exploring
exploration strategies and reward formulations relevant to the guidance task.

Introduction

Background and Motivation

Accurate measurement of bladder volume is an essential component in the assessment of patients with urinary retention and
voiding dysfunction®. While ultrasound imaging can effectively calculate bladder volume using prolate ellipsoid formula??,
high-quality images are essential to ensure reliable volume assessments, which directly impact clinical decision-making
and patient care outcomes. Achieving such quality requires the careful acquisition of optimal views in both transverse
and longitudinal orientations. However, inexperienced operators often struggle to acquire ultrasound images at the optimal
transverse and longitudinal planes*. An effective and robust intelligent ultrasound imaging guidance system can assist operators
in achieving optimal views and acquiring higher-quality images, ultimately contributing to more consistent and accurate
diagnostic outcomes.

Recent advancements in artificial intelligence have enabled the development of automatic ultrasound guidance systems,
which assist operators during scans by enhancing image quality®. Reinforcement Learning (RL), a rapidly growing area in
artificial intelligence, has gained significant attention in healthcare for its ability to make adaptive, real-time decisions®’.
By interacting with their environment, RL models learn optimal strategies dynamically, making them particularly suited for
tasks requiring continuous adaptation, such as ultrasound bladder application. In the context of ultrasound imaging, RL-based
approaches have been developed to provide real-time guidance during image acquisition, adjusting continuously to maintain
optimal imaging conditions.

Despite their promise, most existing RL models for ultrasound imaging®® rely primarily on simple coordinates and raw
image features from their environments to predict actions during deployment without directly considering anatomical features
in their objective functions. In real-world applications, where a deeper understanding of input information is crucial for
decision-making, these models face significant limitations. Specifically, they often struggle to identify the most relevant features
in the decision-making process due to limited supervision and reward structures. Additionally, the concept of creating an
environment with real-world ultrasound data poses a major challenge in RL ultrasound application development.
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In this work, we present a RL-based ultrasound guidance pipeline that integrates a provable and practical variant of Deep
Q-Networks (DQN)® known as Adam LMCDQN?, which utilizes posterior sampling for RL. Fig. 1 illustrates the overall
framework. Specifically, Adam LMCDQN performs noisy gradient descent updates with Langevin Monte Carlo (LMC),
generating samples that approximate the posterior distribution of the Q-value function. By incorporating anatomical features
as an additional domain knowledge, we show that the model concentrates better on the critical features and patterns. This
integration allows the model to make more informed and context-aware decisions, addressing key shortcomings of existing
approaches. The main contributions of this work are:

« Generation of a realistic RL simulation environment based on 3D ultrasound bladder dataset collected from 17 healthy
volunteers that features three degrees of freedom: left/right translation, up/down translation, and tilt which encompasses
all necessary actions for optimal probe positioning to accurately estimate bladder volume.

« We demonstrate that using LMC as an exploration strategy, as implemented in Adam LMCDQN, yields superior efficiency
in discovering optimal trajectories compared to baseline methods in the context of ultrasound guidance. To the best of
our knowledge, this work marks the first deployment of this exploration strategy with real-world data and represents the
first RL-based application in ultrasound guidance for bladder assessment.

» We introduce a novel domain-specific reward function that leverages bladder’s anatomical information to guide RL-based
navigation explicitly.
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Figure 1. An overview of the presented method for navigation an ultrasound probe. At each time step, (a) RL model,
specifically a deep Q network, receives the current ultrasound image as (d) states, along with the corresponding () reward from
the (b) bladder simulation environment. The optimal movement action is selected from the (c) action space based on the
maximum output Q value. The action space encompasses both translation and tilt, where the details for different settings are
described in Method section. Notably, the integration of our segmentation-based reward design with the LMC exploration
strategy significantly enhances performance within the computational bladder environment.

Related Work

Automated Ultrasound Guidance

Deep learning has emerged as a prominent technique in image analysis, with numerous studies exploring its application to
detect optimal views in 2D ultrasound image sequences. Convolutional neural networks (CNNSs), in particular, have been
used to find the probe location difference between the current and optimal view images®?. However, these approaches often
result in abrupt adjustments rather than smooth and continuous trajectories. Effective ultrasound navigation with optimal view
requires a sequence of incremental movements based on observations such as ultrasound images and probe position. In this



context, reinforcement learning (RL) offers a promising solution, as it can model the continuous decision-making process
required for precise probe navigation.

