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ABSTRACT 

 
Accurate measurement of bladder volume is essential for diagnosing urinary retention and voiding dysfunction. However, 

finding optimal view can be challenging for less experienced operators, potentially leading to suboptimal imaging and potential 

misdiagnoses. This study proposes an intelligent guidance system leveraging reinforcement learning (RL) to improve the 

acquisition of ultrasound images in ultrasound bladder scanning procedure. We introduce a novel pipeline that incorporates 

a practical variant of Deep Q-Networks (DQN), known as Adam LMCDQN, which is theoretically validated within linear 

Markov Decision Processes. Our system aims to offer real-time, adaptive feedback to operators, improving image quality and 

consistency. We also present a novel domain-specific reward design for reinforcement learning (RL), incorporating domain 

knowledge to enhance performance. Our results demonstrate a promising 81% success rate in reaching target points along the 

transverse direction and 67% along the longitudinal direction, significantly outperforming supervised deep learning models, 

which achieved 58% and 32%, respectively. This work is among the first to apply RL in ultrasound guidance for bladder 

assessment, demonstrating the technical feasibility of optimal-view localization in a simulated environment and exploring 

exploration strategies and reward formulations relevant to the guidance task. 

 

 

Introduction 

Background and Motivation 

Accurate measurement of bladder volume is an essential component in the assessment of patients with urinary retention and 

voiding dysfunction1. While ultrasound imaging can effectively calculate bladder volume using prolate ellipsoid formula2,3, 

high-quality images are essential to ensure reliable volume assessments, which directly impact clinical decision-making 

and patient care outcomes. Achieving such quality requires the careful acquisition of optimal views in both transverse 

and longitudinal orientations. However, inexperienced operators often struggle to acquire ultrasound images at the optimal 

transverse and longitudinal planes4. An effective and robust intelligent ultrasound imaging guidance system can assist operators 

in achieving optimal views and acquiring higher-quality images, ultimately contributing to more consistent and accurate 

diagnostic outcomes. 

Recent advancements in artificial intelligence have enabled the development of automatic ultrasound guidance systems, 

which assist operators during scans by enhancing image quality5. Reinforcement Learning (RL), a rapidly growing area in 

artificial intelligence, has gained significant attention in healthcare for its ability to make adaptive, real-time decisions6,7. 

By interacting with their environment, RL models learn optimal strategies dynamically, making them particularly suited for 

tasks requiring continuous adaptation, such as ultrasound bladder application. In the context of ultrasound imaging, RL-based 

approaches have been developed to provide real-time guidance during image acquisition, adjusting continuously to maintain 

optimal imaging conditions. 

Despite their promise, most existing RL models for ultrasound imaging8,9 rely primarily on simple coordinates and raw 

image features from their environments to predict actions during deployment without directly considering anatomical features 

in their objective functions. In real-world applications, where a deeper understanding of input information is crucial for 

decision-making, these models face significant limitations. Specifically, they often struggle to identify the most relevant features 

in the decision-making process due to limited supervision and reward structures. Additionally, the concept of creating an 

environment with real-world ultrasound data poses a major challenge in RL ultrasound application development. 
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In this work, we present a RL-based ultrasound guidance pipeline that integrates a provable and practical variant of Deep 

Q-Networks (DQN)10 known as Adam LMCDQN11, which utilizes posterior sampling for RL. Fig. 1 illustrates the overall 

framework. Specifically, Adam LMCDQN performs noisy gradient descent updates with Langevin Monte Carlo (LMC), 

generating samples that approximate the posterior distribution of the Q-value function. By incorporating anatomical features 

as an additional domain knowledge, we show that the model concentrates better on the critical features and patterns. This 

integration allows the model to make more informed and context-aware decisions, addressing key shortcomings of existing 

approaches. The main contributions of this work are: 

• Generation of a realistic RL simulation environment based on 3D ultrasound bladder dataset collected from 17 healthy 

volunteers that features three degrees of freedom: left/right translation, up/down translation, and tilt which encompasses 

all necessary actions for optimal probe positioning to accurately estimate bladder volume. 

