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attention network for steel surface
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Yiwei Duan?, Lizhen He?, Zhisheng Wang?, Jinhai Sa'™, Jiawen Yang?, Xiaolong Chen?,
Bingdong Shi* Yangyang Zhang* & Jiawen Sun®:®

Surface defect detection on steel components is crucial for quality control in polysilicon production.
However, this task remains challenging due to tiny defect sizes, irregular geometries, complex
backgrounds, and low contrast. To address these issues, we propose MSEOD-DDFusionNet (Multi-
Scale and Effective Object-Detection Diffusion Fusion Network), a novel multi-scale diffusion-
enhanced attention network. The network integrates four specialized modules: MTECAAttention
(Multi-Scale Texture Enhancement Channel-Aware Attention) for lossless multi-scale feature fusion,
ODConv (Omni-Dimensional Dynamic Convolution) for dynamic adaptation to irregular geometries,
LMDP (Local Multi-Scale Discriminative Perception) for selective noise suppression and micro-defect
amplification, and DDFusion (Diffusion-Driven Feature Fusion) for scene-aware noise modeling.
Pruning further reduces computational complexity while improving accuracy. Extensive experiments
on the specialized DDTE dataset and public benchmarks demonstrate state-of-the-art performance.
Our model achieves 82.6% mAP5q and 61.6% mAPgo_g5 on DDTE, while maintaining a high inference
speed of 193.5 FPS with only 8.46M parameters. It also shows excellent generalization across NEU-
DET, GC10-DET, and cross-domain tasks, providing an efficient and accurate solution for industrial
defect inspection.

Keywords Surface defect detection, Polysilicon production, Industrial defect inspection

The surface integrity of steel components is critical for the safety and longevity of polysilicon production
equipment in photovoltaics. Surface defects, such as microcracks (Cr), silicon deposits (SD), pits (PT), and
impurity spots (IS), originate from manufacturing or operational stress. These defects can severely compromise
material strength and may lead to catastrophic failure (Fig. 1). Consequently, automated, precise detection of
these defects is imperative for quality control.

Deep learning-based detectors are now the predominant solution, yet they struggle with the compounded
challenges of real-world photovoltaic inspection. We identify three fundamental limitations: (1) Limited multi-
scale discriminability, where minute defects are easily lost against complex backgrounds during feature fusion;
(2) Insufficient geometric adaptability of static convolutional kernels to capture irregular shapes like Cr and
SD; and (3) An inherent robustness-sensitivity trade-off, where enhancing noise robustness often diminishes
sensitivity to low-contrast defects.

To address these limitations, we propose MSEOD-DDFusionNet, an integrated defect detection framework.
Our principal contributions are threefold:

A lossless multi-scale fusion principle that preserves micro-defect signatures against complex backgrounds,
establishing a high-fidelity feature foundation.

A multi-dimensional dynamic adaptation mechanism that enables convolutional kernels to precisely capture
irregular defect geometries based on the fused features.
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Fig. 1. Representative steel surface defects highlight the key challenges of detection. These challenges arise
from the high diversity in morphology, scale, and background texture among defect categories such as
microcracks (Cr), pits (PT), and silicon deposits (SD).

A decoupled noise robustness strategy that refines features through selective real-time suppression and
training-time learned invariance, thereby resolving the sensitivity-robustness trade-off.

Additionally, we contribute the DDTE dataset, a specialized industrial benchmark providing high-resolution
annotated images to address the scarcity of domain-specific data. Extensive experiments demonstrate that our
framework achieves state-of-the-art accuracy and efficiency while exhibiting superior generalization across
multiple domains.

The remainder of this paper is organized as follows: Section "Related work" reviews related work; Section
"Methodology and design" details the network architecture; Section "Experiments" presents the experimental
analysis; and Section "Conclusion" concludes the paper.

Related work

Multi-scale feature fusion

Constructing feature pyramids is fundamental for surface inspection, as it represents defects at different
scales. Prior research, such as MSAF-YOLO! and UWSDNet?, has balanced accuracy and efficiency through
spatial transformations or re-parameterized designs. To further enhance feature quality, attention mechanisms
have been widely integrated—from SENet® focusing on channel relations, to variants incorporating spatial
coordinates?, and to CBAM-based hybrids fusing both®. However, their core operation compresses spatial context
into compact channel descriptors via global pooling. While this improves efficiency, the compression acts as a
low-pass filter. It attenuates the weak, high-frequency activations that characterize micro-defects before fusion.
Consequently, critical target features become submerged within complex background textures. This significantly
reduces discriminability during multi-scale aggregation. Together, these effects reveal a fundamental limitation
in the prevailing compression-based attention paradigm: it inevitably leads to channel-dimensional information
loss. Therefore, a new multi-scale fusion principle is needed to avoid such loss.

Dynamic convolution
Dynamic convolution enhances geometric adaptability. Its development has evolved through several stages: from
attention-guided kernel selection® and constrained sampling optimization’ to cross-domain transfer®. Recent
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advances, such as AKSNet® and MDSCELAN, further explore adaptive kernel width and multi-scale dynamics.
However, these methods share a common shortcoming—incomplete dimensional adaptation. They typically
optimize only one aspect at a time, such as spatial deformation, kernel weights, or channel importance. This
fragmented approach is non-collaborative. Consequently, it fails to capture the complex coupling among spatial
morphology, feature channels, and kernel parameters in irregular defects like silicon deposits and microcracks.
Therefore, precise geometric feature extraction requires a new solution: a mechanism capable of unified, co-
modulated adjustment of convolutional weights across spatial, channel, and kernel dimensions.

Noise robustness
Industrial noise demands robust feature learning. While adversarial training!! enhances invariance, it can
destabilize training. Alternative strategies, such as diffusion models'? and integrated frameworks!?, offer
generative noise modeling, and CycleGAN-based methods augment scarce data'®. However, these strategies
primarily act as global regularizers. They improve overall robustness by adapting to a broad noise distribution, but
they also introduce a key drawback: they uniformly raise feature activation thresholds. This reduces sensitivity to
low-contrast micro-defect signals—the classic robustness-sensitivity trade-off. Standard diffusion models show
potential but are limited by their fixed, scene-agnostic noise injection, which lacks targeted modeling of physical
interferences like hot spots or motion blur. This limitation constrains feature enhancement precision. Therefore,
advancing beyond this trade-off requires a dual approach. First, we need an immediate processing mechanism
for selective noise suppression and conditional signal amplification. Second, an enhanced learning paradigm
must simulate physical noise patterns and achieve feature-fidelity recovery to improve inherent robustness.
Our MSEOD-DDFusionNet framework bridges this gap by integrating a coherent sequence of specialized
modules that directly address these foundational challenges.

