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Abstract

This study presents an innovative approach that combines Quality by Design (QbD) principles with
artificial neural networks (ANNS) to predict and optimize the formulation of carbopol-based emulsions.
By integrating these two strategies, we enhance our understanding of formulations by linking critical
material attributes and process parameters to critical quality attributes, such as viscosity.

The predictive model was refined by selecting key variables: mixing time, mixing speed, and viscosity.
These variables were used to estimate carbopol concentration and to capture the nonlinear relationships
that influence emulsion behavior. Experimental data were employed to train, validate, and test the ANN
model, which was then compared with four commercial formulations to evaluate its predictive accuracy
and practical relevance.

Notably, the model demonstrated excellent predictive performance for systems with viscosities
exceeding 50,000 mPas, underscoring its applicability to high-viscosity pharmaceutical products. This
integrated QbD-ANN framework offers a systematic and effective method for formulation optimization,
reducing experimental workloads while improving process understanding.

The findings indicate a strong correlation between predicted and experimental values, confirming the
robustness and reliability of the QbD-ANN approach. Integrating the three key variables enables a more
in-depth examination of the interactions between process and formulation, providing a comprehensive
tool for understanding and controlling emulsion viscosity.

In conclusion, this study establishes a data-driven methodology that facilitates rational pharmaceutical
development, ensuring product quality, reproducibility, and innovation in alignment with modern
pharmaceutical quality management principles.

Keywords: QbD, ANNs, Carbopol emulsions, pharmaceutical formulation optimization, Predictive
modeling, Viscosity and process parameters.

Introduction

Pharmaceutical Quality by Design (QbD) is a systematic approach to development that begins with
predefined objectives and emphasizes product and process understanding and control based on sound
science and quality risk management [1]. This approach enables identifying and understanding critical
quality attributes (CQAs), ensuring the final product is reproducible and robust. Using experimental
design and risk analysis, QbD supports evidence-based decision-making, which helps reduce variability
and enhance process efficiency. It also allows for establishing a design space that provides regulatory
flexibility, demonstrating scientifically that changes within this range do not compromise product

quality[1].



Combining QbD approach with artificial neural networks (ANNs) marks a significant advancement in
creating emulgel-type pharmaceutical formulations [2-5]. QbD provides a structured way to
characterize essential quality attributes and process parameters [6], while ANNs enhance the prediction
of physicochemical properties by analyzing nonlinear relationships and uncovering complex
interactions [7].

ANNSs are now essential in pharmaceutical sciences, as they can analyze vast amounts of data and
identify complex patterns that traditional methods struggle to comprehend [8-9]. Their uses include
optimizing formulations [10-11], drug stability in formulations [12], viscosity[13], designing new
drugs[14-15], predicting stability[16], and personalizing treatments in precision medicine[17].
Specifically, in emulgels, these networks enable modeling the effects of several variables on viscosity,
providing a more accurate means to predict and adjust crucial parameters, leading to reproducible and
effective formulations [4].

Emulgels represent a sophisticated category of semi-solid systems that merge the characteristics of both
gels and emulsions. They offer notable benefits in stability, controlled drug release, and convenient
topical application [18]. These systems are extensively employed in dermatological and pharmaceutical
products, enhancing the bioavailability of active substances and serving as an effective matrix for
incorporating lipophilic compounds [19-20]. Their rheological structure can be accurately adjusted
through formulation parameters and more recently using predictive models [21-23], making them a
versatile choice for optimizing products, especially in topical and transdermal therapies. Integrating
QbD and ANNSs presents a groundbreaking method to enhance efficiency and predictability in
formulating these systems, creating new opportunities for their use in the pharmaceutical sector.

This study aimed to create a predictive model using artificial intelligence to optimize the formulation
of carbopol emulgels by assessing polymer concentration based on key process variables. By integrating
QbD principles with ANNs, we can improve the precision of predicting rheological properties. This
approach establishes a solid methodological groundwork for employing machine learning in the rational
design of pharmaceutical products.

Materials and methods

Materials
Analytical-grade reagents purchased from certified suppliers ((Sigma-Aldrich, USA), (Merck,
Germany) (Lubrizol, distributed by Sigma-Aldrich) and were used to prepare the emulgel.

