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Key Points: 

 Overall gas transport was well predicted using pre-explosion permeability estimates, 
especially at proximal boreholes. 

 Poorer fit to experimental data occurred at locations distant from cavity where pre-shot 
pressurization caused negligible perturbation. 

 Mixed prediction performance highlights the need for integrating multiple data streams 
for simulations of future tests in the series. 
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Abstract 

Detecting radionuclide gas seepage from clandestine underground nuclear tests is central to 
nonproliferation explosion monitoring research. Yet, early-time (<6 day) gas transport driven by 
the explosive pressure wave remains poorly constrained due to scarcity of field data. We 
simulate multi-phase gas transport in the vadose zone using pre-shot data from a recent chemical 
explosion in P-Tunnel at the Nevada National Security Site, USA. Despite using a simplified 2D-
radial model, predictions of tracer arrival matched observations within one order-of-magnitude. 
Our results show how transient blast forcing rapidly mobilizes gases from the cavity into 
surrounding rock – critical for optimizing sensor placement and test planning. This unique 
integration of field data and modeling represents a significant improvement in our ability to 
predict gas migration from underground explosions. More broadly, it offers insights into the 
coupled dynamics of pressure waves and contaminant transport in the vadose zone, with 
implications for monitoring and hazard assessment. 

 

Plain Language Summary 

When countries test nuclear weapons underground, they may release small amounts of 
radioactive gases into the air. However, to know when and where to look for these gases, a better 
understanding is needed of how gases move from deep underground to the surface, especially 
within a day of an explosion when transport is very rapid. 

Our study focused on this early phase of gas movement by analyzing data from a recent 
chemical explosion experiment at the Nevada National Security Site in the United States. We 
used computer models informed by pre-explosion permeability estimates to simulate gas 
transport through underground rock after the explosion. The models simulate gas concentrations 
at various points, which we compared with field measurements taken during the experiment. 
This work improves our ability to model gas movement in these scenarios, which can ultimately 
help detect nuclear tests around the world. 

 

1 Introduction 

Detonated underground nuclear explosions (UNEs) produce radionuclide gases such as 
radioxenon (Xe) that may seep to the surface weeks to months following an explosion. Detection 
of specific radioisotopes in the atmosphere is considered a “smoking gun” that a nuclear test took 
place1,2. This makes understanding the migration of UNE-related radionuclide gases a vital 
aspect of nuclear explosion monitoring research and development.  

Late-time (weeks to months) seepage of gases to the atmosphere is primarily controlled 
by a barometrically-driven mechanism referred to as “barometric pumping”3–6. Barometric 
pressure fluctuations pull gases towards the land surface during periods of decreasing pressure 
and push gas into the subsurface when pressure is increasing, coupling advection with a slower 
adsorption or diffusion mechanism into the matrix creates a ratcheting capable of significantly 
faster transport than would occur by diffusive transport alone6–8, but much slower than early-time 
cavity-driven flow. The efficiency with which barometric pumping extracts subsurface trace 
gases8,9 following a UNE ultimately controls the detectability of gas signatures at the surface. 
Barometric pumping starts where early-time gas migration driven by the residual pressure from 
the explosive blast leaves off. We therefore require a better understanding of how the explosion-

ARTICLE IN PRESS

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



manuscript submitted to Scientific Reports 

 

induced pressure conveys the tracer gases from the cavity into the surrounding subsurface 
environment.  

Efforts to validate models of early-time mass transport for underground nuclear and 
chemical explosions have been hindered by a lack of field-scale experimental data that include 
the relevant processes, such as the explosive pressure wave. Conducting such experiments is 
complex and is prohibitively expensive for most institutions to perform. Until recently, the 
community relied on legacy UNE test data (i.e., from before the current nuclear testing 
moratorium) to inform models. However, although legacy data contains a wealth of information 
pertaining to many aspects of the nuclear explosion, detailed gas transport observations were not 
collected. The ongoing Physics Experiment 1 (PE1)10 is a series of underground chemical 
explosion experiments conducted at the United States’ Nevada National Security Site (NNSS) 
that is designed to fill this and other knowledge gaps. Quantification of early-time transport 
processes, key to gas migration monitoring efforts, can be achieved by validating sophisticated 
hydrogeologic flow and transport models against data from physically relevant field experiments 
such as PE1.  

