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28

29 ABSTRACT

30 Background: Cold static preservation at 4°C is the clinical standard for 

31 donor lung storage but is limited to 6–8 hours of cold ischemia. Static 

32 storage at 10°C has been shown to extend ischemia times and improve lung 

33 health. Given that lungs can maintain aerobic metabolism ex vivo, we 

34 hypothesized that adding ventilation at 10°C would further prolong 

35 preservation by stimulating aerobic metabolism.

36 Methods: Lungs were procured from C57Bl/6 mice and then stored for 24h 

37 with ventilation at 10°C (n=4), statically at 10°C (n=4), or statically at 4°C 

38 (n=4). Respiratory mechanics were evaluated using a FlexiVent system. 

39 Cellular viability was assessed via flow cytometry. Complement shedding 

40 was evaluated by enzyme-linked immunosorbent assay. Histologic evidence 

41 of lung injury was assessed by H&E staining.

42 Results: Donor lungs stored with ventilation at 10°C exhibited significantly 

43 reduced histologic injury scores compared to static storage at 4°C (p = 

44 0.0062). Ventilation also decreased complement C3 shedding (p < 0.01), 

45 apoptosis (p < 0.05), cytochrome c release (p = 0.0014), and ROS 

46 production (p = 0.0008) compared to statically stored lungs at 4°C and 

47 10°C. Functionally, ventilated lungs demonstrated improved respiratory 

48 mechanics with lower airway resistance (p = 0.021) and increased 

49 compliance (p = 0.023) compared to static storage at 10°C.
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50 Conclusions: Ventilating lungs at 10°C compared to static cold storage 

51 appears to result in healthier and more functional lung tissue and may 

52 extend the preservation times of donor organs for lung transplantation.

53

54  KEYWORDS

55 Lung transplantation; organ preservation; murine model

56 BACKGROUND

57 Recent changes to the lung donor allocation system1 have increased 

58 the number of lung transplants performed at the cost of increased travel 

59 distances for transplant centers2.  Despite increased travel distance, lung 

60 recovery techniques have largely been unchanged, with cold static storage 

61 being the predominant method and the alternative being ex vivo lung 

62 perfusion (EVLP)3.  EVLP is a normothermic platform that provides both 

63 perfusion and ventilation to enable physiologic assessment and therapeutic 

64 intervention, but its adoption is constrained by cost, complexity, and 

65 logistics (specialized equipment/teams, disposables often >$60,000 per 

66 case), and limited portability34-35. Recent data suggests moderate 

67 hypothermia may extend cold ischemia time, attenuate donor lung injury, 

68 and improve cellular health within the lung allograft4–6. Regardless of lung 

69 storage, the technique for recovery is unchanged.  Lung allografts are 

70 perfused with a cold flush – typically a low-potassium dextran solution7- 

71 while simultaneously ventilating the lungs with low-tidal volumes.  This 
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72 decreases atelectasis, which is associated with higher pulmonary vascular 

73 resistance and results in a heterogeneous distribution of perfusate.  

74 Following perfusion, the lung is inflated to 50% of lung capacity (or 15 

75 cmH2O airway pressure) with 50% FiO2, and the trachea is clamped before 

76 placement in an ice cooler.  While much focus has been placed on 

77 temperature and perfusion solutions, there has been less investigation into 

78 the role of stretch on the donor allograft. 

79 During development, the lungs demonstrate significant sensitivity to 

80 stretch signals.  Oligohydramnios, congenital diaphragmatic hernia, and 

81 phrenic nerve dysfunction8–10 – which all attenuate stretch signals – result 

82 in underdeveloped lungs.  Excessive stretch signaling, such as with large 

83 tidal volume ventilation, exacerbates lung injury and leads to disordered 

84 alveolar growth11–13.  Compensatory lung growth following pneumonectomy 

85 is well-described in many mammals17.  This phenomenon can be attenuated 

86 by reducing cyclic stretch18 and appears to localize to subpleural regions of 

87 the lung – areas most subject to deformation19,20  – supporting the 

88 hypothesis that cyclic stretch is essential to alveologenesis. From a lung 

89 donation perspective, expanding the lung during recovery with oxygen 

90 allows for continued aerobic metabolism, preserved surfactant function, 

91 improved pulmonary compliance, and increased alveolar fluid clearance14–

92 16. However, donor lungs are exposed to static stretch, and the role of cyclic 