Methodology and design

System overview

The overall architecture and data flow of MSEOD-DDFusionNet are depicted in Figs. 2 and 3. The network
follows a cascading design from feature extraction to defect detection. The processing sequence begins as input
images undergo basic feature extraction through the backbone network. The extracted features then enter a
pipeline of four specialized modules. First, the MTECAAttention module performs multi-scale feature fusion
to preserve fine details of micro-defects. Next, the ODConv module dynamically adjusts convolutional weights
based on these fused features, adapting to the irregular geometries of defects. The LMDP module then refines
the features using a dual-stream strategy. It selectively amplifies potential defect signals while suppressing
background noise. Throughout this process, the DDFusion module continuously enhances feature robustness
via scene-aware noise modeling and denoising learning. Finally, the processed features are fed into the detection
head for classification and localization. This cascaded design ensures that each module’s output directly informs
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Fig. 2. The overall architecture of MSEOD-DDFusionNet. It features an MTECA Att-equipped backbone for
multi-scale feature extraction, a neck network that integrates ODConv and LMDP within a feature pyramid
for enhancement and adaptation, a multi-scale detection head, and a pervasive DDFusion module employing a
diffusion-driven strategy to boost robustness in low-contrast scenarios.
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Fig. 3. The overall flowchart of MSEOD-DDFusionNet. The diagram depicts the complete pipeline from
image input to defect detection output. The process begins with multi-scale feature extraction via the
MTECA Attention module, followed by shape adaptation using ODConv. Subsequent stages involve feature
fusion and optimization through SPPF, C2PSA, and LMDP modules. Simultaneously, the DDFusion module
enhances robustness via noise injection and denoising. The pipeline concludes with defect identification and
localization in the detection head.

the next, forming a coherent pipeline from feature preservation to robust detection. The specific designs and
innovations of each module are detailed in the following subsections.

MTECAAttention module

The MTECAAttention module performs lossless multi-scale fusion via a three-stage workflow, as depicted
in Fig. 4. Its design preserves all channel information during fusion, avoiding the information loss typical
of compression-based methods. This produces a high-fidelity feature map that serves as the foundation for
subsequent modules. The three stages are as follows:

First, multi-branch parallel feature extraction. This stage uses depthwise separable convolutions with
different kernel sizes (3x3, 5x5, 7x7). These convolutions capture diverse information simultaneously: defect
edge details, mid-scale morphology, and context with complex backgrounds. A key aspect is that all original
channel information is preserved. This establishes the essential basis for the lossless fusion process.

Second, cross-scale fusion. A 1D convolution aggregates the channel responses from the multi-scale features.
Critically, this operation does not reduce dimensionality. Instead, it integrates responses from the same original
channel across different scales. The output is a fusion weight vector that retains the original channel count.

Finally, interpretable channel calibration. The Tanh function is applied to constrain the fusion weights to the
interpretable range [—-1, +1]. These weights then perform channel-wise weighting on the original input features:
channels with weights near +1 are enhanced, while those near —1 are suppressed.

By fundamentally eliminating information loss at this initial stage, the MTECA Attention module resolves a
bottleneck that would otherwise propagate and limit the effectiveness of the entire cascade.

ODConv module

The ODConv module performs omni-dimensional dynamic convolution via a three-stage process, as depicted
in Fig. 5. Its core innovation is a four-dimensional dynamic weight co-modulation mechanism, enabling holistic
adaptation to irregular geometries. This provides the adaptive convolutional foundation required for subsequent
feature refinement. The three stages are as follows:

First, dual-path feature statistics extraction. This stage employs concurrent global average pooling and global
max pooling to extract feature statistics. This dual-path approach captures both global contextual information
and locally salient features. The combined statistics provide richer cues for the subsequent generation of adaptive
weights.
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Fig. 4. The MTECA Attention module. The module performs multi-scale feature extraction via depthwise
separable convolutions (k=3,5,7), followed by feature aggregation, channel weight generation (ConvlD +
Tanh), and input feature recalibration — all while preserving original dimensions (CxHxW).
X » Xk —> Yy
- = = =1 = =1 - = = = 1"
GA/MP I | | I I
1 W1l 1ast I Ac1 I af | I dw1
I | I | [ 1 I I [ I
A RV Y2 B I I I I I B I
W2
| |O|aszl IaC2|®|af2|©|aW2|_’+
RetU |1 =1 1 0 1 0 1 ==1 11
I B B (. 1" (.
[ | | a | | | | | | I
n sn dcn dfn dwn
| R— L- -1 L -1 | R

t t t t

| Sigmoid | | Sigmoid | Sigmoid Softmax |

T 1 [ | [/ | [ ¥ ]
) I I T

Fig. 5. The ODConv module. The ODConv module employs a multidimensional attention mechanism to
simultaneously compute four types of attention across all four dimensions of the convolutional kernel space:
Gsis Ocis Qfi> ANd Qs ..

Second, four-dimensional attention weight generation. A lightweight parallel network processes the extracted
statistics to generate four sets of attention weights. Critically, one unique weight set is generated for each of the
four convolution dimensions: spatial, input channel, output channel, and kernel. This design ensures holistic
adaptation across all dimensions, directly addressing the partial adaptation limitation of prior methods.

Third, element-wise co-modulation. The four sets of attention weights are fused with the base convolution
kernel through element-wise multiplication and broadcasting. This deep, co-modulated fusion allows the
convolutional operation to dynamically reconfigure its focus during each forward pass. Consequently, it
emphasizes spatial regions containing irregular defects while suppressing irrelevant background patterns.
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By establishing this fine-grained, global control over the convolution process, the ODConv module achieves
precise characterization of the complex and irregular geometries prevalent in photovoltaic steel surface defects.
It thereby fulfills its role as the adaptive processing unit within the integrated cascade.

LMDP module

The LMDP module performs local multi-scale discriminative perception via a dual-stream architecture, as
depicted in Fig. 6. Its core innovation is a decoupled processing strategy that separates noise suppression from
signal amplification, enabling precise enhancement of subtle defects in high-noise environments. This provides
the targeted feature refinement required for robust detection. The two parallel processing streams operate as
follows:

Stream 1: Selective Noise Suppression. This stream first computes channel-wise fusion statistics and generates
corresponding suppression weights. A key design is the inversion of these weights. This mechanism selectively
attenuates only predefined noise-sensitive channels. Crucially, all other channels are preserved intact, including
those carrying low-amplitude defect signatures. This prevents the accidental suppression of critical defect signals
during noise removal.

Stream 2: Conditional Signal Amplification. This stream employs a separate 1x 1 convolutional branch to
produce feature scaling factors. Its key innovation is a threshold-based conditional mechanism. Amplification
(e.g., by a factor of 1.2) is applied only to spatial regions where the feature response intensity falls below a
predefined threshold. This ensures that only faint, potential defect features are strengthened, without amplifying
already dominant background responses.

Through the synergistic operation of these two streams, the LMDP module effectively amplifies low-contrast
micro-defect features while suppressing background noise. It thereby directly resolves the long-standing
sensitivity-robustness trade-off in industrial visual inspection. The module fulfills its role as the dedicated
feature refinement unit within the cascade, delivering noise-aware suppression and defect-aware enhancement.