In this study, we present the results of predictive flow and transport simulations we 
performed during the planning stages of the PE1 experiment using hydrogeologic data calibrated  
before the shot11. The gas transport predictions are then compared to the experimental results. 
For the predictions, we simulate multi-phase (gas- and aqueous-phase) vadose zone transport of a 
radionuclide tracer (xenon) and high-explosive (HE) byproducts resulting from early-time 
pressure-wave propagation following an underground chemical explosion. Cavity fluid pressure 
(>14 MPa) and temperature (>1300 °C) conditions created by the explosion are much higher 
than conditions usually encountered in subsurface flow and transport models above the water 
table, so we required modifications to our flow and transport simulator to handle the 
conditions12. We incorporate predictions of inferred permeabilities and pressure propagation11 
into a numerical flow and transport model and compare simulated tracer concentration 
predictions to measurements from borehole gas samplers surrounding the explosion cavity. 
Uncertainty quantification of hydraulic properties is included in our prior estimates of several 
relevant gas transport properties. Although our model necessarily relies on simplifying 
assumptions and idealized boundary conditions, it reproduces the measured borehole 
concentrations with reasonable, order-of-magnitude accuracy at several locations using the pre-
shot permeability estimates. Less accurate fits are observed at more distal boreholes, reflecting 
the sensitivity of the predictions to spatial heterogeneity and the limitations of pre-shot 
calibration data. This research integrates a unique dataset with numerical modeling to improve 
our understanding of the explicit connection between pre-shot hydrogeologic characterization 
and the resulting early-time transport of gas tracers in response to an underground chemical 
explosion.  

2 Methods 

2.1 Experiment Description 

To better understand the migration of gases driven by the explosive pressure wave, a series of 
underground chemical explosions are being conducted at the NNSS as part of PE110. These 
experiments are designed to allow real-time monitoring of pressure propagation and gas 
migration in the rocks surrounding the cavity following the explosion. The P-Tunnel complex, 
which hosts the three testbeds in primarily volcanic tuff geology, is located within Aqueduct 
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Mesa in the NNSS13 (Figure 1). PE1-A was the first experiment in the series and was performed 
in October 2023. Instrumentation for PE1-A included eight gas sampling (GS) boreholes at 
varying distances from the cavity working point at elevations both above and below the working 
point elevation. Pressure transducers were co-located. Data from these transducers were 
previously used to characterize the hydraulic properties (e.g., permeability) of the surrounding 
rock using pre-shot cavity pressurization data11.  

 

Figure 1. Map and cross-section views of the testbed within the study area. (a) Location of the 
Nevada National Security Site, Aqueduct Mesa (red box) which houses U12p Tunnel (P-Tunnel). 
(b) Cross section of Aqueduct Mesa from X – X’ in (c). The layers correspond to the following 
lithologies: upper nonwelded to partially welded tuff (UNPWT), upper welded tuff (UWT), vitric 
nonwelded tuff (VNT), and upper zeolitic nonwelded tuff (UZNT). (c) Topographic contours of 
Aqueduct Mesa and P-Tunnel Complex. Yellow stars represent the locations of the Physics 
Experiment 1 (PE1) chemical explosion experiments (PE1-A, -B, and -DL). Figure modified 
from 10, U.S. Department of Energy technical report prepared by Lawrence Livermore National 
Laboratory under Contract DE-AC52-07NA27344. Original map created using digital elevation 
model data within the Generic Mapping Tools (GMT) software14. 

2.2 Site Description and Hydrogeologic Setting 

The geology hosting the P-Tunnel complex is primarily composed of pumice- and ash-fall and 
ash flow deposits (Timber Mountain Formation; TM)15. Some tuffs have been reworked and 
exhibit various degrees of welding and zeolitization, however, much of the volcanic lithology 
has experienced little structural deformation from Basin and Range Extension16. P-Tunnel is 
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approximately 350 m above the water table17. Figure 2a shows the lithology of the Aqueduct 
Mesa, where P-Tunnel resides. From the surface to 400 m depth, the lithology is as follows: 
upper nonwelded to partially welded tuff (UNPWT), upper welded tuff (UWT), vitric nonwelded 
tuff (VNT) and upper zeolitic nonwelded tuff (UZNT). The PE1-A cavity is positioned within 
the transition zone where nonwelded tuff becomes progressively more zeolitized with increasing 
depth as it grades downward into the UZNT (Figure 2b, Figure 3f). Eleven geologically distinct 
subunits have been identified within the VNT units exposed by P-Tunnel excavation. The units 
are ordered from shallowest to deepest, with VNT-a lying above numbered VNT units.  

A series of boreholes (GS-1 to 8) were drilled in the drifts to characterize the inter- and intra-
subunit heterogeneity in the VNT18. Core and grab sample analysis is described in detail in 
previous studies19,20, which characterized hydraulic and physical properties such as saturation, 
density, porosity, and relative permeability. Because of the scale-dependence of permeability, 
further calibration of the permeability was required. Core and grab sample data are used to 
inform the calibration using pressure data collected during a pre-shot cavity pressurization test11. 
These pre-shot calibrated permeabilities are used in the present study and are presented along 
with the other hydraulic properties used in Table 1. 
 

Table 1. Hydraulic properties for simulated units/features. Pre-shot permeability values are 
calibrated via cavity pressurization test11. Post-shot permeabilities are calculated as an exercise 
using pressures from observations of PE1-A following the methodology described in previous 
work11. Units are fully described in 19,20. The average saturation (0.65) from other VNT units is 
used for VNT-1, 6-10. 

