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Surface defect detection on steel components is crucial for quality control in polysilicon production. 
However, this task remains challenging due to tiny defect sizes, irregular geometries, complex 
backgrounds, and low contrast. To address these issues, we propose MSEOD-DDFusionNet (Multi-
Scale and Effective Object-Detection Diffusion Fusion Network), a novel multi-scale diffusion-
enhanced attention network. The network integrates four specialized modules: MTECAAttention 
(Multi-Scale Texture Enhancement Channel-Aware Attention) for lossless multi-scale feature fusion, 
ODConv (Omni-Dimensional Dynamic Convolution) for dynamic adaptation to irregular geometries, 
LMDP (Local Multi-Scale Discriminative Perception) for selective noise suppression and micro-defect 
amplification, and DDFusion (Diffusion-Driven Feature Fusion) for scene-aware noise modeling. 
Pruning further reduces computational complexity while improving accuracy. Extensive experiments 
on the specialized DDTE dataset and public benchmarks demonstrate state-of-the-art performance. 
Our model achieves 82.6% mAP50 and 61.6% mAP50−95 on DDTE, while maintaining a high inference 
speed of 193.5 FPS with only 8.46M parameters. It also shows excellent generalization across NEU-
DET, GC10-DET, and cross-domain tasks, providing an efficient and accurate solution for industrial 
defect inspection.
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The surface integrity of steel components is critical for the safety and longevity of polysilicon production 
equipment in photovoltaics. Surface defects, such as microcracks (Cr), silicon deposits (SD), pits (PT), and 
impurity spots (IS), originate from manufacturing or operational stress. These defects can severely compromise 
material strength and may lead to catastrophic failure (Fig. 1). Consequently, automated, precise detection of 
these defects is imperative for quality control.

Deep learning-based detectors are now the predominant solution, yet they struggle with the compounded 
challenges of real-world photovoltaic inspection. We identify three fundamental limitations: (1) Limited multi-
scale discriminability, where minute defects are easily lost against complex backgrounds during feature fusion; 
(2) Insufficient geometric adaptability of static convolutional kernels to capture irregular shapes like Cr and 
SD; and (3) An inherent robustness-sensitivity trade-off, where enhancing noise robustness often diminishes 
sensitivity to low-contrast defects.

To address these limitations, we propose MSEOD-DDFusionNet, an integrated defect detection framework. 
Our principal contributions are threefold:

A lossless multi-scale fusion principle that preserves micro-defect signatures against complex backgrounds, 
establishing a high-fidelity feature foundation.

A multi-dimensional dynamic adaptation mechanism that enables convolutional kernels to precisely capture 
irregular defect geometries based on the fused features.
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A decoupled noise robustness strategy that refines features through selective real-time suppression and 
training-time learned invariance, thereby resolving the sensitivity-robustness trade-off.

Additionally, we contribute the DDTE dataset, a specialized industrial benchmark providing high-resolution 
annotated images to address the scarcity of domain-specific data. Extensive experiments demonstrate that our 
framework achieves state-of-the-art accuracy and efficiency while exhibiting superior generalization across 
multiple domains.

The remainder of this paper is organized as follows: Section "Related work" reviews related work; Section 
"Methodology and design" details the network architecture; Section "Experiments" presents the experimental 
analysis; and Section "Conclusion" concludes the paper.

Related work
Multi-scale feature fusion
Constructing feature pyramids is fundamental for surface inspection, as it represents defects at different 
scales. Prior research, such as MSAF-YOLO1 and UWSDNet2, has balanced accuracy and efficiency through 
spatial transformations or re-parameterized designs. To further enhance feature quality, attention mechanisms 
have been widely integrated—from SENet3 focusing on channel relations, to variants incorporating spatial 
coordinates4, and to CBAM-based hybrids fusing both5. However, their core operation compresses spatial context 
into compact channel descriptors via global pooling. While this improves efficiency, the compression acts as a 
low-pass filter. It attenuates the weak, high-frequency activations that characterize micro-defects before fusion. 
Consequently, critical target features become submerged within complex background textures. This significantly 
reduces discriminability during multi-scale aggregation. Together, these effects reveal a fundamental limitation 
in the prevailing compression-based attention paradigm: it inevitably leads to channel-dimensional information 
loss. Therefore, a new multi-scale fusion principle is needed to avoid such loss.

Dynamic convolution
Dynamic convolution enhances geometric adaptability. Its development has evolved through several stages: from 
attention-guided kernel selection6 and constrained sampling optimization7 to cross-domain transfer8. Recent 

Fig. 1.  Representative steel surface defects highlight the key challenges of detection. These challenges arise 
from the high diversity in morphology, scale, and background texture among defect categories such as 
microcracks (Cr), pits (PT), and silicon deposits (SD).
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advances, such as AKSNet9 and MDSCELAN10, further explore adaptive kernel width and multi-scale dynamics. 
However, these methods share a common shortcoming—incomplete dimensional adaptation. They typically 
optimize only one aspect at a time, such as spatial deformation, kernel weights, or channel importance. This 
fragmented approach is non-collaborative. Consequently, it fails to capture the complex coupling among spatial 
morphology, feature channels, and kernel parameters in irregular defects like silicon deposits and microcracks. 
Therefore, precise geometric feature extraction requires a new solution: a mechanism capable of unified, co-
modulated adjustment of convolutional weights across spatial, channel, and kernel dimensions.

Noise robustness
Industrial noise demands robust feature learning. While adversarial training11 enhances invariance, it can 
destabilize training. Alternative strategies, such as diffusion models12 and integrated frameworks13, offer 
generative noise modeling, and CycleGAN-based methods augment scarce data14. However, these strategies 
primarily act as global regularizers. They improve overall robustness by adapting to a broad noise distribution, but 
they also introduce a key drawback: they uniformly raise feature activation thresholds. This reduces sensitivity to 
low-contrast micro-defect signals—the classic robustness-sensitivity trade-off. Standard diffusion models show 
potential but are limited by their fixed, scene-agnostic noise injection, which lacks targeted modeling of physical 
interferences like hot spots or motion blur. This limitation constrains feature enhancement precision. Therefore, 
advancing beyond this trade-off requires a dual approach. First, we need an immediate processing mechanism 
for selective noise suppression and conditional signal amplification. Second, an enhanced learning paradigm 
must simulate physical noise patterns and achieve feature-fidelity recovery to improve inherent robustness.

Our MSEOD-DDFusionNet framework bridges this gap by integrating a coherent sequence of specialized 
modules that directly address these foundational challenges.

