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Abstract  
This study presents an innovative approach that combines Quality by Design (QbD) principles with 
artificial neural networks (ANNs) to predict and optimize the formulation of carbopol-based emulsions. 
By integrating these two strategies, we enhance our understanding of formulations by linking critical 
material attributes and process parameters to critical quality attributes, such as viscosity. 
 
The predictive model was refined by selecting key variables: mixing time, mixing speed, and viscosity. 
These variables were used to estimate carbopol concentration and to capture the nonlinear relationships 
that influence emulsion behavior. Experimental data were employed to train, validate, and test the ANN 
model, which was then compared with four commercial formulations to evaluate its predictive accuracy 
and practical relevance. 
 
Notably, the model demonstrated excellent predictive performance for systems with viscosities 
exceeding 50,000 mPas, underscoring its applicability to high-viscosity pharmaceutical products. This 
integrated QbD-ANN framework offers a systematic and effective method for formulation optimization, 
reducing experimental workloads while improving process understanding. 
 
The findings indicate a strong correlation between predicted and experimental values, confirming the 
robustness and reliability of the QbD-ANN approach. Integrating the three key variables enables a more 
in-depth examination of the interactions between process and formulation, providing a comprehensive 
tool for understanding and controlling emulsion viscosity. 
 
In conclusion, this study establishes a data-driven methodology that facilitates rational pharmaceutical 
development, ensuring product quality, reproducibility, and innovation in alignment with modern 
pharmaceutical quality management principles. 
 
Keywords: QbD, ANNs, Carbopol emulsions, pharmaceutical formulation optimization, Predictive 
modeling, Viscosity and process parameters. 
 
Introduction  
Pharmaceutical Quality by Design (QbD) is a systematic approach to development that begins with 
predefined objectives and emphasizes product and process understanding and control based on sound 
science and quality risk management [1]. This approach enables identifying and understanding critical 
quality attributes (CQAs), ensuring the final product is reproducible and robust.  Using experimental 
design and risk analysis, QbD supports evidence-based decision-making, which helps reduce variability 
and enhance process efficiency. It also allows for establishing a design space that provides regulatory 
flexibility, demonstrating scientifically that changes within this range do not compromise product 
quality[1].  
 

ARTICLE IN PRESS



ARTIC
LE

 IN
 PR

ES
S

 

Combining QbD approach with artificial neural networks (ANNs) marks a significant advancement in 
creating emulgel-type pharmaceutical formulations [2-5]. QbD provides a structured way to 
characterize essential quality attributes and process parameters [6], while ANNs enhance the prediction 
of physicochemical properties by analyzing nonlinear relationships and uncovering complex 
interactions [7]. 
 
ANNs are now essential in pharmaceutical sciences, as they can analyze vast amounts of data and 
identify complex patterns that traditional methods struggle to comprehend [8-9]. Their uses include 
optimizing formulations [10-11], drug stability in formulations [12], viscosity[13], designing new 
drugs[14-15], predicting stability[16], and personalizing treatments in precision medicine[17]. 
Specifically, in emulgels, these networks enable modeling the effects of several variables on viscosity, 
providing a more accurate means to predict and adjust crucial parameters, leading to reproducible and 
effective formulations [4]. 
 
Emulgels represent a sophisticated category of semi-solid systems that merge the characteristics of both 
gels and emulsions. They offer notable benefits in stability, controlled drug release, and convenient 
topical application [18]. These systems are extensively employed in dermatological and pharmaceutical 
products, enhancing the bioavailability of active substances and serving as an effective matrix for 
incorporating lipophilic compounds [19-20]. Their rheological structure can be accurately adjusted 
through formulation parameters and more recently using predictive models [21-23], making them a 
versatile choice for optimizing products, especially in topical and transdermal therapies. Integrating 
QbD and ANNs presents a groundbreaking method to enhance efficiency and predictability in 
formulating these systems, creating new opportunities for their use in the pharmaceutical sector. 
 
This study aimed to create a predictive model using artificial intelligence to optimize the formulation 
of carbopol emulgels by assessing polymer concentration based on key process variables. By integrating 
QbD principles with ANNs, we can improve the precision of predicting rheological properties. This 
approach establishes a solid methodological groundwork for employing machine learning in the rational 
design of pharmaceutical products.  
 
Materials and methods  
 
Materials 
Analytical-grade reagents purchased from certified suppliers ((Sigma-Aldrich, USA), (Merck, 
Germany) (Lubrizol, distributed by Sigma-Aldrich) and were used to prepare the emulgel.  
 
