
Visible-light photocatalytic mineralization of 4-Chlorophenol over ZnO-loaded sulfonated carbonaceous bentonite: kinetic analysis, pathway elucidation, and catalyst reusability

Received: 1 September 2025

Accepted: 9 January 2026

Published online: 16 January 2026

Cite this article as: Ahmed Z.M., Allam A.A., El-Sayed M.I. et al. Visible-light photocatalytic mineralization of 4-Chlorophenol over ZnO-loaded sulfonated carbonaceous bentonite: kinetic analysis, pathway elucidation, and catalyst reusability. *Sci Rep* (2026). <https://doi.org/10.1038/s41598-026-35956-x>

Zeinab M. Ahmed, Ahmed A. Allam, Mohamed I. El-Sayed, Ibrahim Mohamed Abd El-Gaied, Yasser Salama, Hassan A. Rudayni, Wail Al Zoubi & Mostafa R. Abukhadra

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

1 **Visible-light photocatalytic mineralization of 4-Chlorophenol over ZnO-loaded**
 2 **sulfonated carbonaceous bentonite: Kinetic analysis, pathway elucidation, and**
 3 **catalyst reusability**

4 *Zeinab M. Ahmed¹; Ahmed A. Allam²; Mohamed I. El-Sayed³; Ibrahim Mohamed Abd El-Gaied¹; Yasser Salama¹; Hassan A. Rudayn²; Wail Al Zoubi³;*
 5 *Mostafa R. Abukhadra^{4*}*

6 ¹Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt

7 ²Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.

8 ³Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

9 ⁴Geosciences Department, College of Science, United Arab Emirates University, 15551, Al Ain, United Arab Emirates.

10 Corresponding author*. Tel: +2001288447189. E-mail: m.abdelwahab@uaeu.ac.ae

11 **Abstract**

12 4-Chlorophenol (4-CL) is a toxic and persistent industrial pollutant resistant to
 13 conventional treatment, making its removal from wastewater a major environmental
 14 challenge. Visible-light photocatalysis provides a clean and efficient route for its complete
 15 mineralization. This study introduces a novel ZnO-functionalized sulfonated carbonaceous
 16 bentonite (ZnO@SB) nanohybrid, designed to enhance visible-light absorption, charge
 17 separation, and surface reactivity. The composite was synthesized via controlled sulfonation
 18 of organic-rich bentonite followed by uniform ZnO nanoparticle deposition. Structural and
 19 spectroscopic analyses confirmed successful functionalization and high ZnO dispersion across
 20 the sulfonated matrix. Under visible light, ZnO@SB (0.5 g/L, pH 8) achieved 100% degradation
 21 of 4-CL (5 mg/L) in 30 min and 100% TOC removal in 60 min (complete mineralization),
 22 following pseudo-first-order kinetics ($k_1 = 0.1657 \text{ min}^{-1}$, $R^2 > 0.98$). The quantum yield
 23 increased from 7.39×10^{-8} to 2.96×10^{-7} with higher catalyst loading. The photocatalyst
 24 retained >90% activity after five cycles, with Zn^{2+} leaching below 0.005 mg/L, indicating
 25 excellent chemical stability. Mechanistic studies confirmed the dominant roles of superoxide
 26 ($\text{O}_2^{\bullet-}$) and hydroxyl ($\bullet\text{OH}$) radicals in driving hydroxylation, dechlorination, and aromatic ring
 27 cleavage. The novelty of this work lies in the synergistic integration of sulfonated
 28 carbonaceous bentonite with ZnO, which simultaneously enhances adsorption, charge
 29 transfer, and visible-light response. This multifunctional hybrid provides a low-cost, stable,
 30 and highly efficient photocatalyst for scalable visible-light-driven degradation and
 31 mineralization of chlorinated phenolic pollutants.

32 **Keywords:** 4-Chlorophenol; ZnO@SB; Bentonite; Sulfonation; Visible-light photocatalysis; Wastewater
 33 treatment

37
38
39
40
41
42
43
44
45
46

Introduction

The relentless expansion of industrial activities and human advancement has led to a substantial increase in the discharge of hazardous chemical pollutants into natural ecosystems. This ongoing contamination is exerting detrimental effects on aquatic environments, public health, and ecological stability on a global scale [1]. Among the various toxic substances released into water bodies, phenolic compounds are particularly notorious due to their severe toxicity. They are frequently introduced into the environment as residuals from the use of herbicides, petroleum-based chemicals, and wood-processing industries [2]. Chlorophenols, a significant subclass of phenolic pollutants, are commonly integrated into the synthesis of numerous chemical products, including fungicides and pesticides [2, 3]. These compounds pose serious environmental and health hazards even at very low concentrations. Their persistence in the environment, resistance to natural degradation, and tendency to bioaccumulate make them particularly alarming in terms of long-term ecological and toxicological impact [4, 5].

Scientific findings have consistently demonstrated that chlorophenols exhibit mutagenic, genotoxic, and carcinogenic characteristics. Their resistance to biological breakdown further enhances their environmental longevity, contributing to their widespread toxicity in both aquatic and terrestrial systems [2, 3, 6]. One of the most commonly used chlorophenols is 4-chlorophenol (4-CL), a compound employed extensively across several industries, including pharmaceuticals, petrochemicals, dyes, and general chemical manufacturing [7]. Due to its environmental stability, toxic nature, and carcinogenic potential, 4-CL has been formally identified by the United States Environmental Protection Agency as one of the most hazardous chemical pollutants [5]. Accordingly, the urgent development of innovative and highly effective strategies for the removal or detoxification of 4-CL from contaminated media is of paramount importance for protecting ecosystems and public health.

71 A broad spectrum of methods has been explored for the elimination of phenolic
72 contaminants from environmental systems, with notable techniques including membrane-
73 based separation, adsorption methodologies, and various advanced oxidation strategies [8-
74 10]. However, conventional treatment methods—such as adsorption and membrane
75 separation—are constrained by limited selectivity, membrane fouling, high operational costs,
76 and the generation of secondary wastes [11, 12, 13]. These drawbacks motivate the adoption
77 of photocatalytic oxidation, a cleaner and more sustainable alternative capable of deep-to-
78 complete mineralization of chlorinated phenols under mild conditions [5, 14].

79 Advanced oxidation processes (AOPs)—such as the conventional Fenton reaction,
80 photocatalysis, and the photo-Fenton method—have recently received widespread interest
81 because of their exceptional effectiveness in breaking down persistent organic contaminants
82 [14-19]. These oxidative techniques are regarded as both environmentally benign and
83 technologically adaptable, particularly because they can harness solar energy, making them
84 attractive options for large-scale and sustainable remediation efforts [5]. Consequently,
85 significant research efforts have been invested in the synthesis and evaluation of diverse
86 microstructured and nanostructured materials, aiming to exploit their multifunctionality in
87 facilitating the degradation of organic contaminants alongside the reduction of hexavalent
88 chromium [16, 20-23]. The effectiveness of a photocatalyst is governed by a range of
89 parameters, including its structural and thermal stability, ability to be reused, ecological
90 safety, suitable bandgap energy, electron-hole recombination behavior, adsorption efficiency,
91 and economic viability [24, 25]. In alignment with goals for green chemistry and sustainable
92 development, recent scientific discourse has emphasized the strategic use of naturally
93 abundant precursors to engineer multifunctional materials. These bio-derived or mineral-
94 based composites aim to offer synergistic photocatalytic and adsorptive efficiencies while
95 remaining cost-effective and environmentally safe [26, 27]. This design also helps to minimize
96 the common drawbacks of conventional photocatalysts, including rapid charge recombination,
97 poor visible-light absorption, surface deactivation, photocorrosion, and low mineralization
98 efficiency [11, 28, 29].

99 Zinc oxide (ZnO), in both nano- and microscale forms, is widely recognized for its
100 effectiveness in oxidative degradation due to its high chemical stability, broad surface area,

101 non-toxic nature, and strong oxidative potential [26-30]. It also benefits from resistance to
102 photocorrosion and a favorable exciton binding energy, making it highly suitable for
103 photocatalysis [31-35]. To enhance its photocatalytic performance, strategies such as metal
104 ion doping, composite integration, and nanoparticle immobilization have been widely
105 explored, aiming to reduce charge recombination and improve light absorption and pollutant
106 interaction [26, 36]. Nanostructured zinc-based photocatalysts demonstrate exceptional
107 photocatalytic activity, long-term stability, and environmental safety, making them promising
108 candidates for green and sustainable remediation technologies [37-39].

109 Within the field of photocatalytic science, bentonite has gained increasing recognition
110 as an effective support material for heterogeneous catalysts [40, 41]. Bentonite (BEN), a
111 naturally abundant phyllosilicate clay, is widely employed in environmental remediation due
112 to its unique physicochemical characteristics [41, 42]. It offers a high cation exchange
113 capacity, expansive surface area, abundant active sites, and an inherently non-toxic nature,
114 making it particularly well-suited for dual functions—as a direct adsorbent and as a host
115 matrix for metal and metal oxide catalysts [43, 44]. These attributes significantly improve
116 both the functional and structural efficiency of photocatalytic systems when bentonite is
117 incorporated as a supporting phase [42, 45]. The compositional profile of bentonite varies
118 based on its smectite content, the type of associated mineral impurities, and their relative
119 concentrations [46]. Of special interest are organic-rich bentonite variants, commonly referred
120 to as oil shales, which remain relatively underutilized despite their wide availability [47].
121 These materials exhibit a unique hybrid structure that combines inorganic clay layers with
122 intercalated organic substances such as kerogen and bitumen [47-49]. Chemical modification
123 of these clay-organic composites, particularly through acid activation or sulfonation, can
124 significantly enhance their surface polarity and introduce oxygenated functional groups [47-
125 49]. This transformation increases their potential as acidic adsorbents and efficient catalyst
126 supports [50-53].

