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Abstract. Conventional deep learning models struggle with balancing feature
extraction and long-term temporal representation in Short-Term Load
Forecasting (STLF). This study proposes a Convolutional Neural Network-
Embedded Deep Residual Network (CNN-Embedded DRN) designed to enhance
early-stage feature extraction and generalization capability across diverse
climatic conditions. The objectives of this study are to integrate Convolutional
Neural Network (CNN)-based local feature extraction into the DRN framework
for capturing fine-grained temporal and spatial load patterns, to employ residual
learning for mitigating gradient degradation and improving network stability, to
evaluate the model’s predictive performance against baseline and ablation
models across two datasets representing ternperate (ISO-NE) and tropical
(Malaysia) climates, and to validate its statistical significance and seasonal
robustness through bootstrap analysis and multi-seasonal evaluation. The results
demonstrate that the proposed CINN-Embedded DRN consistently outperforms
all comparative models, achieving the lowest Mean Absolute Percentage Error
(MAPE) values of 1.5303% and 5.0566% on the ISO-NE and Malaysia datasets,
respectively. The inclusion of residual network (ResNet) and CNN-Embedded
ResNet as ablation experiments confirms that CNN-based local feature
extraction effectively complements residual learning, while bootstrap analysis
verifies that the observed improvements are statistically significant. The
proposed model provides a reliable and generalizable framework for STLF,
offering improved accuracy, robustness, and adaptability under varying climatic
and demand conditions. Future research will focus on extending this framework
toward multi-regional and multi-scale forecasting, incorporating attention
mechanisms for enhanced long-term dependency modeling, and exploring
adaptive hybrid residual architectures for real-time energy management
applications.
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1. Introduction

In order to provide reliable and efficient grid operation, load forecasting (LF) is a
crucial part of modern power networks [1]. LF forecasts future energy usage to
help power firms optimize grid operations, planning, and administration.



Maintaining supply consistency, cutting operational costs, and improving energy
efficiency all depend on it. With rising energy consumption and shifting usage
patterns, LF is becoming more and more sophisticated and significant.

LF may be divided into four categories: Very Short-Term Load Forecasting
(VSTLF), Short-Term Load Forecasting (STLF), Medium-Term Load Forecasting
(MTLF), and Long-Term Load Forecasting (LTLF) [2]. These groupings are
defined by their temporal bounds. To fulfill crucial operating requirements,
VSTLF makes preparations up to an hour in advance. STLF, which can last
anywhere from an hour to a week, is necessary for dispatch and system
operation. Mid-range planning, which includes supply management and
maintenance scheduling, is the aim of MTLF. Its time frame ranges from a week
to a year. Long-term infrastructure planning and strategic decision-making
across a variety of years are made easier by LTLF. What distinguishes STLF from
the others is its role in daily and weekly grid management, which includes
forecasts for the next day or week.

Future power system management calls for more adaptability and speedier
decision-making in the face of unpredictability. Applications that largely rely on
STLF include energy trading, unit commitment, economic dispatch, and system
reliability evaluation. Because precise prediction directly affects grid
performance, its significance has increased. The importance of STLF reliability
for daily operations and load flow planning is highlighted by the fact that
forecasting mistakes can result in large unanticipated costs. For example, a 1%
reduction in forecast error miight result in an annual savings of up to $1.6 million
for a 10000 Megawatt (MW) utility. Similarly, a 1% decrease in prediction
inaccuracy can save hundreds of thousands or even millions of dollars for
utilities with annual fuel expenses in the billions [3].

Traditional and current STLF methods are the two main categories. Conventional
methods that frequently fail in real-world applications include linear,
non-parametric (e.g., non-parametric regression, exponential smoothing, support
vector regression (SVR), autoregressive models, and fuzzy logic. They may have
poor generalization, overfit, or oversimplify complicated load dynamics as the
number of input variables rises [4, 5].

To address these issues, artificial neural networks (ANNs) in particular have
emerged as a potent alternative to STLF. By employing deep learning,
ANN-based models may enhance prediction accuracy, decrease overfitting risks,
and more accurately capture intricate load patterns. However, if a network gets
more complex by adding more inputs, nodes, or layers, overfitting problems can
still occur [6]. To improve model performance in STLF, ANN variants such as
radial basis function (RBF) networks [7], wavelet-based networks [8], and
extreme learning machines (ELM) [9] have been created.



In recent years, deep neural networks (DNNs), which are characterized by their
layered architecture, have gained popularity because to their ability to learn
hierarchical representations of complex load data. LF research has advanced
from traditional shallow designs to intricate deep learning structures that
employ several variables to represent intricate temporal and spatial relationships.
This shift reflects the growing use of deep learning techniques to difficult
forecasting issues [10].

Pre-made shallow network designs have been replaced in recent years by neural
network topologies that integrate various inputs. Convolutional Neural Networks
(CNNs), which are well known for their capacity to extract local characteristics,
have been effectively used to detect temporal load patterns in STLF [11, 12].
However, their difficulty in training deeper systems and their inability to
replicate long-term interactions restrict their utility in complex LF scenarios.

By using memory cells and gating methods, two representative forms of
Recurrent Neural Networks (RNNs) that are excellent at simulating sequential
data are Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) [13].
These structures mitigate the vanishing gradient issue and successfully capture
both short-term and long-term dependencies in STLF [14]. However, when
working with very lengthy sequences, LSTM and GRU are less effective because
to their intrinsically sequential computation, which increases computational
complexity [15]. By processing input in both forward and backward directions,
more sophisticated variations like Bidirectional Long Short-Term Memory
(BiLSTM) and Bidirectional Gated Recurrent Unit (BiGRU) improve sequence
modeling even more [16], but at the expense of greater computational
complexity.

Recently, transformer-based models have drawn interest in STLF because of
their capacity to use self-attention processes to capture long-range dependencies
[17]. Because these models enable parallel processing and flexible sequence
management, they show good performance in time series forecasting
applications. Transformers are less appropriate for very long sequences, though,
since their computing cost rises quadratically with sequence length [18].
Furthermore, in order to solve training stability and convergence problems,
deeper Transformer topologies frequently need structural improvements [19].

To address gradient-related issues in deep networks, Chen et al. [20] proposed a
deep residual network (DRN) for STLF, drawing inspiration from the residual
network (ResNet), which introduces identity shortcut connections to effectively
mitigate vanishing gradients and enhance training stability and representational
capacity. The DRN model consists of two main components: a basic structure
responsible for early-stage feature extraction, and a prediction layer based on a



modified ResNet structure (ResNetPlus) that further refines the output through
deep residual learning. By leveraging historical load, temperature, and time
features, this architecture enables robust and scalable deep learning without
relying on extensive manual feature engineering. In contrast, traditional models
such as CNN, RNN, and Transformer face specific challenges when scaled
deeper: CNN struggles with capturing long-term dependencies, RNN is prone to
gradient vanishing and high computational cost, and Transformer often requires
substantial resources and may become unstable in deeper layers. DRN, however,
achieves a better balance among representational power, training stability, and
network depth, making it an effective and widely adopted approach for building
high-performance STLF models.

In recent years, DRN-based STLF models have increasingly integrated deep
learning modules to enhance performance. For example, Tian et al. [21]
introduced LSTM after the ResNetPlus model to strengthen temporal modeling
capabilities; Li et al. [22] adopted a similar architecture by placing an LSTM
layer after the ResNet model and further incorporating an attention mechanism,
which improved the model's ability to capture key information and enhanced the
final forecasting performance. In addition, Sheng et al. [23] and Sheng et al. [24]
respectively embedded CNN and LSTM modules into the prediction layer of DRN
to reinforce local feature extraction and tewmporal dependency modeling.
However, these approaches mainly focus on optimization at the prediction stage,
overlooking the modeling potential ¢f DRN during the early stages of feature
extraction, thus limiting the model's expressive power under complex load
dynamics.

To improve the feature extraction capability of DRN, Ding et al. [25] proposed
the GoogLeNet-ResNetPlus model, incorporating the Inception convolutional
structure of GoogLeNet into the DRN feature extraction layer to enhance
multi-scale load pattern recognition. This study demonstrated the significant
potential of convolutional structures in strengthening DRN's local feature
modeling. Other research also confirmed the effectiveness of CNN for local
feature extraction in STLF tasks. For instance, Cui et al. [26] validated the ability
of CNN to extract spatial features under diverse climatic conditions, significantly
improving the model's generalization performance; Hua et al. [27] utilized CNN
to extract local features from load and weather variables, and integrated them
with temporal modeling techniques, effectively reducing prediction errors.
Despite these findings highlighting the strength of CNN in feature extraction for
STLF, current DRN models still deploy CNN modules only at the prediction stage,
failing to fully engage them in the early feature extraction process [23]. This
decoupled design restricts the expressive power of CNN in deep modeling and
hinders optimal synergy from local feature learning to global prediction.

