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Abstract. Conventional deep learning models struggle with balancing feature 
extraction and long-term temporal representation in Short-Term Load 
Forecasting (STLF). This study proposes a Convolutional Neural Network–
Embedded Deep Residual Network (CNN-Embedded DRN) designed to enhance 
early-stage feature extraction and generalization capability across diverse 
climatic conditions. The objectives of this study are to integrate Convolutional 
Neural Network (CNN)-based local feature extraction into the DRN framework 
for capturing fine-grained temporal and spatial load patterns, to employ residual 
learning for mitigating gradient degradation and improving network stability, to 
evaluate the model’s predictive performance against baseline and ablation 
models across two datasets representing temperate (ISO-NE) and tropical 
(Malaysia) climates, and to validate its statistical significance and seasonal 
robustness through bootstrap analysis and multi-seasonal evaluation. The results 
demonstrate that the proposed CNN-Embedded DRN consistently outperforms 
all comparative models, achieving the lowest Mean Absolute Percentage Error 
(MAPE) values of 1.5303% and 5.0566% on the ISO-NE and Malaysia datasets, 
respectively. The inclusion of residual network (ResNet) and CNN-Embedded 
ResNet as ablation experiments confirms that CNN-based local feature 
extraction effectively complements residual learning, while bootstrap analysis 
verifies that the observed improvements are statistically significant. The 
proposed model provides a reliable and generalizable framework for STLF, 
offering improved accuracy, robustness, and adaptability under varying climatic 
and demand conditions. Future research will focus on extending this framework 
toward multi-regional and multi-scale forecasting, incorporating attention 
mechanisms for enhanced long-term dependency modeling, and exploring 
adaptive hybrid residual architectures for real-time energy management 
applications.

Keywords: CNN, DRN, DNN, STLF.

1. Introduction
In order to provide reliable and efficient grid operation, load forecasting (LF) is a 
crucial part of modern power networks [1]. LF forecasts future energy usage to 
help power firms optimize grid operations, planning, and administration. 
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Maintaining supply consistency, cutting operational costs, and improving energy 
efficiency all depend on it. With rising energy consumption and shifting usage 
patterns, LF is becoming more and more sophisticated and significant.

LF may be divided into four categories: Very Short-Term Load Forecasting 
(VSTLF), Short-Term Load Forecasting (STLF), Medium-Term Load Forecasting 
(MTLF), and Long-Term Load Forecasting (LTLF) [2]. These groupings are 
defined by their temporal bounds. To fulfill crucial operating requirements, 
VSTLF makes preparations up to an hour in advance. STLF, which can last 
anywhere from an hour to a week, is necessary for dispatch and system 
operation. Mid-range planning, which includes supply management and 
maintenance scheduling, is the aim of MTLF. Its time frame ranges from a week 
to a year. Long-term infrastructure planning and strategic decision-making 
across a variety of years are made easier by LTLF. What distinguishes STLF from 
the others is its role in daily and weekly grid management, which includes 
forecasts for the next day or week.

Future power system management calls for more adaptability and speedier 
decision-making in the face of unpredictability. Applications that largely rely on 
STLF include energy trading, unit commitment, economic dispatch, and system 
reliability evaluation. Because precise prediction directly affects grid 
performance, its significance has increased. The importance of STLF reliability 
for daily operations and load flow planning is highlighted by the fact that 
forecasting mistakes can result in large unanticipated costs. For example, a 1% 
reduction in forecast error might result in an annual savings of up to $1.6 million 
for a 10000 Megawatt (MW) utility. Similarly, a 1% decrease in prediction 
inaccuracy can save hundreds of thousands or even millions of dollars for 
utilities with annual fuel expenses in the billions [3].

Traditional and current STLF methods are the two main categories. Conventional 
methods that frequently fail in real-world applications include linear, 
non-parametric (e.g., non-parametric regression, exponential smoothing, support 
vector regression (SVR), autoregressive models, and fuzzy logic. They may have 
poor generalization, overfit, or oversimplify complicated load dynamics as the 
number of input variables rises [4, 5].

To address these issues, artificial neural networks (ANNs) in particular have 
emerged as a potent alternative to STLF. By employing deep learning, 
ANN-based models may enhance prediction accuracy, decrease overfitting risks, 
and more accurately capture intricate load patterns. However, if a network gets 
more complex by adding more inputs, nodes, or layers, overfitting problems can 
still occur [6]. To improve model performance in STLF, ANN variants such as 
radial basis function (RBF) networks [7], wavelet-based networks [8], and 
extreme learning machines (ELM) [9] have been created.
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In recent years, deep neural networks (DNNs), which are characterized by their 
layered architecture, have gained popularity because to their ability to learn 
hierarchical representations of complex load data. LF research has advanced 
from traditional shallow designs to intricate deep learning structures that 
employ several variables to represent intricate temporal and spatial relationships. 
This shift reflects the growing use of deep learning techniques to difficult 
forecasting issues [10].

Pre-made shallow network designs have been replaced in recent years by neural 
network topologies that integrate various inputs. Convolutional Neural Networks 
(CNNs), which are well known for their capacity to extract local characteristics, 
have been effectively used to detect temporal load patterns in STLF [11, 12]. 
However, their difficulty in training deeper systems and their inability to 
replicate long-term interactions restrict their utility in complex LF scenarios.

By using memory cells and gating methods, two representative forms of 
Recurrent Neural Networks (RNNs) that are excellent at simulating sequential 
data are Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) [13]. 
These structures mitigate the vanishing gradient issue and successfully capture 
both short-term and long-term dependencies in STLF [14]. However, when 
working with very lengthy sequences, LSTM and GRU are less effective because 
to their intrinsically sequential computation, which increases computational 
complexity [15]. By processing input in both forward and backward directions, 
more sophisticated variations like Bidirectional Long Short-Term Memory 
(BiLSTM) and Bidirectional Gated Recurrent Unit (BiGRU) improve sequence 
modeling even more [16], but at the expense of greater computational 
complexity. 

Recently, transformer-based models have drawn interest in STLF because of 
their capacity to use self-attention processes to capture long-range dependencies 
[17]. Because these models enable parallel processing and flexible sequence 
management, they show good performance in time series forecasting 
applications. Transformers are less appropriate for very long sequences, though, 
since their computing cost rises quadratically with sequence length [18]. 
Furthermore, in order to solve training stability and convergence problems, 
deeper Transformer topologies frequently need structural improvements [19].

To address gradient-related issues in deep networks, Chen et al. [20] proposed a 
deep residual network (DRN) for STLF, drawing inspiration from the residual 
network (ResNet), which introduces identity shortcut connections to effectively 
mitigate vanishing gradients and enhance training stability and representational 
capacity. The DRN model consists of two main components: a basic structure 
responsible for early-stage feature extraction, and a prediction layer based on a 
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modified ResNet structure (ResNetPlus) that further refines the output through 
deep residual learning. By leveraging historical load, temperature, and time 
features, this architecture enables robust and scalable deep learning without 
relying on extensive manual feature engineering. In contrast, traditional models 
such as CNN, RNN, and Transformer face specific challenges when scaled 
deeper: CNN struggles with capturing long-term dependencies, RNN is prone to 
gradient vanishing and high computational cost, and Transformer often requires 
substantial resources and may become unstable in deeper layers. DRN, however, 
achieves a better balance among representational power, training stability, and 
network depth, making it an effective and widely adopted approach for building 
high-performance STLF models.

In recent years, DRN-based STLF models have increasingly integrated deep 
learning modules to enhance performance. For example, Tian et al. [21] 
introduced LSTM after the ResNetPlus model to strengthen temporal modeling 
capabilities; Li et al. [22] adopted a similar architecture by placing an LSTM 
layer after the ResNet model and further incorporating an attention mechanism, 
which improved the model's ability to capture key information and enhanced the 
final forecasting performance. In addition, Sheng et al. [23] and Sheng et al. [24] 
respectively embedded CNN and LSTM modules into the prediction layer of DRN 
to reinforce local feature extraction and temporal dependency modeling. 
However, these approaches mainly focus on optimization at the prediction stage, 
overlooking the modeling potential of DRN during the early stages of feature 
extraction, thus limiting the model's expressive power under complex load 
dynamics.

To improve the feature extraction capability of DRN, Ding et al. [25] proposed 
the GoogLeNet-ResNetPlus model, incorporating the Inception convolutional 
structure of GoogLeNet into the DRN feature extraction layer to enhance 
multi-scale load pattern recognition. This study demonstrated the significant 
potential of convolutional structures in strengthening DRN's local feature 
modeling. Other research also confirmed the effectiveness of CNN for local 
feature extraction in STLF tasks. For instance, Cui et al. [26] validated the ability 
of CNN to extract spatial features under diverse climatic conditions, significantly 
improving the model's generalization performance; Hua et al. [27] utilized CNN 
to extract local features from load and weather variables, and integrated them 
with temporal modeling techniques, effectively reducing prediction errors. 
Despite these findings highlighting the strength of CNN in feature extraction for 
STLF, current DRN models still deploy CNN modules only at the prediction stage, 
failing to fully engage them in the early feature extraction process [23]. This 
decoupled design restricts the expressive power of CNN in deep modeling and 
hinders optimal synergy from local feature learning to global prediction.

