
Development of a global screening system for detecting protein–protein interactions by luminescence complementation in fission yeast

Received: 17 September 2025

Accepted: 6 January 2026

Published online: 12 January 2026

Cite this article as: Azadeh F., Hashimoto A., Nishimura S. *et al.* Development of a global screening system for detecting protein–protein interactions by luminescence complementation in fission yeast. *Sci Rep* (2026). <https://doi.org/10.1038/s41598-026-35430-8>

Fereshteh Azadeh, Atsushi Hashimoto, Shinichi Nishimura, Manabu Arioka, Minoru Yoshida & Akihisa Matsuyama

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

1 **Development of a global screening system for detecting protein-**
2 **protein interactions by luminescence complementation in fission**
3 **yeast**

4

5 Fereshteh Azadeh^{1,2§}, Atsushi Hashimoto^{2,3}, Shinichi Nishimura⁴, Manabu
6 Arioka^{1,5}, Minoru Yoshida^{1,2,5,6,7*}, and Akihisa Matsuyama^{1,2,3*}

7

8 ¹Laboratory of Microbiology, Department of Biotechnology, Graduate
9 School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1,
10 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan

11 ²Chemical Genomics Research Group, ³Molecular Ligand Target Research
12 Team, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa,
13 Wako, Saitama 351-0198, Japan

14 ⁴Graduate School of Integrated Sciences for Life, Hiroshima University,
15 Higashi-Hiroshima, 739-8528, Japan

16 ⁵Collaborative Research Institute for Innovative Microbiology (CRIIM),

17 ⁶Office of University Professors, The University of Tokyo, 1-1-1, Yayoi,
18 Bunkyo-ku, Tokyo 113-8657, Japan

19 ⁷Drug Discovery Seeds Development Unit, RIKEN Center for Sustainable
20 Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan

21

22 *Co-corresponding authors

23 *Address for Co-corresponding authors: Molecular Ligand Target Research
24 Team/Drug Discovery Seeds Development Unit, RIKEN Center for
25 Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198,
26 Japan. Tel: +81-48-462-1111, e-mail: yoshidam@riken.jp, akihisa@riken.jp

27

28 [§]Present address: Systems Biology and Genome Engineering Section,
29 National Human Genome Research Institute, BG 49 RM 4A82, 49 Convent
30 DR, Bethesda MD 20892, Tel; +1 301-827-7012, email:
31 fereshteh.azadeh@nih.gov

32

33 Keywords: *Schizosaccharomyces pombe*, interactome, protein
34 complementation assay, NanoBiT, High throughput.

35 Abbreviations: HTP, High throughput; NanoBiT, Nanoluciferase Binary
36 Technology; ORF, open reading frame; PCA, protein complementation
37 assay; PCR, polymerase chain reaction; PPI, protein-protein interaction;
38 Y2H, yeast-two-hybrid

39 **Abstract**

40 Deciphering protein-protein interactions (PPIs) is crucial for a
41 comprehensive understanding of biological processes, yet current
42 methodologies often provide incomplete interactome maps. Here, we
43 present a sensitive bimolecular NanoBiT-based protein complementation
44 assay platform for robust PPI detection in the fission yeast
45 *Schizosaccharomyces pombe*. Our platform utilizes two NanoLuc moieties,
46 SmBiT and LgBiT, fused to interacting protein partners, generating a
47 quantifiable luminescent signal upon interaction. To maximize the chances
48 of detection and mitigate potential issues arising from tag position-
49 dependent inactivation of bait proteins, our system enables simultaneous
50 expression of two distinct bait constructs within a single cell: one with the
51 LgBiT-tag fused at its N-terminus and another at its C-terminus. For the
52 prey, we constructed a comprehensive ORFeome library of fission yeast
53 proteins, each fused with SmBiT at its C-terminus, leveraging homologous
54 recombination tools. We established efficient high-throughput methods for
55 cloning and selection of single-copy integrants, enabling the rapid
56 construction of the prey library and reliable identification of true yeast
57 transformants. Validating the platform, high-throughput screening using the
58 general transcription elongation factor Tfs1 successfully identified
59 previously undetectable interactors. This versatile platform not only
60 significantly expands the scope of interactome discovery but also offers a
61 powerful tool for future protein-compound interaction studies.

62 **Introduction**

63 As key players in cells, proteins interact with one another to perform and
64 regulate various cellular functions. Thorough detection of these interactions
65 leads to the elucidation of yet understudied biological processes in living
66 organisms. Studying protein-protein interactions (PPIs) is a challenging
67 endeavor not only because proteins can interact with multiple partners, but
68 also because their interactions can be regulated by post-translational
69 modifications (PTMs), cellular localization, and conformational changes^{1,2}.

70 The methods for studying PPIs can be classified as biochemical,
71 biophysical, or genetic. Biochemical methods, such as co-
72 immunoprecipitation (based on capturing the interactors with antibodies)
73 and affinity purification coupled with mass spectrometry, are suitable for
74 detecting PPIs *in vitro*³. Biophysical techniques, such as surface plasmon
75 resonance, isothermal titration calorimetry, nuclear magnetic resonance,
76 and circular dichroism spectroscopy provide information on the binding
77 affinity, specificity, and kinetics of the interactions. On the other hand,
78 genetic-based methods such as yeast two-hybrid (Y2H)⁴, protein
79 complementation assay (PCA)^{5,6}, Förster (fluorescence) resonance energy
80 transfer (FRET)⁷, and bioluminescence resonance energy transfer (BRET)⁸,
81 are potent for investigating PPIs *in vivo*. In recent years, the study of PPIs
82 has advanced through the use of expression libraries from various
83 organisms. Among these, the popularity of Y2H⁴ for studying PPIs is
84 undeniable due to its scalability and low cost for *in vivo* high-throughput

85 studies^{9,10}. Due to the dynamic nature of the cell¹¹, however, most
86 interactions fall into the transient and weak category, some of which still
87 remain undetectable by currently available technologies. For instance,
88 current methods, particularly those involving antibodies and tagging, can
89 disrupt native protein interactions under experimental conditions. Such
90 approaches are prone to experimental artifacts and non-specific cross-
91 reactivity within the detection environment, resulting in unreliable false-
92 positive and false-negative outcomes that impede the comprehensive and
93 timely identification of all interacting partners for a given protein.

94 Protein complementation assays offer several advantages, including a
95 high signal-to-background ratio and stability. One of the most robust classes
96 of luminescence complementation assays is the NanoBiT system. This
97 system is based on a split Nanoluciferase that displays a higher dissociation
98 constant value than most physiological PPIs. It detects physical interactions
99 between two proteins fused with luciferase enzyme moieties, specifically
100 Large BiT (LgBiT: 18 kDa) and Small BiT (SmBiT: 1.3 kDa). Since there is a
101 low affinity between these NanoBiT components, the formation of an active
102 luciferase holoenzyme depends solely on the interaction between the
103 protein pairs attached to them¹².

104 Generally, yeast cells serve as an ideal model organism due to their
105 conserved basic cellular processes, ease of genetic manipulation, versatile
106 high-throughput platforms, well-characterized genome, ease of culturing
107 and maintenance, available tools and resources, and complementarity with

108 other attainable systems and model species, as well as their simplification¹³.
109 The fission yeast *S. pombe* holds a wealth of molecular biology tools¹⁴⁻¹⁷,
110 genome-wide deletion collection¹⁸, chemical genomics profiling¹⁹, reverse
111 proteomic data²⁰, and complete ORFeome library²¹. Additionally, fission
112 yeast often serves as a better model system than budding yeast for studying
113 protein interactions involved in critical biological processes such as gene
114 regulatory events²². However, even in the only available comprehensive
115 Y2H study²² for *S. pombe*, many interactions in certain organelles and with
116 membranous proteins are missing.

117 In this study, we employed a NanoBiT-based protein complementation
118 assay system in fission yeast to investigate PPIs by incorporating various
119 modifications into the prey and bait expression vectors. A common
120 challenge associated with these assays is the configuration and positioning
121 of tags relative to the protein of interest, primarily due to the limited
122 understanding of structure-activity relationships for most proteins. To
123 address this issue, we expressed two variants of the bait proteins, each with
124 the LgBiT tag fused at a distinct position. A genome-wide screen using the
125 general transcription factor Tfs1 as bait identified over 30 proteins with
126 previously established interactions with Tfs1, demonstrating that the dual-
127 bait strategy is an effective approach for evaluating PPIs.

128 **Materials and Methods**129 **Yeast strains and growth media**

130 The strains used for screening were established by genetic crossing of
131 AM600 (*h⁺ leu1-32 arg3-R25 lys1-K24 ade6-M216*) and AM185 (*h⁹⁰*
132 *bfr1::hisG-ura4⁺pmd1::hisG ura4-D18 leu1-32*) strains. Subsequently, the
133 progeny (*h⁺ bfr1::hisG-ura4⁺pmd1::hisG ura4-D18 leu1-32 arg3-R25 lys1-*
134 *K24 ade6-M216*) was crossed with AM549 (*h⁻ leu1-32 ura4-D18 lys1-K24*
135 *ade6-M210*) strain. The screening strain, *h⁺ bfr1::hisG-ura4⁺ pmd1::hisG*
136 *ura4-D18 leu1-32 arg3-R25 lys1-K24 ade6-M210*, was picked up based on
137 the colony color on the adenine-limited plate, auxotrophy, mating type, and
138 PCR results for *ura4*, *pmd1*, and *bfr1*. Similarly, the counter strain, i.e., *h⁻*
139 *mat1<<nat^r bfr1::hisG-ura4⁺ pmd1::hisG ura4-D18 leu1-32 arg3-R25 lys1-*
140 *K24 ade6-M216* was created by genetic crossing of AM616 (*h⁻ mat1<<nat^r*
141 *leu1-32 arg3-R25 lys1-K24 ade6-A16*) and AM185 strains. The establishment
142 of *h⁻* strains in which the *mat1* locus was marked by insertion of the natMX
143 marker was described previously²³. For routine cell culture, YE²⁴ medium
144 was used. For the selection of transformants and zygotes, selective medium
145 SD, EMM2²⁴, or EMMG²⁵ was used. For inducing the expression of
146 transgenes from the *nmt1* promoter, EMM2 or EMMG was used. SPA²⁴ was
147 used for the induction of sexual differentiation. Adenine, uracil, leucine,
148 lysine, and arginine were added to the medium when needed.