• We demonstrate that using LMC as an exploration strategy, as implemented in Adam LMCDQN, yields superior efficiency 

in discovering optimal trajectories compared to baseline methods in the context of ultrasound guidance. To the best of 

our knowledge, this work marks the first deployment of this exploration strategy with real-world data and represents the 

first RL-based application in ultrasound guidance for bladder assessment. 

• We introduce a novel domain-specific reward function that leverages bladder’s anatomical information to guide RL-based 

navigation explicitly. 

 

 

Figure 1. An overview of the presented method for navigation an ultrasound probe. At each time step, (a) RL model, 

specifically a deep Q network, receives the current ultrasound image as (d) states, along with the corresponding (e) reward from 

the (b) bladder simulation environment. The optimal movement action is selected from the (c) action space based on the 

maximum output Q value. The action space encompasses both translation and tilt, where the details for different settings are 

described in Method section. Notably, the integration of our segmentation-based reward design with the LMC exploration 

strategy significantly enhances performance within the computational bladder environment. 

 

Related Work 

Automated Ultrasound Guidance 

Deep learning has emerged as a prominent technique in image analysis, with numerous studies exploring its application to 

detect optimal views in 2D ultrasound image sequences. Convolutional neural networks (CNNs), in particular, have been 

used to find the probe location difference between the current and optimal view images5,12. However, these approaches often 

result in abrupt adjustments rather than smooth and continuous trajectories. Effective ultrasound navigation with optimal view 

requires a sequence of incremental movements based on observations such as ultrasound images and probe position. In this 
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context, reinforcement learning (RL) offers a promising solution, as it can model the continuous decision-making process 

required for precise probe navigation. 

Some studies have explored learning from demonstration for probe navigation12,13. However, obtaining comprehensive and 

accurate expert demonstrations remains a significant challenge, particularly in clinical ultrasound settings where data can be 

difficult and costly to acquire. In response, several works have utilized virtual probes within simplified, static simulators to 

define probe trajectories, aligning more closely with traditional RL development paradigms6. Nevertheless, these approaches 

fail to capture the complexities of real-world probe navigation, where detailed tissue structures, variations in probe coupling 

and decoupling, and the presence of artifacts can significantly alter the scenario. 

Simulation-based learning using real ultrasound images offers a more reliable and cost-effective approach to training 

models9,14. Several studies have applied RL within simulated environments constructed from 2D ultrasound images. In Li’s 

work15, a simulator was developed using 3D ultrasound volumes to model the spinal region. A robotic arm was employed to 

maneuver a 3D probe, generating synthetic ultrasound images based on the probe’s position. This system achieved a translation 

and orientation accuracy of 4.91 mm within an intra-patient setting for reaching a target. Similarly, Milletari14 proposed a grid 

pattern over the chest, using both imaging and a 4-DOF tracking system to create a cardiac simulation. Hase9 also projected 

a grid onto a volunteer’s spine and used a robotic arm to manipulate the probe. These works predominantly utilized deep 

Q-networks (DQN) as the RL algorithm due to its simplicity and stability in discrete action spaces. While DQNs9,14 have 

significantly outperformed supervised learning methods and yielded promising results in ultrasound-guided procedures, they 

face limitations in terms of state-action space due to the inherent complexity of cardiac and spinal ultrasound images. Moreover, 

the exploration-exploitation dilemma remains a challenge in vanilla DQN approaches. A recent advancement in addressing this 

issue is posterior sampling for RL, which maintains a posterior distribution over the model parameters, enabling more efficient 

exploration and decision-making. 

Posterior Sampling for Reinforcement Learning 

Randomized strategies in posterior sampling (i.e., Thompson sampling) often outperform deterministic approaches in practice 

by mitigating premature convergence to suboptimal actions16–18. The effectiveness of TS has spurred the development of 

variants such as Langevin Monte Carlo Thompson Sampling (LMCTS) for varying bandits19. 

One notable approach of posterior sampling in RL is Randomized Least-Square Value Iteration (RLSVI), which incorporates 

random perturbations to approximate posterior distributions with frequentist regret analysis in tabular MDP20. This work has 

catalyzed subsequent theoretical advancements, with a focus on minimizing worst-case regret in both tabular21,22 and linear 

settings23,24. From a practical standpoint, several algorithms have emerged from RLSVI to approximate posterior samples 

of Q-functions in deep RL25,26. With the success of LMCTS, methods upon LMC has been proposed in tabular RL27, linear 

MDPs with neural network approximations11 and multi-agent RL28,29. While these LMC-based methods have demonstrated 

superiority in various contexts from both theoretical and empirical perspectives, their application to real-world problems 

remains largely unexplored, with most efforts focused on standard benchmark settings. 