Therefore, this study proposes an innovative approach that embeds CNN directly 
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into the foundational structure of DRN. By integrating CNN at the early feature 
extraction stage, the model's ability to capture local patterns and short-term 
fluctuations is significantly improved, enhancing prediction accuracy and 
generalization. While previous studies have typically embedded deep learning 
modules within the prediction layer of DRN or appended them as sequential 
components after the DRN output, this design achieves, for the first time, deep 
integration of CNN within the DRN basic structure, offering a new direction for 
optimizing shallow-layer modeling. The proposed CNN-Embedded DRN 
architecture enhances feature representation in the early stages, improves 
robustness, and maintains training stability. Empirical evaluations on two 
benchmark datasets confirm that the method outperforms traditional DRN and 
mainstream models in both accuracy and generalization, demonstrating strong 
adaptability and practical value.

To clearly define the focus of this study, the main objectives are fourfold: (1) to 
integrate CNN-based local feature extraction into the foundational structure of 
DRN for enhancing early-stage representation learning; (2) to employ residual 
connections to mitigate gradient degradation and ensure stable training in deep 
forecasting networks; (3) to evaluate the proposed model’s predictive 
performance against multiple baseline and ablation models—including CNN, 
LSTM, GRU, Transformer, ResNet, and DRN—using datasets from distinct 
climatic regions (temperate and tropical); and (4) to validate the model’s 
robustness and generalization capability through bootstrap-based statistical 
analysis and seasonal evaluation. By achieving these objectives, the proposed 
CNN-Embedded DRN aims to provide a more accurate, stable, and generalizable 
framework for STLF across varying climatic and demand conditions.

The remainder of this paper is organized as follows: Section 2 reviews 
representative deep learning paradigms for STLF, analyzes the foundational 
architecture and limitations of DRN–based models, and introduces the basic 
principles of CNN to motivate their integration into the DRN framework. Section 
3 introduces the proposed CNN-Embedded DRN model, including data 
preprocessing, feature design, and architectural details. Section 4 presents 
experimental results and comparative analyses on the New England Independent 
System Operator (ISO-NE) and Malaysia datasets, examining performance across 
different configurations, baseline models, and seasonal conditions. Section 5 
concludes the paper and discusses potential directions for future work.

2. Related Work
This section reviews existing studies related to deep learning–based STLF, with a 
particular focus on DRN architectures. It first summarizes commonly used deep 
learning approaches for STLF, including convolution-based, recurrent-based, and 
attention-based models. Subsequently, the fundamental principles and 
architectural characteristics of DRN are introduced. The limitations of existing 
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DRN-based frameworks are then analyzed, highlighting their insufficient 
exploitation of feature extraction at the foundational level. Finally, the 
foundational architecture of CNN is reviewed to motivate their integration into 
the DRN framework.

2.1 Deep Learning–Based Methods for Short-Term Load Forecasting
With the rapid growth of data availability and computational resources, deep 
learning techniques have become increasingly prominent in STLF due to their 
strong capability in modeling nonlinear relationships and complex temporal 
patterns. Over the past decade, deep learning–based approaches for STLF have 
been widely adopted, and the commonly used methods mainly include 
convolution-based models, recurrent-based models, and attention-based models, 
each emphasizing different aspects of feature representation and temporal 
dependency learning.

CNNs have been widely applied in STLF for extracting local temporal patterns 
and short-range dependencies. Li et al. [11] proposed a CNN-based forecasting 
approach that transforms load time series into image-like representations to 
enable spatial feature extraction through convolution operations. The model 
effectively improved forecasting accuracy across most time points; however, the 
reliance on image preprocessing and a dual-branch architecture increases 
system complexity and limits scalability for large-scale or real-time applications. 
Jurado et al. [12] further developed an encoder–decoder CNN framework 
combined with Monte Carlo Dropout and probabilistic density estimation to 
enhance uncertainty modeling in STLF. While the approach demonstrated 
notable improvements over conventional recurrent baselines, its forecasting 
performance deteriorated during peak demand periods, indicating limitations in 
capturing extreme load variations.

RNNs, particularly LSTM networks, have been extensively employed in STLF 
owing to their ability to capture sequential dependencies. Narayan and Hipel [13] 
developed a deep LSTM-based framework for regional hourly load forecasting, 
achieving improved performance compared with traditional statistical and 
shallow neural models across multiple seasons. Nevertheless, the absence of 
exogenous variables such as meteorological factors may restrict the model’s 
adaptability in dynamic operating environments. To further enhance LSTM 
performance, Bento et al. [14] introduced an optimized LSTM architecture using 
metaheuristic-based hyperparameter tuning, resulting in improved forecasting 
accuracy. However, the iterative optimization process introduces additional 
computational overhead, which may limit its applicability in large-scale 
forecasting systems.

Bidirectional recurrent architectures have also been explored to strengthen 
temporal feature learning. Kwon et al. [15] proposed a stacked BiLSTM model 
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with feedback mechanisms, demonstrating strong accuracy in day-ahead 
forecasting scenarios. Despite its effectiveness under typical conditions, the 
robustness of the model under irregular load patterns, such as holidays and 
abnormal events, was not comprehensively evaluated. From a hybrid modeling 
perspective, Tang et al. [16] proposed a complex architecture combining deep 
belief networks, Bidirectional RNNs, and ensemble empirical mode 
decomposition. Although this model exhibited strong capability in capturing peak 
load behavior, its multi-stage training process and high structural complexity 
pose challenges for real-time deployment.

In recent years, attention-based and Transformer architectures have attracted 
increasing interest in STLF due to their ability to model long-range dependencies 
through self-attention mechanisms. Ran et al. [17] integrated empirical mode 
decomposition techniques with a Transformer framework to enhance temporal 
feature representation, demonstrating improved forecasting performance. 
However, the reliance on fixed decomposition parameters and prolonged training 
time may limit adaptability to new datasets. Jiang et al. [18] proposed a 
Transformer-based STLF model with an expanded attention range, which 
improved prediction accuracy compared with conventional attention mechanisms 
but incurred higher memory consumption. To further enhance multidimensional 
temporal representation, Li et al. [19] proposed TS2ARCformer, a 
Transformer-based forecasting framework that integrates contextual encoding, 
cross-dimensional attention, and autoregressive components. While the model 
demonstrated superior performance on public datasets, its hierarchical attention 
structure and autoregressive integration increased architectural complexity and 
tuning difficulty for general STLF applications.

Taken together, convolution-based, recurrent-based, and attention-based models 
have each contributed to improving STLF by focusing on local feature extraction, 
sequential dependency modeling, and long-range dependency learning, 
respectively. However, these approaches are often developed to emphasize 
specific modeling capabilities and may encounter challenges when deeper 
architectures are required to jointly capture complex temporal patterns and 
nonlinear relationships. In particular, as network depth increases, training 
stability and performance degradation can become critical issues. These 
observations suggest the need for a more stable and scalable learning framework 
that can support deep model construction. In this context, DRNs, by introducing 
residual connections, provide an effective mechanism for alleviating 
gradient-related issues and enabling deeper architectures, thereby offering a 
solid foundation for advanced STLF modeling.

2.2 Deep Residual Network for Short-Term Load Forecasting
Motivated by the training instability and performance degradation observed in 
deep learning models for STLF, residual learning has been introduced as an 
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effective strategy to facilitate the construction of deeper neural networks. By 
reformulating the learning objective through identity-based shortcut connections, 
residual learning alleviates gradient-related issues and enables stable 
optimization of deep models. This concept, originally introduced in ResNet, was 
subsequently adapted and extended to deep network frameworks, leading to the 
development of DRNs.

2.2.1 Foundational Architecture
The DRN is designed to capture the complex nonlinear relationships between 
input components and the expected outcome [28]. Increasing the depth of a 
neural network usually improves its learning capabilities, but paradoxically, this 
can also cause performance to decline. This decline in effectiveness might be due 
to the complexity of the input data or the intricate structure of the model. The 
architecture incorporates residual blocks to mitigate these challenges. Instead of 
focusing on a simple input-to-output translation, these blocks focus on learning 
the residual function. By employing residual connections, this design improves 
gradient flow, lessens the likelihood of disappearing gradients, and makes it 
easier to train deeper networks effectively. As seen in Fig.1, a ResNet is made up 
of two subsequent layers connected by a skip link.

Fig.1 The foundation block of the ResNet [28].