DDFusion module

The DDFusion module is introduced to solve a fundamental limitation that preceding modules cannot address:
learning inherent, generalized robustness against unseen and complex physical noise patterns. It enhances
feature robustness through a diffusion-driven, scene-aware denoising process, as a core component of our
framework. Its innovation lies in a dual-mechanism design that addresses two key challenges: injecting realistic
physical noise and ensuring distortion-free feature recovery. This goes beyond simple filtering or augmentation;
it embeds a physical-world noise resilience directly into the feature representation. This equips the entire
pipeline with enhanced resilience against low-contrast, noisy industrial conditions. The process is built upon
two coordinated mechanisms.

Mechanism 1: Scene-Aware Dynamic Noise Modeling. Unlike standard diffusion models that use fixed,
data-agnostic noise, our approach injects noise that simulates realistic physical interference patterns. This key
departure transforms the diffusion process from a generic regularizer into a targeted simulator of domain-
specific degradations. For example, it applies stronger intensity fluctuations to simulate high-temperature zones
and moderate blur for welding areas. This is achieved by dynamically mapping the noise coeflicient 3; to specific
equipment states. The forward process introduces this scene-specific noise € to the original feature x¢ at step t:

oy =1— (1)
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This teaches the model to preserve defect features under targeted, realistic corruption.

Mechanism 2: Time-Aligned Progressive Feature Decoupling. To recover clean features without distortion—a
common failure point in naive denoising that smears defect signatures—this mechanism enforces strict temporal
synchronization between the forward noise addition and the backward denoising paths. This ensures that the
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Fig. 6. LMDP overall structure. Schematic diagram showing the dual-stream architecture with parallel noise-
suppression and signal-amplification paths, their interconnections, and output fusion.
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recovery process is a precise inverse of the corruption, preserving critical high-frequency defect details. A
U-Net, conditioned on the step t, predicts the noise component e, = UNet(z:,t). The denoised estimate z, is
then calculated by precisely reversing each forward step:

1 —
\/—a(mt—vl—az-&) (4)

’
Ty —

The alignment is maintained via a;—1 = £*, ensuring each denoising step accurately inverts its corresponding

corruption. This enables the clean separation of noise from subtle defect signatures.

The DDFusion module introduces two core mechanisms to enhance robustness: scene-aware dynamic
noise modeling and time-aligned progressive feature decoupling. During training, it injects feature-space noise
that mimics real physical interference—such as thermal intensity fluctuations and welding motion blur—and
learns the corresponding denoising process. This approach not only improves generalization to unseen noise
but also strengthens localization accuracy and feature stability through feature-level restoration. Consequently,
DDFusion acts as a generative noise-modeling and feature-recovery paradigm, providing subsequent detection
heads with more discriminative and noise-invariant representations.

Experiments

Experimental environment

All experiments were conducted on a computational server equipped with an NVIDIA A30 GPU and an Intel
Xeon Silver 4314 processor. Models were implemented in PyTorch 2.4.1 and accelerated with CUDA 12.4 and
cuDNN 8.2.4.

Training was performed for 200 epochs using stochastic gradient descent. The optimizer was configured with
an initial learning rate of 0.01, a momentum of 0.937, and a weight decay of 0.0005.

To improve robustness against industrial variations, we employed a comprehensive data augmentation
strategy. For the first 190 epochs, mosaic augmentation was applied by combining four randomly scaled
images into a single 640640 input to simulate multi-defect scenarios. This was supplemented with standard
augmentations to mimic real-world conditions: random rotations (+45°), horizontal and vertical flips,
brightness adjustments (+30%), contrast variations (+25%), and Gaussian blur (¢ = 0.5-1.5). In the final 10
epochs, aggressive augmentations were disabled. Only minor brightness adjustments were retained to stabilize
convergence and align the training process with inference conditions.

Data sets and assessment indicators

This study adopts a combined validation strategy, utilizing both a specialized industrial dataset and public
benchmarks to assess generalization. The core evaluation relies on our proprietary Polysilicon Distillation Tower
Equipment (DDTE) dataset, with additional validation from public datasets.

A. Specialized Industrial Defect Dataset: DDTE

To address the scarcity of defect data specific to polysilicon production equipment, we introduce the
Polysilicon Distillation Tower Equipment (DDTE) dataset. It comprises 6,252 high-resolution images captured
under extreme operational environments (1000 — 1200°C with corrosive vapors). These images cover six
critical defect types: microcracks (Cr), silicon deposits (SD), pits (PT), scratches (SC), impurity spots (IS),
and weld defects (WD). Data were collected using a DJI Matrice 350 RTK unmanned aerial vehicle (UAV)
equipped with a Zenmuse H20T camera during maintenance periods. To mitigate intense specular reflections
from high-temperature surfaces, a circular polarizing filter was employed. The UAV operated at a distance of
3-5 meters under varying natural lighting conditions, achieving a ground sampling distance (GSD) of 0.8-1.5
mm/pixel, a resolution sufficient for the detection of micro-defects. All images were annotated by three quality
inspection experts following a standardized guideline, with tight bounding boxes drawn around each defect. To
ensure consistency, a random subset of 500 images was independently annotated by all experts, resulting in high
inter-annotator agreement (IoU > 0.85). Finally, the dataset was randomly split into training (5,001 images),
validation (625 images), and test (626 images) sets at an 8:1:1 ratio, ensuring a balanced representation of all
defect categories.

B. Public General-Purpose Verification Datasets

NEU-DET: This dataset contains 1,800 grayscale images of hot-rolled steel strips. It includes six common
defect types: rolled-in scale (Rs), patches (Pa), cracks (Cr), pitting surfaces (Ps), inclusions (In), and scratches
(Sc), with 300 samples per type.

GCI10-DET: An industrial surface defect dataset comprising 3,570 grayscale images across 10 defect
categories, such as punched holes, welds, and crescent gaps.

PASCAL VOC 2007: A widely adopted computer vision benchmark. It provides 20 object categories with
detailed XML annotations, supporting tasks like object detection and image classification.

BCCD: A blood cell detection dataset annotated in the PASCAL VOC format, containing labels for red blood
cells, white blood cells, and platelets. Its 640 < 480-pixel JPEG images with XML annotations are used to evaluate
the model’s cross-domain performance.

All datasets were split into training, validation, and test sets at a consistent 8:1:1 ratio to ensure fair evaluation.

Evaluation Metrics

We employ a tiered evaluation strategy. The primary accuracy metrics are mean Average Precision at an
IoU threshold of 0.5 (mAPs0) and over the range of 0.5 to 0.95 (mAP50_95). Model efficiency is assessed
through parameter count (params), computational complexity (Gflops), and inference speed (FPS). For domain-
specific benchmarks (NEU-DET, GC10-DET), we perform diagnostic analysis using class-wise confusion
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matrices and F1-confidence curves. These analyses primarily compare our model against a YOLOv11s baseline
to highlight classification improvements. For the core DDTE dataset and cross-domain tests (PASCAL VOC,
BCCD), evaluation focuses on practical detection capability and generalization. We report mAP5o and
mAP50_95, supported by qualitative visualizations, as these metrics best reflect real-world localization accuracy
and robustness. This structured approach ensures that the analysis of each dataset aligns with its specific
validation purpose.