Geologic 
Unit / 

Feature 

Co-
located 

Borehole 
ID 

(Pre-shot) 
Permeability 

[m2] 

(Post-shot) 
Permeability 

[m2] 

Porosity 
[–] 

Water 
Saturation 

[–] 
Description 

VNT-a GS-4,6,8 9.86 ⋅ 10-14 5.00 ⋅ 10-13 0.36 0.65 Vitric 
VNT-1 GS-2 3.84 ⋅ 10-13 4.62 ⋅ 10-12 0.36 0.65 Vitric 
VNT-3 GS-7 2.13 ⋅ 10-12 2.34 ⋅ 10-13 0.35 0.43 Vitric, becoming zeolitic 

and silicified lower 
VNT-4 – 4.99 ⋅ 10-13 1.03 ⋅ 10-14 0.30 0.65 Mostly zeolitic, vitric at 

top and partially vitric at 
base 

VNT-5 GS-1,3 2.59 ⋅ 10-14 4.81 ⋅ 10-15 0.37 0.76 Mostly vitric, with some 
partially zeolitic intervals 

VNT-6 – 2.42 ⋅ 10-13 3.00 ⋅ 10-14 0.32 0.65 Mostly vitric, grading to 
more zeolitic lower 

VNT-7 – 1.74 ⋅ 10-13 2.68 ⋅ 10-14 0.24 0.65 Mostly zeolitic, locally 
vitric 

VNT-8 GS-5 5.84 ⋅ 10-14 4.43 ⋅ 10-16 0.32 0.65 Mostly vitric, with 
zeolitic alteration 
grading in and out 

VNT-9 – 2.79 ⋅ 10-15 1.09 ⋅ 10-15 0.24 0.65 Mostly vitric, with 
zeolitic alteration 

grading in and out. 
VNT-10 – 3.43 ⋅ 10-17 7.52 ⋅ 10-17 0.16 0.65 Mostly vitric with weak 

zeolitic and local 
alteration 
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Cavity – 1.00 ⋅ 10-11 2.64 ⋅ 10-10 0.999 0.00 – 
 
 

 

Figure 2. Schematic of the hydrogeologic framework of the model and boundary conditions for 
(a) the full extent of the model domain, and (b) inset zoomed into region surrounding the cavity. 
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The injection source terms are distributed uniformly throughout the cavity volume. VNT units in 
(b) correspond to those in Table 1. 

2.3 Numerical Multiphase Subsurface Flow and Transport Simulations 

Numerical calculations are performed using the Finite-Element Heat and Mass (FEHM) 
simulator, a well-tested multiphase code21–23. FEHM has been used extensively in subsurface 
flow and reactive transport studies of radionuclide gases5,8,24–29. Hydraulic properties (e.g., 
permeability, porosity) of rock units within our hydrogeologic framework were calibrated using 
pre-shot cavity pressure test data in recent work11. We simulate gas transport, driven by 
explosion-induced overpressures in the cavity, and compare time-varying concentrations at 
borehole locations to measured gas sampler concentrations. The model is set up in a two-
dimensional axially symmetric (cylindrical) geometry that assumes radial symmetry about the y-
axis because it is dimensionally consistent with the experiment in terms of volume and overall 
depth of the study area. The computational mesh was generated using the Los Alamos Grid 
Toolbox (LaGriT)30. 

2.3.1 Governing Equations for Flow and Tracer Transport 

The governing flow equations solved by FEHM in this study for multi-phase flow in unsaturated 
porous media are given by: 

𝜕
𝜕𝑡
ሾ𝑆௜𝜙𝜌௜ሿ ൅ ∇  ∙ ሺ𝜌௜𝑞⃗௜ሻ ൌ 𝑄௜ሺ𝑡ሻ, where          ሺ1ሻ 

𝑞⃗௜  ൌ െ
𝑘𝑘௥ሺ𝑆௜ሻ
𝜇௜

∇𝑃௜            ሺ2ሻ 

where 𝑆௜ is saturation [dimensionless] of a given fluid phase i (either gas g or liquid l), given by 
𝑆௜ ൌ 𝑉௜ 𝑉௩௢௜ௗ⁄  where 𝑉  is volume [m3]; 𝜙 is porosity [dimensionless]; 𝜌௜ is the given fluid 
density [kg/m3]; 𝑞⃗௜ is volume flux per unit area [m3/(m2⋅s)] of the given phase; 𝜇௜ is viscosity 
[Pa∙s]; 𝑡 is time [s]; 𝑘 is intrinsic rock permeability [m2]; 𝑘௥ሺ𝑆௜ሻ is the relative permeability 
[dimensionless] of each phase; 𝑃௜ is pressure [Pa]; and 𝑄௜ሺ𝑡ሻ is the source term [kg/(m3⋅s)] for a 
given phase. Here, we use a multimodal van Genuchten relative permeability model31 
implemented in a previous study11. The non-linearity is a result of the pore distribution, a 
combination of matrix pores and pre-existing or post-explosion microfractures in VNT units. We 
assume that the bulk movement of fluids through the rock matrix behaves according to Darcy’s 
law (Equation 2).  
 The governing transport equations solved by FEHM for conservative gas tracers are 
given by the conservative advection-diffusion equations: 

