
Evaluation of ventilation at 10 °C as the optimal storage condition for donor lungs in a murine model

Received: 8 September 2025

Accepted: 9 January 2026

Published online: 04 February 2026

Cite this article as: Hill M.A., Tennant M., Watts B. *et al.* Evaluation of ventilation at 10 °C as the optimal storage condition for donor lungs in a murine model. *Sci Rep* (2026). <https://doi.org/10.1038/s41598-026-35943-2>

Morgan A. Hill, Megan Tennant, Bailey Watts, Carl Atkinson, Richard O'Neil, Kathryn E. Engelhardt & Barry C. Gibney

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

1 **Title:** Evaluation of Ventilation at 10°C as the Optimal Storage Condition
2 for Donor Lungs in a Murine Model

3 **Running Head:** Ventilated storage at 10 °C for donor lungs

4 **Authors:** Morgan A. Hill, MD¹, Megan Tennant, PhD², Bailey Watts, BS³,
5 Carl Atkinson, PhD⁴, Richard O'Neil, PhD², Kathryn E. Engelhardt, MD MS¹,
6 Barry C. Gibney, DO¹

7 **Affiliations:**

8 *¹Division of Cardiothoracic Surgery, Department of Surgery, Medical
9 University of South Carolina, Charleston, SC*

10 *²Department of Microbiology and Immunology, Medical University of South
11 Carolina, Charleston, SC*

12 *³College of Medicine, Department of Medicine, Medical University of South
13 Carolina, Charleston, SC*

14 *⁴Department of Surgery, Northwestern University, Chicago, IL*

15 **Disclosures:** None

16 **Corresponding Author**

17 Barry C. Gibney, DO

18 Division of Cardiothoracic Surgery

19 Medical University of South Carolina

20 30 Courtney Drive

21 Charleston, SC 29425

22 Email: gibney@musc.edu

23 Tel: 843-876-4845

24

25

26

27

28

29 **ABSTRACT**

30 **Background:** Cold static preservation at 4°C is the clinical standard for
31 donor lung storage but is limited to 6–8 hours of cold ischemia. Static
32 storage at 10°C has been shown to extend ischemia times and improve lung
33 health. Given that lungs can maintain aerobic metabolism *ex vivo*, we
34 hypothesized that adding ventilation at 10°C would further prolong
35 preservation by stimulating aerobic metabolism.

36 **Methods:** Lungs were procured from C57Bl/6 mice and then stored for 24h
37 with ventilation at 10°C (n=4), statically at 10°C (n=4), or statically at 4°C
38 (n=4). Respiratory mechanics were evaluated using a FlexiVent system.
39 Cellular viability was assessed via flow cytometry. Complement shedding
40 was evaluated by enzyme-linked immunosorbent assay. Histologic evidence
41 of lung injury was assessed by H&E staining.

42 **Results:** Donor lungs stored with ventilation at 10°C exhibited significantly
43 reduced histologic injury scores compared to static storage at 4°C (p =
44 0.0062). Ventilation also decreased complement C3 shedding (p < 0.01),
45 apoptosis (p < 0.05), cytochrome c release (p = 0.0014), and ROS
46 production (p = 0.0008) compared to statically stored lungs at 4°C and
47 10°C. Functionally, ventilated lungs demonstrated improved respiratory
48 mechanics with lower airway resistance (p = 0.021) and increased
49 compliance (p = 0.023) compared to static storage at 10°C.

50 **Conclusions:** Ventilating lungs at 10°C compared to static cold storage
51 appears to result in healthier and more functional lung tissue and may
52 extend the preservation times of donor organs for lung transplantation.

53

54 **KEYWORDS**

55 Lung transplantation; organ preservation; murine model

56 **BACKGROUND**

57 Recent changes to the lung donor allocation system¹ have increased
58 the number of lung transplants performed at the cost of increased travel
59 distances for transplant centers². Despite increased travel distance, lung
60 recovery techniques have largely been unchanged, with cold static storage
61 being the predominant method and the alternative being ex vivo lung
62 perfusion (EVLP)³. EVLP is a normothermic platform that provides both
63 perfusion and ventilation to enable physiologic assessment and therapeutic
64 intervention, but its adoption is constrained by cost, complexity, and
65 logistics (specialized equipment/teams, disposables often >\$60,000 per
66 case), and limited portability³⁴⁻³⁵. Recent data suggests moderate
67 hypothermia may extend cold ischemia time, attenuate donor lung injury,
68 and improve cellular health within the lung allograft⁴⁻⁶. Regardless of lung
69 storage, the technique for recovery is unchanged. Lung allografts are
70 perfused with a cold flush - typically a low-potassium dextran solution⁷-
71 while simultaneously ventilating the lungs with low-tidal volumes. This

72 decreases atelectasis, which is associated with higher pulmonary vascular
73 resistance and results in a heterogeneous distribution of perfusate.
74 Following perfusion, the lung is inflated to 50% of lung capacity (or 15
75 cmH₂O airway pressure) with 50% FiO₂, and the trachea is clamped before
76 placement in an ice cooler. While much focus has been placed on
77 temperature and perfusion solutions, there has been less investigation into
78 the role of stretch on the donor allograft.

79 During development, the lungs demonstrate significant sensitivity to
80 stretch signals. Oligohydramnios, congenital diaphragmatic hernia, and
81 phrenic nerve dysfunction⁸⁻¹⁰ – which all attenuate stretch signals – result
82 in underdeveloped lungs. Excessive stretch signaling, such as with large
83 tidal volume ventilation, exacerbates lung injury and leads to disordered
84 alveolar growth¹¹⁻¹³. Compensatory lung growth following pneumonectomy
85 is well-described in many mammals¹⁷. This phenomenon can be attenuated
86 by reducing cyclic stretch¹⁸ and appears to localize to subpleural regions of
87 the lung – areas most subject to deformation^{19,20} – supporting the
88 hypothesis that cyclic stretch is essential to alveologenesis. From a lung
89 donation perspective, expanding the lung during recovery with oxygen
90 allows for continued aerobic metabolism, preserved surfactant function,
91 improved pulmonary compliance, and increased alveolar fluid clearance¹⁴⁻
92 ¹⁶. However, donor lungs are exposed to static stretch, and the role of cyclic
93 stretch is unknown. We therefore posited that isolating ventilation (i.e.,
94 cyclic stretch with room-air gas exchange) during hypothermic storage may

95 capture key physiologic components of EVLP's ventilatory component while
96 avoiding the costs, personnel, and infrastructure required for perfusion
97 circuitry. This approach also differs from hypothermic preservation systems
98 that maintain constant airway pressure to reduce the risk of barotrauma
99 from overdistention (e.g., BaroGuard) by delivering low-tidal volume cyclic
100 ventilation that imparts physiologic stretch rather than pressure-controlled
101 static inflation. This ventilation-alone strategy is portable, inexpensive, and
102 compatible with current procurement workflows, potentially extending safe
103 preservation without the need for an EVLP platform.