Analysis of ablation experiments

This section systematically assesses the contributions of each core component in MSEOD-DDFusionNet
through module-level ablation experiments. By integrating quantitative metrics with qualitative visual evidence,
we address two primary research questions: (1) whether the performance gains from individual modules are
statistically significant, and (2) whether each module confers distinct functional advantages. The experiments
further elucidate the synergistic interactions that emerge when these modules are integrated.

Table 1 summarizes the ablation results across three datasets: DDTE, NEU-DET, and GC10-DET. On the
specialized DDTE dataset, the complete model achieves 82.6% mAP50 and 61.6% mAPs5¢_gs, representing a
2.7% relative improvement over the baseline configuration with only MTECA Attention (80.4% mAP50). This
improvement trend holds consistently across datasets: on NEU-DET, the complete model attains 80.5% mAPso,
a 7.3% relative gain over the baseline (75.0%); on the more challenging GC10-DET, performance rises from
60.4% to 67.4%, corresponding to an 11.6% relative increase. The cross-dataset consistency confirms that the
functional advantages of each module are robust and generalize beyond the characteristics of any single dataset.

Table 2 provides a detailed, reproducibility-focused ablation analysis conducted on the DDTE dataset.
To ensure statistical reliability and mitigate concerns that module-level gains might fall within the range of
experimental noise, we report the mean and standard deviation derived from three independent experimental
runs (using random seeds 0, 123, and 456). All performance improvements attributed to the modules exceed the
observed experimental variance, thereby confirming their statistical significance.

Specifically, the MTECAAttention module yields a stable +0.25% relative gain in mAPso (80.4£0.3%
— 80.6£0.2%). ODConv contributes an additional +0.5% relative gain (80.6+0.2% — 80.8+0.3%) while
simultaneously reducing computational load by 25.4%. LMDP further enhances performance by +0.24%
(80.8+£0.3% — 81.0+1.0%). DDFusion delivers the most substantial improvement, elevating the localization-
precision metric mAP50_95 from 58.9£0.8% to 61.6+0.9%, a 4.6% relative gain. DDTE was selected for this
in-depth ablation due to its high industrial relevance: designed explicitly for polysilicon production equipment
inspection, its extreme operating conditions and complex imaging backgrounds provide a realistic and
demanding testbed for evaluating module utility in practical applications.

The sequential integration of modules reveals clear synergistic effects. The combination of MTECA Attention
and ODConv improves detection accuracy while lowering computational cost, demonstrating a strong

Datasets MTECAAtt | ODConv | LMDP | DDFusion | mAPso | mAPs0—95 | ppg Gflops | params

80.4 58.2 62.56 | 213.06 | 10.73
v 80.6 58.6 63.4 213.08 | 10.73

v 80.8 58.9 56.91 | 158.97 | 8.11
DDTE v 80.5 58.3 182.4 | 190.24 | 10.73
v 80.6 58.4 197.8 | 213.06 | 10.73

v v 80.9 58.7 58.5 158.99 | 8.11

v v v 81.0 58.9 183 [159.0 |8.46

v v v v 82.6 61.6 1935 [159.0 |8.46
75 43.1 62.02 | 213.06 | 10.73
v 78.5 453 58.7 213.08 | 10.73

v 78.6 45.7 52.19 | 158.97 | 8.11
NEU.DET v 77 454 105.5 | 190.24 | 10.73
v 77.4 44.6 118.9 | 213.06 | 10.73

v v 78.9 44.7 51.99 | 158.99 |8.11

v v v 79.2 45.8 59.1 159.0 8.46

v v v v 80.5 46.9 156.1 [ 159.0 |8.46
60.4 29.7 123.2 | 213.06 | 10.73
v 63.8 33.2 179.0 | 213.08 | 10.73

v 62.4 31.1 190.7 | 158.97 | 8.11
GC10-DET v 60.8 30.4 130.7 | 190.24 | 10.73
v 63.8 32 167.6 | 213.06 | 10.73

v v 65.2 33 520 |158.99 |8.11

v v v 65.1 339 159.8 | 159.0 8.46

Table 1. Ablation study results.
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Raw Image

80.4+0.3 | 58.2+0.5 62.56+1.2
v 80.6+0.2 | 58.6+0.4 63.4+1.0
v 80.8+0.3 | 58.9+0.6 56.9+0.8
DDTE v 80.5+0.4 | 58.3+0.5 182.4+1.1
v 80.6+0.3 | 58.4+0.6 197.8+0.6
v v 81.240.3 | 58.7+0.4 58.5+0.9
v v v 81.0+1.0 | 58.9+0.8 183+1.3
v v v v 82.6+0.7 | 61.6+0.9 193.5+1.5

Table 2. Statistical Ablation Analysis on DDTE (Mean + Std, 3 runs).

No MTECAAttention No ODConv No LMDP No DDFusion Full model

Fig. 7. Characteristic failure modes from module ablation. Visual comparisons on the DDTE dataset show
the specific performance degradation from removing each core module: (a) Absence of MTECA Attention
fragments micro-cracks; (b) Removing ODConv misaligns bounding boxes for irregular defects; (c) Without
LMDP, low-contrast spots are missed under noise; (d) Omitting DDFusion reduces robustness under
challenging illumination.

compatibility between lossless multi-scale feature fusion and dynamic geometric adaptation. Incorporating
LMDP subsequently enhances the model’s sensitivity to low-contrast defects without compromising inference
efficiency. Finally, the integration of DDFusion produces the most pronounced leap in localization precision
(mAPs0_95), indicating that its scene-aware denoising mechanism effectively consolidates and refines the
feature representations produced by the preceding modules. This stepwise performance enhancement validates
the complementary roles of the modules across the core stages of the detection pipeline: multi-scale feature
fusion, irregular shape adaptation, noise-aware refinement, and generalized robustness learning.

Collectively, the results presented in Tables 1 and 2 underscore the comprehensive advantages of the
complete MSEOD-DDFusionNet architecture. On the core DDTE dataset, our model outperforms the widely
adopted YOLOV11s baseline by 2.7% in mA P50 and 5.8% in mAPs5¢_gs, while utilizing 21.2% fewer parameters
and delivering 209% higher inference speed. These concurrent gains across accuracy, efficiency, and model
complexity demonstrate that our modular integration strategy effectively pushes the performance frontier of
industrial visual inspection systems.