𝜕
𝜕𝑡
ൣ൫𝑆௚൯𝜙𝜌௚𝐶൧ ൌ  െ∇  ∙ ൫𝜌௚𝑞⃗𝐶൯ ൅ ∇ ⋅ ൫𝜙𝜌௚𝐷௚∇𝐶൯            ሺ3ሻ 

where 𝑆௚ (ൌ ሺ1 െ 𝑆௟ሻ) is the saturation of the gas phase [dimensionless], 𝐶 is the tracer 
concentration [mol/kgair], 𝐷௚ is the molecular diffusion coefficient of the given gas species in air 
[m2/s], the subscript g indicates the gas phase, and the other variables are as previously defined.  
 Gas-phase tracer mass can also partition into the aqueous phase according to Henry’s law 
assuming equilibrium conditions: 

𝐶௚ ൌ  
𝐶௔௤
𝑘ு
∘

1
𝑅𝑇𝜌௩

 ,           ሺ4ሻ 
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where 𝑘ு
∘  is the Henry solubility constant in water [mol/(kg⋅bar)], 𝐶௔௤ is the concentration of the 

species in the aqueous phase [mol/kg 𝑤], 𝑅 is the universal gas constant, 𝑇 is temperature [K], 
and 𝜌௚ is gas density [kg/m3]. Henry’s law solubility coefficients are given in Table 2. The 
transport of a given tracer that has partitioned into the aqueous phase is given by: 

𝜕
𝜕𝑡
ൣ𝑆௟𝜙𝐶௔௤൧ ൌ ∇ ⋅ ൫𝑆௟𝜙𝐷௟∇𝐶௔௤൯            ሺ5ሻ 

where  𝑆௟ is the saturation of the liquid phase [dimensionless] and 𝐷௟ is the liquid-phase diffusion 
coefficient [m2/s] of the species in excess water. Tracers may dissolve into the aqueous phase 
and be transported by advection-diffusion, however the borehole sensors only detect gas-phase 
constituents  
 The governing equations for conservation of energy in FEHM is given in terms of energy 
per unit volume (𝐴௘) by: 

𝜕𝐴௘
𝜕𝑡

൅ ∇ ⋅ 𝑓௘ሬሬሬ⃗ ൅ 𝐹ሶ , where           ሺ6ሻ 

𝐴௘ ൌ ሺ1 െ 𝜙ሻ𝜌௥𝛾௥ ൅ 𝜙ሺ𝑆௚𝜌௚𝛾௚ ൅ 𝑆௟𝜌௟𝛾௟ሻ         ሺ7ሻ 

with 𝛾௜ ൌ 𝐶௣,௜𝑇, and the energy flux 𝑓௘ሬሬሬ⃗  given by: 

𝑓௘ሬሬሬ⃗  ൌ  𝜌௚ℎ௚𝑞⃗௚ ൅  𝜌௟ℎ௟𝑞⃗௟ െ 𝜅∇𝑇        ሺ8ሻ 

where 𝑓௘ሬሬሬ⃗  is energy flux with units of energy per area time [J m2/s]; 𝐹ሶ  is the energy source term 
which can be a function of time [J/(m3⋅s)];  the subscript r refers to the solid rock matrix; 𝛾 is the 
specific internal energy [J/kg] for each material; 𝐶௣,௜ is specific heat [J/(kg⋅K)]; ℎ௚ and ℎ௟ are 
specific enthalpies [J/kg] for gas and liquid phases, respectively; and 𝜅 is effective thermal 
conductivity [W/(m⋅K)]. 
 

Table 2. Mass distribution of HE and radionuclide compounds in PE1-A cavity.  

Compound 𝑵𝒎𝒐𝒍 𝑪𝟎 [mol/kgair] 
𝒌𝑯
∘  

[mol/(kg⋅bar)]32 

CO 1.11 ⋅ 105 433.55 9.9 ⋅ 10-4 
CO2 8.38 ⋅ 104 328.83 3.5 ⋅ 10-2 
CH4 4.28 ⋅ 104 167.79 1.4 ⋅ 10-3 
H2 1.00 ⋅ 104 39.40 7.8 ⋅ 10-4 

127Xe 3.18 ⋅ 10-7 1.25 ⋅ 10-9 4.3 ⋅ 10-3 
 

2.3.2 Boundary and Initial Conditions 

The simulations are run under non-isothermal conditions. Air pressure in the model domain is 
initially uniform and set to 0.08 MPa, the approximate average background atmospheric pressure 
at the NNSS. The effects of an air-static gradient in the subsurface and the influence of 
barometric fluctuations on the ground surface are not considered, as the forcing from the 
overpressured cavity (Δ𝑃 >14 MPa) overwhelms any local gradients on the time scale of our 
simulations. Tracer concentrations are initially 0 mol/kgair everywhere except in the cavity. 
Tracer gases have provenance either as explicit inclusions in the experiment for modeling UNE 
signatures (xenon-127, 127Xe), or as HE byproducts (carbon monoxide, CO; carbon dioxide, 
CO2; methane, CH4; and hydrogen, H2).  Initial gas tracer concentrations in the cavity are known 
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directly for the UNE signatures. Initial concentrations of HE byproducts are calculated from 
known compositions of the HE source. Initial cavity gas inventory is presented in Table 2. 