Methods

QbD Elements

Using risk management, the definition of QbD elements, CQAs, and CPPs was performed. Potential
Failure Mode and Effects Analysis (FMEA) matrices were constructed to determine criticality in
severity, detectability, and occurrence, thereby calculating the probable risk number.

Preparation of emulgels

The oil phase was prepared by dispersing vitamin E in mineral oil, with Tween 80, used as a surfactant
to enhance emulsification. This mixture was gradually incorporated into the aqueous phase under
moderate stirring, resulting in a stable emulsion. Next, Carbopol 940, was added while the system was
continuously stirred until the polymer was uniformly dispersed throughout. The emulgel was then



formed by gradually adding triethanolamine a neutralizing agent to promote gel formation and adjust
the system's pH. Finally, the formulation was evaluated for pH, viscosity, physical stability, and
homogeneity. Once these assessments were completed, the emulgel was packaged in appropriate
containers for storage and future functional evaluation.

Characterization of emulgels
Rheology (Viscosity, Storage-Loss Modulus)

The emulgels' viscoelastic characterization was conducted using an Anton Paar rheometer featuring a
standard 5 mm diameter cone-plate geometry. An amplitude sweep was performed to determine the
linear viscoelastic region (LVR), examining how the storage modulus (G') and loss modulus (G") varied
with the applied strain. The complex viscosity (1) was calculated through an oscillatory sweep at a
constant angular frequency of 10 rad/s, covering a shear rate range of 0.1 to 100 s', with 21
logarithmically spaced measurement points.

Particle size

A LiteSizer Malvern brand DLS (Dynamic Light Scattering) particle size analyzer was used to assess
the potential. For both analyses, successive dilutions of the emulgels were prepared using distilled
water.

Particle size analysis was performed with an Omega cuvette measuring cell (Mat. No. 225288) at a
backscatter angle. The measurements took place at a stable temperature of 25 °C. Six runs, each lasting
10 seconds, were conducted to calculate the average hydrodynamic diameter (z-average) and the
polydispersity index (PDI), which helped characterize the droplet size distribution of the formulations.

The zeta potential was measured using the same cell (Omega cuvette, Mat. No. 225288) at 25 °C, with
a 1-minute equilibration before each measurement. A voltage of 200.0 V and the Smoluchowski model,
incorporating a Henry factor of 1.5, were employed to calculate the zeta potential. Each sample
underwent 100 runs.

INQA-ANN Predictive Model Neural Network

Data set preparation

The data used to train the neural network were derived from the experimental design of eleven emulgel
formulations. In this design, three process factors were systematically varied: (1) Carbopol®
concentration (% w/w), (2) mixing speed (in rotations per second), and (3) mixing time (in minutes).
This variation aimed to assess their influence on the viscosity of the system. These variables were
selected based on the Failure Modes and Effects Analysis (FMEA).

The experimental viscosity of each formulation was measured in triplicate to ensure reproducibility.
Following this, the data underwent statistical analysis, which included calculations of percentage error
and standard deviation among the replicates. The average viscosity value for each formulation was then
determined and used as representative data for training the predictive model.



Predicted model

The rheological properties of emulgel formulations were predicted utilizing a validated artificial neural
network (ANN) previously outlined by Guevara-Pulido et al. (2022) [24]. For training this neural
network with a backpropagation algorithm, the most significant factors identified in the Potential
Failure Mode and Effects Analysis (FMEA) matrix were selected as input variables: mixing time and
speed (critical process parameters, CPP), as well as Carbopol concentration (critical material attribute,
CMA). Based on Pearson correlations, a systematic screening was conducted in MATLAB to define
these parameters as model inputs, with the viscosity of the emulgels set as the output variable.

During a later optimization stage, modifications to the neural network's structure revealed that the best
predictive results were achieved by considering Carbopol concentration (% w/w) as the output variable
and using mixing time (min), mixing speed (rpm), and viscosity (Pa - s) as input variables.

Ultimately, the model was validated through leave-one-out cross-validation, and its goodness of fit was
assessed using the coefficient of determination (R?). To improve model efficacy, the nodes in the hidden
layer were tested from 50 to 500 in increments (SI) of 50 nodes in each trial to obtain satisfactory R?
values, ideally near 1, ensuring thorough validation. The selected model parameters were then applied
to predict the Carbopol® concentration in the formulated emulgels.