104 In this report, we applied cyclic stretch to a murine lung model to
105 determine the effect of this stimulus on allograft health. After recovery, the
106 lungs were subjected to static inflation or to continued room air ventilation
107 at physiologic tidal volumes. We assessed mitochondrial and cellular health,
108 histologic evidence of lung injury, and mechanical physiology in the context
109 of each respective storage modality to assess if ventilation during storage
110 results in more functional donor lungs.

111 **METHODS**

112 *Animals and Surgical Procedure*

113 This study was approved by the Committee of Animal Research following
114 the National Institutes of Health Guide for Care and Use of Laboratory
115 Animals and was designed and reported in accordance with the ARRIVE
116 guidelines for animal research. All personnel working with the animals had

117 the required course training and certifications. C57Bl/6 mice were used for
118 all experiments. The donor animal is induced with 5 parts per million (ppm)
119 of isoflurane and maintained with 3 ppm of isoflurane via a nosecone. Depth
120 of anesthesia is confirmed via toe pinch prior to the start of the procedure.
121 The skin is divided with scissors from the xiphoid process to the jaw. The
122 xiphoid process is retracted cephalad to expose the diaphragm. An incision
123 is made on the right side of the diaphragm to collapse the lungs. The right
124 and left ribs are then cut in the mid axillary line and retracted cephalad.
125 500 u/kg of heparin is then injected directly into the right atrium. The
126 beating heart is then divided along the short axis to expose the right and
127 left ventricular cavities. 50 ml/kg of Perfadex perfusate is delivered into the
128 pulmonary artery from the right ventricle through the pulmonary valve
129 using a gravity perfusion setup. After flushing is complete, the donor
130 pneumonectomy is performed in standard fashion. Animals were euthanized
131 under 5% isoflurane anesthesia via exsanguination after donor
132 pneumonectomy. Following donor pneumonectomy, the trachea is intubated
133 with an 18-gauge AngiocathTM venous catheter (Beckton Dickenson, NJ,
134 USA) and stored in one of three conditions: cold static storage at 4 °C
135 (n=4), cold static storage at 10 °C (n=4), and ventilation storage at 10 °C
136 (n=4). All lungs were stored in Perfadex solution for 24 hours. For each
137 group, storage occurred in a dedicated laboratory refrigerator set to 4°C or
138 10°C with continuous internal probe monitoring and alarm windows of 2-
139 6°C and 8-12°C, respectively. No temperature alarms occurred during any

140 storage interval. Ice-bags were not used to avoid sub-zero surface
141 temperatures. For ventilated storage, lungs received cyclic ventilation using
142 a volume-controlled small animal ventilator (Harvard Apparatus, MA, USA).
143 Lung protective settings were applied—specifically tidal volume 6-8mL/kg,
144 respiratory rate of 80 breaths/min, FiO₂ 0.21, I:E ~ 1:2, with no additional
145 PEEP applied. The ventilator remained outside the refrigerator, so the
146 delivered gas was at ambient room temperature and humidity.

147 *Cellular health*

148 Murine lung tissue was harvested and enzymatically dissociated into a
149 single cell suspension using the Lung Dissociation Kit (Miltenyi Biotec,
150 North Rhine-Westphalia, Germany) according to the manufacturer's
151 instructions. Cellular viability was assessed with flow cytometry using
152 Zombie UV fixable viability dye (ThermoFisher, MA, U.S.) to distinguish live
153 and dead cells and Apotracker (BioLegend, CA, U.S.) to identify early
154 apoptotic cells.

155 Mitochondrial health was evaluated via intracellular flow cytometry. Cells
156 were stained with an anti-cytochrome c antibody (BioLegend, CA, U.S.) to
157 assess mitochondrial membrane integrity and with MitoSOX Red
158 (ThermoFisher, MA, U.S.) to detect mitochondrial superoxide production as
159 an indicator of oxidative stress. For intercellular detection of mitochondrial
160 components, cells were permeabilized with digitonin prior to anti-
161 cytochrome c staining. MitoSOX loading was performed on live cells before

162 fixation/permeabilization per manufacturer instructions. All flow cytometry
163 data were acquired on a CytoFLEX LX (Beckman Coulter, CA, U.S.) and
164 analyzed using FlowJo software (BD Biosciences, NJ, U.S.). Gating
165 strategies excluded doublets and debris based on forward and side scatter
166 profiles.

167 *Histology*

168 Lung tissue samples were embedded in paraffin after fixation in 10%
169 buffered formalin for 48h, followed by 5 μ m sectioning and hematoxylin and
170 eosin staining. The slides were then blindly reviewed and graded by two
171 separate lung histopathologists using a previously described lung injury
172 scale²². Briefly, lung injury was assessed based on four histologic criteria:
173 white blood cell infiltration, fibrin exudates, alveolar hemorrhage, and
174 capillary congestion. Each parameter was graded on a scale from 0 to 3,
175 where 0 indicated absence, 1 mild, 2 moderate, and 3 severe involvement.
176 Each animal's cumulative injury score was calculated by summing the
177 individual scores across all four parameters.

178 *Complement shedding*

179 Murine C3 concentrations in the lung preservation solution were quantified
180 via enzyme-linked immunosorbent assay (ELISA; Abcam, Cambridge, UK),
181 performed in accordance with the manufacturer's standardized protocol.

