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ABSTRACT

Background: Cold static preservation at 4°C is the clinical standard for
donor lung storage but is limited to 6-8 hours of cold ischemia. Static
storage at 10°C has been shown to extend ischemia times and improve lung
health. Given that lungs can maintain aerobic metabolism ex vivo, we
hypothesized that adding ventilation at 10°C would further prolong
preservation by stimulating aerobic metabolism.

Methods: Lungs were procured from C57Bl/6 mice and then stored for 24h
with ventilation at 10°C (n=4), statically at 10°C (n=4), or statically at 4°C
(n=4). Respiratory mechanics were evaluated using a FlexiVent system.
Cellular viability was assessed via flow cytometry. Complement shedding
was evaluated by enzyme-linked immunosorbent assay. Histologic evidence
of lung injury was assessed by H&E staining.

Results: Donor lungs stored with ventilation at 10°C exhibited significantly
reduced histologic injury scores compared to static storage at 4°C (p =
0.0062). Ventilation also decreased complement C3 shedding (p < 0.01),
apoptosis (p < 0.05), cytochrome c release (p = 0.0014), and ROS
production (p = 0.0008) compared to statically stored lungs at 4°C and
10°C. Functionally, ventilated lungs demonstrated improved respiratory
mechanics with lower airway resistance (p = 0.021) and increased

compliance (p = 0.023) compared to static storage at 10°C.
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Conclusions: Ventilating lungs at 10°C compared to static cold storage
appears to result in healthier and more functional lung tissue and may

extend the preservation times of donor organs for lung transplantation.

KEYWORDS
Lung transplantation; organ preservation; murine model

BACKGROUND

Recent changes to the lung donor allocation system! have increased
the number of lung transplants performed at the cost of increased travel
distances for transplant centers2. Despite increased travel distance, lung
recovery techniques have largely been unchanged, with cold static storage
being the predominant method and the alternative being ex vivo lung
perfusion (EVLP)3. EVLP is a normothermic platform that provides both
perfusion and ventilation to enable physiologic assessment and therapeutic
intervention, but its adoption is constrained by cost, complexity, and
logistics (specialized equipment/teams, disposables often >$60,000 per
case), and limited portability34-35. Recent data suggests moderate
hypothermia may extend cold ischemia time, attenuate donor lung injury,
and improve cellular health within the lung allograft*-6. Regardless of lung
storage, the technique for recovery is unchanged. Lung allografts are
perfused with a cold flush - typically a low-potassium dextran solution’-

while simultaneously ventilating the lungs with low-tidal volumes. This
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decreases atelectasis, which is associated with higher pulmonary vascular
resistance and results in a heterogeneous distribution of perfusate.
Following perfusion, the lung is inflated to 50% of lung capacity (or 15
cmH20 airway pressure) with 50% FiO2, and the trachea is clamped before
placement in an ice cooler. While much focus has been placed on
temperature and perfusion solutions, there has been less investigation into

the role of stretch on the donor allograft.

During development, the lungs demonstrate significant sensitivity to
stretch signals. Oligohydramnios, congenital diaphragmatic hernia, and
phrenic nerve dysfunction8-10 - which all attenuate stretch signals - result
in underdeveloped lungs. Excessive stretch signaling, such as with large
tidal volume ventilation, exacerbates lung injury and leads to disordered
alveolar growth!1-13, Compensatoiy lung growth following pneumonectomy
is well-described in many mammals!?. This phenomenon can be attenuated
by reducing cyclic stretch!® and appears to localize to subpleural regions of
the lung - areas most subject to deformation!9.20 - supporting the
hypothesis that cyclic stretch is essential to alveologenesis. From a lung
donation perspective, expanding the lung during recovery with oxygen
allows for continued aerobic metabolism, preserved surfactant function,
improved pulmonary compliance, and increased alveolar fluid clearancel4-
16, However, donor lungs are exposed to static stretch, and the role of cyclic
stretch is unknown. We therefore posited that isolating ventilation (i.e.,