Therefore, this study proposes an innovative approach that embeds CNN directly



into the foundational structure of DRN. By integrating CNN at the early feature
extraction stage, the model's ability to capture local patterns and short-term
fluctuations is significantly improved, enhancing prediction accuracy and
generalization. While previous studies have typically embedded deep learning
modules within the prediction layer of DRN or appended them as sequential
components after the DRN output, this design achieves, for the first time, deep
integration of CNN within the DRN basic structure, offering a new direction for
optimizing shallow-layer modeling. The proposed CNN-Embedded DRN
architecture enhances feature representation in the early stages, improves
robustness, and maintains training stability. Empirical evaluations on two
benchmark datasets confirm that the method outperforms traditional DRN and
mainstream models in both accuracy and generalization, demonstrating strong
adaptability and practical value.

To clearly define the focus of this study, the main objectives are fourfold: (1) to
integrate CNN-based local feature extraction into the foundational structure of
DRN for enhancing early-stage representation learning; (2) to employ residual
connections to mitigate gradient degradation and ensure stable training in deep
forecasting networks; (3) to evaluate the proposed model’'s predictive
performance against multiple baseline and ablation models—including CNN,
LSTM, GRU, Transformer, ResNet, and DRN-—using datasets from distinct
climatic regions (temperate and tropical); and (4) to validate the model’s
robustness and generalization capability through bootstrap-based statistical
analysis and seasonal evaluation. By achieving these objectives, the proposed
CNN-Embedded DRN aims to provide a more accurate, stable, and generalizable
framework for STLF across varying climatic and demand conditions.

The remainder of this paper is organized as follows: Section 2 reviews
representative deep learning paradigms for STLF, analyzes the foundational
architecture and limitations of DRN-based models, and introduces the basic
principles of CNN to motivate their integration into the DRN framework. Section
3 introduces the proposed CNN-Embedded DRN model, including data
preprocessing, feature design, and architectural details. Section 4 presents
experimental results and comparative analyses on the New England Independent
System Operator (ISO-NE) and Malaysia datasets, examining performance across
different configurations, baseline models, and seasonal conditions. Section 5
concludes the paper and discusses potential directions for future work.

2. Related Work

This section reviews existing studies related to deep learning-based STLF, with a
particular focus on DRN architectures. It first summarizes commonly used deep
learning approaches for STLF, including convolution-based, recurrent-based, and
attention-based models. Subsequently, the fundamental principles and
architectural characteristics of DRN are introduced. The limitations of existing



DRN-based frameworks are then analyzed, highlighting their insufficient
exploitation of feature extraction at the foundational level. Finally, the
foundational architecture of CNN is reviewed to motivate their integration into
the DRN framework.

2.1 Deep Learning-Based Methods for Short-Term Load Forecasting

With the rapid growth of data availability and computational resources, deep
learning techniques have become increasingly prominent in STLF due to their
strong capability in modeling nonlinear relationships and complex temporal
patterns. Over the past decade, deep learning-based approaches for STLF have
been widely adopted, and the commonly used methods mainly include
convolution-based models, recurrent-based models, and attention-based models,
each emphasizing different aspects of feature representation and temporal
dependency learning.

CNNs have been widely applied in STLF for extracting local temporal patterns
and short-range dependencies. Li et al. [11] proposed a CNN-based forecasting
approach that transforms load time series into image-like representations to
enable spatial feature extraction through convolution operations. The model
effectively improved forecasting accuracy across most tiine points; however, the
reliance on image preprocessing and a dual-branch architecture increases
system complexity and limits scalability for large-scale or real-time applications.
Jurado et al. [12] further developed an encoder-decoder CNN framework
combined with Monte Carlo Dropout and probabilistic density estimation to
enhance uncertainty modeling in STLF. While the approach demonstrated
notable improvements over conventional recurrent baselines, its forecasting
performance deteriorated during peak demand periods, indicating limitations in
capturing extreme ioad variations.

RNNs, particularly LSTM networks, have been extensively employed in STLF
owing to their ability to capture sequential dependencies. Narayan and Hipel [13]
developed a deep LSTM-based framework for regional hourly load forecasting,
achieving improved performance compared with traditional statistical and
shallow neural models across multiple seasons. Nevertheless, the absence of
exogenous variables such as meteorological factors may restrict the model’s
adaptability in dynamic operating environments. To further enhance LSTM
performance, Bento et al. [14] introduced an optimized LSTM architecture using
metaheuristic-based hyperparameter tuning, resulting in improved forecasting
accuracy. However, the iterative optimization process introduces additional
computational overhead, which may limit its applicability in large-scale
forecasting systems.

Bidirectional recurrent architectures have also been explored to strengthen
temporal feature learning. Kwon et al. [15] proposed a stacked BiLSTM model



with feedback mechanisms, demonstrating strong accuracy in day-ahead
forecasting scenarios. Despite its effectiveness under typical conditions, the
robustness of the model under irregular load patterns, such as holidays and
abnormal events, was not comprehensively evaluated. From a hybrid modeling
perspective, Tang et al. [16] proposed a complex architecture combining deep
belief networks, Bidirectional RNNs, and ensemble empirical mode
decomposition. Although this model exhibited strong capability in capturing peak
load behavior, its multi-stage training process and high structural complexity
pose challenges for real-time deployment.

In recent years, attention-based and Transformer architectures have attracted
increasing interest in STLF due to their ability to model long-range dependencies
through self-attention mechanisms. Ran et al. [17] integrated empirical mode
decomposition techniques with a Transformer framework to enhance temporal
feature representation, demonstrating improved forecasting performance.
However, the reliance on fixed decomposition parameters and prolonged training
time may limit adaptability to new datasets. Jiang et al. [18] proposed a
Transformer-based STLF model with an expanded attention range, which
improved prediction accuracy compared with conventional attention mechanisms
but incurred higher memory consumption. To further enhance multidimensional
temporal representation, Li et al. [18] proposed TS2ARCformer, a
Transformer-based forecasting framework that integrates contextual encoding,
cross-dimensional attention, and autoregressive components. While the model
demonstrated superior performance on public datasets, its hierarchical attention
structure and autoregressive integration increased architectural complexity and
tuning difficulty for general STLF applications.

Taken together, convolution-based, recurrent-based, and attention-based models
have each contributed to improving STLF by focusing on local feature extraction,
sequential dependency modeling, and long-range dependency learning,
respectively. However, these approaches are often developed to emphasize
specific modeling capabilities and may encounter challenges when deeper
architectures are required to jointly capture complex temporal patterns and
nonlinear relationships. In particular, as network depth increases, training
stability and performance degradation can become critical issues. These
observations suggest the need for a more stable and scalable learning framework
that can support deep model construction. In this context, DRNs, by introducing
residual connections, provide an effective mechanism for alleviating
gradient-related issues and enabling deeper architectures, thereby offering a
solid foundation for advanced STLF modeling.

2.2 Deep Residual Network for Short-Term Load Forecasting
Motivated by the training instability and performance degradation observed in
deep learning models for STLF, residual learning has been introduced as an



effective strategy to facilitate the construction of deeper neural networks. By
reformulating the learning objective through identity-based shortcut connections,
residual learning alleviates gradient-related issues and enables stable
optimization of deep models. This concept, originally introduced in ResNet, was
subsequently adapted and extended to deep network frameworks, leading to the
development of DRNs.

2.2.1 Foundational Architecture

The DRN is designed to capture the complex nonlinear relationships between
input components and the expected outcome [28]. Increasing the depth of a
neural network usually improves its learning capabilities, but paradoxically, this
can also cause performance to decline. This decline in effectiveness might be due
to the complexity of the input data or the intricate structure of the model. The
architecture incorporates residual blocks to mitigate these challenges. Instead of
focusing on a simple input-to-output translation, these blocks focus on learning
the residual function. By employing residual connections, this design improves
gradient flow, lessens the likelihood of disappearing gradients, and makes it
easier to train deeper networks effectively. As seen in Fig.1, a ResNet is made up
of two subsequent layers connected by a skip link.

f.CXinpuLa 6)

Kinput —*{ Weight LayerH ‘a;‘j::l‘:t‘:;(;n H\-‘.;ﬁg@—»{% Youtput = Xinput + F(Xinpus, 0)

X input X input

Skip Connection

Fig.1 The foundation block of the ResNet [28].

Equation (1) demonstrates how the skip connection, which functions as an
identity mapping, generates the ResNet output when the input and output
dimensions coincide, where Xjnpyt stands for the ResNet'’s input, youtput for the
block output, F for the residual mapping function, and ©® for the function’s
learnable parameters.
Youtput =Xinput t 1:'(Xlnput ,0)(1)
When the dimensions of the input and output are different, the skip connection
makes a linear projection. This linear projection (Ly) is sometimes included in
the ResNet output, as seen in Equation (2):
Youtput =Lp*Xinput + 1'_'|(X|nput ,0)(2)

2.2.2 Model Framework

The model comprises two main components: a basic structure and an enhanced
ResNet variant called ResNetPlus, which together strengthen the model’s
feature extraction and predictive capability as shown in Fig. 2 [20]. The core
architecture is the fundamental framework that uses several linked layers to



extract fundamental information in order to provide the first 24-hour load
projections. The predictions are then further refined by integrating ResNetPlus,
which maintains the original ResNet's block structure while including
enhancements to boost accuracy and computing efficiency. The Scaled
Exponential Linear Unit (SELU) is employed as the activation function in both
the basic structure and the ResNetPlus layers, promoting self-normalizing
properties and stabilizing training in deeper networks, hence promoting robust
learning. This combination ensures accuracy and scalability in STLF jobs by
effectively managing both short-term and long-term dependencies. The SELU
may be expressed using Equation (3).

