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ABSTRACT

Ultra-wideband (UWB) technology offers considerable advantages for indoor positioning. However,
its accuracy significantly decreases in non-line-of-sight environments, particularly in dynamic scenarios
with frequent human movements. To address this chailenge, this study proposed a temporal
convolutional network with a channel attention module {TCN-CAM) to enhance positioning performance.
The TCN architecture, employing causal and dilated convolutions, effectively mitigates the vanishing
gradient problem commonly encountered in neural networks and improves the model’s capacity to
capture long-range dependencies in time-series data. Concurrently, CAM enhances model adaptability
by emphasizing salient features under comiplex conditions. Simulation and field experiments
demonstrated that the TCN-CAM algorithm zchieved high positioning accuracy and stability with a mean
error of only 3.32 cm. Compared witii LSTM-AM, CNN-CAM, and conventional TCN algorithms, the
proposed method improved positioning accuracy by 76.12%, 25.06%, and 19.42%, respectively, thereby
significantly enhancing the robustness and performance of UWB-based positioning systems.

Introduction

The rapid advancement of Internet of Things (loT) technology, coupled with the widespread adoption
of smart devices, has led to a burgeoning demand for precise location tracking. Global Navigation
Satellite Systems (GNSSs) have been widely applied in outdoor environments and can achieve high
positioning accuracy. However, satellite positioning becomes inaccurate or unattainable within urban
canyons or enclosed indoor spaces, primarily owing to obstruction and multipath effects affecting GNSS
signals 1. Consequently, there is a pressing need to address the challenges of achieving high-precision
positioning in indoor environments 2. Currently, various indoor positioning technologies have emerged,
such as Wi-Fi, Bluetooth, ultra-wideband (UWB), audio, 5G positioning, and vision-based positioning
technologies 3-7. Among them, UWB is extensively employed in indoor positioning owing to its notable
advantages, such as wide bandwidth, short pulse duration, robust anti-jamming capability, and immunity
to interference from other communication devices 8.

UWB technology, which originated in the 1960s for military and radar applications, has gradually
transitioned into the commercial sector, where it plays an increasingly important role in wireless
communication and positioning systems. Advancements in UWB technology have led to the development
of several key ranging and positioning techniques. These techniques are generally categorized into four
principal types: Received Signal Strength (RSS), Angle of Arrival (AOA), Time of Arrival (TOA), and Time
Difference of Arrival (TDOA) 912, The RSS-based positioning algorithm is simple and cost-effective to
implement; however, its accuracy is highly susceptible to environmental interference. AOA-based
methods provide goniometric precision but are vulnerable to errors caused by multipath propagation and
signal reflections. TDOA algorithms eliminate the need for precise time synchronization required by TOA,;
however, their accuracy is limited by the complexity of calculating time differences across multiple
receivers. Among these, TOA algorithms, relying on signal arrival time measurements, are currently the
most widely adopted. The performance of TOA-based positioning depends on the precision of UWB
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ranging and synchronization accuracy between base stations and tags 13. In complex indoor
environments, obstacles such as doors, windows, and glass, coupled with human movement, contribute
to non-line-of-sight (NLOS) errors in UWB signal propagation, significantly affecting positioning accuracy.
Under such conditions, traditional algorithms based on RSS, AOA, TOA, and TDOA are inadequate for
achieving high-precision positioning. Therefore, novel algorithms capable of mitigating NLOS errors in
UWB ranging are urgently required to enhance positioning accuracy.