Constant pressure boundary conditions (Dirichlet) are prescribed on the top, bottom, and 
right-lateral edge (radial extent) of the model domain, with pressure set to 0.08 MPa (Figure 2a). 
The actual ground surface is essentially a time-dependent air pressure boundary; however, due to 
the short timescales modeled and relatively large depth of the explosion, use of an average air 
pressure value is sufficient. The constant pressure boundary condition at the lateral boundary 
represents a far-field boundary and prevents artificial buildup of pressures by allowing water and 
air to escape. We observed no change in pressure or concentrations when testing on a larger 
mesh (1000 m ൈ1000 m) using identical forcing and boundary conditions. We therefore 
concluded that the simulation is not affected by boundary effects on the timescale of our model. 
Tracer mass is allowed to escape on these boundaries by both diffusion and advection along 
concentration and pressure gradients leaving the model domain. The left lateral edge (r = 0 m) is 
a no-flux/reflection boundary (Neumann).  

Cavity pressurization due to the explosion is represented by injecting a combination of 
non-condensable air and water vapor uniformly distributed within the entire cavity volume for a 
short interval (1 s) as a specified flow rate (Neumann) boundary condition (Figure 2b). During 
this injection interval, air was injected at a rate of 10836 kg/s and water vapor was injected at a 
rate of 1884 kg/s. Mass of air and water vapor added to the domain are calculated based on the 
integrated mass of HE byproducts produced by the HE compound used (13850 kg). The 
simulations do not differentiate different components of the non-condensable gas and simply 
represent the non-condensable fraction as having the properties of air. We calculate that the 
density and viscosity of the mixture of combustion by-products are within 10% of air at standard 
pressure and temperature and recognize that this simplification represents a deviation from the 
actual system. However, simulating multicomponent non-condensable gas is currently beyond 
the capability of our numerical code and is a goal for further development. Representing the 
explosion this way approximates the rapid overpressurization observed and produces peak cavity 
pressures consistent with those measured during the experiment.  

Our gas transport simulations use information from hydrodynamics calculations using the 
Hybrid Optimization Software Suite (HOSS) multiphysics code33 to approximate an early time (1 
s) state that maintains consistency between the two models. The hydrodynamic simulations 
convert high explosives to both pressure and thermal energy and some fraction of the energy is 
used to compress and damage the rock as the explosion causes the cavity to grow34. Thus, in the 
transport simulations post-detonation, the cavity radius (𝑟௖௔௩) is increased from a pre-shot radius 
of 2 m to approximately 4.4 m. A further modification to the initial state of the transport 
simulations is the inclusion of a ring of fully saturated (𝑆௟ = 1.0) rock of approximately 2 m 
thickness surrounding the cavity.  This saturated ring (Figure S6) represents pore crush seen in 
the hydrodynamics simulations35, which makes the air-filled porosity negligible. Air must then 
exceed the air entry pressure to force water out of the way and permit gas to escape the cavity.   

Thermal loading in the injected air and water vapor is included to match cavity gas 
inventory estimates of the PE1-A explosion. Those calculations yielded cavity temperatures on 
the order of 1300 °C at early times. Energy is added to the injected air as enthalpy at a rate of 
22200 MJ/s to capture this increase in temperature.  
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3 Results 

 
Figure 3. Composite plot of simulated gas concentrations using permeability values from pre-
shot and experimental gas concentrations at proximal boreholes: (a) GS-1, (b) GS-2, (c) GS-3, 
(d) GS-4; (e) bias (over-/under-prediction; Equation 9) plotted as a function of total distance 
from the working point and (f) zoomed-in section of model domain showing GS borehole 
locations. Note that for (a-e) HE byproducts concentrations/bias are represented by circles 
corresponding to the left y-axis [%] scale, whereas 127Xe is represented by black “x” markers 
corresponding to the right y-axis [kBq/SCM] scale. Boreholes GS-6 and 8 are not shown because 
simulated concentrations are orders of magnitude lower than observed. Borehole GS-5 is not 
shown because breakthrough concentrations reported by both the experiment and model were 
negligible.  
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In general, the simulations using pre-shot diagnostics predict within an order-of-

magnitude the gas concentrations at boreholes within about 35 m of the working point; a 
summary comparison between model and experiment time series is given in Figure 3. 
Concentrations at distal boreholes (e.g., GS-6 and 8) are generally underpredicted and are not 
shown in Figure 3 – a full visual summary of tracer results for each borehole can be found in the 
Supporting Information (SI) (Figure S2). Predicted breakthroughs tend to occur sooner than what 
is observed in the data, but the concentrations generally level out at similar values. One 
exception is the 127Xe tracer, for which the simulated concentrations at proximal boreholes (GS-1 
to 3) are much higher than the observed. Simulated gas concentrations for all species are 
underpredicted at shallow distal boreholes (GS-4, 6, and 8; Figure 3d, Figure S1f-g). Transport 
of CO2 is also not reliably predicted by the model; concentrations are overpredicted at GS-1 and 
greatly underpredicted at GS-2. We discuss this in section 4.4 Influence of Adsorption on Tracer 
Transport. To visualize prediction performance, we present time-averaged model bias as a 
function of total distance from the working point in Figure 3e to provide a sense of where the 
simulations over- or under-predict gas transport for each species. We calculate this time-
integrated bias as below: 