149

150 **Genetic methods for *S. pombe***

151 Fission yeast cells were handled as described²⁴. For the introduction of
152 the expression plasmids into *S. pombe* cells, each expression plasmid was
153 digested with NotI and subjected to the high-efficiency lithium acetate
154 transformation protocol²⁶. A 96-well plate format was used to introduce the
155 expression library into *S. pombe*²⁷. The cells were cultured on an SD
156 selective medium supplemented with 50 µg/ml adenine hemisulfate
157 dihydrate (MP biomedicals), L-lysine hydrochloride (Wako), and L-arginine
158 (Wako). The Leu⁺ transformants obtained by the introduction of the prey
159 library were exposed to blue/green LED light (FAS-V, NIPPON Genetics).
160 The colonies that clearly showed mCherry fluorescence but had the lowest
161 fluorescence intensity were chosen as transformants having a single copy of
162 the prey construct (see Fig. 3).

163

164 **Mass mating of the bait- and prey-harboring yeast strains for making**
165 **diploid cells**

166 To generate diploid strains expressing two baits and each of the prey
167 proteins, the bait-expressing *h⁺* strain was mated with the prey-expressing
168 *h⁻* strains. Freshly cultured cells were picked using a 96-pin replicator from
169 solid media and mixed on SPA medium. The cell mixture was re-streaked
170 onto the SD selective medium after two days of incubation at 30 °C²⁴. The
171 auxotrophy of bait-expressing strains (leu⁻ and ade⁻) and prey-expressing
172 strains (lys⁻, arg⁻, and ade⁻) was complemented by their counterpart, so that
173 the resulting diploid cells had no auxotrophy.

174

175 **Construction of a prey vector, pPREY3**

176 A vector for prey expression was constructed based on the pDUAL
177 plasmid, which enables chromosomal integration of a transgene¹⁴. The
178 EcoRV site (GATATC) in the *leu1* promoter in this plasmid was changed to
179 GATC via inverse PCR so that it would not be recognized by this enzyme.
180 The SacI recognition site (GAGCTC) was deleted by digestion with SacI
181 followed by Klenow fragment treatment and self-ligation. The 3×FLAG tag
182 was introduced between the NheI and BamHI sites by inserting a fragment
183 assembled by annealing of six oligonucleotides
184 (GCTAGCGATATCCATATGGACTACAAGGACCACGACG,
185 CACCAGGAACATCAGGTATAACCTATAGCGATCGACGT,
186 GGGATTATAAAGACCACGATATTGATTATAAGGA,
187 ATATTAGTTATAGCACCAAGAAATATTAGGGCAG,
188 TGATGACGATAAACCCGGTAGCG, and
189 CTAGGCGATGGGCCAAATAGCAGTAGTAGGA). The recognition sites for
190 EcoRV and NdeI were introduced at this stage. The SmBiT sequence was
191 then inserted just upstream of the 3×FLAG tag sequence via inverse PCR
192 using primers SmBiT-A
193 (TTATCGTTATTTGAAGAAATTCTCTAGCGGATCCGGCGGCCA) and
194 SmBiT-B (CTTCAAATAACGATAACCAGTAACCTTATCGTCATCATCCTTA)
195 followed by gap-repair cloning. The *nmt1* promoter and the ccdB cassette
196 were transferred from pDUAL-FFH1c¹⁴ using SphI and NheI, resulting in

197 the generation of pDUAL5-ccdB-3F1-SB. The *Cm*^R ORF within the ccdB
198 cassette was replaced by the GFP ORF by fusing a GFP-containing fragment
199 to the vector digested with NheI and BglII. The GFP fragment containing a
200 bacterial promoter sequence was generated by two-step PCR. The promoter
201 amplified from pDUAL5-ccdB-3F1-SB using primers Pnmt1-NheI-F
202 (ATAGTCGCTTGTAAAGCTAG) and Pcm-GFP-R
203 (CTTCTCCTTGCTCATAGATCTTAGCTTCCTAGCTC), and the GFP ORF
204 amplified from pDUAL-GFH1¹⁴ using primers BglII-GFP-F
205 (AGATCTATGAGCAAAGGAGAAGAACT) and BglII-GFP-R
206 (TAGTAAGCCGGATCCAGATCTTATTGTATAGTTCATCCATGC), were fused
207 by a second PCR.

208 The XhoI site in the *leu1* ORF and the EcoRI site flanking the *leu1* ORF
209 were deleted for use in another subcloning. The vector fragment was
210 prepared by digestion with XhoI and EcoRI, and the other fragment was
211 amplified by PCR from the same plasmid using primers
212 CGACCTGAGTTAAAACCTCGAATTGAAGAACACAAGATTGG and
213 TAAAACGACGCCAGTGAATTGCGGGAGCGCTACCGTGAAT. These
214 fragments were fused by gap-repair cloning. The *ura4*⁺-*ars1* fragment was
215 deleted by ApaI digestion followed by self-ligation. The *leu3* promoter was
216 amplified from the wild-type fission yeast genomic DNA by PCR with
217 primers leu3-F1
218 (GATAACAGGGTAATATACTAGTATGCATAAGAATTGCAAGCC) and leu3-R1
219 (ACGATTTCCTTGCACACATGGAGACTGTAGCGATTTGGAC).

220 The mCherry expression unit was transferred from the previously
221 described pBiD3-R25-mCherry vector²⁸ and inserted upstream of the *nmt1*
222 promoter, in the opposite orientation to the promoter. The promoter was
223 then replaced by the putative constitutive *gpd3* promoter amplified by PCR
224 from the wild-type genome using SphI-Pgpd3-F
225 (AGTCGATCGACCTGCAGGCATGCTCCACGTCTAACCCGCTC) and XhoI-
226 Pgpd3-R (CATCTCGAGTAATTGCTATTCTC).

227

228 **Construction of pXArg3-hLB**

229 The LgBiT fragment, sandwiched between the hexahistidine tag and four
230 consecutive GGGGS linker sequences, was synthesized by artificial gene
231 synthesis (Eurofins Genomics) and inserted between the NheI and BamHI
232 sites of the *lys1*-targeting, pCLys1-derived vector¹⁶. In analogy to the
233 modification performed in pPREY3, where the ccdB cassette was replaced
234 by GFP, the *Cm^R* ORF inside the ccdB cassette was substituted with the
235 *mCherry* ORF. The ccdB cassette containing *mCherry* was generated by
236 fusing a PCR product amplified using primer sets Pnmt1-NheI-F
237 (ATAGTCGCTTGTAAAGCTAG) and Pcm-mCherry-R
238 (CCTCGCCCTTGCTCACATGCATTTAGCTTCCTAGCTC) with the other
239 PCR product generated using CAT-mCherry-F
240 (CATGTGAGCAAGGGCGAGGAGGAT) and BglII-mCherry-R
241 (TAGTAAGCCGGATCCAGATCTTACTTGTACAGCTCGTCCATGC). The NotI
242 and SalI recognition sites within the ccdB cassette were then deleted by

243 amplifying the mCherry-containing fragment using mCherry-dNotI-F1
244 (CATATCCAGTCACTATGGCGGCCACATTAGGCACCCCAGGCTTT) and ccdB-
245 dSall-R1 (CACTATGGTCAACCTGCAGACTGGCTGTAT) and ligating the
246 PCR fragment with the same vector used as the template, which was
247 digested with NotI and Sall.

248

249 **Construction of pXLys1-HA-LB**

250 The other bait-expressing vector, pXLys1-HA-LB, was first constructed
251 based on the pDUAL-type plasmid. This plasmid (pDUAL5-ccdB-4HA1) was
252 formed by replacing the FLAG tag and SmBiT sequence (NdeI-BamHI) of
253 pDUAL5-ccdB-3F1-SB, described above, with four consecutive HA tags. The
254 DNA sequence encoding four copies of the HA epitope was generated by
255 ligating three annealed oligonucleotide pairs. These annealed
256 oligonucleotides were composed of the following sequences:

257 TATGTACCCTTATGATGTACCTGACTACGCCGGC/GCGTAGTCAGGTACATCA
258 TAAGGGTACA,
259 TATCCGTACGACGTCCCAGACTATGCCGGC/GCATAGTCTGGGACGTCGTAC
260 GGATAGCCG, and
261 CCCGGGGAAGAGTACTAGTGG/GATCCACTAGTACTCTCCCCGGGGCCG.

262 Each pair had cohesive ends that allowed for proper alignment and ligation.
263 One of the oligonucleotide hybrids could be linked in tandem, enabling the
264 generation of more than three copies of the HA epitope. After ligating these
265 fragments with the vector digested with NdeI and BamHI, plasmids

266 containing four copies of the HA epitope were selected by sequencing from
267 the candidate plasmids. The LgBiT fragment with a termination codon was
268 amplified by PCR using primers NdeI-LgBiT-F
269 (TGGTTGATATCCATATGGTCTTCACACTCGAAGATT) and NdeI-LgBiT-R
270 (TCATAAGGGTACATATGGCTGTTGATGGTTACTCGG), and was inserted at
271 the NdeI site by a gap-repair technique. Three copies of a GGGGS linker
272 were inserted upstream of the first HA tag by inverse PCR using primers
273 GGGGS2-1-up
274 (AGAGCCTCCACCGCCTGAACCTCCACCGCCTCCAGACATATGGATATCAACC
275 ACT) and GGGGS2-3-down
276 (TCAGGCGGTGGAGGCTCTAGTGGTGGAGGCCGTTCAAATATGTACCCTTAT
277 GATG), followed by gap-repair cloning. A contiguous DNA fragment
278 containing the *nmt1* promoter, ccdB cassette, GGGGS linker, HA tag, and
279 LgBiT was transferred to the pXLys1 vector, a promoter-derivative of the
280 pCLys1 vector having the *lys4* promoter in place of the *lys1* promoter²⁹. The
281 ccdB cassette was changed to the mCherry-containing ccdB cassette
282 following the same strategy as pXArg3-hLB.