127 This study introduces an innovative approach to the development of a cost-effective,
128 eco-friendly, and high-performance photocatalyst for the efficient degradation of 4-
129 chlorophenol (4-CL)—a persistent and toxic contaminant—commonly found in industrial
130 wastewater. The research focuses on engineering a novel composite material by integrating

131 zinc oxide (ZnO), a widely studied photocatalyst, with sulfonated carbonaceous bentonite
132 (SB), a naturally abundant yet underutilized clay-based support. The core objective is to
133 harness the complementary functionalities of both components: the inherent adsorption
134 capacity and surface acidity of sulfonated bentonite, and the strong oxidative and
135 photocatalytic capabilities of ZnO. This synergistic integration is designed to enhance the
136 removal efficiency of 4-CL through a dual mechanism involving surface adsorption and visible-
137 light-driven photocatalytic oxidation. The novelty of this work lies in the strategic exploitation
138 of carbon-rich, organic-intercalated bentonite—commonly overlooked in photocatalyst
139 design—as a multifunctional platform. Through targeted sulfonation, the carbonaceous
140 content of the bentonite is chemically activated to introduce robust acidic groups, while its
141 layered silicate structure offers a high surface area for uniform ZnO dispersion. This tailored
142 composite (ZnO@SB) is expected to exhibit enhanced photocatalytic activity, reusability, and
143 stability under environmentally relevant conditions. By leveraging naturally available, low-cost
144 mineral resources, this study not only addresses the urgent demand for sustainable treatment
145 technologies for hazardous organic pollutants but also contributes to advancing the circular
146 utilization of clay-based materials in the design of next-generation hybrid catalysts for
147 environmental remediation.

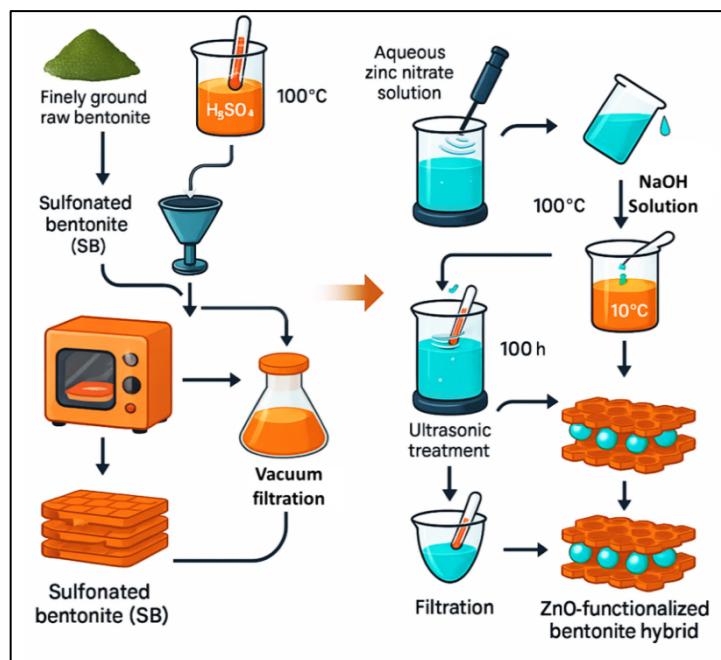
148 149 **2. Experimental work**

150 **2.1. Materials and chemicals**

151 The bentonite used in this investigation was collected as a natural geological sample
152 from Local quarries in Egypt. A detailed chemical composition analysis of the raw material
153 revealed the presence of the following major oxides as the main composition: silicon dioxide
154 (SiO_2) at 54.1%, aluminum oxide (Al_2O_3) at 24.73%, ferric oxide (Fe_2O_3) at 6.02%, magnesium
155 oxide (MgO) at 1.09%, sodium oxide (Na_2O) at 0.09%, potassium oxide (K_2O) at 1.12 %, SO_3
156 at 1.78 %, and exhibited a loss on ignition (L.O.I) of 10.57 %. The synthesis of the ZnO@SB
157 hybrid photocatalyst was performed using high-grade chemicals to ensure reproducibility and
158 purity. Concentrated sulfuric acid (99%), absolute ethanol, and zinc nitrate hexahydrate
159 ($\text{Zn}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$; 98%) were utilized, all acquired from Sigma-Aldrich (Egypt). For the
160 evaluation of adsorption behavior and photocatalytic activity, 4-chlorophenol—chosen as a

161 model organic contaminant—was also obtained from Sigma-Aldrich, with a reported purity of
162 98%.

163 **2.2. Synthesis of the photocatalyst**


164 **2.2.1. Acid activation of bentonite**

165 The raw bentonite was ground using a ball mill to reduce the particle size to below 100
166 μm , ensuring uniform texture and consistency prior to the modification and synthesis steps.
167 80 grams of the resulting powder were then slowly added to 250 mL of sulfuric acid (70%),
168 with the mixture maintained at a steady temperature of 100 $^{\circ}\text{C}$. This acid-clay suspension was
169 stirred continuously at 700 rpm for 12 hours, allowing the acid to thoroughly interact with the
170 bentonite's layered structure. Once the reaction was complete, the mixture was left to cool
171 naturally to room temperature. The solid product—now sulfonated bentonite (SB)—was
172 collected through vacuum filtration using Whatman filter paper. To remove any leftover acid
173 and soluble impurities, the filtered solid was rinsed five times with distilled water. Finally, the
174 cleaned material was placed in oven at 75 $^{\circ}\text{C}$ for about 4 hours to ensure it was fully
175 dehydrated and ready for use (Fig. 1).

176 **2.2.3. Preparation of $\text{ZnO}@\text{SB}$ hybrid material**

177 The $\text{ZnO}@\text{SB}$ hybrid material was synthesized by dispersing 10 grams of sulfonated
178 bentonite (SB) into 100 mL of an aqueous solution containing 10 grams of zinc nitrate. To
179 ensure effective interaction between the zinc ions and the functional groups on the bentonite
180 surface, the mixture was stirred continuously at 650 rpm for 10 hours. This was followed by
181 ultrasonic treatment for 2 hours using a 240-watt ultrasonic generator, which helped enhance
182 dispersion of the metal precursor and encouraged its incorporation into the clay structure.
183 Subsequently, 100 mL of a 0.1 mM sodium hydroxide solution was slowly added to the
184 suspension under constant stirring. The reaction was allowed to proceed for another 6 hours
185 to promote the controlled precipitation of zinc species. To further support the formation and
186 uniform distribution of ZnO within the clay matrix, the mixture was heated at 100 $^{\circ}\text{C}$ for 24
187 hours, with ultrasonic activation applied every 6 hours and continuous stirring maintained at
188 700 rpm. After the synthesis was complete, the solid $\text{ZnO}@\text{SB}$ composite was separated by
189 filtration using Whatman filter paper. It was then thoroughly washed with distilled water
190 through five rinsing cycles (10 minutes each) to remove any unreacted materials and soluble

191 byproducts. Finally, the purified material was dried in an oven at 80 °C for 12 hours, yielding
 192 the ZnO-functionalized bentonite hybrid (Fig. 1).

205 **Fig.1.** Schematic diagram for the synthesis of ZnO@SB composite. *Created by the authors in Adobe Illustrator*
 206 *v29.8.1 (Adobe Inc., <https://www.adobe.com/products/illustrator.html>).*

2.4. Characterization techniques

208 To assess the structural and physicochemical properties of the synthesized materials, a
 209 range of analytical techniques was employed. The crystalline phases and structural changes
 210 occurring during synthesis were examined using X-ray diffraction (XRD), performed on a
 211 PANalytical Empyrean diffractometer operating within a 2 θ range of 5° to 80°. Functional
 212 groups and chemical modifications were identified through Fourier-transform infrared
 213 spectroscopy (FT-IR) using a Shimadzu FTIR-8400S, with spectra collected across the range of
 214 400–4000 cm^{-1} . The surface morphology and particle structure were visualized using
 215 scanning electron microscopy (SEM, Zeiss Ultra 55), following gold sputter-coating of the
 216 samples to enhance conductivity. Additionally, nitrogen adsorption–desorption isotherms were
 217 measured with a Beckman Coulter SA3100 surface area analyzer, after degassing the
 218 samples. These measurements provided insights into surface area and porosity—key
 219 parameters for evaluating the material's potential in adsorption and photocatalytic
 220 applications.