Extensive research has been conducted on NLOS errors, leading to notable advancements in this
field. To mitigate NLOS errors and inaccuracies in the kinematic model during UWB positioning, literature
14 proposed an improved robust adaptive Kalman filter (IRACKF). The filter adopted polynomial-fitting
sliding windows to classify errors and selected an appropriate filter for error correction. The proposed
IRACKF algorithm significantly improved the accuracy and stability of UWB positioning. However, the
experiments did not consider the mean and variance values of NLOS errors across different channel
environments. Literature 1> employed Bayesian filtering to mitigate UWB ranging errors and improve
positioning accuracy through probabilistic modeling. Despite its effectiveness, this method is highly
dependent on the accuracy of prior probabilities. In dynamic three-dimensional (3D) environments,
delays in updating the prior model may lead to error accumulation, reducing its applicability in complex
scenarios. Additionally, an improved Residual Improved Chan-Taylor (RICT) algorithm was proposed to
suppress NLOS errors in indoor UWB positioning 16, The RICT algorithm demonstrated superior
performance in scenarios with a limited number of anchor nodes. However, its advantages diminished
when the anchor node density was sufficient. Traditional methods for handling NLOS errors rely on
complex mathematical models, offering significant potential for optimization in accurately modeling and
predicting these errors. To address this challenge, machine learning has emerged as an effective solution,
leveraging vast datasets and pattern recognition techniques to enhance ranging accuracy and play an
important role across various application domains 17-19, In the literature 29, NLOS errors were effectively
mitigated using the Relevant Vector Machine (RVM) technique, and their locations were determined using
a two-step iterative (TSI) algorithm. In the literature 21, three machine learning techniques (SVM, RF, and
MLP) were employed to classify multi-labels (LOS, NLOS, and MP) in UWB ranging. Furthermore, the
literature 22 utilized machine learning algorithms to detect and reduce UWB NLOS errors, leveraging
measured data from one scene for training, validation, and testing across various scenes. However,
machine learning methods often require manual feature axtraction, which oversimplifies the modeling of
non-line-of-sight errors. Recently, deep learning has gained attention owing to its robust feature
recognition and learning capabilities, enabling direct error correction and improved positioning
performance 23, Literature 24 offers a comprehensive overview of the current state and future trends of
UWB systems, highlighting LOS/NLOS classification for indoor tag localization as a key research focus. In
the literature 25, a deep-learning-based UWB-NLOS/LOS classification algorithm, FCN-Attention, was
introduced. This algorithm employed a Fully Convolutional Network (FCN) for improved feature extraction
and incorporated a Self-Attention Mechanism to enhance feature description, thereby increasing
classification accuracy. Another study 26 employed a CNN-LSTM (Convolutional Neural Networks- Long
Short-Term Memory) methoad for UWB-NLOS/LOS signal classification, where the CNN automatically
extracted features, and the LSTM network performed the classification. The literature 27 proposed a
TinyML method incorporating self-attention mechanisms to enhance feature selection and model
representation for UWB NLOS identification. In another work 28, a CNN-based method integrated with a
channel attention module (CNN-CAM) was developed for NLOS signal classification. This model extracted
features from CIR data and replaced the fully connected layer with a pooling layer to enhance
classification efficiency. Finally, a novel multi-input learning neural network model 2% was introduced to
process both CIR and its time-frequency domain representation (TFDOCIR) for NLOS/LOS identification
tasks, achieving higher accuracy and robustness than traditional single GRU or CNN networks.

Although the aforementioned studies have laid a solid foundation for the development of indoor
positioning technologies, several limitations remain. First, much of the existing research has focused on
signal recognition and classification rather than directly enhancing the accuracy of UWB positioning
systems. Second, most current approaches are limited to two-dimensional localization, which constrains
their applicability in scenarios requiring high-precision 3D positioning, particularly when accurate height
information is essential. Furthermore, the impact of errors induced by dynamic obstacles, particularly
human movements, has been largely overlooked. In real-world applications, NLOS errors caused by
human motion are not only more frequent but also more challenging to mitigate owing to their inherent
unpredictability. These shortcomings underscore the need for further research and highlight the
difficulties faced by current methods in addressing NLOS-related positioning errors. To address these
challenges, this study proposed a novel TCN-CAM-based localization algorithm aimed at improving the
accuracy of 3D indoor positioning by directly mitigating NLOS errors. TCN is capable of processing time-
series data and effectively capturing the dynamic temporal characteristics of UWB signals. The
integration of a CAM further enhances the model’s ability to extract and prioritize salient features,
thereby improving positioning performance in complex environments. The main contributions of this
study are summarized as follows.



(1) A UWB indoor positioning model based on TCN-CAM was proposed to specifically address NLOS
errors caused by human movement.

(2) Unlike conventional methods, the proposed TCN-CAM model eliminated the need for prior signal
classification. It leverages deep learning to directly extract features from raw UWB data and suppress
NLOS errors, thereby achieving end-to-end optimization of positioning accuracy.

(3) Both simulation and field experiments demonstrated that the TCN-CAM algorithm effectively
alleviated dynamic NLOS errors and achieved superior positioning accuracy and robustness compared
with existing methods.

The remainder of this paper is organized as follows. Section 2 outlines the principles of UWB
positioning. Section 3 describes the proposed TCN-CAM model. Section 4 presents the results of
simulations and field experiments. Sections 5 and 6 provide the discussion and conclusion, respectively.