Linear Regression Model

We conducted a multiple linear regression to model and forecast the viscosity of the emulgels, using
three independent variables: Carbopol® concentration, mixing time, and mixing speed. The least
squares method was employed to fit the model, and the predicted viscosity values were compared with
experimental results to assess the model's accuracy and prediction effectiveness.

Results and discussion

A set of nine essential Product Quality Parameters (QTPPs) was outlined, and the key attributes were
identified through the Potential Failure Mode and Effects Analysis (FMEA)[25] matrix (SI-1).
Consequently, two CPPs were established: mixing speed and time, and one CMA: carbopol
concentration. These are recognized as extremely serious due to their effect on viscosity.

It's essential to input experimental values to develop a predictive mathematical model. Thus, we created
eleven emulgel formulation trials by varying 1) carbopol concentration (% w/w), 2) mixing speed in
revolutions per minute, and 3) mixing time (SI-2). The experimental viscosity for each of the eleven
formulations was calculated based on the variables listed in Table 1.

Table 1: An experimental assessment of the viscosity of eleven emulgels influenced by carbopol
concentration, mixing speed, and duration of mixing.

Formulation Carbopol Mixing speed Mixing time (min) | Viscosity (Pa*s)
concentration (% (rps)
w/W)
1 0.20 241.7 0.50 1.80

2 0.40 341.7 0.75 26.1




3 0.60 191.7 1.00 473
4 0.80 158.3 1.25 81.7
5 1.00 133.3 1.50 894
6 0.20 500.0 1.50 1.60
7 0.40 241.7 1.25 263
8 0.60 341.7 1.00 49.7
9 0.80 158.3 0.75 85.0
10 1.00 500.0 0.50 77.6
11 1.20 133.3 2.00 95.8

The initial data analysis employed a multiple linear regression model to create a linear mathematical
framework capable of predicting key system variables (SI) based on experimental values. This model
exhibited coefficients of determination ranging from good to high (SI-5), indicating a robust correlation
among the selected parameters. Nonetheless, some limitations in the model's predictive ability were
recognized due to the system's nonlinear characteristics.

To develop a more robust predictive model for predicting key quality parameters or attributes of the
material, the architecture of an artificial neural network with back propagation (ANN-INQA) was
employed [24]. This approach, created by Guevara et al., aims to classify the inputs based on Pearson
correlation values [26]. The analysis revealed a strong link between Carbopol concentration and
viscosity (r = 0.9663), while mixing speed shows a moderate correlation (r = -0.4853), along with
mixing time (r = 0.2935). See Figure 1.

Heat Map of Pearson Correlations between Descriptor vs. Viscosity

Viscosity 0.2935 0
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Figure 1: Correlation between key variables measured using Pearson's method



We recognized that carbopol concentration significantly influences viscosity, leading us to predict the
process's carbopol concentration as our output value. For this purpose, we initially considered the
mixing time and experimental viscosity of the eleven formulations listed in Table 2 as inputs. We also
adjusted the number of nodes in the hidden layer, testing values from 50 to 500. We range from 50 to
500, aiming for a correlation coefficient close to one, while prioritizing optimal cross-validation.
Ultimately, we developed a predictive mathematical model with 100 nodes, achieving an internal
coefficient of determination (R?) of 0.85 and a cross-validation R? of 0.9141 (SI), which confirmed its
predictive accuracy (Figure 2)[27].
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Figure 2: Cross-validation of the INQA-ANN model.

Currently, the coefficient of determination values for linear regression (SI) and ANN model is
approximately equal to or greater than 0.8. While relying solely on statistical correlation would lead to
the same predictions from both models, it's important to consider the pharmaceutical context. In this
case, non-linear relationships in formulations may be better captured by artificial neural network (ANN)
models that can predict non-linear variables. In any event, we describe the predicted values using both
Linear Regression and ANN in the Supplementary Information (SI).

Table 2: Enter experimental values and ANN-INQA predictions using one hundred nodes.