Figure 7 complements the quantitative analysis by providing visual evidence of the characteristic failure
modes that emerge when individual modules are ablated. Removing MTECA Attention causes micro-cracks to
fragment and disappear within cluttered backgrounds, underscoring the necessity of lossless multi-scale fusion
for preserving fine defect structures. Ablating ODConv leads to bounding-box misalignment with the irregular
contours of defects such as silicon deposits, confirming the module’s indispensable role in geometric adaptation.
The absence of LMDP results in missed detections of low-contrast flaws under noisy conditions, validating the
efficacy of its dual-path design for selective noise suppression and conditional signal amplification. Omitting
DDFusion significantly degrades model robustness under challenging perturbations like intense glare or motion
blur, highlighting the critical importance of its scene-aware denoising for reliable performance in variable
industrial environments.
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Datasets | Method Cr |SD |PT |SC |IS WD | mAPs5g
YOLOV5s 79 84.8 | 76.6 | 67.9 | 91.9 | 81.9 |80.4
YOLOVS8s 76.6 |82.2 | 751 | 682 |87.7 |83.2 | 788
YOLOv10s |79.4 |80.3 |72.1 |66.7 |83.5 [81.4 |77.5
YOLOvlls |84.4 (847 |73.6 | 683 |859 |853 |80.4
FFDDNet" |79.9 | 833 |72.1 | 68.0 | 81.9 |85.1 |78.4
Ours 84.2 | 86.4 | 78.9 | 74.6 | 85.0 | 87.9 | 82.6

DDTE

Table 3. Per-class detection performance on DDTE (vs. YOLOv11s: +2.7% mAPs0; PT +7.2%, SC +9.2%, WD
+3.0%).

Datasets | Methods Params | Gflops | FPS mAPso | mAPs0—05
Faster R-CNN'¢ 41.364 |90913 |- 77.5 59
YOLOV5s 9.13 192.67 | 65.74 |80.4 57.8
YOLOVS8s 11.14 229.5 65.15 | 78.8 56.9
YOLOvV10s 8.07 198.33 | 64.35 |77.5 55.4
YOLOvl1l1s 10.73 213.06 | 62.56 |80.4 58.2

p— DAB-DETR 44 216 120.35 | 79.6 -
Deformable-DETR'® | 40 173 122.15 | 78.4 -
DINOY 218 - 113.76 | 79.7 -
LFF-YOLO* 60.51 6.85 168.49 | 78.9 -
FFDDNet" 10.08 222.51 | 155.0 |78.4 55.1
LE-YOLOv5%! 4.8 10.3 180.0 |79.9 57.1
Ours 8.46 159 193.5 | 82.6 61.6

Table 4. Overall performance comparison on DDTE (vs. YOLOv11s: +2.7% mAP5g, +209% FPS, -21.2%
params).

In summary, the ablation study—supported by both rigorous quantitative metrics and illustrative qualitative
visualizations—confirms that each module contributes meaningfully beyond the bounds of experimental
variance. More importantly, their systematic integration yields a coherent and high-performance detection
framework. This design not only effectively addresses the intertwined challenges of scale variation, geometric
irregularity, and environmental noise inherent in industrial inspection but also establishes a scalable and efficient
architectural foundation for real-world, precision defect detection.

Analysis of comparison experiments

MSEOD-DDFusionNet is evaluated through a three-tier strategy to verify its performance and generalization:
on the specialized DDTE dataset (photovoltaic-specific), on public steel defect benchmarks (NEU-DET, GC10-
DET), and on cross-domain datasets (PASCAL VOC 2007, BCCD). All comparisons are conducted with
consistent metrics (mAPs0, mAP50 — 95, params, Gflops, FPS) to ensure a fair and thorough assessment.

Comparison of DDTE assay

We conducted a comprehensive evaluation of MSEOD-DDFusionNet on the DDTE dataset. As shown in Table
3 and Table 4, the model demonstrates significant advantages in detection accuracy, computational efficiency,
and adaptability.

For per-class defect detection accuracy, MSEOD-DDFusionNet achieves optimal mAP5¢ on four key defect
types: silicon deposition (SD) at 86.4%, pits (PT) at 78.9%, scratches (SC) at 74.6%, and weld defects (WD)
at 87.9%. These results validate the effectiveness of the modular architecture: the ODConv module effectively
captures irregular geometric features, while the combination of LMDP and DDFusion significantly enhances
detection capability for low-contrast defects. Compared with the specialized algorithm FFDDNet, our model
shows clear improvements across multiple defect classes. Notably, the substantial 9.4% relative improvement in
PT detection (78.9% vs. 72.1%) highlights the advantage of ODConv in adapting to complex pit geometries. The
3.3% relative gain in WD detection (87.9% vs. 85.1%) demonstrates the effectiveness of our noise-aware modules
in handling challenging weld regions. For microcrack (Cr) detection, our mAP5q of 84.2% is comparable to
YOLOV11s (84.4%), while showing a 5.4% relative improvement over FFDDNet (79.9%). This indicates enhanced
feature discrimination despite the slight performance gap with the strongest baseline. The 3.8% improvement in
IS detection (85.0% vs. 81.9%) confirms the benefit of multi-scale fusion; however, the remaining gap compared
to YOLOV5s (91.9%) suggests that detecting sparse, isolated defects requires further architectural refinement.

In overall performance, MSEOD-DDFusionNet achieves state-of-the-art results: 82.6% mAPs5¢ and 61.6%
mAP50_95. This represents a 2.7% relative improvement over the best baseline YOLOv11s (80.4% mAPso)
and a more substantial 5.4% improvement over the specialized FFDDNet (78.4% mAP50). The consistent gains
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across these benchmarks confirm the synergistic effect of integrating multiple specialized modules rather than
relying on a single enhancement strategy. In computational efficiency, our model maintains an excellent balance
between performance and practicality. With only 8.46M params and 159.0 Gflops, it achieves 193.5 FPS inference
speed. This represents a 209% improvement over YOLOv11s (62.56 FPS) and a 24.8% improvement over
FFDDNet (155.0 FPS). The speedup stems from the efficient design of our modules, particularly the lightweight
LMDP and the structured pruning applied. Although LE-YOLOV5 is more parameter-efficient (4.8M params),
our model delivers 3.4% higher mAP5q accuracy, offering a clearly superior accuracy-efficiency trade-off that is
critical for real-time industrial inspection.

In conclusion, comprehensive experiments confirm that MSEOD-DDFusionNet achieves state-of-the-art
performance in steel surface defect detection. It balances high accuracy across most defect categories with
exceptional inference efficiency, making it highly suitable for industrial quality inspection in photovoltaic
manufacturing.

Based on the visualization results and quantitative data in Fig. 8, our model demonstrates superior localization
accuracy for irregular defects such as SD and PT compared to the baseline. This validates the effectiveness of the
multi-scale feature fusion and dynamic convolution modules in handling complex geometries. For defects with
weak features like Cr and IS, the model’s performance remains competitive yet highlights an inherent challenge:
distinguishing subtle targets from complex backgrounds. This observation directly points to a direction for
future work: specifically, enhancing the model’s sensitivity to faint defect signatures and its robustness against
background interference, while fully preserving the existing architecture’s strengths in multi-scale and geometric
adaptation.