Methodology and design
System overview
The overall architecture and data flow of MSEOD-DDFusionNet are depicted in Figs. 2 and 3. The network 
follows a cascading design from feature extraction to defect detection. The processing sequence begins as input 
images undergo basic feature extraction through the backbone network. The extracted features then enter a 
pipeline of four specialized modules. First, the MTECAAttention module performs multi-scale feature fusion 
to preserve fine details of micro-defects. Next, the ODConv module dynamically adjusts convolutional weights 
based on these fused features, adapting to the irregular geometries of defects. The LMDP module then refines 
the features using a dual-stream strategy. It selectively amplifies potential defect signals while suppressing 
background noise. Throughout this process, the DDFusion module continuously enhances feature robustness 
via scene-aware noise modeling and denoising learning. Finally, the processed features are fed into the detection 
head for classification and localization. This cascaded design ensures that each module’s output directly informs 

Fig. 2.  The overall architecture of MSEOD-DDFusionNet. It features an MTECAAtt-equipped backbone for 
multi-scale feature extraction, a neck network that integrates ODConv and LMDP within a feature pyramid 
for enhancement and adaptation, a multi-scale detection head, and a pervasive DDFusion module employing a 
diffusion-driven strategy to boost robustness in low-contrast scenarios.
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the next, forming a coherent pipeline from feature preservation to robust detection. The specific designs and 
innovations of each module are detailed in the following subsections.

MTECAAttention module
The MTECAAttention module performs lossless multi-scale fusion via a three-stage workflow, as depicted 
in Fig. 4. Its design preserves all channel information during fusion, avoiding the information loss typical 
of compression-based methods. This produces a high-fidelity feature map that serves as the foundation for 
subsequent modules. The three stages are as follows:

First, multi-branch parallel feature extraction. This stage uses depthwise separable convolutions with 
different kernel sizes (3×3, 5×5, 7×7). These convolutions capture diverse information simultaneously: defect 
edge details, mid-scale morphology, and context with complex backgrounds. A key aspect is that all original 
channel information is preserved. This establishes the essential basis for the lossless fusion process.

Second, cross-scale fusion. A 1D convolution aggregates the channel responses from the multi-scale features. 
Critically, this operation does not reduce dimensionality. Instead, it integrates responses from the same original 
channel across different scales. The output is a fusion weight vector that retains the original channel count.

Finally, interpretable channel calibration. The Tanh function is applied to constrain the fusion weights to the 
interpretable range [−1, +1]. These weights then perform channel-wise weighting on the original input features: 
channels with weights near +1 are enhanced, while those near −1 are suppressed.

By fundamentally eliminating information loss at this initial stage, the MTECAAttention module resolves a 
bottleneck that would otherwise propagate and limit the effectiveness of the entire cascade.

ODConv module
The ODConv module performs omni-dimensional dynamic convolution via a three-stage process, as depicted 
in Fig. 5. Its core innovation is a four-dimensional dynamic weight co-modulation mechanism, enabling holistic 
adaptation to irregular geometries. This provides the adaptive convolutional foundation required for subsequent 
feature refinement. The three stages are as follows:

First, dual-path feature statistics extraction. This stage employs concurrent global average pooling and global 
max pooling to extract feature statistics. This dual-path approach captures both global contextual information 
and locally salient features. The combined statistics provide richer cues for the subsequent generation of adaptive 
weights.

Fig. 3.  The overall flowchart of MSEOD-DDFusionNet. The diagram depicts the complete pipeline from 
image input to defect detection output. The process begins with multi-scale feature extraction via the 
MTECAAttention module, followed by shape adaptation using ODConv. Subsequent stages involve feature 
fusion and optimization through SPPF, C2PSA, and LMDP modules. Simultaneously, the DDFusion module 
enhances robustness via noise injection and denoising. The pipeline concludes with defect identification and 
localization in the detection head.
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Second, four-dimensional attention weight generation. A lightweight parallel network processes the extracted 
statistics to generate four sets of attention weights. Critically, one unique weight set is generated for each of the 
four convolution dimensions: spatial, input channel, output channel, and kernel. This design ensures holistic 
adaptation across all dimensions, directly addressing the partial adaptation limitation of prior methods.

Third, element-wise co-modulation. The four sets of attention weights are fused with the base convolution 
kernel through element-wise multiplication and broadcasting. This deep, co-modulated fusion allows the 
convolutional operation to dynamically reconfigure its focus during each forward pass. Consequently, it 
emphasizes spatial regions containing irregular defects while suppressing irrelevant background patterns.

Fig. 5.  The ODConv module. The ODConv module employs a multidimensional attention mechanism to 
simultaneously compute four types of attention across all four dimensions of the convolutional kernel space: 
asi, aci, afi, and awi..

 

Fig. 4.  The MTECAAttention module. The module performs multi-scale feature extraction via depthwise 
separable convolutions (k=3,5,7), followed by feature aggregation, channel weight generation (Conv1D + 
Tanh), and input feature recalibration — all while preserving original dimensions (C×H×W).
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By establishing this fine-grained, global control over the convolution process, the ODConv module achieves 
precise characterization of the complex and irregular geometries prevalent in photovoltaic steel surface defects. 
It thereby fulfills its role as the adaptive processing unit within the integrated cascade.

LMDP module
The LMDP module performs local multi-scale discriminative perception via a dual-stream architecture, as 
depicted in Fig. 6. Its core innovation is a decoupled processing strategy that separates noise suppression from 
signal amplification, enabling precise enhancement of subtle defects in high-noise environments. This provides 
the targeted feature refinement required for robust detection. The two parallel processing streams operate as 
follows:

Stream 1: Selective Noise Suppression. This stream first computes channel-wise fusion statistics and generates 
corresponding suppression weights. A key design is the inversion of these weights. This mechanism selectively 
attenuates only predefined noise-sensitive channels. Crucially, all other channels are preserved intact, including 
those carrying low-amplitude defect signatures. This prevents the accidental suppression of critical defect signals 
during noise removal.

Stream 2: Conditional Signal Amplification. This stream employs a separate 1×1 convolutional branch to 
produce feature scaling factors. Its key innovation is a threshold-based conditional mechanism. Amplification 
(e.g., by a factor of 1.2) is applied only to spatial regions where the feature response intensity falls below a 
predefined threshold. This ensures that only faint, potential defect features are strengthened, without amplifying 
already dominant background responses.

Through the synergistic operation of these two streams, the LMDP module effectively amplifies low-contrast 
micro-defect features while suppressing background noise. It thereby directly resolves the long-standing 
sensitivity-robustness trade-off in industrial visual inspection. The module fulfills its role as the dedicated 
feature refinement unit within the cascade, delivering noise-aware suppression and defect-aware enhancement.

DDFusion module
The DDFusion module is introduced to solve a fundamental limitation that preceding modules cannot address: 
learning inherent, generalized robustness against unseen and complex physical noise patterns. It enhances 
feature robustness through a diffusion-driven, scene-aware denoising process, as a core component of our 
framework. Its innovation lies in a dual-mechanism design that addresses two key challenges: injecting realistic 
physical noise and ensuring distortion-free feature recovery. This goes beyond simple filtering or augmentation; 
it embeds a physical-world noise resilience directly into the feature representation. This equips the entire 
pipeline with enhanced resilience against low-contrast, noisy industrial conditions. The process is built upon 
two coordinated mechanisms.