 

Results 

Quantitative Evaluation 

Table 1 highlights the superior performance of reinforcement learning (RL) methods over supervised classification CNNs. 

Unlike RL, the supervised approach lacks memory and does not follow the Markov Decision Process (MDP), relying only on 

features from the current ultrasound image to determine the next action. This often leads to loops, preventing the model from 

reaching the optimal view. RL, on the other hand, uses the Markov property to estimate rewards and make decisions, enabling 

it to achieve better results with lower computational complexity and reduced data preparation requirement. The proposed 

model requires approximately 0.41 GFLOPs per inference, corresponding to an average inference time of approximately 4–7 

ms per inference step when processing a single ultrasound frame on a standard CPU in an Android-based application. This 

computational efficiency supports real-time deployment. 

The Transverse and Longitudinal rows in Table 1 show that Adam LMCDQN with LMC outperforms the vanilla DQN with 

neural network approximation on real subject data, despite its theoretical guarantees being limited to a linear MDP setting. 

Additionally, we extend the RL agent’s capabilities by introducing tilting actions, enabling it to capture ultrasound images from 

different angles. The results for this configuration, labeled as (3D) in Table 2, demonstrate that expanding the action space 

enhances the agent’s ability to move toward the correct translational direction by accessing a wider range of diverse images. 

This improvement is evident when comparing (3D) to the non-3D setup in Table 1. A comparison with a classification CNN is 

not included for (3D) due to the inherent complexity of defining optimal actions in this scenario. 

The proposed segmentation-based reward function increased accuracy from 0.69 (using the standard distance reward) to 

0.73, as shown in Table 3. These results support the hypothesis that a deeper understanding of the input image enables the 

agent to make more informed decisions about predicted actions. Given the high cost and time required for domain experts to 
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Table 1. Baseline performance comparison in terms of success rate for different methods in transverse and longitudinal views. 
 
 

NN Architecture Transverse Longitudinal 

Classification CNN 0.58 0.32 

DQN 0.62 0.40 

Adam LMCDQN 0.69 0.51 
 

 

 

 

 

 

 

 

 

Table 2. Performance (success rate) comparison between RL methods with the access of tilting angles during training. 
 
 

NN Architecture Transverse (3D) Longitudinal (3D) 

DQN 0.74 0.54 

Adam LMCDQN 0.81 0.67 
 

 

 

 

 

 

 

 

 

 

label over 600 images per subject in a 3D framework, we focused on validating the reward function in a 2D transverse view for 

practicality. 

 

 

 

 

 

 

 

 

 

Table 3. Improvement of segmentation-based reward. (D) represents distance reward function from Problem formulation 

under Method Section and (S) indicates segmentation reward function from Segmentation-based Reward Function. 

 

NN Architecture DQN (D) Adam LMCDQN (D) Adam LMCDQN (S) 

Transverse 0.62 0.69 0.73 
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Figure 2. Navigation sequence from Adam LMCDQN model in transverse view for subject 0018 (a 33-year-old male). The 

best view for 0018 is frame 23. The green line represents trajectories that successfully reached the target, while the red lines 

indicate trajectories where the model failed to reach the target. 
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Figure 3. Navigation sequence from Adam LMCDQN model in transverse view for subject 0012 (a 64-year-old male). The 

best view of 0012 is 42.The green line represents trajectories that successfully reached the target, while the red lines indicate 

trajectories where the model failed to reach the target. 
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Figure 4. Navigation sequence from Adam LMCDQN model in longitudinal view for subject 0014 (a 51-year-old male). The 

best view of 0014 is 23. The green line represents trajectories that successfully reached the target, while the red lines indicate 

trajectories where the model failed to reach the target. 
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Qualitative Visualization 

Typically, the best view in bladder scanning is achieved by positioning the probe just above the pubic bone, along the midline 

of the body. In our grid projection, this location was most often in the center line of the grids and the first or second rows of the 

grid. Here, we visually illustrate the navigation paths on three validation subjects generated by our trained policy using one 

of the random seeds in transverse and longitudinal views: (i) subject 0018, a 33-year-old male, attains the best view in the 

transverse view at grid 23 in Fig. 2, aligning with the midline, (ii) subject 0012, a 64-year-old male with his best view in the 

transverse view at grid 42 in Fig. 3, which is located slightly to the left, and (iii) subject 0014, a 51-year-old male with his best 

view in the longitudinal view at grid 23 in Fig. 4. The arrows in all three figures represent the trajectories originating from 

various grid points. 