93 stretch is unknown. We therefore posited that isolating ventilation (i.e., 

94 cyclic stretch with room-air gas exchange) during hypothermic storage may 
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95 capture key physiologic components of EVLP’s ventilatory component while 

96 avoiding the costs, personnel, and infrastructure required for perfusion 

97 circuity. This approach also differs from hypothermic preservation systems 

98 that maintain constant airway pressure to reduce the risk of barotrauma 

99 from overdistention (e.g., BaroGuard) by delivering low-tidal volume cyclic 

100 ventilation that imparts physiologic stretch rather than pressure-controlled 

101 static inflation. This ventilation-alone strategy is portable, inexpensive, and 

102 compatible with current procurement workflows, potentially extending safe 

103 preservation without the need for an EVLP platform. 

104 In this report, we applied cyclic stretch to a murine lung model to 

105 determine the effect of this stimulus on allograft health. After recovery, the 

106 lungs were subjected to static inflation or to continued room air ventilation 

107 at physiologic tidal volumes. We assessed mitochondrial and cellular health, 

108 histologic evidence of lung injury, and mechanical physiology in the context 

109 of each respective storage modality to assess if ventilation during storage 

110 results in more functional donor lungs.

111 METHODS

112 Animals and Surgical Procedure

113 This study was approved by the Committee of Animal Research following 

114 the National Institutes of Health Guide for Care and Use of Laboratory 

115 Animals and was designed and reported in accordance with the ARRIVE 

116 guidelines for animal research. All personnel working with the animals had 
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117 the required course training and certifications. C57Bl/6 mice were used for 

118 all experiments. The donor animal is induced with 5 parts per million (ppm) 

119 of isoflurane and maintained with 3 ppm of isoflurane via a nosecone. Depth 

120 of anesthesia is confirmed via toe pinch prior to the start of the procedure. 

121 The skin is divided with scissors from the xiphoid process to the jaw. The 

122 xyphoid process is retracted cephalad to expose the diaphragm. An incision 

123 is made on the right side of the diaphragm to collapse the lungs. The right 

124 and left ribs are then cut in the mid axillary line and retracted cephalad. 

125 500 u/kg of heparin is then injected directly into the right atrium. The 

126 beating heart is then divided along the short axis to expose the right and 

127 left ventricular cavities. 50 ml/kg of Perfadex perfusate is delivered into the 

128 pulmonary artery from the right ventricle through the pulmonary valve 

129 using a gravity perfusion setup. After flushing is complete, the donor 

130 pneumonectomy is performed in standard fashion. Animals were euthanized 

131 under 5% isoflurane anesthesia via exsanguination after donor 

132 pneumonectomy. Following donor pneumonectomy, the trachea is intubated 

133 with an 18-gauge AngiocathTM venous catheter (Beckton Dickenson, NJ, 

134 USA) and stored in one of three conditions: cold static storage at 4 °C 

135 (n=4), cold static storage at 10 °C (n=4), and ventilation storage at 10 °C 

136 (n=4). All lungs were stored in Perfadex solution for 24 hours. For each 

137 group, storage occurred in a dedicated laboratory refrigerator set to 4°C or 

138 10°C with continuous internal probe monitoring and alarm windows of 2-

139 6°C and 8-12°C, respectively. No temperature alarms occurred during any 
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140 storage interval. Ice-bags were not used to avoid sub-zero surface 

141 temperatures. For ventilated storage, lungs received cyclic ventilation using 

142 a volume-controlled small animal ventilator (Harvard Apparatus, MA, USA). 

143 Lung protective settings were applied—specifically tidal volume 6-8mL/kg, 

144 respiratory rate of 80 breaths/min, FiO2 0.21, I:E ~ 1:2, with no additional 

145 PEEP applied. The ventilator remained outside the refrigerator, so the 

146 delivered gas was at ambient room temperature and humidity. 

147 Cellular health

148 Murine lung tissue was harvested and enzymatically dissociated into a 

149 single cell suspension using the Lung Dissociation Kit (Miltenyi Biotec, 

150 North Rhine-Westphalia, Germany) according to the manufacturer’s 

151 instructions. Cellular viability was assessed with flow cytometry using 

152 Zombie UV fixable viability dye (ThermoFisher, MA, U.S.) to distinguish live 

153 and dead cells and Apotracker (BioLegend, CA, U.S.) to identify early 

154 apoptotic cells. 