cyclic stretch with room-air gas exchange) during hypothermic storage may
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capture key physiologic components of EVLP’s ventilatory component while
avoiding the costs, personnel, and infrastructure required for perfusion
circuity. This approach also differs from hypothermic preservation systems
that maintain constant airway pressure to reduce the risk of barotrauma
from overdistention (e.g., BaroGuard) by delivering low-tidal volume cyclic
ventilation that imparts physiologic stretch rather than pressure-controlled
static inflation. This ventilation-alone strategy is portable, inexpensive, and
compatible with current procurement workflows, potentially extending safe

preservation without the need for an EVLP platform.

In this report, we applied cyclic stretch to a murine lung model to
determine the effect of this stimulus on allograft health. After recovery, the
lungs were subjected to static inflation or to continued room air ventilation
at physiologic tidal volumes. We assessed mitochondrial and cellular health,
histologic evidence of iung injury, and mechanical physiology in the context
of each respective storage modality to assess if ventilation during storage

results in more functional donor lungs.

METHODS

Animals and Surgical Procedure

This study was approved by the Committee of Animal Research following
the National Institutes of Health Guide for Care and Use of Laboratory
Animals and was designed and reported in accordance with the ARRIVE

guidelines for animal research. All personnel working with the animals had
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the required course training and certifications. C57B1/6 mice were used for
all experiments. The donor animal is induced with 5 parts per million (ppm)
of isoflurane and maintained with 3 ppm of isoflurane via a nosecone. Depth
of anesthesia is confirmed via toe pinch prior to the start of the procedure.
The skin is divided with scissors from the xiphoid process to the jaw. The
xyphoid process is retracted cephalad to expose the diaphragm. An incision
is made on the right side of the diaphragm to collapse the lungs. The right
and left ribs are then cut in the mid axillary line and retracted cephalad.
500 u/kg of heparin is then injected directly into the right atrium. The
beating heart is then divided along the short axis to expose the right and
left ventricular cavities. 50 ml/kg of Perfadex perfusate is delivered into the
pulmonary artery from the right ventricle through the pulmonary valve
using a gravity perfusion setup. After flushing is complete, the donor
pneumonectomy is performed in standard fashion. Animals were euthanized
under 5% isoflurane anesthesia via exsanguination after donor
pneumonectomy. Following donor pneumonectomy, the trachea is intubated
with an 18-gauge Angiocath™ venous catheter (Beckton Dickenson, N]J,
USA) and stored in one of three conditions: cold static storage at 4 °C
(n=4), cold static storage at 10 °C (n=4), and ventilation storage at 10 °C
(n=4). All lungs were stored in Perfadex solution for 24 hours. For each
group, storage occurred in a dedicated laboratory refrigerator set to 4°C or
10°C with continuous internal probe monitoring and alarm windows of 2-

6°C and 8-12°C, respectively. No temperature alarms occurred during any
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storage interval. Ice-bags were not used to avoid sub-zero surface
temperatures. For ventilated storage, lungs received cyclic ventilation using
a volume-controlled small animal ventilator (Harvard Apparatus, MA, USA).
Lung protective settings were applied—specifically tidal volume 6-8mL/kg,
respiratory rate of 80 breaths/min, FiO2 0.21, I:E ~ 1:2, with no additional
PEEP applied. The ventilator remained outside the refrigerator, so the

delivered gas was at ambient room temperature and humidity.

Cellular health

Murine lung tissue was harvested and enzymatically dissociated into a
single cell suspension using the Lung Dissociation Kit (Miltenyi Biotec,
North Rhine-Westphalia, Germany) according to the manufacturer’s
instructions. Cellular viability was assessed with flow cytometry using
Zombie UV fixable viability dye (ThermoFisher, MA, U.S.) to distinguish live
and dead cells and Apotracker (BioLegend, CA, U.S.) to identify early

apoptotic cells.