182 *Respiratory mechanics*

183 *Ex vivo* pulmonary mechanics were evaluated using the FlexiVent small
184 animal ventilator system (SCIREQ, Montreal, QC, Canada). Following 24
185 hours of storage, donor lungs were cannulated and connected to the
186 FlexiVent platform for comprehensive respiratory function assessment. All
187 assessments were completed at room temperature. Lung mechanics were
188 quantified through a series of forced oscillation technique (FOT)-based
189 perturbations. The snapshot perturbation maneuver was employed to derive
190 key parameters, including airway resistance, dynamic compliance, tissue
191 elastance, and hysteresivity. Pressure-volume relationships were assessed
192 via ramp-style pressure-regulated perturbations to generate maximal
193 pressure-volume loops.

195 **RESULTS**196 *Lung injury*

197 Lung injury was quantified in a blinded manner using a validated
198 histopathologic scoring system incorporating four criteria: leukocyte
199 infiltration, fibrin deposition, alveolar hemorrhage, and capillary
200 congestion. One-way ANOVA demonstrated a significant effect of the
201 storage condition on cumulative lung injury scores ($p = 0.0079$) (**Figure 1**).
202 Tukey analysis revealed that lungs ventilated at 10°C exhibited significantly
203 reduced histologic injury compared to those stored statically at 4°C ($p =$
204 0.0062). Although ventilated lungs also demonstrated lower injury scores
205 relative to static storage at 10°C, this difference did not reach statistical
206 significance ($p = 0.4238$). The subcomponents of the lung injury score for
207 each group can be found in **Supplementary Figure 1**.

208 *Complement shedding*

209 Complement C3 concentrations in the lung preservation solution were
210 quantified via ELISA. Ventilated donor lungs stored at 10°C exhibited
211 significantly reduced C3 shedding (84.3 ± 33.8 ng/mL) compared to lungs
212 stored statically at 4°C (390.3 ± 129.5 ng/mL; $p = 0.0102$) and 10°C (517.0 ± 13.4 ng/mL; $p = 0.0011$) (**Figure 2**).

214 *Cellular health*

215 Donor lungs were enzymatically dissociated and analyzed by flow cytometry
216 to assess cellular viability and apoptosis, utilizing both live/dead

217 discrimination and apoptotic staining. Ventilated lungs stored at 10°C
218 demonstrated a significantly lower proportion of apoptotic cells (45.2% ±
219 2.25%) compared to static storage at 4°C (55.7% ± 3.61%; $p = 0.0016$) and
220 10°C (51.2% ± 2.65%; $p = 0.0386$). Although a higher percentage of viable
221 cells was observed in the ventilated group, this difference did not reach
222 statistical significance ($p = 0.18$) (**Figure 3**). Mitochondrial integrity was
223 assessed by quantifying cytochrome c release—an indicator of
224 mitochondrial outer membrane permeabilization during apoptosis—and
225 intracellular reactive oxygen species (ROS) generation. Donor lungs
226 ventilated at 10°C exhibited significantly reduced cytochrome c levels (20.0
227 ± 6.17 MFI) compared to lungs stored statically at both 4°C (50.35 ± 8.77
228 MFI) and 10°C (37.25 ± 8.49 MFI; $p = 0.0014$). Storage condition also
229 significantly influenced ROS production across groups ($P = 0.0011$). Tukey
230 analysis revealed that ventilated lungs at 10°C generated significantly less
231 ROS (1819 ± 231.1 MFI) than those stored statically at 4°C (3121 ± 360.9
232 MFI; $p = 0.0008$), with a non-significant trend toward reduced ROS relative
233 to static 10°C storage (2440 ± 362.9 MFI; $p = 0.057$) (**Figure 4**).

234 *Respiratory mechanics*

235 Pulmonary function was evaluated using the FlexiVent small animal
236 ventilator system to characterize the impact of preservation strategy on
237 respiratory mechanics. Ventilated lungs stored at 10°C demonstrated
238 significantly reduced airway resistance (0.88 ± 0.46 cmH₂O·s/mL)

239 compared to statically stored lungs at 10°C ($3.06 \pm 0.84 \text{ cmH}_2\text{O}\cdot\text{s}/\text{mL}$; $P =$
240 0.021), along with a significant increase in dynamic compliance ($0.016 \pm$
241 $0.003 \text{ mL}/\text{cmH}_2\text{O}$ vs. $0.006 \pm 0.0008 \text{ mL}/\text{cmH}_2\text{O}$; $P = 0.023$) (**Figure 5**).
242 Although differences in peripheral lung mechanics—specifically tissue
243 elastance, damping, and hysteresivity—did not reach statistical significance,
244 ventilated lungs exhibited a consistent trend toward improved values across
245 these parameters (**Figure 5**).

246

247 **DISCUSSION**

248 In this report, the addition of normal tidal volume ventilation to recovered
249 murine lungs produced five principal findings: 1) Cell viability increased,
250 and apoptosis decreased. 2) Mitochondrial health significantly improved,
251 with ventilated cells demonstrating lower levels of cytochrome C and
252 reduced reactive oxygen species. 3) Ventilated allografts exhibited
253 significantly less lung injury when assessed with H&E staining. 4) The
254 storage perfusate showed a significant decrease in complement shedding.
255 5) Pulmonary function improved in donor lungs stored with ventilation. Our
256 data demonstrate that donor lungs benefit from ventilation during cold
257 storage.

258 Alveolar recruitment has long been demonstrated as advantageous
259 following lung recovery. In an experiment assessing the effect of alveolar
260 recruitment on ischemia-reperfusion, DeCampos et al. compared the effects
261 of inflation to TLC with those of prolonged tidal volume ventilation against
262 standard reperfusion in a rat model. The group showed significant
263 improvement in pO₂, decreased shunt fraction, and reduced peak airway
264 pressure. Pulmonary edema was also significantly improved with alveolar
265 recruitment. Importantly, any alveolar recruitment was beneficial, as no
266 difference was seen between TLC inflation and 10 minutes of ventilation²¹.
267 Consistent with these findings, our data show that application of ventilation
268 during lung preservation at 10°C led to improved respiratory mechanics,
269 specifically demonstrating significantly lower airway resistance and

270 increased dynamic compliance compared to lungs stored statically. These
271 results suggest that application of non-injurious cyclic stretch during
272 storage may confer functional benefits to the donor lung, likely through
273 sustained alveolar recruitment and mitigation of atelectasis-related injury.