221 2.5. Advanced oxidation of 4-CL

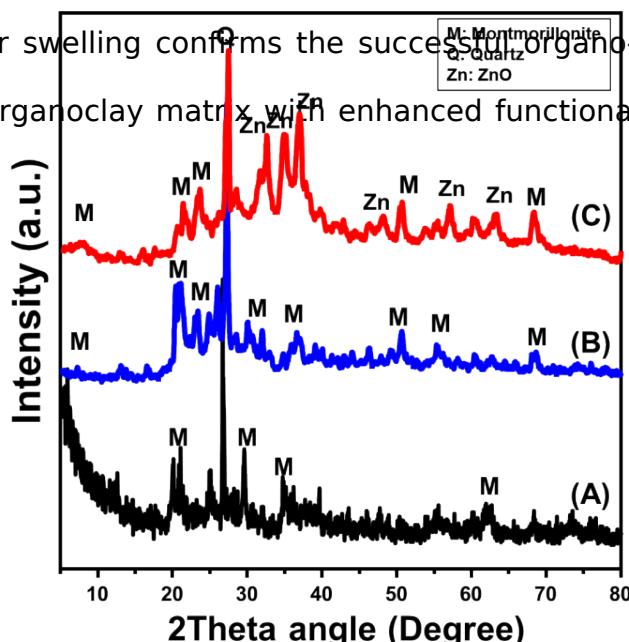
222 The photocatalytic potential of the ZnO-functionalized sulfonated bentonite (ZnO@SB)
 223 composite was thoroughly investigated through the degradation of 4-chlorophenol (4-CL)

under visible light exposure. Experiments were conducted in a vertically oriented Pyrex glass reactor, measuring 7 cm in diameter and 15 cm in height, which was engineered to maximize both light transmission and photocatalyst suspension uniformity. Illumination was provided by a 400-watt commercial metal halide lamp, emitting predominantly visible light with a characteristic wavelength around 490 nm. The lamp was positioned 3.5 cm from the external wall of the reactor, providing a consistent light intensity across the sample volume. Light irradiance at the reactor surface was measured at an average of 18.7 milliwatts per square centimeter, effectively mimicking solar irradiation conditions suitable for environmental applications.

Before initiating visible-light irradiation, all photocatalytic experiments were preceded by an adsorption-desorption equilibration step to ensure that any subsequent decrease in 4-CL concentration was exclusively attributed to photocatalytic activity. For this purpose, the reaction suspension containing the photocatalyst and pollutant solution was stirred continuously in the dark for 30 minutes to attain adsorption equilibrium between the solid surface and the aqueous phase. After equilibrium was established, illumination was started under the same stirring conditions to commence the photocatalytic degradation experiment.

The photocatalytic experiments were conducted under ambient temperature (approximately 20 °C). During testing, the initial concentration of 4-CL varied from 5 mg/L to 20 mg/L, while the ZnO@SB photocatalyst loading was adjusted incrementally from 0.2 to 0.5 g/L. The reaction durations ranged from 5 minutes up to 240 minutes, enabling detailed observation of kinetic trends, pollutant breakdown efficiency, and the influence of varying pollutant concentrations and photocatalyst dosages.

After each trial, the amount of un-degraded 4-CL remaining in the solution was quantified to assess both the initial adsorption equilibrium and the extent of photocatalytic oxidation. All experimental runs were repeated three times to verify reproducibility, with observed standard deviations consistently under 3.5%, confirming the reliability of the methodology. To further elucidate the degradation process and identify transformation products, high-performance liquid chromatography system (HPLC 3000) equipped with a Thermo analytical column analysis was performed. In addition, total organic carbon (TOC) analysis was conducted using a Shimadzu TOC-VCPh analyzer to measure the degree of


254 mineralization. This step was essential for determining the photocatalyst's effectiveness in
 255 breaking down 4-CL into non-toxic, low-molecular-weight byproducts, thus providing a
 256 complete picture of the material's photocatalytic efficiency.

257 **3. Results and discussion**

258 **3.1. Characterization of the photocatalyst:**

259 **3.1.1. X-ray diffraction (XRD) analysis**

260 The structural modifications imparted throughout the multistep synthesis were
 261 meticulously characterized using XRD analysis, providing vital insights into the
 262 crystallographic transformations occurring at each functionalization stage (Fig. 2). The initial
 263 diffraction profile of the raw carbonaceous bentonite-based material (CB) exhibited
 264 pronounced reflections consistent with a montmorillonite-dominant mineralogy. Notably,
 265 peaks at $2\theta = 6.05^\circ$ (002), 19.77° (020), and 25.1° (105) aligned well with standard reference
 266 patterns from JCPDS cards 00-003-0010 and 00-058-2010 (Fig. 2A), affirming the layered
 267 silicate structure characteristic of unmodified bentonite [50]. However, subtle deviations in
 268 peak positions and intensities, compared to typical montmorillonite, were evident—an
 269 indication of structural perturbation likely caused by the intercalation of native organic
 270 moieties such as kerogen or maceral derivatives. These organic components, commonly
 271 found in carbon-rich bentonites, are known to insert into the interlayer space, resulting in a
 272 basal spacing expansion. This interpretation is strongly supported by the measured increase
 273 in interlayer distance to ~ 14.59 Å, significantly exceeding that of standard montmorillonite
 274 (Fig. 2A). Such interlayer swelling confirms the successful organo-modification of the clay—
 275 transforming it into an organoclay matrix with enhanced functionality and affinity for further
 276 chemical modification.

284

285

286

287

Fig.2. XRD patterns of raw carbonaceous bentonite (A) [50], sulfonated sample (B) and synthetic ZnO/SB photocatalyst (C)

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

Subsequent sulfonation of the composite yielded a material (SB) with a markedly altered diffraction pattern, reflecting substantial changes in the crystalline order of the support (Fig. 2B). A noticeable reduction in the intensity and clarity of montmorillonite peaks—alongside peak broadening and in some cases, complete disappearance—suggests structural degradation induced by acid leaching (Fig. 2B). This phenomenon is attributed to the partial dissolution of key lattice cations, such as Si^{4+} and Al^{3+} , which are fundamental to the tetrahedral and octahedral layers of the montmorillonite framework [47]. As these cations are selectively extracted under acidic conditions, the clay undergoes partial exfoliation and loses long-range periodicity, leading to increased disorder within the layered architecture. Furthermore, the strong oxidizing environment associated with sulfonation promotes the cleavage of thermally and chemically labile linkages—particularly ether bonds (C-O-C)—within the intercalated organic matrix [54, 55]. This oxidative fragmentation contributes to partial amorphization of the hybrid structure while simultaneously enriching the surface with acidic functional groups, predominantly sulfonic acid ($-\text{SO}_3\text{H}$). These newly introduced moieties significantly enhance the composite's surface reactivity and potential for catalysis, providing both Brønsted acid sites and coordination centers for metal anchoring.

305

306

307

308

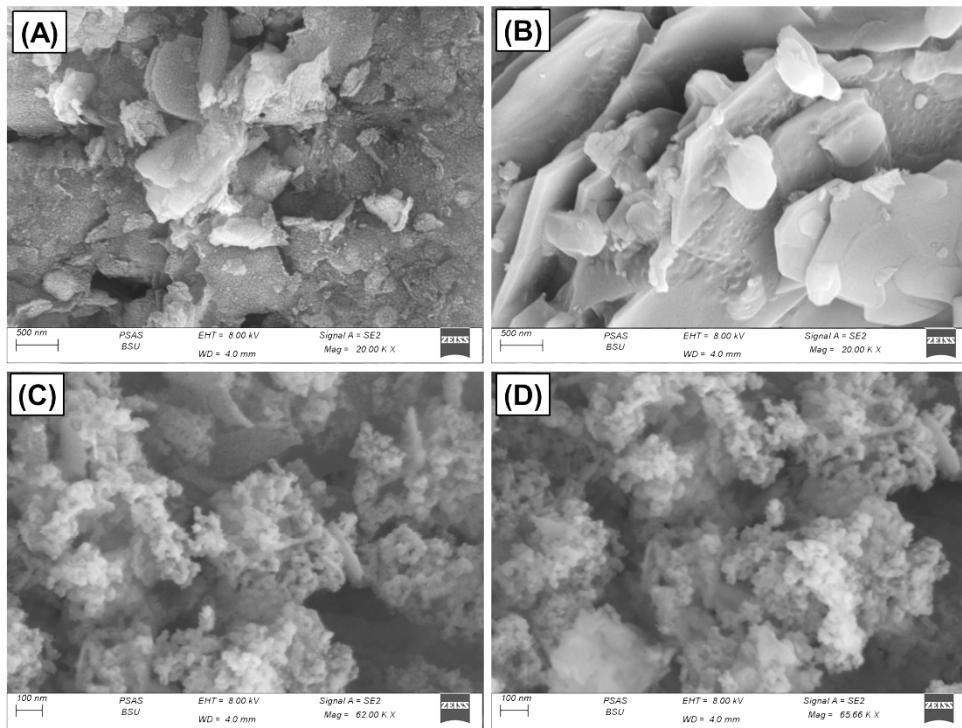
309

310

311

312

313


The final ZnO-functionalized composite (ZnO@SB) displayed a complex XRD signature, indicative of successful integration of crystalline ZnO nanoparticles onto the modified bentonite substrate (Fig. 2C). While a residual basal reflection of bentonite was still detectable at $2\theta \approx 7.12^\circ$, its diminished intensity and minor shift implied a partial preservation of the original clay structure, now altered by successive chemical treatments (Fig. 2C). Superimposed on this pattern were distinct and sharp peaks at 2θ values of 31.75° , 34.85° , 36.61° , and 47.6° , corresponding to the (100), (002), (101), and (102) planes of hexagonal wurtzite ZnO (Fig. 2C) (JCPDS Nos. 65-3411, 36-1451). These reflections unambiguously confirm the successful crystallization of ZnO, with an estimated crystallite size of ~ 34 nm—

314 well within the nanometric regime and favorable for enhanced photocatalytic efficiency.
315 Interestingly, a systematic shift of certain ZnO peaks toward lower diffraction angles was
316 observed, which may signal lattice distortion caused by strong interactions between Zn²⁺ ions
317 and the sulfonic acid groups anchored on the bentonite surface. This suggests possible
318 surface complexation or partial intercalation of zinc species within the clay matrix, inducing
319 strain within the ZnO lattice. Such structural coupling implies a tightly bound interface
320 between the metal oxide and its support, which is crucial for charge transfer, pollutant
321 adsorption, and photocatalytic turnover.