Equation (1) demonstrates how the skip connection, which functions as an 
identity mapping, generates the ResNet output when the input and output 
dimensions coincide, where xInput stands for the ResNet’s input, youtput  for the 
block output, F for the residual mapping function, and Θ for the function’s 
learnable parameters.

youtput =xInput + F(xInput ,Θ)(1)
When the dimensions of the input and output are different, the skip connection 
makes a linear projection. This linear projection (Lp) is sometimes included in 
the ResNet output, as seen in Equation (2):

youtput =Lp∗xInput + F(xInput ,Θ)(2)

2.2.2 Model Framework
The model comprises two main components: a basic structure and an enhanced 
ResNet variant called ResNetPlus, which together strengthen the model’s 
feature extraction and predictive capability as shown in Fig. 2 [20]. The core 
architecture is the fundamental framework that uses several linked layers to 
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extract fundamental information in order to provide the first 24-hour load 
projections. The predictions are then further refined by integrating ResNetPlus, 
which maintains the original ResNet's block structure while including 
enhancements to boost accuracy and computing efficiency. The Scaled 
Exponential Linear Unit (SELU) is employed as the activation function in both 
the basic structure and the ResNetPlus layers, promoting self-normalizing 
properties and stabilizing training in deeper networks, hence promoting robust 
learning. This combination ensures accuracy and scalability in STLF jobs by 
effectively managing both short-term and long-term dependencies. The SELU 
may be expressed using Equation (3).

f(x)={λx  if x>0
λα(ex−1)  if x≤0(3)

where λ≈1.05 is a normalization scaling factor, α≈1.67 corrects the output for 
negative inputs, and x is the input value. SELU guarantees self-normalization 
and stabilizes the mean and variance between layers.
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Fig.2 The original framework [20].

The "basic structure" of the model is a neural network, which is made up of 
several interconnected layers. With this simple design, the initial load prediction 
for the next 24 hours is generated. Ten hidden nodes are present in each fully 

connected (FC) layer, denoted by [Lday
h ,Tday

h ], [Lweek
h ,Tweek

h ], [Lmonth
h ,Tmonth 

h ] and 

Lhour 
h  in this topology. Five hidden nodes linked to weekdays and season [W, S] 

are present in each FC layer in the interim. The fully linked layers FC1, FC2, and 
the layer before Lh also include ten hidden nodes. It's interesting to note that all 
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but the output layer have activation functions. The load values for the 
corresponding hour from 1, 2, and 3 months before to the target day are 
represented by Lweek

h  in this basic structure, while the load values for the same 

hour from 1 to 8 weeks earlier are represented by Lday
h . Furthermore, while 

Lhour 
h  logs the load values for the same hour for the previous 24 hours, Lday

h  

displays the load values for the same hour on each day of the previous week. 

Additionally, temperature values in Tmonth 
h , Tweek

h  and Tday
h  match those in 

Lmonth
h , Lweek

h  and Lday
h , respectively. The letter Th stands for the actual 

expected temperature for the next day. The one-hot encoded inputs S, W, and H 
stand for the season, weekday, and holiday status, respectively. The output of 
this fundamental structure is used as input in the second phase of the model to 
increase the forecast's accuracy.

The ResNetPlus model is an advanced advancement in neural network 
architecture that maintains the core concepts of the original ResNet while 
introducing notable improvements. This enhanced version includes residual 
blocks, each consisting of two layers: a hidden layer with 20 neurons activated 
by the same nonlinear function (SELU) as used in the basic structure, and a 
linear transformation layer employed to match the feature dimensions required 
for residual addition. The model regularly replicates this structure across 10 
levels, building four of these blocks in succession, each with its own connections, 
to provide a substantial amount of depth and intricacy. A shortcut connection, 
which connects the output of the preceding block directly to the network's input, 
is one of ResNetPlus's special features. This idea simplifies the building of a DRN 
while increasing its overall efficiency. ResNetPlus maintains the 
hyperparameters used in the original ResNet blocks while optimizing the 
architecture to maximize the ResNet design's capabilities.

Equation (4) shows how the two components are added to determine the total 
loss, or Loss, in order to effectively train the models:

Loss=LossE+LossR(4)

To enable a more effective training procedure, LossE computes the prediction 
error and LossR serves as a penalty for values that are outside the range. is 
accurately explained by Equation (5):

LossE=
1

NumH ∑N
j=1  ∑H

h=1  
|y(j,h)−y(j,h)|

y(j,h)
(5)

The expected production is represented by y(j,h) in this equation, whereas the 
actual normalized load for the hth hour of the jth day is represented by y(j,h). 
While H (in this example set to 24) denotes the number of hourly load values 
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each day, the variable refers to the total number of data samples. Furthermore, 
Equation (6) defines LossR:

LossR=
1

2Num ∑Num
j=1  max(0,maxh  y(j,h)−maxh  y(j,h))

 +max(0,minh  y(j,h)−minh  y(j,h)) (6)

This term speeds up early training and emphasizes the penalty of overestimating 
peaks and underestimating troughs in the load curves as the model's predictions 
get more accurate by penalizing the model when the predicted daily load curve 
deviates outside the actual load range.

2.2.3 Current Restrictions
Residual learning has been widely adopted in deep time-series forecasting 
models and is generally regarded as an effective strategy for stabilizing the 
training of deep architectures while enhancing feature representation capability. 
In recent years, within the domain of general time-series forecasting, Challu et al. 
[29] proposed neural hierarchical interpolation for time series forecasting 
(N-HiTS), which extends residual-based forecasting by introducing a hierarchical 
multi-scale residual structure. By progressively decomposing time series into 
different temporal resolutions and refining forecasts through stacked residual 
blocks, N-HiTS achieves improved accuracy while maintaining stable 
optimization behavior. Despite its strong performance on benchmark datasets, 
the model primarily focuses on univariate or general-purpose time-series 
forecasting and does not explicitly consider domain-specific characteristics or 
exogenous variables, which may limit its applicability to complex real-world 
forecasting tasks.

In spatio-temporal modeling tasks such as urban demand and traffic flow 
prediction, residual learning has also demonstrated notable advantages. Zhang 
et al. [30] developed a spatio-temporal residual graph attention network, in 
which residual connections are embedded within a graph attention framework to 
jointly model temporal dynamics and spatial correlations. Although this approach 
enhances the ability to capture complex spatio-temporal dependencies, it 
typically relies on sophisticated graph construction and attention mechanisms, 
which may limit scalability and computational efficiency. Based on a similar 
residual learning paradigm, Bao and Yang [31] proposed a global–local 
spatio-temporal residual correlation network for traffic state prediction. By 
leveraging multi-scale residual structures, this model effectively integrates 
global evolution trends with local dynamic variations. However, its network 
design is primarily tailored to specific traffic scenarios, and its generalization 
capability to other types of time-series forecasting tasks remains to be further 
validated.

Residual learning has subsequently been extended to energy-related forecasting 
tasks. Ashebir and Kim [32] combined residual blocks with variational modeling 
and recurrent neural networks to develop a temporal variational residual 
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framework for energy demand forecasting, significantly enhancing the model’s 
ability to capture multi-scale fluctuations, uncertainty, and nonlinear 
relationships. Nevertheless, the introduction of additional probabilistic modeling 
components increases architectural complexity, making the training process 
more sensitive to parameter initialization and convergence stability. Similarly, in 
the context of urban public transportation systems, Zhang et al. [33] proposed a 
deep residual learning-based framework for short-term passenger flow 
forecasting. By incorporating ResNet-style skip connections, the model alleviates 
gradient degradation in deep architectures and improves training stability. 
However, it still largely relies on conventional spatio-temporal feature modeling 
strategies and exhibits limited capability in capturing long-term temporal 
dependencies and cross-scale feature interactions.

Taken together, existing studies have convincingly demonstrated the 
effectiveness of residual learning in time-series forecasting, traffic systems, and 
energy prediction tasks, particularly in stabilizing deep model training and 
enhancing feature representation. However, most of these approaches are 
designed for general time-series or domain-specific applications and do not 
explicitly address the distinctive characteristics of STLF, such as strong 
periodicity, multi-scale temporal dependencies, and complex nonlinear 
interactions between load demand and exogenous variables. In contrast, DRN, 
through their hierarchical residual structures, provide a more systematic 
architectural foundation for constructing deeper and more stable models that are 
better aligned with the intrinsic properties of this task. Consequently, further 
exploration of how to enhance temporal feature extraction and long-term 
dependency modeling within a DRN-based framework remains a critical research 
direction in this domain.

In current research on STLF based on DRN, many hybrid models have 
incorporated deep learning components to enhance prediction accuracy. 
However, most of these methods integrate such modules only at the model's 
output or prediction stage, failing to fully exploit the modeling potential of the 
foundational structure within DRN during the feature extraction process. This 
design limits the model's capacity to deeply learn local patterns and dynamic 
variations in the early stages of feature extraction, thereby hindering further 
improvements in overall forecasting performance.

For instance, Tian et al. [21] proposed the ResNetPlus-LSTM model by placing 
the LSTM module directly after ResNetPlus to enhance temporal modeling 
capability. Building on this, Li et al. [22] introduced the ResNet-LSTM-Attention 
model, which incorporates LSTM and attention mechanisms after ResNet to 
improve attention to critical information and final forecasting performance.

Some studies have attempted to embed deep learning modules into the internal 

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



14

structure of DRN. Sheng et al. [23] proposed the convolutional residual network 
(CRN) model, which integrates CNN modules into the prediction layer of the 
ResNet framework to strengthen local feature extraction. Sheng et al. [24] 
further proposed the Residual LSTM Plus model, embedding LSTM into the 
prediction layer of DRN to enhance temporal modeling. Although these studies 
achieved internal integration of the modules, they remain primarily focused on 
the prediction phase, failing to fully exploit the feature extraction potential of the 
shallow layers within DRN.