274 We also observed that cyclic stretch applied via ventilation during storage
275 improved mitochondrial health, a finding that is likely attributable to
276 enhanced mitochondrial biogenesis. In support of this mechanism, Kim et al.
277 demonstrated that cyclic stretch upregulates key regulators of
278 mitochondrial biogenesis and oxidative phosphorylation—such as PGC-1 α ,
279 TFAM, and ERR α —leading to increased mitochondrial mass and ATP
280 production in cardiac myocytes²³. In the context of pulmonary epithelial
281 cells, McAdams and colleagues reported that non-injurious cyclic stretch
282 under hyperoxic conditions reduced superoxide accumulation and preserved
283 cell viability, suggesting that mechanical stretch may suppress ROS
284 production directly or upregulate endogenous antioxidant defenses²⁴.
285 Similarly, Zhou et al. showed that controlled lung inflation during
286 preservation elevated superoxide dismutase (SOD) activity and reduced
287 oxidative stress markers, further supporting the role of mechanical forces in
288 redox homeostasis²⁵. Collectively, these findings reinforce a mechanistic
289 paradigm in which cyclic stretch during lung preservation enhances
290 mitochondrial biogenesis and function, thereby attenuating oxidative injury
291 through improved mitochondrial quality control and redox regulation.

292 We also found that ventilated lungs stored at 10°C shed significantly less
293 complement C3 compared to statically stored lungs, suggesting a potential
294 reduction in complement activation under this preservation strategy.
295 Complement activation has emerged as a key contributor to primary graft
296 dysfunction following lung transplantation²⁶⁻²⁸. Prior studies have
297 demonstrated that complement split products, such as C3d and C4d, deposit
298 in the pulmonary microvasculature early after transplantation, particularly
299 in cases complicated by PGD. Specifically, Westall et al. identified
300 widespread septal capillary deposition of C3d and C4d in lung allografts
301 within the first three months post-transplant, correlating with early graft
302 injury²⁷. More recently, Kulkarni et al. showed that levels of various
303 complement activation fragments, including sC4d, sC5b-9, C1q, C2, C4, and
304 C4b, were significantly elevated in bronchoalveolar lavage fluid from
305 patients with severe PGD, implicating activation of all three complement
306 pathways²⁸. Furthermore, inhibition of C3 activation in a murine transplant
307 model has been shown to protect against ischemia-reperfusion injury and
308 lung injury, underscoring the pathogenic role of complement in early graft
309 dysfunction²⁹. In light of these findings, our study demonstrated that donor
310 lungs ventilated at 10°C during preservation shed significantly less C3
311 compared to statically stored lungs, suggesting that ventilation at sub-
312 normothermic temperatures may mitigate complement activation during
313 storage and potentially reduce early graft injury.

314 Collectively, these findings encourage examination of the specific
315 ventilatory factors that contribute to the observed benefit during
316 hypothermic storage. Although both cyclic stretch and oxygen delivery
317 could plausibly contribute, we hypothesize that mechanical stretch is the
318 primary driver through mitochondrial biogenesis, as discussed above.
319 Continued ventilation during ischemia-reperfusion also preserves surfactant
320 function and reduces injury in ex vivo models, supporting a stretch-
321 mediated mechanism³⁰. We ventilated with room air to avoid hyperoxia-
322 related oxidative injury, which can worsen reperfusion damage³¹. However,
323 we did not continuously measure alveolar O₂ during storage; static storage
324 after tracheal clamping provides only a fixed intrapulmonary O₂ reservoir
325 that is gradually depleted by tissue metabolism and diffusion. In contrast,
326 cyclic ventilation replenishes alveolar gases and facilitates CO₂ exhalation,
327 stabilizing the O₂ fraction and limiting absorption atelectasis. Conceptually,
328 nitrogen (N₂) ventilation would preserve stretch but remove alveolar oxygen
329 and has been linked to worse ischemic injury and impaired surfactant
330 function in experimental systems³⁰. Mild CO₂ enrichment may be protective
331 in some contexts, as hypercapnia has been associated with preserved type II
332 cells and cytoprotective effects in lung injury models^{32,33}. These points
333 suggest that future studies should explore variations in tidal volume,
334 rate/pressure targets, and gas composition to distinguish between stretch-
335 and gas-driven effects.

336 In summary, this study presents a novel method of lung preservation and
337 demonstrates consistent improvements in allograft health based on analysis
338 of several key physiological parameters. However, these results should be
339 considered in the context of certain limitations relevant to the models used.
340 Specifically, while the murine model provides a controlled platform for
341 mechanistic investigation, it does not fully recapitulate the anatomic and
342 immunologic complexity of human lungs. Without an EVLP or transplant
343 model, the external validity of this study remains to be established. Our
344 study focused on pre-transplant allograft quality without assessing post-
345 transplant function, leaving the long-term impact of ventilated storage on
346 graft performance unresolved. Follow-up studies will be designed to
347 leverage additional conditions beyond the use of physiologic tidal volumes
348 at 10°C, which will further clarify the optimal parameters for stretch and
349 ventilation during allograft storage. Specifically, these future studies will
350 explore the optimal combination of ventilation parameters—such as tidal
351 volume, rate, pressure, and oxygen concentration—across different
352 preservation temperatures. In addition, further investigating the cellular
353 and molecular pathways influenced by cyclic stretch, and expanding this
354 work to include transcriptomic or proteomic profiling could further clarify
355 the mechanisms by which ventilation preserves graft quality. Finally, future
356 studies using large animal EVLP and transplant models will be critical to
357 determine the clinical translatability of these findings. Together, these
358 directions aim to refine and validate a ventilation-based preservation

359 strategy that could meaningfully enhance donor lung utilization and post-
360 transplant outcomes.

361 **CONCLUSIONS**

362 This study demonstrates that ventilating donor lungs at 10°C during storage
363 preserves cellular and mitochondrial health, reduces complement
364 activation, limits histologic injury, and improves respiratory mechanics
365 compared to static cold storage. These findings suggest that incorporating
366 ventilation into sub-normothermic preservation strategies may extend safe
367 storage times and improve graft quality prior to transplantation. While
368 further work in large animal and transplant models is needed, this approach
369 has the potential to enhance donor lung utilization and improve outcomes in
370 lung transplantation.