Methods 
 
QbD Elements 
Using risk management, the definition of QbD elements, CQAs, and CPPs was performed. Potential 
Failure Mode and Effects Analysis (FMEA) matrices were constructed to determine criticality in 
severity, detectability, and occurrence, thereby calculating the probable risk number. 
 
Preparation of emulgels 
The oil phase was prepared by dispersing vitamin E in mineral oil, with Tween 80, used as a surfactant 
to enhance emulsification. This mixture was gradually incorporated into the aqueous phase under 
moderate stirring, resulting in a stable emulsion. Next, Carbopol 940, was added while the system was 
continuously stirred until the polymer was uniformly dispersed throughout. The emulgel was then 
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formed by gradually adding triethanolamine a neutralizing agent to promote gel formation and adjust 
the system's pH. Finally, the formulation was evaluated for pH, viscosity, physical stability, and 
homogeneity. Once these assessments were completed, the emulgel was packaged in appropriate 
containers for storage and future functional evaluation. 
 
Characterization of emulgels 
 
Rheology (Viscosity, Storage-Loss Modulus) 
 
The emulgels' viscoelastic characterization was conducted using an Anton Paar rheometer featuring a 
standard 5 mm diameter cone-plate geometry. An amplitude sweep was performed to determine the 
linear viscoelastic region (LVR), examining how the storage modulus (G') and loss modulus (G'') varied 
with the applied strain. The complex viscosity (η) was calculated through an oscillatory sweep at a 
constant angular frequency of 10 rad/s, covering a shear rate range of 0.1 to 100 s¹, with 21 
logarithmically spaced measurement points. 
 
Particle size  
 
A LiteSizer Malvern brand DLS (Dynamic Light Scattering) particle size analyzer was used to assess 
the potential. For both analyses, successive dilutions of the emulgels were prepared using distilled 
water. 
 
Particle size analysis was performed with an Omega cuvette measuring cell (Mat. No. 225288) at a 
backscatter angle. The measurements took place at a stable temperature of 25 °C. Six runs, each lasting 
10 seconds, were conducted to calculate the average hydrodynamic diameter (z-average) and the 
polydispersity index (PDI), which helped characterize the droplet size distribution of the formulations. 
 
The zeta potential was measured using the same cell (Omega cuvette, Mat. No. 225288) at 25 °C, with 
a 1-minute equilibration before each measurement. A voltage of 200.0 V and the Smoluchowski model, 
incorporating a Henry factor of 1.5, were employed to calculate the zeta potential. Each sample 
underwent 100 runs.  
 
INQA-ANN Predictive Model Neural Network 
 
Data set preparation  
The data used to train the neural network were derived from the experimental design of eleven emulgel 
formulations. In this design, three process factors were systematically varied: (1) Carbopol® 
concentration (% w/w), (2) mixing speed (in rotations per second), and (3) mixing time (in minutes). 
This variation aimed to assess their influence on the viscosity of the system. These variables were 
selected based on the Failure Modes and Effects Analysis (FMEA). 
 
The experimental viscosity of each formulation was measured in triplicate to ensure reproducibility. 
Following this, the data underwent statistical analysis, which included calculations of percentage error 
and standard deviation among the replicates. The average viscosity value for each formulation was then 
determined and used as representative data for training the predictive model. 
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Predicted model 
The rheological properties of emulgel formulations were predicted utilizing a validated artificial neural 
network (ANN) previously outlined by Guevara-Pulido et al. (2022) [24]. For training this neural 
network with a backpropagation algorithm, the most significant factors identified in the Potential 
Failure Mode and Effects Analysis (FMEA) matrix were selected as input variables: mixing time and 
speed (critical process parameters, CPP), as well as Carbopol concentration (critical material attribute, 
CMA). Based on Pearson correlations, a systematic screening was conducted in MATLAB to define 
these parameters as model inputs, with the viscosity of the emulgels set as the output variable. 
 
During a later optimization stage, modifications to the neural network's structure revealed that the best 
predictive results were achieved by considering Carbopol concentration (% w/w) as the output variable 
and using mixing time (min), mixing speed (rpm), and viscosity (Pa · s) as input variables. 
 
Ultimately, the model was validated through leave-one-out cross-validation, and its goodness of fit was 
assessed using the coefficient of determination (R²). To improve model efficacy, the nodes in the hidden 
layer were tested from 50 to 500 in increments (SI) of 50 nodes in each trial to obtain satisfactory R² 
values, ideally near 1, ensuring thorough validation. The selected model parameters were then applied 
to predict the Carbopol® concentration in the formulated emulgels. 
 