Mechanism 1: Scene-Aware Dynamic Noise Modeling. Unlike standard diffusion models that use fixed, 
data-agnostic noise, our approach injects noise that simulates realistic physical interference patterns. This key 
departure transforms the diffusion process from a generic regularizer into a targeted simulator of domain-
specific degradations. For example, it applies stronger intensity fluctuations to simulate high-temperature zones 
and moderate blur for welding areas. This is achieved by dynamically mapping the noise coefficient βt to specific 
equipment states. The forward process introduces this scene-specific noise ϵ to the original feature x0 at step t:

	 αt =1 − βt � (1)

	
ᾱt =

t∏
i=1

1 − βi � (2)

	 xt =
√

ᾱtx0 +
√

1 − ᾱtϵ � (3)

This teaches the model to preserve defect features under targeted, realistic corruption.
Mechanism 2: Time-Aligned Progressive Feature Decoupling. To recover clean features without distortion—a 

common failure point in naive denoising that smears defect signatures—this mechanism enforces strict temporal 
synchronization between the forward noise addition and the backward denoising paths. This ensures that the 

Fig. 6.  LMDP overall structure. Schematic diagram showing the dual-stream architecture with parallel noise-
suppression and signal-amplification paths, their interconnections, and output fusion.
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recovery process is a precise inverse of the corruption, preserving critical high-frequency defect details. A 
U-Net, conditioned on the step t, predicts the noise component εt = UNet(xt, t). The denoised estimate x′

0 is 
then calculated by precisely reversing each forward step:

	
x′

0 = 1√
ᾱt

(
xt −

√
1 − ᾱt · εt

)
� (4)

The alignment is maintained via ᾱt−1 = ᾱt
αt

, ensuring each denoising step accurately inverts its corresponding 
corruption. This enables the clean separation of noise from subtle defect signatures.

The DDFusion module introduces two core mechanisms to enhance robustness: scene-aware dynamic 
noise modeling and time-aligned progressive feature decoupling. During training, it injects feature-space noise 
that mimics real physical interference—such as thermal intensity fluctuations and welding motion blur—and 
learns the corresponding denoising process. This approach not only improves generalization to unseen noise 
but also strengthens localization accuracy and feature stability through feature-level restoration. Consequently, 
DDFusion acts as a generative noise-modeling and feature-recovery paradigm, providing subsequent detection 
heads with more discriminative and noise-invariant representations.

Experiments
Experimental environment
All experiments were conducted on a computational server equipped with an NVIDIA A30 GPU and an Intel 
Xeon Silver 4314 processor. Models were implemented in PyTorch 2.4.1 and accelerated with CUDA 12.4 and 
cuDNN 8.2.4.

Training was performed for 200 epochs using stochastic gradient descent. The optimizer was configured with 
an initial learning rate of 0.01, a momentum of 0.937, and a weight decay of 0.0005.

To improve robustness against industrial variations, we employed a comprehensive data augmentation 
strategy. For the first 190 epochs, mosaic augmentation was applied by combining four randomly scaled 
images into a single 640×640 input to simulate multi-defect scenarios. This was supplemented with standard 
augmentations to mimic real-world conditions: random rotations (±45◦), horizontal and vertical flips, 
brightness adjustments (±30%), contrast variations (±25%), and Gaussian blur (σ = 0.5–1.5). In the final 10 
epochs, aggressive augmentations were disabled. Only minor brightness adjustments were retained to stabilize 
convergence and align the training process with inference conditions.

Data sets and assessment indicators
This study adopts a combined validation strategy, utilizing both a specialized industrial dataset and public 
benchmarks to assess generalization. The core evaluation relies on our proprietary Polysilicon Distillation Tower 
Equipment (DDTE) dataset, with additional validation from public datasets.

A. Specialized Industrial Defect Dataset: DDTE
To address the scarcity of defect data specific to polysilicon production equipment, we introduce the 

Polysilicon Distillation Tower Equipment (DDTE) dataset. It comprises 6,252 high-resolution images captured 
under extreme operational environments (1000 − 1200◦C with corrosive vapors). These images cover six 
critical defect types: microcracks (Cr), silicon deposits (SD), pits (PT), scratches (SC), impurity spots (IS), 
and weld defects (WD). Data were collected using a DJI Matrice 350 RTK unmanned aerial vehicle (UAV) 
equipped with a Zenmuse H20T camera during maintenance periods. To mitigate intense specular reflections 
from high-temperature surfaces, a circular polarizing filter was employed. The UAV operated at a distance of 
3–5 meters under varying natural lighting conditions, achieving a ground sampling distance (GSD) of 0.8–1.5 
mm/pixel, a resolution sufficient for the detection of micro-defects. All images were annotated by three quality 
inspection experts following a standardized guideline, with tight bounding boxes drawn around each defect. To 
ensure consistency, a random subset of 500 images was independently annotated by all experts, resulting in high 
inter-annotator agreement (IoU > 0.85). Finally, the dataset was randomly split into training (5,001 images), 
validation (625 images), and test (626 images) sets at an 8:1:1 ratio, ensuring a balanced representation of all 
defect categories.

B. Public General-Purpose Verification Datasets
NEU-DET: This dataset contains 1,800 grayscale images of hot-rolled steel strips. It includes six common 

defect types: rolled-in scale (Rs), patches (Pa), cracks (Cr), pitting surfaces (Ps), inclusions (In), and scratches 
(Sc), with 300 samples per type.

GC10-DET: An industrial surface defect dataset comprising 3,570 grayscale images across 10 defect 
categories, such as punched holes, welds, and crescent gaps.

PASCAL VOC 2007: A widely adopted computer vision benchmark. It provides 20 object categories with 
detailed XML annotations, supporting tasks like object detection and image classification.

BCCD: A blood cell detection dataset annotated in the PASCAL VOC format, containing labels for red blood 
cells, white blood cells, and platelets. Its 640×480-pixel JPEG images with XML annotations are used to evaluate 
the model’s cross-domain performance.

All datasets were split into training, validation, and test sets at a consistent 8:1:1 ratio to ensure fair evaluation.
Evaluation Metrics
We employ a tiered evaluation strategy. The primary accuracy metrics are mean Average Precision at an 

IoU threshold of 0.5 (mAP50) and over the range of 0.5 to 0.95 (mAP50−95). Model efficiency is assessed 
through parameter count (params), computational complexity (Gflops), and inference speed (FPS). For domain-
specific benchmarks (NEU-DET, GC10-DET), we perform diagnostic analysis using class-wise confusion 
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matrices and F1-confidence curves. These analyses primarily compare our model against a YOLOv11s baseline 
to highlight classification improvements. For the core DDTE dataset and cross-domain tests (PASCAL VOC, 
BCCD), evaluation focuses on practical detection capability and generalization. We report mAP50 and 
mAP50−95, supported by qualitative visualizations, as these metrics best reflect real-world localization accuracy 
and robustness. This structured approach ensures that the analysis of each dataset aligns with its specific 
validation purpose.