283

284 **Quantitative PCR**

285 The copy number of integrated prey-expressing vectors was examined by
286 real-time PCR using a Thermal Cycler Dice Real Time System (TaKaRa Bio).
287 Genomic DNA from the integrants was prepared as described³⁰ and used as
288 a template. The 3' part of the *mCherry* ORF was amplified using primers

289 mCherry-RT-F1 (AAGATGAGGCTGAAGCTGAAG) and mCherry-RT-R1
290 (GATGGTGTAGTCCTCGTTGTG). Primers act1-RT-F1
291 (GTTATGTCTGGTGGTACCACT) and act1-RT-R1
292 (GATCCACCAATCCAGACAGA) were used for amplification of the *act1* gene
293 for data normalization.

294

295 **Cloning of ORFs into prey and bait expression vectors**

296 For the construction of prey expression plasmids, each ORF from the
297 fission yeast ORF library resource²¹ was amplified using universal primers
298 pPREY3-F
299 (CTGACTTATAGTCGCTTGTAAAGCTAGCGATATCAAAAAAGCAGGCTCTC
300 ATATG) and pPREY3-R
301 (ATCCCCGTCGTGGCCTTGTAGTCCATATGGATATCTTGTACAAGAAAGCT
302 GGGTA) and PrimeSTAR GXL DNA Polymerase (TaKaRa Bio., Japan). The
303 expression plasmids were then constructed by gap-repair cloning in *E. coli*
304 DH5 α competent cells by directly introducing each amplified ORF and
305 pPREY3 digested with EcoRV³¹. Similarly, bait plasmids expressing a gene
306 of interest were made by gap-repair cloning using PCR-amplified ORFs and
307 EcoRV-digested pXLys1-HA-LB or SmaI-digested pXArg3-hLB. The universal
308 primers for inserting the gene of interest into pXLys1-HA-LB were pXLys1-F
309 (CTGACTTATAGTCGCTTGTAAAGCTAGCGATATCAAAAAAGCAGGCTCTC
310 ATATG) and pXLys1-HA-LB-R
311 (GCCTGAACCCACCGCCTCCAGACATATGGATATCTTGTACAAGAAAGCT

312 GGGTA). The forward universal primer for amplification of a gene of
313 interest for insertion into pXArg3-hLB (N-tagged vector) was:
314 GGAGGCGGTTCAGGAGGCAGGCTCAGATCCCAGGAAAAAGCAGGCTCT
315 CATATG. The reverse primer with the stop codon sequence was designed
316 specifically for each gene of interest.

317

318 **Luciferase assay**

319 The freshly grown fission yeast cells were picked from YE agar plates
320 (pre-culture) and inoculated into 1 ml of EMMG medium^{24,25} in a 96-deep-
321 well plate (NuncTM 96-well Polypropylene DeepWellTM Storage Plates;
322 Thermo Scientific), which was then incubated at 30 °C for 20 hours. Cells
323 were then harvested and suspended in 12 µl of fresh EMMG medium.
324 Subsequently, a volume of 12 µl of cell suspension was transferred to assay
325 plates (384-well cell culture microplates, F-bottom, white, Greiner, Bio-
326 One), and mixed with 11.85 µl of Y-PERTTM Plus Dialyzable Yeast Protein
327 Extraction Reagent (Thermo Scientific) detergent and 0.15 µl of Furimazine
328 (or 2-furanyl methyl-deoxycoelenterazine, Nano-Glo Luciferase Assay
329 Substrate Promega Corp.) solution. Just before measurement of the
330 luciferase activity by an EnSpire Multimode plate reader (Perkin Elmer), the
331 mCherry fluorescence signal (i.e., $\lambda_{\text{excitation}} = 587 \text{ nm}$ & $\lambda_{\text{emission}} = 610 \text{ nm}$)
332 was measured using a SpectraMax M2/M2^e microplate reader (Molecular
333 devices, LLC).

334

335 **Statistical analysis**

336 In this study, the results of three technical replicates were calculated as
337 mean values with error bars (corresponding to \pm standard deviation/SD).
338 The significance of each experiment was statistically validated using a two-
339 tailed unpaired Student's *t*-test in Microsoft Excel (Microsoft 365), with *p*-
340 values (*p* < 0.05) obtained.

ARTICLE IN PRESS

341 **Results**

342

343 **The strategies of the NanoBiT-based PCA system in this study**

344 To meet the need for more sensitive PPI detection systems in *S. pombe*,
345 where well-established molecular biology tools are already available, we
346 developed a NanoBiT-based protein complementation assay (PCA) system.
347 This system utilizes the LgBiT moiety of deep-sea shrimp luciferase and its
348 complementary peptide, SmBiT. However, a major challenge in *S. pombe* is
349 the lack of detailed structure-activity relationship data for most proteins,
350 which complicates the determination of optimal fusion points for the
351 LgBiT/SmBiT fragments. To address this challenge, we expressed the
352 protein of interest as two distinct baits, each fused differently with the
353 LgBiT tag (Fig. 1A). This strategy aimed to reduce the risk of missing
354 potential positive interactions, based on the hypothesis that positive signals
355 could be detected from at least one of the bait constructs (Fig. 1B). This
356 would hold true even if one bait construct led to steric hindrance or
357 suboptimal positioning of the interacting fragments. To expand the utility of
358 this system not only for given bait proteins, but also for genome-wide
359 screening, we designed three integration vectors targeting different
360 genomic loci and developed host strains compatible with these expression
361 plasmids, enabling the simultaneous expression of two baits and one prey,
362 as detailed below (Fig. 1C).

363

364 **Construction of vectors for bait expression; pXArg3-hLB and pXLys1-**
365 **HA-LB**

366 In this assay, the arrangement and the order of LgBiT in a bait protein
367 posed a significant challenge as described above. Therefore, we partially
368 addressed this issue by expressing a bait protein as two differently tagged
369 plasmids. Among several possible ways to express one protein as two
370 different constructs, e.g. bait proteins fused with LgBiT having different
371 length linkers, we chose to express two bait proteins with LgBiT fused to
372 either N- or C-terminus.

373 To establish a binary system featuring dual orientations of tagging, we
374 employed two vectors containing the LgBiT fragment of the NanoLuc
375 luciferase. Accordingly, we integrated the LgBiT fragment into two distinct
376 vectors: pXArg3, a modified variant of the pCArg3 vector targeting the *arg3*
377 locus, and pXLys1, a modified version of the pCLys1 vector, targeting the
378 *lys1* locus²⁹. The introduction of NotI-digested pCLys1-derived vector into
379 the *lys1* locus, bearing the *lys1-K24* mutation, yielded a functional *lys1*
380 gene, resulting in lysine prototrophic transformants. We employed a similar
381 approach for pCArg3-derived vectors, which restored the *arg3-R25*
382 mutation upon chromosomal integration. To reduce steric hindrance
383 between the LgBiT fragment and the protein of interest, tandem glycine and
384 serine linkers were introduced between the LgBiT fragment and each ORF
385 in the bait vectors. Additionally, small epitope tags, specifically the HA
386 epitope or the hexahistidine tag, were incorporated into the vectors to

387 facilitate the detection of the bait expression. Both baits were expressed
388 under the control of the thiamine-repressible *nmt1* promoter, enabling
389 inducible, controllable expression by thiamine limitation. Consequently, two
390 distinct bait-expressing vectors were constructed: pXArg3-hLB for 5'-
391 tagging, and pXLys1-HA-LB for 3'-tagging (Fig. 1B).

392

393 **Construction of a prey expression vector, pPREY3**

394 To facilitate the rapid and straightforward cloning of the fission yeast
395 ORFeome and the subsequent expression of prey constructs through
396 chromosomal integration, we developed a prey expression vector based on
397 the chromosomal integration vector pDUAL, targeting the *leu1* locus.

398 Although pDUAL vectors have the *ura4* and *ars1* sequences that enable
399 episomal maintenance in host cells, we deleted these sequences from the
400 vector backbone to ensure prey proteins are expressed only from the
401 chromosome in this system.

402 We included multiple design elements in the prey-expression vector to
403 obtain yeast transformants expressing desired prey constructs. Notably, we
404 occasionally encounter a problem where yeast transformants fail to express
405 a transgene introduced by single-crossover recombination using integration
406 vectors such as pDUAL, which may be attributed to further recombination
407 between a pair of repeated sequences generated upstream and downstream
408 of the inserted fragment³². On the other hand, another general problem
409 when introducing transgenes using integration plasmids is multiplication of

410 inserted fragments²⁹. To obtain reproducible and quantitative outcomes, it
411 is necessary to select transformants with an equivalent copy number of the
412 integrated gene. The copy number or expression level of the introduced
413 gene can be verified using standard techniques such as quantitative PCR
414 and western blotting. However, when using numerous samples as in the
415 genome-wide screening, a practical expedient suited to the high-throughput
416 systems is needed.

417 To solve these concerns simultaneously, we included an *mCherry*
418 expression unit driven under the regulation of the constitutive *gpd3*
419 (glyceraldehyde 3-phosphate dehydrogenase) promoter in the prey-
420 expression vector (Fig. 2). Expression of *mCherry* was easily monitored by
421 directly observing the fluorescence of transformant colonies on the agar
422 plate under LED light exposure, thereby eliminating transformants with no
423 insertion. In addition, transformants exhibiting strong mCherry
424 fluorescence, expected to have multiple copies of the insertion, can also be
425 eliminated. As confirmed by real-time qPCR, the expression levels of
426 *mCherry*, monitored by fluorescence, correlated with the copy number of
427 *mCherry* in the genome (Fig. 3). Transformants that clearly exhibited
428 mCherry fluorescence but showed the weakest fluorescence were picked as
429 those having only one copy of the prey ORF (Fig. 3). Implementing high-
430 throughput screening using optical density (OD) measurements proved
431 operationally cumbersome due to the tendency of cells to sink during

432 manipulation. As a solution to this issue, the mCherry signal served as the
433 basis for normalizing data in luciferase assays.