371

372 **DECLARATIONS**

373 ***Ethics approval and consent to participate***

374 This study was approved by the Institutional Animal Care and Use
375 Committee (IACUC) following the National Institutes of Health Guide for
376 Care and Use of Laboratory Animals (IACUC Protocol ID 2022-01479).

377 ***Consent for publication:*** not applicable

378 ***Availability of data and materials***

379 The datasets used and/or analysed during the current study are available
380 from the corresponding author on reasonable request.

381 ***Competing interests***

382 The authors declare that they have no competing interests.

383 ***Funding***

384 This work was funded by SCTR UL1-TR001450 and supported by the NIH
385 PUFFINS T32 (5T32HL144470-07, Cayuse Award# A20-0001-007).

386

387 ***Authors' contributions***

388 MAH made substantial contributions to the conception and design of the
389 work, acquisition and analysis of the data, interpretation of the data, and
390 drafted and revised the work. MT made substantial contributions to the
391 conception and design of the work, acquisition and analysis of the data,
392 interpretation of the data, and drafted and revised the work. BW made
393 substantial contributions to the acquisition and analysis of the data,
394 interpretation of the data, and helped draft the work. RO made substantial
395 contributions to the conception and design of the work, interpretation of the
396 data, and revised the work. CA made substantial contributions to the
397 conception and design of the work, interpretation of the data, revised the
398 work. KE made substantial contributions to the conception and design of
399 the work, interpretation of the data, and drafted and revised the work. BG

400 made substantial contributions to the conception and design of the work,
401 acquisition and analysis of the data, interpretation of the data, and drafted
402 and revised the work. All authors have approved the submitted version and
403 have agreed to both to be personally accountable for the author's own
404 contributions and to ensure that questions related to the accuracy or
405 integrity of any part of the work, even ones in which the author was not
406 personally involved, are appropriately investigated, resolved, and the
407 resolution documented in the literature.

408 ***Data Availability***

409 The datasets generated and/or analyzed during the current study are
410 available from the corresponding author upon reasonable request.

411

412 ***Acknowledgements***

413 We would like to acknowledge Konrad Rajab, MD, for his contributions
414 during the early stages of this project, including concept development and
415 support in obtaining initial resources.

416 **REFERENCES**

- 417 1. Alcorn J. Continuous distribution of lungs. Organ Procurement and
418 Transplantation Network website. Published August 2, 2019.
419 <https://optn.transplant.hrsa.gov>
- 420 2. Kalra A, Ruck JM, Zhou AL, et al. Bigger pies, bigger slices: increased
421 hospitalization costs for lung transplantation recipients in the non-

422 donation service area allocation era. *J Thorac Cardiovasc Surg.*
423 2025;169(1):316-326.e8. doi:10.1016/j.jtcvs.2024.01.045

424 3. Zhou AL, Ruck JM, Casillan AJ, et al. National utilization, trends, and
425 lung transplant outcomes of static versus portable ex vivo lung
426 perfusion platforms. *J Thorac Cardiovasc Surg.* 2024;168(2):431-439.
427 doi:10.1016/j.jtcvs.2023.12.015

428 4. Ali A, Wang A, Ribeiro RVP, et al. Static lung storage at 10°C
429 maintains mitochondrial health and preserves donor organ function.
430 *Sci Transl Med.* 2021;13(611):eabf7601.
431 doi:10.1126/scitranslmed.abf7601

432 5. Ali A, Hoetzenegger K, Luis Campo-Cañaveral de la Cruz J, et al.
433 Extension of cold static donor lung preservation at 10°C. *NEJM Evid.*
434 2023;2(6):EVIDoa2300008. doi:10.1056/EVIDoa2300008

435 6. Abdelnour-Berchtold E, Ali A, Baciu C, et al. Evaluation of 10°C as the
436 optimal storage temperature for aspiration-injured donor lungs in a
437 large animal transplant model. *J Heart Lung Transplant.*
438 2022;41(12):1679-1688. doi:10.1016/j.healun.2022.08.025

439 7. Fischer S, Matte-Martyn A, De Perrot M, et al. Low-potassium dextran
440 preservation solution improves lung function after human lung
441 transplantation. *J Thorac Cardiovasc Surg.* 2001;121(3):594-596.
442 doi:10.1067/mtc.2001.109703

443 8. Adzick NS, Harrison MR, Glick PL, Villa RL, Finkbeiner W.
444 Experimental pulmonary hypoplasia and oligohydramnios: relative
445 contributions of lung fluid and fetal breathing movements. *J Pediatr
446 Surg.* 1984;19(6):658-665. doi:10.1016/S0022-3468(84)80349-8

447 9. Kitagawa M, Hislop A, Boyden EA, Reid L. Lung hypoplasia in
448 congenital diaphragmatic hernia: a quantitative study of airway,
449 artery, and alveolar development. *Br J Surg.* 1971;58(5):342-346.
450 doi:10.1002/bjs.1800580507

451 10. Harding R, Hooper SB. Regulation of lung expansion and lung
452 growth before birth. *J Appl Physiol.* 1996;81(1):209-224.
453 doi:10.1152/jappl.1996.81.1.209

454 11. Brower RG, Shanholtz CB, Fessler HE, et al. Prospective,
455 randomized, controlled clinical trial comparing traditional versus
456 reduced tidal volume ventilation in acute respiratory distress
457 syndrome patients. *Crit Care Med.* 1999;27(8). Accessed August 1999.
458 https://journals.lww.com/ccmjournal/fulltext/1999/08000/prospective,_randomized,_controlled_clinical_trial.15.aspx

460 12. Wu J, Yan Z, Schwartz DE, et al. Activation of NLRP3
461 inflammasome in alveolar macrophages contributes to mechanical
462 stretch-induced lung inflammation and injury. *J Immunol.*
463 2013;190(7):3590-3599. doi:10.4049/jimmunol.1200860

464 13. Pierce RA, Albertine KH, Starcher BC, et al. Chronic lung injury
465 in preterm lambs: disordered pulmonary elastin deposition. *Am J*
466 *Physiol Lung Cell Mol Physiol.* 1997;272(3):L452-L460.
467 doi:10.1152/ajplung.1997.272.3.L452