Experimental values ANN-predicted values with

100 nodes

ANN input data (x) ANN output data (y) Predicted data by the ANN

Mixing time Viscosity ~ Carbopol concentration Predicted carbopol error
(min) (Pa-s) (% wiw) concentration (% w/w) P erz:;)n)tage
0.50 1.80 0.20 0.24 0,17
0.75 26.10 0.40 0.36 0,10
1.00 47.30 0.60 0.60 0,00
1.25 81.70 0.80 0.89 0,11
1.50 89.40 1.00 0.92 0,08
1.50 1.60 0.20 0.23 0,15
1.25 26.30 0.40 0.36 0,10

1.00 49.70 0.60 0.62 0,03




0.75 85.00 0.80 0.91 0,14

0.50 77.60 1.00 0.87 0,13

2.00 95.80 1.20 0.95 0,21
Validation of the ANN with 100 nodes R’>=0.85

Commercial Voltaren emulgel and Artritis Voltaren Emulgel and Artritis gel were utilized to assess the
predictive ability of the INQA-ANN-100 model experimentally. The viscosities of both products were
measured, and a mixing time was established based on the viscosity values presented in Table 2. This
data estimated the carbopol concentration in percent weight-to-weight (w/w) using the INQA-ANN-
100 model (predictions shown in Table 3). After mixing the components with the predicted
concentrations, a viscosity of 85.005 was achieved for the diclofenac arthritis formulation,
demonstrating a 99.9% concordance. The same procedure was applied to the Voltaren emulgel,
resulting in a viscosity of 48.852 and a concordance percentage exceeding 94%, as detailed in Table 3.

Table 3: Validation of the INQA-ANN-100 Predictive Model via Experiments.

Reference and
ANN input data (x) ANN-predicted data Experimental data experimental
viscosities (Pa-s)
Mixing Reference Predicted carbopol |Experimental carbopol Average
time (min) viscosity concentration (% concentration (% experimental Error percentage (%)
(Pa‘s) W/W) W/W) viscosity (Pa-s)
0.75 46.149 0.608 0.609 48.852 5.856
1.5 85.019 0.940 0.947 85.055 0.042

The model was developed using two inputs, successfully passing statistical parameters and
experimental validation with commercial products. We encountered errors ranging from 0.5% to 5%,
prompting us to incorporate three additional inputs. This approach integrated the three essential
variables—mixing time, mixing speed, and viscosity—to assess potential complex interactions,
expanding the range of reference viscosities. Like the previous model, we varied the number of hidden
layer nodes, increasing it from 50 to 500 systematically searching for the best correlations (SI-31).
Ultimately, we identified a superior model utilizing 400 nodes, which achieved an internal validation
R? 0f 0.908 and a cross-validation result that exceeded the statistical benchmarks (Figure 3) and (SI).
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Figure 3: a) according to hidden layer nodes b) Cross-validation of the ANN-INQA-400 model

Carbopol concentration (% wiw)

As the two-input model, we tested its predictive capability with four commercial compounds (Table 4).
The results indicated agreement percentages ranging from 96% to 98% (Figure 4), further validating
the model's predictive power. However, in the case of low viscosities, as in Formulation A (Table 4),
the model's predictive capacity is limited. The short mixing times and high mixing speed needed for
low-viscosity fluids may not produce reliable and consistent predictions, as- indicated by the data in
Table SI-31 for the training set. The reasons for this inconsistency may vary; however, we are focused
on developing independent models for low viscosities by identifying new critical parameters.

Table 4: Validation of the INQA-ANN-400 Predictive Model through Experiments.

Data Viscosities (Pa.s)
ANN input data predicted by Experimental data Standard | Reference Reference and
ANN (400 deviation data E .
xperimental
nodes) of
Formulation experime
.. .. Predicted |Experimental Aver.age ntal
Mixing . . Mixing experimen Reference
. Viscosity carbopol carbopol viscosity . . Error percentage
time speed . . tal viscosity o
(ki) (Pa.s) di) con:entratlon conocentratlon Y (Pa.s) (Pa.s) (%)
(% wiw) (% wiw) (Pa.s)
A Voltarem | 0.75 | 46.149 | 341.7 0.360 0.364 13.132 | 0.558 46.149 71.544
B Aloe vera | 1.00 | 60.538 [ 191.7 0.684 0.684 61.887 [ 6.712 60.538 2.228
C Arnigel 1.25 | 74.451 | 1583 0.929 0.931 77224 | 7.014 74.451 3.725
D Arthritis 1.50 | 85.019 | 1333 1.084 1.086 88.507 6.63 85.019 4.103
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Figure 4: Validation of INQA-ANN-400