322 From an application standpoint, these structural and chemical features collectively point
323 to the formation of a multifunctional photocatalyst with synergistic properties. Acidic sites
324 introduced by H₂SO₄ activation increase surface polarity and adsorption affinity, promoting
325 pollutant accumulation and diffusion to active centers [56, 57]. Nanocrystalline ZnO domains
326 enhance light absorption and charge separation by exposing polar facets [58, 59]. Meanwhile,
327 the hierarchically porous framework improves mass transport, active-site accessibility, and
328 photon utilization, accelerating degradation kinetics [60, 61]. This engineered heterostructure
329 thus provides an efficient platform for the removal of persistent pollutants such as 4-
330 chlorophenol, where adsorption-photocatalysis coupling is crucial for high-performance
331 remediation.

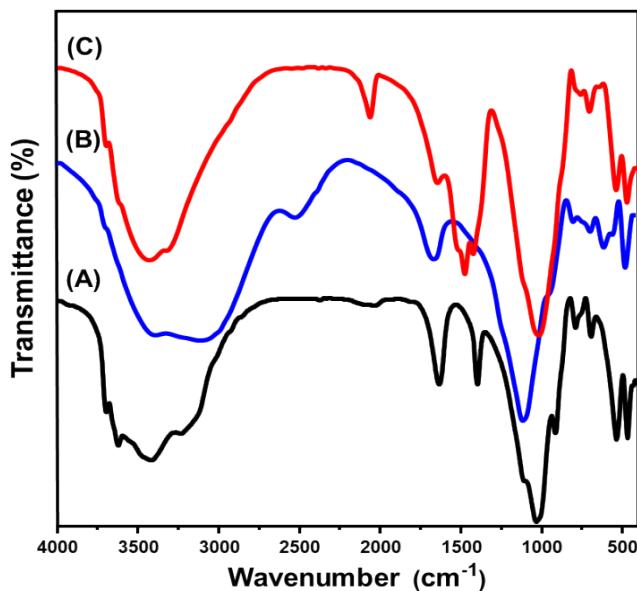
332 **3.1.2. Scanning electron microscopy (SEM) analysis**

333 The morphological evolution of carbonaceous bentonite throughout its stepwise
334 chemical modification was carefully tracked using scanning electron microscopy (SEM) (Fig.
335 3). In its raw form, the carbonaceous bentonite (CB) exhibited a typical clay-like morphology,
336 with dense aggregates of irregularly stacked platelets forming bulky, compact masses (Fig.
337 3A). These layered structures are characteristic of smectite-type clays, which naturally
338 possess lamellar arrangements due to their silicate framework. Closer inspection also
339 revealed the presence of fine, spherical particulates scattered across the surface (Fig. 3A),
340 which are likely associated with organic components—possibly kerogen or other
341 carbonaceous residues—embedded within or adhered to the clay layers. These organic
342 inclusions not only contribute to the physical heterogeneity of the material but may also play
343 a role in its chemical reactivity, providing potential sites for further functionalization.

Fig.3. SEM images of carbonaceous bentonite (A), sulfonated sample (B), and synthetic ZnO/SB hybrid (C and D)

Following sulfonation with concentrated H_2SO_4 , the bentonite underwent marked surface transformation. The sulfonated material (SB) displayed smoother surfaces compared to the unmodified CB (Fig. 3B), suggesting that the acid treatment effectively removed surface-bound impurities and partially decomposed organic matter. This "cleaning" action likely results from both the oxidative strength and acidity of H_2SO_4 , which can break down labile bonds within organic fragments while simultaneously altering the surface topography. Interestingly, despite the smoother appearance, the sulfonated samples also showed an increase in porosity and surface roughness at a finer scale. SEM images (Fig. 3B) revealed uneven edges and pore-like features across the particle surfaces—evidence of mineral leaching and microstructural etching brought about by acid attack. From a photocatalytic standpoint, this is highly advantageous: greater porosity improves accessibility to active sites, while surface acidity enhances interactions with pollutant molecules during degradation processes.

After ZnO deposition, the final ZnO@SB composite presented a clearly distinct morphology. SEM images (Fig. 3C and D) showed that ZnO nanoparticles formed a uniform, interlinked layer over the sulfonated clay surface. The nanoparticles appeared as aggregated nano-grains with slightly curved, worm-like geometries, resulting in a porous and texturally rich structure. This hierarchical assembly supports both high surface area and efficient mass


374 transport—two key requirements for photocatalytic systems operating under flow or batch
375 conditions. The homogeneous distribution of ZnO suggests strong binding between the
376 nanoparticles and the sulfonated bentonite surface, likely facilitated by coordination with
377 sulfonic acid groups. These interactions may contribute to improved electron transfer and
378 photocatalytic activation. Mechanically, the ZnO layer reinforces the structural stability of the
379 composite, while functionally, it introduces redox-active centers capable of driving
380 photocatalytic and oxidative degradation reactions.

381 **3.1.3. Fourier-transform infrared (FTIR) spectroscopy analysis**

382 Fourier-transform infrared (FT-IR) spectroscopy was employed to monitor the
383 progressive chemical and structural transformations of natural bentonite (NB), organically
384 enriched carbonaceous bentonite (CB), and the sulfonated bentonite-based photocatalyst
385 (SB). Figure 4 presents the comparative spectra, which elucidate the changes at each stage of
386 synthesis, offering insight into the development of functional groups critical to adsorption and
387 photocatalytic activity. The FT-IR spectrum of the unmodified natural bentonite (NB) displayed
388 well-resolved vibrational bands characteristic of montmorillonite-type clay minerals (Fig. S1).
389 A broad absorption envelope in the 3100–3700 cm^{-1} range was attributed to the stretching
390 vibrations of structural -OH groups, including those from interlayer water and lattice
391 hydroxyls (Fig. S1). The sharp peak at 1640.6 cm^{-1} corresponds to the bending vibration of
392 adsorbed H_2O , while prominent signals at 1000.3 cm^{-1} and 918.2 cm^{-1} were assigned to Si-O
393 stretching and Al-O vibrational modes, respectively. Additional features in the 400–1000 cm^{-1}
394 region were consistent with Si-O-Mg, Fe-OH, and Si-O-Al bending vibrations, affirming the
395 integrity of the layered silicate framework [46, 47] (Fig. S1).

396 For carbonaceous bentonite (CB), the core mineral structure was largely retained, as
397 evidenced by the persistence of montmorillonite bands. However, new absorption features
398 emerged, revealing the successful intercalation of organic matter within the clay matrix (Fig.
399 4A). Notably, a band at 2924.8 cm^{-1} was observed, corresponding to C-H stretching vibrations
400 of aliphatic chains, while signals at 1620 cm^{-1} and 1428 cm^{-1} were assigned to C=O bending
401 and C-OH deformation, respectively (Fig. 4A) [47, 55]. These spectral changes are indicative
402 of kerogen-like or maceral organic compounds being incorporated into the interlayer space or
403 adsorbed onto the surface. The formation of this hybrid organic-inorganic structure is

404 significant, as it enhances surface heterogeneity and offers reactive sites for subsequent
 405 chemical functionalization.

415 **Fig. 4.** FT-IR spectra of carbonaceous bentonite (A) [50], sulfonated sample (B), and synthetic ZnO/SB hybrid (C)

416 Following sulfonation, the FT-IR spectrum of the SB sample revealed significant
 417 alterations in both its mineralogical and organic functional group profiles (Fig. 4B). The -OH
 418 stretching band became noticeably broader and diminished in intensity, a change that is
 419 indicative of the formation of carboxylic acid (-COOH) functionalities (Fig. 4B). This
 420 transformation is likely a result of the oxidative breakdown of native organic constituents
 421 under the highly acidic treatment conditions [50, 62, 63]. Additionally, the weakening of
 422 hydroxyl-related bands also suggests partial dehydroxylation of the clay structure and the
 423 removal of physically adsorbed water molecules, both of which are consistent with acid-
 424 induced structural reorganization and leaching. A new, broad band around $\sim 2516\text{ cm}^{-1}$
 425 appears, commonly attributed to O-H stretching in strongly hydrogen-bonded carboxylic acids
 426 (-COOH) (Fig. 4B). Its presence suggests the oxidative introduction of proton-donating acidic
 427 groups, which complements the sulfonic functionality and enhances surface reactivity. The
 428 complete reduction of the detected band around 1428 cm^{-1} (CH or C-OH bending) in the CB
 429 sample, demonstrate the extensive oxidation and destruction effect of the sulfuric acid on the
 430 existed organic matters (Fig. 4B). This might be associated with chemical evolution toward
 431 more acidic, catalytically relevant functional groups.