Comparison of NEU-DET, GC10-DET assays

Analysis based on Table 5 and Table 6 demonstrates the leading performance of MSEOD-DDFusionNet on
both general-purpose industrial datasets. On NEU-DET, the model achieves an overall mAP5¢ of 80.5%, with
notable gains on challenging irregular defects: cracks (Cr, 58.8%) and inclusions (In, 86.6%). The mAPs5( for Cr
shows a 43.4% relative improvement over the best baseline (FFDDNet), while In detection improves by 20.0%
over YOLOvV5s. On GC10-DET, the model maintains a leading overall mAP50 of 67.4%, excelling on complex-
shaped defects such as welds (Wf, 92.2%) and oxide scale (Os, 81.1%). Specifically, Wf detection achieves a
22.6% relative improvement over YOLOvV5s, and Os detection improves by 4.8%. These results validate the
strong generalization of our multi-scale fusion and dynamic convolution modules for irregular defects, while
slightly lower performance on regular or slender defect points to future refinement of the dynamic receptive
field strategy.

The comparison in Table 7 (comprehensive performance metrics) shows that our model achieves an
excellent balance between efficiency and accuracy. On NEU-DET, the model reaches 80.5% mAP5q and 46.9%
mAPs50_95 while operating at 156.1 FPS with a computational cost of 159 Gflops. This represents a 7.3%
improvement in mAPs5o over YOLOv11s (75.0%). On GC10-DET, the model maintains a leading mAP50 of
67.4% and mAP50_95 of 34.3% at 192.2 FPS under the same computational budget, corresponding to an 11.6%

(@)

(b) (©) (d) (€) (f)

Fig. 8. Visual detection comparison. In vertically arranged examples, MSEOD-DDFusionNet (bottom)
produces tighter and more accurate bounding boxes than YOLOv11s (top), particularly for irregular defects
like SD and PT.
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Datasets | Method Cr |In Pa | Ps Rs |Sc |mAPs5o
YOLOvV5s 39.8 | 72.2 | 96.6 | 87.7 | 71.0 | 94 76.9
YOLOVS8s 30.3 | 829 | 943 | 854 |61.0 | 90.8 | 752
YOLOV9s 39 76.2 | 95.6 |90.2 | 68.8 | 95.8 | 77.6
NEU-DET | YOLOv10s |32 709 | 944 |77.6 | 68 81.4 | 70.7
YOLOvlls |39.5 |[72.1 |95 88 66.4 | 90.8 | 75
FFDDNet!® |41 |75.2 | 943 |87.1 | 715 | 92.0 | 76.8
Ours 58.8 | 86.6 | 93.6 | 93.8 | 68.5 | 92.7 | 80.5

Table 5. Per-class performance on NEU-DET (vs. best baseline: +3.7% mAP5¢; Cr +43.4%, In +4.46%, Ps
+3.99%).

Datasets Method Pu (Wl |[Cg |Ws |Os [Ss |In |Rp|Cr |Wf |mAPso
YOLOV5s 91.1 | 838 |92.4 |70.8 |77.4 | 62.9 |344 |0 28.5 | 752 | 61.7
YOLOvVS8s 93.8 |79.2 |93.5 |73.2 | 74.1 | 56.4 |27.8 | 4.5 |20 74.9 | 61.3
YOLOV9s 92,6 |83.1 |94.3 |76.3 | 75.7 | 63.8 | 28 49 (317 |78 62.9
GCI10-DET | YOLOv10s |92.7 |75.1 |85.1 |62.1 |70.8 |53.6 |30.2 |0 18 66.2 | 554
YOLOvlls |94.3 | 74.1 | 94.8 | 68.1 |73.3 |53.7 |40.7 | 0 31.6 | 73.2 | 60.4
FFDDNet!> | 95.5 | 85.3 | 90.2 | 71.5 | 62.8 |54.4 [23.5 |24 |42.7 | 92.1 | 64.2
Ours 95.3 |93.8 |92.8 |74.1 | 81.1 |53.7 | 323 |25 |41.4 |92.2 |67.4

Table 6. Per-class performance on GC10-DET (vs. best baseline: +5.0% mAP50; Os +4.8%, W1 +10.0%, Wf
+0.1%).

improvement in mAP5o over YOLOv11s (60.4%). These results confirm that the lightweight design effectively
supports the model’s potential for real-time industrial deployment.

Classification diagnostics using the confusion matrices in Fig. 9 (NEU-DET) and Fig. 10 (GC10-DET)
reveal that our model exhibits higher diagonal purity and more concentrated distributions on both datasets. It
significantly reduces misclassification rates for difficult defects such as Cr and Ps on NEU-DET, and achieves
effective recognition of challenging categories, including Wf, Cg, and the rarely detected Rp on GC10-DET. This
demonstrates the model’s superior feature discriminability in complex multi-class scenarios.

The Fl-confidence curves in Fig. 11 (NEU-DET) and Fig. 12 (GC10-DET) further verify the prediction
reliability of the model. On NEU-DET, the model attains a higher overall F1-score (0.75) and maintains high
performance over a wider confidence range. On GC10-DET, it reaches a higher performance ceiling (F1-score
0.71 vs. 0.60 for YOLOv11s) and shows more stable results at high confidence thresholds. These findings indicate
that the model’s output confidence aligns better with actual detection accuracy, which helps reduce false alarms
in practical deployment.

Pixel-level and instance-level visual evidence is provided by the heatmaps in Fig. 13 and the detection
visualizations in Fig. 14. On NEU-DET, the model produces more focused activation on Cr defects while
suppressing background interference more effectively. On GC10-DET, it delivers more complete localization
and higher confidence for defects such as Wf. The visual results are consistent with the quantitative analyses
above, offering intuitive validation of the synergistic advantages of the model in feature enhancement, geometric
adaptation, and small-target detection. For slender defects, the localization completeness remains to be improved,
which aligns with the conclusions drawn from the tabular data.

In summary, MSEOD-DDFusionNet exhibits outstanding generalization performance, efficient inference
capability, and reliable prediction quality on both NEU-DET and GC10-DET datasets. The experiments
thoroughly validate the effectiveness and practicality of the core modules for general industrial defect detection,
while also identifying clear directions for future improvement, particularly in the detection of slender targets.

Comparison of generalisation experiments

On PASCAL VOC 2007 (Table 8), the model achieves a leading overall mAP5q of 75.5%, outperforming all
compared methods. It excels in key categories such as aeroplane (86.9% mAP50) and bicycle (90.8% mAPs5o),
showing 6.9% and 2.4% relative improvements over YOLOV11s, respectively. For the challenging low-contrast
category “pottedplant’, the model attains 46.7% mAPso, a 11.7% relative improvement over YOLOv11s. These
gains highlight the model’s ability to integrate multi-scale features and adapt to diverse object geometries across
domains.