In addition, Ding et al. [25] incorporated the GoogLeNet structure into the 
GoogLeNet-ResNetPlus model to improve the recognition of complex load 
patterns at multiple scales. GoogLeNet, belonging to the Inception network 
family, features parallel multi-scale convolution paths for feature extraction, 
enabling the integration of hierarchical information while maintaining 
computational efficiency. This study demonstrates that convolutional structures 
have significant potential in enhancing DRN's feature extraction capabilities, 
particularly in spatial and local pattern modeling.

Further research has validated the effectiveness of CNN in feature extraction for 
STLF tasks. Cui et al. [26] demonstrated CNN's strength in capturing spatial 
features, significantly improving model generalization and robustness under 
diverse climate conditions. Hua et al. [27] applied CNN to extract local features 
from load and meteorological variables and combined it with temporal modeling 
structures, effectively reducing prediction error and enhancing responsiveness 
to dynamic load changes. These studies indicate that CNN performs well in 
mining local and spatial patterns in input data and supports power load modeling 
in complex environments. However, despite its demonstrated importance in 
feature extraction, most existing methods still adopt a single structural 
integration strategy: CNN modules are typically deployed as independent 
pre-processing structures, lacking deep integration with the backbone network. 
This decoupled design limits the CNN's expressive power in deep feature 
modeling and its capacity for global optimization, making it difficult to fully 
leverage its potential.

In order to overcome the design limitations of previous studies where CNN 
modules were embedded only at the prediction layer, this study introduces CNN 
into the foundational structure of the DRN, achieving deep integration between 
CNN and the basic structure of DRN during the feature extraction stage. 
Existing research typically connects deep learning modules after the DRN or 
embeds them into the prediction layer (such as the current study that embeds 
CNN into the prediction layer of DRN [23]), which fails to effectively participate 
in the feature extraction process and limits the model's ability to learn local 
features. In contrast, the fusion strategy proposed in this study enhances the 
model's perception of local patterns, not only improving the expressive power of 
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shallow-layer modeling, but also strengthening the network's nonlinear modeling 
capability and generalization performance. It expands the design space of DRN 
structures in STLF tasks and provides a new structural design perspective and 
development direction for optimizing the feature extraction mechanism at the 
foundational level.

In contrast to prior DRN-based hybrid architectures that integrate CNN or LSTM 
modules only at the prediction layer, the proposed model introduces a 
fundamentally different design by embedding CNN directly into the DRN’s basic 
structure. This deep integration allows CNN to participate in the early-stage 
feature extraction process rather than acting as a post-processing module. As a 
result, the model captures localized temporal dependencies and hierarchical load 
features more effectively, establishing a clear structural distinction from existing 
DRN-based hybrid frameworks.

2.3 CNN Foundational Architecture
Time series data modeling frequently uses CNNs, which are powerful tools for 
extracting features from sequential data [34]. One-dimensional convolutional 
neural network (1D CNN) efficiently capture local temporal patterns and 
enhance prediction accuracy in STLF by applying convolution operations along 
the time axis. A typical 1D CNN architecture consists of a one-dimensional 
convolutional layer (Conv1D), a one-dimensional pooling layer (Pooling1D), and a 
FC layer [35]. Each Conv1D layer applies multiple filters, with each filter 
consisting of one or more kernels that slide over the input to extract local 
features. After each convolution operation, a non-linear activation 
function—commonly the Rectified Linear Unit (ReLU)—is applied to introduce 
non-linearity and enhance the model's capacity to learn complex temporal 
relationships. The ReLU activation function is mathematically defined as 
Equation (7):

f(x)=max(0,x)(7)
In this function, x represents the input to the activation function, typically the 
weighted sum of a neuron's inputs. When the x is greater than zero, the output 
is equal to the input; otherwise, the output is zero. This simple yet effective 
formulation enables ReLU to accelerate training convergence and avoid 
vanishing gradient problems.

As illustrated in Fig.3, the input signal passes through stacked convolutional 
layers, where the receptive fields grow progressively to capture more abstract 
temporal features. These convolutional layers can process multiple time steps in 
parallel, thereby improving computational efficiency. Following the convolution, 
pooling layers—such as max pooling, average pooling, or global average pooling 
(GAP)—are typically applied to reduce the dimensionality of feature maps, 
suppress noise, and enhance generalization. GAP performs an average operation 
over the entire receptive field of each feature map, effectively compressing the 
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output and significantly reducing the number of parameters. 

Fig.3 Architecture of 1D CNN [35].

In the context of one-dimensional time-series modeling, one-dimensional global 
average pooling (GAP1D) is used to average across the entire temporal 
dimension of each feature map. This not only helps mitigate overfitting but also 
improves model robustness and interpretability, especially when followed by 
fully connected layers. The final high-level features are then passed to one or 
more fully connected layers, which integrate the information and generate the 
prediction output.

Due to its limited receptive field, the 1D CNN is particularly effective in 
capturing short-term temporal dependencies, such as intra-day or inter-day 
fluctuations, thus demonstrating strong feature extraction capabilities in STLF. 
Through local convolution operations, CNNs can efficiently extract local 
temporal features while significantly enhancing computational efficiency and 
accelerating model convergence. However, when used alone, CNNs face certain 
limitations in modeling long-term dependencies, primarily because their small 
receptive fields make it difficult to comprehensively capture dynamic patterns 
over extended time horizons.

2.4 Summary
This section reviewed representative deep learning approaches for STLF, 
including convolution-based, recurrent-based, and attention-based models, and 
discussed their respective strengths and limitations. The principles and 
architectural characteristics of DRNs were then introduced, followed by a 
detailed analysis of the limitations of existing DRN-based frameworks, 
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particularly their insufficient exploitation of feature extraction at the 
foundational level. In addition, the basic architecture and feature extraction 
capability of CNN were reviewed to highlight their effectiveness in modeling 
local temporal patterns. Based on these analyses, the motivation for embedding 
CNN directly into the basic structure of DRN is clearly established. The next 
chapter presents the research methodology, datasets, and experimental setup 
used to evaluate the proposed model.

3. Methodology of Research
This section presents the research methodology adopted in this study, including 
data selection, preprocessing, model design, and experimental setup. It first 
describes the characteristics of the ISO-NE and Malaysia datasets, which 
represent temperate and tropical climatic conditions, respectively. Then, the 
section details the architecture of the proposed model, its input features, and the 
training configuration. Finally, it outlines the evaluation indicators and 
experimental framework used to assess forecasting performance and model 
generalization capability.

3.1 Research Data
Irregular formats, noise, incomplete entries, and missing values are common 
issues in real-world datasets [36], making data preprocessing an essential step to 
ensure the reliability and robustness of forecasting models. This study employed 
two actual datasets—ISO-NE and Malaysia—which offer contrasting insights into 
STLF under distinct climatic and demand conditions. The ISO-NE dataset 
provides hourly load and temperature records from March 2003 to December 
2014, representing a temperate climate with strong annual and seasonal 
variations. It covers six states of the United States of America (Connecticut, 
Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont), which 
together constitute the New England power grid. For the ISO-NE dataset, the 
regional hourly temperature data were used as observed inputs rather than 
forecasted data. In contrast, the Malaysia dataset comprises nationwide hourly 
load data combined with the regional daily mean, maximum, and minimum 
temperature data of Petaling Jaya from January 2020 to December 2022, 
representing a tropical climate characterized by relatively stable consumption 
patterns. No forecasted meteorological information was used in this study; all 
weather variables were obtained from historical observations to ensure that the 
forecasting model relies solely on data available up to the prediction point. The 
ISO-NE data, preprocessed by its provider, were directly adopted as a 
benchmark, whereas gaps in the Malaysia dataset were filled using linear 
interpolation to maintain chronological continuity. Fig. 4 shows that most 
ISO-NE load values range from approximately 7500 MW to 27500 MW with clear 
seasonal fluctuations, while Malaysia’s values mainly lie between 10000 MW and 
18000 MW, reflecting steadier tropical demand. Finally, both datasets were 
normalized to ensure that all input features operated on a consistent scale.
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Fig.4 (a) Load data in ISO-NE dataset; (b) Load data in Malaysia dataset.

3.2 Proposed CNN-Embedded DRN for STLF
3.2.1 The Proposed Model
The proposed model consists of two key components: the CNN-Embedded basic 
structure and the ResNetPlus network is depicted in Fig.5. The first component 
is a modified version of the original basic structure, where CNN blocks are 
integrated to process input data and produce an initial 24-hour load forecast. 
The second component is the ResNetPlus network, which refines the initial 
output to generate the final prediction, thereby improving forecasting accuracy 
and overall model performance.
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Fig.5 Proposed model’s framework.