Related work
UWRB ranging principle

UWB technology is a wireless communication method that transmits data using nanosecond-scale
non-sinusoidal narrow pulses. Owing to its high temporal resolution and transmission speed, UWB is
extensively utilized in distance measurements, with Two-Way Ranging (TWR) being a widely adopted
technique. TWR is primarily divided into Double-Sided Two-Way Ranging (DS-TWR) and High-Dynamic
Scenario Two-Way Ranging (HDS-TWR). By recording the timestamps of signal transmission and
reception, DS-TWR calculates the signal's round-trip time from the time difference to determine the
distance between devices. In contrast, HDS-TWR builds on DS-TWR to improve efficiency by enabling
simultaneous ranging with multiple base stations. This approach significantly reduces the measurement
time and is tailored for high-dynamic scenarios. The operational principle of HDS-TWR is detailed in Figure
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Figuré 1. HDS-TWR ranging'principle.
In Figure 1, 7popa, Toas, and Toopcrepresent the UWB signal flight times to base stations A, B, and

C, respectively. TX and RX represent the transmitting and receiving ends, respectively. The time required
for the UWB signal to be transmitted from the tag to base stations A, B, and C is defined by Equation (1).
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where 7pa1, Ten1, and 7ra denote the time intervals between the tag transmitting signals to base stations
A, B, and C, respectively. 7o, 7Te2, and 7g> denote the time intervals between base stations A, B, and
C transmitting signals to the tag and receiving its response, respectively. 7pm, 7z, and 7Trm denote the
response times of base stations A, B, and C when processing signals from the tag, respectively. Tpr2, Ter2
, and Trz denote the response times of the tag when processing signals from base stations A, B, and C,
respectively. Equation (2) provides the calculated distances Doopa, Doos, and Duoc from the tag to
base stations A, B, and C.

Dorooty =C” Toropi (2)



where C represents the speed of light.

Temporal Convolutional Network-Channel Attention Module Algorithm

Temporal Convolutional Networks (TCN)

TCN is an extension of CNN 39 for time-series data using one-dimensional convolutions to capture
temporal dependencies. Unlike traditional recurrent neural networks (RNNs) and their variants (including
LSTM and GRU), TCN uses a unique network architecture that enables parallel processing of time-series
data while effectively capturing long-range temporal dependencies 31-33, Furthermore, in contrast to
LSTM and GRU, TCN processes temporal data non-sequentially, which improves computational efficiency
and simplifies the architecture by eliminating the need for complex gating mechanisms.

The TCN architecture comprises five fundamental components: an input layer, convolutional layers,
residual connections, a fully connected layer, and an output layer.

1) Input layer: The input data consists of raw time series observations, giving the network the essential
information required for subsequent convolutional processes. The expression for the input layer is as
follows:

x=[x, x, x| (3)
where x represents the input data for computations in time-series convolutional network models; 7
represents a time step; and x represents an observation or signal at a time ¢.

2) Convolutional layers: Feature extraction is performed sequentially through convolutional layers 1 to 4.
This hierarchical structure progressively captures temporal features at varying scales from the UWB
signal data. Among these, the dilated convolution (Figure 2) employs an expansion factor d=[1,2,4,8] to
achieve multi-scale modeling. Specifically, d=1 captures local features, d=2 covers mid-range
dependencies, and d=4 and 8 are used to extract long-range tempeora! relationships through progressive
sense field expansion. In parallel, causal convolution (Figure 3) ensures strict temporal causality by
restricting the convolution kernel to operate only on the current and historical inputs. This design,
combined with the efficient 1D processing capability of a 11 convolution kernel, is particularly suitable
for temporal analysis of UWB signals. The computational expression for the convolutional layer is as
follows:

s . .
M= g wx+(/-1) a) (4)
/=
where J}f is the output of the convolution operation; fis the activation function; w/is the weight of the
convolution kernel; ¢ is the expansion factor of the convolution kernel; 4 is the size of the convolution

kernel; x is the input data; and / is the index of the current position of the convolution kernel concerning
the input sequence.
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Figure 3. Causal convolution.
3) Residual connections: The data processed by the convolutional layer were combined with the input
data and subjected to the RelLU activation function to establish the residual connection, as shown in
Figure 4. Residual connections can address gradient vanishing issues, accelerate model training, and
enhance model performance and expressiveness. The expression for calculating the residual connection



is as follows:
L= y+x (5)

where Z is the output of the residual join; Jf is the data processed by the convolutional layer; and x:
is the input data.