_ax if x>0

f(X)—{m(eX—n if x<0(3)

where A=1.05 is a normalization scaling factor, a=1.67 corrects the output for
negative inputs, and X is the input value. SELU guarantees self-normalization
and stabilizes the mean and variance between layers.
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Fig.2 The original framework [20].

The "basic structure" of the model is a neural network, which is made up of
several interconnected layers. With this simple design, the initial load prediction
for the next 24 hours is generated. Ten hidden nodes are present in each fully

connected (FC) layer, denoted by [Lgay,Tﬁay], [Lyveek Teek) pmonth pmonth 1 ang

LHO‘” in this topology. Five hidden nodes linked to weekdays and season [W, S]
are present in each FC layer in the interim. The fully linked layers FC1, FC2, and
the layer before Ly also include ten hidden nodes. It's interesting to note that all

10



but the output layer have activation functions. The load values for the
corresponding hour from 1, 2, and 3 months before to the target day are
L¥]veek

represented by in this basic structure, while the load values for the same

hour from 1 to 8 weeks earlier are represented by Lﬂay. Furthermore, while

LU 1ogs the load values for the same hour for the previous 24 hours, Lﬂay

displays the load values for the same hour on each day of the previous week.

Additionally, temperature values in TWO™" TWeek and Tﬂay match those in

ponth - pweek ang Lﬂay, respectively. The letter T, stands for the actual

expected temperature for the next day. The one-hot encoded inputs S, W, and H
stand for the season, weekday, and holiday status, respectively. The output of
this fundamental structure is used as input in the second phase of the model to
increase the forecast's accuracy.

The ResNetPlus model is an advanced advancement in neural network
architecture that maintains the core concepts of the original ResNet while
introducing notable improvements. This enhanced version includes residual
blocks, each consisting of two layers: a hidden layer with 20 neurons activated
by the same nonlinear function (SELU) as used in the basic structure, and a
linear transformation layer employed to match the feature dimensions required
for residual addition. The model reguiarly replicates this structure across 10
levels, building four of these blocks in succession, each with its own connections,
to provide a substantial amount of depth and intricacy. A shortcut connection,
which connects the output of the preceding block directly to the network's input,
is one of ResNetPlus's special features. This idea simplifies the building of a DRN
while increasing its overall efficiency. ResNetPlus maintains the
hyperparameters used in the original ResNet blocks while optimizing the
architecture to maximize the ResNet design's capabilities.

Equation (4) shows how the two components are added to determine the total
loss, or Loss, in order to effectively train the models:
Loss=Lossg+Lossgr(4)

To enable a more effective training procedure, Lossg computes the prediction
error and Lossg serves as a penalty for values that are outside the range. is
accurately explained by Equation (5):
¥(,h)~¥(.h) 5

Y(.h)

L = 1 N H
OSSE= NumH 2i=12h=1

The expected production is represented by }\f(j,h) in this equation, whereas the
actual normalized load for the hth hour of the jth day is represented by yjn).
While H (in this example set to 24) denotes the number of hourly load values
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each day, the variable refers to the total number of data samples. Furthermore,
Equation (6) defines Lossg:

1
Num S
S Num =1 maX(O,maxh ¥(j,h) —Mmaxn Y(j,h))
+max|0,minp Y.h) —miny, y(j,h))

Lossg=

(6)

This term speeds up early training and emphasizes the penalty of overestimating
peaks and underestimating troughs in the load curves as the model's predictions
get more accurate by penalizing the model when the predicted daily load curve
deviates outside the actual load range.

2.2.3 Current Restrictions

Residual learning has been widely adopted in deep time-series forecasting
models and is generally regarded as an effective strategy for stabilizing the
training of deep architectures while enhancing feature representation capability.
In recent years, within the domain of general time-series forecasting, Challu et al.
[29] proposed neural hierarchical interpolation for time series forecasting
(N-HiTS), which extends residual-based forecasting by introducing a hierarchical
multi-scale residual structure. By progressively decomposing time series into
different temporal resolutions and refining forecasts through stacked residual
blocks, N-HiTS achieves improved accuracy while maintaining stable
optimization behavior. Despite its strong performance on benchmark datasets,
the model primarily focuses on univariate or general-purpose time-series
forecasting and does not explicitly consider domain-specific characteristics or
exogenous variables, which may limit its applicability to complex real-world
forecasting tasks.

In spatio-temporal modeling tasks such as urban demand and traffic flow
prediction, residual learning has also demonstrated notable advantages. Zhang
et al. [30] developed a spatio-temporal residual graph attention network, in
which residual connections are embedded within a graph attention framework to
jointly model temporal dynamics and spatial correlations. Although this approach
enhances the ability to capture complex spatio-temporal dependencies, it
typically relies on sophisticated graph construction and attention mechanisms,
which may limit scalability and computational efficiency. Based on a similar
residual learning paradigm, Bao and Yang [31] proposed a global-local
spatio-temporal residual correlation network for traffic state prediction. By
leveraging multi-scale residual structures, this model effectively integrates
global evolution trends with local dynamic variations. However, its network
design is primarily tailored to specific traffic scenarios, and its generalization
capability to other types of time-series forecasting tasks remains to be further
validated.

Residual learning has subsequently been extended to energy-related forecasting
tasks. Ashebir and Kim [32] combined residual blocks with variational modeling
and recurrent neural networks to develop a temporal variational residual
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framework for energy demand forecasting, significantly enhancing the model’s
ability to capture multi-scale fluctuations, uncertainty, and nonlinear
relationships. Nevertheless, the introduction of additional probabilistic modeling
components increases architectural complexity, making the training process
more sensitive to parameter initialization and convergence stability. Similarly, in
the context of urban public transportation systems, Zhang et al. [33] proposed a
deep residual learning-based framework for short-term passenger flow
forecasting. By incorporating ResNet-style skip connections, the model alleviates
gradient degradation in deep architectures and improves training stability.
However, it still largely relies on conventional spatio-temporal feature modeling
strategies and exhibits limited capability in capturing long-term temporal
dependencies and cross-scale feature interactions.

Taken together, existing studies have convincingly demonstrated the
effectiveness of residual learning in time-series forecasting, traffic systems, and
energy prediction tasks, particularly in stabilizing deep model training and
enhancing feature representation. However, most of these approaches are
designed for general time-series or domain-specific applications and do not
explicitly address the distinctive characteristics of STLF, such as strong
periodicity, multi-scale temporal dependencies, and complex nonlinear
interactions between load demand and exogenous variables. In contrast, DRN,
through their hierarchical residual structures, provide a more systematic
architectural foundation for constructing deeper and more stable models that are
better aligned with the intrinsic properties of this task. Consequently, further
exploration of how to enhance iemporal feature extraction and long-term
dependency modeling within a DRN-based framework remains a critical research
direction in this domain

In current research on STLF based on DRN, many hybrid models have
incorporated deep learning components to enhance prediction accuracy.
However, most of these methods integrate such modules only at the model's
output or prediction stage, failing to fully exploit the modeling potential of the
foundational structure within DRN during the feature extraction process. This
design limits the model's capacity to deeply learn local patterns and dynamic
variations in the early stages of feature extraction, thereby hindering further
improvements in overall forecasting performance.

For instance, Tian et al. [21] proposed the ResNetPlus-LSTM model by placing
the LSTM module directly after ResNetPlus to enhance temporal modeling
capability. Building on this, Li et al. [22] introduced the ResNet-LSTM-Attention
model, which incorporates LSTM and attention mechanisms after ResNet to
improve attention to critical information and final forecasting performance.

Some studies have attempted to embed deep learning modules into the internal
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structure of DRN. Sheng et al. [23] proposed the convolutional residual network
(CRN) model, which integrates CNN modules into the prediction layer of the
ResNet framework to strengthen local feature extraction. Sheng et al. [24]
further proposed the Residual LSTM Plus model, embedding LSTM into the
prediction layer of DRN to enhance temporal modeling. Although these studies
achieved internal integration of the modules, they remain primarily focused on
the prediction phase, failing to fully exploit the feature extraction potential of the
shallow layers within DRN.