Some studies have explored learning from demonstration for probe navigation!>'3, However, obtaining comprehensive and
accurate expert demonstrations remains a significant challenge, particularly in clinical ultrasound settings where data can be
difficult and costly to acquire. In response, several works have utilized virtual probes within simplified, static simulators to
define probe trajectories, aligning more closely with traditional RL development paradigms®. Nevertheless, these approaches
fail to capture the complexities of real-world probe navigation, where detailed tissue structures, variations in probe coupling
and decoupling, and the presence of artifacts can significantly alter the scenario.

Simulation-based learning using real ultrasound images offers a more reliable and cost-effective approach to training
models®*. Several studies have applied RL within simulated environments constructed from 2D ultrasound images. In Li’s
work?®®, a simulator was developed using 3D ultrasound volumes to model the spinal region. A robotic arm was employed to
maneuver a 3D probe, generating synthetic ultrasound images based on the probe’s position. This system achieved a translation
and orientation accuracy of 4.91 mm within an intra-patient setting for reaching a target. Similarly, Milletari* proposed a grid
pattern over the chest, using both imaging and a 4-DOF tracking system to create a cardiac simulation. Hase® also projected
a grid onto a volunteer’s spine and used a robotic arm to manipulate the probe. These works predominantly utilized deep
Q-networks (DQN) as the RL algorithm due to its simplicity and stability in discrete action spaces. While DQNs®!* have
significantly outperformed supervised learning methods and yielded promising results in ultrasound-guided procedures, they
face limitations in terms of state-action space due to the inherent complexity of cardiac and spinal ultrasound images. Moreover,
the exploration-exploitation dilemma remains a challenge in vanilla DQN approaches. A recent advancement in addressing this
issue is posterior sampling for RL, which maintains a posterior distribution over the model parameters, enabling more efficient
exploration and decision-making.

Posterior Sampling for Reinforcement Learning

Randomized strategies in posterior sampling (i.e., Thompson sampling) often outperforin deterministic approaches in practice
by mitigating premature convergence to suboptimal actions!6-18. The effectiveness of TS has spurred the development of
variants such as Langevin Monte Carlo Thompson Sampling (LMCTS) for varying bandits®®.

One notable approach of posterior sampling in RL is Randomized !_east-Square Value Iteration (RLSVI), which incorporates
random perturbations to approximate posterior distributions with frequentist regret analysis in tabular MDP?°. This work has
catalyzed subsequent theoretical advancements, with a focus on minimizing worst-case regret in both tabular®-?? and linear
settings?>2*. From a practical standpoint, several algorithms have emerged from RLSVI to approximate posterior samples
of Q-functions in deep RL?>%, With the success of LMCTS, methods upon LMC has been proposed in tabular RL?, linear
MDPs with neural network approximations** and multi-agent RL?%2°, While these LMC-based methods have demonstrated
superiority in various contexts from hoth theoretical and empirical perspectives, their application to real-world problems
remains largely unexplored, with most efforts focused on standard benchmark settings.

Results

Quantitative Evaluation

Table 1 highlights the superior performance of reinforcement learning (RL) methods over supervised classification CNNs.
Unlike RL, the supervised approach lacks memory and does not follow the Markov Decision Process (MDP), relying only on
features from the current ultrasound image to determine the next action. This often leads to loops, preventing the model from
reaching the optimal view. RL, on the other hand, uses the Markov property to estimate rewards and make decisions, enabling
it to achieve better results with lower computational complexity and reduced data preparation requirement. The proposed
model requires approximately 0.41 GFLOPs per inference, corresponding to an average inference time of approximately 4-7
ms per inference step when processing a single ultrasound frame on a standard CPU in an Android-based application. This
computational efficiency supports real-time deployment.

The Transverse and Longitudinal rows in Table 1 show that Adam LMCDQN with LMC outperforms the vanilla DQN with
neural network approximation on real subject data, despite its theoretical guarantees being limited to a linear MDP setting.
Additionally, we extend the RL agent’s capabilities by introducing tilting actions, enabling it to capture ultrasound images from
different angles. The results for this configuration, labeled as (3D) in Table 2, demonstrate that expanding the action space
enhances the agent’s ability to move toward the correct translational direction by accessing a wider range of diverse images.
This improvement is evident when comparing (3D) to the non-3D setup in Table 1. A comparison with a classification CNN is
not included for (3D) due to the inherent complexity of defining optimal actions in this scenario.