155 Mitochondrial health was evaluated via intracellular flow cytometry. Cells 

156 were stained with an anti-cytochrome c antibody (BioLegend, CA, U.S.) to 

157 assess mitochondrial membrane integrity and with MitoSOX Red 

158 (ThermoFisher, MA, U.S.) to detect mitochondrial superoxide production as 

159 an indicator of oxidative stress. For intercellular detection of mitochondrial 

160 components, cells were permeabilied with digitonin prior to anti-

161 cytochrome c staining. MitoSOX loading was performed on live cells before 
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162 fixation/permeabilization per manufacturer instructions. All flow cytometry 

163 data were acquired on a CytoFLEX LX (Beckman Coulter, CA, U.S.) and 

164 analyzed using FlowJo software (BD Biosciences, NJ, U.S.). Gating 

165 strategies excluded doublets and debris based on forward and side scatter 

166 profiles.

167 Histology

168 Lung tissue samples were embedded in paraffin after fixation in 10% 

169 buffered formalin for 48h, followed by 5m sectioning and hematoxylin and 

170 eosin staining. The slides were then blindly reviewed and graded by two 

171 separate lung histopathologists using a previously described lung injury 

172 scale22. Briefly, lung injury was assessed based on four histologic criteria: 

173 white blood cell infiltration, fibrin exudates, alveolar hemorrhage, and 

174 capillary congestion. Each parameter was graded on a scale from 0 to 3, 

175 where 0 indicated absence, 1 mild, 2 moderate, and 3 severe involvement. 

176 Each animal's cumulative injury score was calculated by summing the 

177 individual scores across all four parameters.

178 Complement shedding

179 Murine C3 concentrations in the lung preservation solution were quantified 

180 via enzyme-linked immunosorbent assay (ELISA; Abcam, Cambridge, UK), 

181 performed in accordance with the manufacturer’s standardized protocol.

182 Respiratory mechanics
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183 Ex vivo pulmonary mechanics were evaluated using the FlexiVent small 

184 animal ventilator system (SCIREQ, Montreal, QC, Canada). Following 24 

185 hours of storage, donor lungs were cannulated and connected to the 

186 FlexiVent platform for comprehensive respiratory function assessment. All 

187 assessments were completed at room temperature. Lung mechanics were 

188 quantified through a series of forced oscillation technique (FOT)-based 

189 perturbations. The snapshot perturbation maneuver was employed to derive 

190 key parameters, including airway resistance, dynamic compliance, tissue 

191 elastance, and hysterisivity. Pressure–volume relationships were assessed 

192 via ramp-style pressure-regulated perturbations to generate maximal 

193 pressure-volume loops.
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195 RESULTS 

196 Lung injury 

197 Lung injury was quantified in a blinded manner using a validated 

198 histopathologic scoring system incorporating four criteria: leukocyte 

199 infiltration, fibrin deposition, alveolar hemorrhage, and capillary 

200 congestion. One-way ANOVA demonstrated a significant effect of the 

201 storage condition on cumulative lung injury scores (p= 0.0079) (Figure 1). 

202 Tukey analysis revealed that lungs ventilated at 10°C exhibited significantly 

203 reduced histologic injury compared to those stored statically at 4°C (p = 

204 0.0062). Although ventilated lungs also demonstrated lower injury scores 

205 relative to static storage at 10°C, this difference did not reach statistical 

206 significance (p = 0.4238). The subcomponents of the lung injury score for 

207 each group can be found in Supplementary Figure 1. 

208 Complement shedding

209 Complement C3 concentrations in the lung preservation solution were 

210 quantified via ELISA. Ventilated donor lungs stored at 10°C exhibited 

211 significantly reduced C3 shedding (84.3 ± 33.8 ng/mL) compared to lungs 

212 stored statically at 4°C (390.3 ± 129.5 ng/mL; p = 0.0102) and 10°C (517.0 

213 ± 13.4 ng/mL; p = 0.0011) (Figure 2).