Dilated Causal
Cony

Figure 4. Residual connection.
4) Fully connected layer: After being linked through residual connections, the data were fed into the fully
connected layer. This layer facilitates feature transformation and output prediction and completes the sequence
modeling process. The expressions for the fully connected layer are as follows:

Z=3 ", m- x+h (6)

=1

a=1(2) (7)

where « is the number of neurons in the previous layer, Wi is the weight that connects the / input
neuron to the / output neuron; ¥ is the output of the / input neuron; b is the bias of the / output
neuron; Z is the weighted input, denoting the input weighted sum of the / neuron; f(*) is an activation
function, usually nonlinear, such as Relu; and @ is the output of the /7 neuron, processed by the activation

function.
5) Output layer: This layer outputs the final prediction results.
The specific network structure is shown in Figure 5.
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Figure 5. TCN network structure.

Channel Attention Module

The channel attention mechanism, widely used in computer vision tasks, dynamically adjusts the
importance of each channel, enabling the model to automatically learn and enhance feature
representations of the input data 34. The processing flow is as follows in Figure 6.
1) Squeeze Operation: First, an input feature map F of size HXxWxC undergoes global maximum pooling
(GMP) and global average pooling (GAP) along the spatial dimensions, producing two 1x1xC feature
maps. GAP captures the global average features, whereas GMP emphasizes the most prominent features.
This squeeze operation reduces the spatial dimensions of the feature map to a 1x1 representation while
preserving the essential global characteristics of each channel. The expressions for the squeeze
operation are as follows:

5., =GlobalAveragePool( F)1 R (8)
S =GlobalMaxPool( F)1 R° (9)

where 5, and S, represent the channel feature vectors from GAP and GMP, respectively, both with



dimensionality C; and Fis the input feature map.

2) Excitation Operation: GMP and GAP results are processed through a shared multi-layer perceptron
(MLP). This transformation facilitates the modeling of cross-channel dependencies and generates a
refined intermediate feature representation. The expressions for the excitation operation are as follows:

S., =ReLU WS, +h) (10)
S_ =RelU WS +h) (11)
where .S:M and S, are intermediate representations obtained by feeding the global average pooling

results; and W and Q are the learnable weights and biases of the first fully connected layer.

3) Channel Attention Weights: The output of the MLP passes through a sigmoid activation function that
normalizes the channel attention weights to a range of [0, 1]. The channel attention weight is expressed
as follows:

A=s (W(S,, +S) +B) (12)

where A represents the channel attention weights; V4 and Q are the learnable weights and biases of

the second fully connected layer; and S denotes the sigmoid function.

4) Feature Rescaling: In the final stage, the computed channel attention weights are applied to the
original feature maps via element-wise multiplication. This operation enhances the most informative
channels while suppressing less significant channels and effectively recalibrating feature maps. The
expression for the feature scaling is as follows:

Foy =Fe A
(13)
where F.,, represents the feature map adjusted by the channel attention module; and € denotes
element-wise multiplication.

Channel Attention Module
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Figure 6. CAM network structure.

Temporal Convolutional Network-Channel Attention Module

Traditional temporal convolutional networks (TCNs) often struggle to effectively capture the dynamic
importance of channel features, whereas channel attention mechanisms (CAMs) may lose critical local
temporal information owing to the use of global pooling in time-series tasks. To address these limitations,
this study proposed a TCN-CAM network that enhances hierarchical feature selection through multilevel
temporal feature refinement and a dynamic bi-dimensional attention mechanism spanning both channel
and temporal dimensions.

As illustrated in Figure 7, the network adopted a four-level one-dimensional causal convolutional
architecture. The input layer processed a 6 x 10 dimensional matrix derived from the UWB localization
dataset. The first convolutional layer applied 64 filters of size 1 x 3 to initialize feature extraction. The
second layer increased the filter count to 128 (1 x 3) to enhance representational capacity, and the third
and fourth layers maintained 128 filters of the same size to stabilize deep feature learning. For temporal
modeling, multi-scale dependencies were captured using dilated convolutions with expansion rates
d=[1,2,4,8]. To dynamically recalibrate channel-wise feature importance, CAM1 with a compression ratio
r=8 was embedded after the second layer (d=2) to refine mid-level features. CAM2 (r=4) was introduced
after the fourth layer (d=8) to optimize high-level semantic information. This forms an alternating pattern
of convolutional extraction-attention calibration. The final output feature map passes through two fully
connected layers (128 and 64 nodes), and the output layer then produces the final predicted 3D
coordinates.