The proposed segmentation-based reward function increased accuracy from 0.69 (using the standard distance reward) to
0.73, as shown in Table 3. These results support the hypothesis that a deeper understanding of the input image enables the
agent to make more informed decisions about predicted actions. Given the high cost and time required for domain experts to



Table 1. Baseline performance comparison in terms of success rate for different methods in transverse and longitudinal views.

NN Architecture | Transverse | Longitudinal
Classification CNN 0.58 0.32
DON 0.62 0.40
Adam LMCDQN 0.69 0.51

Table 2. Performance (success rate) comparison between RL methods with the access of tilting angles during training.

NN Architecture | Transverse (3D) | Longitudinal (3D)
DQN 0.74 | 0.54

Adam LMCDOQN 0.81 0.67

label over 600 images per subject in a 3D framework, we focused on validating the reward function in a 2D transverse view for
practicality.

Table 3. Improvement of segmentation-based reward. (D) represents distance reward function from Problem formulation
under Method Section and (S) indicates segmentation reward function from Segmentation-based Reward Function.

NN Architecture | DQN (D) | Adam LMCDQN (D) | Adam LMCDQN (S)
Transverse 0.62 0.69 0.73




Figure 2. Navigation sequence from Adam LMCDQN model in transverse view for subject 0018 (a 33-year-old male). The
best view for 0018 is frame 23. The green line represents trajectories that successfully reached the target, while the red lines
indicate trajectories where the model failed to reach the target.
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Figure 3. Navigation sequence from Adam LMCDQN model in transverse view for subject 0012 (a 64-year-old male). The
best view of 0012 is 42.The green line represents trajectories that successfully reached the target, while the red lines indicate
trajectories where the model failed to reach the target.
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Figure 4. Navigation sequence from Adam LMCDQN model in longitudinal view for subject 0014 (a 51-year-old male). The
best view of 0014 is 23. The green line represents trajectories that successfully reached the target, while the red lines indicate
trajectories where the model failed to reach the target.



Qualitative Visualization

Typically, the best view in bladder scanning is achieved by positioning the probe just above the pubic bone, along the midline
of the body. In our grid projection, this location was most often in the center line of the grids and the first or second rows of the
grid. Here, we visually illustrate the navigation paths on three validation subjects generated by our trained policy using one
of the random seeds in transverse and longitudinal views: (i) subject 0018, a 33-year-old male, attains the best view in the
transverse view at grid 23 in Fig. 2, aligning with the midline, (ii) subject 0012, a 64-year-old male with his best view in the
transverse view at grid 42 in Fig. 3, which is located slightly to the left, and (iii) subject 0014, a 51-year-old male with his best
view in the longitudinal view at grid 23 in Fig. 4. The arrows in all three figures represent the trajectories originating from
various grid points.

In Fig. 2, we observe that the probe can reach to the best view from any grid with 93% accuracy. Specifically, when the
probe starts at 21 or 22, our RL policy misguides the probe down to gird 12, which is further from the best view. However, the
policy quickly rectifies this error, directing the probe toward grid 13 and then 23.

The edge contrast in ultrasound images for bladder measurements tends to be weaker in individuals with higher body mass
index (BMI) or those who are older, compared to younger and more muscular individuals. This phenomenon is evident when
comparing Fig. 2 and 3. Consequently, the navigation task for Subject 0012 is objectively more challenging than that for
Subject 0018. Although the accuracy in this instance drops to 80% in subject 0012, most failures occur in the bottom row of
Fig. 3, where bladder features are absent. As a result, the trained policy lacks guidance in these areas. It is important to note
that, despite the optimal view in this case not aligning with the center line and not being represented in the training set, our RL
model is still able to generalize to this unseen scenario.

In the longitudinal orientation, more grid images lacked bladder features, making this view more difficult to train. Fig. 4
shows the navigation task for subject 14 in longitudinal orientation. The model effectively guides the probe to grid 23 for all
spots in the first three columns. However, it misguides the probe for spots in the last two columns. The figure shows that 9 out
of 12 images in the last two columns lacked bladder features, leading to a decrease iin performance.