434 For fast and effective cloning, we have also included a technical feature
435 in this vector to increase the probability of obtaining *E. coli* transformants
436 harboring desired plasmids (Fig. 2). The Gateway-compatible pDUAL
437 vectors contain a stuffer named the *ccdB* cassette³³, which is composed of
438 the toxic *ccdB* gene and the chloramphenicol resistance gene (*Cm*^R). We
439 replaced the *Cm*^R ORF, which is non-essential for cloning, with that of GFP.
440 By this approach, intact vectors (without inserts) were eliminated by two
441 selection criteria: the *ccdB* ORF and GFP tracking of bacterial
442 transformants. Although the CcdB protein is toxic to standard laboratory *E.*
443 *coli* strains, we often encounter a problem where *E. coli* transformants
444 harboring the *ccdB* plasmid can grow, probably due to mutations or
445 rearrangements occurring in the plasmid. Even when *E. coli* hosts
446 harboring the unreacted vector are viable, such transformants can be
447 identified by GFP fluorescence and eliminated. Conversely, when the GFP-
448 *ccdB* cassette is properly replaced with an ORF, the fluorescence is lost in
449 the transformants, making it easier to determine if the desired
450 transformants have been obtained.

451 By inserting the SmBiT fragment into the vector having the above
452 properties, we successfully constructed a vector referred to as pPREY3 (Fig.
453 2). The prey proteins were also expressed under the control of the thiamine-
454 repressible *nmt1* promoter. The existing ORFeome library²¹ was used to

455 prepare the prey expression library by 3'-tagging with SmBiT. Although we
456 cloned the ORFeome library into pPREY3 mainly via gap-repair cloning, the
457 Gateway-cloning system provides an alternative in case gap-repair cloning
458 is unsuccessful. As a result of selecting transformants, a set of yeast haploid
459 strains transformed with more than 97% of the prey library constructs
460 derived from the available ORFeome library were successfully obtained. For
461 the selection of counter strains expressing bait proteins, we confirmed the
462 expression of the baits by performing western blotting.

463

464 **Establishment of *S. pombe* strains for NanoBiT-based PCA**

465 To identify proteins that interact with a protein of interest, it is
466 necessary to generate a collection of strains expressing two baits and
467 each of approximately 5,000 preys. While the introduction of three
468 expression plasmids into the genome of a host strain is feasible, this
469 approach has limited applicability because the strain set cannot then be
470 used to screen interactions with other protein targets. To address this
471 issue, we employed intragenic complementation of the two *ade6* alleles,
472 *ade6-M210* and *ade6-M216*, in which one serves as a host for prey library
473 constructs and the other as a host expressing bait proteins. In the realm of
474 fission yeast research, it is widely recognized that diploid cells carrying
475 both *ade6-M210* and *ade6-M216* alleles do not exhibit adenine
476 auxotrophy. This characteristic allows for the straightforward selection
477 and maintenance of Ade⁺ zygotes resulting from the mating of adenine-

478 auxotrophic *ade6-M210* and *ade6-M216* haploids^{25,34}. In addition, while
479 the prey-expression vector pPREY3 restores leucine auxotrophy, two baits
480 that are introduced by pXLys1 and pXArg3 complement lysine and
481 arginine auxotrophy, respectively. Thus, auxotrophy for all four nutrients
482 was restored after zygote formation in combination with the intragenic
483 complementation of *ade6-M210* and *ade6-M216* alleles.

484 To further expand the range of applications, we deleted *bfr1* and *pmd1*
485 both encoding efflux pumps³⁵, as deletion of both *bfr1* (brefeldin
486 resistance)³⁶ and *pmd1* (leptomycin transmembrane transporter)³⁷ confers
487 sufficient drug sensitivity³⁵. By incorporating this gene disruption, the assay
488 system can accommodate cases in which protein-protein interactions
489 require the intervention of specific compounds such as the FK506-FKBP12-
490 calcineurin complex.

491

492 **Validation of established NanoBiT-based PCA in fission yeast using**
493 **known interactions**

494 To determine whether the PCA system consisting of the vectors and the
495 host strains described above works well, we conducted luciferase assays
496 using representative proteins with known interactors. When *rad24* was
497 introduced using bait vectors for either N- or C-terminal tagging with
498 LgBiT, the N-terminally tagged Rad24 (LB-Rad24) exhibited higher
499 luciferase activity compared to the C-terminally tagged variant (Rad24-LB)
500 (Fig. 4A). Notably, the combination of LB-Rad24 with Plc1 (Plc1-SB) or Fft3

501 (Fft3-SB) produced strong luciferase signals, whereas Rad24-LB paired with
502 the same prey proteins showed activity at background levels. For example,
503 the signal from self-interaction between LB-Rad24 and Rad24-SB was
504 higher than that from the interaction between LB-Rad24 and Prz1-SB.
505 However, this relationship was reversed when Rad24-LB was used instead
506 of LB-Rad24. These results strongly suggest that the ability to detect
507 protein-protein interactions depends highly on the orientation of the
508 interacting proteins and the position of the tag, similar to what is observed
509 in Y2H. Thus, if one construct fails to detect an interaction, the other may
510 compensate for this limitation. The use of two bait proteins with different
511 tag positions is therefore an effective strategy for enhancing the detection
512 of interactions within the system.

513 To further evaluate the effectiveness of expressing two bait proteins with
514 different tag positions, we examined their simultaneous expression —
515 specifically, both N- and C-terminal fusions, which are independently active.
516 As shown in Fig. 4B, the co-expression of LB-Mms1 and Mms1-LB with
517 Ubc13-SB resulted in higher luciferase activity compared to the expression
518 of either bait alone. This additive effect indicates that simultaneous
519 expression of two baits with different orientations of LgBiT fusion improves
520 the detectability of protein-protein interactions, further validating the
521 versatility and reliability of the system.

522 Building on the effectiveness of this dual-bait expression strategy, we
523 evaluated whether our PCA system could detect interactions involving

524 proteins that are typically challenging to analyze using conventional Y2H
525 assays, such as membrane-associated proteins. As a proof of concept, we
526 selected several membrane-associated amino acid transporters and assessed
527 their interactions with known interacting partners, including Pub1, an E3
528 ubiquitin-protein ligase complex subunit (Fig. 4C). Our system successfully
529 detected these interactions, demonstrating its ability to overcome the
530 limitations of traditional Y2H systems.

531

532 **A genome-wide interaction study**

533 To explore and delve deeper into the potential of our NanoBiT-based
534 system, we sought to identify novel interactors of a protein that was tested
535 in another genome-wide system. To do so, we developed a high throughput
536 platform for PPI studies. We selected Tfs1, a general transcription
537 elongation factor, as a bait protein to explore its interactors. This protein
538 has many already-identified interactors²², thereby providing a good basis
539 for comparison between the hit proteins obtained in this system and the
540 known interacting partners. We expressed Tfs1 as two separate baits, each
541 tagged with the LB tag fused to either the N- or C-terminus of the protein.
542 The strain expressing two Tfs1 baits was mated with a set of strains
543 expressing the 4,662 ORFeome preys, and the zygotes were examined for
544 luciferase activity.

545 This screen identified 31 proteins that exhibited significantly strong
546 luciferase activity, including known interactors such as Tvp15 (COPI-coated

547 vesicle associated protein), Ecm31 (3-methyl-2-
548 oxobutanoatehydroxymethyltransferase), Vps20 (ESCRT III complex
549 subunit), and Yop1 (ER membrane protein), thereby affirming the system's
550 reliability (Fig. 5A, Supplementary Table 1). Notably, only 9 interactors
551 overlapped with those previously reported by Vo et al. (2016), suggesting
552 that each methodology captures a distinct subset of interactions (Fig. 5B).
553 This observation is consistent with findings from Ito et al. (2001), who
554 emphasized the complementary nature of different interaction-detection
555 methods.

556 It is conceivable that both methodologies include numerous false
557 positives or transient, non-specific interactions influenced by specific
558 experimental conditions or functional contexts. Nevertheless, the screen
559 identified 22 proteins whose interactions with Tfs1 were previously
560 unreported, as shown in Fig. 5B.

561 NanoBiT-based PCA, the screening system used in this study, can detect
562 interactions that are difficult for Y2H systems to detect, as the bait-prey
563 interaction is not confined to specific cellular compartments. Noteworthy
564 examples of identified interactors located beyond the nucleus include the
565 mitochondrial protein Mtq1 (mitochondrial N(5)-glutamine
566 methyltransferase), the NADHX epimerase Mug182, and the ER/cell wall
567 protein Spbp23a10.11c (circularly permuted 1,3-beta-glucanase). The latter
568 two are also involved in stress responses.

569

570 **Discussion**

571 In this study, we developed a NanoBiT-based platform for detecting PPIs,
572 building upon the existing pDUAL vector system^{14,16}, and leveraging the
573 genetic tools and strains of *S. pombe*. We modified the pDUAL vectors to
574 include NanoBiT components, selectable markers, and elements supporting
575 efficient screening across multiple workflow stages. Notably, the pPREY3
576 vector enabled high-efficiency cloning of the fission yeast ORFeome, while
577 the pXLys1-HA-LB and pXArg3-hLB vectors allowed bait protein expression
578 in two alternative tag configurations. These configurations address structural
579 or functional uncertainties by offering flexibility in tag positioning. In parallel,
580 we generated compatible fission yeast strains that support dual-bait co-
581 expression, thereby expanding the range of detectable interactions.

582 These features highlight the versatility and sensitivity of our PCA system,
583 particularly in detecting transient or weak PPIs often missed by conventional
584 methods such as the traditional Y2H system. The combination of dual-bait
585 expression and flexible tagging improves detection of biologically relevant
586 interactions, making our system a valuable tool for dissecting complex
587 interaction networks. Following successful detection of known interactions,
588 including those involving membrane-associated proteins, we applied the
589 system in a genome-wide screen to identify novel interactors of the
590 transcription elongation factor Tfs1. Although Tfs1 is primarily nuclear,
591 increasing evidence suggests that transcription factors can shuttle between
592 the nucleus and cytoplasm, especially under stress conditions. TFIIS family

593 members, including the Tfs1 homolog TFIIS.h (human ortholog), have been
594 implicated in stress responses³⁸, genome maintenance³⁹, and transcriptional
595 recovery⁴⁰, in part via phase separation^{41,42}. These findings raise the
596 possibility that Tfs1 participates in broader regulatory roles beyond its
597 nuclear function, which may be governed by post-translational modifications
598 or subcellular sequestration. The ability to detect Tfs1-associated
599 interactions by our system supports its utility for capturing such dynamic,
600 context-dependent PPIs.