432 The disappearance of this band, coupled with the appearance of strong S=O stretches
 433 and the broad O-H band near 2516 cm^{-1} in the SB spectrum, collectively signals loss of

434 weakly bound or passive organic matter, and creation of chemically active, polar functional
435 groups, such as sulfonic and carboxylic acids, which are better suited for adsorption and
436 photocatalytic performance (Fig. 4B) [64, 65]. Changes in the Si-O stretching region (~1000-
437 1100 cm⁻¹) imply partial disruption of the silicate layers, likely caused by the leaching of
438 framework cations (e.g., Si⁴⁺, Al³⁺, Mg²⁺) during acid treatment as well as possible overlap
439 with the incorporated (O=S=O) groups during the sulfonation process. A new absorption band
440 observed at ~598 cm⁻¹ in the SB spectrum can be assigned to S-O or S-C bending vibrations,
441 further confirming the presence of sulfonic acid groups (-SO₃H) introduced during acid
442 treatment [66, 67] (Fig. 4B). These groups are particularly valuable as they enhance acidity
443 and surface polarity, facilitating stronger interactions with target pollutants in photocatalytic
444 applications.

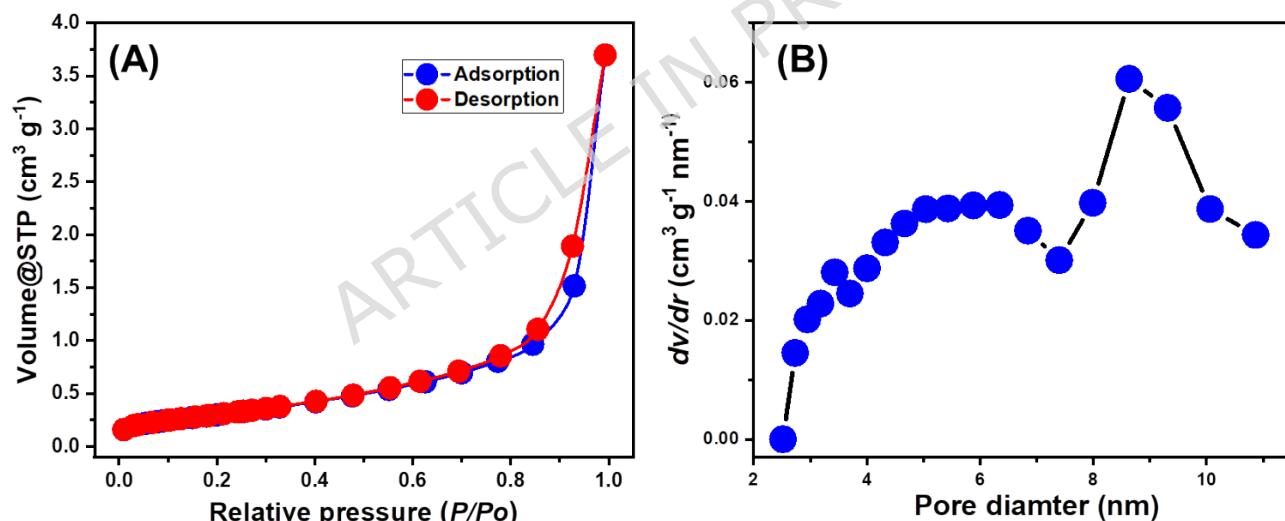
445 Upon incorporation of ZnO, the FT-IR spectrum of ZnO@SB revealed both the retention
446 and transformation of these key features (Fig. 4C). The sulfonic bands remained visible but
447 exhibited slight shifts to lower wavenumbers and increased broadening, likely due to
448 electrostatic interactions or coordination between Zn²⁺ ions and sulfonate groups [68]. This
449 observation indicates the chemical stability of sulfonic functionalities, even after metal oxide
450 loading, and their potential role in anchoring ZnO particles within the clay matrix. The most
451 prominent change in the ZnO@SB spectrum was the appearance of a strong band near ~490-
452 510 cm⁻¹, which is characteristic of Zn-O stretching vibrations from the crystal structure of
453 ZnO nanoparticles (Fig. 4C) [69, 70]. This band was absent in the SB spectrum, serving as
454 direct evidence of ZnO formation and confirming successful composite synthesis. Additionally,
455 significant changes were observed in the region between ~1472 and 1420 cm⁻¹, where new
456 bands emerged that are consistent with asymmetric and symmetric stretching of coordinated
457 carboxylate (-COO⁻) or sulfonate groups (Fig. 4C). These features, coupled with the
458 diminution or disappearance of the broad ~2500 cm⁻¹ band, suggest that Zn²⁺ ions engaged
459 in coordination interactions with pre-existing carboxylic and sulfonic acid sites, forming stable
460 metal-ligand complexes during synthesis. Such interactions contribute to the chemical
461 integrity of the composite and may facilitate interfacial electron transfer during
462 photocatalysis.

463 Taken together, the FT-IR comparison between SB and ZnO@SB highlights the retention
464 of surface acidity, the successful formation of ZnO nanophases, and the development of
465 strong chemical interactions at the oxide–support interface. These structural features directly
466 contribute to the catalyst’s dual-function performance. The acidic surface groups support
467 adsorption and pre-concentration of chlorophenol molecules, while the ZnO domains provide
468 active redox sites for photocatalytic degradation. The interplay between these functionalities
469 is essential for enhancing both the efficiency and selectivity of 4-chlorophenol removal under
470 visible light conditions.

471 **3.1.4. Energy dispersive X-ray (EDX) analysis**

472 Energy Dispersive X-ray (EDX) spectroscopy was employed to confirm the elemental
473 composition and validate the successful chemical modification of the synthesized materials, in
474 agreement with prior structural and spectroscopic analyses (Fig. S2). The EDX profile of the
475 sulfonated bentonite (SB) displayed prominent signals corresponding to oxygen (O), silicon
476 (Si), and aluminum (Al)—the principal constituents of the aluminosilicate lattice inherent to
477 bentonite clays (Fig. S2). In addition, the presence of carbon (C) was attributed to residual
478 organic phases within the carbonaceous matrix, while a well-defined sulfur (S) peak provided
479 direct evidence for the successful incorporation of sulfonic acid groups ($-\text{SO}_3\text{H}$) (Fig. S2). The
480 detection of sulfur is particularly significant, as it confirms the chemical grafting of functional
481 acid moieties onto the clay surface—an essential modification aimed at improving surface
482 acidity, polarity, and adsorption potential. These findings indicate that the sulfonation process
483 effectively altered the surface chemistry of the raw clay, enhancing its photocatalytic and
484 adsorptive properties without compromising the integrity of the core mineral framework. The
485 presence of these acidic sites plays a pivotal role in pollutant uptake and in facilitating charge
486 interaction with target molecules, thereby improving overall reactivity.

487 For the ZnO-functionalized composite (ZnO@SB), the EDX spectrum showed the
488 continued presence of the original framework elements (Si, Al, O, and C), indicating that the
489 structural backbone of the sulfonated bentonite was retained post-modification (Fig. S2). Most
490 notably, a distinct zinc (Zn) signal was observed, confirming the successful deposition and
491 incorporation of zinc oxide (ZnO) into the sulfonated clay matrix (Fig. S2). This integration is
492 critical, as ZnO introduces catalytically active redox centers that serve as electron donors and


493 acceptors during photocatalytic reactions. The uniform distribution of Zn also suggests
494 effective dispersion of nanoparticles across the support surface, which is essential for
495 maximizing photocatalytic efficiency. Therefore, the EDX analysis confirms both the chemical
496 functionalization of bentonite with sulfonic groups and the subsequent loading of ZnO
497 nanoparticles, both of which are central to the material's dual functionality in adsorptive
498 enrichment and photocatalytic degradation of organic contaminants.

499 **3.1.5. Textural studies**

500 The textural characteristics of the ZnO-functionalized sulfonated bentonite composite
501 (ZnO@SB) were comprehensively evaluated using nitrogen adsorption-desorption analysis, as
502 illustrated in Figure 5A, alongside pore size distribution data presented in Figure 5B. The
503 nitrogen adsorption-desorption isotherm of ZnO@SB exhibits a typical Type IV profile with a
504 distinct H3 hysteresis loop, in line with the International Union of Pure and Applied Chemistry
505 (IUPAC) guidelines (Fig. 5A). This pattern is emblematic of mesoporous structures, particularly
506 those composed of aggregates of plate-like particles forming slit-shaped pores. The presence
507 of this hysteresis suggests multilayer adsorption followed by capillary condensation, indicative
508 of well-organized mesoporosity [71, 72]. The progressive increase in nitrogen uptake across
509 the low to intermediate relative pressure range ($P/P_0 = 0.0-0.8$) reflects gradual pore filling,
510 while the pronounced uptake at higher relative pressures ($P/P_0 > 0.9$) implies the presence of
511 interparticle voids or larger mesopores that contribute to hierarchical porosity. Such
512 hierarchical features are commonly associated with improved mass transfer properties, which
513 are vital in catalysis where reactants and products must navigate through the porous network
514 [73].