Mitochondrial health was evaluated via intracellular flow cytometry. Cells
were stained with an anti-cytochrome c antibody (BioLegend, CA, U.S.) to
assess mitochondrial membrane integrity and with MitoSOX Red
(ThermoFisher, MA, U.S.) to detect mitochondrial superoxide production as
an indicator of oxidative stress. For intercellular detection of mitochondrial
components, cells were permeabilied with digitonin prior to anti-

cytochrome c staining. MitoSOX loading was performed on live cells before
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fixation/permeabilization per manufacturer instructions. All flow cytometry
data were acquired on a CytoFLEX LX (Beckman Coulter, CA, U.S.) and
analyzed using Flow]o software (BD Biosciences, NJ, U.S.). Gating
strategies excluded doublets and debris based on forward and side scatter

profiles.

Histology

Lung tissue samples were embedded in paraffin after fixation in 10%
buffered formalin for 48h, followed by 5[Jm sectioning and hematoxylin and
eosin staining. The slides were then blindly reviewed and graded by two
separate lung histopathologists using a previousiy described lung injury
scale?2. Briefly, lung injury was assessed based on four histologic criteria:
white blood cell infiltration, fibrin exudates, alveolar hemorrhage, and
capillary congestion. Each paraineter was graded on a scale from 0 to 3,
where O indicated absence, 1 mild, 2 moderate, and 3 severe involvement.
Each animal's cumulative injury score was calculated by summing the

individual scores across all four parameters.

Complement shedding

Murine C3 concentrations in the lung preservation solution were quantified
via enzyme-linked immunosorbent assay (ELISA; Abcam, Cambridge, UK),

performed in accordance with the manufacturer’s standardized protocol.

Respiratory mechanics
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Ex vivo pulmonary mechanics were evaluated using the FlexiVent small
animal ventilator system (SCIREQ, Montreal, QC, Canada). Following 24
hours of storage, donor lungs were cannulated and connected to the
FlexiVent platform for comprehensive respiratory function assessment. All
assessments were completed at room temperature. Lung mechanics were
quantified through a series of forced oscillation technique (FOT)-based
perturbations. The snapshot perturbation maneuver was employed to derive
key parameters, including airway resistance, dynamic compliance, tissue
elastance, and hysterisivity. Pressure-volume relationships were assessed
via ramp-style pressure-regulated perturbations to generate maximal

pressure-volume loops.
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RESULTS

Lung injury

Lung injury was quantified in a blinded manner using a validated
histopathologic scoring system incorporating four criteria: leukocyte
infiltration, fibrin deposition, alveolar hemorrhage, and capillary
congestion. One-way ANOVA demonstrated a significant effect of the
storage condition on cumulative lung injury scores (p= 0.0079) (Figure 1).
Tukey analysis revealed that lungs ventilated at 10°C exhibited significantly
reduced histologic injury compared to those stored statically at 4°C (p =
0.0062). Although ventilated lungs also demonstrated lower injury scores
relative to static storage at 10°C, this difference did not reach statistical
significance (p = 0.4238). The subcomponents of the lung injury score for

each group can be found in Supplementary Figure 1.

Complement shedding

Complement C3 concentrations in the lung preservation solution were
quantified via ELISA. Ventilated donor lungs stored at 10°C exhibited
significantly reduced C3 shedding (84.3 + 33.8 ng/mL) compared to lungs
stored statically at 4°C (390.3 £ 129.5 ng/mL; p = 0.0102) and 10°C (517.0

+ 13.4 ng/mL; p = 0.0011) (Figure 2).