In the first component of the model, CNN blocks are inserted into the original 
basic structure. It is important to note that the input variables used in the 

modified model still include (Lhour 
h , Lday

h , Lweek
h , Lmonth

h , Tday
h , Tweek

h , Tmonth 
h , S, 

W and H.). Specifically, the long-term load variables (such as Lday
h , Lweek

h , Lmonth
h ) 

and long-term temperature variables (such as Tday
h , Tweek

h , Tmonth 
h ) are processed 

through CNN blocks for feature extraction. The Conv1D configurations in the 
CNN block, including the number of filters and kernel sizes, are treated as 
hyperparameters to be optimized. Multiple configurations are tested during the 
experimental phase to identify the most effective setting, as detailed in the 
Experimental Setup section. After Conv1D in the CNN block, GAP1D is applied to 
compress each feature map into a single representative value. This operation 

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



20

reduces the number of parameters and helps mitigate overfitting, while 
preserving the most relevant temporal features for each input. Embedding CNN 
at the early feature-extraction stage provides unique advantages over 
conventional hybrid designs. By allowing convolutional operations to process raw 
input features before residual refinement, the model captures localized load and 
temperature patterns at multiple temporal scales. This enhances the 
discriminative representation of short-term fluctuations while preserving the 
continuity of residual learning in later stages. In contrast, previous DRN-based 
hybrids that introduce CNN after the residual blocks primarily enhance post-hoc 
refinement, offering limited improvement to initial feature representation.

In the CNN-Embedded basic structure, each sub-network independently predicts 
the load for a specific hour in the future. By combining the prediction results of 
24 sub-networks, the model generates an initial forecast for the entire next day’s 
load, as shown in Fig. 6. It is worth noting that SELU is used as the default 
activation function for all layers in the model, except for the CNN blocks, which 
employ the ReLU activation, and the output layer. In this stage, the 
CNN-Embedded basic structure receives historical load, temperature, and 
temporal variables and applies convolutional operations to extract localized 
temporal dependencies. The Conv1D layers capture short-term load fluctuations 
as well as correlations between recent demand patterns and temperature 
variations. Subsequently, a global average pooling layer aggregates these 
localized features into compact representations, which are used to generate the 
initial forecast. Each of the 24 sub-networks focuses on one specific hour of the 
next day, and their outputs are concatenated to form a complete 24-hour-ahead 
load forecast sequence.
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Fig.6 The proposed model basic structure in ISO-NE dataset.

In the second stage, the ResNetPlus network is employed to further refine the 
initial 24-hour load forecast generated by the CNN-Embedded basic structure. 
The number of layers and structural components of the ResNetPlus network 
remain unchanged, ensuring consistency with the original DRN framework. 
Through residual blocks with identity shortcut connections, ResNetPlus captures 
longer-term dependencies while maintaining stable gradient flow during deep 
training. These residual connections allow information extracted in earlier layers 
to be preserved and reused, thereby enhancing continuity between short-term 
and long-term feature representations.

The model is trained in an end-to-end manner using the same loss function as the 
original DRN, which combines the mean squared error with an additional penalty 
term to constrain predictions within a realistic demand range. By refining the 
preliminary predictions produced in the first stage, the ResNetPlus network 
improves forecasting accuracy and robustness without introducing additional 
structural complexity. This two-stage learning strategy enables the proposed 
CNN-Embedded DRN to effectively integrate localized feature extraction and 
deep residual learning for stable and accurate STLF.

3.2.2 Input Features in the Proposed Model
The ISO-NE and Malaysia datasets used in this study exhibit significantly 
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different temporal granularities, necessitating distinct feature processing 
methods. The ISO-NE dataset's hourly load Lhour 

h  and temperature Tmonth 
h ,

Tweek 
h ,Tday 

h  values are supplied straight into the model. The original 

CNN-Embedded basic structure combines S, W, and H information with load 

characteristics Lmonth 
h ,Lweek 

h ,Lday 
h  depending on different temporal ranges to 

provide model inputs. S is made up of the seasons spring, summer, autumn, and 
winter; H is made up of Christmas, Independence Day, and other holidays. 

Whereas the Malaysia dataset provides just daily temperature data, including 
Tmean,Tmax,Tmin, the ISO-NE dataset provides hourly temperature data. The 
altered CNN-Embedded basic structure is shown in Fig.7. To address this 
disparity, the basic structure was modified to accept daily temperature data as 
input directly. The daily temperature data Tmean ,Tmax,Tmin are concatenated as 
a single feature input in the updated model without temporal segmentation. 

While this is going on, load feature Lmonth 
h ,Lweek 

h ,Lday 
h  processing continues to 

retrieve data from the last 24 hours, 8 weeks, and 3 months. Temperature and 
load data, along with date-related information like S, W, and H, make up the 
model's final input.While S is divided into two seasons—the rainy season and the 
dry season—H includes occasions like Eid al-Fitr and Malaysia Independence 
Day.

Fig.7 The proposed model basic structure in Malaysia dataset. 

This change simplifies the preparation procedures and enables the direct use of 
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the daily temperature parameters from the Malaysia dataset by minimizing the 
repetition caused by converting daily data into hourly data. With the exception of 
how temperature variables that rely on temporal granularity are handled, the 
new model handles load characteristics and date information uniformly for both 
datasets.  By doing this, the model's adaptability and generalizability to datasets 
with different temporal resolutions are guaranteed.

3.3 Experimental Setup
This study evaluates the performance of the proposed model through 
experiments and compares it with several benchmark and variant models 
commonly used for STLF. These include the conventional CNN model, 
RNN-based models (LSTM, GRU, BiLSTM, BiGRU), and Transformer. In addition, 
four residual-based architectures—ResNet, CNN-Embedded ResNet, the original 
DRN, and the proposed CNN-Embedded DRN—were designed as complementary 
ablation variants to systematically analyze the effects of the CNN block and the 
deeper residual architecture. Two real-world datasets were used: the ISO-NE 
dataset and the Malaysia dataset. The details of the training and testing 
partitions for both datasets are summarized in Table 1. These datasets represent 
two distinct climatic regions—temperate (ISO-NE) and tropical 
(Malaysia)—providing diverse scenarios for model evaluation.

Table 1 Summary of dataset partitions used for training and testing.

Dataset
Training 
Period

Traini
ng 

Sampl
es

Testing 
Period

Testing 
Samples

ISO-NE
2003.03-2005

.12
24888

2006.01-2006
.12

8760

Malaysia
2020.01-2021

.12
17544

2022.01-2022
.12

8760

The CNN block in the proposed CNN-Embedded DRN model consists of Conv1D 
layers followed by a GAP1D layer. To explore the optimal configuration of the 
CNN block, hyperparameter tuning experiments were conducted on the ISO-NE 
dataset. The experiments systematically varied two key hyperparameters: the 
number of filters in the Conv1D layers and the kernel size. Specifically, five 
settings were considered for the number of filters: 16, 32, 64, 128, and 256; and 
four settings for the kernel size: 1, 3, 5, and 7. This resulted in a total of 20 
configurations. All other parameters were kept constant to isolate the effects of 
these variations. The Conv1D layers used ReLU activation with He normal 
initialization, ‘same' padding, and a stride of 1. The GAP1D layer was applied 
after the convolution to compress each feature map into a single representative 
value, reducing parameters and helping mitigate overfitting.
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The CNN baseline model used in this study adopted the same CNN block 
configuration as that in the proposed CNN-Embedded DRN model to ensure fair 
comparison. Similarly, for the RNN-based baseline models, the number of units 
in each recurrent layer (LSTM, GRU, BiLSTM, BiGRU) was set equal to the 
number of filters used in the CNN configurations, enabling consistent capacity 
across models for comparative analysis. For the Transformer baseline model, the 
embedding dimension was set equal to the number of filters in the CNN 
configurations. The Transformer adopted a standard encoder-only structure with 
one encoder layer, eight attention heads (each with 64 dimensions when the 
embedding dimension allowed), and a feed-forward network dimension of 2048. 
Other components, such as positional encoding and dropout (0.1), were kept at 
default settings to ensure consistency. The DRN model was implemented using 
its default parameter settings as defined in the original framework, while the 
ResNet architecture, similar to the DRN, also employed the SELU activation 
function and consisted of ten stacked layers, each being a SELU-activated layer 
with 20 neurons, to maintain structural consistency.

The model was trained for over 700 epochs in total, including an initial training 
phase of 600 epochs followed by two rounds of short-term training, each 
consisting of 50 epochs [20]. During the later stages, three model snapshots 
were saved at the end of each 50-epoch segment. This technique, known as 
snapshot ensemble [37], mitigates overfitting and enhances training stability by 
averaging predictions from multiple model checkpoints. By combining these 
snapshots, the method reduces the risk of overfitting associated with a single 
model and improves both prediction stability and generalization capability. 
Furthermore, this ensemble approach provides a computationally efficient 
alternative to performing multiple independent training trials while maintaining 
comparable robustness and stability in forecasting performance [38]. The 
training process adopted commonly used default parameter settings from 
previous studies, with the loss function defined as the MAPE to evaluate 
forecasting accuracy. The Adaptive Moment Estimation (Adam) [39] optimizer 
was employed with an initial learning rate of 0.001 to achieve efficient adaptive 
learning.