In addition, Ding et al. [25] incorporated the GoogLeNet structure into the
GoogLeNet-ResNetPlus model to improve the recognition of complex load
patterns at multiple scales. GoogLeNet, belonging to the Inception network
family, features parallel multi-scale convolution paths for feature extraction,
enabling the integration of hierarchical information while maintaining
computational efficiency. This study demonstrates that convolutional structures
have significant potential in enhancing DRN's feature extraction capabilities,
particularly in spatial and local pattern modeling.

Further research has validated the effectiveness of CNN in feature extraction for
STLF tasks. Cui et al. [26] demonstrated CNN's strength in capturing spatial
features, significantly improving model generalization and robustness under
diverse climate conditions. Hua et al. [27] applied CNN to extract local features
from load and meteorological variables and combined it with temporal modeling
structures, effectively reducing prediction error and enhancing responsiveness
to dynamic load changes. These studies indicate that CNN performs well in
mining local and spatial patterns in input data and supports power load modeling
in complex environments. However, despite its demonstrated importance in
feature extraction, most existing methods still adopt a single structural
integration strategy: CNN modules are typically deployed as independent
pre-processing structures, lacking deep integration with the backbone network.
This decoupled design limits the CNN's expressive power in deep feature
modeling and its capacity for global optimization, making it difficult to fully
leverage its potential.

In order to overcome the design limitations of previous studies where CNN
modules were embedded only at the prediction layer, this study introduces CNN
into the foundational structure of the DRN, achieving deep integration between
CNN and the basic structure of DRN during the feature extraction stage.
Existing research typically connects deep learning modules after the DRN or
embeds them into the prediction layer (such as the current study that embeds
CNN into the prediction layer of DRN [23]), which fails to effectively participate
in the feature extraction process and limits the model's ability to learn local
features. In contrast, the fusion strategy proposed in this study enhances the
model's perception of local patterns, not only improving the expressive power of
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shallow-layer modeling, but also strengthening the network's nonlinear modeling
capability and generalization performance. It expands the design space of DRN
structures in STLF tasks and provides a new structural design perspective and
development direction for optimizing the feature extraction mechanism at the
foundational level.

In contrast to prior DRN-based hybrid architectures that integrate CNN or LSTM
modules only at the prediction layer, the proposed model introduces a
fundamentally different design by embedding CNN directly into the DRN’s basic
structure. This deep integration allows CNN to participate in the early-stage
feature extraction process rather than acting as a post-processing module. As a
result, the model captures localized temporal dependencies and hierarchical load
features more effectively, establishing a clear structural distinction from existing
DRN-based hybrid frameworks.

2.3 CNN Foundational Architecture

Time series data modeling frequently uses CNNs, which are powerful tools for
extracting features from sequential data [34]. One-dimensional convolutional
neural network (1D CNN) efficiently capture locai temporal patterns and
enhance prediction accuracy in STLF by applying convolution operations along
the time axis. A typical 1D CNN architecture consists of a one-dimensional
convolutional layer (Conv1D), a one-dimensional pooling layer (Pooling1D), and a
FC layer [35]. Each ConvlD layer applies multiple filters, with each filter
consisting of one or more kernels that slide over the input to extract local
features. After each convolution operation, a non-linear activation
function—commonly the Rectified Linear Unit (ReLU)—is applied to introduce
non-linearity and enhance the model's capacity to learn complex temporal

-

relationships. The ReLU activation function is mathematically defined as
Equation (7):

f(x)=max(0,x)(7)
In this function, X represents the input to the activation function, typically the
weighted sum of a neuron's inputs. When the X is greater than zero, the output
is equal to the input; otherwise, the output is zero. This simple yet effective
formulation enables ReLU to accelerate training convergence and avoid

vanishing gradient problems.

As illustrated in Fig.3, the input signal passes through stacked convolutional
layers, where the receptive fields grow progressively to capture more abstract
temporal features. These convolutional layers can process multiple time steps in
parallel, thereby improving computational efficiency. Following the convolution,
pooling layers—such as max pooling, average pooling, or global average pooling
(GAP)—are typically applied to reduce the dimensionality of feature maps,
suppress noise, and enhance generalization. GAP performs an average operation
over the entire receptive field of each feature map, effectively compressing the
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output and significantly reducing the number of parameters.
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Fig.3 Architecture of 1D CNN [35].

In the context of one-dimensional time-series mcdeling, one-dimensional global
average pooling (GAP1D) is used to average across the entire temporal
dimension of each feature map. This not only helps mitigate overfitting but also
improves model robustness and interpretability, especially when followed by
fully connected layers. The final high-level features are then passed to one or
more fully connected layers, which integrate the information and generate the
prediction output.

Due to its limited receptive field, the 1D CNN is particularly effective in
capturing short-term temporal dependencies, such as intra-day or inter-day
fluctuations, thus demonstrating strong feature extraction capabilities in STLF.
Through local convolution operations, CNNs can efficiently extract local
temporal features while significantly enhancing computational efficiency and
accelerating model convergence. However, when used alone, CNNs face certain
limitations in modeling long-term dependencies, primarily because their small
receptive fields make it difficult to comprehensively capture dynamic patterns
over extended time horizons.

2.4 Summary

This section reviewed representative deep learning approaches for STLF,
including convolution-based, recurrent-based, and attention-based models, and
discussed their respective strengths and limitations. The principles and
architectural characteristics of DRNs were then introduced, followed by a
detailed analysis of the limitations of existing DRN-based frameworks,
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particularly their insufficient exploitation of feature extraction at the
foundational level. In addition, the basic architecture and feature extraction
capability of CNN were reviewed to highlight their effectiveness in modeling
local temporal patterns. Based on these analyses, the motivation for embedding
CNN directly into the basic structure of DRN is clearly established. The next
chapter presents the research methodology, datasets, and experimental setup
used to evaluate the proposed model.

3. Methodology of Research

This section presents the research methodology adopted in this study, including
data selection, preprocessing, model design, and experimental setup. It first
describes the characteristics of the ISO-NE and Malaysia datasets, which
represent temperate and tropical climatic conditions, respectively. Then, the
section details the architecture of the proposed model, its input features, and the
training configuration. Finally, it outlines the evaluation indicators and
experimental framework used to assess forecasting performance and model
generalization capability.

3.1 Research Data

Irregular formats, noise, incomplete entries, and missing values are common
issues in real-world datasets [36], making data preprocessing an essential step to
ensure the reliability and robustness of forecasting models. This study employed
two actual datasets—ISO-NE and Malaysia-—which offer contrasting insights into
STLF under distinct climatic and demand conditions. The ISO-NE dataset
provides hourly load and temperature records from March 2003 to December
2014, representing a temperate climate with strong annual and seasonal
variations. It covers six states of the United States of America (Connecticut,
Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont), which
together constitute the New England power grid. For the ISO-NE dataset, the
regional hourly temperature data were used as observed inputs rather than
forecasted data. In contrast, the Malaysia dataset comprises nationwide hourly
load data combined with the regional daily mean, maximum, and minimum
temperature data of Petaling Jaya from January 2020 to December 2022,
representing a tropical climate characterized by relatively stable consumption
patterns. No forecasted meteorological information was used in this study; all
weather variables were obtained from historical observations to ensure that the
forecasting model relies solely on data available up to the prediction point. The
ISO-NE data, preprocessed by its provider, were directly adopted as a
benchmark, whereas gaps in the Malaysia dataset were filled using linear
interpolation to maintain chronological continuity. Fig. 4 shows that most
ISO-NE load values range from approximately 7500 MW to 27500 MW with clear
seasonal fluctuations, while Malaysia’s values mainly lie between 10000 MW and
18000 MW, reflecting steadier tropical demand. Finally, both datasets were
normalized to ensure that all input features operated on a consistent scale.
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Fig.4 (a) Load data in ISO-NE dataset; (b) Load data in Malaysia dataset.

3.2 Proposed CNN-Embedded DRN for STLF

3.2.1 The Proposed Model

The proposed model consists of two key components: the CNN-Embedded basic
structure and the ResNetPlus network is depicted in Fig.5. The first component
is a modified version of the original basic structure, where CNN blocks are
integrated to process input data and produce an initial 24-hour load forecast.
The second component is the ResNetPlus network, which refines the initial
output to generate the final prediction, thereby improving forecasting accuracy
and overall model performance.
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Fig.5 Proposed model’s framework.

In the first component of the model, CNN blocks are inserted into the original
basic structure. It is important to note that the input variables used in the

da
hour Lh y, L\rI‘veek' Lhmonth

modified model still include (L?°U", Ta8Y, Tweek pmonth g

’ ’

W and H.). Specifically, the long-term load variables (such as Lﬂay, Lyeek, monthy

a
y, T\(}veek, Thmonth

and long-term temperature variables (such as Tﬂ ) are processed

through CNN blocks for feature extraction. The ConvlD configurations in the
CNN block, including the number of filters and kernel sizes, are treated as
hyperparameters to be optimized. Multiple configurations are tested during the
experimental phase to identify the most effective setting, as detailed in the
Experimental Setup section. After Conv1D in the CNN block, GAP1D is applied to
compress each feature map into a single representative value. This operation
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reduces the number of parameters and helps mitigate overfitting, while
preserving the most relevant temporal features for each input. Embedding CNN
at the early feature-extraction stage provides unique advantages over
conventional hybrid designs. By allowing convolutional operations to process raw
input features before residual refinement, the model captures localized load and
temperature patterns at multiple temporal scales. This enhances the
discriminative representation of short-term fluctuations while preserving the
continuity of residual learning in later stages. In contrast, previous DRN-based
hybrids that introduce CNN after the residual blocks primarily enhance post-hoc
refinement, offering limited improvement to initial feature representation.