In medical imaging validation on BCCD (Table 9), the model achieves 93.8% overall mAP5q, the highest
among all compared methods. It detects platelets with 93.7% accuracy, a 6.0% relative improvement over
YOLOvV11s, and red blood cells with 88.1% mAP5q. The model effectively suppresses background interference
and adapts to cellular shape variations, demonstrating strong applicability in medical image analysis.

Table 10 summarizes the efficiency and accuracy balance across domains. On PASCAL VOC 2007, the model
operates at 265.26 FPS with 159.0 Gflops, 178% faster than YOLOv11s while maintaining a 0.3% higher mAP 0.
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Datasets Methods Params | Gflops | FPS mAPso | mAPs0—95
Faster R-CNN'® 41.364 |90.913 | 1.0 65.4 34.8
YOLOV5s 9.13 192.67 | 1342 | 769 43.4
YOLOv7 43.5 130.2 3.797 |70.5 40.3
YOLOVSs 11.14 229.5 52 752 43
YOLOV9s 7.29 219.17 | 16.26 |77.6 44.5
YOLOv10s 8.07 198.33 | 42.36 |70.7 40.8

NEU-DET YOLOvlls ] 10.73 213.06 |62.02 |75 43.1
DAB-DETRY 44 216 18 68.6 339
Deformable-DETR'® | 40 173 18 64.3 -
DINO" 218 - 14 552 43
LFF-YOLO* 60.51 6.85 42 73.1 -
FFDDNet!"® 10.08 222.51 |38 76.8 44.4
LE-YOLOv5?! 4.8 10.3 55.1 79.1 41.0
Ours 8.46 159 156.1 | 80.5 46.9
Faster R-CNN!¢ 41.364 | 90.913 |27 554 /
YOLOV5s 9.13 192.67 | 60.35 |61.7 32
YOLOv7 435 130.2 35 58.0 /
YOLOVS8s 11.14 229.5 48 61.3 31.4
YOLOV9s 7.29 219.17 |45 62.9 32.1
YOLOvV10s 8.07 198.33 | 88.54 |55.4 28.8

GC10-DET YOLOvl1l1s 10.73 213.06 | 123.23 | 60.4 29.7
DAB-DETR! 44 216 18 52.6 -
Deformable-DETR'® | 40 173 16 54.3
DINO" 218 - 13 543 -
LFF-YOLO* 60.51 6.85 40 41.3 -
FFDDNet" 10.08 222.51 |35 64.2 32.8
LE-YOLOv5?! 4.8 10.3 - 63.8 28.9
Ours 8.46 159 192.2 | 67.4 34.3

Table 7. Comprehensive efficiency-accuracy trade-off (vs. YOLOv11s: NEU-DET +7.3% mAPs0, +151% FPS;
GC10-DET +11.6% mAPs50, +56% FPS).

On BCCD, it achieves 93.8% mAP5¢ at 82.19 FPS, 40% faster than YOLOv11s with a 3.0% accuracy gain. This
confirms the lightweight design’s effectiveness in real-time cross-domain deployment.

Visual results in Figs. 15 and 16 further validate the model’s performance. On PASCAL VOC 2007, it produces
tighter bounding boxes and detects smaller, distant objects missed by baseline methods. On BCCD, it reduces
false positives and improves separation between adjacent cells, especially in dense clusters. These visualizations
confirm the advantages of the multi-module design for tasks beyond industrial inspection.

In conclusion, MSEOD-DDFusionNet proves effective not only for industrial defect detection but also for
general object recognition and medical image analysis. It provides a reliable, high-speed solution for high-
precision detection across diverse domains, demonstrating strong cross-domain generalization capability.

Comparison of pruning experiments

This study implements a structured pruning scheme to enhance model deployment efficiency. The method
evaluates channel importance using the absolute values of BatchNorm layer weights, with a global pruning
threshold set at the 75th percentile. The pruning process follows a sequential strategy, automatically adjusting
connected layers to maintain dimensional consistency.

To preserve model capability, each convolutional layer retains at least 8 channels through an iterative
threshold adjustment mechanism. If the channel count falls below this minimum, the threshold is automatically
halved until the requirement is met.

After pruning, the model is fully retrained with the original parameters: an initial learning rate of 0.01
decaying cosinely to 0.0001, a momentum of 0.937, and weight decay of 0.0005. Training runs for 100 epochs
with a batch size of 16, including a 3-epoch warm-up. Data augmentation is progressively reduced and disabled
in the final 10 epochs.

Table 11 demonstrates that pruning consistently improves both computational efficiency and detection
accuracy. A key clarification is required: our pruned model retains 8.46M parameters—identical to the complete
MSEOD-DDFusionNet. The —21.2% parameter reduction reported in the table is calculated relative to YOLOv11s
(10.73M), underscoring the inherent parameter efficiency of our architecture.

On the DDTE dataset, the pruned model achieved a 1.9% improvement in mAPso and a 4.3% improvement
in mAPs0_95 compared to YOLOv11s, while reducing computational effort by 9.2%. This efficiency extends
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Fig. 9. Confusion matrix comparison on NEU-DET. MSEOD-DDFusionNet (b) demonstrates superior
classification over YOLOv11s (a), with higher diagonal values and reduced misclassification for difficult
categories such as Cr and Ps.

to other benchmarks: on the NEU-DET dataset, the model achieves a 3.5% improvement in mAP5q while
reducing computational cost by 25.6%; on the GC10-DET dataset, mAP50 increases by 11.1% with a 25.4%
reduction in computational cost. Cross-domain robustness is maintained, with performance comparable to the

baseline on the PASCAL VOC 2007 dataset and a 2.8% improvement in mAP50 on the BCCD dataset.

The pruning scheme employs a clear criterion (75th percentile), a structured workflow, and a full retraining
protocol. It preserves the original parameter count while substantially lowering computational cost, offering a
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Fig. 10. Confusion matrices on GC10-DET. MSEOD-DDFusionNet (b) outperforms YOLOv11s (a) with
higher diagonal purity, better recognition of Wf and Cg, and effective detection of the challenging defect Rp.

practical solution for deployment. The consistent gains across datasets suggest that pruning serves as an effective
regularizer, sharpening the model’s focus on salient features.