During model training, the Adam optimizer was used for parameter updates, with a fixed learning
rate of 17103 to balance convergence speed and training stability. The batch size was set as 64. A dual
regularization strategy was applied to enhance generalization. A dropout (rate = 0.2) was used to
randomly deactivate redundant neuron connections, and L2 regularization (/ =1"10*) was implemented
to penalize large weight magnitudes and prevent overfitting. This combined strategy significantly



improves the model’s generalization ability while ensuring training efficiency. To quantify the model
performance, a weighted mean square error loss function was designed as follows:

L =20" MSEi+ 20" MSE2+1.0" MSEs+/ || nf22

(14)
where the weighting coefficients of [2.0, 2.0, 1.0] are used to balance the contributions of different sample

categories; and / =1"10" is consistent with the L2 regularization coefficient used during training,
ensuring consistency between the evaluation objective and the optimization objective.
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Figure 7. TCN-CAM network structure.
Experiments

Both simulations and field experiments were conducted to verify the effectiveness of the proposed
algorithm.

Simulation experiments

Simulation experiments were conducted to evaluate the positioning performance of the proposed
TCN-CAM algorithm under NLOS conditions. To simulate the NLOS environment, a synthetic dataset was
generated using a real-distance-plus-noise model implemented in Python 3.6. Simulations were
performed on a Lenovo Savior Y7000 laptop equipped with 16 GB of RAM and an NVIDIA GeForce GTX
1050 Ti GPU.

During the simulation, six UWB base stations and one UWB tag were deployed. The base stations
were labeled A, B, C, D, E, and F, with coordinates denoted as (X, ¥4, 2), (X6 Y5 .25), (X, Yo, Z), (Xb, Yo, 20),
() Y5 Z), and (X, ¥, Z), respectively. Assuming that the coordinates of the tag G are (X ¥, Z), the true

distance between base station A and tag G is calculated using Equation (15):

Dic =] Xa- Xo)> B Ya- Y6\ B 2~ Z) (15)
In this simulation, the coordinates of base stations A, B, C, D, E, and F were set to (0, 0, 200), (400,
0, 0), (800, 0, 200), (800, 400, 100j, (400, 400, 200), and (0, 400, 100), respectively, with all units in
centimeters. The simulation was conducted within an 8 m x 4 m x 2 m (length x width x height) 3D
field, where 1,000 coordinate points were randomly generated. Among these, 950 points were utilized as
training data, and the remaining 50 were selected as test data for model validation. The actual distance
between each base station and the tag was calculated using Equation (15). To simulate real-world
conditions, random noise with a standard deviation of 10 cm was added to the actual distance between
each base station and the tag. Additionally, NLOS noise in the ranges of 0-10, 0-20, 0-30, 0-40, and 0-
50 cm was introduced to further replicate the NLOS conditions. The final input feature for the TCN-CAM
network was constructed using the sum of the true distance, random noise, and NLOS error, and the
corresponding true coordinates were used as the output target.

Statistical Validation of Simulation Data

To ensure the realism and diversity of the generated NLOS scenarios — which are crucial for robustly
evaluating the proposed algorithm — a comprehensive statistical analysis was performed on the
simulated ranging errors across all six base stations (A-F) under four noise conditions combining 10 cm
of random noise with NLOS errors of 0-10 cm, 0-20 cm, 0-30 cm, and 0-50 cm.

The frequency distribution of the errors was analyzed and fitted with a Gaussian model. The results,
detailed in Supplementary Figures 8-11, show high consistency in the Gaussian fitting parameters (e.q.,
Yo, XC, W) across different base stations under the same condition (R? = 0.98), indicating a uniform error
generation mechanism and excellent experimental controllability. As the NLOS error range increased,
the parameters evolved systematically: the center (xc) shifted positively, indicating accumulated
systematic bias, and the width (w) expanded, reflecting increased dispersion due to more random signal
paths.

This progression convincingly demonstrates that our simulation successfully reproduces a wide and
realistic spectrum of challenging scenarios, from weak to strong interference, thereby providing a solid
foundation for the subsequent algorithm evaluation.
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Figure 11. The error frequency histograms and normal fit of (a) A station, (b) B station, (c) C station, (d)
D station, (e) E station, and (f) F station. (10 cm noise standard deviation + 0-50 cm NLOS error)
Simulation results

The 3D coordinate data derived from the simulation experiments were processed using multiple
algorithms such as TCN-CAM, TCN, CNN-CAM, and LSTM-AM. These algorithms analyze the 3D tag
coordinate data to validate the accuracy and stability of their positioning results.