In the CNN-Embedded basic structure, each sub-network independently predicts
the load for a specific hour in the future. By combining the prediction results of
24 sub-networks, the model generates an initial forecast for the entire next day’s
load, as shown in Fig. 6. It is worth noting that SELU is used as the default
activation function for all layers in the model, except for the CNN blocks, which
employ the ReLU activation, and the output layer. In this stage, the
CNN-Embedded basic structure receives historical load, temperature, and
temporal variables and applies convolutional operaiions to extract localized
temporal dependencies. The Conv1lD layers capture short-term load fluctuations
as well as correlations between recent demand patterns and temperature
variations. Subsequently, a global average pooling layer aggregates these
localized features into compact representations, which are used to generate the
initial forecast. Each of the 24 sub-networks focuses on one specific hour of the
next day, and their outputs are concatenated to form a complete 24-hour-ahead
load forecast sequence
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Fig.6 The proposed model basic structure in ISO-NE dataset.

In the second stage, the ResNetPlus network is employed to further refine the
initial 24-hour load forecast generated by the CNN-Embedded basic structure.
The number of layers and structural components of the ResNetPlus network
remain unchanged, ensuring consistency with the original DRN framework.
Through residual biocks with identity shortcut connections, ResNetPlus captures
longer-term dependencies while maintaining stable gradient flow during deep
training. These residual connections allow information extracted in earlier layers
to be preserved and reused, thereby enhancing continuity between short-term
and long-term feature representations.

The model is trained in an end-to-end manner using the same loss function as the
original DRN, which combines the mean squared error with an additional penalty
term to constrain predictions within a realistic demand range. By refining the
preliminary predictions produced in the first stage, the ResNetPlus network
improves forecasting accuracy and robustness without introducing additional
structural complexity. This two-stage learning strategy enables the proposed
CNN-Embedded DRN to effectively integrate localized feature extraction and
deep residual learning for stable and accurate STLF.

3.2.2 Input Features in the Proposed Model
The ISO-NE and Malaysia datasets used in this study exhibit significantly
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different temporal granularities, necessitating distinct feature processing
methods. The ISO-NE dataset's hourly load LI°“" and temperature TR,

Tyveek ,Tgay values are supplied straight into the model. The original

CNN-Embedded basic structure combines S, W, and H information with load

d
onth 'L\r/]veek 'Lh

characteristics L} a depending on different temporal ranges to

provide model inputs. S is made up of the seasons spring, summer, autumn, and
winter; H is made up of Christmas, Independence Day, and other holidays.

Whereas the Malaysia dataset provides just daily temperature data, including
Tmean'Tmax:ITmin, the ISO-NE dataset provides hourly temperature data. The
altered CNN-Embedded basic structure is shown in Fig.7. To address this
disparity, the basic structure was modified to accept daily temperature data as
input directly. The daily temperature data Tmean s Tmax:ITmin are concatenated as
a single feature input in the updated model without temporal segmentation.

da
onth ,L\r/]veek 'Lh y

While this is going on, load feature Lj{' processing continues to

retrieve data from the last 24 hours, 8 weeks, and 3 months. Temperature and
load data, along with date-related information like S, W, and H, make up the
model's final input.While S is divided into two seasons—the rainy season and the
dry season—H includes occasions like Eid al-Fitr and Malaysia Independence
Day.
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Fig.7 The proposed model basic structure in Malaysia dataset.

This change simplifies the preparation procedures and enables the direct use of
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the daily temperature parameters from the Malaysia dataset by minimizing the
repetition caused by converting daily data into hourly data. With the exception of
how temperature variables that rely on temporal granularity are handled, the
new model handles load characteristics and date information uniformly for both
datasets. By doing this, the model's adaptability and generalizability to datasets
with different temporal resolutions are guaranteed.

3.3 Experimental Setup

This study evaluates the performance of the proposed model through
experiments and compares it with several benchmark and variant models
commonly used for STLF. These include the conventional CNN model,
RNN-based models (LSTM, GRU, BiLSTM, BiGRU), and Transformer. In addition,
four residual-based architectures—ResNet, CNN-Embedded ResNet, the original
DRN, and the proposed CNN-Embedded DRN—were designed as complementary
ablation variants to systematically analyze the effects of the CNN block and the
deeper residual architecture. Two real-world datasets were used: the ISO-NE
dataset and the Malaysia dataset. The details of the training and testing
partitions for both datasets are summarized in Table 1. These datasets represent
two distinct  climatic = regions—temperate (ISO-NE) and  tropical
(Malaysia)—providing diverse scenarios for model evaluation.

Table 1 Summary of dataset partitions used for training and testing.

Traini
Dataset Trair- ing ng Test.ing Testing
Period Sampl Period Samples
A es
2003.03-2005 2006.01-2006
ISO-NE | “° 24888 8760
12 12
) 2020.01-2021 2022.01-2022
Malaysia 12 17544 19 8760

The CNN block in the proposed CNN-Embedded DRN model consists of ConvlD
layers followed by a GAP1D layer. To explore the optimal configuration of the
CNN block, hyperparameter tuning experiments were conducted on the ISO-NE
dataset. The experiments systematically varied two key hyperparameters: the
number of filters in the ConvlD layers and the kernel size. Specifically, five
settings were considered for the number of filters: 16, 32, 64, 128, and 256; and
four settings for the kernel size: 1, 3, 5, and 7. This resulted in a total of 20
configurations. All other parameters were kept constant to isolate the effects of
these variations. The ConvlD layers used ReLU activation with He normal
initialization, ‘same' padding, and a stride of 1. The GAP1D layer was applied
after the convolution to compress each feature map into a single representative
value, reducing parameters and helping mitigate overfitting.
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The CNN baseline model used in this study adopted the same CNN block
configuration as that in the proposed CNN-Embedded DRN model to ensure fair
comparison. Similarly, for the RNN-based baseline models, the number of units
in each recurrent layer (LSTM, GRU, BiLSTM, BiGRU) was set equal to the
number of filters used in the CNN configurations, enabling consistent capacity
across models for comparative analysis. For the Transformer baseline model, the
embedding dimension was set equal to the number of filters in the CNN
configurations. The Transformer adopted a standard encoder-only structure with
one encoder layer, eight attention heads (each with 64 dimensions when the
embedding dimension allowed), and a feed-forward network dimension of 2048.
Other components, such as positional encoding and dropout (0.1), were kept at
default settings to ensure consistency. The DRN model was implemented using
its default parameter settings as defined in the original framework, while the
ResNet architecture, similar to the DRN, also employed the SELU activation
function and consisted of ten stacked layers, each being a SELU-activated layer
with 20 neurons, to maintain structural consistency.

The model was trained for over 700 epochs in total, including an initial training
phase of 600 epochs followed by two rounds of short-term training, each
consisting of 50 epochs [20]. During the later stages, three model snapshots
were saved at the end of each 50-epoch segment. This technique, known as
snapshot ensemble [37], mitigates overfitting and enhances training stability by
averaging predictions from multiple model checkpoints. By combining these
snapshots, the method reduces the risk of overfitting associated with a single
model and improves both prediction stability and generalization capability.
Furthermore, this ensemble approach provides a computationally efficient
alternative to performing multiple independent training trials while maintaining
comparable robustness and stability in forecasting performance [38]. The
training process adopted commonly used default parameter settings from
previous studies, with the loss function defined as the MAPE to evaluate
forecasting accuracy. The Adaptive Moment Estimation (Adam) [39] optimizer
was employed with an initial learning rate of 0.001 to achieve efficient adaptive
learning.

A nonparametric Bootstrap resampling method with 10000 iterations was used to
thoroughly evaluate if the improved model's performance increase was
statistically significant. Unlike the paired Student’s t-test, which assumes that
paired differences follow a normal distribution, the Bootstrap method is free
from such distributional constraints, offering a more robust basis for
performance comparison [40]. Statistical significance was evaluated using two
criteria. First, if the 95% confidence interval (CI) of the mean performance
difference lies entirely above zero, the improvement is considered significant at
the 95% confidence level; if zero is contained within the interval, the difference
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is deemed insignificant. Second, within the Bootstrap framework, a p-value
below 0.05 similarly indicates significance at the 95% level. It should be noted
that p = 0 represents an extremely small probability (typically < 0.0001) rather
than an actual zero. MAPE was employed as the evaluation metric owing to its
widespread use in STLF research and its interpretable, scale-independent
representation of relative prediction error.