515 The pore size distribution curve reveals a dominant pore diameter within the range of 4
516 to 10 nm, with a significant peak centered at approximately 7.8 nm (Fig. 5B). This confirms
517 the mesoporous framework of the composite. The relatively narrow distribution and centered
518 peak suggest that the ZnO nanoparticles were effectively dispersed within the sulfonated
519 bentonite matrix, ensuring structural integrity without blocking or collapsing the native pore
520 network. Such uniformity is essential for sustaining high surface area and maintaining
521 reactive site accessibility. The measured Brunauer-Emmett-Teller (BET) surface area of
522 ZnO@SB is 78.6 m^2/g , and the total pore volume stands at 0.1291 cm^3/g . The BET surface

area measured for ZnO@SB ($78.6\text{ m}^2/\text{g}$) is above typical values for unsupported ZnO nanoparticles (commonly $\sim 12\text{--}35\text{ m}^2/\text{g}$) and in the same band as H_2SO_4 -activated/bentonite-based acids ($\sim 50\text{--}70\text{ m}^2/\text{g}$). Moreover, recent ZnO-bentonite hybrids show type-IV (H4) N_2 -sorption isotherms and larger specific areas than bare ZnO, consistent with enhanced mesoporosity and surface accessibility [74-77]. These values reflect a substantial degree of internal porosity and surface exposure, both of which are advantageous for photocatalytic and adsorptive applications. A high surface area promotes greater availability of active sites, while a well-developed pore volume supports efficient transport of reactant molecules and rapid diffusion kinetics. Notably, the coexistence of mesopores and larger voids (inter-aggregate spaces) introduces a multi-scale porosity that offers dual functional benefits: enhanced adsorption capacity due to increased surface sites, and improved photonic and molecular transport within the material matrix. This structural arrangement is particularly beneficial in photocatalytic systems, where both light harvesting and molecule diffusion are rate-determining steps.

Fig.5. Nitrogen adsorption/desorption isotherm curve (A) and pore size distribution curve (B) of ZnO@SB

3.1.6. Optical properties

The optical properties of the ZnO@SB composite were evaluated using UV-Vis spectroscopy. The spectrum exhibits a strong absorption band in the UV region, followed by a gradual decrease in intensity toward longer wavelengths (Fig. S3). This behavior is typical of ZnO-based materials and reflects the fundamental band-to-band transitions of ZnO nanocrystals, together with a weak visible-light tail associated with defect-related states and interfacial electronic interactions with the sulfonated carbonaceous bentonite matrix [78, 79].

553 The modest but non-negligible visible-range absorbance suggests the presence of localized
 554 states or electronic coupling at the ZnO-support interface, which subtly modifies the optical
 555 response of the hybrid material, as reported for other ZnO/clay and ZnO/carbon composites.
 556 The optical band gap of ZnO@SB, estimated from the Tauc plot assuming a direct allowed
 557 transition, was approximately 2.75 eV, lower than that of bulk ZnO (\approx 3.2-3.3 eV) [80-82].

558 This reduction indicates a red shift of the absorption edge toward the visible domain
 559 and is consistent with literature on defect-rich and carbon-modified ZnO/clay systems, where
 560 band-gap narrowing is attributed to oxygen-vacancy states, interfacial defect levels, and
 561 charge-transfer interactions with carbonaceous and mineral supports. In the present system,
 562 the sulfonated carbonaceous bentonite provides both acidic and π -conjugated functional
 563 groups that can interact electronically with ZnO, promoting the formation of interfacial states
 564 and facilitating charge delocalization at the ZnO/SB interface [83-85].

565 The narrowed band gap and red-shifted absorption edge enhance the ability of
 566 ZnO@SB to utilize the visible fraction of the metal-halide light employed in this study, thereby
 567 increasing the generation of electron-hole pairs under irradiation. This enhanced optical
 568 response is consistent with radical-scavenging experiments, which identified hydroxyl and
 569 superoxide radicals as the predominant reactive oxygen species responsible for 4-CL
 570 degradation. The improved radical formation can be ascribed to more efficient photon
 571 harvesting, facilitated charge separation, and the participation of interfacial electronic states
 572 created through coupling of ZnO with the sulfonated bentonite substrate. Overall, the UV-Vis
 573 and Tauc analyses indicate that ZnO@SB possesses a modified electronic structure and
 574 enhanced visible-light responsiveness compared with pristine ZnO. When combined with the
 575 mesoporous nature and high adsorption capacity of the bentonite-based support, these
 576 optical and electronic features provide a robust basis for the superior photocatalytic
 577 performance of ZnO@SB relative to unmodified ZnO and several conventional ZnO-based
 578 photocatalysts reported in the literature.

579 **3.2. Photocatalytic degradation results**

580 **3.2.1. Effect of oxidation parameters**

581 **3.2.1.1. Effect of pH**

582 The pH of the aqueous medium significantly influences both the surface charge
583 distribution of the ZnO@SB composite and the ionization behavior of water-soluble organic
584 compounds such as 4-chlorophenol (4-CL) [86]. To investigate this relationship, the adsorption
585 efficiency of ZnO@SB was evaluated across a pH range of 3 to 10, under controlled
586 conditions: contact time of 60 minutes, temperature of 20 °C, solution volume of 50 mL, 4-CL
587 concentration of 5 mg/L, and an adsorbent dosage of 0.2 g/L. The results demonstrated a
588 pronounced pH-dependent trend. Oxidation efficiency increased with pH, reaching a
589 maximum of 90.7% at pH 8 (Fig. 6), followed by a sharp decline under alkaline conditions (pH
590 10) (Fig. 6). This behavior is governed by both surface chemistry and the speciation of 4-CL in
591 aqueous media. At low pH values, the surface of ZnO@SB tends to be positively charged,
592 while the abundance of H⁺ ions leads to competition with 4-CL molecules for adsorption sites,
593 thereby reducing adsorption capacity [87].

594 As the pH increases toward neutrality, the electrostatic repulsion diminishes, and 4-
595 CL—whose pKa ranges between 4.7 and 9.4—partially dissociates into its anionic form [72].
596 This transition promotes stronger interactions between the negatively charged 4-CL and the
597 relatively neutral or slightly positive adsorbent surface, enhancing adsorption. The peak
598 adsorption at pH 8 is attributed to an optimal balance between surface charge conditions and
599 the molecular speciation of 4-CL. At alkaline pH values above 9, both 4-CL and the ZnO@SB
600 surface acquire negative charges, leading to strong electrostatic repulsion. This reduces the
601 availability of 4-CL molecules at the photocatalyst surface, resulting in significantly diminished
602 adsorption performance [88].

603 In heterogeneous photocatalytic systems such as this, efficient oxidation relies heavily
604 on the initial adsorption of the pollutant onto the photocatalyst surface. This proximity
605 facilitates effective electron transfer and interaction with oxidizing radicals, such as hydroxyl
606 radicals (•OH) and superoxide anions (O₂•⁻), which are generated during photocatalytic
607 activation. At optimal pH (8), where adsorption is maximized, a higher concentration of 4-CL is
608 localized on the photocatalyst surface, enabling rapid and effective oxidation. In contrast,
609 under acidic or strongly alkaline conditions where adsorption is limited, fewer pollutant
610 molecules are available at the active sites, resulting in lower degradation rates. Moreover,
611 poor adsorption at high pH also reduces the interaction between 4-CL and ROS, further

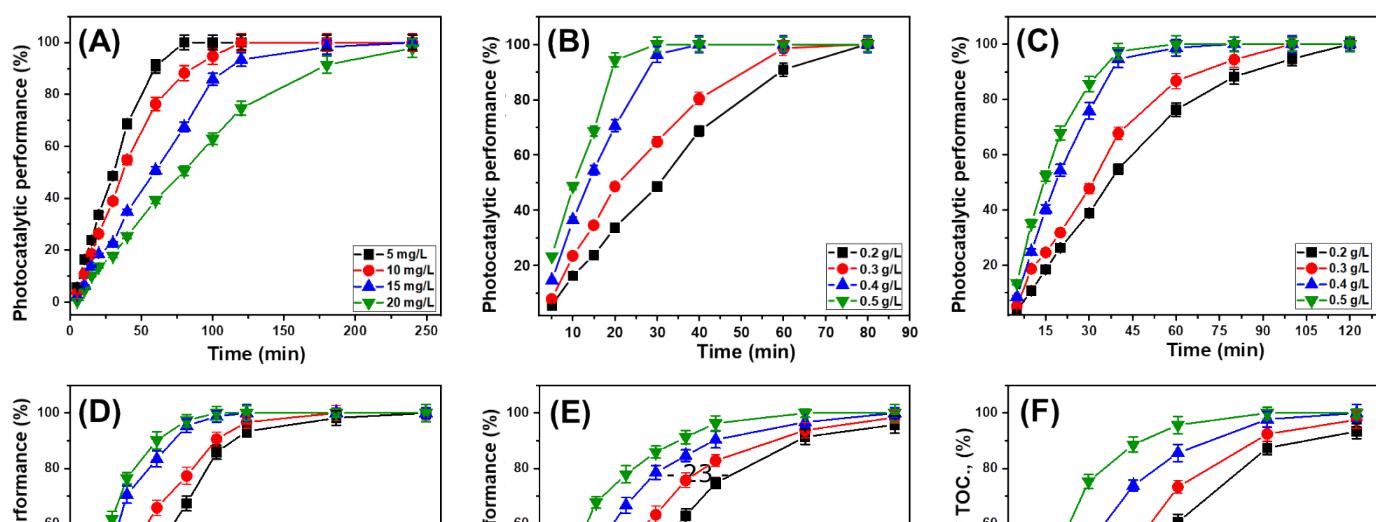
612 hindering oxidation kinetics. These observations reinforce the synergistic relationship
613 between adsorption and oxidation processes in photocatalytic systems. Optimizing pH not
614 only enhances the initial capture of pollutants but also directly improves the efficiency of their
615 subsequent degradation. Therefore, controlling pH is critical for maximizing the overall
616 performance of ZnO@SB in advanced oxidation processes targeting 4-CL.