Figure 12 shows the root mean square error (RMSE) curves of the four algorithms. The positioning
error increased with the noise level. Among these algorithms, the LSTM-AM algorithm demonstrated the
poorest positioning performance, whereas the TCN-CAM algorithm exhibited the lowest positioning error.
Initially, with noise of 0-10 cm, the CNN-CAM algorithm had positioning errors similar to those of the TCN
algorithm. However, as the noise increased, the positioning errors of the TCN and CNN-CAM algorithms

also increased. Moreover, the differences in positioning errors among the algorithms became more
pronounced at higher noise levels.
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Figure 12. Error curves of the four algorithms under different noise conditions: (a), (b), (c), and (d)
correspond to noise ranges oi 0-10, 0-20, 0-30, and 0-50 cm, respectively.

Figure 13 presents the box plots of the four algorithms under NLOS noise levels of 0-10, 0-20, 0-30,
and 0-50 cm. The results showed a clear trend. The average positioning error of each algorithm increased
progressively with increasing noise levels. Among all noise conditions, the LSTM-AM algorithm
consistently exhibited the largest box size, widest error distribution, and highest average error. In
contrast, the TCN-CAM algorithm achieved the smallest box size, most compact error distribution, and

lowest average error.
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Figure 13. Box plots of the four algorithms under different noise conditions: (a), (b), (c), and (d)
correspond to noise ranges of 0-10, 0-20, 0-30, and 0-50 cm, respectively.

Figure 14 shows the average error and standard deviation variation across the four algorithms for a
more intuitive assessment of their positioning accuracy and stability. The histograms illustrate the
average error of the four algorithms across noise levels of 0-10, 0-20, 0-30, and 0-50 cm, offering
insights into their localization accuracy. The line graph shows the standard deviation of these algorithms
under various noise levels, serving as an indicator of their stability. Under the 0-10 cm noise condition,
the positioning errors of the CNN-CAM and TCN algorithms were 9.77 cm and 9.51 cm, respectively, with
corresponding standard deviations of 4.16 cm and 3.76 cm, indicating comparable performance. In
contrast, the TCN-CAM algorithm achieved a lower positioning error of 6.13 cm and a standard deviation
of 3.26 cm, demonstrating improved accuracy and stability. The LSTM-AM algorithm exhibited the highest
positioning error and variability, with a mean error of 16.12 cm and a standard deviation of 8.06 cm.
Compared with LSTM-AM, CNN-CAM, and TCN, the TCN-CAM algorithm improved positioning accuracy by
61.97%, 37.26%, and 35.54%, respectively. In terms of stability (i.e., lower standard deviation),
improvements were 59.18%, 21.63%, and 13.30%, respectively. As the noise increased from 0-30 to O-
50 cm, the standard deviations of CNN-CAM and TCN became increasingly similar. Nonetheless, TCN
consistently outperformed CNN-CAM in both accuracy and stability across all noise levels. At the 0-50 cm
noise level, the positioning errors of LSTM-AM, CNN-CAM, TCN, and TCN-CAM were 21.26 cm, 17.06 cm,
14.11 cm, and 10.87 cm, respectively. The corresponding standard deviations were 9.47 cm, 7.58 cm,
6.86 cm, and 5.70 cm. These resulis confirm that the TCN-CAM algorithm outperforms all comparison
algorithms in terms of both positioning accuracy and stability. Specifically, it improved stability by
39.81%, 24.80%, and 16.91%, and enhanced positioning accuracy by 48.87%, 36.28%, and 22.96%
compared with LSTM-AM, CNN-CAM, and TCN, respectively.

The results clearly indicated that under low noise conditions (e.g., 0-10 cm), the positioning accuracy
and stability of the CNN-CAM and TCN algorithms were comparable. However, as the noise level increased,
the positioning accuracy of all algorithms decreased. Among them, the TCN-CAM algorithm consistently
achieved the lowest positioning error and highest accuracy across all noise levels. Notably, the accuracy
gap between CNN-CAM and TCN widened with increasing noise, whereas the stability differences
gradually diminished. Although stability declined for all algorithms as noise increased, the TCN-CAM
algorithm consistently demonstrated superior stability relative to the others. In contrast, the LSTM-AM
algorithm exhibited the poorest performance in terms of both positioning accuracy and stability. The
average positioning errors and standard deviations of all four algorithms across different noise ranges
are summarized in Table 1.
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Table 1. Average positioning error and standard deviation for the four algorithms across
varying noise ranges.
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Noise Average positioning error (cm) Standard deviation(cm)
standard LSTM-AM CNN-CAM TCN TCN-CAM LSTM-AM CNN-CAM TCN TCN-CAM
deviation
(cm)
0-10 16.12 9.77 9.51 6.13 8.06 4.16 3.76 3.26
0-20 17.45 12.16 9.94 7.20 8.12 6.41 3.92 3.51
0-30 18.57 12.71 10.44 8.97 6.95 6.52 3.92 3.67
0-40 18.86 15.63 13.31 10.54 7.68 7.29 5.85 5.65
0-50 21.26 17.06 14.11 10.87 6.47 7.58 6.86 5.70
Field experiments