In Fig. 2, we observe that the probe can reach to the best view from any grid with 93% accuracy. Specifically, when the 

probe starts at 21 or 22, our RL policy misguides the probe down to gird 12, which is further from the best view. However, the 

policy quickly rectifies this error, directing the probe toward grid 13 and then 23. 

The edge contrast in ultrasound images for bladder measurements tends to be weaker in individuals with higher body mass 

index (BMI) or those who are older, compared to younger and more muscular individuals. This phenomenon is evident when 

comparing Fig. 2 and 3. Consequently, the navigation task for Subject 0012 is objectively more challenging than that for 

Subject 0018. Although the accuracy in this instance drops to 80% in subject 0012, most failures occur in the bottom row of 

Fig. 3, where bladder features are absent. As a result, the trained policy lacks guidance in these areas. It is important to note 

that, despite the optimal view in this case not aligning with the center line and not being represented in the training set, our RL 

model is still able to generalize to this unseen scenario. 

In the longitudinal orientation, more grid images lacked bladder features, making this view more difficult to train. Fig. 4 

shows the navigation task for subject 14 in longitudinal orientation. The model effectively guides the probe to grid 23 for all 

spots in the first three columns. However, it misguides the probe for spots in the last two columns. The figure shows that 9 out 

of 12 images in the last two columns lacked bladder features, leading to a decrease in performance. 

 

Discussion 

In this work, we introduced a RL based ultrasound active guidance for optimal-view localization in bladder imaging. We 

developed a scalable 3D bladder simulation environment, which can be extended to incorporate additional subject data in 

the future. This paper is the first work employing LMC exploration in DQN-based method for solving a real-world problem. 

Our experiments demonstrated the superiority of the proposed approach over traditional DQN and classification baselines. 

Specifically, we showed that incorporating a more effective exploration strategy consistently improves guidance accuracy across 

varying task settings. We also found that tilting the probe at the current grid significantly enhances performance by guiding the 

probe in the correct direction for the next step. Moreover, we proposed a novel segmentation image-based reward function that 

integrates domain knowledge with a better performance. 

Here, we demonstrated the feasibility of the proposed RL-based guidance framework in identifying the optimal bladder 

imaging plane which is a precursor for getting the accurate bladder volume estimation. Once the optimal plane is identified, the 

subsequent bladder-volume calculation is well established in the literature. Within the RL framework, the actor network learns 

a policy that captures the dynamics of the environment through rewards and state–action trajectories explored during training. 

Once trained, the actor can make informed guidance decisions at deployment from any position (not constrained to the sparse 

grid positions) in the environment. The learned policy operates directly on incoming ultrasound frames and outputs directional 

guidance actions (e.g., left/right, up/down, and tilt), which can be communicated to the operator through simple visual cues 

such as on-screen arrows or textual prompts. A full assessment of end-user impact for this RL-based guidance framework 

would warrant for an extensive future clinical validation study involving multiple expert reviewers, which is beyond the scope 

of the present work. Additionally, it would be valuable to explore the use of pre-trained foundation models for segmentation to 

automatically generate reward functions and scale up the training pipeline. To further enhance clinical applicability, we aim to 

expand our dataset by including a larger number of subjects with a broader range of pathological conditions. 