617
618
619
620
621
622
623
624
625
626 **Fig.6.** Experimental influence of the solution pH on the oxidation of 4-CL using ZnO@SB

627
628 **3.2.1.2. Effect of 4-CL contents at different periods**

629 The photocatalytic performance of ZnO@SB composites was systematically
630 investigated as a function of reaction time (ranging from 5 to 240 minutes) and varying initial
631 concentrations of 4-chlorophenol (4-CL) from 5 to 20 mg/L. Throughout the experimental
632 procedures, key parameters were meticulously controlled to ensure consistency:
633 photocatalyst dosage was maintained at 0.2 g/L, the reaction volume at 50 mL, pH at 8, and
634 temperature at a constant 20 °C. The ZnO@SB material demonstrated pronounced
635 photocatalytic activity, facilitating rapid degradation of 4-CL in relatively short timeframes
636 (Fig. 7A). Notably, complete removal (100%) of 4-CL was achieved at an initial concentration
637 of 5 mg/L within 80 minutes. For higher concentrations—namely 10 mg/L and 15 mg/L—the
638 same removal efficiency was attained at extended durations of 120 and 240 minutes,
639 respectively (Fig. 7A), highlighting the time-dependent nature of the degradation process in
640 relation to pollutant load.

641 However, as the initial concentration of 4-CL increased, a noticeable decline in
642 photocatalytic efficiency was observed (97.8%; 20 mg/L after 240 minutes). This phenomenon


643 can be attributed to the development of densely packed adsorption layers of 4-CL molecules
644 on the ZnO@SB surface. Such layers hinder the accessibility of active sites and suppress the
645 effective interaction between the photocatalyst and incident light, as well as between reactive
646 species and the substrate molecules. The excessive accumulation of 4-CL reduces light
647 penetration, thereby impeding the generation of hydroxyl and other reactive radicals
648 essential for oxidative degradation [89]. Moreover, the gradual attenuation in degradation
649 efficiency over prolonged reaction times suggests the depletion of reactive oxidative species
650 as the reaction progresses. Once the radicals generated by the photocatalyst are consumed—
651 particularly in high pollutant concentrations—the rate of degradation plateaus, and the
652 system approaches an equilibrium state. This stagnation implies a dynamic balance where
653 radical generation no longer compensates for the demand, resulting in marginal further
654 degradation of 4-CL. This behavior is consistent with previous findings that reported a
655 decrease in oxidative decomposition efficiency due to radical exhaustion during prolonged
656 photocatalytic processes [90]. These results underscore the significance of optimizing
657 pollutant load and reaction duration to achieve maximum photocatalytic efficiency. The
658 findings also highlight potential challenges in scaling this process for treatment of wastewater
659 with high concentrations of recalcitrant organic pollutants, indicating the necessity for
660 enhanced photocatalyst design or multi-stage treatment strategies.

661 662 **3.2.1.3. Effect of ZnO@SB dosages at different periods**

663 The impact of varying ZnO@SB photocatalyst dosages on the photocatalytic
664 degradation of 4-chlorophenol (4-CL) was comprehensively investigated. Dosage levels were
665 adjusted from 0.2 g/L to 0.5 g/L to evaluate their effect on the decomposition efficiency of
666 different 4-CL concentrations (5–20 mg/L). The photocatalytic oxidation was conducted over a
667 time range of 5 to 240 minutes, with all other operational conditions held constant: reaction
668 volume (50 mL), temperature (20 °C), and pH (8). The results revealed a strong correlation
669 between increased photocatalyst dosage and enhanced degradation performance (Fig. 7B–E).
670 For instance, at a 4-CL concentration of 5 mg/L, complete degradation was achieved within 80
671 minutes using 0.2 g/L of ZnO@SB (Fig. 7B). When the dosage was increased to 0.4 g/L and 0.5
672 g/L, the time required for full oxidation was significantly reduced to 40 and 30 minutes,

673 respectively (Fig. 7B). Similar trends were observed at higher pollutant concentrations: for 10
 674 mg/L of 4-CL, complete removal was reached in 120 minutes with 0.2 g/L, compared to only
 675 80 and 60 minutes when using 0.4 g/L and 0.5 g/L, respectively (Fig. 7C).

676 At a concentration of 15 mg/L, a marked improvement in degradation efficiency was
 677 also evident. Complete removal was achieved in just 100 minutes at 0.5 g/L, in contrast to the
 678 240 minutes required with 0.2 g/L (Fig. 7D). For the highest tested concentration (20 mg/L),
 679 full degradation was accomplished in 240 minutes using 0.4 g/L and was further reduced to
 680 180 minutes with a 0.5 g/L photocatalyst dose (Fig. 7E). These findings clearly indicate that
 681 increasing the ZnO@SB dosage significantly enhances photocatalytic activity. This
 682 improvement is attributed to the greater availability of active photocatalytic sites and a
 683 higher surface area for interaction, which collectively facilitate more efficient generation and
 684 utilization of reactive species (ROS), such as hydroxyl radicals, during the oxidation process
 685 [36, 91]. The enhanced photocatalyst loading intensifies the contact probability between the
 686 4-CL molecules and the active surface of ZnO@SB, thereby accelerating the degradation
 687 kinetics. Furthermore, the observed dosage-dependent performance suggests that the
 688 photocatalyst quantity directly influences the extent and rate of oxidative transformations,
 689 particularly in systems with elevated pollutant loads. However, it is essential to balance
 690 photocatalyst dosage to avoid potential drawbacks such as light scattering or agglomeration
 691 at excessive concentrations, which may reduce the effective surface area or hinder photon
 692 absorption efficiency. In summary, optimizing the dosage of ZnO@SB is critical for maximizing
 693 degradation performance, especially when targeting varying concentrations of persistent
 694 organic contaminants. The data underscores the photocatalyst's potential for scalable
 695 application in wastewater treatment scenarios where tailored dosages can ensure both high
 696 efficiency and cost-effectiveness.

703

704

705

706

707

708

709

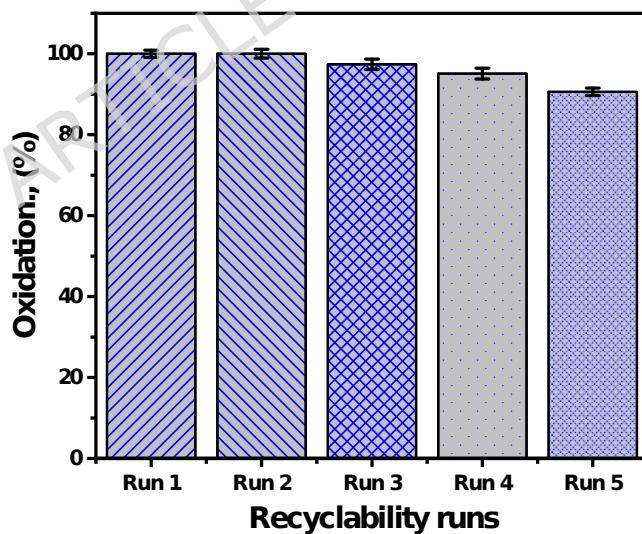
710

711 **3.2.2. Mineralization efficiency**

712 To assess the extent of mineralization achieved during the photocatalytic degradation of
713 4-chlorophenol (4-CL), total organic carbon (TOC) analyses were conducted on treated
714 solutions. This assessment aimed not only to verify the breakdown of the parent compound
715 but also to determine the conversion of residual organic matter into final mineralized
716 products—principally carbon dioxide (CO_2) and water (H_2O)—as well as to detect the
717 persistence or formation of intermediate organic byproducts during oxidation. The
718 experiments employed $\text{ZnO}@\text{SB}$ at varying dosages (ranging from 0.2 g/L to 0.5 g/L) in
719 systems containing 5 mg/L of 4-CL. TOC measurements were recorded at progressive time
720 intervals to monitor the temporal evolution of mineralization efficiency (Fig. 7F). The results
721 indicated a notable reduction in TOC values over time, confirming the photocatalytic system's
722 efficacy in degrading not only the parent pollutant but also its intermediate transformation
723 products.