𝐵ത ൌ  
∑ ൫𝑦௠௢ௗ௘௟,௜ െ 𝑦௘௫௣,௜൯ ⋅ Δ𝑡௜
ே
௜ୀଵ

∑ Δ𝑡௜ே
௜ୀଵ

,              ሺ9ሻ 

where 𝐵ത  is the time-averaged model bias, 𝑦௠௢ௗ௘௟,௜ is the model value at time step 𝑖, 𝑦௘௫௣,௜ the 
experimental (observed) value at time step 𝑖, Δ𝑡௜ is the time interval (duration) associated with 
step 𝑖, and 𝑁 is the number of time intervals. As calculated, Equation 9 is effectively a weighted 
mean, where the weights are the time durations Δ𝑡௜ . The bias has the same units as the reported 
measurements and has negative values for under-prediction, positive values for over-prediction.  

4 Discussion 

The ability of the model to accurately predict gas tracer transport varies significantly 
across the sensor network and between tracers, with spatial and stratigraphic relationships 
playing a critical role in prediction accuracy. Here we discuss some of the factors affecting 
prediction accuracy.  

4.1 Sensitivity of Model Permeability Calibration to Distance from the Working Point 

There is a clear change in model bias towards underprediction in going from GS-3 to GS-
4, despite being very similar in terms of total distance from the working point (Figure 3e). This 
transition highlights a trend observed for all the gases, which is that the model underpredicted 
concentrations for all gas species at boreholes located in VNT-a (i.e., GS-4, 6, and 8). VNT-a is 
above the working point elevation and is essentially beyond the influence of the cavity 
pressurization test used to calibrate permeabilities11. One conclusion of that study was that the 
small overpressure (Δ𝑃 ∼ 0.07 MPa) created by the cavity pressurization test was unable to 
perturb the pressure field at shallower distal boreholes (GS-4, 6, and 8), possibly because VNT-a 
has a much higher permeability than what could be calibrated using pre-shot data. However, the 
pressure signals at proximal boreholes (e.g., GS-1 and 2) were very sensitive to VNT-a 
permeability, which constricted the calibration of VNT-a in the absence of perturbed pressure 
sensors. This provides a reasonable explanation for why the model underpredicts concentrations 
for all tracer gases at boreholes in this unit. Furthermore, as will be discussed later in this section, 
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VNT-a is almost entirely vitric and non-zeolitic, so tracer-specific preferential adsorption is not 
likely to be a factor contributing to misfit for these shallower boreholes.   

To confirm this hypothesis, we re-calibrated the VNT unit permeabilities using the 
pressure response data from the PE1-A explosion (i.e., post-shot data) using the same approach 
described previously11. The experiment produced much greater excess cavity pressures (Δ𝑃 ൐ 14 
MPa) than what was produced by the pre-shot cavity pressurization, so this approach has the 
clear benefit of generating pressure perturbations at distal boreholes (e.g., GS-4 to 8) that were 
unperturbed in the pre-shot pressurization, though such data were clearly not available for the 
prediction simulations. Key differences resulting from using PE1-A data for calibration include 
higher calibrated permeabilities in VNT-a, -1, -3, and the cavity, and lower permeabilities in 
VNT-4 to 10. The pre- and post-shot calibrated permeabilities are both included in Table 1. As 
might be expected, simulated transport using post-shot calibrated permeabilities more accurately 
represent the transport observed in the experiment for most species, especially for more distal 
boreholes (Figure S3). In particular, 127Xe concentrations at every borehole location are much 
closer to those observed (Figure S4). A time slice contour at t = 24 h depicting Δ𝐶௠௢ௗ௘௟, which 
we define as the difference between the modeled gas concentrations produced using the pre- and 
post-shot calibrated permeabilities (Δ𝐶௠௢ௗ௘௟ ൌ 𝐶௣௢௦௧ሺ𝑡ሻ െ 𝐶௣௥௘ሺ𝑡ሻ) is shown in Figure 4d for 
CO, which highlights regions where the transport differed depending on the permeabilities used. 
As was previously hypothesized11, the permeability of VNT-a is higher than the values calibrated 
using the cavity pressurization data because the pre-shot test did not perturb pressures at GS-4 to 
8. Higher permeability in VNT-a facilitates increased transport to co-located boreholes (GS-4 to 
8) during PE1-A. As a corollary effect, this may have also helped to bleed off excess pressures 
that had previously been delivered to down-section units (VNT-1 to 10), resulting in lower 127Xe 
concentrations that more closely match the observations.  