Cellular health

Donor lungs were enzymatically dissociated and analyzed by flow cytometry

to assess cellular viability and apoptosis, utilizing both live/dead

10
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discrimination and apoptotic staining. Ventilated lungs stored at 10°C
demonstrated a significantly lower proportion of apoptotic cells (45.2% =+
2.25%) compared to static storage at 4°C (55.7% = 3.61%; p = 0.0016) and
10°C (51.2% = 2.65%; p = 0.0386). Although a higher percentage of viable
cells was observed in the ventilated group, this difference did not reach
statistical significance (p = 0.18) (Figure 3). Mitochondrial integrity was
assessed by quantifying cytochrome c release—an indicator of
mitochondrial outer membrane permeabilization during apoptosis—and
intracellular reactive oxygen species (ROS) generation. Donor lungs
ventilated at 10°C exhibited significantly reduced cytochrome c levels (20.0
+ 6.17 MFI) compared to lungs stored staticaily at both 4°C (50.35 = 8.77
MFI) and 10°C (37.25 %= 8.49 MFI; p = 0.0014). Storage condition also
significantly influenced ROS production across groups (P = 0.0011). Tukey
analysis revealed that ventilated lungs at 10°C generated significantly less
ROS (1819 = 231.1 MFI) than those stored statically at 4°C (3121 = 360.9
MFI; p = 0.0008), with a non-significant trend toward reduced ROS relative

to static 10°C storage (2440 = 362.9 MFI; p = 0.057) (Figure 4).

Respiratory mechanics

Pulmonary function was evaluated using the FlexiVent small animal
ventilator system to characterize the impact of preservation strategy on
respiratory mechanics. Ventilated lungs stored at 10°C demonstrated

significantly reduced airway resistance (0.88 = 0.46 cmH20-s/mL)

11
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compared to statically stored lungs at 10°C (3.06 = 0.84 cmH20-s/mL; P =
0.021), along with a significant increase in dynamic compliance (0.016 +
0.003 mL/cmH20 vs. 0.006 = 0.0008 mL/cmH-20; P = 0.023) (Figure 5).
Although differences in peripheral lung mechanics—specifically tissue
elastance, damping, and hysterisivity—did not reach statistical significance,
ventilated lungs exhibited a consistent trend toward improved values across

these parameters (Figure 5).
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DISCUSSION

In this report, the addition of normal tidal volume ventilation to recovered
murine lungs produced five principal findings: 1) Cell viability increased,
and apoptosis decreased. 2) Mitochondrial health significantly improved,
with ventilated cells demonstrating lower levels of cytochrome C and
reduced reactive oxygen species. 3) Ventilated allografts exhibited
significantly less lung injury when assessed with H&E staining. 4) The
storage perfusate showed a significant decrease in complement shedding.
5) Pulmonary function improved in donor lungs stored with ventilation. Our
data demonstrate that donor lungs benefit from ventilation during cold

storage.

Alveolar recruitment has long been demionstrated as advantageous
following lung recovery. In an experiment assessing the effect of alveolar
recruitment on ischemia-reperfusion, DeCampos et al. compared the effects
of inflation to TLC with those of prolonged tidal volume ventilation against
standard reperfusion in a rat model. The group showed significant
improvement in pO2, decreased shunt fraction, and reduced peak airway
pressure. Pulmonary edema was also significantly improved with alveolar
recruitment. Importantly, any alveolar recruitment was beneficial, as no
difference was seen between TLC inflation and 10 minutes of ventilation?1.
Consistent with these findings, our data show that application of ventilation
during lung preservation at 10°C led to improved respiratory mechanics,

specifically demonstrating significantly lower airway resistance and

13
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increased dynamic compliance compared to lungs stored statically. These
results suggest that application of non-injurious cyclic stretch during
storage may confer functional benefits to the donor lung, likely through

sustained alveolar recruitment and mitigation of atelectasis-related injury.