Linear Regression Model 
 
We conducted a multiple linear regression to model and forecast the viscosity of the emulgels, using 
three independent variables: Carbopol® concentration, mixing time, and mixing speed. The least 
squares method was employed to fit the model, and the predicted viscosity values were compared with 
experimental results to assess the model's accuracy and prediction effectiveness. 
 
Results and discussion 
 
A set of nine essential Product Quality Parameters (QTPPs) was outlined, and the key attributes were 
identified through the Potential Failure Mode and Effects Analysis (FMEA)[25] matrix (SI-1). 
Consequently, two CPPs were established: mixing speed and time, and one CMA: carbopol 
concentration. These are recognized as extremely serious due to their effect on viscosity.  
 
It's essential to input experimental values to develop a predictive mathematical model. Thus, we created 
eleven emulgel formulation trials by varying 1) carbopol concentration (% w/w), 2) mixing speed in 
revolutions per minute, and 3) mixing time (SI-2). The experimental viscosity for each of the eleven 
formulations was calculated based on the variables listed in Table 1. 
 
Table 1: An experimental assessment of the viscosity of eleven emulgels influenced by carbopol 
concentration, mixing speed, and duration of mixing. 
 

Formulation Carbopol 
concentration (% 

w/w) 

Mixing speed 
(rps) 

Mixing time (min) Viscosity (Pa*s) 

1 0.20 241.7 0.50 1.80 

2 0.40 341.7 0.75 26.1 
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3 0.60 191.7 1.00 47.3 

4 0.80 158.3 1.25 81.7 

5 1.00 133.3 1.50 89.4 

6 0.20 500.0 1.50 1.60 

7 0.40 241.7 1.25 26.3 

8 0.60 341.7 1.00 49.7 

9 0.80 158.3 0.75 85.0 

10 1.00 500.0 0.50 77.6 

11 1.20 133.3 2.00 95.8 

 
 
The initial data analysis employed a multiple linear regression model to create a linear mathematical 
framework capable of predicting key system variables (SI) based on experimental values. This model 
exhibited coefficients of determination ranging from good to high (SI-5), indicating a robust correlation 
among the selected parameters. Nonetheless, some limitations in the model's predictive ability were 
recognized due to the system's nonlinear characteristics. 
 
To develop a more robust predictive model for predicting key quality parameters or attributes of the 
material, the architecture of an artificial neural network with back propagation (ANN-INQA) was 
employed [24]. This approach, created by Guevara et al., aims to classify the inputs based on Pearson 
correlation values [26]. The analysis revealed a strong link between Carbopol concentration and 
viscosity (r = 0.9663), while mixing speed shows a moderate correlation (r = -0.4853), along with 
mixing time (r = 0.2935). See Figure 1. 
 

 
 

Figure 1: Correlation between key variables measured using Pearson's method 
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We recognized that carbopol concentration significantly influences viscosity, leading us to predict the 
process's carbopol concentration as our output value. For this purpose, we initially considered the 
mixing time and experimental viscosity of the eleven formulations listed in Table 2 as inputs. We also 
adjusted the number of nodes in the hidden layer, testing values from 50 to 500. We range from 50 to 
500, aiming for a correlation coefficient close to one, while prioritizing optimal cross-validation. 
Ultimately, we developed a predictive mathematical model with 100 nodes, achieving an internal 
coefficient of determination (R²) of 0.85 and a cross-validation R² of 0.9141 (SI), which confirmed its 
predictive accuracy (Figure 2)[27]. 
 

 

  
 

Figure 2: Cross-validation of the INQA-ANN model. 
 

Currently, the coefficient of determination values for linear regression (SI) and ANN model is 
approximately equal to or greater than 0.8. While relying solely on statistical correlation would lead to 
the same predictions from both models, it's important to consider the pharmaceutical context. In this 
case, non-linear relationships in formulations may be better captured by artificial neural network (ANN) 
models that can predict non-linear variables. In any event, we describe the predicted values using both 
Linear Regression and ANN in the Supplementary Information (SI). 
 
Table 2: Enter experimental values and ANN-INQA predictions using one hundred nodes. 
 