All experiments were conducted in a Python 3.8 environment using TensorFlow
2.10.0 and Keras 2.10.0 as the deep learning backends. For the tests, a Lenovo
laptop equipped with an AMD Ryzen 7 6800H CPU, 16GB DDR5 4800MHz RAM,
and an NVIDIA GeForce RTX 3050 Ti Laptop GPU (4GB) was utilized.

3.4 Evaluation Indicators

To compare the performance of different DRN models in STLF, researchers have
employed a range of criteria to assess prediction precision [20-25]. MAPE is the
most often used statistic among them due to its interpretability and effectiveness
in evaluating relative forecasting precision across different datasets and scales.
Mean Absolute Error (MAE), Mean Square Error (MSE), Normalized Mean
Square Error (NMSE), Root Mean Square Error (RMSE), Correlation Coefficient
(R), and Coefficient of Determination (R?) are additional metrics that have been
used in previous studies in addition to MAPE. Different studies employ different
evaluation criteria, depending on the specific forecasting objectives and dataset
characteristics. Each of these measurements has a formula in equations (8)
through (14).
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A description of the parameters utilized in these measures is provided below: y;
represents the actual value of the i-th sample, y; represents the predicted value
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of the i-th sample, and N represents the total number of input samples.

Additionally, 0)2, stands for the variance of the actual values, which is used to

normalize MSE in the calculation of NMSE, while ¥ and y indicate the mean
values of all actual and forecast values, respectively. The metrics are able to

assess model performance comprehensively by considering the correlation
between actual and expected values, prediction accuracy, and error magnitude.
Reduced prediction errors and improved generalization capacity are frequently
shown by smaller values for MAPE, RMSE, MAE, MSE, and NMSE. On the other
hand, R and R? values nearer 1 suggest stronger model fitting ability and higher
forecast precision.

3.5 Summary

This section described the overall research methodology, including dataset
selection, preprocessing procedures, model architecture, and experimental
configurations. The proposed CNN-Embedded DRN framework integrates
convolutional feature extraction and deep residual learning to improve STLF
accuracy and robustness across different climatic conditions. The subsequent
chapter presents the experimental results, comparative analyses, and
discussions to validate the model’s effectiveness.

4. Results and Discussion of The Experiment

This section discusses the experimental results and comparative analyses of the
proposed model. It first evaluates the performance of the model under different
CNN configurations, followed by comparisons with various baseline and ablation
models. The section further examines the model’s robustness across different
seasons and climatic conditions and validates the statistical significance of its
improvements using Bootstrap analysis. These comprehensive evaluations
collectively demonstrate the effectiveness and generalization ability of the
proposed approach for STLF.

4.1 Performance of the Model with Different Settings

To evaluate the effectiveness of the proposed CNN-Embedded DRN model, a
series of experiments were conducted on the ISO-NE dataset by varying the
number of filters and kernel sizes within the CNN module. The primary objective
was to determine the optimal configuration of CNN hyperparameters that
minimizes forecasting error while maintaining computational efficiency. Table 2
presents the MAPE values obtained under different CNN parameter settings,
followed by an in-depth analysis of the results.

As shown in Table 2, both the number of filters and kernel size substantially
influence forecasting accuracy. Moderate configurations generally yield more
stable results, whereas excessively small or large kernels tend to cause
performance degradation. Among all tested settings, the combination of 32
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filters and a kernel size of 1 achieved the lowest MAPE of 0.015303, indicating
that a relatively shallow convolutional layer with a narrow receptive field can
effectively capture short-term temporal dependencies in the ISO-NE dataset.
This finding aligns with the dataset’s intrinsic characteristics, where local load
and temperature fluctuations exhibit strong short-range periodicity and
recurring patterns. The use of a small kernel minimizes feature smoothing, while
32 filters provide sufficient representation capacity without introducing
overfitting.

Table 2 Comparison of MAPE for CNN-Embedded DRN Using Different
CNN Hyperparameter Settings

Filters Kernel Size MA_PIE ]
16 1 - 0.016965 |
16 3 | 0.016120
16 5 0.015818
16 7 0.017018
32 | 1 0.015303
32 3 0.015788

Y 5 0.017202
32 7 0.017036
64 1 0.016640
64 3 0.016380
64 5 0.016796
64 7 0.015582
128 1 0.016635
128 3 0.016542
128 5 0.015687
128 7 0.016929
256 1 0.015975
256 3 0.016505
256 5 0.016547
256 7 0.016179

Interestingly, configurations such as 64 filters with a kernel size of 7 and 128
filters with a kernel size of 5 also achieved competitive MAPE values of 0.015582
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and 0.015687, respectively. This observation suggests that larger kernels can
occasionally improve performance when accompanied by an adequate number of
filters, as the wider receptive field enables the model to capture slightly
longer-term temporal dependencies. However, this advantage only appears when
the network has sufficient capacity to preserve diverse feature representations.
When the filter count is low (e.g., 16 or 32), large kernels tend to oversmooth
local patterns, leading to performance degradation—as seen in the 16-filter
configuration with kernel size 7 (MAPE = 0.017018) and the 32-filter
configuration with kernel size 5 (MAPE = 0.017202).

Furthermore, increasing the number of filters beyond 128 fails to produce
consistent performance gains. Although deeper configurations possess greater
representational power, their increased complexity introduces redundancy and
the risk of overfitting, leading to unstable or suboptimal generalization. For
example, the 256-filter setting produced MAPE values above 0.0159 in all kernel
size combinations, providing no tangible improvement over lighter models. These
results confirm that simply enlarging network capacity does not necessarily
enhance predictive accuracy and that a balance between model complexity and
dataset characteristics must be maintained.

In general, kernel sizes of 1 and 5 yielded the most favorable and stable
outcomes across different filter settings. While kernel 1 focuses on fine-grained
short-term variations, kernel 5 offers a balance between short-term and slightly
extended temporal feature capture. In contrast, kernel 7, which enlarges the
receptive field excessively, 1wmay introduce redundant or smoothed
representations that obscure critical load fluctuations.

Taken together, these results demonstrate that CNN hyperparameters have a
considerable impact on forecasting accuracy and should be tuned carefully to
achieve an optimal trade-off between accuracy, generalization, and
computational cost. Based on the empirical findings, the configuration of 32
filters and kernel size 1 is selected as the optimal CNN setting in the proposed
model. This configuration achieves the best performance (MAPE = 0.015303)
while maintaining model efficiency and interpretability. Moreover, it surpasses
the accuracy of advanced DRN-based models reported in prior
research—reducing MAPE by approximately 11.56% compared to the CRN model
(MAPE = 0.0173) [23] and by about 1.90% compared to the Residual LSTM Plus
model (MAPE = 0.0156) [24]. These results further validate the effectiveness of
embedding CNN layers into the foundational DRN structure to enhance
early-stage feature extraction and overall forecasting performance.

4.2 Contrast with Base Models

4.2.1 ISO-NE Dataset
Table 3 Comparison of the proposed model with base models in ISO-NE
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dataset

Model MAPE RMSE MAE MSE NMSE R R2
CNN 0.02422 | 0.02439 | 0.01581 | 0.00059 | 0.03948 | 0.98069 | 0.96051
4 3 5 5 2 6 8
LSTM 0.02327 | 0.02328 | 0.01516 | 0.00054 | 0.03596 | 0.98260 | 0.96403
7 3 3 2 8 2 2
0.01861 | 0.01898 0.02391 | 0.98804 | 0.97608
GRU 0.01207 | 0.00036
2 3] 8 2 2
) 0.02240 | 0.01417 | 0.00050 | 0.03330 | 0.98325 | 0.96669
BiLSTM 0.02166
4 5 2 6 5 4
BiGRU 0.01992 | 0.01965 | 0.01280 | 0.00038 | 0.02562 | 0.98739 | 0.97437
1 1 3 6 4 2 6
0.02192 | 0.02274 | 0.01435 | 0.00051 | 0.03433 | 0.98276 | 0.96566
Transformer
5 9 2 7 7 3 3
0.01828 | 0.01787 | 0.01166 0.99010
ResNet
6 9 3 0.00032 | 0.02121 5 0.97879
CNN-Embedded | 0.01734 | 0.01819 | 0.01119 | 0.00033 | 0.02196 | 0.98905 | 0.97803
ResNet 6 3 1 1. 2 7 8
DRN 0.01718 | 0.01754 | 0.01113 | 0.00030 | 0.02043 | 0.98976 | 0.97956
2 8 8 8 2 7 8
CNN-Embedded | 0.0153 | 0.0162 | 0.0998 | 0.0002 | 0.0175 | 0.9912 | 0.9824
DRN 03 77 40 65 80 37 20

The experimental results for the iISO-NE dataset are summarized in Table 3 and

visualized in Fig.8. Among the baseline models, the DRN achieved the best
performance, with a MAPE of 0.017182, RMSE of 0.017548, MAE of 0.011138,
MSE of 0.000308, and NMSE of 0.020432. It also attained high correlation

metrics, with R = 0.989767 and R2 =

0.979568. These results highlight the

effectiveness of residual learning in mitigating gradient degradation and

improving model stability, which enabled the DRN to outperform conventional

architectures.
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(a) Performance Metrics (MAE, MAPE, MSE, RMSE, NMSE)
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Fig.8 A comparison between the proposed model and the baseline models in
ISO-NE Dataset: (a) MAPE, RMSE, MAE, MSE, NMSE; (b) R and R2.