601 While our high-throughput screen identified promising candidate
602 interactors of Tfs1, co-immunoprecipitation assays for selected pairs were
603 inconclusive, likely due to the transient or weak nature of these interactions.
604 Notably, false-positive and false-negative results are a common concern not
605 only in NanoBiT assays but also in other split-based systems, such as split-
606 GFP or split-ubiquitin, as well as in Y2H. This limitation highlights a key
607 advantage of our PCA-based approach, which is optimized to detect
608 conditionally assembled, low-affinity, or modification-dependent interactions
609 often missed by traditional methods like co-IP or Y2H. Nevertheless, the
610 possibility remains that some of the identified candidates may represent
611 false-positive interactions inherent to split-based assays. In addition, it is
612 important to note that the NanoBiT assay cannot provide information about
613 the subcellular localization of these interactions. Potential ectopic
614 interactions—whether due to assay artifacts or unexpected biological
615 phenomena—cannot be evaluated with this system. Therefore, further

616 validation using orthogonal methods, such as co-immunoprecipitation, pull-
617 down assays, or microscopy-based colocalization, will be essential to confirm
618 the physiological relevance of these interactions.

619 Importantly, several of the identified candidates overlapped with
620 interactors reported in previous global Y2H studies, lending orthogonal
621 support to our findings. This reinforces the biological relevance of our data
622 and suggests that our system efficiently captures interaction partners that
623 may be inaccessible to methods reliant on stable complex formation. Given
624 the limitations of biochemical approaches for studying dynamic PPIs, our
625 platform offers a complementary—and in some cases superior—strategy for
626 mapping interaction networks, especially for proteins like Tfs1 that may
627 function in multiple cellular compartments.

628 Looking ahead, the modularity of our system opens avenues for further
629 innovation. One direction is the development of a three-hybrid system to
630 detect compound-protein interactions. This would involve a modified
631 HaloTag⁴³ protein fused to LgBiT, which recruits a small molecule that
632 bridges to an SmBiT-tagged target, thereby reconstituting luciferase activity.
633 Our prey-expressing strains are compatible with this approach through the
634 use of counter-strains expressing HaloTag fusions, allowing versatile
635 compound positioning.

636 Additionally, the absence of drug efflux pumps in our strains makes them
637 ideal for small-molecule screening. This supports both the identification of

638 PPI modulators and target proteins, positioning our system as a powerful
639 tool for drug discovery. With continued development, we anticipate that our
640 platform will advance the understanding of complex protein interactions
641 and accelerate both basic and translational research.

642

643 **Acknowledgement**

644 This work was supported by the Japan Society for the Promotion of
645 Science (JSPS) KAKENHI Grant Numbers 22K05361 and 23H05473 and by
646 the Ministry of Education, Culture, Sports, Science and Technology (MEXT)
647 KAKENHI Grant Number 23H04882 for Transformative Research Areas (A).
648 Grammar and linguistic refinement of this manuscript were kindly assisted
649 by Gemini 1.5 Pro (Google Cloud AI Studio).

650

651 **Author Contributions**

652 This work was conceptualized by A.M. and M.Y. All experiments were
653 done by A.M., A.H., and F.A. A.M. and F.A. prepared the original draft. S.N.,
654 M.A. and M.Y. edited the manuscript. All authors reviewed the manuscript.

655

656 **Competing Interests**

657 The authors declare no financial conflicts of interest.

658

659 **Funding**

660 This work was supported by the Japan Society for the Promotion of
661 Science (Grant Number: 22K05361 and 23H05473), and the Ministry of
662 Education, Culture, Sports, Science and Technology (Grant Number:
663 23H04882). The authors declare that no other funding was received for this
664 study.

665

666 **Data Availability Statement**

667 The authors confirm that all data required to support the conclusions of
668 this article are included within the text, figures, and tables. Protein-protein
669 interaction screening data generated using the NanoBiT system in this
670 study have been submitted to the IMEx (<http://www.imexconsortium.org>)
671 consortium through IntAct [X]⁴⁴ and assigned the identifier IM-30540.
672 Strains and plasmids are available upon request or from the Yeast Genetic
673 Resource Center (YGRc/NBRP) of Japan.

674 **References**

675 1. De las rivas, J. & Fontanillo, C. Protein-protein interaction networks:
676 Unraveling the wiring of molecular machines within the cell. *Brief.
677 Funct. Genomics* **11**, 489–496 (2012).

678 2. Tsai, C. J., Ma, B. & Nussinov, R. Protein-protein interaction networks:
679 how can a hub protein bind so many different partners? *Trends Biochem.
680 Sci.* **34**, 594–600 (2009).

681 3. Titeca, K., Lemmens, I., Tavernier, J. & Eyckerman, S. Discovering
682 cellular protein-protein interactions: Technological strategies and
683 opportunities. *Mass Spectrom. Rev.* **38**, 79–111 (2019).

684 4. Fields, S. & Song, O. K. A novel genetic system to detect protein-protein
685 interactions. *Nature* **340**, 245–246 (1989).

686 5. Tebo, A. G. & Gautier, A. A split fluorescent reporter with rapid and
687 reversible complementation. *Nat. Commun.* **10**, 2822 (2019).

688 6. Pelletier, J. N., Campbell-Valois, F. X. & Michnick, S. W. Oligomerization
689 domain-directed reassembly of active dihydrofolate reductase from
690 rationally designed fragments. *Proc. Natl. Acad. Sci. U. S. A.* **95**, 12141–
691 12146 (1998).

692 7. Algar, W. R., Hildebrandt, N., Vogel, S. S. & Medintz, I. L. FRET as a
693 biomolecular research tool — understanding its potential while avoiding
694 pitfalls. *Nat. Methods* **16**, 815–829 (2019).

695 8. Xu, Y., Piston, D. W. & Johnson, C. H. A bioluminescence resonance
696 energy transfer (BRET) system: Application to interacting circadian

697 clock proteins. *Proc. Natl. Acad. Sci. U. S. A.* **96**, 151-156 (1999).

698 9. Ito, T. *et al.* A comprehensive two-hybrid analysis to explore the yeast
699 protein interactome. *Proc. Natl. Acad. Sci. U. S. A.* **98**, 4569-4574
700 (2001).

701 10. Yu, H. *et al.* High-quality binary protein interaction map of the yeast
702 interactome network. *Sci. AAAs* **322**, 104-110 (2008).

703 11. Hofmann, J. L., Maheshwari, A. J., Sunol, A. M., Endy, D. & Zia, R. N.
704 Ultra-weak protein-protein interactions can modulate proteome-wide
705 searching and binding. *bioRxiv* (2022). doi:10.1101/2022.09.30.510365

706 12. Dixon, A. S. *et al.* NanoLuc Complementation Reporter Optimized for
707 Accurate Measurement of Protein Interactions in Cells. *ACS Chem. Biol.*
708 **11**, 400-408 (2016).

709 13. Vyas, A., Freitas, A. V., Ralston, Z. A. & Tang, Z. Fission Yeast
710 *Schizosaccharomyces pombe*: A Unicellular “Micromammal” Model
711 Organism. *Curr. Protoc.* **1**, e150 (2021).

712 14. Matsuyama, A. *et al.* pDUAL, a multipurpose, multicopy vector capable
713 of chromosomal integration in fission yeast. *Yeast* **21**, 1289-1305 (2004).

714 15. Matsuyama, A., Shirai, A. & Yoshida, M. A novel series of vectors for
715 chromosomal integration in fission yeast. *Biochem. Biophys. Res.*
716 *Commun.* **374**, 315-319 (2008).

717 16. Matsuyama, A., Hashimoto, A., Nishimura, S. & Yoshida, M. A set of
718 vectors and strains for chromosomal integration in fission yeast. *Sci.*
719 *Rep.* **13**, 315-9 (2023).

720 17. Shirai, A. *et al.* Global analysis of gel mobility of proteins and its use in
721 target identification. *J. Biol. Chem.* **283**, 10745-10752 (2008).

722 18. Kim, D. U. *et al.* Analysis of a genome-wide set of gene deletions in the
723 fission yeast *Schizosaccharomyces pombe*. *Nat. Biotechnol.* **28**, 617-
724 623 (2010).

725 19. Nishimura, S. *et al.* Marine antifungal theonellamides target 3 β -2-
726 hydroxysterol to activate *Rho1* signaling. *Nat. Chem. Biol.* **6**, 519-526
727 (2010).

728 20. Bauer, F. *et al.* Translational Control of Cell Division by Elongator. *Cell*
729 *Rep.* **1**, 424-433 (2012).

730 21. Matsuyama, A. *et al.* ORFeome cloning and global analysis of protein
731 localization in the fission yeast *Schizosaccharomyces pombe*. *Nat.*
732 *Biotechnol.* **24**, 841-847 (2006).

733 22. Vo, T. V. *et al.* A proteome-wide fission yeast interactome reveals
734 network evolution principles from yeasts to human. *Cell* **164**, 310-323
735 (2016).

736 23. Ohsawa, S. *et al.* Nitrogen signaling factor triggers a respiration-like
737 gene expression program in fission yeast. *EMBO J.* **43**, 4604-4624
738 (2024).

739 24. Forsburg, S. L. & Rhind, N. Basic methods for fission yeast. *Yeast* **23**,
740 173-183 (2006).

741 25. Petersen, J. & Russell, P. Growth and the environment of
742 *Schizosaccharomyces pombe*. *Cold Spring Harb. Protoc.* **2016**, (2016).

743 26. Matsuyama, A., Yabana, N., Watanabe, Y. & Yamamoto, M.

744 *Schizosaccharomyces pombe* Ste7p is required for both promotion and

745 withholding of the entry to meiosis. *Genetics* **155**, 539 (2000).