Analysis of ablation experiments
This section systematically assesses the contributions of each core component in MSEOD-DDFusionNet 
through module-level ablation experiments. By integrating quantitative metrics with qualitative visual evidence, 
we address two primary research questions: (1) whether the performance gains from individual modules are 
statistically significant, and (2) whether each module confers distinct functional advantages. The experiments 
further elucidate the synergistic interactions that emerge when these modules are integrated.

Table 1 summarizes the ablation results across three datasets: DDTE, NEU-DET, and GC10-DET. On the 
specialized DDTE dataset, the complete model achieves 82.6% mAP50 and 61.6% mAP50−95, representing a 
2.7% relative improvement over the baseline configuration with only MTECAAttention (80.4% mAP50). This 
improvement trend holds consistently across datasets: on NEU-DET, the complete model attains 80.5% mAP50, 
a 7.3% relative gain over the baseline (75.0%); on the more challenging GC10-DET, performance rises from 
60.4% to 67.4%, corresponding to an 11.6% relative increase. The cross-dataset consistency confirms that the 
functional advantages of each module are robust and generalize beyond the characteristics of any single dataset.

Table 2 provides a detailed, reproducibility-focused ablation analysis conducted on the DDTE dataset. 
To ensure statistical reliability and mitigate concerns that module-level gains might fall within the range of 
experimental noise, we report the mean and standard deviation derived from three independent experimental 
runs (using random seeds 0, 123, and 456). All performance improvements attributed to the modules exceed the 
observed experimental variance, thereby confirming their statistical significance.

Specifically, the MTECAAttention module yields a stable +0.25% relative gain in mAP50 (80.4±0.3% 
→ 80.6±0.2%). ODConv contributes an additional +0.5% relative gain (80.6±0.2% → 80.8±0.3%) while 
simultaneously reducing computational load by 25.4%. LMDP further enhances performance by +0.24% 
(80.8±0.3% → 81.0±1.0%). DDFusion delivers the most substantial improvement, elevating the localization-
precision metric mAP50−95 from 58.9±0.8% to 61.6±0.9%, a 4.6% relative gain. DDTE was selected for this 
in-depth ablation due to its high industrial relevance: designed explicitly for polysilicon production equipment 
inspection, its extreme operating conditions and complex imaging backgrounds provide a realistic and 
demanding testbed for evaluating module utility in practical applications.

The sequential integration of modules reveals clear synergistic effects. The combination of MTECAAttention 
and ODConv improves detection accuracy while lowering computational cost, demonstrating a strong 

Datasets MTECAAtt ODConv LMDP DDFusion mAP50 mAP50−95 FPS Gflops params

DDTE

80.4 58.2 62.56 213.06 10.73

✓ 80.6 58.6 63.4 213.08 10.73

✓ 80.8 58.9 56.91 158.97 8.11

✓ 80.5 58.3 182.4 190.24 10.73

✓ 80.6 58.4 197.8 213.06 10.73

✓ ✓ 80.9 58.7 58.5 158.99 8.11

✓ ✓ ✓ 81.0 58.9 183 159.0 8.46

✓ ✓ ✓ ✓ 82.6 61.6 193.5 159.0 8.46

NEU-DET

75 43.1 62.02 213.06 10.73

✓ 78.5 45.3 58.7 213.08 10.73

✓ 78.6 45.7 52.19 158.97 8.11

✓ 77 45.4 105.5 190.24 10.73

✓ 77.4 44.6 118.9 213.06 10.73

✓ ✓ 78.9 44.7 51.99 158.99 8.11

✓ ✓ ✓ 79.2 45.8 59.1 159.0 8.46

✓ ✓ ✓ ✓ 80.5 46.9 156.1 159.0 8.46

GC10-DET

60.4 29.7 123.2 213.06 10.73

✓ 63.8 33.2 179.0 213.08 10.73

✓ 62.4 31.1 190.7 158.97 8.11

✓ 60.8 30.4 130.7 190.24 10.73

✓ 63.8 32 167.6 213.06 10.73

✓ ✓ 65.2 33 52.0 158.99 8.11

✓ ✓ ✓ 65.1 33.9 159.8 159.0 8.46

Table 1.  Ablation study results.

 

Scientific Reports |         (2026) 16:5307 8| https://doi.org/10.1038/s41598-026-35913-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


compatibility between lossless multi-scale feature fusion and dynamic geometric adaptation. Incorporating 
LMDP subsequently enhances the model’s sensitivity to low-contrast defects without compromising inference 
efficiency. Finally, the integration of DDFusion produces the most pronounced leap in localization precision 
(mAP50−95), indicating that its scene-aware denoising mechanism effectively consolidates and refines the 
feature representations produced by the preceding modules. This stepwise performance enhancement validates 
the complementary roles of the modules across the core stages of the detection pipeline: multi-scale feature 
fusion, irregular shape adaptation, noise-aware refinement, and generalized robustness learning.

Collectively, the results presented in Tables  1 and  2 underscore the comprehensive advantages of the 
complete MSEOD-DDFusionNet architecture. On the core DDTE dataset, our model outperforms the widely 
adopted YOLOv11s baseline by 2.7% in mAP50 and 5.8% in mAP50−95, while utilizing 21.2% fewer parameters 
and delivering 209% higher inference speed. These concurrent gains across accuracy, efficiency, and model 
complexity demonstrate that our modular integration strategy effectively pushes the performance frontier of 
industrial visual inspection systems.

Figure  7 complements the quantitative analysis by providing visual evidence of the characteristic failure 
modes that emerge when individual modules are ablated. Removing MTECAAttention causes micro-cracks to 
fragment and disappear within cluttered backgrounds, underscoring the necessity of lossless multi-scale fusion 
for preserving fine defect structures. Ablating ODConv leads to bounding-box misalignment with the irregular 
contours of defects such as silicon deposits, confirming the module’s indispensable role in geometric adaptation. 
The absence of LMDP results in missed detections of low-contrast flaws under noisy conditions, validating the 
efficacy of its dual-path design for selective noise suppression and conditional signal amplification. Omitting 
DDFusion significantly degrades model robustness under challenging perturbations like intense glare or motion 
blur, highlighting the critical importance of its scene-aware denoising for reliable performance in variable 
industrial environments.