214 Cellular health

215 Donor lungs were enzymatically dissociated and analyzed by flow cytometry 

216 to assess cellular viability and apoptosis, utilizing both live/dead 
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217 discrimination and apoptotic staining. Ventilated lungs stored at 10°C 

218 demonstrated a significantly lower proportion of apoptotic cells (45.2% ± 

219 2.25%) compared to static storage at 4°C (55.7% ± 3.61%; p = 0.0016) and 

220 10°C (51.2% ± 2.65%; p = 0.0386). Although a higher percentage of viable 

221 cells was observed in the ventilated group, this difference did not reach 

222 statistical significance (p = 0.18) (Figure 3). Mitochondrial integrity was 

223 assessed by quantifying cytochrome c release—an indicator of 

224 mitochondrial outer membrane permeabilization during apoptosis—and 

225 intracellular reactive oxygen species (ROS) generation. Donor lungs 

226 ventilated at 10°C exhibited significantly reduced cytochrome c levels (20.0 

227 ± 6.17 MFI) compared to lungs stored statically at both 4°C (50.35 ± 8.77 

228 MFI) and 10°C (37.25 ± 8.49 MFI; p = 0.0014). Storage condition also 

229 significantly influenced ROS production across groups (P = 0.0011). Tukey 

230 analysis revealed that ventilated lungs at 10°C generated significantly less 

231 ROS (1819 ± 231.1 MFI) than those stored statically at 4°C (3121 ± 360.9 

232 MFI; p = 0.0008), with a non-significant trend toward reduced ROS relative 

233 to static 10°C storage (2440 ± 362.9 MFI; p = 0.057) (Figure 4).

234 Respiratory mechanics 

235 Pulmonary function was evaluated using the FlexiVent small animal 

236 ventilator system to characterize the impact of preservation strategy on 

237 respiratory mechanics. Ventilated lungs stored at 10°C demonstrated 

238 significantly reduced airway resistance (0.88 ± 0.46 cmH₂O·s/mL) 
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239 compared to statically stored lungs at 10°C (3.06 ± 0.84 cmH₂O·s/mL; P = 

240 0.021), along with a significant increase in dynamic compliance (0.016 ± 

241 0.003 mL/cmH₂O vs. 0.006 ± 0.0008 mL/cmH₂O; P = 0.023) (Figure 5). 

242 Although differences in peripheral lung mechanics—specifically tissue 

243 elastance, damping, and hysterisivity—did not reach statistical significance, 

244 ventilated lungs exhibited a consistent trend toward improved values across 

245 these parameters (Figure 5).

246
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247 DISCUSSION

248 In this report, the addition of normal tidal volume ventilation to recovered 

249 murine lungs produced five principal findings: 1) Cell viability increased, 

250 and apoptosis decreased. 2) Mitochondrial health significantly improved, 

251 with ventilated cells demonstrating lower levels of cytochrome C and 

252 reduced reactive oxygen species. 3) Ventilated allografts exhibited 

253 significantly less lung injury when assessed with H&E staining. 4) The 

254 storage perfusate showed a significant decrease in complement shedding. 

255 5) Pulmonary function improved in donor lungs stored with ventilation.  Our 

256 data demonstrate that donor lungs benefit from ventilation during cold 

257 storage. 

258 Alveolar recruitment has long been demonstrated as advantageous 

259 following lung recovery.  In an experiment assessing the effect of alveolar 

260 recruitment on ischemia-reperfusion, DeCampos et al. compared the effects 

261 of inflation to TLC with those of prolonged tidal volume ventilation against 

262 standard reperfusion in a rat model.  The group showed significant 

263 improvement in pO2, decreased shunt fraction, and reduced peak airway 

264 pressure.  Pulmonary edema was also significantly improved with alveolar 

265 recruitment.  Importantly, any alveolar recruitment was beneficial, as no 

266 difference was seen between TLC inflation and 10 minutes of ventilation21. 

267 Consistent with these findings, our data show that application of ventilation 

268 during lung preservation at 10°C led to improved respiratory mechanics, 

269 specifically demonstrating significantly lower airway resistance and 
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270 increased dynamic compliance compared to lungs stored statically. These 

271 results suggest that application of non-injurious cyclic stretch during 

272 storage may confer functional benefits to the donor lung, likely through 

273 sustained alveolar recruitment and mitigation of atelectasis-related injury.

274 We also observed that cyclic stretch applied via ventilation during storage 

275 improved mitochondrial health, a finding that is likely attributable to 

276 enhanced mitochondrial biogenesis. In support of this mechanism, Kim et al. 

277 demonstrated that cyclic stretch upregulates key regulators of 

278 mitochondrial biogenesis and oxidative phosphorylation—such as PGC-1α, 

279 TFAM, and ERRα—leading to increased mitochondrial mass and ATP 

280 production in cardiac myocytes23. In the context of pulmonary epithelial 

281 cells, McAdams and colleagues reported that non-injurious cyclic stretch 

282 under hyperoxic conditions reduced superoxide accumulation and preserved 

283 cell viability, suggesting that mechanical stretch may suppress ROS 

284 production directly or upregulate endogenous antioxidant defenses24. 