To further validate the reliability of the TCN-CAM algorithm, field experiments were conducted using
the DWM1000 UWB positioning module. The experiments were performed at the School of Surveying and
Mapping, Henan Polytechnic University, and involved a setup comprising a computer, a total station, six
UWB base stations, and a UWB tag. Figure 15 shows the complete experimental setup and corresponding
schematic diagram.

Data acquisition was performed using the LinkPG positioning system developed by the Guangzhou
Network Technology Company, which was used to collect UWB ranging data. The true coordinates of the
UWB tag at each time point were recorded using a Topcon total station with millimeter-level accuracy,
serving as the ground-truth reference. The coordinates of the six UWB base stations were as follows (unit:
m): Base Station A (0.4709, 1.6176, 1.0259), Base Station B (0.5042, 5.0750, 1.2905), Base Station C
(0.6250, 9.6745, 1.0331), Base Station D (4.4659, 9.5698, 2.0746), Base Station E (4.3152, 5.5233,
1.1126), and Base Station F (4.3744, 1.5687, 2.0728). The total station was positioned at the origin of
the coordinate system (0, 0). As the primary aim of this study was to mitigate NLOS errors caused by
human movement during UWB positioning, individuals were allowed to move randomly within the
experimental area during data collection, thereby intentionally introducing NLOS errors into the UWB-
ranging data.

ure 15. Field experimental setup and scene layout.



The collected experimental data were processed to evaluate the practical effectiveness of the
proposed algorithm. Figure 16 presents the coordinate point errors, and Figure 17 illustrates the average
errors and standard deviations. Table 2 summarizes the localization error values of the four algorithms.

Figure 16 shows that the LSTM-AM algorithm exhibited the lowest positioning accuracy with the
largest positioning errors among all algorithms assessed. The CNN-CAM and TCN algorithms
demonstrated smaller localization errors than the LSTM-AM algorithm. However, the TCN algorithm
outperformed the CNN-CAM algorithm concerning localization effectiveness. Remarkably, the TCN-CAM

algorithm proposed in this study achieved the lowest localization error and the highest localization
accuracy.
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Figure 16. Point-wise localization errors: (a) TCN-CAM vs. LSTM-AM; (b) TCN-CAM vs. CNN-CAM; (c)
TCN-CAM vs. TCN; (d) comparison among TCN-CAM, TCN, CNN-CAM, and LSTM-AM.

Figure 17 shows the average error and standard deviation for the four algorithms. The average point
error was 3.32 c¢m for TCN-CAM, 4.12 cm for TCN, 4.43 cm for CNN-CAM, and 13.9 cm for LSTM-AM.
Compared with LSTM-AM, CNN-CAM, and TCN algorithms, the TCN-CAM algorithm demonstrated
substantial improvements in 3D tag localization accuracy, achieving 76.12%, 25.06%, and 19.42% higher
accuracies, respectively. In terms of stability, the standard deviations for TCN-CAM, TCN, CNN-CAM, and

LSTM-AM were 2.4 cm, 3.36 cm, 2.72 cm, and 7.2 cm, respectively. Among all algorithms, the TCN-CAM
algorithm exhibited the highest stability.
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Table 2 summarizes the localization errors of the four algorithms and compares their maximum,
minimum, and average errors relative to those of the LSTM-AM algorithm. When using the CNN-CAM
algorithm, the maximum localization error was reduced by 51.74%, the minimum error by 64.56%, and
the average point accuracy improved by 68.13%. With the TCN algorithm, the maximum and minimum
errors were reduced by 56.65% and 83.54%, respectively, whereas the average point accuracy increased
by 70.36%. The proposed TCN-CAM algorithm achieved the most significant improvements, reducing the
maximum error by 64.26% and the minimum error by 88.61% and enhancing average point accuracy by
76.12%.

Table 2. Localization accuracy based on measured data for each algorithm.