Discussion

In this work, we introduced a RL based ultrasound active guidarice for optimal-view localization in bladder imaging. We
developed a scalable 3D bladder simulation environment, which can be extended to incorporate additional subject data in
the future. This paper is the first work employing LMC exploration in DQN-based method for solving a real-world problem.
Our experiments demonstrated the superiority of the proposed approach over traditional DQN and classification baselines.
Specifically, we showed that incorporating a more effective exploration strategy consistently improves guidance accuracy across
varying task settings. We also found that tiiting the probe at the current grid significantly enhances performance by guiding the
probe in the correct direction for the next step. Moreover, we proposed a hovel segmentation image-based reward function that
integrates domain knowledge with a better performance.

Here, we demonstrated the feasibility of the proposed RL-based guidance framework in identifying the optimal bladder
imaging plane which is a precursor for getting the accurate bladder volume estimation. Once the optimal plane is identified, the
subsequent bladder-volume calculation is well established in the literature. Within the RL framework, the actor network learns
a policy that captures the dynamics of the environment through rewards and state—action trajectories explored during training.
Once trained, the actor can make informed guidance decisions at deployment from any position (not constrained to the sparse
grid positions) in the environment. The learned policy operates directly on incoming ultrasound frames and outputs directional
guidance actions (e.g., left/right, up/down, and tilt), which can be communicated to the operator through simple visual cues
such as on-screen arrows or textual prompts. A full assessment of end-user impact for this RL-based guidance framework
would warrant for an extensive future clinical validation study involving multiple expert reviewers, which is beyond the scope
of the present work. Additionally, it would be valuable to explore the use of pre-trained foundation models for segmentation to
automatically generate reward functions and scale up the training pipeline. To further enhance clinical applicability, we aim to
expand our dataset by including a larger number of subjects with a broader range of pathological conditions.

Methods

Reinforcement Learning for Probe Navigation

This section presents a learning algorithm developed to enable an image-based navigation policy for ultrasound-guided active
guidance in bladder scanning applications. We begin by outlining the data collection and prepossessing procedures used to
generate a realistic reinforcement learning (RL) simulation environment based on a 3D ultrasound probe. We then formulate
the problem of ultrasound active guidance as a Markov Decision Process (MDP). Finally, we introduce an RL algorithm that
features a novel reward structure based on image segmentation.
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Figure 5. Hlustrations of data acquisition process. (a) Each subject is represented with grids that maintain a fixed spatial
distance between each gird, where sonographer collect ultrasound images at each labeled iocation. The dataset obtained
includes ultrasound images capture from two distinct views: (b) longitudinal and (c) transverse. Example images at different
tilt angles from a single grid position.

Simulation of Probe-Subject Interaction

To create an environment where the RL agent can interact and learn optimal trajectories through trial and error, we acquired
ultrasound images and their corresponding probe locations independently of our learning procedure. Fig. 5a illustrates our
setup for data collection. For each participant in the study, we defined a work area that encompasses a significant portion of the
pelvic region where the bladder is located. We drew a 6x5 with a spatial distance of 0.7 inches between each grid point. The
grid-based setup was only used to simulate the bladder environment for model development. The model learns to navigate
across the bladder in a relative positionai manner Solely using ultrasound images, rather than being limited to a grid of fixed
dimension. At each grid position, volumetric data were collected using a 3D Matrix transducer (Philips X5-1), which provided
access to both longitudinal and transverse views. The 3D acquisition employs electronic beam steering in both the elevational
and azimuthal planes with 3° increments, offering a richer range of probe orientations and greater exploration capability for the
model.

Since only longitudinal and transverse views are used in clinical bladder scanner applications, there is no need for rotational
motion of the probe in our acquisition process. Our acquisition covers the 3 degrees of freedom required for clinical bladder
scanner applications: translation along the left-right and top-bottom axes, and tilting probe. We collected data for the first two
degrees of freedom by systematically placing the probe at each grid point while ensuring it remained perpendicular to the
subject’s abdominal region. This approach effectively captured the necessary translational movement in both longitudinal and
transverse views, as illustrated in Fig. 5b and 5c ,as well as the elevational and azimuthal tilts for each grid (Fig 5d).

Problem Formulation
The ultrasound active guidance problem can be formulated as a sequential decision-making task, typically modeled as a Markov
Decision Process (MDP) defined by the tuple (S, A, r, T, P). In this formulation, S and A represent the state and action

spaces, respectively. The reward function is denoted by r, the set of terminal conditions by T, and P(s'g, a) specifies the
transition probability. The policy @ ={ 7nen 1+ IS a Sequences of decision rules, where 7ty : S —A is a deterministic mapping
at each step h.