 

Methods 

Reinforcement Learning for Probe Navigation 

This section presents a learning algorithm developed to enable an image-based navigation policy for ultrasound-guided active 

guidance in bladder scanning applications. We begin by outlining the data collection and prepossessing procedures used to 

generate a realistic reinforcement learning (RL) simulation environment based on a 3D ultrasound probe. We then formulate 

the problem of ultrasound active guidance as a Markov Decision Process (MDP). Finally, we introduce an RL algorithm that 

features a novel reward structure based on image segmentation. 
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(a) Grid labeling (b) Longitudinal (c) Transverse 
 

(d) Examples of tilted-angle images in the transverse view 

Figure 5. Illustrations of data acquisition process. (a) Each subject is represented with grids that maintain a fixed spatial 

distance between each gird, where sonographer collect ultrasound images at each labeled location. The dataset obtained 

includes ultrasound images capture from two distinct views: (b) longitudinal and (c) transverse. Example images at different 

tilt angles from a single grid position. 

 
Simulation of Probe-Subject Interaction 

To create an environment where the RL agent can interact and learn optimal trajectories through trial and error, we acquired 

ultrasound images and their corresponding probe locations independently of our learning procedure. Fig. 5a illustrates our 

setup for data collection. For each participant in the study, we defined a work area that encompasses a significant portion of the 

pelvic region where the bladder is located. We drew a 6x5 with a spatial distance of 0.7 inches between each grid point. The 

grid-based setup was only used to simulate the bladder environment for model development. The model learns to navigate 

across the bladder in a relative positional manner Solely using ultrasound images, rather than being limited to a grid of fixed 

dimension. At each grid position, volumetric data were collected using a 3D Matrix transducer (Philips X5-1), which provided 

access to both longitudinal and transverse views. The 3D acquisition employs electronic beam steering in both the elevational 

and azimuthal planes with 3° increments, offering a richer range of probe orientations and greater exploration capability for the 

model. 

Since only longitudinal and transverse views are used in clinical bladder scanner applications, there is no need for rotational 

motion of the probe in our acquisition process. Our acquisition covers the 3 degrees of freedom required for clinical bladder 

scanner applications: translation along the left-right and top-bottom axes, and tilting probe. We collected data for the first two 

degrees of freedom by systematically placing the probe at each grid point while ensuring it remained perpendicular to the 

subject’s abdominal region. This approach effectively captured the necessary translational movement in both longitudinal and 

transverse views, as illustrated in Fig. 5b and 5c ,as well as the elevational and azimuthal tilts for each grid (Fig 5d). 

 
Problem Formulation 

The ultrasound active guidance problem can be formulated as a sequential decision-making task, typically modeled as a Markov 
Decision Process (MDP) defined by the tuple (S , A , r, T, P). In this formulation, S and A represent the state and action 

spaces, respectively. The reward function is denoted by r, the set of terminal conditions by T , and P(s′ s, a) specifies the 
transition probability. The policy π = πh h [H] is a sequences of decision rules, where πh : S  A is a deterministic mapping 
at each step h. 

For each h [H], the value function Vπ : S  R is defined as the expected cumulative reward under policy π starting from 

an arbitrary state sh = s at h-th time step. Specifically, it is expressed as: 

 
H 

Vπ (s) = Eπ [ ∑ rh′ (sh′ , ah′ )|sh = s] (1) 
h′=h 
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Similarly, the action-value function, i.e., Q function, Qπ : S A R, is defined as the expected cumulative reward given the 

current state and action, with the agent following policy π thereafter. Concretely, it is formulated as: 

H 

Qπ (s, a) = Eπ [ ∑ rh′ (sh′ , ah′ )|sh = s, ah = a] (2) 
h′=h 

In our work, the agent relies exclusively on visual input in the form of ultrasound frames. Therefore, it does not have 
direct access to the underlying state, which is its exact position and orientation relative to the optimal view. This limitation 
transforms the problem from a fully observable MDP into a Partially Observable Markov Decision Process (POMDP), where 

the agent must infer its state solely from observations. Specifically, the observation function O(s) maps each latent state s to a 
corresponding ultrasound image, requiring the agent to learn a policy over this high-dimensional, image-based observation 

space. 

The transition to a POMDP framework introduces challenges such as partial observability and the need for visual represen-

tation learning. To address these, we define the RL framework for probe navigation as follows: 

Action We consider two action space configurations in our setup: (i) a basic configuration involving four discrete translational 

actions—up, down, left, and right—that move the probe to adjacent grid locations; and (ii) an extended configuration that 

combines translation with incremental tilt control. 