The model clearly benefits from using permeabilities we calibrate from data where larger 
pressure perturbations are generated at a more relevant scale (i.e., the post-shot data), as is 
reflected in the reduced total error (Figure S4). We did not have such data at the time of our 
predictive modeling, but it is nonetheless important to note the impact of using parameters 
calibrated from data collected under different conditions. For VNT-a, the post-shot calibrated 
permeability returned a higher permeability value (5.0⋅10-13 m2) than the pre-shot cavity 
pressurization test calibration (9.9⋅10-14 m2). The post-shot calibrated permeability for VNT-a 
more closely resembles the median value obtained from single-hole packer testing (7.2⋅10-13 m2; 
minimum and maximum values were 3.3⋅10-13 m2 and 2.3⋅10-12 m2, respectively). Both the pre-
shot and post-shot calibrated data are essentially cross-hole tests and thus are larger scale 
measurements than the single-hole packer test data. This result runs somewhat counter to the 
trend observed previously11, wherein generally higher permeabilities were seen as the scale of 
the observation increased. Because of the scale of the system of interest (i.e., field-scale flow and 
transport), we would not expect our result to be the case except perhaps at distal boreholes GS-4 
through 8 that are not effectively calibrated using data from pressurization tests where the 
pressure perturbation is too small. This is an important and useful result, as future experiments 
may not be able to pressurize the cavity during testing to the extent that was possible for PE1-A, 
such as would be the case for larger cavities and for experiments with more distally located 
boreholes. Calibration of permeabilities at unperturbed sensors using large-scale pressurization 
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testing may lead to a local minimum, and should instead rely more heavily on smaller-scale 
measurements (e.g., packer test data).  

4.2 Transport Heterogeneity and Scale Effects 

A tracer particle traveling to a distal borehole encounters a broader range of geologic 
heterogeneity compared to one traveling to a proximal borehole. Prior studies have shown that 
permeability and porosity can be strongly scale-dependent for volcanic tuffs11,36–40. These effects 
are further compounded for resultant transport41–47. At field scales (10s–100s of m), transport 
samples a large range of heterogeneity, leading to greater variability in breakthrough times and 
concentration distributions at more distant monitoring points. These effects challenge the 
predictive capability of models like ours that do not explicitly account for spatially 
heterogeneous transport pathways within layers. 

Our model is also limited in how it represents spatial heterogeneity because we have 
invoked 2-D axi-symmetric domain geometry due to concerns with computational efficiency. 
Because of this, some gas sampling ports shown in Figure 3f that appear close to one another 
(e.g., GS-4 to 8) are in fact radially separated by tens of meters (see Figure 4 in 10). This is 
caused by the translation of actual 3-D space to model 2-D axi-symmetric space and means that 
the effect of hydrogeologic heterogeneity between such boreholes cannot be directly accounted 
for in our simulations. The transport simulations inherit the uncertainty associated with this 
assumption from the pre-shot permeability calibration11, which used the same simplifying 
geometric representation. While it is not possible to fully disentangle the effect of this 
assumption on the predictions relative to other factors (e.g., insensitivity of distal boreholes to 
pre-shot permeability calibration), the effect is observed when the model predicts transport with 
mixed success at two boreholes that appear close in 2-D axi-symmetric space (e.g., GS-4 and 6; 
Figure S3).  

4.3 Effects of Water Saturation Characterization 

It is also worth noting limitations regarding characterization of the water saturation 
variability within the domain. As with permeability, saturation is prescribed uniformly in space 
within each stratigraphic unit, so the model contains no intra-unit heterogeneity (i.e., 
heterogeneity within a given unit). Values of saturation are assigned using data collected from 
core “grab” samples20, although VNT-1 and 6 through 10 were not analyzed experimentally and 
so use an average saturation (0.65) based on the other VNT units. Saturation impacts several 
factors relevant to tracer transport including solute retardation due to dissolution of vapor-phase 
tracers, gas and liquid relative permeability, and retardation due to adsorption. We note that the 
degree of saturation also affects tracer retardation due to adsorption, which was not included in 
our model, but is discussed in the following section (4.4 Influence of Adsorption on Tracer 
Transport). Retardation of vapor species via Henry’s law dissolution into pore water is described 
in the Methods section (Equation 4). For a given a set of Henry’s law parameters, higher 
saturation means a greater quantity of gas tracer can dissolve into pore water, thereby slowing 
gas-phase transport. Gas and liquid relative permeability affect the ease with which the cavity 
overpressure is able to move water out of pores in the surrounding rock to permit gas flow. Rock 
with a higher degree of liquid saturation will have higher liquid relative permeability and lower 
gas permeability, with the converse having the opposite effect. Because gas permeability is 
primary control on gas-phase tracer transport, we attempt to justify the estimated saturation 
values used in our model using previously-performed uncertainty analyses11. Those analyses 
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were aimed at determining the impact of saturation ranges found in core analyses with regard to 
calibrated permeability values, and recalibrated permeabilities within a factor of 2 when using 
average saturation values. The saturation estimates we use in our model are therefore reasonable 
given the limited spatial resolution of our saturation measurements.  