For each h g[H], the value function Vg : S —R is defined as the expected cumulative reward under policy 7t starting from
an arbitrary state s, = s at h-th time step. Specifically, it is expressed as:

H
Vi (s) = Ex| y rv(Sh, an?)|sh = S] @
h=h



Similarly, the action-value function, i.e., Q function, Q7 : Sx A — R, is defined as the expected cumulative reward given the
current state and action, with the agent following policy 7 thereafter. Concretely, it is formulated as:

H
Qr(s,a) = Ex| Y r(Sh, an)|sh = S, an = a] )]
h=h

In our work, the agent relies exclusively on visual input in the form of ultrasound frames. Therefore, it does not have
direct access to the underlying state, which is its exact position and orientation relative to the optimal view. This limitation
transforms the problem from a fully observable MDP into a Partially Observable Markov Decision Process (POMDP), where

the agent must infer its state solely from observations. Specifically, the observation function O(s) maps each latent state s to a
corresponding ultrasound image, requiring the agent to learn a policy over this high-dimensional, image-based observation
space.

The transition to a POMDP framework introduces challenges such as partial observability and the need for visual represen-
tation learning. To address these, we define the RL framework for probe navigation as follows:

Action We consider two action space configurations in our setup: (i) a basic configuration involving four discrete translational
actions—up, down, left, and right—that move the probe to adjacent grid locations; and (ii) an extended configuration that
combines translation with incremental tilt control.

In the second configuration, the probe can tilt within a clinically plausible range of 30° to +30° relative to the perpendicular

orientation. At each step, the agent may apply a discrete tilt adLustment of- 3" (counterclockwise), 0° (no change), or +3°
(clockwise). By combining the four translational directions with the three tilt adjustments, we define a total of twelve discrete

actions in action space. This expanded action space enables the agent to explore both spatial positions and angular perspectives,
better mimicking real-world ultrasound guidance.

State and observation The true state of the environment is defined by the probe’s position relative to the optimal viewing
location in the parallel imaging plane. While the environment state is fully defined by the probe’s grid position and orientation

(satisfying the Markov property), it remains hidden from the agent. Instead, the agent receives an observation O(s) in the form
of an ultrasound frame and must infer its state accordingly under the POMDP framework.

Reward function To incentivize the agent to reach the optima! view efficiently, we define a distance-based reward function.
The grid location corresponding to the best view is designated as the goal. Numerical rewards are assigned based on the agent’s
actions relative to this goal. The reward function significantiy penalizes unsuccessful trajectories, that is, failure to reach the
goal within an episode, with a negative reward (- rmedium), and discourages movements that increase the distance to the goal
with a small penalty (- rsman). Conversely, it provides positive rewards for actions that reduce the distance (rsman) and for
successfully reaching the goal (fiarge).

Because successful trajectories may occur less frequently than unsuccessful ones, we Set fage > Fmedium t0 Strongly
encourage goal-reaching behavior. Additionally, to prevent the agent from moving the probe outside the 6x5 grid, we apply a
penalty of — rsman for such actions and restrict the agent to remain in its current position.

After hyperparameter tuning, we USe farge = 1.0, medium = 0.25, and rsman = 0.1. We refer to this setup as the distance
reward. An alternative reward function based purely on image is introduced in Segmentation-based Reward Function Section.

3D Bladder Simulation Reconstruction

We reconstruct a 3D bladder simulation environment based on the OpenAl Gym framework®, utilizing real subject data.
Specifically, we use a training set of 14 healthy subjects to build the environment and validate both the environment and the RL
policy with data from 3 additional subjects. Scans were collected under conditions that ensured adequate probe-skin coupling,
providing images with sufficient quality for bladder volume estimation. All participants provided written informed consent
prior to participating in data collection. The study was approved by the Institutional Review Board (IRB) of Philips under our
System Validation Protocol for Human Subject Scanning (Protocol number 11526) and was conducted in accordance with
the ethical standards of the committee and with the Declaration of Helsinki and its later amendments. For each subject, we
generate a corresponding transition probability tabular that captures the relationship between observed ultrasound images,
rewards, and actions. The results of this study were derived from 17 healthy subjects with limited anatomical variability and
may not generalize to populations with atypical anatomy.