468 14. Date H, Matsumura A, Manchester JK, et al. Changes in alveolar
469 oxygen and carbon dioxide concentration and oxygen consumption
470 during lung preservation. *J Thorac Cardiovasc Surg.* 1993;105(3):492-
471 501. doi:10.1016/S0022-5223(19)34232-1

472 15. Akashi A, Nakahara K, Kamiike W, et al. Attenuation of warm
473 ischemic injury of rat lung by inflation with room air: assessment of
474 cellular components and the surfactant in the bronchoalveolar lavage
475 fluid in relation to changes in cellular adenosine triphosphate.
476 *Transplantation.* 1993;55(1):24-30. doi:10.1097/00007890-199301000-
477 00006

478 16. Sakuma T, Tsukano C, Ishigaki M, et al. Lung deflation impairs
479 alveolar epithelial fluid transport in ischemic rabbit and rat lungs.
480 *Transplantation.* 2000;69(9).
481 https://journals.lww.com/transplantjournal/fulltext/2000/05150/lung_deflation_impairs_alveolar_epithelial_fluid.10.aspx

483 17. Hsia CCW. Signals and mechanisms of compensatory lung
484 growth. *J Appl Physiol.* 2004;97(5):1992-1998.
485 doi:10.1152/japplphysiol.00530.2004

486 18. Ysasi AB, Belle JM, Gibney BC, et al. Effect of unilateral
487 diaphragmatic paralysis on postpneumonectomy lung growth. *Am J*
488 *Physiol Lung Cell Mol Physiol.* 2013;305(6):L439-L445.
489 doi:10.1152/ajplung.00134.2013

490 19. Bennett RD, Ysasi AB, Wagner WL, et al. Deformation-induced
491 transitional myofibroblasts contribute to compensatory lung growth.
492 *Am J Physiol Lung Cell Mol Physiol.* 2017;312(1):L79-L88.
493 doi:10.1152/ajplung.00383.2016

494 20. Filipovic N, Gibney BC, Kojic M, et al. Mapping cyclic stretch in
495 the postpneumonectomy murine lung. *J Appl Physiol.*
496 2013;115(9):1370-1378. doi:10.1152/japplphysiol.00635.2013

497 21. DeCampos KN, Keshavjee S, Slutsky AS, Liu M. Alveolar
498 recruitment prevents rapid-reperfusion-induced injury of lung
499 transplants. *J Heart Lung Transplant*. 1999;18(11):1096-1102.
500 doi:10.1016/S1053-2498(99)00082-0

501 22. Ali A, Nykanen AI, Beroncal E, et al. Successful 3-day lung
502 preservation using a cyclic normothermic ex vivo lung perfusion
503 strategy. *EBioMedicine*. 2022;83:104210.
504 doi:10.1016/j.ebiom.2022.104210

505 23. Kim HK, Kim W, Kim J, et al. Cyclic stretch increases
506 mitochondrial biogenesis in a cardiac cell line. *Biochem Biophys Res
507 Commun*. 2018;505(3):768-774. doi:10.1016/j.bbrc.2018.09.182

508 24. McAdams RM, Juul SE, Yamaoka S, et al. Cyclic stretch
509 attenuates effects of hyperoxia on cell proliferation and viability in
510 human alveolar epithelial cells. *Am J Physiol Lung Cell Mol Physiol*.
511 2006;291(2):L166-L174. doi:10.1152/ajplung.00386.2005

512 25. Zheng P, Li Y, Wang J, et al. Lung inflation with hydrogen
513 during the cold ischemia phase alleviates lung ischemia-reperfusion
514 injury by inhibiting pyroptosis in rats. *Front Physiol*. 2021;12:699344.
515 doi:10.3389/fphys.2021.699344

516 26. Shah RJ, Emtiazjoo AM, Diamond JM, et al. Plasma complement
517 levels are associated with PGD and mortality after lung
518 transplantation. *Am J Respir Crit Care Med*. 2014;189(12):1564-1567.
519 doi:10.1164/rccm.201312-2252OC

520 27. Westall GP, Snell GI, McLean C, et al. C3d and C4d deposition
521 early after lung transplantation. *J Heart Lung Transplant*.
522 2008;27(7):722-728. doi:10.1016/j.healun.2008.03.016

523 28. Kulkarni HS, Ramphal K, Ma L, et al. Local complement
524 activation is associated with primary graft dysfunction after lung
525 transplantation. *JCI Insight*. 2020;5(17):e138358.
526 doi:10.1172/jci.insight.138358