A nonparametric Bootstrap resampling method with 10000 iterations was used to 
thoroughly evaluate if the improved model's performance increase was 
statistically significant. Unlike the paired Student’s t-test, which assumes that 
paired differences follow a normal distribution, the Bootstrap method is free 
from such distributional constraints, offering a more robust basis for 
performance comparison [40]. Statistical significance was evaluated using two 
criteria. First, if the 95% confidence interval (CI) of the mean performance 
difference lies entirely above zero, the improvement is considered significant at 
the 95% confidence level; if zero is contained within the interval, the difference 
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is deemed insignificant. Second, within the Bootstrap framework, a p-value 
below 0.05 similarly indicates significance at the 95% level. It should be noted 
that p ≈ 0 represents an extremely small probability (typically < 0.0001) rather 
than an actual zero. MAPE was employed as the evaluation metric owing to its 
widespread use in STLF research and its interpretable, scale-independent 
representation of relative prediction error.

All experiments were conducted in a Python 3.8 environment using TensorFlow 
2.10.0 and Keras 2.10.0 as the deep learning backends. For the tests, a Lenovo 
laptop equipped with an AMD Ryzen 7 6800H CPU, 16GB DDR5 4800MHz RAM, 
and an NVIDIA GeForce RTX 3050 Ti Laptop GPU (4GB) was utilized.

3.4 Evaluation Indicators
To compare the performance of different DRN models in STLF, researchers have 
employed a range of criteria to assess prediction precision [20-25]. MAPE is the 
most often used statistic among them due to its interpretability and effectiveness 
in evaluating relative forecasting precision across different datasets and scales. 
Mean Absolute Error (MAE), Mean Square Error (MSE), Normalized Mean 
Square Error (NMSE), Root Mean Square Error (RMSE), Correlation Coefficient 
(R), and Coefficient of Determination (R²) are additional metrics that have been 
used in previous studies in addition to MAPE. Different studies employ different 
evaluation criteria, depending on the specific forecasting objectives and dataset 
characteristics. Each of these measurements has a formula in equations (8) 
through (14).

MAPE=
1
N ∑N

i=1  |yi-yi
yi |×100 (8)

RMSE=
1
N ∑N

i-1  (yi-yi)2 (9)

MAE=
1
N ∑N

i-1  |yi-yi| (10)

MSE=
1
N ∑N

i-1  (yi-yi)2 (11)

NMSE= ∑N
i-1  (yi-yi)2

N σ2
y

 (12)

R=
∑N

i-1  (yi-y) (yi-y)
∑N

i-1  (yi-y)2∑N
i-1  (yi-y)2

 (13)

R2=1- ∑N
i-1  (yi-yi)2

∑N
i-1  (yi-y)2

 (14)

A description of the parameters utilized in these measures is provided below: yi 
represents the actual value of the i-th sample, yi represents the predicted value 
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of the i-th sample, and N represents the total number of input samples. 

Additionally, σ2
y stands for the variance of the actual values, which is used to 

normalize MSE in the calculation of NMSE, while y and y indicate the mean 
values of all actual and forecast values, respectively. The metrics are able to 
assess model performance comprehensively by considering the correlation 
between actual and expected values, prediction accuracy, and error magnitude. 
Reduced prediction errors and improved generalization capacity are frequently 
shown by smaller values for MAPE, RMSE, MAE, MSE, and NMSE. On the other 
hand, R and R² values nearer 1 suggest stronger model fitting ability and higher 
forecast precision.

3.5 Summary
This section described the overall research methodology, including dataset 
selection, preprocessing procedures, model architecture, and experimental 
configurations. The proposed CNN-Embedded DRN framework integrates 
convolutional feature extraction and deep residual learning to improve STLF 
accuracy and robustness across different climatic conditions. The subsequent 
chapter presents the experimental results, comparative analyses, and 
discussions to validate the model’s effectiveness.

4. Results and Discussion of The Experiment
This section discusses the experimental results and comparative analyses of the 
proposed model. It first evaluates the performance of the model under different 
CNN configurations, followed by comparisons with various baseline and ablation 
models. The section further examines the model’s robustness across different 
seasons and climatic conditions and validates the statistical significance of its 
improvements using Bootstrap analysis. These comprehensive evaluations 
collectively demonstrate the effectiveness and generalization ability of the 
proposed approach for STLF.

4.1 Performance of the Model with Different Settings
To evaluate the effectiveness of the proposed CNN-Embedded DRN model, a 
series of experiments were conducted on the ISO-NE dataset by varying the 
number of filters and kernel sizes within the CNN module. The primary objective 
was to determine the optimal configuration of CNN hyperparameters that 
minimizes forecasting error while maintaining computational efficiency. Table 2 
presents the MAPE values obtained under different CNN parameter settings, 
followed by an in-depth analysis of the results.

As shown in Table 2, both the number of filters and kernel size substantially 
influence forecasting accuracy. Moderate configurations generally yield more 
stable results, whereas excessively small or large kernels tend to cause 
performance degradation. Among all tested settings, the combination of 32 
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filters and a kernel size of 1 achieved the lowest MAPE of 0.015303, indicating 
that a relatively shallow convolutional layer with a narrow receptive field can 
effectively capture short-term temporal dependencies in the ISO-NE dataset. 
This finding aligns with the dataset’s intrinsic characteristics, where local load 
and temperature fluctuations exhibit strong short-range periodicity and 
recurring patterns. The use of a small kernel minimizes feature smoothing, while 
32 filters provide sufficient representation capacity without introducing 
overfitting.

Table 2 Comparison of MAPE for CNN-Embedded DRN Using Different 
CNN Hyperparameter Settings

Filters Kernel Size MAPE
16 1 0.016965
16 3 0.016120
16 5 0.015818
16 7 0.017018
32 1 0.015303
32 3 0.015788
32 5 0.017202
32 7 0.017036
64 1 0.016640
64 3 0.016380
64 5 0.016796
64 7 0.015582

128 1 0.016635
128 3 0.016542
128 5 0.015687
128 7 0.016929
256 1 0.015975
256 3 0.016505
256 5 0.016547
256 7 0.016179

Interestingly, configurations such as 64 filters with a kernel size of 7 and 128 
filters with a kernel size of 5 also achieved competitive MAPE values of 0.015582 
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and 0.015687, respectively. This observation suggests that larger kernels can 
occasionally improve performance when accompanied by an adequate number of 
filters, as the wider receptive field enables the model to capture slightly 
longer-term temporal dependencies. However, this advantage only appears when 
the network has sufficient capacity to preserve diverse feature representations. 
When the filter count is low (e.g., 16 or 32), large kernels tend to oversmooth 
local patterns, leading to performance degradation—as seen in the 16-filter 
configuration with kernel size 7 (MAPE = 0.017018) and the 32-filter 
configuration with kernel size 5 (MAPE = 0.017202).

Furthermore, increasing the number of filters beyond 128 fails to produce 
consistent performance gains. Although deeper configurations possess greater 
representational power, their increased complexity introduces redundancy and 
the risk of overfitting, leading to unstable or suboptimal generalization. For 
example, the 256-filter setting produced MAPE values above 0.0159 in all kernel 
size combinations, providing no tangible improvement over lighter models. These 
results confirm that simply enlarging network capacity does not necessarily 
enhance predictive accuracy and that a balance between model complexity and 
dataset characteristics must be maintained.

In general, kernel sizes of 1 and 5 yielded the most favorable and stable 
outcomes across different filter settings. While kernel 1 focuses on fine-grained 
short-term variations, kernel 5 offers a balance between short-term and slightly 
extended temporal feature capture. In contrast, kernel 7, which enlarges the 
receptive field excessively, may introduce redundant or smoothed 
representations that obscure critical load fluctuations.

Taken together, these results demonstrate that CNN hyperparameters have a 
considerable impact on forecasting accuracy and should be tuned carefully to 
achieve an optimal trade-off between accuracy, generalization, and 
computational cost. Based on the empirical findings, the configuration of 32 
filters and kernel size 1 is selected as the optimal CNN setting in the proposed 
model. This configuration achieves the best performance (MAPE = 0.015303) 
while maintaining model efficiency and interpretability. Moreover, it surpasses 
the accuracy of advanced DRN-based models reported in prior 
research—reducing MAPE by approximately 11.56% compared to the CRN model 
(MAPE = 0.0173) [23] and by about 1.90% compared to the Residual LSTM Plus 
model (MAPE = 0.0156) [24]. These results further validate the effectiveness of 
embedding CNN layers into the foundational DRN structure to enhance 
early-stage feature extraction and overall forecasting performance.