Reinforcement Learning Algorithm
Deep Q-networks (DQNs)™° serves as the backbone for many deep RL algorithms and are widely applied in real-world scenarios
due to their scalability, ease of implementation, and effectiveness in tasks with discrete action spaces. A common exploration

strategy for DQN is the e-greedy method, where the agent selects the action with the highest estimated reward with probability
1-¢, and a random action with probability €. The parameter ¢ € (0, 1) balances exploration and exploitation. However, the



e-greedy strategy can be inefficient, especially in large action spaces or when ¢ is poorly tuned, which is often the case in
practical applications. This inefficiency motivates the use of better exploration strategies that adjust to the problem at hand and
evolving data to effectively identify the optimal action.

To overcome these limitations, we adopt a randomized exploration strategy using Langevin Monte Carlo (LMC), following
the LMC-LSVI framework!. This method employs LMC to approximate the posterior distribution of the Q functions with the
following loss function for step h during the k-th episode:

Lh(wn) = y<eirn(st mat h + maXaea Qh+1(Shr1, @) —Q(Wh; @ (s an)]? + AJ wi//? ©)]

where ¢ (-, -) is a feature representation of the state-action pair, and Q(ws; ¢ (STh, a;)) denotes the parameterized approximation
of the Q-function, with Wh as the parameter vector and ¢ (sh, as) as input, using the trajectories collected over the first k=1
episodes.

At each step h, we perform noisy gradient descent on L(-) for Ji iterations, where Jk represents the number of updates in
episode k. This noisy gradient update incorporates Gaussian noise, inspired by Langevin dynamics. Specifically, the model

parameters are updated iteratively, and for iteration j = 1,..., J, the update rule is given by:

J
wiy = w I gL W+ 2ngT e @

where L* is defined in equation (3), €%/ € R" is a standard Gaussian noise, 1k is the learging rate, and px is the inverse
h h ~ 32

temperature parameter. This exploration strategy is provable with a regretbound O(d H T) and eventually converges to
the performance of posterior sampling in'*, where d is the dimension of the feature mapping, H is the planning horizon, and T

is the total number of steps. We use O () to ignore poly-lagarithmic factors.

In practice, the standard LMC method is replaced by Adam Stochastic Gradient Langevin Dynamics (SGLD) in Adam

LMCDQN due to the frequent presence of pat.‘olo?ical curvatyres and saddle points in deep neural networks. SEecifi_caIIy,
the update rule in equation (4) is modified to equation (5). VLh(a)Efl‘l) represents an estimate of the gradient L (cﬁ)kfl‘hl)

computed from a mini-batch of data sampled from the replay byffer. The parameter « acts as a bias factor and Cy is a small

constant to prevent division by zero. The bias term mfi2 @  vii=t + C11 as shown in equation (6), can be interpreted as
the rescaled momentum, ensuring that the momentum is isotropic near stationary points. Additionally, v¥1,in equation (7)
approximates the true second-moment matrix E (VLK{aw* s ~1)VEK (@ J71) 7). Note that in these contexts, (Dand @denote

element-wise vector product and division, respectively. Furthermore, a: and «, are smoothing factors for the first and second
moments of the stochastic gradients.

J J
Wi = Wi - W +ami T 9 Wt Cil+ 2nte ®)

mkJ = aambi=t + (1 - @) VLK Wr k) ©

Vit = apvieit + (L - ) VK (wk Ift) OVE K (wie i) @)



Current state grid

Next state grid

Figure 6. Visualization of the segmentation-based ultrasound reward function. The figure shows how the probe transitions
from the current state grid to the next state grid. In this context, a; represents the biadder area, and di denotes the distance

between the bladder center and the midline of the ultrasound image, where i = 1, 2 corresponds to the current and next state
grid positions, respectively.

Segmentation-based Reward Function

Previous studies®'+!> demonstrated initial success by discretizing grid points for navigation within a discrete action space
and utilizing distance-based rewards. However, these approaches did not incorporate task-specific domain knowledge®!.
To help the agent gain task-specific understanding about the inputs, we propose a new reward mechanism that leverages
anatomical information extracted from a biadder segmentation mask. The bladder regions were manually segmented in the
ultrasound images by an expert soncgrapher to ensure accurate and consistent annotations. This approach integrates the
bladder’s anatomical context, guiding the agent to focus more effectively on the relevant part of the image. As the objective for
bladder volume estimation is to navigate the probe to an optimal view that shows the largest bladder area at the center of the
image, we define the segmentation-based reward function as

rs=Cre+(1-C)ra 8

where r. measures the change in distance between the bladder center and the midline of the ultrasound image from the current
state grid to the next state grid, ra quantifies the change in bladder area from the current state grid to the next state grid,
normalized by the total image area. C is a tuning hyper-parameter with 0 < ¢ < 1. Specifically, rc = %"2 and ry = 2228 a5
illustrated in Fig. 6, where both are normalized measurements.