In the second configuration, the probe can tilt within a clinically plausible range of 30◦ to +30◦ relative to the perpendicular 

orientation. At each step, the agent may apply a discrete tilt adjustment of 3◦ (counterclockwise), 0◦ (no change), or +3◦ 
(clockwise). By combining the four translational directions with the three tilt adjustments, we define a total of twelve discrete 
actions in action space. This expanded action space enables the agent to explore both spatial positions and angular perspectives, 

better mimicking real-world ultrasound guidance. 

State and observation The true state of the environment is defined by the probe’s position relative to the optimal viewing 
location in the parallel imaging plane. While the environment state is fully defined by the probe’s grid position and orientation 

(satisfying the Markov property), it remains hidden from the agent. Instead, the agent receives an observation O(s) in the form 
of an ultrasound frame and must infer its state accordingly under the POMDP framework. 

Reward function To incentivize the agent to reach the optimal view efficiently, we define a distance-based reward function. 

The grid location corresponding to the best view is designated as the goal. Numerical rewards are assigned based on the agent’s 

actions relative to this goal. The reward function significantly penalizes unsuccessful trajectories, that is, failure to reach the 

goal within an episode, with a negative reward ( rmedium), and discourages movements that increase the distance to the goal 

with a small penalty ( rsmall). Conversely, it provides positive rewards for actions that reduce the distance (rsmall) and for 

successfully reaching the goal (rlarge). 

Because successful trajectories may occur less frequently than unsuccessful ones, we set rlarge > rmedium to strongly 

encourage goal-reaching behavior. Additionally, to prevent the agent from moving the probe outside the 6x5 grid, we apply a 

penalty of rsmall for such actions and restrict the agent to remain in its current position. 

After hyperparameter tuning, we use rlarge = 1.0, rmedium = 0.25, and rsmall = 0.1. We refer to this setup as the distance 
reward. An alternative reward function based purely on image is introduced in Segmentation-based Reward Function Section. 

3D Bladder Simulation Reconstruction 

We reconstruct a 3D bladder simulation environment based on the OpenAI Gym framework30, utilizing real subject data. 

Specifically, we use a training set of 14 healthy subjects to build the environment and validate both the environment and the RL 

policy with data from 3 additional subjects. Scans were collected under conditions that ensured adequate probe-skin coupling, 

providing images with sufficient quality for bladder volume estimation. All participants provided written informed consent 

prior to participating in data collection. The study was approved by the Institutional Review Board (IRB) of Philips under our 

System Validation Protocol for Human Subject Scanning (Protocol number 11526) and was conducted in accordance with 

the ethical standards of the committee and with the Declaration of Helsinki and its later amendments. For each subject, we 

generate a corresponding transition probability tabular that captures the relationship between observed ultrasound images, 

rewards, and actions. The results of this study were derived from 17 healthy subjects with limited anatomical variability and 

may not generalize to populations with atypical anatomy. 

Reinforcement Learning Algorithm 

Deep Q-networks (DQNs)10 serves as the backbone for many deep RL algorithms and are widely applied in real-world scenarios 
due to their scalability, ease of implementation, and effectiveness in tasks with discrete action spaces. A common exploration 

strategy for DQN is the ε-greedy method, where the agent selects the action with the highest estimated reward with probability 

1 −ε,  and a random action with probability ε. The parameter ε ∈  (0, 1) balances exploration and exploitation. However, the 
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h τ =1 h h h+1 h+1 h h 

h h h h k h 

h h 

h h h h 

h h h h h h k h 

h h h h 

h h h h h h 

h h 

ε-greedy strategy can be inefficient, especially in large action spaces or when ε is poorly tuned, which is often the case in 

practical applications. This inefficiency motivates the use of better exploration strategies that adjust to the problem at hand and 

evolving data to effectively identify the optimal action. 