285 Similarly, Zhou et al. showed that controlled lung inflation during 

286 preservation elevated superoxide dismutase (SOD) activity and reduced 

287 oxidative stress markers, further supporting the role of mechanical forces in 

288 redox homeostasis25. Collectively, these findings reinforce a mechanistic 

289 paradigm in which cyclic stretch during lung preservation enhances 

290 mitochondrial biogenesis and function, thereby attenuating oxidative injury 

291 through improved mitochondrial quality control and redox regulation.
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292 We also found that ventilated lungs stored at 10°C shed significantly less 

293 complement C3 compared to statically stored lungs, suggesting a potential 

294 reduction in complement activation under this preservation strategy. 

295 Complement activation has emerged as a key contributor to primary graft 

296 dysfunction following lung transplantation26-28. Prior studies have 

297 demonstrated that complement split products, such as C3d and C4d, deposit 

298 in the pulmonary microvasculature early after transplantation, particularly 

299 in cases complicated by PGD. Specifically, Westall et al. identified 

300 widespread septal capillary deposition of C3d and C4d in lung allografts 

301 within the first three months post-transplant, correlating with early graft 

302 injury27. More recently, Kulkarni et al. showed that levels of various 

303 complement activation fragments, including sC4d, sC5b-9, C1q, C2, C4, and 

304 C4b, were significantly elevated in bronchoalveolar lavage fluid from 

305 patients with severe PGD, implicating activation of all three complement 

306 pathways28. Furthermore, inhibition of C3 activation in a murine transplant 

307 model has been shown to protect against ischemia-reperfusion injury and 

308 lung injury, underscoring the pathogenic role of complement in early graft 

309 dysfunction29. In light of these findings, our study demonstrated that donor 

310 lungs ventilated at 10°C during preservation shed significantly less C3 

311 compared to statically stored lungs, suggesting that ventilation at sub-

312 normothermic temperatures may mitigate complement activation during 

313 storage and potentially reduce early graft injury.
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314 Collectively, these findings encourage examination of the specific 

315 ventilatory factors that contribute to the observed benefit during 

316 hypothermic storage. Although both cyclic stretch and oxygen delivery 

317 could plausibly contribute, we hypothesize that mechanical stretch is the 

318 primary driver through mitochondrial biogenesis, as discussed above. 

319 Continued ventilation during ischemia-reperfusion also preserves surfactant 

320 function and reduces injury in ex vivo models, supporting a stretch-

321 mediated mechanism30. We ventilated with room air to avoid hyperoxia-

322 related oxidative injury, which can worsen reperfusion damage31. However, 

323 we did not continuously measure alveolar O2 during storage; static storage 

324 after tracheal clamping provides only a fixed intrapulmonary O2 reservoir 

325 that is gradually depleted by tissue metabolism and diffusion. In contrast, 

326 cyclic ventilation replenishes alveolar gases and facilitates CO2 exhalation, 

327 stabilizing the O2 fraction and limiting absorption atelectasis. Conceptually, 

328 nitrogen (N2) ventilation would preserve stretch but remove alveolar oxygen 

329 and has been linked to worse ischemic injury and impaired surfactant 

330 function in experimental systems30. Mild CO2 enrichment may be protective 

331 in some contexts, as hypercapnia has been associated with preserved type II 

332 cells and cytoprotective effects in lung injury models32,33. These points 

333 suggest that future studies should explore variations in tidal volume, 

334 rate/pressure targets, and gas composition to distinguish between stretch- 

335 and gas-driven effects. 
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336 In summary, this study presents a novel method of lung preservation and 

337 demonstrates consistent improvements in allograft health based on analysis 

338 of several key physiological parameters. However, these results should be 

339 considered in the context of certain limitations relevant to the models used. 