Fig. 7.  Characteristic failure modes from module ablation. Visual comparisons on the DDTE dataset show 
the specific performance degradation from removing each core module: (a) Absence of MTECAAttention 
fragments micro-cracks; (b) Removing ODConv misaligns bounding boxes for irregular defects; (c) Without 
LMDP, low-contrast spots are missed under noise; (d) Omitting DDFusion reduces robustness under 
challenging illumination.

 

datasets MTECAAtt ODConv LMDP DDFusion mAP50 mAP50−95 FPS

DDTE

80.4±0.3 58.2±0.5 62.56±1.2

✓ 80.6±0.2 58.6±0.4 63.4±1.0

✓ 80.8±0.3 58.9±0.6 56.9±0.8

✓ 80.5±0.4 58.3±0.5 182.4±1.1

✓ 80.6±0.3 58.4±0.6 197.8±0.6

✓ ✓ 81.2±0.3 58.7±0.4 58.5±0.9

✓ ✓ ✓ 81.0±1.0 58.9±0.8 183±1.3

✓ ✓ ✓ ✓ 82.6±0.7 61.6±0.9 193.5±1.5

Table 2.  Statistical Ablation Analysis on DDTE (Mean ± Std, 3 runs).
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In summary, the ablation study—supported by both rigorous quantitative metrics and illustrative qualitative 
visualizations—confirms that each module contributes meaningfully beyond the bounds of experimental 
variance. More importantly, their systematic integration yields a coherent and high-performance detection 
framework. This design not only effectively addresses the intertwined challenges of scale variation, geometric 
irregularity, and environmental noise inherent in industrial inspection but also establishes a scalable and efficient 
architectural foundation for real-world, precision defect detection.

Analysis of comparison experiments
MSEOD-DDFusionNet is evaluated through a three-tier strategy to verify its performance and generalization: 
on the specialized DDTE dataset (photovoltaic-specific), on public steel defect benchmarks (NEU-DET, GC10-
DET), and on cross-domain datasets (PASCAL VOC 2007, BCCD). All comparisons are conducted with 
consistent metrics (mAP50, mAP50 − 95, params, Gflops, FPS) to ensure a fair and thorough assessment.

Comparison of DDTE assay
We conducted a comprehensive evaluation of MSEOD-DDFusionNet on the DDTE dataset. As shown in Table 
3 and Table 4, the model demonstrates significant advantages in detection accuracy, computational efficiency, 
and adaptability.

For per-class defect detection accuracy, MSEOD-DDFusionNet achieves optimal mAP50 on four key defect 
types: silicon deposition (SD) at 86.4%, pits (PT) at 78.9%, scratches (SC) at 74.6%, and weld defects (WD) 
at 87.9%. These results validate the effectiveness of the modular architecture: the ODConv module effectively 
captures irregular geometric features, while the combination of LMDP and DDFusion significantly enhances 
detection capability for low-contrast defects. Compared with the specialized algorithm FFDDNet, our model 
shows clear improvements across multiple defect classes. Notably, the substantial 9.4% relative improvement in 
PT detection (78.9% vs. 72.1%) highlights the advantage of ODConv in adapting to complex pit geometries. The 
3.3% relative gain in WD detection (87.9% vs. 85.1%) demonstrates the effectiveness of our noise-aware modules 
in handling challenging weld regions. For microcrack (Cr) detection, our mAP50 of 84.2% is comparable to 
YOLOv11s (84.4%), while showing a 5.4% relative improvement over FFDDNet (79.9%). This indicates enhanced 
feature discrimination despite the slight performance gap with the strongest baseline. The 3.8% improvement in 
IS detection (85.0% vs. 81.9%) confirms the benefit of multi-scale fusion; however, the remaining gap compared 
to YOLOv5s (91.9%) suggests that detecting sparse, isolated defects requires further architectural refinement.

In overall performance, MSEOD-DDFusionNet achieves state-of-the-art results: 82.6% mAP50 and 61.6% 
mAP50−95. This represents a 2.7% relative improvement over the best baseline YOLOv11s (80.4% mAP50) 
and a more substantial 5.4% improvement over the specialized FFDDNet (78.4% mAP50). The consistent gains 

Datasets Methods Params Gflops FPS mAP50 mAP50−95

DDTE

Faster R-CNN16 41.364 90.913 - 77.5 59

YOLOv5s 9.13 192.67 65.74 80.4 57.8

YOLOv8s 11.14 229.5 65.15 78.8 56.9

YOLOv10s 8.07 198.33 64.35 77.5 55.4

YOLOv11s 10.73 213.06 62.56 80.4 58.2

DAB-DETR17 44 216 120.35 79.6 -

Deformable-DETR18 40 173 122.15 78.4 -

DINO19 218 - 113.76 79.7 -

LFF-YOLO20 60.51 6.85 168.49 78.9 -

FFDDNet15 10.08 222.51 155.0 78.4 55.1

LE-YOLOv521 4.8 10.3 180.0 79.9 57.1

Ours 8.46 159 193.5 82.6 61.6

Table 4.  Overall performance comparison on DDTE (vs. YOLOv11s: +2.7% mAP50, +209% FPS, −21.2% 
params).

 

Datasets Method Cr SD PT SC IS WD mAP50

DDTE

YOLOv5s 79 84.8 76.6 67.9 91.9 81.9 80.4

YOLOv8s 76.6 82.2 75.1 68.2 87.7 83.2 78.8

YOLOv10s 79.4 80.3 72.1 66.7 83.5 81.4 77.5

YOLOv11s 84.4 84.7 73.6 68.3 85.9 85.3 80.4

FFDDNet15 79.9 83.3 72.1 68.0 81.9 85.1 78.4

Ours 84.2 86.4 78.9 74.6 85.0 87.9 82.6

Table 3.  Per-class detection performance on DDTE (vs. YOLOv11s: +2.7% mAP50; PT +7.2%, SC +9.2%, WD 
+3.0%).
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across these benchmarks confirm the synergistic effect of integrating multiple specialized modules rather than 
relying on a single enhancement strategy. In computational efficiency, our model maintains an excellent balance 
between performance and practicality. With only 8.46M params and 159.0 Gflops, it achieves 193.5 FPS inference 
speed. This represents a 209% improvement over YOLOv11s (62.56 FPS) and a 24.8% improvement over 
FFDDNet (155.0 FPS). The speedup stems from the efficient design of our modules, particularly the lightweight 
LMDP and the structured pruning applied. Although LE-YOLOv5 is more parameter-efficient (4.8M params), 
our model delivers 3.4% higher mAP50 accuracy, offering a clearly superior accuracy-efficiency trade-off that is 
critical for real-time industrial inspection.

In conclusion, comprehensive experiments confirm that MSEOD-DDFusionNet achieves state-of-the-art 
performance in steel surface defect detection. It balances high accuracy across most defect categories with 
exceptional inference efficiency, making it highly suitable for industrial quality inspection in photovoltaic 
manufacturing.