To further investigate the effect of residual learning and convolutional feature
extraction, two additional ablation models—ResNet and CNN-Embedded
ResNet—were introduced. The ResNet, representing a classical residual
framework, achieved a MAPE of 0.018286, confirming the advantage of
skip-connection mechanisms but still performing slightly worse than the DRN.
This difference suggests that the deeper structure and refined residual mapping
in DRN provide stronger feature propagation and learning stability. When
convolutional layers were incorporated into the residual framework, the
CNN-Embedded ResNet improved the MAPE to 0.017346 and achieved
consistent gains across all other metrics compared with the standard ResNet.
These results verify that embedding convolutional layers within residual blocks
enhances local pattern extraction and complements residual learning for more
effective spatiotemporal representation.

The GRU and BiGRU models also demonstrated relatively strong performance,
with GRU recording a MAPE of 0.018612 and BiGRU achieving 0.019921. Their
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RMSE and MAE values were similarly competitive, showing that gated recurrent
units can effectively capture temporal dependencies in the ISO-NE dataset.
However, their performance lagged slightly behind the DRN-based models,
suggesting that residual learning adds significant value beyond recurrent
temporal modeling alone. In contrast, standard CNN and LSTM architectures,
such as CNN (MAPE 0.024224) and LSTM (MAPE 0.023277), exhibited higher
error rates because they struggled to fully capture the complex seasonal and
daily patterns present in the dataset. The Transformer model achieved moderate
results (MAPE 0.021925), benefiting from its self-attention mechanism but still
not matching the residual-based architectures. This may be due to the relatively
short input sequences and the dataset’s strong periodicity, which favor models
with explicit residual connections.

When compared to these baselines and ablation variants, the proposed
CNN-Embedded DRN demonstrated a clear performance advantage. It achieved
the lowest MAPE of 0.015303, improving upon the original DRN by over 10% in
relative error reduction. Similarly, its RMSE (0.016277) and MAE (0.009840)
were the smallest among all models, indicating better absolute accuracy. The
MSE (0.000265) and NMSE (0.017580) were also the lowest, showing enhanced
robustness in minimizing both raw and normalized prediction errors. The
correlation metrics were the highest observed (R = 0.991237, R? = 0.982420),
confirming the model’s superior fit to actual load values. These results
demonstrate that integrating CNN-based local feature extraction into the
residual learning framework enables the model to more effectively capture both
fine-grained temporal patterns and long-term seasonal trends. The CNN module
enhances the DRN'’s ability to identify local load fluctuations, while the residual
connections ensure stable deep learning and mitigate degradation. Together,
these componenis contribute to superior forecasting accuracy and generalization
performance on the ISO-NE dataset.

4.2.2 Malaysia Dataset

The experimental results for the Malaysia dataset are presented in Table 4 and
Fig.9. Among the baseline models, the DRN once again achieved the best
performance, with a MAPE of 0.052514, RMSE of 0.045278, MAE of 0.026467,
MSE of 0.002050, and NMSE of 0.072007. Its correlation metrics (R = 0.964032,
R? = 0.927993) were the highest among the baseline models. These results
confirm the advantage of residual learning even in a tropical dataset where load
patterns are relatively stable and less affected by seasonal fluctuations.

Table 4 A comparison between the proposed model and the baseline
models in the Malaysia dataset

Model MAPE | RMSE MAE MSE NMSE R R?
CNN 0.05343 | 0.04581 | 0.02703 | 0.00209 | 0.07373 | 0.96274 | 0.92626
4 7 0 9 1 6 9
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LSTM 0.05519 | 0.04808 | 0.02833 | 0.00231 | 0.08119 | 0.95984 | 0.91880

5 0 5 2 7 2 3
GRU 0.05663 | 0.04937 | 0.02836 | 0.00243 | 0.08563 | 0.95706 | 0.91436

5 8 8 8 8 8 2
. 0.05552 | 0.05012 | 0.02982 | 0.00251 | 0.08824 | 0.95656 | 0.91175

BiLSTM

1 4 1 2 5 9 5
BiGRU 0.05451 | 0.04869 | 0.02803 | 0.00237 | 0.08326 | 0.95828 | 0.91673

1 0 7 1 8 1 2
0.05401 | 0.04624 | 0.02674 | 0.00213 | 0.07512 | 0.96171 | 0.92487

Transformer

6 7 1 9 4 0 6

0.05951 | 0.04919 | 0.03089 | 0.00242 | 0.08501 | 0.95900 | 0.91499
ResNet

7 6 6 0 0 0 0
CNN-Embedded | 0.05178 | 0.04512 | 0.02622 | 0.00203 | 0.07151 | 0.96453 | 0.92848

ResNet 4 2 3 6 4 8 6
DRN 0.05251 | 0.04527 | 0.02646 | 0.00205 | 0.07200 | 0.96403 | 0.92799

4 8 7 0 7 2 3
CNN-Embedded | 0.0505 | 0.0447 | 0.0246 | 0.0019 | 0.0702 | 0.9654 | 0.9297

DRN 66 19 29 99 11 33 59
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Fig.9 A comparison between the proposed model and the baseline models in
Malaysia Dataset: (a) MAPE, RMSE, MAE, MSE, NMSE; (b) R and R2.

To evaluate the contribution of convolutional embedding in residual frameworks,
two ablation models—ResNet and CNN-Embedded ResNet—were again
considered. The ResNet model recorded a MAPE of 0.059517, slightly higher
than that of the DRN, indicating that the deep residual mapping and enhanced
skip connections in DRN offer superior learning capability. When CNN layers
were introduced into the residual blocks, the CNN-Embedded ResNet achieved a
MAPE of 0.051784, outperforming both ResNet and DRN in this dataset. This
demonstrates that CNN-based local feature extraction can effectively
complement residual learning by capturing subtle load fluctuations that would
otherwise be smoothed out in a relatively stable tropical environment.

The performance of other baseline models followed a similar trend as observed
in the ISO-NE dataset. CNN and Transformer models provided competitive
results, with CNN achieving a MAPE of 0.053434 and Transformer achieving
0.054016. These models were able to capture general load patterns but fell short
in precision compared to DRN-based models. The recurrent models, including
LSTM (0.055195), GRU (0.056635), BiLSTM (0.055521), and BiGRU (0.054511),
exhibited slightly higher error rates. The smaller performance gap between
models suggests that the Malaysia dataset’s more stable and less volatile load
profile reduces the relative advantage of architectures specialized in handling
temporal dependencies.

The CNN-Embedded DRN delivered the best performance across all evaluation
metrics. It achieved the lowest MAPE of 0.050566, representing a noticeable
improvement over the original DRN (0.052514) and other baselines. Its RMSE
(0.044719) and MAE (0.024629) were also the smallest, demonstrating enhanced
absolute accuracy. The MSE (0.001999) and NMSE (0.070241) further confirmed
its advantage in minimizing prediction errors, while the highest R (0.965433)
and R? (0.929759) values indicated a stronger correlation between the predicted
and actual load values than any other model tested. These findings highlight the
CNN-Embedded DRN'’s ability to capture subtle variations in the Malaysia
dataset despite its smoother load patterns. The CNN layers contribute to
improved local feature extraction, which helps the model identify minor load
fluctuations, while the residual connections continue to play a key role in
ensuring stable and efficient learning. Collectively, the inclusion of ResNet and
CNN-Embedded ResNet as ablation experiments further validates the superiority
and robustness of the proposed CNN-Embedded DRN architecture across
datasets with different climatic characteristics.

4.3 Seasonal Variations in the Proposed Model’s Performance
At last, this work uses test data from several seasons in the ISO-NE and Malaysia
datasets to assess and compare the CNN-Embedded DRN model's performance.
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The model's prediction accuracy and capacity for generalization across seasons
are further confirmed by include DRN as a benchmark for comparison study. The
first week (168 hours) of data from various seasons is chosen as the test set for
both the ISO-NE and Malaysia datasets in order to guarantee the experiment's
fairness and the accuracy of the findings. This enables an evaluation of the
model's flexibility and predictive capabilities over a range of time periods.

A comparison between the actual load curves in the ISO-NE dataset over the four
seasons (spring, summer, autumn, and winter) and the load forecast curves of
several models is shown in Fig.10. It is evident that, throughout all seasons, the
CNN-Embedded DRN's prediction curve closely resembles the real load, showing
low error and strong trend alignment. This suggests that the model can retain
high forecast accuracy, efficiently capture patterns of load changes throughout
seasons, and adjust to seasonal variations in load demand.