4.2 Contrast with Base Models
4.2.1 ISO-NE Dataset 

Table 3 Comparison of the proposed model with base models in ISO-NE 
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dataset

Model MAPE RMSE MAE MSE NMSE R R²

CNN
0.02422

4
0.02439

3
0.01581

5
0.00059

5
0.03948

2
0.98069

6
0.96051

8

LSTM
0.02327

7
0.02328

3
0.01516

3
0.00054

2
0.03596

8
0.98260

2
0.96403

2

GRU
0.01861

2
0.01898

6
0.01207 0.00036

0.02391
8

0.98804
2

0.97608
2

BiLSTM 0.02166
0.02240

4
0.01417

5
0.00050

2
0.03330

6
0.98325

5
0.96669

4

BiGRU
0.01992

1
0.01965

1
0.01280

3
0.00038

6
0.02562

4
0.98739

2
0.97437

6

Transformer
0.02192

5
0.02274

9
0.01435

2
0.00051

7
0.03433

7
0.98276

3
0.96566

3

ResNet
0.01828

6
0.01787

9
0.01166

3 0.00032 0.02121
0.99010

5 0.97879
CNN-Embedded 

ResNet
0.01734

6
0.01819

3
0.01119

1
0.00033

1
0.02196

2
0.98905

7
0.97803

8

DRN
0.01718

2
0.01754

8
0.01113

8
0.00030

8
0.02043

2
0.98976

7
0.97956

8
CNN-Embedded 

DRN
0.0153

03
0.0162

77
0.0098

40
0.0002

65
0.0175

80
0.9912

37
0.9824

20

The experimental results for the ISO-NE dataset are summarized in Table 3 and 
visualized in Fig.8. Among the baseline models, the DRN achieved the best 
performance, with a MAPE of 0.017182, RMSE of 0.017548, MAE of 0.011138, 
MSE of 0.000308, and NMSE of 0.020432. It also attained high correlation 
metrics, with R = 0.989767 and R² = 0.979568. These results highlight the 
effectiveness of residual learning in mitigating gradient degradation and 
improving model stability, which enabled the DRN to outperform conventional 
architectures.
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Fig.8 A comparison between the proposed model and the baseline models in 
ISO-NE Dataset: (a) MAPE, RMSE, MAE, MSE, NMSE; (b) R and R².

To further investigate the effect of residual learning and convolutional feature 
extraction, two additional ablation models—ResNet and CNN-Embedded 
ResNet—were introduced. The ResNet, representing a classical residual 
framework, achieved a MAPE of 0.018286, confirming the advantage of 
skip-connection mechanisms but still performing slightly worse than the DRN. 
This difference suggests that the deeper structure and refined residual mapping 
in DRN provide stronger feature propagation and learning stability. When 
convolutional layers were incorporated into the residual framework, the 
CNN-Embedded ResNet improved the MAPE to 0.017346 and achieved 
consistent gains across all other metrics compared with the standard ResNet. 
These results verify that embedding convolutional layers within residual blocks 
enhances local pattern extraction and complements residual learning for more 
effective spatiotemporal representation.

The GRU and BiGRU models also demonstrated relatively strong performance, 
with GRU recording a MAPE of 0.018612 and BiGRU achieving 0.019921. Their 
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RMSE and MAE values were similarly competitive, showing that gated recurrent 
units can effectively capture temporal dependencies in the ISO-NE dataset. 
However, their performance lagged slightly behind the DRN-based models, 
suggesting that residual learning adds significant value beyond recurrent 
temporal modeling alone. In contrast, standard CNN and LSTM architectures, 
such as CNN (MAPE 0.024224) and LSTM (MAPE 0.023277), exhibited higher 
error rates because they struggled to fully capture the complex seasonal and 
daily patterns present in the dataset. The Transformer model achieved moderate 
results (MAPE 0.021925), benefiting from its self-attention mechanism but still 
not matching the residual-based architectures. This may be due to the relatively 
short input sequences and the dataset’s strong periodicity, which favor models 
with explicit residual connections.

When compared to these baselines and ablation variants, the proposed 
CNN-Embedded DRN demonstrated a clear performance advantage. It achieved 
the lowest MAPE of 0.015303, improving upon the original DRN by over 10% in 
relative error reduction. Similarly, its RMSE (0.016277) and MAE (0.009840) 
were the smallest among all models, indicating better absolute accuracy. The 
MSE (0.000265) and NMSE (0.017580) were also the lowest, showing enhanced 
robustness in minimizing both raw and normalized prediction errors. The 
correlation metrics were the highest observed (R = 0.991237, R² = 0.982420), 
confirming the model’s superior fit to actual load values. These results 
demonstrate that integrating CNN-based local feature extraction into the 
residual learning framework enables the model to more effectively capture both 
fine-grained temporal patterns and long-term seasonal trends. The CNN module 
enhances the DRN’s ability to identify local load fluctuations, while the residual 
connections ensure stable deep learning and mitigate degradation. Together, 
these components contribute to superior forecasting accuracy and generalization 
performance on the ISO-NE dataset.

4.2.2 Malaysia Dataset 
The experimental results for the Malaysia dataset are presented in Table 4 and 
Fig.9. Among the baseline models, the DRN once again achieved the best 
performance, with a MAPE of 0.052514, RMSE of 0.045278, MAE of 0.026467, 
MSE of 0.002050, and NMSE of 0.072007. Its correlation metrics (R = 0.964032, 
R² = 0.927993) were the highest among the baseline models. These results 
confirm the advantage of residual learning even in a tropical dataset where load 
patterns are relatively stable and less affected by seasonal fluctuations.

Table 4 A comparison between the proposed model and the baseline 
models in the Malaysia dataset

Model MAPE RMSE MAE MSE NMSE R R²

CNN
0.05343

4
0.04581

7
0.02703

0
0.00209

9
0.07373

1
0.96274

6
0.92626

9
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LSTM
0.05519

5
0.04808

0
0.02833

5
0.00231

2
0.08119

7
0.95984

2
0.91880

3

GRU
0.05663

5
0.04937

8
0.02836

8
0.00243

8
0.08563

8
0.95706

8
0.91436

2

BiLSTM
0.05552

1
0.05012

4
0.02982

1
0.00251

2
0.08824

5
0.95656

9
0.91175

5

BiGRU
0.05451

1
0.04869

0
0.02803

7
0.00237

1
0.08326

8
0.95828

1
0.91673

2

Transformer
0.05401

6
0.04624

7
0.02674

1
0.00213

9
0.07512

4
0.96171

0
0.92487

6

ResNet
0.05951

7
0.04919

6
0.03089

6
0.00242

0
0.08501

0
0.95900

0
0.91499

0
CNN-Embedded 

ResNet
0.05178

4
0.04512

2
0.02622

3
0.00203

6
0.07151

4
0.96453

8
0.92848

6

DRN
0.05251

4
0.04527

8
0.02646

7
0.00205

0
0.07200

7
0.96403

2
0.92799

3
CNN-Embedded 

DRN
0.0505

66
0.0447

19
0.0246

29
0.0019

99
0.0702

41
0.9654

33
0.9297

59
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Fig.9 A comparison between the proposed model and the baseline models in 
Malaysia Dataset: (a) MAPE, RMSE, MAE, MSE, NMSE; (b) R and R².

To evaluate the contribution of convolutional embedding in residual frameworks, 
two ablation models—ResNet and CNN-Embedded ResNet—were again 
considered. The ResNet model recorded a MAPE of 0.059517, slightly higher 
than that of the DRN, indicating that the deep residual mapping and enhanced 
skip connections in DRN offer superior learning capability. When CNN layers 
were introduced into the residual blocks, the CNN-Embedded ResNet achieved a 
MAPE of 0.051784, outperforming both ResNet and DRN in this dataset. This 
demonstrates that CNN-based local feature extraction can effectively 
complement residual learning by capturing subtle load fluctuations that would 
otherwise be smoothed out in a relatively stable tropical environment.

The performance of other baseline models followed a similar trend as observed 
in the ISO-NE dataset. CNN and Transformer models provided competitive 
results, with CNN achieving a MAPE of 0.053434 and Transformer achieving 
0.054016. These models were able to capture general load patterns but fell short 
in precision compared to DRN-based models. The recurrent models, including 
LSTM (0.055195), GRU (0.056635), BiLSTM (0.055521), and BiGRU (0.054511), 
exhibited slightly higher error rates. The smaller performance gap between 
models suggests that the Malaysia dataset’s more stable and less volatile load 
profile reduces the relative advantage of architectures specialized in handling 
temporal dependencies.

The CNN-Embedded DRN delivered the best performance across all evaluation 
metrics. It achieved the lowest MAPE of 0.050566, representing a noticeable 
improvement over the original DRN (0.052514) and other baselines. Its RMSE 
(0.044719) and MAE (0.024629) were also the smallest, demonstrating enhanced 
absolute accuracy. The MSE (0.001999) and NMSE (0.070241) further confirmed 
its advantage in minimizing prediction errors, while the highest R (0.965433) 
and R² (0.929759) values indicated a stronger correlation between the predicted 
and actual load values than any other model tested. These findings highlight the 
CNN-Embedded DRN’s ability to capture subtle variations in the Malaysia 
dataset despite its smoother load patterns. The CNN layers contribute to 
improved local feature extraction, which helps the model identify minor load 
fluctuations, while the residual connections continue to play a key role in 
ensuring stable and efficient learning. Collectively, the inclusion of ResNet and 
CNN-Embedded ResNet as ablation experiments further validates the superiority 
and robustness of the proposed CNN-Embedded DRN architecture across 
datasets with different climatic characteristics.

4.3 Seasonal Variations in the Proposed Model’s Performance
At last, this work uses test data from several seasons in the ISO-NE and Malaysia 
datasets to assess and compare the CNN-Embedded DRN model's performance. 
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The model's prediction accuracy and capacity for generalization across seasons 
are further confirmed by include DRN as a benchmark for comparison study. The 
first week (168 hours) of data from various seasons is chosen as the test set for 
both the ISO-NE and Malaysia datasets in order to guarantee the experiment's 
fairness and the accuracy of the findings. This enables an evaluation of the 
model's flexibility and predictive capabilities over a range of time periods.