Based on the visualization results and quantitative data in Fig. 8, our model demonstrates superior localization 
accuracy for irregular defects such as SD and PT compared to the baseline. This validates the effectiveness of the 
multi-scale feature fusion and dynamic convolution modules in handling complex geometries. For defects with 
weak features like Cr and IS, the model’s performance remains competitive yet highlights an inherent challenge: 
distinguishing subtle targets from complex backgrounds. This observation directly points to a direction for 
future work: specifically, enhancing the model’s sensitivity to faint defect signatures and its robustness against 
background interference, while fully preserving the existing architecture’s strengths in multi-scale and geometric 
adaptation.

Comparison of NEU-DET, GC10-DET assays
Analysis based on Table 5 and Table 6 demonstrates the leading performance of MSEOD-DDFusionNet on 
both general-purpose industrial datasets. On NEU-DET, the model achieves an overall mAP50 of 80.5%, with 
notable gains on challenging irregular defects: cracks (Cr, 58.8%) and inclusions (In, 86.6%). The mAP50 for Cr 
shows a 43.4% relative improvement over the best baseline (FFDDNet), while In detection improves by 20.0% 
over YOLOv5s. On GC10-DET, the model maintains a leading overall mAP50 of 67.4%, excelling on complex-
shaped defects such as welds (Wf, 92.2%) and oxide scale (Os, 81.1%). Specifically, Wf detection achieves a 
22.6% relative improvement over YOLOv5s, and Os detection improves by 4.8%. These results validate the 
strong generalization of our multi-scale fusion and dynamic convolution modules for irregular defects, while 
slightly lower performance on regular or slender defect points to future refinement of the dynamic receptive 
field strategy.

The comparison in Table 7 (comprehensive performance metrics) shows that our model achieves an 
excellent balance between efficiency and accuracy. On NEU-DET, the model reaches 80.5% mAP50 and 46.9% 
mAP50−95 while operating at 156.1 FPS with a computational cost of 159 Gflops. This represents a 7.3% 
improvement in mAP50 over YOLOv11s (75.0%). On GC10-DET, the model maintains a leading mAP50 of 
67.4% and mAP50−95 of 34.3% at 192.2 FPS under the same computational budget, corresponding to an 11.6% 

Fig. 8.  Visual detection comparison. In vertically arranged examples, MSEOD-DDFusionNet (bottom) 
produces tighter and more accurate bounding boxes than YOLOv11s (top), particularly for irregular defects 
like SD and PT.
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improvement in mAP50 over YOLOv11s (60.4%). These results confirm that the lightweight design effectively 
supports the model’s potential for real-time industrial deployment.

Classification diagnostics using the confusion matrices in Fig. 9 (NEU-DET) and Fig. 10 (GC10-DET) 
reveal that our model exhibits higher diagonal purity and more concentrated distributions on both datasets. It 
significantly reduces misclassification rates for difficult defects such as Cr and Ps on NEU-DET, and achieves 
effective recognition of challenging categories, including Wf, Cg, and the rarely detected Rp on GC10-DET. This 
demonstrates the model’s superior feature discriminability in complex multi-class scenarios.

The F1-confidence curves in Fig. 11 (NEU-DET) and Fig. 12 (GC10-DET) further verify the prediction 
reliability of the model. On NEU-DET, the model attains a higher overall F1-score (0.75) and maintains high 
performance over a wider confidence range. On GC10-DET, it reaches a higher performance ceiling (F1-score 
0.71 vs. 0.60 for YOLOv11s) and shows more stable results at high confidence thresholds. These findings indicate 
that the model’s output confidence aligns better with actual detection accuracy, which helps reduce false alarms 
in practical deployment.

Pixel-level and instance-level visual evidence is provided by the heatmaps in Fig. 13 and the detection 
visualizations in Fig. 14. On NEU-DET, the model produces more focused activation on Cr defects while 
suppressing background interference more effectively. On GC10-DET, it delivers more complete localization 
and higher confidence for defects such as Wf. The visual results are consistent with the quantitative analyses 
above, offering intuitive validation of the synergistic advantages of the model in feature enhancement, geometric 
adaptation, and small-target detection. For slender defects, the localization completeness remains to be improved, 
which aligns with the conclusions drawn from the tabular data.

In summary, MSEOD-DDFusionNet exhibits outstanding generalization performance, efficient inference 
capability, and reliable prediction quality on both NEU-DET and GC10-DET datasets. The experiments 
thoroughly validate the effectiveness and practicality of the core modules for general industrial defect detection, 
while also identifying clear directions for future improvement, particularly in the detection of slender targets.

Comparison of generalisation experiments
On PASCAL VOC 2007 (Table 8), the model achieves a leading overall mAP50 of 75.5%, outperforming all 
compared methods. It excels in key categories such as aeroplane (86.9% mAP50) and bicycle (90.8% mAP50), 
showing 6.9% and 2.4% relative improvements over YOLOv11s, respectively. For the challenging low-contrast 
category “pottedplant”, the model attains 46.7% mAP50, a 11.7% relative improvement over YOLOv11s. These 
gains highlight the model’s ability to integrate multi-scale features and adapt to diverse object geometries across 
domains.

In medical imaging validation on BCCD (Table 9), the model achieves 93.8% overall mAP50, the highest 
among all compared methods. It detects platelets with 93.7% accuracy, a 6.0% relative improvement over 
YOLOv11s, and red blood cells with 88.1% mAP50. The model effectively suppresses background interference 
and adapts to cellular shape variations, demonstrating strong applicability in medical image analysis.

Table 10 summarizes the efficiency and accuracy balance across domains. On PASCAL VOC 2007, the model 
operates at 265.26 FPS with 159.0 Gflops, 178% faster than YOLOv11s while maintaining a 0.3% higher mAP50. 

Datasets Method Pu Wl Cg Ws Os Ss In Rp Cr Wf mAP50

GC10-DET

YOLOv5s 91.1 83.8 92.4 70.8 77.4 62.9 34.4 0 28.5 75.2 61.7

YOLOv8s 93.8 79.2 93.5 73.2 74.1 56.4 27.8 4.5 20 74.9 61.3

YOLOv9s 92.6 83.1 94.3 76.3 75.7 63.8 28 4.9 31.7 78 62.9

YOLOv10s 92.7 75.1 85.1 62.1 70.8 53.6 30.2 0 18 66.2 55.4

YOLOv11s 94.3 74.1 94.8 68.1 73.3 53.7 40.7 0 31.6 73.2 60.4

FFDDNet15 95.5 85.3 90.2 71.5 62.8 54.4 23.5 24 42.7 92.1 64.2

Ours 95.3 93.8 92.8 74.1 81.1 53.7 32.3 25 41.4 92.2 67.4

Table 6.  Per-class performance on GC10-DET (vs. best baseline: +5.0% mAP50; Os +4.8%, Wl +10.0%, Wf 
+0.1%).