340 Specifically, while the murine model provides a controlled platform for 

341 mechanistic investigation, it does not fully recapitulate the anatomic and 

342 immunologic complexity of human lungs. Without an EVLP or transplant 

343 model, the external validity of this study remains to be established.  Our 

344 study focused on pre-transplant allograft quality without assessing post-

345 transplant function, leaving the long-term impact of ventilated storage on 

346 graft performance unresolved. Follow-up studies will be designed to 

347 leverage additional conditions beyond the use of physiologic tidal volumes 

348 at 10°C, which will further clarify the optimal parameters for stretch and 

349 ventilation during allograft storage. Specifically, these future studies will 

350 explore the optimal combination of ventilation parameters—such as tidal 

351 volume, rate, pressure, and oxygen concentration—across different 

352 preservation temperatures. In addition, further investigating the cellular 

353 and molecular pathways influenced by cyclic stretch, and expanding this 

354 work to include transcriptomic or proteomic profiling could further clarify 

355 the mechanisms by which ventilation preserves graft quality. Finally, future 

356 studies using large animal EVLP and transplant models will be critical to 

357 determine the clinical translatability of these findings. Together, these 

358 directions aim to refine and validate a ventilation-based preservation 
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359 strategy that could meaningfully enhance donor lung utilization and post-

360 transplant outcomes.

361 CONCLUSIONS

362 This study demonstrates that ventilating donor lungs at 10°C during storage 

363 preserves cellular and mitochondrial health, reduces complement 

364 activation, limits histologic injury, and improves respiratory mechanics 

365 compared to static cold storage. These findings suggest that incorporating 

366 ventilation into sub-normothermic preservation strategies may extend safe 

367 storage times and improve graft quality prior to transplantation. While 

368 further work in large animal and transplant models is needed, this approach 

369 has the potential to enhance donor lung utilization and improve outcomes in 

370 lung transplantation.
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557 FIGURES

558

559 Figure 1: Recovered murine lung allografts were assessed for: leukocyte 

560 infiltration, fibrin deposition, alveolar hemorrhage and capillary congestion 

561 to determine the lung injury score.  Lungs stored with the addition of 

562 ventilation demonstrated significantly less lung injury.  Representative 

ACCEPTED MANUSCRIPTARTICLE IN PRESS

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



26

563 hematoxylin and eosin-stained lung images for (A) lung allografts stored for 

564 24 hours at 4oC static inflation, (B) 10oC static inflation, (C) 10oC ventilated 

565 with room air at tidal volume ventilation, and (D) Quantification of Lung 

566 Injury Score in each group. One-way ANOVA demonstrated a significant 

567 effect of the storage condition on cumulative lung injury scores (p= 0.0079). 

568 Lungs ventilated at 10°C exhibited significantly reduced histologic injury 

569 compared to those stored statically at 4°C (p = 0.0062).  

570

571

572 Figure 2: Lung allografts that were stored with tidal volume ventilation 

573 demonstrated significantly lower levels of Complement C3 in the storage 

574 perfusate when compared to lungs stored at static inflation at 4°C 

575 (p=0.0102) and 10°C (p=0.0011).  
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576

577

578 Figure 3: Lungs were digested after 24 hours of storage and assessed with 

579 live/dead staining (Zombie UV) and apoptosis (Apotracker). (A) A non-

580 significant trend in improved cellular viability was seen with the addition of 

581 ventilation to the stored lungs. (B) Ventilation significantly decreased the 

582 percentage of apoptotic cells compared to static storage at 4°C (p = 0.0016) 

583 and 10°C (p = 0.0386). 

584
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585

586 Figure 4: Mitochondrial health was assessed using intracellular flow 

587 cytometry evaluation staining for cytochrome C and superoxide production.  

588 (A) The addition of ventilation significantly reduced cytochrome C 

589 production (p=0.0014).  (B) Temperature significantly reduced superoxide 

590 production (p=0.0011), though no significant difference was seen between 

591 static storage and ventilation at 10oC (p=0.057).

592

593

594
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595

596 Figure 5: Lung mechanics were assessed after 24 hours storage using the 

597 FlexiVent small animal ventilator to evaluate single-compartment mechanics 

598 and measures from the forced oscillation maneuver.  (A) Single-

599 compartment airway resistance in ventilated lungs was significantly 

600 decreased (p=0.021) and (B) pulmonary compliance significantly improved 

601 (p=0.023) compared to statically stored lungs at 10°C. When evaluating the 

602 lung using forced oscillation, (C) Elastance and (D) Damping were reduced 

603 in the lungs subjected to ventilation, though not significantly (p=0.157, 

604 p=0.106).  (E) Likewise, hysteresivity was reduced but not significantly 

605 (p=0.132).  

606

607

608

609

610
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