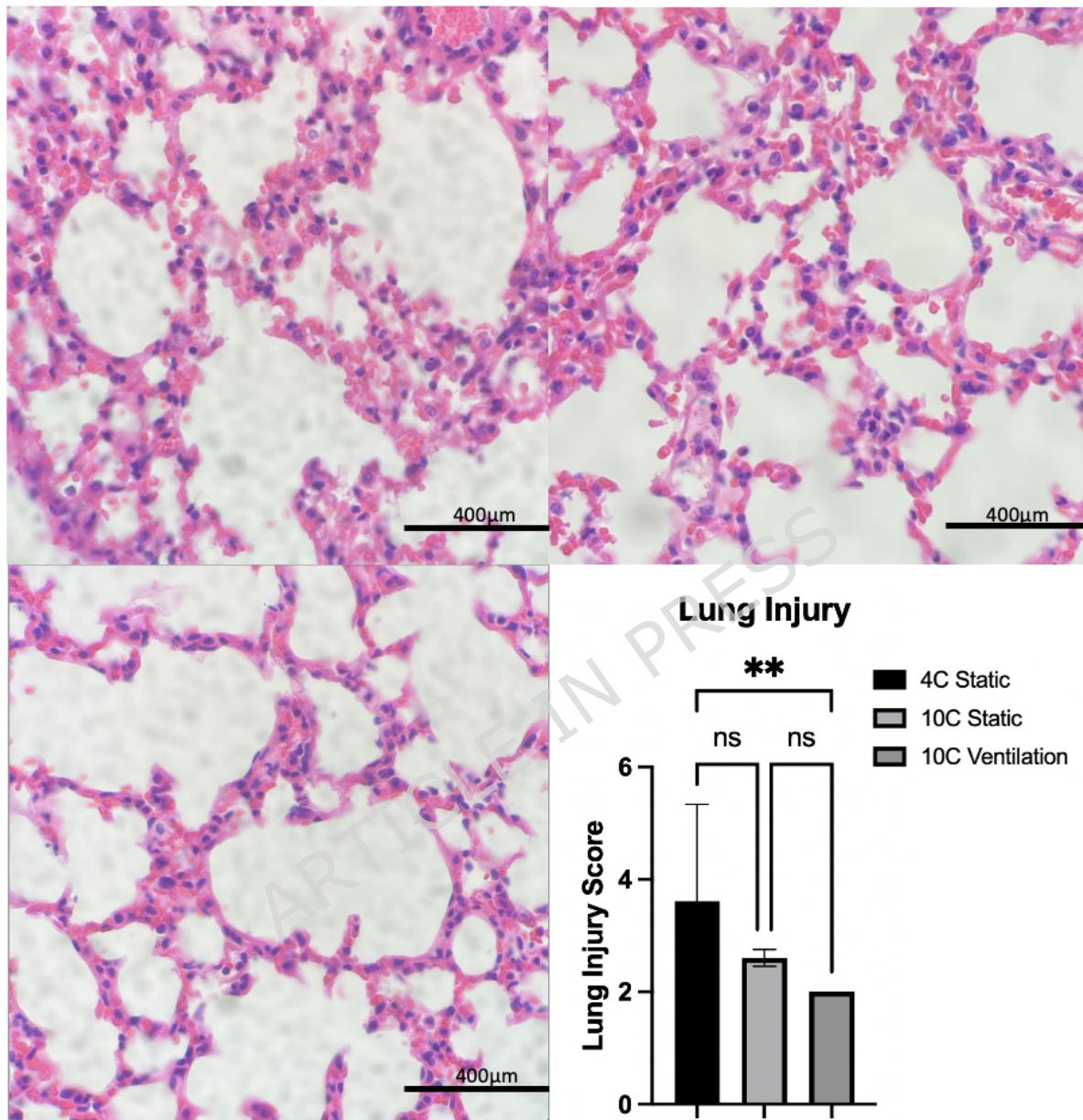
527 29. Li C, Patel K, Tu Z, et al. A novel injury site-natural antibody-
528 targeted complement inhibitor protects against lung transplant injury.
529 *Am J Transplant*. 2022;22(3):742-754. doi:10.1111/ajt.16873

530 30. Schütte H, Hermle G, Seeger W, Grimminger F. Vascular
531 distension and continued ventilation are protective in lung
532 ischemia/reperfusion. *Am J Respir Crit Care Med*. 1998;157(1):171-
533 177. doi:10.1164/ajrccm.157.1.9706029.

534 31. Singer M, Young PJ, Laffey JG, et al. Dangers of hyperoxia. *Crit
535 Care.* 2021;25(1):440. doi:10.1186/s13054-021-03815-y.

536 32. Shepard JW Jr, Dolan GF, Yu SY. Factors regulating lamellar
537 body volume density of type II pneumocytes in excised dog lungs. *J
538 Appl Physiol.* 1982;53(3):555-562. doi:10.1152/jappl.1982.53.3.555.

539 33. Ijland MM, Heunks LM, van der Hoeven JG. Bench-to-bedside
540 review: hypercapnic acidosis in lung injury—from “permissive” to
541 “therapeutic.” *Crit Care.* 2010;14(6):237. doi:10.1186/cc9238.

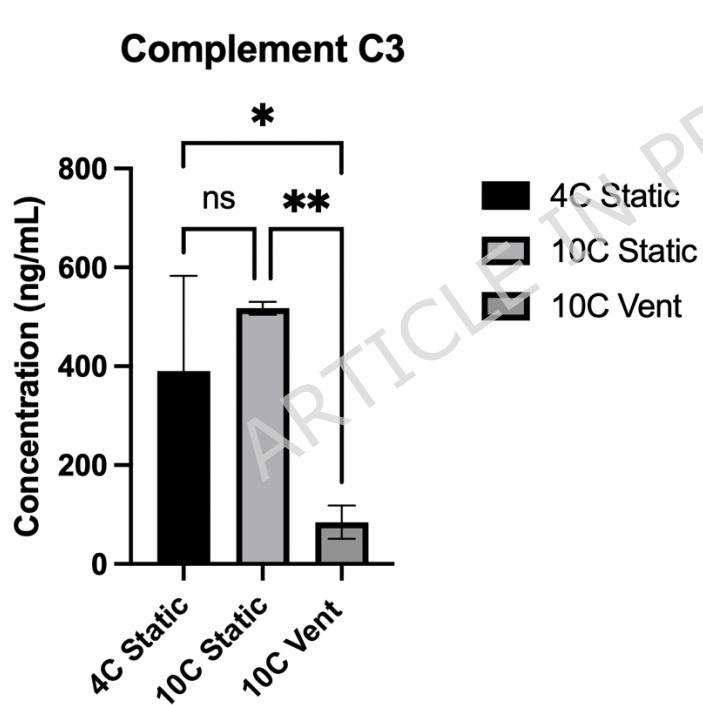

542 34. Halpern, S. E., Kesseli, S. J., Au, S., Krischak, M. K., Olaso, D.
543 G., Smith, H., Tipton, G., Jamieson, I. R., Barbas, A. S., Haney, J. C.,
544 Klapper, J. A., & Hartwig, M. G. (2022). Lung transplantation after ex
545 vivo lung perfusion versus static cold storage: An institutional cost
546 analysis. *American Journal of Transplantation*, 22(2), 552-564.
547 <https://doi.org/10.1111/ajt.16794>

548 35. Kent, J., Nordgren, R., Ahn, D., Lysandrou, M., Diaz, A., Fenton,
549 D., Wignakumar, T., McMeekin, N., Salerno, C., Donington, J., &
550 Madariaga, M. L. L. (2024). Cost effectiveness of commercial portable
551 ex vivo lung perfusion at a low-volume US lung transplant center.
552 *Artificial Organs*, 48(11), 1288-1296.
553 <https://doi.org/10.1111/aor.14816>