Experimental values 
ANN-predicted values with 

100 nodes 
  

ANN input data (x) ANN output data (y) Predicted data by the ANN   

Mixing time 
(min) 

Viscosity 
(Pa·s) 

Carbopol concentration 
(% w/w)  

Predicted carbopol 
concentration (% w/w)  

error 
percentage 

(%)  
0.50  1.80  0.20  0.24  0,17  

0.75  26.10  0.40  0.36  0,10  

1.00  47.30  0.60  0.60  0,00  

1.25  81.70  0.80  0.89  0,11  

1.50  89.40  1.00  0.92  0,08  

1.50  1.60  0.20  0.23  0,15  

1.25  26.30  0.40  0.36  0,10  

1.00  49.70  0.60  0.62  0,03  
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0.75  85.00  0.80  0.91  0,14  

0.50  77.60  1.00  0.87  0,13  

2.00  95.80  1.20  0.95  0,21  

Validation of the ANN with 100 nodes 
                                  

R2= 0.85 
  

  

 
Commercial Voltaren emulgel and Artritis Voltaren Emulgel and Artritis gel were utilized to assess the 
predictive ability of the INQA-ANN-100 model experimentally. The viscosities of both products were 
measured, and a mixing time was established based on the viscosity values presented in Table 2. This 
data estimated the carbopol concentration in percent weight-to-weight (w/w) using the INQA-ANN-
100 model (predictions shown in Table 3). After mixing the components with the predicted 
concentrations, a viscosity of 85.005 was achieved for the diclofenac arthritis formulation, 
demonstrating a 99.9% concordance. The same procedure was applied to the Voltaren emulgel, 
resulting in a viscosity of 48.852 and a concordance percentage exceeding 94%, as detailed in Table 3. 
 
Table 3: Validation of the INQA-ANN-100 Predictive Model via Experiments. 
 

The model was developed using two inputs, successfully passing statistical parameters and 
experimental validation with commercial products. We encountered errors ranging from 0.5% to 5%, 
prompting us to incorporate three additional inputs. This approach integrated the three essential 
variables—mixing time, mixing speed, and viscosity—to assess potential complex interactions, 
expanding the range of reference viscosities. Like the previous model, we varied the number of hidden 
layer nodes, increasing it from 50 to 500 systematically searching for the best correlations (SI-31). 
Ultimately, we identified a superior model utilizing 400 nodes, which achieved an internal validation 
R² of 0.908 and a cross-validation result that exceeded the statistical benchmarks (Figure 3) and (SI). 
 

ANN input data (x) ANN-predicted data Experimental data 
Reference and 
experimental 

viscosities (Pa·s) 

Mixing 
time (min) 

 

Reference 
viscosity 

(Pa·s) 

Predicted carbopol 
concentration (% 

w/w) 

Experimental carbopol 
concentration (% 

w/w) 

Average 
experimental 

viscosity (Pa·s) 
Error percentage (%) 

0.75 46.149 0.608 0.609 48.852 5.856 

1.5 85.019 0.940 0.947 85.055 0.042 
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Figure 3: a) according to hidden layer nodes b) Cross-validation of the ANN-INQA-400 model  

 
As the two-input model, we tested its predictive capability with four commercial compounds (Table 4). 
The results indicated agreement percentages ranging from 96% to 98% (Figure 4), further validating 
the model's predictive power. However, in the case of low viscosities, as in Formulation A (Table 4), 
the model's predictive capacity is limited. The short mixing times and high mixing speed needed for 
low-viscosity fluids may not produce reliable and consistent predictions, as indicated by the data in 
Table SI-31 for the training set. The reasons for this inconsistency may vary; however, we are focused 
on developing independent models for low viscosities by identifying new critical parameters. 
 
 
Table 4: Validation of the INQA-ANN-400 Predictive Model through Experiments. 
 

Formulation 

ANN input data 

Data 
predicted by 

ANN (400 
nodes) 

Experimental data Standard 
deviation 

of 
experime

ntal 
viscosity 

(Pa.s) 

Reference 
data 

Viscosities (Pa.s) 
Reference and 
Experimental 

Mixing 
time 
(min) 

Viscosity 
(Pa.s) 

Mixing 
speed 
(rps) 

Predicted 
carbopol 

concentration 
(% w/w) 

Experimental 
carbopol 

concentration 
(% w/w) 

Average 
experimen

tal 
viscosity 

(Pa.s) 

Reference 
viscosity 

(Pa.s) 

Error percentage 
(%) 

A Voltarem 0.75 46.149 341.7 0.360 0.364 13.132 0.558 46.149 71.544 

B Aloe vera 1.00 60.538 191.7 0.684 0.684 61.887 6.712 60.538 2.228 

C Arnigel 1.25 74.451 158.3 0.929 0.931 77.224 7.014 74.451 3.725 

D Arthritis 1.50 85.019 133.3 1.084 1.086 88.507 6.63 85.019 4.103 
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Figure 4: Validation of INQA-ANN-400 