We also observed that cyclic stretch applied via ventilation during storage
improved mitochondrial health, a finding that is likely attributable to
enhanced mitochondrial biogenesis. In support of this mechanism, Kim et al.
demonstrated that cyclic stretch upregulates key regulators of
mitochondrial biogenesis and oxidative phosphorylation—such as PGC-1q,
TFAM, and ERRa—leading to increased mitochondrial mass and ATP
production in cardiac myocytes23. In the context of pulmonary epithelial
cells, McAdams and colleagues reported that non-injurious cyclic stretch
under hyperoxic conditions reduced superoxide accumulation and preserved
cell viability, suggesting that mechanical stretch may suppress ROS
production directiv or upregulate endogenous antioxidant defenses?4,
Similarly, Zhou et al. showed that controlled lung inflation during
preservation elevated superoxide dismutase (SOD) activity and reduced
oxidative stress markers, further supporting the role of mechanical forces in
redox homeostasis2?. Collectively, these findings reinforce a mechanistic
paradigm in which cyclic stretch during lung preservation enhances
mitochondrial biogenesis and function, thereby attenuating oxidative injury

through improved mitochondrial quality control and redox regulation.
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We also found that ventilated lungs stored at 10°C shed significantly less
complement C3 compared to statically stored lungs, suggesting a potential
reduction in complement activation under this preservation strategy.
Complement activation has emerged as a key contributor to primary graft
dysfunction following lung transplantation26-28, Prior studies have
demonstrated that complement split products, such as C3d and C4d, deposit
in the pulmonary microvasculature early after transplantation, particularly
in cases complicated by PGD. Specifically, Westall et al. identified
widespread septal capillary deposition of C3d and C4d in lung allografts
within the first three months post-transplant, correlating with early graft
injury27. More recently, Kulkarni et al. showed that levels of various
complement activation fragments, including sC4d, sC5b-9, Clq, C2, C4, and
C4b, were significantly elevated in bronchoalveolar lavage fluid from
patients with severe PGD, implicating activation of all three complement
pathways?28. Furthermore, inhibition of C3 activation in a murine transplant
model has been shown to protect against ischemia-reperfusion injury and
lung injury, underscoring the pathogenic role of complement in early graft
dysfunction?2?. In light of these findings, our study demonstrated that donor
lungs ventilated at 10°C during preservation shed significantly less C3
compared to statically stored lungs, suggesting that ventilation at sub-
normothermic temperatures may mitigate complement activation during

storage and potentially reduce early graft injury.
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Collectively, these findings encourage examination of the specific
ventilatory factors that contribute to the observed benefit during
hypothermic storage. Although both cyclic stretch and oxygen delivery
could plausibly contribute, we hypothesize that mechanical stretch is the
primary driver through mitochondrial biogenesis, as discussed above.
Continued ventilation during ischemia-reperfusion also preserves surfactant
function and reduces injury in ex vivo models, supporting a stretch-
mediated mechanism39. We ventilated with room air to avoid hyperoxia-
related oxidative injury, which can worsen reperfusion damage3!. However,
we did not continuously measure alveolar O, during storage; static storage
after tracheal clamping provides only a fixed intrapulmonary O, reservoir
that is gradually depleted by tissue metabolism and diffusion. In contrast,
cyclic ventilation replenishes alveolar gases and facilitates CO; exhalation,
stabilizing the O, fraction and limiting absorption atelectasis. Conceptually,
nitrogen (N;) ventilation would preserve stretch but remove alveolar oxygen
and has been linked to worse ischemic injury and impaired surfactant
function in experimental systems30, Mild CO, enrichment may be protective
in some contexts, as hypercapnia has been associated with preserved type II
cells and cytoprotective effects in lung injury models32.33, These points
suggest that future studies should explore variations in tidal volume,
rate/pressure targets, and gas composition to distinguish between stretch-