554

555

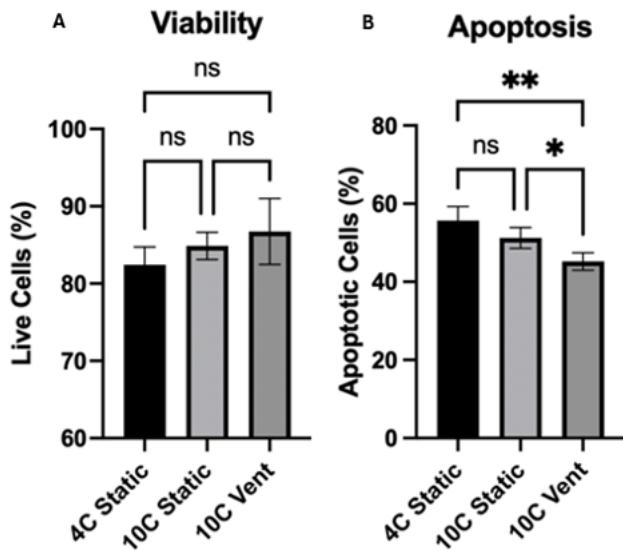
556


557 **FIGURES**

558

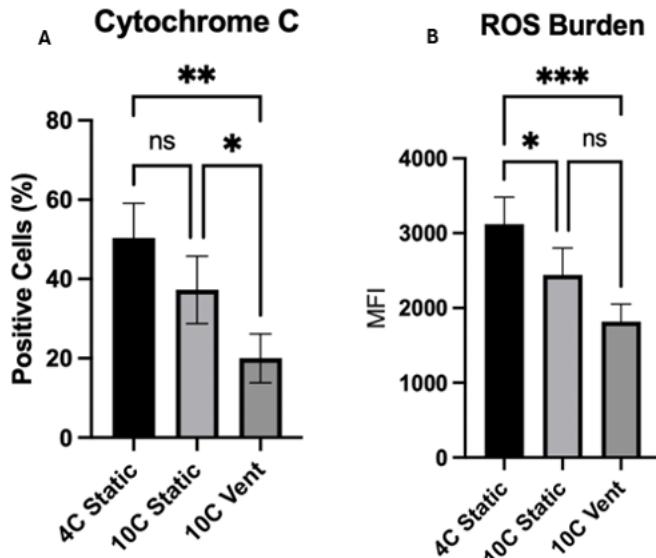
559 **Figure 1:** Recovered murine lung allografts were assessed for: leukocyte
560 infiltration, fibrin deposition, alveolar hemorrhage and capillary congestion
561 to determine the lung injury score. Lungs stored with the addition of
562 ventilation demonstrated significantly less lung injury. Representative

hematoxylin and eosin-stained lung images for (A) lung allografts stored for 24 hours at 4°C static inflation, (B) 10°C static inflation, (C) 10°C ventilated with room air at tidal volume ventilation, and (D) Quantification of Lung Injury Score in each group. One-way ANOVA demonstrated a significant effect of the storage condition on cumulative lung injury scores ($p = 0.0079$). Lungs ventilated at 10°C exhibited significantly reduced histologic injury compared to those stored statically at 4°C ($p = 0.0062$).


570

571

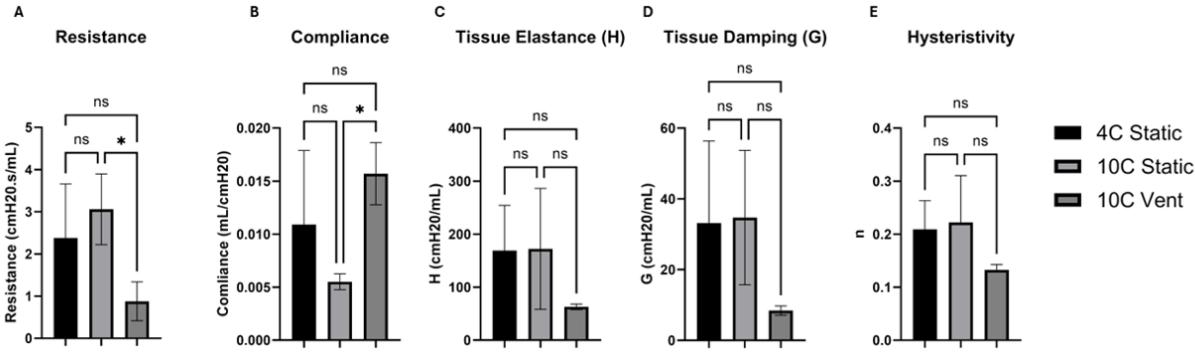
572 **Figure 2:** Lung allografts that were stored with tidal volume ventilation
573 demonstrated significantly lower levels of Complement C3 in the storage
574 perfusate when compared to lungs stored at static inflation at 4°C
575 ($p=0.0102$) and 10°C ($p=0.0011$).


576

577

578 **Figure 3:** Lungs were digested after 24 hours of storage and assessed with
 579 live/dead staining (Zombie UV) and apoptosis (Apotransfer). (A) A non-
 580 significant trend in improved cellular viability was seen with the addition of
 581 ventilation to the stored lungs. (B) Ventilation significantly decreased the
 582 percentage of apoptotic cells compared to static storage at 4°C (p = 0.0016)
 583 and 10°C (p = 0.0386).

584


585

586 **Figure 4:** Mitochondrial health was assessed using intracellular flow
 587 cytometry evaluation staining for cytochrome C and superoxide production.
 588 (A) The addition of ventilation significantly reduced cytochrome C
 589 production ($p=0.0014$). (B) Temperature significantly reduced superoxide
 590 production ($p=0.0011$), though no significant difference was seen between
 591 static storage and ventilation at 10°C ($p=0.057$).

592

593

594

595

596 **Figure 5:** Lung mechanics were assessed after 24 hours storage using the
 597 FlexiVent small animal ventilator to evaluate single-compartment mechanics
 598 and measures from the forced oscillation maneuver. (A) Single-
 599 compartment airway resistance in ventilated lungs was significantly
 600 decreased ($p=0.021$) and (B) pulmonary compliance significantly improved
 601 ($p=0.023$) compared to statically stored lungs at 10°C. When evaluating the
 602 lung using forced oscillation, (C) Elastance and (D) Damping were reduced
 603 in the lungs subjected to ventilation, though not significantly ($p=0.157$,
 604 $p=0.106$). (E) Likewise, hysteresivity was reduced but not significantly
 605 ($p=0.132$).

606

607

608

609

610