This advancement significantly reduces trial and error in the formulation of gels and emulgels [28],
representing a notable application of artificial neural network models in the formulation of emulsifiers.
Integrating the QbD approach with artificial intelligence tools, particularly ANNs, marks a significant
methodological advancement in rational drug development. This study demonstrates that the combined
use of QbD and ANNSs facilitates modeling the relationship between critical process parameters and
quality attributes, leading to a substantial reduction in experimental testing through highly accurate
predictions. This strategy optimizes resource utilization, shortens development timelines, and enhances
understanding of intricate physicochemical phenomena, such as polymer neutralization-induced
gelation and the interactions of dynamic viscosity with time and rate. By designing a robust operating
space, this approach demonstrates scientific traceability that surpasses traditional empirical methods,
thereby supporting technical decisions based on objective and reproducible data (ICH Q8(R2), Q9,

Q10).

This comprehensive approach establishes a foundation for the digital transformation of pharmaceutical
development, aligning with the global trend toward smart manufacturing, as highlighted in recent
publications. The progressive application of ANN models, utilizing an increasing number of nodes, has
demonstrated an enhanced capability to identify nonlinear patterns and multifactorial interactions that
are often difficult to capture with traditional linear models. This methodological synergy contributes to
more reliable predictions of critical attributes, such as viscosity, even within complex commercial
formulations, reinforcing its industrial relevance. Additionally, by integrating cross-validation and
testing against reference products, the model's robustness and transferability are effectively ensured.
This comprehensive approach lays the groundwork for the digital transformation of pharmaceutical
development, in alignment with the global trend toward smart manufacturing, as highlighted in recent
publications [29-32].

Advantages, challenges and limitations

The integration of QbD and ANNs represents a significant advancement in the field of pharmaceutical
formulation development, offering a robust, data-driven framework for improving process



understanding and optimization. This collaborative approach markedly enhances the predictive
accuracy of critical quality attributes, such as viscosity, while also reducing the experimental workload.
Consequently, it accelerates formulation screening and the exploration of the design space. However,
several challenges remain, particularly concerning quantity and quality data, model interpretability, the
sensitivity of the employed instrumental methods, and the complexities of regulatory acceptance. The
effectiveness of ANNSs is intrinsically linked to the availability of extensive, high-quality datasets. Poor
data curation can lead to issues such as overfitting or skewed predictive outcomes [33]. Furthermore,
ANNs models are often perceived as “black boxes,” making it difficult to clarify predictions on a
mechanistic level or justify them in regulatory settings. Finally, integrating these methodologies into
regulated environments requires strict adherence to principles of data integrity, traceability, and ongoing
risk management [34].

Future Perspectives

Future developments are expected to concentrate on establishing hybrid QbD and Artificial Neural
ANNs frameworks that combine data-driven and mechanistic models. This includes integration with
physiologically based pharmacokinetic (PBPK) models or population-based models to improve
interpretability and transferability across different scales. Progress in digital infrastructure, adherence
to the principles of findable, accessible, interoperable, and reusable data, and the use of digital twins
for process monitoring will facilitate real-time learning and control within QbD paradigms [35]. From
a regulatory standpoint, organizations like FDA and the EMA are actively formulating guidelines to
ensure the responsible application of Al and machine learning in pharmaceutical development, focusing
on transparency, model lifecycle management, and predefined change control strategies [33]. As these
standards evolve, multidisciplinary collaboration among formulation scientists, data engineers, and
regulatory experts will be essential to ensure that QbD-ANN methodologies are robust, explainable,
and recognized as valuable tools for innovation in the pharmaceutical sector.

Conclusions

This study highlights the feasibility and precision of using ANNs as predictive tools for carbopol
emulsion formulations. Model optimization notably enhanced its predictive ability by strategically
selecting critical variables, especially in estimating carbopol concentration through viscosity, time, and
mixing speed. Experiments demonstrated validation and comparison with a commercial formula,
establishing a strong correlation between predicted and actual values, reinforcing the approach's
effectiveness.

Additionally, incorporating the three key variables into the model facilitated the evaluation of complex
interactions affecting viscosity, thereby broadening its applicability to various formulations. The
findings suggest that the model is exceptionally reliable for systems with viscosities exceeding 50,000
mPa -s-mPa-s, highlighting its capability to enhance formulation processes in the pharmaceutical sector.
Consequently, this study lays the groundwork for future research to refine predictive models in gelling
systems engineering and optimize manufacturing processes using artificial intelligence tools.
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