. Maximum error minimum error Average eiror Standard
Algorithms (cm) (cm) (cm) deviation (cm)
LSTM-AM 40.32 2.37 13.9 7.22
CNN-CAM 19.46 0.84 4.43 2.72
TCN 17.48 0.39 4,12 3.36
TCN-CAM 14.41 0.27 3.32 2.40

Figure 18 illustrates the trajectories of the four algorithms in the X, Y, and Z directions along with the
actual motion routes obtained from the field test. Among the algorithms, the trajectory produced by the
TCN-CAM algorithm exhibited the closest alignment with the actual path across all three spatial
dimensions.
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Figure 18. Comparison of algorithm trajectories with the actual measured path: (a) X-direction, (b)
Y-direction, (c) Z-direction, and (d) actual measurement trajectory.

Figure 19 compares the motion trajectories generated by the different algorithms with the actual
paths measured during field tests. The results demonstrate that the proposed TCN-CAM algorithm
achieves superior positioning accuracy compared with the other evaluated methods.
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Figure 19. Comparison of measured trajectories for each algorithm: (a) LSTM-AM, (b) CNN-CAM, (c)
TCN, and (d) TCN-CAM.

Discussion

In the field of indoor positioning, UWB technology has attracted significant industrial attention owing
to its centimetre-level ranging accuracy, low power consumption, and strong resistance to multipath
interference. However, in practical applications, NLOS propagation often leads to a substantial reduction
in positioning accuracy. Among the various sources of interference, dynamic obstruction caused by
human movement is particularly prominent. This type of interference is characterized by time-varying
randomness, presenting considerable challenges for maintaining accurate and reliable positioning.

This study proposed a TCN-CAM algorithm and evaluated its effectiveness in 3D indoor positioning
applications. TCN effectively extracted temporal features while mitigating the gradient vanishing problem



commonly observed in recurrent neural networks, particularly LSTM-based models. CAM enhanced the
model’s adaptability to complex environments by improving feature selection. To evaluate the
algorithm’s performance, simulation experiments were conducted by introducing NLOS noise with
varying ranges, followed by validation through field experiments. Compared with LSTM-AM, CNN-CAM,
and TCN, the proposed TCN-CAM algorithm demonstrated superior performance in both positioning
accuracy and stability.

Despite its strong performance in indoor positioning, the TCN-CAM algorithm has certain limitations.
Its effectiveness is highly dependent on the structure of input data. Specifically, the model relies on time-
series data collected from fixed base station positions, requiring that the input data originate from the
same base stations used during training. Although the model can directly output target 3D coordinates,
significant changes in base station locations render the pre-trained model parameters invalid. In such
cases, new data must be collected, and the model must be retrained. Nevertheless, the TCN-CAM
algorithm remains highly promising for applications in environments in which base station locations
remain stable over extended periods.

Future research will focus on reducing the algorithm’s sensitivity to changes in base station locations.
This includes the development of a hybrid architecture that integrates geometric constraint models with
deep learning frameworks, aiming to decouple location-dependent features from channel characteristics,
thereby reducing reliance on fixed infrastructure. Additionally, multi-sensor fusion has been identified as
a promising direction to further enhance positioning robustness and adaptability.

In summary, the TCN-CAM algorithm offers an effective solution for mitigating NLOS errors in indoor
positioning systems and demonstrates significant practical value in environments in which base station
locations remain stable over time. With continued technological advancements and optimization, the
TCN-CAM algorithm is expected to play an increasingly important role across a broader range of real-
world applications.

Conclusions

This study proposed an algorithm that integrates a temporal convolutional network with a channel
attention module to reduce the impact of NLOS errors caused by hurman movement on indoor positioning
accuracy. The positioning accuracy and stability of the TCN-CAM, LSTM-AM, CNN-CAM, and TCN
algorithms were evaluated through both simulations and field experiments.

(1) Simulation results demonstrated that TCN-CAM significantly outperformed TCN, CNN-CAM, and
LSTM-AM. Its unique architecture enabled the TCN algorithm to process signal features in noisy
environments compared to CNN and LSTM. Additionally, the introduction of the channel attention
mechanism further enhanced both stability and positioning accuracy. Specifically, TCN-CAM achieved
approximately 20-50% higher positioning accuracy than the other three algorithms.

(2) Field experiment results confirmed the superior performance of the TCN-CAM algorithm. It
consistently outperformed LSTM-AM, CNN-CAM, and TCN in terms of positioning accuracy and exhibited
the lowest standard deviation, indicating the highest stability. Specifically, the positioning accuracy of
TCN-CAM was 76.12%, 25.06%, and 19.42% higher than that of LSTM-AM, CNN-CAM, and TCN,
respectively.
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