 

Datasets Method Cr In Pa Ps Rs Sc mAP50

NEU-DET

YOLOv5s 39.8 72.2 96.6 87.7 71.0 94 76.9

YOLOv8s 30.3 82.9 94.3 85.4 61.0 90.8 75.2

YOLOv9s 39 76.2 95.6 90.2 68.8 95.8 77.6

YOLOv10s 32 70.9 94.4 77.6 68 81.4 70.7

YOLOv11s 39.5 72.1 95 88 66.4 90.8 75

FFDDNet15 41 75.2 94.3 87.1 71.5 92.0 76.8

Ours 58.8 86.6 93.6 93.8 68.5 92.7 80.5

Table 5.  Per-class performance on NEU-DET (vs. best baseline: +3.7% mAP50; Cr +43.4%, In +4.46%, Ps 
+3.99%).
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On BCCD, it achieves 93.8% mAP50 at 82.19 FPS, 40% faster than YOLOv11s with a 3.0% accuracy gain. This 
confirms the lightweight design’s effectiveness in real-time cross-domain deployment.

Visual results in Figs. 15 and 16 further validate the model’s performance. On PASCAL VOC 2007, it produces 
tighter bounding boxes and detects smaller, distant objects missed by baseline methods. On BCCD, it reduces 
false positives and improves separation between adjacent cells, especially in dense clusters. These visualizations 
confirm the advantages of the multi-module design for tasks beyond industrial inspection.

In conclusion, MSEOD-DDFusionNet proves effective not only for industrial defect detection but also for 
general object recognition and medical image analysis. It provides a reliable, high-speed solution for high-
precision detection across diverse domains, demonstrating strong cross-domain generalization capability.

Comparison of pruning experiments
This study implements a structured pruning scheme to enhance model deployment efficiency. The method 
evaluates channel importance using the absolute values of BatchNorm layer weights, with a global pruning 
threshold set at the 75th percentile. The pruning process follows a sequential strategy, automatically adjusting 
connected layers to maintain dimensional consistency.

To preserve model capability, each convolutional layer retains at least 8 channels through an iterative 
threshold adjustment mechanism. If the channel count falls below this minimum, the threshold is automatically 
halved until the requirement is met.

After pruning, the model is fully retrained with the original parameters: an initial learning rate of 0.01 
decaying cosinely to 0.0001, a momentum of 0.937, and weight decay of 0.0005. Training runs for 100 epochs 
with a batch size of 16, including a 3-epoch warm-up. Data augmentation is progressively reduced and disabled 
in the final 10 epochs.

Table 11 demonstrates that pruning consistently improves both computational efficiency and detection 
accuracy. A key clarification is required: our pruned model retains 8.46M parameters—identical to the complete 
MSEOD-DDFusionNet. The −21.2% parameter reduction reported in the table is calculated relative to YOLOv11s 
(10.73M), underscoring the inherent parameter efficiency of our architecture.

On the DDTE dataset, the pruned model achieved a 1.9% improvement in mAP50 and a 4.3% improvement 
in mAP50−95 compared to YOLOv11s, while reducing computational effort by 9.2%. This efficiency extends 

Datasets Methods Params Gflops FPS mAP50 mAP50−95

NEU-DET

Faster R-CNN16 41.364 90.913 1.0 65.4 34.8

YOLOv5s 9.13 192.67 13.42 76.9 43.4

YOLOv7 43.5 130.2 3.797 70.5 40.3

YOLOv8s 11.14 229.5 52 75.2 43

YOLOv9s 7.29 219.17 16.26 77.6 44.5

YOLOv10s 8.07 198.33 42.36 70.7 40.8

YOLOv11s 10.73 213.06 62.02 75 43.1

DAB-DETR17 44 216 18 68.6 33.9

Deformable-DETR18 40 173 18 64.3 -

DINO19 218 - 14 55.2 43

LFF-YOLO20 60.51 6.85 42 73.1 -

FFDDNet15 10.08 222.51 38 76.8 44.4

LE-YOLOv521 4.8 10.3 55.1 79.1 41.0

Ours 8.46 159 156.1 80.5 46.9

GC10-DET

Faster R-CNN16 41.364 90.913 27 55.4 /

YOLOv5s 9.13 192.67 60.35 61.7 32

YOLOv7 43.5 130.2 35 58.0 /

YOLOv8s 11.14 229.5 48 61.3 31.4

YOLOv9s 7.29 219.17 45 62.9 32.1

YOLOv10s 8.07 198.33 88.54 55.4 28.8

YOLOv11s 10.73 213.06 123.23 60.4 29.7

DAB-DETR17 44 216 18 52.6 -

Deformable-DETR18 40 173 16 54.3 -

DINO19 218 - 13 54.3 -

LFF-YOLO20 60.51 6.85 40 41.3 -

FFDDNet15 10.08 222.51 35 64.2 32.8

LE-YOLOv521 4.8 10.3 - 63.8 28.9

Ours 8.46 159 192.2 67.4 34.3

Table 7.  Comprehensive efficiency-accuracy trade-off (vs. YOLOv11s: NEU-DET +7.3% mAP50, +151% FPS; 
GC10-DET +11.6% mAP50, +56% FPS).
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to other benchmarks: on the NEU-DET dataset, the model achieves a 3.5% improvement in mAP50 while 
reducing computational cost by 25.6%; on the GC10-DET dataset, mAP50 increases by 11.1% with a 25.4% 
reduction in computational cost. Cross-domain robustness is maintained, with performance comparable to the 
baseline on the PASCAL VOC 2007 dataset and a 2.8% improvement in mAP50 on the BCCD dataset.

The pruning scheme employs a clear criterion (75th percentile), a structured workflow, and a full retraining 
protocol. It preserves the original parameter count while substantially lowering computational cost, offering a 

(b) The MSEOD-DDFusionNet confusion matrix diagram

(a) The Yolov11s confusion matrix diagram

Fig. 9.  Confusion matrix comparison on NEU-DET. MSEOD-DDFusionNet (b) demonstrates superior 
classification over YOLOv11s (a), with higher diagonal values and reduced misclassification for difficult 
categories such as Cr and Ps.
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practical solution for deployment. The consistent gains across datasets suggest that pruning serves as an effective 
regularizer, sharpening the model’s focus on salient features.