 
This advancement significantly reduces trial and error in the formulation of gels and emulgels [28], 
representing a notable application of artificial neural network models in the formulation of emulsifiers. 
Integrating the QbD approach with artificial intelligence tools, particularly ANNs, marks a significant 
methodological advancement in rational drug development. This study demonstrates that the combined 
use of QbD and ANNs facilitates modeling the relationship between critical process parameters and 
quality attributes, leading to a substantial reduction in experimental testing through highly accurate 
predictions. This strategy optimizes resource utilization, shortens development timelines, and enhances 
understanding of intricate physicochemical phenomena, such as polymer neutralization-induced 
gelation and the interactions of dynamic viscosity with time and rate. By designing a robust operating 
space, this approach demonstrates scientific traceability that surpasses traditional empirical methods, 
thereby supporting technical decisions based on objective and reproducible data (ICH Q8(R2), Q9, 
Q10). 
 
This comprehensive approach establishes a foundation for the digital transformation of pharmaceutical 
development, aligning with the global trend toward smart manufacturing, as highlighted in recent 
publications. The progressive application of ANN models, utilizing an increasing number of nodes, has 
demonstrated an enhanced capability to identify nonlinear patterns and multifactorial interactions that 
are often difficult to capture with traditional linear models. This methodological synergy contributes to 
more reliable predictions of critical attributes, such as viscosity, even within complex commercial 
formulations, reinforcing its industrial relevance. Additionally, by integrating cross-validation and 
testing against reference products, the model's robustness and transferability are effectively ensured. 
This comprehensive approach lays the groundwork for the digital transformation of pharmaceutical 
development, in alignment with the global trend toward smart manufacturing, as highlighted in recent 
publications [29-32]. 
 
Advantages, challenges and limitations 
 
The integration of QbD and ANNs represents a significant advancement in the field of pharmaceutical 
formulation development, offering a robust, data-driven framework for improving process 

ARTICLE IN PRESS



ARTIC
LE

 IN
 PR

ES
S

 

understanding and optimization. This collaborative approach markedly enhances the predictive 
accuracy of critical quality attributes, such as viscosity, while also reducing the experimental workload. 
Consequently, it accelerates formulation screening and the exploration of the design space. However, 
several challenges remain, particularly concerning quantity and quality data, model interpretability, the 
sensitivity of the employed instrumental methods, and the complexities of regulatory acceptance. The 
effectiveness of ANNs is intrinsically linked to the availability of extensive, high-quality datasets. Poor 
data curation can lead to issues such as overfitting or skewed predictive outcomes [33]. Furthermore, 
ANNs models are often perceived as “black boxes,” making it difficult to clarify predictions on a 
mechanistic level or justify them in regulatory settings. Finally, integrating these methodologies into 
regulated environments requires strict adherence to principles of data integrity, traceability, and ongoing 
risk management [34]. 
 
Future Perspectives 
 
Future developments are expected to concentrate on establishing hybrid QbD and Artificial Neural 
ANNs frameworks that combine data-driven and mechanistic models. This includes integration with 
physiologically based pharmacokinetic (PBPK) models or population-based models to improve 
interpretability and transferability across different scales. Progress in digital infrastructure, adherence 
to the principles of findable, accessible, interoperable, and reusable data, and the use of digital twins 
for process monitoring will facilitate real-time learning and control within QbD paradigms [35]. From 
a regulatory standpoint, organizations like FDA and the EMA are actively formulating guidelines to 
ensure the responsible application of AI and machine learning in pharmaceutical development, focusing 
on transparency, model lifecycle management, and predefined change control strategies [33]. As these 
standards evolve, multidisciplinary collaboration among formulation scientists, data engineers, and 
regulatory experts will be essential to ensure that QbD-ANN methodologies are robust, explainable, 
and recognized as valuable tools for innovation in the pharmaceutical sector. 
Conclusions  
This study highlights the feasibility and precision of using ANNs as predictive tools for carbopol 
emulsion formulations. Model optimization notably enhanced its predictive ability by strategically 
selecting critical variables, especially in estimating carbopol concentration through viscosity, time, and 
mixing speed. Experiments demonstrated validation and comparison with a commercial formula, 
establishing a strong correlation between predicted and actual values, reinforcing the approach's 
effectiveness. 
 
Additionally, incorporating the three key variables into the model facilitated the evaluation of complex 
interactions affecting viscosity, thereby broadening its applicability to various formulations. The 
findings suggest that the model is exceptionally reliable for systems with viscosities exceeding 50,000 
mPa ·s·mPa·s, highlighting its capability to enhance formulation processes in the pharmaceutical sector. 
Consequently, this study lays the groundwork for future research to refine predictive models in gelling 
systems engineering and optimize manufacturing processes using artificial intelligence tools. 
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