and gas-driven effects.
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In summary, this study presents a novel method of lung preservation and
demonstrates consistent improvements in allograft health based on analysis
of several key physiological parameters. However, these results should be
considered in the context of certain limitations relevant to the models used.
Specifically, while the murine model provides a controlled platform for
mechanistic investigation, it does not fully recapitulate the anatomic and
immunologic complexity of human lungs. Without an EVLP or transplant
model, the external validity of this study remains to be established. Our
study focused on pre-transplant allograft quality without assessing post-
transplant function, leaving the long-term impact of ventilated storage on
graft performance unresolved. Follow-up studies will be designed to
leverage additional conditions beyond the use of physiologic tidal volumes
at 10°C, which will further clarifv the optimal parameters for stretch and
ventilation during allograft storage. Specifically, these future studies will
explore the optimal combination of ventilation parameters—such as tidal
volume, rate, pressure, and oxygen concentration—across different
preservation temperatures. In addition, further investigating the cellular
and molecular pathways influenced by cyclic stretch, and expanding this
work to include transcriptomic or proteomic profiling could further clarify
the mechanisms by which ventilation preserves graft quality. Finally, future
studies using large animal EVLP and transplant models will be critical to
determine the clinical translatability of these findings. Together, these

directions aim to refine and validate a ventilation-based preservation
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strategy that could meaningfully enhance donor lung utilization and post-

transplant outcomes.

CONCLUSIONS

This study demonstrates that ventilating donor lungs at 10°C during storage
preserves cellular and mitochondrial health, reduces complement
activation, limits histologic injury, and improves respiratory mechanics
compared to static cold storage. These findings suggest that incorporating
ventilation into sub-normothermic preservation strategies may extend safe
storage times and improve graft quality prior to transplantation. While
further work in large animal and transplant models is needed, this approach
has the potential to enhance donor lung utilization and improve outcomes in

lung transplantation.
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Figure 1: Recovered murine lung allografts were assessed for: leukocyte
infiltration, fibrin deposition, alveolar hemorrhage and capillary congestion
to determine the lung injury score. Lungs stored with the addition of

ventilation demonstrated significantly less lung injury. Representative
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hematoxylin and eosin-stained lung images for (A) lung allografts stored for
24 hours at 4°C static inflation, (B) 10°C static inflation, (C) 10°C ventilated
with room air at tidal volume ventilation, and (D) Quantification of Lung
Injury Score in each group. One-way ANOVA demonstrated a significant
effect of the storage condition on cumulative lung injury scores (p= 0.0079).
Lungs ventilated at 10°C exhibited significantly reduced histologic injury

compared to those stored statically at 4°C (p = 0.0062).
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Figure 2: Lung allografts that were stored with tidal volume ventilation
demonstrated significantly lower levels of Complement C3 in the storage
perfusate when compared to lungs stored at static inflation at 4°C

(p=0.0102) and 10°C (p=0.0011).
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578 Figure 3: Lungs were digested after 24 hours of storage and assessed with
579 live/dead staining (Zombie UV) and apoptosis (Apotracker). (A) A non-

580 significant trend in improved cellular viability was seen with the addition of
581 ventilation to the stored lungs. (B) Ventilation significantly decreased the

582 percentage of apoptotic cells compared to static storage at 4°C (p = 0.0016)

583 and 10°C (p = 0.0386).
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Figure 4: Mitochondrial health was assessed using intracellular flow
cytometry evaluation staining for cytochrome C and superoxide production.
(A) The addition of ventilation significantly reduced cytochrome C
production (p=0.0014). (B) Teniperature significantly reduced superoxide
production (p=0.0011), thocugh no significant difference was seen between

static storage and ventilation at 10°C (p=0.057).
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Figure 5: Lung mechanics were assessed after 24 hours storage using the
FlexiVent small animal ventilator to evaluate single-compartment mechanics
and measures from the forced oscillation maneuver. (A) Single-
compartment airway resistance in ventilated lungs was significantly
decreased (p=0.021) and (B) pulmonary compliance significantly improved
(p=0.023) compared to statically stored lungs at 10°C. When evaluating the
lung using forced oscillation, (C) Elastance and (D) Damping were reduced
in the lungs subjected to ventilation, though not significantly (p=0.157,
p=0.106). (E) Likewise, hysteresivity was reduced but not significantly
(p=0.132).
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