075
070 N
065

Fow
055
050
045

(a) Spring

(b) Summer

— Actual Load

--- DRN
0.7{ == CNN-Embedded DRN _,

Fig.10 The model's performance on the ISO-NE dataset for different seasons: (a)
Spring, (b) Summer, (c) Autumn, and (d) Winter (forecast values are normalized).

Fig.11 further illustrates the comparison between the actual and predicted load
curves of several models on the test set of the Malaysia dataset during both the
wet and dry seasons. Given that the forecast curve of the CNN-Embedded DRN
closely follows the actual load, the results highlight its strong predictive
capability under both climatic conditions. This indicates that the model not only
adapts well to seasonal variations in load demand but also maintains stable
performance across different weather patterns, ensuring reliable forecasts.

34



(a) Rainy Season

0.9 9

Actual Load
084/~~~ DRN
—-= CNN-Embedded DRN

0.7 h

0.6

Load

0.5

0.4

0.3 4

o N ] N & N o
AR > b4 2 P e e
Hour
(b) Dry Season

0.8 1

Actual Load
=== DRN
—+= CNN-Embedded DRN

0.7 4

0.6

0.5 1

Load

0.4 1

0.3 1

0.2 1

> o> \"9
Hour
Fig.11 The model's performance on the Malaysia dataset for different seasons: (a)
rainy, (b) dry (forecast values are normalized).

As a whole, the results further validate the CNN-Embedded DRN's resilience and
usefulness in STLF tasks by validating the model using test data from several
seasons. In particular, the model continuously maintains good prediction
accuracy, even when load shows notable seasonal fluctuations. As a result, the
model offers dependable support for real-world applications and exhibits a
strong generalization potential for STLF.

4.4 Statistical Significance Analysis Based on Bootstrap

Tables 5 and 6 present the Bootstrap evaluation results for both datasets, where
ResNet is compared with CNN-Embedded ResNet and the original DRN is
compared with CNN-Embedded DRN based on MAPE. In this case, the mean
difference denotes the average performance disparity between the two examined
models, while the standard deviation (SD) quantifies the variation in MAPE
across all resampling iterations.

For the ISO-NE dataset, the CNN-Embedded ResNet and CNN-Embedded DRN
achieved lower MAPE values than their respective baseline models, indicating
enhanced forecasting accuracy. The mean differences between the compared
models were 0.00094 for ResNet versus CNN-Embedded ResNet and 0.00188 for
DRN versus CNN-Embedded DRN. Moreover, the 95% CIs of the mean
differences did not include zero, and the corresponding p-values were
approximately zero, demonstrating statistically significant improvements in
model performance.
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the CNN-Embedded ResNet and
CNN-Embedded DRN again outperformed the baseline architectures. The mean
differences were 0.00773 and 0.00195, both supported by
extremely small p-values (=0), confirming the robustness of the improvements

Similarly, for the Malaysia dataset,
respectively,

across distinct climatic and consumption conditions. The narrow CIs and small

SDs further emphasize the consistency of the Bootstrap resampling results.

Table 5 Bootstrap Results on the ISO-NE Dataset

MAPE =+ MAPE =+ Mean
1st . p-valu
2nd Model | SD (Model | SD (Model | Differen | CI (95%)
Model e
1) 2) ce
-0. 2
CNN-Emb 0.018286 + | 0.017346 = | 0.00094 w0 (;OO ’
ResNet edded ) R - ' ’ = 0
0.020353 0.021283 0 0.000297
ResNet |
-0. 2
CNN-Emb 0.017182 + | 0.015303 + | 0.00188 0 (;OO ’
DRN edded | " 019796 | 0.019655 | 0 - 0.000286 | = °
DRN ' ' '
A X ]
Table 6 Bootstrap Resu1t§ on the Malaysia Dataset
MAPE * MAPFE % Mean
1st . p-valu
Model 2nd Model | SD (Mode! | SD (Model | Differen | CI (95%)
e
3 1) 2) ce
-0.00077
CNN-Emb | o517 + | 0.051784 + | 0.00773 [ 1
ResNet edded T - ' ’ = 0
0.111446 0.114594 3 0.000784
ResNet |
-0.00058
CNN-Emb [
0.052514 + | 0.050566 = | 0.00194 8,
DRN edded = 0
0.106031 0.109999 8 0.000580
DRN 1

Taken together, these results provide strong statistical evidence that integrating
CNN into the ResNet framework significantly enhances the model’s predictive
performance. The consistent improvements observed across two geographically
and climatically distinct datasets suggest that the CNN-Embedded architectures
are capable of effectively capturing localized spatial patterns in load and
temperature variations, thereby enhancing generalization capability and

forecasting stability.

4.5 Summary
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This section comprehensively evaluated the performance of the proposed
CNN-Embedded DRN model through extensive experiments on two benchmark
datasets, ISO-NE and Malaysia. The results demonstrated that the proposed
architecture  consistently = outperformed conventional deep learning
models—including CNN, LSTM, GRU, BiLSTM, BiGRU, and Transformer—as well
as advanced residual-based networks such as ResNet and DRN.

By embedding convolutional layers into the foundational structure of DRN, the
model enhanced early-stage feature extraction and significantly improved
forecasting precision, particularly in capturing short-term load fluctuations and
local temporal patterns. The inclusion of ResNet and CNN-Embedded ResNet as
ablation experiments further verified that CNN-based local feature extraction
complements residual learning, yielding consistent performance gains across
different climatic conditions.

In addition, the Bootstrap significance analysis confirmed that the observed
improvements of CNN-Embedded ResNet and CNN-Embedded DRN over their
corresponding baseline models were statistically significant. The narrow
confidence intervals and extremely small p-values obtained across both datasets
provide strong evidence that integrating CNN modules within residual
frameworks not only enhances predictive accuracy but also ensures model
robustness and stability.

Seasonal evaluations further validated the adaptability of the CNN-Embedded
DRN, showing that it maintains high accuracy across various seasonal and
climatic scenarios. Overall, these findings demonstrate that embedding
CNN-based local ieature extraction within ResNets offers a clear and statistically
verified advantage for STLF, providing a reliable and generalizable framework
for future research on hybrid deep residual models and long-term dependency
modeling.

5. Conclusion

This study proposed a CNN-Embedded DRN architecture for STLF, uniquely
integrating CNN modules into the foundational structure of DRNs. This design
effectively balances the extraction of fine-grained local fluctuations with robust
long-term feature representation. Extensive experiments on ISO-NE (temperate)
and Malaysia (tropical) datasets demonstrated the model’s superior
generalizability, achieving significant MAPE reductions of 10.94% and 3.71%,
respectively, compared to the standard DRN. Experimental results demonstrated
that the proposed model consistently outperforms baseline architectures,
including CNN-, RNN-, Transformer-, and ResNet-based variants, while
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bootstrap-based statistical analysis further confirmed the significance of the
observed improvements.

Practically, the model offers a reliable framework for daily scheduling and
energy trading by handling diverse climatic conditions with high accuracy and
computational efficiency. However, limitations regarding fixed kernel
configurations and reliance on deterministic weather data remain. Future
research will address these by exploring adaptive convolutional kernels,
attention mechanisms, and probabilistic forecasting to support real-time,
multi-scale energy management systems.

Abbreviations
Abbreviation Full name
One-Dimensional Convolutional Neural
1D CNN
Network
Adam Adaptive Moment Estimation
ANN Artificial Neural Network
BiGRU Bidirectional Gated Recurrent Unit
BiLSTM Bidirectional Long Short-Term Memory
CNN Convolutional Neural Network
ConvlD One-Dimensional Convolutional Layer
CRN Convolutional Residual Network
DNN Deep Neural Network
DRN Deep Residual Network
ELM Extreme Learning Machines
FC Fully Connected
GAP Global Average Pooling
One-Dimensional Global Average
GAP1D .
Pooling
GRU Gated Recurrent Unit
New England Independent System
ISO-NE
Operator
LF Load Forecasting
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MSE Mean Square Error
MW Megawatt
MTLF Medium-Term Load Forecasting
NMSE Normalized Mean Square Error
) Neural Hierarchical Interpolation for
N-HiTS . . .
Time Series Forecasting
Pooling1D One-Dimensional Pooling Layer
R Correlation Coefficient
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R? Coefficient of Determination
RBF Radial Basis Function
ReLU Rectified Linear Unit
ResNet Residual Network
ResNetPlus Modified ResNet Structure
RNN Recurrent Neural Network
SELU Scaled Exponential Linear Unit
STLF Short-Term Load Forecasting
SVR Support Vector Regression
VSTLF Very Short-Term Load Forecasting

Appendix

1.ISO-NE dataset:
https://www.iso-ne.com/isoexpress/web/reports/ load-and-demand
2 Malaysia dataset:
https://www.gso.org.my/SystemData/SystemDemand.aspx
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