A comparison between the actual load curves in the ISO-NE dataset over the four 
seasons (spring, summer, autumn, and winter) and the load forecast curves of 
several models is shown in Fig.10. It is evident that, throughout all seasons, the 
CNN-Embedded DRN's prediction curve closely resembles the real load, showing 
low error and strong trend alignment. This suggests that the model can retain 
high forecast accuracy, efficiently capture patterns of load changes throughout 
seasons, and adjust to seasonal variations in load demand.

Fig.10 The model's performance on the ISO-NE dataset for different seasons: (a) 
Spring, (b) Summer, (c) Autumn, and (d) Winter (forecast values are normalized).

Fig.11 further illustrates the comparison between the actual and predicted load 
curves of several models on the test set of the Malaysia dataset during both the 
wet and dry seasons. Given that the forecast curve of the CNN-Embedded DRN 
closely follows the actual load, the results highlight its strong predictive 
capability under both climatic conditions. This indicates that the model not only 
adapts well to seasonal variations in load demand but also maintains stable 
performance across different weather patterns, ensuring reliable forecasts.
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Fig.11 The model's performance on the Malaysia dataset for different seasons: (a) 
rainy, (b) dry (forecast values are normalized).

As a whole, the results further validate the CNN-Embedded DRN's resilience and 
usefulness in STLF tasks by validating the model using test data from several 
seasons. In particular, the model continuously maintains good prediction 
accuracy, even when load shows notable seasonal fluctuations.  As a result, the 
model offers dependable support for real-world applications and exhibits a 
strong generalization potential for STLF.

4.4 Statistical Significance Analysis Based on Bootstrap
Tables 5 and 6 present the Bootstrap evaluation results for both datasets, where 
ResNet is compared with CNN-Embedded ResNet and the original DRN is 
compared with CNN-Embedded DRN based on MAPE. In this case, the mean 
difference denotes the average performance disparity between the two examined 
models, while the standard deviation (SD) quantifies the variation in MAPE 
across all resampling iterations.

For the ISO-NE dataset, the CNN-Embedded ResNet and CNN-Embedded DRN 
achieved lower MAPE values than their respective baseline models, indicating 
enhanced forecasting accuracy. The mean differences between the compared 
models were 0.00094 for ResNet versus CNN-Embedded ResNet and 0.00188 for 
DRN versus CNN-Embedded DRN. Moreover, the 95% CIs of the mean 
differences did not include zero, and the corresponding p-values were 
approximately zero, demonstrating statistically significant improvements in 
model performance.

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



36

Similarly, for the Malaysia dataset, the CNN-Embedded ResNet and 
CNN-Embedded DRN again outperformed the baseline architectures. The mean 
differences were 0.00773 and 0.00195, respectively, both supported by 
extremely small p-values (≈0), confirming the robustness of the improvements 
across distinct climatic and consumption conditions. The narrow CIs and small 
SDs further emphasize the consistency of the Bootstrap resampling results.

Table 5 Bootstrap Results on the ISO-NE Dataset

1st 
Model

2nd Model
MAPE ± 

SD (Model 
1)

MAPE ± 
SD (Model 

2)

Mean 
Differen

ce
CI (95%)

p-valu
e

ResNet
CNN-Emb

edded 
ResNet

0.018286 ± 
0.020353

0.017346 ± 
0.021283

0.00094
0

[-0.00029
9, 

0.000297
]

≈ 0

DRN
CNN-Emb

edded 
DRN

0.017182 ± 
0.019726

0.015303 ± 
0.019655

0.00188
0

[-0.00028
3, 

0.000286
]

≈ 0

Table 6 Bootstrap Results on the Malaysia Dataset

1st 
Model

2nd Model
MAPE ± 

SD (Model 
1)

MAPE ± 
SD (Model 

2)

Mean 
Differen

ce
CI (95%)

p-valu
e

ResNet
CNN-Emb

edded 
ResNet

0.059517 ± 
0.111446

0.051784 ± 
0.114594

0.00773
3

[-0.00077
1, 

0.000784
]

≈ 0

DRN
CNN-Emb

edded 
DRN

0.052514 ± 
0.106031

0.050566 ± 
0.109999

0.00194
8

[-0.00058
8, 

0.000580
]

≈ 0

Taken together, these results provide strong statistical evidence that integrating 
CNN into the ResNet framework significantly enhances the model’s predictive 
performance. The consistent improvements observed across two geographically 
and climatically distinct datasets suggest that the CNN-Embedded architectures 
are capable of effectively capturing localized spatial patterns in load and 
temperature variations, thereby enhancing generalization capability and 
forecasting stability.

4.5 Summary
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This section comprehensively evaluated the performance of the proposed 
CNN-Embedded DRN model through extensive experiments on two benchmark 
datasets, ISO-NE and Malaysia. The results demonstrated that the proposed 
architecture consistently outperformed conventional deep learning 
models—including CNN, LSTM, GRU, BiLSTM, BiGRU, and Transformer—as well 
as advanced residual-based networks such as ResNet and DRN.

By embedding convolutional layers into the foundational structure of DRN, the 
model enhanced early-stage feature extraction and significantly improved 
forecasting precision, particularly in capturing short-term load fluctuations and 
local temporal patterns. The inclusion of ResNet and CNN-Embedded ResNet as 
ablation experiments further verified that CNN-based local feature extraction 
complements residual learning, yielding consistent performance gains across 
different climatic conditions.

In addition, the Bootstrap significance analysis confirmed that the observed 
improvements of CNN-Embedded ResNet and CNN-Embedded DRN over their 
corresponding baseline models were statistically significant. The narrow 
confidence intervals and extremely small p-values obtained across both datasets 
provide strong evidence that integrating CNN modules within residual 
frameworks not only enhances predictive accuracy but also ensures model 
robustness and stability.

Seasonal evaluations further validated the adaptability of the CNN-Embedded 
DRN, showing that it maintains high accuracy across various seasonal and 
climatic scenarios. Overall, these findings demonstrate that embedding 
CNN-based local feature extraction within ResNets offers a clear and statistically 
verified advantage for STLF, providing a reliable and generalizable framework 
for future research on hybrid deep residual models and long-term dependency 
modeling.

5. Conclusion

This study proposed a CNN-Embedded DRN architecture for STLF, uniquely 
integrating CNN modules into the foundational structure of DRNs. This design 
effectively balances the extraction of fine-grained local fluctuations with robust 
long-term feature representation. Extensive experiments on ISO-NE (temperate) 
and Malaysia (tropical) datasets demonstrated the model’s superior 
generalizability, achieving significant MAPE reductions of 10.94% and 3.71%, 
respectively, compared to the standard DRN. Experimental results demonstrated 
that the proposed model consistently outperforms baseline architectures, 
including CNN-, RNN-, Transformer-, and ResNet-based variants, while 
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bootstrap-based statistical analysis further confirmed the significance of the 
observed improvements.

Practically, the model offers a reliable framework for daily scheduling and 
energy trading by handling diverse climatic conditions with high accuracy and 
computational efficiency. However, limitations regarding fixed kernel 
configurations and reliance on deterministic weather data remain. Future 
research will address these by exploring adaptive convolutional kernels, 
attention mechanisms, and probabilistic forecasting to support real-time, 
multi-scale energy management systems.

Abbreviations
Abbreviation Full name

1D CNN
One-Dimensional Convolutional Neural 

Network
Adam Adaptive Moment Estimation
ANN Artificial Neural Network

BiGRU Bidirectional Gated Recurrent Unit
BiLSTM Bidirectional Long Short-Term Memory

CNN Convolutional Neural Network
Conv1D One-Dimensional Convolutional Layer

CRN Convolutional Residual Network
DNN Deep Neural Network
DRN Deep Residual Network
ELM Extreme Learning Machines
FC Fully Connected

GAP Global Average Pooling

GAP1D
One-Dimensional Global Average 

Pooling
GRU Gated Recurrent Unit

ISO-NE
New England Independent System 

Operator
LF Load Forecasting

LSTM Long Short-Term Memory
MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error
MSE Mean Square Error
MW Megawatt

MTLF Medium-Term Load Forecasting
NMSE Normalized Mean Square Error

N-HiTS
Neural Hierarchical Interpolation for 

Time Series Forecasting
Pooling1D One-Dimensional Pooling Layer

R Correlation Coefficient
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R² Coefficient of Determination
RBF Radial Basis Function

ReLU Rectified Linear Unit
ResNet Residual Network

ResNetPlus Modified ResNet Structure
RNN Recurrent Neural Network
SELU Scaled Exponential Linear Unit
STLF Short-Term Load Forecasting
SVR Support Vector Regression

VSTLF Very Short-Term Load Forecasting

Appendix
1.ISO-NE dataset:
https://www.iso-ne.com/isoexpress/web/reports/ load-and-demand
2 Malaysia dataset:
https://www.gso.org.my/SystemData/SystemDemand.aspx
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