Conclusion

This study proposes the MSEOD-DDFusionNet framework to address key challenges in steel surface defect
detection: scale variance, irregular geometry, and low-contrast noise. The core contributions are threefold:
(1) a lossless multi-scale fusion principle to preserve micro-defect features, (2) a four-dimensional dynamic
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F1-score (0.75 vs. 0.74) and more consistent performance across confidence levels.
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Fig. 12. F1-confidence curves on GC10-DET. MSEOD-DDFusionNet achieves a higher F1-score than
YOLOV11s (0.71 vs. 0.60) and maintains better performance across confidence thresholds.

convolution mechanism to adapt to irregular shapes, and (3) a decoupled noise robustness strategy to balance
sensitivity and robustness. Experiments demonstrate state-of-the-art performance on the specialized DDTE
dataset (82.6% mAP50, 61.6% mAP50_95) and excellent generalization across public benchmarks and cross-
domain tasks. While this modular design is a necessary and efficient solution to these compound challenges, we
acknowledge the inherent architectural complexity. The current structure, justified by its performance, points to
a future research direction: exploring more unified or automatically searched architectures that maintain high
accuracy with reduced complexity. Furthermore, the model’s limitations in detecting sparse defects (e.g., Cr)
suggest another direction: enhancing sensitivity to subtle features and robustness against sparse interference.
Together, these efforts aim to advance the efficacy and practicality of industrial visual inspection systems.
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Fig. 13. Heatmap comparison on NEU-DET and GC10-DET. MSEOD-DDFusionNet shows more focused
activation on Cr defects (NEU-DET) and more complete coverage on Wf defects (GC10-DET) compared to
YOLOvl1s.
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Fig. 14. Qualitative detection comparison. Visual results illustrate our model’s improved localization for
irregular defects (Cr, Wf) and highlight performance variations on regular/slender defects (Pa, Cg, In).

aeroplane | 82.1 70.2 79.5 80 81.3 83.8 86.9
bicycle 89 79.4 80.9 86.3 88.7 89.8 90.8
bird 62.3 52.0 47.5 57.3 58.7 63.6 65.2
boat 76.2 49.9 58.3 74.3 79 64.6 75.2
bottle 63 40.3 50.4 63.3 66.3 70.8 60.5
bus 78.9 70.8 73.7 81.1 78.1 80.2 77.1
car 89.4 84.8 85.2 88.3 89 88.7 90.1
cat 83.6 65.1 74.7 86 82.2 79.1 84.8
chair 58.5 48.4 44.8 57 56.9 57.4 54
cow 73.9 66.1 57 78.7 78.2 75.3 78.4
PASCAL VOC 2007 | diningtable | 74.5 48.2 60.3 68.4 75.9 71.9 69.7
dog 74.3 61.9 59.9 73.7 76.4 74.8 79.9
horse 84.9 71.5 79 87.7 87.5 84.8 85
motorbike | 91.6 76.8 87.5 89.9 93.4 89.6 93
person 87.1 79.9 82.6 85.7 88.1 86.7 87.6
pottedplant | 37.6 417 27.5 432 41.8 46.0 46.7
sheep 57.6 63.2 45.3 51.5 59.7 60.7 56.1
sofa 64.9 60.0 47.6 65.6 68.8 69.4 64.6
train 86.1 77.6 79.5 85.3 87.1 88.1 89
tvmonitor | 72.7 62.1 57.3 67.3 66.7 65.6 75.0
mAPs50 74.4 63.6 63.9 73.5 75.2 74.5 75.5

Table 8. Performance on PASCAL VOC 2007 (vs. YOLOv11s: +0.4% mAPs5, pottedplant +11.7%, tvmonitor
+12.4%).
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YOLOvV5s 99.5 |82.6 |83.7 88.6
YOLOv7t 97.6 |87.8 |92.6 92.7
YOLOV8s 98.3 |83.6 |934 91.8
BCCD | YOLOv10s |98 85.7 | 835 84.9
YOLOvlls |99.4 |84.6 |884 90.8
FFDDNet!® | 99.4 |83.9 |87.7 90.3
Ours 99.5 |88.1 |93.7 93.8

Table 9. Performance on BCCD medical dataset (vs. best baseline: +1.2% mAP5(, Platelets +1.2%).

Faster R-CNN!¢ | 41.4 71.7 - 71 39.8
YOLOvS5s 9.13 192.67 | 9821 |74.4 51
YOLOV7t 6.02 13.1 - 68.5 2.8
YOLOVSs 11.14 | 2295 |71.79 |63.9 22
YOLOV10s 8.07 198.33 | 105.95 | 73.5 53.8
PASCAL VOC 2007 | YOLOvl11s 1073 | 213.06 | 9523 |752 55
FFDDNet!® 10.08 | 222,51 |88 70.1 49.0
LE-YOLOv5%! 4.8 10.3 - 73.8 54.1
LF-YOLO® 7.25 162 |- 53.9 27.8
RT-DETR-R18% | 19.8 570 |- 59.3 40.7
Ours 8.46 159.0 |265.26 | 75.5 54.9
YOLOVSs 11.14 | 229.21 |33.47 |91.8 61.6
YOLOV10s 8.07 198.33 | 99.13 | 84.9 58.3
BCCD YOLOv11s 1073 | 213 58.75 |90.8 62
FFDDNet! 10.08 | 222,51 |549 |90.3 60.1
Ours 8.46 159.0 |82.19 |93.8 64.6

Table 10. Cross-domain efficiency-accuracy balance vs. mainstream methods (vs. YOLOv11s: PASCAL VOC
+0.4% mAP50, +178% FPS; BCCD +3.3% mAPs0, +40% EFPS).

Images YOLOvSs YOLOv8s YOLOv10s YOLOv11s Our

Fig. 15. Detection examples on PASCAL VOC 2007. MSEOD-DDFusionNet produces tighter and more
complete bounding boxes than YOLOv11s, with improved detection of smaller and more distant objects.
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Fig. 16. Detection examples on BCCD. Paired visual examples show our model’s lower false-positive rate,
improved cell separation, and more accurate platelet localization versus YOLOv11s.

DDTE YOLOvlls | 10.73 213.06 80.4 582
Prune(Ours) | 8.46 (—21.2%) | 193.51(=9.2%) | 81.9 (+1.9%) | 60.7 (+4.3%)
YOLOvlls | 10.73 213.06 75 43.1
NEU-DET
prune(Ours) | 8.46(-21.2%) | 158.5(=25.6%) | 77.6(+3.5%) | 45.0 (+4.4%)
YOLOvlls | 10.73 213.06 60.4 29.7
GC10-DET
prune(Ours) | 8.46(-21.2%) | 158.94(-25.4%) | 67.1(+11.1%) | 33.1(+11.4%)
YOLOv1ls | 10.73 213.06 752 55
PASCAL VOC 2007
prune(Ours) | 8.46(~21.2%) | 198.46(—6.9%) | 75.4(+0.3%) | 54.7(~0.5%)
YOLOvlls | 10.73 213 90.8 62
BCCD
prune(Ours) | 8.46(-21.2%) | 158.94(-25.4%) | 93.3(+2.8%) | 63.6(+2.6%)

Table 11. Computational efficiency vs. accuracy: pruned model vs. YOLOv11s (DDTE: —-9.2%, +1.9% mAP50;
GC10-DET: —25.4%, +11.1% mAP50).

Data availability
The specific industrial dataset is subject to privacy restrictions and is not publicly available. To ensure reproduc-
ibility and enable further application, we provide the complete implementation, including code and pre-trained

mo

dels, at: https://github.com/jiunian158/DDTE_Anonymous_Subset/blob/main/DDTE_Anonymous_Subset

%20(3).zip
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