Conclusion
This study proposes the MSEOD-DDFusionNet framework to address key challenges in steel surface defect 
detection: scale variance, irregular geometry, and low-contrast noise. The core contributions are threefold: 
(1) a lossless multi-scale fusion principle to preserve micro-defect features, (2) a four-dimensional dynamic 

(b) The MSEOD-DDFusionNet confusion matrix diagram

(a) The Yolov11s confusion matrix diagram

Fig. 10.  Confusion matrices on GC10-DET. MSEOD-DDFusionNet (b) outperforms YOLOv11s (a) with 
higher diagonal purity, better recognition of Wf and Cg, and effective detection of the challenging defect Rp.
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convolution mechanism to adapt to irregular shapes, and (3) a decoupled noise robustness strategy to balance 
sensitivity and robustness. Experiments demonstrate state-of-the-art performance on the specialized DDTE 
dataset (82.6% mAP50, 61.6% mAP50−95) and excellent generalization across public benchmarks and cross-
domain tasks. While this modular design is a necessary and efficient solution to these compound challenges, we 
acknowledge the inherent architectural complexity. The current structure, justified by its performance, points to 
a future research direction: exploring more unified or automatically searched architectures that maintain high 
accuracy with reduced complexity. Furthermore, the model’s limitations in detecting sparse defects (e.g., Cr) 
suggest another direction: enhancing sensitivity to subtle features and robustness against sparse interference. 
Together, these efforts aim to advance the efficacy and practicality of industrial visual inspection systems.

Fig. 12.  F1-confidence curves on GC10-DET. MSEOD-DDFusionNet achieves a higher F1-score than 
YOLOv11s (0.71 vs. 0.60) and maintains better performance across confidence thresholds.

 

Fig. 11.  F1-confidence curves on NEU-DET. MSEOD-DDFusionNet outperforms YOLOv11s with a higher 
F1-score (0.75 vs. 0.74) and more consistent performance across confidence levels.
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Fig. 13.  Heatmap comparison on NEU-DET and GC10-DET. MSEOD-DDFusionNet shows more focused 
activation on Cr defects (NEU-DET) and more complete coverage on Wf defects (GC10-DET) compared to 
YOLOv11s.
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Classes YOLOv5s YOLOv7t YOLOv8s YOLOv10s YOLOv11s FFDDNet15 Ours

PASCAL VOC 2007

aeroplane 82.1 70.2 79.5 80 81.3 83.8 86.9

bicycle 89 79.4 80.9 86.3 88.7 89.8 90.8

bird 62.3 52.0 47.5 57.3 58.7 63.6 65.2

boat 76.2 49.9 58.3 74.3 79 64.6 75.2

bottle 63 40.3 50.4 63.3 66.3 70.8 60.5

bus 78.9 70.8 73.7 81.1 78.1 80.2 77.1

car 89.4 84.8 85.2 88.3 89 88.7 90.1

cat 83.6 65.1 74.7 86 82.2 79.1 84.8

chair 58.5 48.4 44.8 57 56.9 57.4 54

cow 73.9 66.1 57 78.7 78.2 75.3 78.4

diningtable 74.5 48.2 60.3 68.4 75.9 71.9 69.7

dog 74.3 61.9 59.9 73.7 76.4 74.8 79.9

horse 84.9 71.5 79 87.7 87.5 84.8 85

motorbike 91.6 76.8 87.5 89.9 93.4 89.6 93

person 87.1 79.9 82.6 85.7 88.1 86.7 87.6

pottedplant 37.6 41.7 27.5 43.2 41.8 46.0 46.7

sheep 57.6 63.2 45.3 51.5 59.7 60.7 56.1

sofa 64.9 60.0 47.6 65.6 68.8 69.4 64.6

train 86.1 77.6 79.5 85.3 87.1 88.1 89

tvmonitor 72.7 62.1 57.3 67.3 66.7 65.6 75.0

mAP50 74.4 63.6 63.9 73.5 75.2 74.5 75.5

Table 8.  Performance on PASCAL VOC 2007 (vs. YOLOv11s: +0.4% mAP50, pottedplant +11.7%, tvmonitor 
+12.4%).

 

Fig. 14.  Qualitative detection comparison. Visual results illustrate our model’s improved localization for 
irregular defects (Cr, Wf) and highlight performance variations on regular/slender defects (Pa, Cg, In).
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Fig. 15.  Detection examples on PASCAL VOC 2007. MSEOD-DDFusionNet produces tighter and more 
complete bounding boxes than YOLOv11s, with improved detection of smaller and more distant objects.

 

Datasets Methods Params Gflops FPS mAP50 mAP50−95

PASCAL VOC 2007

Faster R-CNN16 41.4 71.7 - 71 39.8

YOLOv5s 9.13 192.67 98.21 74.4 51

YOLOv7t 6.02 13.1 - 68.5 42.8

YOLOv8s 11.14 229.5 71.79 63.9 42.2

YOLOv10s 8.07 198.33 105.95 73.5 53.8

YOLOv11s 10.73 213.06 95.23 75.2 55

FFDDNet15 10.08 222.51 88 70.1 49.0

LE-YOLOv521 4.8 10.3 - 73.8 54.1

LF-YOLO22 7.25 16.2 - 53.9 27.8

RT-DETR-R1823 19.8 57.0 - 59.3 40.7

Ours 8.46 159.0 265.26 75.5 54.9

BCCD

YOLOv8s 11.14 229.21 33.47 91.8 61.6

YOLOv10s 8.07 198.33 99.13 84.9 58.3

YOLOv11s 10.73 213 58.75 90.8 62

FFDDNet15 10.08 222.51 54.9 90.3 60.1

Ours 8.46 159.0 82.19 93.8 64.6

Table 10.  Cross-domain efficiency-accuracy balance vs. mainstream methods (vs. YOLOv11s: PASCAL VOC 
+0.4% mAP50, +178% FPS; BCCD +3.3% mAP50, +40% FPS).

 

Methods WBC RBC Platelets mAP50

BCCD

YOLOv5s 99.5 82.6 83.7 88.6

YOLOv7t 97.6 87.8 92.6 92.7

YOLOv8s 98.3 83.6 93.4 91.8

YOLOv10s 98 85.7 83.5 84.9

YOLOv11s 99.4 84.6 88.4 90.8

FFDDNet15 99.4 83.9 87.7 90.3

Ours 99.5 88.1 93.7 93.8

Table 9.  Performance on BCCD medical dataset (vs. best baseline: +1.2% mAP50, Platelets +1.2%).
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Data availability
The specific industrial dataset is subject to privacy restrictions and is not publicly available. To ensure reproduc-
ibility and enable further application, we provide the complete implementation, including code and pre-trained 
models, at: ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​j​i​u​n​​i​a​n​1​​5​​8​/​D​D​​T​​E​_​A​n​o​n​​y​m​​o​u​s​​_​S​u​b​​s​​e​t​/​​b​l​o​​b​/​​m​a​i​​n​​/​D​D​T​​E​_​A​n​o​n​​y​m​o​u​s​_​S​u​b​s​e​t​
%​2​0​(​3​)​.​z​i​p
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