Experiments

In this section, we investigate how improved exploration strategies can enhance the performance of baseline reinforcement
learning (RL) algorithms, particularly Deep Q-Networks (DQN), within our discrete action space setting. In addition, we
provide additional supervised learning models for comparison. Three different classifiers were tested: MobileNetv23?, ResNet-
50%, and a customized lightweight convolutional model with 5 CNN layers and 3 fully connected layers. The customized
lightweight model demonstrated better performance in our experiments and was therefore used in our results. Since there may
not only exist one optimal action in each step, it is relatively hard to model probe navigation task as a supervised learning
problem. To have a fair comparison, instead of directly picking one of the optimal actions as the label for training supervised
learning®, we divide the action labeling process in two steps: (i) we create a vector between the current grid and target grid with
the angle as the label; (ii) we divide the vector in step 1 into x and y directions to map back to our original action space, i.e.,
up, down, left, right, with the priority of the longer directions. We pre-validate that using our action label can improve the



Table 4. The swept hyper-parameters of DQN and Adam LMCDQN. Note that DQN only uses the top 3 hyper-parameters.

Hyper-parameter Values

Learning Rate 7 {5x107%,1075,5%x10°%,10™,5%x10™*, 1075}

Discounted Factor y {0.75, 0.78, 0.80, 0.83, 0.85, 0.88, 0.90, 0.95, 0.99}

Batch Size {16, 32, 64}

Bias Factor a {0.01, 0.05, 0.1, 0.5, 1, 1.003, 1.004, 1.005, 1.006, 1.007, 1.01}
Inverse Temperature S« {10°, 107, 10%, 108, 108}

No Update Jx {1,2,4,8}

performance against the setting in®. Results for supervised learning model in the following are all based on our proposed action
setting.

From RL side, we firstly train Adam LMCDQN and vanilla DQN with only a single perpendicular image for each grid
using distance reward introduced in Problem Formulation section under Methods. In other words, the RL agent can only access
to the translational actions. Then we increase the action space with additional tilt to see how the flexibility of actions can
help generalization. Finally, we demonstrate that using segmentation-based reward can improve performance compared with
distance reward. For each task and method, we run 5 random seeds for evaluation.

Implementation Details

Framework Setup

The learning process comprises a simulation environment and RL algorithm. In addition to the description in 3D Bladder
Simulation Reconstruction Section under Methods, we also build an auxiliary matrix for segmentation image-based reward
function to directly infer the corresponding reward moving from the current grid to its neighborhood, saving computation cost
and training time. Since the maximum values of r¢ and r, in the dataset are similar, we set L = 0.5inrs = Cre + (- C)rato
equally weight both reward components. On the other hand, we implemented Adam LMCDQN with a convolutional neural
network to take ultrasound images as input upon stable-baselines3 RL library via PyTorch.

Model Training

At the start of each episode, a random bladder environment from the training set is initialized, allowing the RL agent to learn
the optimal policy through interaction with the specific bladder environment within 20 steps. The episode terminates when
the agent either achieves the best view earlier or reaches the maximal permitted step limits. During training, (vanilla) DQN
follows e-greedy policy and Adam LMCDQN adopts LMC exploration. The hyper-parameters used in the training process are
summarized in Table 4. For the supervised baseline approach, the same hyperparameter tuning strategy, including network
architecture, optimizer selection, learning rate, and warm-up scheduling, was applied, and the results reported in this study are
based on the model showing the best performance.

Metrics

To evaluate our model, we report the percentage of successful runs, defined as the proportion of test cases where the agent
reaches the optimal view within 20 steps. Based on our test dataset, we consider a total of 90 initial states, derived from 3
unseen subjects, each with 6 x 5 = 30 grid locations for both transverse and longitudinal directions. Each initial state is treated
as a separate test run. The final success rate is computed as the number of successful runs divided by the total number of runs
(90) for each scanning direction.
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