746 27. Shirai, A., Matsuyama, A., Yashiroda, Y., Arai, R. & Yoshida, M. Rapid

747 and reliable preparation of total cell lysates from fission yeast. *Protoc.*

748 *Exch.* (2006).

749 28. Chiu, P. C. *et al.* Ferrichrome, a fungal-type siderophore, confers high

750 ammonium tolerance to fission yeast. *Sci. Rep.* **12**, (2022).

751 29. Matsuyama A, Hashimoto A, Arioka M, Y. M. Improvement of Targeting

752 Efficiency by Promoter Replacement of Markers in Integration Vectors.

753 *Genes Cells* **30**, e70013 (2025).

754 30. Hoffman, C. S. Preparation of Yeast DNA. *Curr. Protoc. Mol. Biol.* **39**,

755 13-11 (1997).

756 31. Jacobus, A. P. & Gross, J. Optimal cloning of PCR fragments by

757 homologous recombination in *Escherichia coli*. *PLoS One* **10**, e0119221

758 (2015).

759 32. Keeney, J. B. & Boeke, J. D. Efficient targeted integration at leu1-32 and

760 ura4-294 in *Schizosaccharomyces pombe*. *Genetics* **136**, 849-856

761 (1994).

762 33. Bernard, P. & Couturier, M. Cell killing by the F plasmid CcdB protein

763 involves poisoning of DNA-topoisomerase II complexes. *J. Mol. Biol.* **226**,

764 735-45 (1992).

765 34. Reaume, S. E. & Tatum, E. L. Spontaneous and nitrogen mustard-

766 induced nutritional deficiencies in. *Arch. Biochem.* **22**, 331-338 (1949).

767 35. Arita, Y. *et al.* Microarray-based target identification using drug
768 hypersensitive fission yeast expressing ORFeome. *Mol. Biosyst.* **7**,
769 1463-1472 (2011).

770 36. Nagao, K. *et al.* bfr1⁺ a novel gene of *Schizosaccharomyces pombe*
771 which confers brefeldin A resistance, is structurally related to the ATP-
772 binding cassette superfamily. *J. Bacteriol.* **177**, 1536-43 (1995).

773 37. Nishi, K. *et al.* A leptomycin B resistance gene of *Schizosaccharomyces*
774 *pombe* encodes a protein similar to the mammalian P-glycoproteins. *Mol.*
775 *Microbiol.* **6**, 761-9 (1992).

776 38. Papadopoulos, D. *et al.* MYCN recruits the nuclear exosome complex to
777 RNA polymerase II to prevent transcription-replication conflicts. *Mol.*
778 *Cell* **82**, 159-176.e12 (2022).

779 39. Zatreanu, D. *et al.* Elongation Factor TFIIS Prevents Transcription
780 Stress and R-Loop Accumulation to Maintain Genome Stability. *Mol. Cell*
781 **76**, 57-69.e9 (2019).

782 40. Siametis, A. *et al.* Transcription stress at telomeres leads to cytosolic
783 DNA release and paracrine senescence. *Nat. Commun.* **15**, 4061 (2024).

784 41. Cho, W. K. *et al.* Mediator and RNA polymerase II clusters associate in
785 transcription-dependent condensates. *Sci. AAAs* **361**, 412-415 (2018).

786 42. Göös, H. *et al.* Human transcription factor protein interaction networks.
787 *Nat. Commun.* **13**, 766 (2022).

788 43. Ohana, R. F. *et al.* HaloTag7: A genetically engineered tag that enhances

789 bacterial expression of soluble proteins and improves protein
790 purification. *Protein Expr. Purif.* **68**, 110-20 (2009).

791 44. del Toro, N. *et al.* The IntAct database: efficient access to fine-grained
792 molecular interaction data. *Nucleic Acids Res.* **50**, D648-D653 (2022).

793

ARTICLE IN PRESS

794 **Figure Legends**

795

796 **Figure 1. Schematic of NanoBiT-based PCA system and the designed**
797 **vectors in fission yeast**

798 **A)** The scheme of the NanoBiT-based PCA system, comprising a bait protein
799 fused to the LgBiT fragment of NanoBiT system having either 3' or 5'
800 tagging and prey proteins fused to the SmBiT moiety. Upon interactions
801 of ORF1 (bait) and ORF2 (prey), the full-length luciferase enzyme is
802 formed and produces a luminescence signal.

803 **B)** The structure of bait plasmids. The interactors of a protein of interest
804 are introduced by separate vectors as both 3'- and 5'-tagged using the
805 pDUAL-based¹⁴ vectors with LgBiT fragment into separate loci of yeast
806 chromosome. ORF, open reading frame; LB, LargeBiT, h, hexahistidine
807 tag; GS, GGGGS linker; HA, HA epitope.

808 **C)** The scheme of an *S. pombe* cell with indicated target loci. Three marker
809 loci targeted by integration plasmids are indicated on each chromosome
810 of fission yeast. cen, centromere.

811

812 **Figure 2. Features and structure of pPREY3 vectors.**

813 Plasmid map indicating various components of the pPREY3 vector,
814 including GFP expression gene inside the ccdB cassette and the ampicillin
815 resistance gene. There is also an mCherry expression unit independent of

816 the components required for expression of a transgene, used to quantify the
817 level of expression of each transgene.

818

819 **Figure 3. Correlation between genomic *mCherry* copy number and**
820 **fluorescence intensity.**

821 (Top) Scatter plot showing the relationship between the relative genomic
822 copy number of the *mCherry* gene and its fluorescence intensity. The
823 *mCherry* copy number was normalized to that of the endogenous *act1* gene
824 using quantitative real-time PCR. Fluorescence intensity was normalized to
825 cell density (OD₆₀₀). Each data point represents an independent
826 transformant generated by pPREY3 integration. The plot reveals a positive
827 correlation between normalized *mCherry* copy number (*mCherry/act1*) and
828 normalized fluorescence intensity (mCherry fluorescence/OD₆₀₀), indicating
829 that observed fluorescence reflects integrated *mCherry* copy number. A
830 trendline is indicated by a dashed line.

831 (Bottom) mCherry fluorescence of pPREY3 integrants used for qPCR,
832 observed under blue/green LED light. Cells at positions C10-12 correspond
833 to the host strains lacking the *mCherry* expression unit.

834

835 **Figure 4. Feasibility pilot experiments for testing the NanoBiT-based**
836 **PCA system.**

837 **A)** Rad24 (14-3-3 protein) was chosen as a hub protein and some of its
838 known interactors, i.e., Rad24 (14-3-3 protein), Plc1 (phosphoinositide

839 phospholipase C), Prz1 (calcineurin responsive DNA-binding
840 transcription factor), and Fft3 (histone chaperone/ATP-dependent
841 chromatin remodeler) were examined. The bait was cloned into pXLys1-
842 HA-LB and pXArg3-hLB vectors. Error bars represent the standard
843 deviation ($n = 3$, Error bars are SD of mean, *** indicates $p < 0.001$,
844 **** indicates $p < 0.0001$, two-sample *t*-test assuming unequal
845 variances). Strains having an empty vector (-) or expressing GFP were
846 used as negative controls. Negative controls are indicated with grey
847 color.

848 **B)** The effect of signal intensity when using a bait in two different
849 orientations of tagging. Here, Ubc13 (ubiquitin conjugating enzyme E2)
850 is used as a prey protein and its interaction with the bait protein, Mms2
851 (ubiquitin conjugating enzyme E2), as C-tagged, N-tagged, and C, N-
852 tagged was tested. Error bars represent the standard deviation ($n = 3$, *
853 indicates $p < 0.05$, *** indicates $p < 0.001$, two-sample *t*-test assuming
854 unequal variances). Strains expressing GFP served as negative controls.
855 For baits, a "(-)" indicates the absence of a plasmid, while for preys, it
856 signifies an empty vector. Negative controls are highlighted in grey.

857 **C)** Luciferase assay using a bait in two different orientations of tagging.
858 Several transmembrane proteins whose rare interactors were available
859 in PomBase were selected, including Spbc1652.02, Isp5, Aat1, Cat1 as
860 amino acid transporters, and Pub1 as a ubiquitin-protein ligase E3.
861 Cut11 (spindle pole body docking protein), Any1 (arrestin-related

862 substrate adaptor), Ubi4 (protein modifier, ubiquitin), and Ptr2 (plasma
863 membrane PTR family peptide transmembrane transporter). Error bars
864 represent the standard deviation ($n = 3$, ns: not significant, ** indicates
865 $p < 0.01$, *** indicates $p < 0.001$, two-sample t -test assuming unequal
866 variances). Strains having an empty vector (-) were used as negative
867 control and are indicated with grey color.

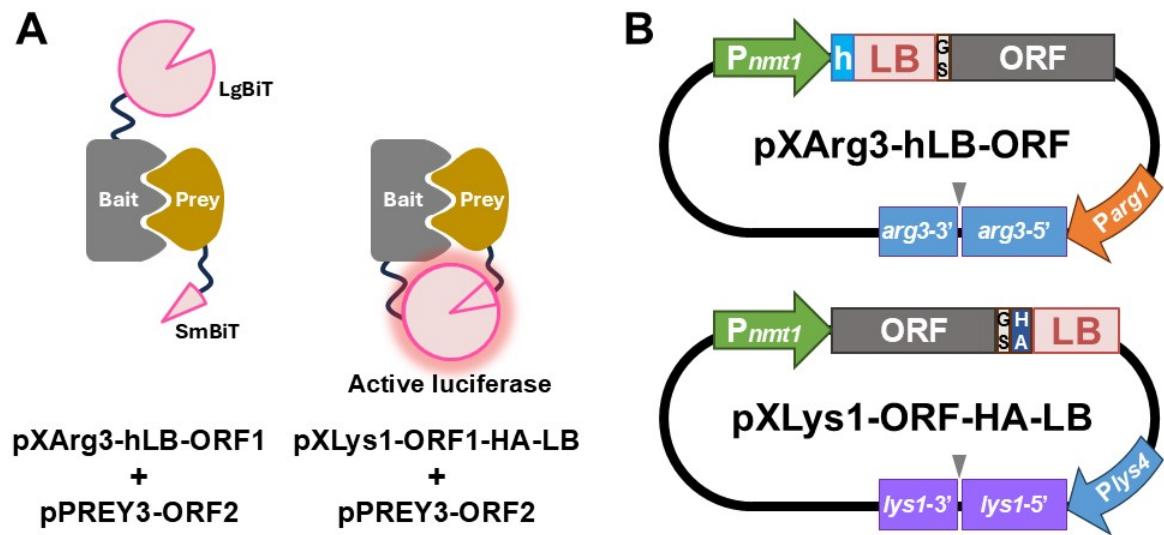
868

869 **Figure 5. A high-throughput screening using Tfs1 as a bait protein in**
870 **NanoBiT-based PCA.**

871 **A)** High-throughput screening for Tfs1-interacting proteins. The graph plots
872 the \log_{10} -transformed luciferase activity for each tested ORF, which are
873 ranked from lowest to highest activity. Colored triangles indicate
874 positive hits with a p -value < 0.05 ($n = 9$).