To overcome these limitations, we adopt a randomized exploration strategy using Langevin Monte Carlo (LMC), following 

the LMC-LSVI framework11. This method employs LMC to approximate the posterior distribution of the Q functions with the 

following loss function for step h during the k-th episode: 

 

 

Lk(wh) = ∑k−1[rh(sτ , aτ ) + maxa∈A Qk (sτ , a) −Q(wh; φ (sτ , aτ ))]2 + λ∥ wh∥ 2 (3) 

 
where φ (·, ·) is a feature representation of the state-action pair, and Q(wh; φ (sτ , aτ )) denotes the parameterized approximation 

of the Q-function, with wh 

episodes. 

h  h 

as the parameter vector and φ (sτ , aτ ) as input, using the trajectories collected over the first 
k − 1 

At each step h, we perform noisy gradient descent on Lk( ) for Jk iterations, where Jk represents the number of updates in 
episode k. This noisy gradient update incorporates Gaussian noise, inspired by Langevin dynamics. Specifically, the model 

parameters are updated iteratively, and for iteration j = 1, . . . , Jk, the update rule is given by: 

 

wk, j = wk, j−1 −ηk∇L
k
 

wk, j−1  
+ 

J

2ηkβ−1 εk, j 
 

(4) 

 

 
where Lk is defined in equation (3), εk, j ∈  Rd is a standard Gaussian noise, ηk is the learning rate, and βk is the inverse 

h h  ̃ 3/2 3/2
√  

temperature parameter. This exploration strategy is provable with a regret bound O(d H T ) and eventually converges to 

the performance of posterior sampling in11, where d is the dimension of the feature mapping, H is the planning horizon, and T 

is the total number of steps. We use Õ (·) to ignore poly-logarithmic factors. 

In practice, the standard LMC method is replaced by Adam Stochastic Gradient Langevin Dynamics (SGLD) in Adam 

LMCDQN due to the frequent presence of pathological curvatures and saddle points in deep neural networks. Specifically, 
the update rule in equation (4) is modified to equation (5). ∇L̃ k  (ωk, j−1) represents an estimate of the gradient ∇Lk(ωk, j−1) 

h h h h 

computed from a mini-batch of data sampled from the replay buffer. The parameter α acts as a bias factor and C1 is a small 

constant to prevent division by zero. The bias term mk, j−1 ⊘ vk, j−1 + C11 as shown in equation (6), can be interpreted as 

the rescaled momentum, ensuring that the momentum is isotropic near stationary points. Additionally, vk, j in equation (7) 

approximates the true second-moment matrix E(∇L̃k  (ωk, j−1 )∇L̃k (ωk, j−1)⊤). Note that in these contexts, ⊙ and ⊘ denote 

element-wise vector product and division, respectively. Furthermore, α1 and α2 are smoothing factors for the first and second 
moments of the stochastic gradients. 

 

w
k, j = wk, j−1 − ηk∇L̃

k (wk, j−1) + αmk, j−1 ⊘ 

J

vk, j−1 + C11 + 
J

2ηkβ
−1εk, j 

 

(5) 

 

 

 

 

mk, j = α1mk, j−1 + (1 − α1)∇L̃k (wk, j−1) (6) 

 

 

 

 

vk, j = α2vk, j−1 + (1 −α2)∇L̃k (wk, j−1) ⊙ ∇L̃ k (wk, j−1) (7) 
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area 

 
 
Figure 6. Visualization of the segmentation-based ultrasound reward function. The figure shows how the probe transitions 
from the current state grid to the next state grid. In this context, ai represents the bladder area, and di denotes the distance 

between the bladder center and the midline of the ultrasound image, where i = 1, 2 corresponds to the current and next state 
grid positions, respectively. 

 
Segmentation-based Reward Function 

Previous studies9,14,15 demonstrated initial success by discretizing grid points for navigation within a discrete action space 

and utilizing distance-based rewards. However, these approaches did not incorporate task-specific domain knowledge31. 

To help the agent gain task-specific understanding about the inputs, we propose a new reward mechanism that leverages 

anatomical information extracted from a bladder segmentation mask. The bladder regions were manually segmented in the 

ultrasound images by an expert sonographer to ensure accurate and consistent annotations. This approach integrates the 

bladder’s anatomical context, guiding the agent to focus more effectively on the relevant part of the image. As the objective for 

bladder volume estimation is to navigate the probe to an optimal view that shows the largest bladder area at the center of the 

image, we define the segmentation-based reward function as 

 

rs = ζrc + (1 −ζ )ra (8) 

where rc measures the change in distance between the bladder center and the midline of the ultrasound image from the current 

state grid to the next state grid, ra quantifies the change in bladder area from the current state grid to the next state grid, 

normalized by the total image area. ζ is a tuning hyper-parameter with 0 < ζ < 1. Specifically, rc = d 1 −
w

d2  and ra = a2−a1 , as 

illustrated in Fig. 6, where both are normalized measurements. 