There is an added layer of complexity in that the saturation in our model is static initially, 
but is permitted to move within the pore space driven by pressure perturbations. The blast 
pressure initially pushes the water out of the pores in the fully-liquid-saturated pore crush shell 
surrounding the cavity, dropping by as much as 40% in some locations and allowing gases to 
escape. The region just outside the pore crush shell (Figure S6) increases in saturation as water 
moves in, but the increase in rock volume with radial distance from the originally saturated shell 
means the increased saturation is unable to fully prevent outward gas movement. There is also 
some effect of the high-temperature water vapor moving into the surrounding rock, where it 
cools quickly and condenses, locally increasing saturation. Water readily moves into the highly 
permeable VNT-3 unit, increasing saturation by 10% as it moves laterally. The units directly 
neighboring VNT-3 (VNT-1, overlying; VNT-4, underlying) both decrease in saturation by 
similar amounts. To illuminate these processes, we present time slices of the change in water 
saturation in the Supporting Information (Figure S5).   

4.4 Influence of Adsorption on Tracer Transport 

The predictive simulations do not include the effects of adsorption, but recent work29,48–52
  

has demonstrated that adsorption can play a critical role in gas transport within zeolitic tuff. 
Specifically, CO2 adsorption to zeolites in these formations has been shown to be so significant 
that, under certain conditions, no breakthrough occurs during diffusion cell experiments in 
completely dry cores53. Recent work on xenon29,48,50,51,54–57 has similarly shown significant 
adsorption to zeolites in tuff. If adsorption processes are active in the field, they are expected to 
suppress peak tracer concentrations and delay breakthrough, particularly in boreholes where a 
substantial fraction of transport occurs through zeolitic tuff. The absence of adsorption in the 
model could therefore explain discrepancies between predicted and observed tracer arrival times 
and peak concentrations, particularly at boreholes where zeolitic tuff is a dominant lithology and 
as the early-time pressure wave diminishes. 
 From the above references, we expect adsorption to zeolites to be much more significant 
for CO2 and 127Xe than for the other gas species examined. The upper VNT units (VNT-a, VNT-
1) are generally vitric tuffs19, and gradually increase in zeolitization with increasing depth. We 
would therefore expect to overpredict concentrations for CO2 and 127Xe at boreholes located 
within deeper units (i.e., more zeolitized) such as at GS-1, 3, and 5, assuming the permeabilities 
used are accurate. This is in fact observed in our simulations, however the model also 
overpredicts concentration of 127Xe at GS-2, which is hosted in VNT-1, whereas modeled CO2 
was underpredicted. We note that, because 127Xe concentrations are significantly overpredicted 
at all proximal boreholes, and CO2 concentrations are both over- and under-predicted at the same 
boreholes, we do not expect zeolite adsorption to account for all discrepancies observed in our 
model. However, accounting for adsorption could improve the model’s ability to predict earlier 
gas breakthrough times at most boreholes. Improving field-scale gas transport models by 
conducting bench-scale experiments of noble gas transport through variably saturated tuffs and 
other rocks is an area of ongoing focus by our team.  
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Figure 4. Time slices of modeled CO gas transport plumes at: (a) 12s, (b) 30 min, (c) 24 h, and 
(d) a comparison (Δ𝐶௠௢ௗ௘௟) of the CO gas plumes by calculating the difference between 
simulated results using the pre-shot and post-shot calibrated permeabilities, Δ𝐶௠௢ௗ௘௟ ൌ
𝐶௣௢௦௧ሺ𝑡ሻ െ 𝐶௣௥௘ሺ𝑡ሻ.  

5 Conclusions 

This study presents a modeling approach to understand the rapid multi-phase transport of 
radionuclide tracers and high-explosive (HE) byproducts in the vadose zone following an 
underground chemical explosion. By incorporating pre-shot predictions of permeability and 
pressure propagation from previous work, our flow and transport model predicted with 
reasonable (order-of-magnitude) accuracy the observed gas concentrations in boreholes near the 
explosion cavity, even considering the high degree of expected heterogeneity at the field scales 
examined (10s–100s of m). Our predictions using pre-shot cavity pressurization-calibrated 
permeability were less accurate at distal boreholes in which the pressure perturbations were 
negligible. These discrepancies highlight the inherent challenges in capturing site-scale 
heterogeneity and the limitations of model calibration based on localized datasets. This drives 
home the need for integrating multiple data streams (e.g., core samples, packer tests, and cavity 
pressurization tests) in predictions used to inform engineering decisions related to gas behavior 
for two future experiments in the PE series.  

Field-scale subsurface transport datasets are relatively scarce, and those capturing 
transport driven by high-pressure conditions are even more limited, making the predictive 
modeling efforts presented in this work relatively unique. While our model necessarily simplifies 
aspects of the coupled thermo-hydrologic processes, it enables a physically consistent 
interpretation of field observations. The insights gained from this unique dataset and modeling 
approach have broad implications for understanding the coupling between underground 
explosions, transient pressure fields, and the resulting transport of hazardous materials in the 
vadose zone. Overall, this work represents a step forward in our ability to predict and mitigate 
the environmental risks associated with rapidly migrating subsurface contaminants. 
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