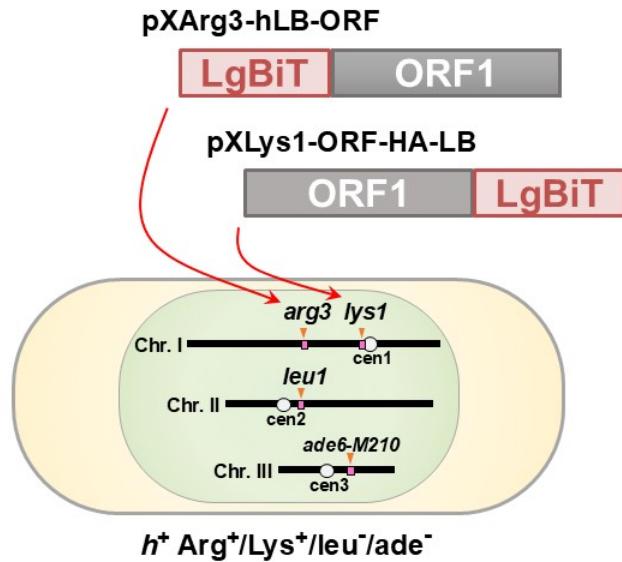
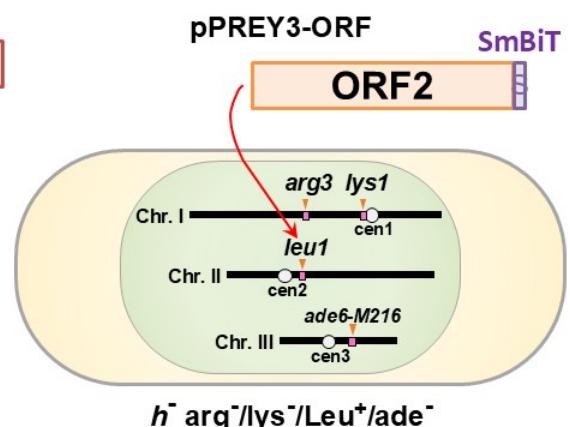
875 **B)** The comparison of the screening performed in this study with the
876 previous Y2H study²². The screenings share the following hit proteins:
877 Ecm31 (3-methyl-2-oxobutanoatehydroxymethyltransferase), Omt2 (4-
878 alpha-hydroxytetrahydrobiopterin dehydratase), Tvp15 (COPI-coated
879 vesicle associated protein), Dal81 (DNA-binding transcription factor),
880 Vps20 (ESCRT III complex subunit), Yop1 (ER membrane protein), Ndk1
881 (nucleoside diphosphate kinase), Spac1f7.10 (hydantoin racemase
882 family), and Spcc576.02 (hydantoin racemase family).

883


884

885

886



887 **Supplementary Table 1. List of proteins identified as interacting
888 with Tfs1.**889 Genes encoding proteins identified as interacting with Tfs1 in this study
890 (NanoBiT-PCA) and in the Y2H system. A “+” symbol indicates detection of
891 interaction in each experimental system.