 

Experiments 

In this section, we investigate how improved exploration strategies can enhance the performance of baseline reinforcement 

learning (RL) algorithms, particularly Deep Q-Networks (DQN), within our discrete action space setting. In addition, we 

provide additional supervised learning models for comparison. Three different classifiers were tested: MobileNetv232, ResNet-

5033, and a customized lightweight convolutional model with 5 CNN layers and 3 fully connected layers. The customized 

lightweight model demonstrated better performance in our experiments and was therefore used in our results. Since there may 

not only exist one optimal action in each step, it is relatively hard to model probe navigation task as a supervised learning 

problem. To have a fair comparison, instead of directly picking one of the optimal actions as the label for training supervised 

learning9, we divide the action labeling process in two steps: (i) we create a vector between the current grid and target grid with 

the angle as the label; (ii) we divide the vector in step 1 into x and y directions to map back to our original action space, i.e., 

up, down, left, right, with the priority of the longer directions. We pre-validate that using our action label can improve the 
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Table 4. The swept hyper-parameters of DQN and Adam LMCDQN. Note that DQN only uses the top 3 hyper-parameters. 
 

Hyper-parameter Values 
 

Learning Rate ηk {5 × 10−6, 10−5, 5 × 10−5, 10−4, 5 × 10−4, 10−3} 

Discounted Factor γ {0.75, 0.78, 0.80, 0.83, 0.85, 0.88, 0.90, 0.95, 0.99} 

Batch Size {16, 32, 64} 

Bias Factor α {0.01, 0.05, 0.1, 0.5, 1, 1.003, 1.004, 1.005, 1.006, 1.007, 1.01} 

Inverse Temperature βk {100, 102, 104, 106, 108} 

No Update Jk {1, 2, 4, 8} 

 
performance against the setting in9. Results for supervised learning model in the following are all based on our proposed action 

setting. 

From RL side, we firstly train Adam LMCDQN and vanilla DQN with only a single perpendicular image for each grid 

using distance reward introduced in Problem Formulation section under Methods. In other words, the RL agent can only access 

to the translational actions. Then we increase the action space with additional tilt to see how the flexibility of actions can 

help generalization. Finally, we demonstrate that using segmentation-based reward can improve performance compared with 

distance reward. For each task and method, we run 5 random seeds for evaluation. 

 

Implementation Details 

Framework Setup 

The learning process comprises a simulation environment and RL algorithm. In addition to the description in 3D Bladder 
Simulation Reconstruction Section under Methods, we also build an auxiliary matrix for segmentation image-based reward 
function to directly infer the corresponding reward moving from the current grid to its neighborhood, saving computation cost 

and training time. Since the maximum values of rc and ra in the dataset are similar, we set ζ = 0.5 in rs = ζrc + (1 ζ )ra to 

equally weight both reward components. On the other hand, we implemented Adam LMCDQN with a convolutional neural 

network to take ultrasound images as input upon stable-baselines3 RL library via PyTorch. 

 
Model Training 

At the start of each episode, a random bladder environment from the training set is initialized, allowing the RL agent to learn 

the optimal policy through interaction with the specific bladder environment within 20 steps. The episode terminates when 

the agent either achieves the best view earlier or reaches the maximal permitted step limits. During training, (vanilla) DQN 

follows ε-greedy policy and Adam LMCDQN adopts LMC exploration. The hyper-parameters used in the training process are 

summarized in Table 4. For the supervised baseline approach, the same hyperparameter tuning strategy, including network 

architecture, optimizer selection, learning rate, and warm-up scheduling, was applied, and the results reported in this study are 

based on the model showing the best performance. 

 
Metrics 

To evaluate our model, we report the percentage of successful runs, defined as the proportion of test cases where the agent 

reaches the optimal view within 20 steps. Based on our test dataset, we consider a total of 90 initial states, derived from 3 

unseen subjects, each with 6 × 5 = 30 grid locations for both transverse and longitudinal directions. Each initial state is treated 

as a separate test run. The final success rate is computed as the number of successful runs divided by the total number of runs 

(90) for each scanning direction. 
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