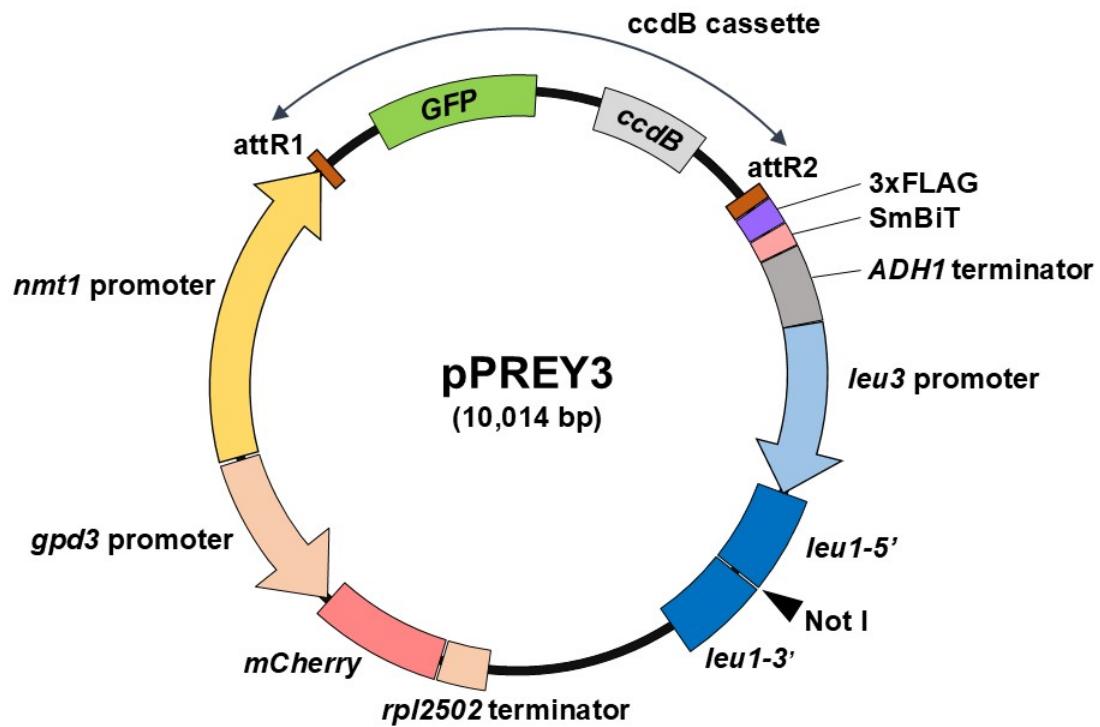

892

Figure 1A, B

C

Bait strainPrey strain**Figure 1C**

Figure 2

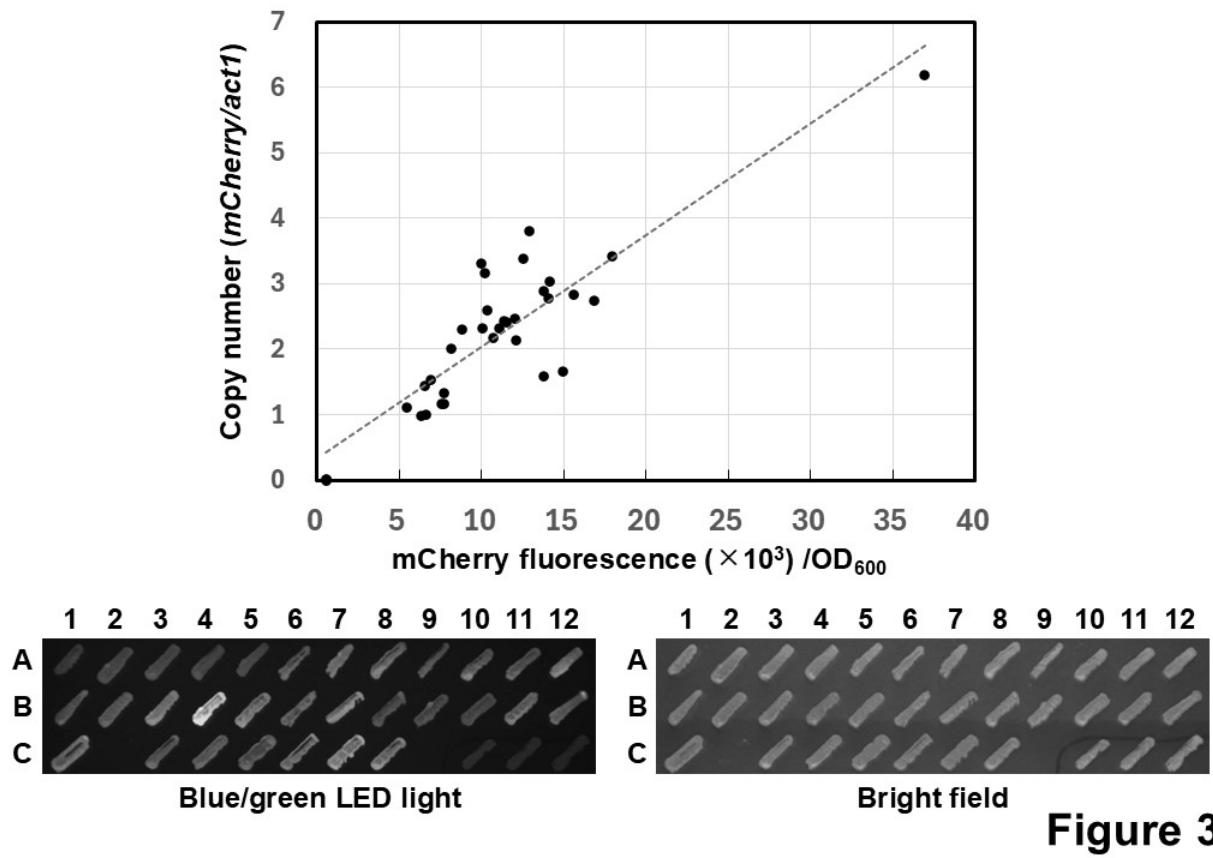


Figure 3

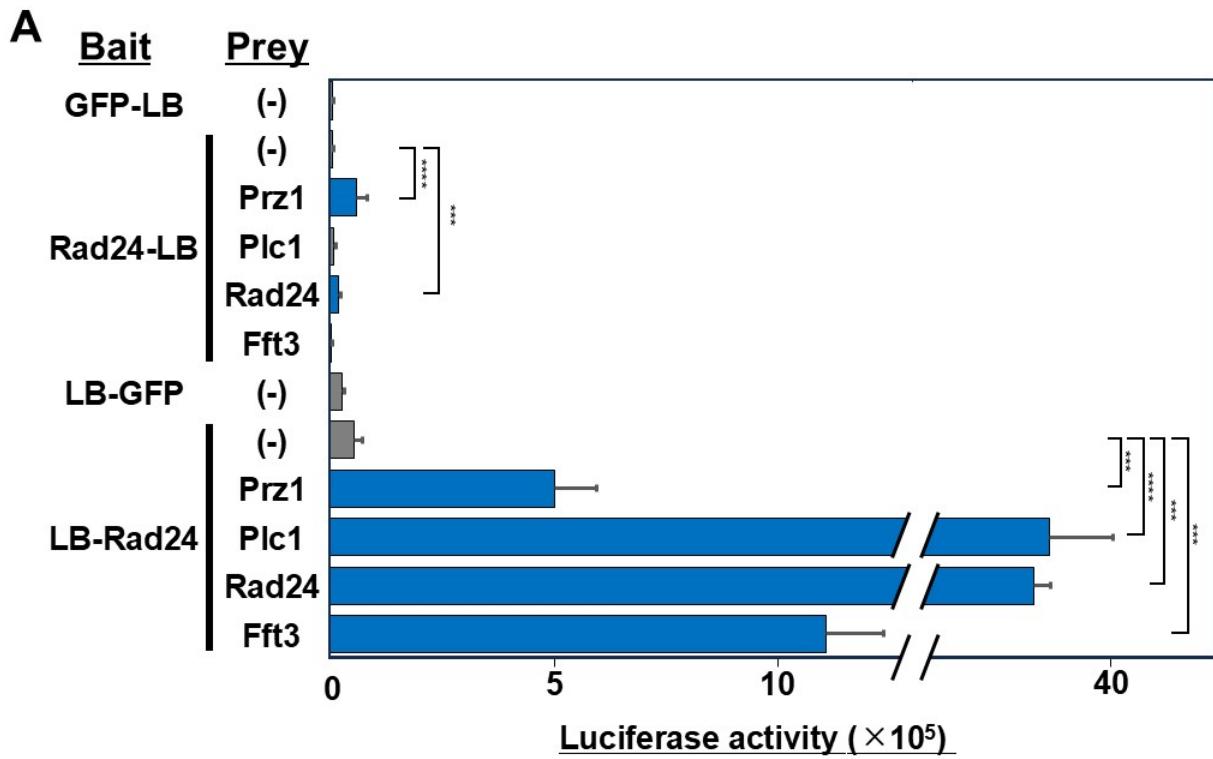
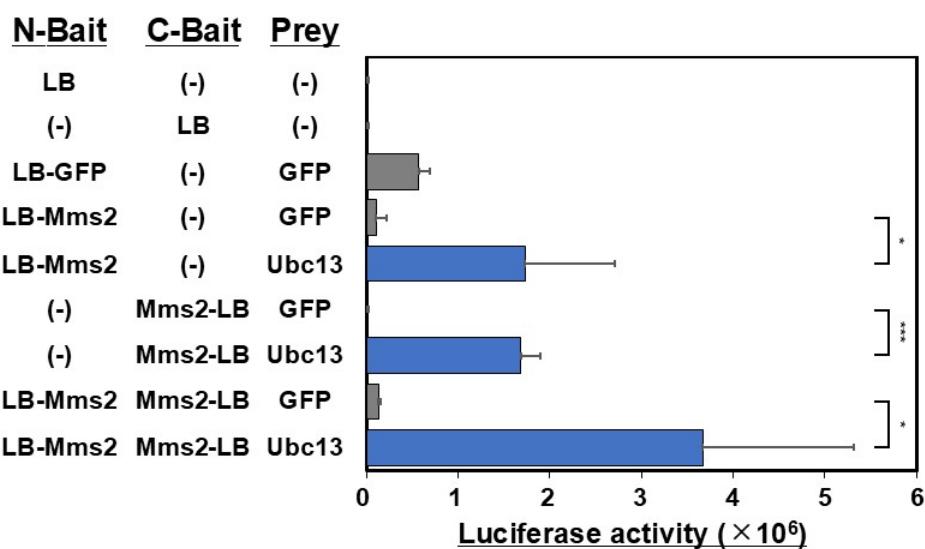



Figure 4A

B**Figure 4B**

C

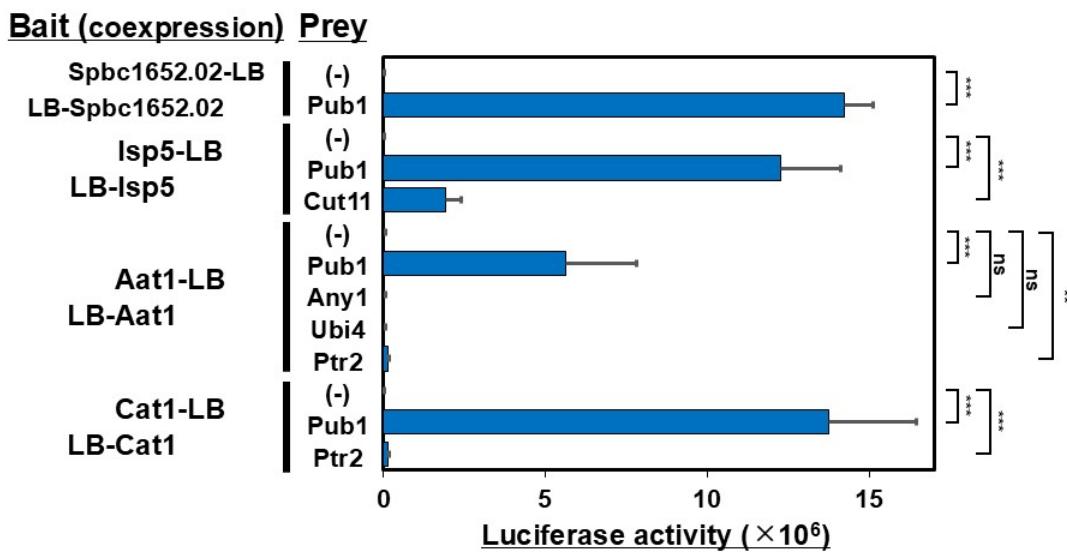
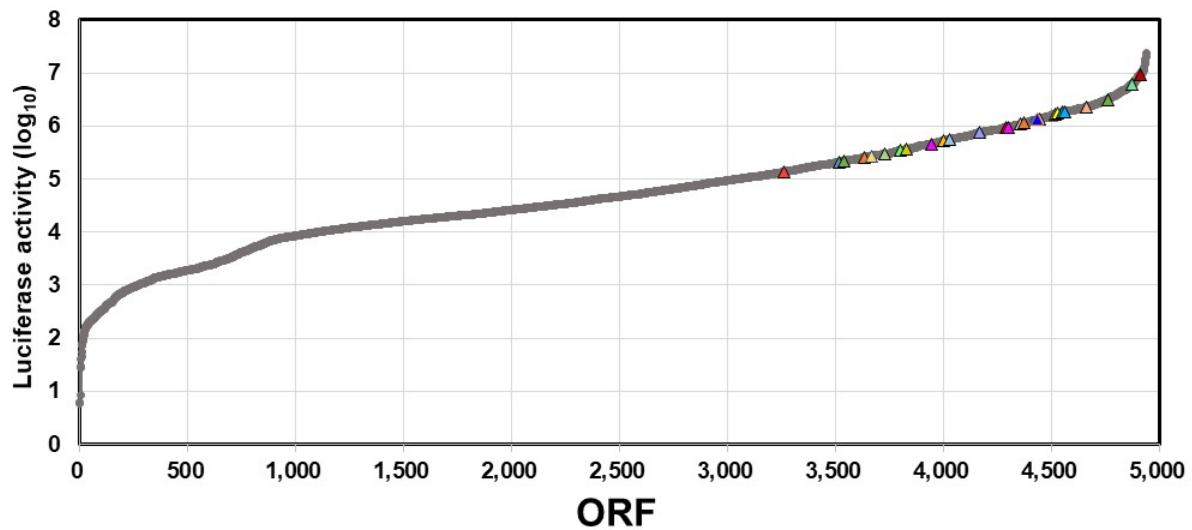
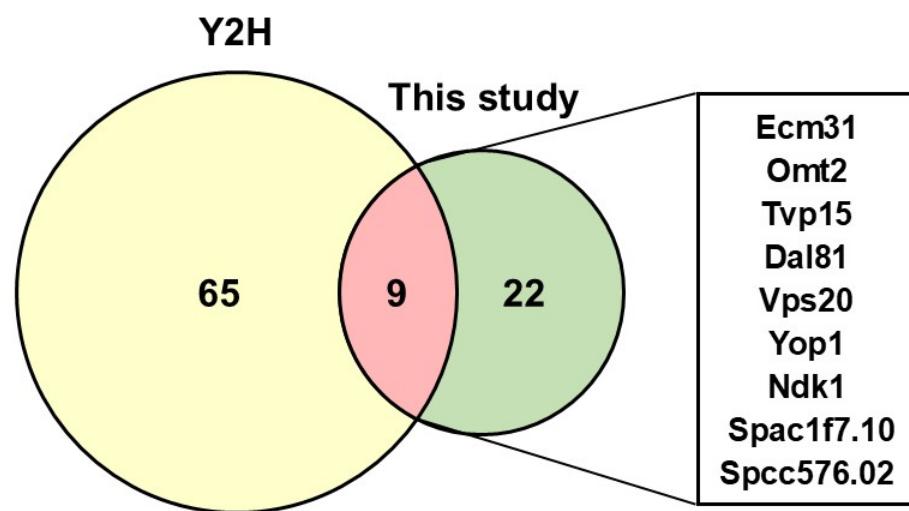




Figure 4C

A**Figure 5A**

B**Figure 5B**