724 Interestingly, a temporal lag was observed between the complete degradation of 4-CL
725 molecules and the full mineralization of the corresponding organic carbon content. While total
726 4-CL removal was achieved within 40 minutes and 30 minutes using $\text{ZnO}@\text{SB}$ at dosages of
727 0.4 g/L and 0.5 g/L, respectively, complete TOC elimination required longer durations—80
728 minutes and 60 minutes for the same photocatalyst loadings (Fig. 7F). This discrepancy
729 implies that the photocatalytic oxidation process initially yields partially oxidized
730 intermediates, which require additional exposure to reactive oxidative species for further
731 breakdown and final conversion into CO_2 and H_2O . The delayed reduction in TOC, relative to
732 the faster disappearance of the parent compound, highlights the complexity of the
733 degradation pathway and suggests a multistep mechanism. During the initial stages, $\text{ZnO}@\text{SB}$

734 facilitates the rapid oxidative cleavage of 4-CL's aromatic structure, producing less complex
735 but still organic intermediates. These intermediates persist transiently in solution and
736 necessitate additional oxidation steps before full mineralization is realized.


737 Nevertheless, the eventual complete TOC removal confirms the photocatalyst's ability
738 to drive the reaction to completion, achieving full detoxification and mineralization of 4-CL.
739 This is a crucial consideration for practical applications, as the mere disappearance of the
740 parent molecule does not guarantee the absence of harmful or persistent secondary
741 byproducts. The ability of ZnO@SB to achieve both degradation and mineralization positions it
742 as a promising candidate for advanced wastewater treatment technologies.

743 **3.2.4. Recyclability properties**

744 The reusability of the ZnO@SB photocatalyst was rigorously evaluated through five
745 consecutive photocatalytic cycles (denoted as RN1 to RN5) to assess its durability and
746 operational feasibility for repeated 4-chlorophenol (4-CL) degradation. Following each
747 degradation run, the photocatalyst was recovered via filtration, thoroughly rinsed with
748 distilled water for 15 minutes to remove residual organic and inorganic species, and
749 subsequently dried at 60 °C for 12 hours to ensure complete regeneration before reuse.
750 Photocatalytic experiments were performed under optimal reaction conditions—specifically, a
751 ZnO@SB dosage of 0.5 g/L, reaction volume of 50 mL, pH 8, and a reaction time of 120
752 minutes (Fig. 8). The experimental results demonstrated that ZnO@SB maintained excellent
753 oxidative performance across all reuse cycles. Complete degradation (100%) of 4-CL at an
754 initial concentration of 5 mg/L was achieved during the first two cycles (RN1 and RN2), while
755 slightly reduced efficiencies of 97.4%, 95.1%, and 90.6% were observed in the subsequent
756 RN3, RN4, and RN5 cycles, respectively (Fig. 8).

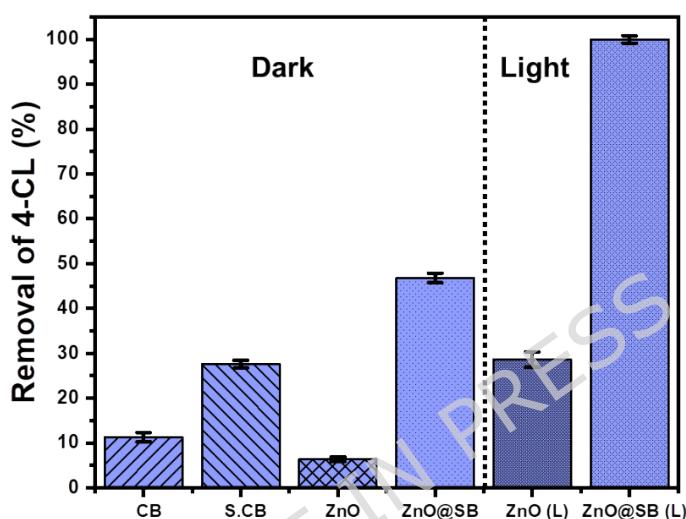
757 These findings underscore the superior regeneration capability and structural stability
758 of ZnO@SB, which outperformed the comparative reference photocatalyst in maintaining
759 degradation efficiency over repeated uses. The modest decline in photocatalytic activity over
760 successive cycles is a common phenomenon in heterogeneous photocatalysis and is primarily
761 attributed to the gradual surface passivation of active sites. This may result from the
762 formation of stable complexes or persistent organic intermediates adsorbed onto the
763 photocatalyst surface, which partially obstruct access to reactive sites. The leachability of Zn

764 ions after each photocatalytic cycle was evaluated by analyzing the filtrate using inductively
 765 coupled plasma-optical emission spectroscopy, confirming a minimal Zn release (< 0.005
 766 mg/L) and demonstrating the excellent structural stability and environmental safety of the
 767 ZnO@SB photocatalyst during repeated use. The negligible zinc leaching further corroborated
 768 the material's structural robustness and suitability for prolonged use, reducing the risk of
 769 secondary contamination in treated water—an essential consideration for environmental
 770 compliance and large-scale deployment. Additionally, the comparison between the fresh and
 771 used FT-IR spectra shows very minor spectral changes, indicating that the ZnO@SB
 772 photocatalyst remains structurally stable after the degradation of 4-chlorophenol (Fig. S4).
 773 Only slight variations are observed in the O-H stretching region (\approx 3420–3450 cm $^{-1}$) and the
 774 H-O-H/organic residue band around \sim 1635–1640 cm $^{-1}$, which are attributed to small amounts
 775 of adsorbed water or trace reaction intermediates on the surface. All key structural bands—
 776 particularly the Si-O-Si/Si-O-Al framework vibration near 1000–1010 cm $^{-1}$ and the Zn-O
 777 lattice bands at \approx 700, 540, and 470 cm $^{-1}$ —remain unchanged in position and shape. These
 778 observations confirm that no structural degradation, dissolution, or chemical transformation of
 779 the ZnO@SB composite occurred during the photocatalytic process.

780
 781
 782
 783
 784
 785
 786
 787
Fig.8. The recyclability properties of ZnO@SB during the oxidation of 4-CL molecules

788 The sustained high degradation efficiency, even after multiple cycles, highlights the
 789 potential of ZnO@SB as a practical and sustainable photocatalyst for industrial wastewater
 790 treatment. Its enhanced photocatalytic activity and recyclability can be ascribed to the
 791 engineered structural features and surface properties that promote the generation and
 792 transfer of reactive species. Furthermore, the gradual efficiency reduction observed over time
 793

794 aligns with the typical operational behavior of durable photocatalysts subjected to continuous
795 stress, indicating a high tolerance for repeated use without significant performance loss.
796 Overall, ZnO@SB presents a promising solution for the efficient and environmentally
797 responsible removal of recalcitrant organic pollutants such as 4-CL from aqueous systems. Its
798 recyclability, structural integrity, and low environmental impact position it as a strong
799 candidate for integration into advanced oxidation processes (AOPs) in real-world water
800 remediation.


801 **3.2.5. Synergetic properties of oxidation system**

802 The synergistic behavior of carbonaceous bentonite (CB), sulfonated bentonite (S.CB),
803 zinc oxide (ZnO), and their composite (ZnO@SB) was systematically investigated to evaluate
804 their adsorption and photocatalytic performance in the removal of 4-chlorophenol (4-CL).
805 Experiments were conducted under three distinct conditions to distinguish the individual
806 contributions of each material: adsorption in the absence of light, photolysis under visible-
807 light irradiation without any photocatalyst, and photocatalysis under visible light in the
808 presence of the materials. All experiments were carried out under standardized conditions,
809 including a photocatalyst dosage of 0.5 g/L, an initial 4-CL concentration of 20 mg/L, a
810 reaction volume of 50 mL, pH 8, and a total reaction time of 180 minutes (Fig. 9).

811 In dark conditions, the materials displayed varying adsorption capacities, with removal
812 efficiencies of 11.3% for CB, 27.6% for S.CB, 6.4% for ZnO, and 46.8% for ZnO@SB (Fig. 9).
813 The improved adsorption performance of S.CB over unmodified CB can be attributed to the
814 introduction of sulfonic functional groups during the sulfonation process, which enhance
815 surface polarity and generate additional active sites for pollutant interaction. The significantly
816 higher adsorption efficiency observed for ZnO@SB is indicative of a synergistic enhancement
817 due to the integration of ZnO nanoparticles within the functionalized bentonite matrix. This
818 hybridization likely improves both the surface area and the density of energetically favorable
819 adsorption sites, thereby facilitating the uptake of 4-CL molecules through increased
820 molecular interaction and accessibility.

821 Control experiments involving photolysis under visible light, in the absence of any
822 photocatalyst, resulted in negligible degradation of 4-CL, with only 0.7% removal observed.
823 This confirms the inherent photostability of the compound and highlights the necessity of a

photocatalyst to initiate degradation under visible light. When the materials were introduced under visible-light irradiation, only ZnO and ZnO@SB exhibited significant photocatalytic activity (Fig. 9). CB and S.CB, while effective adsorbents, showed no meaningful contribution to light-driven degradation. The removal efficiencies under photocatalytic conditions were 28.6% for ZnO and 100% for ZnO@SB (Fig. 9), measured after the establishment of adsorption-desorption equilibrium. These findings clearly demonstrate the substantial improvement in photocatalytic activity achieved through the formation of the ZnO@SB composite.

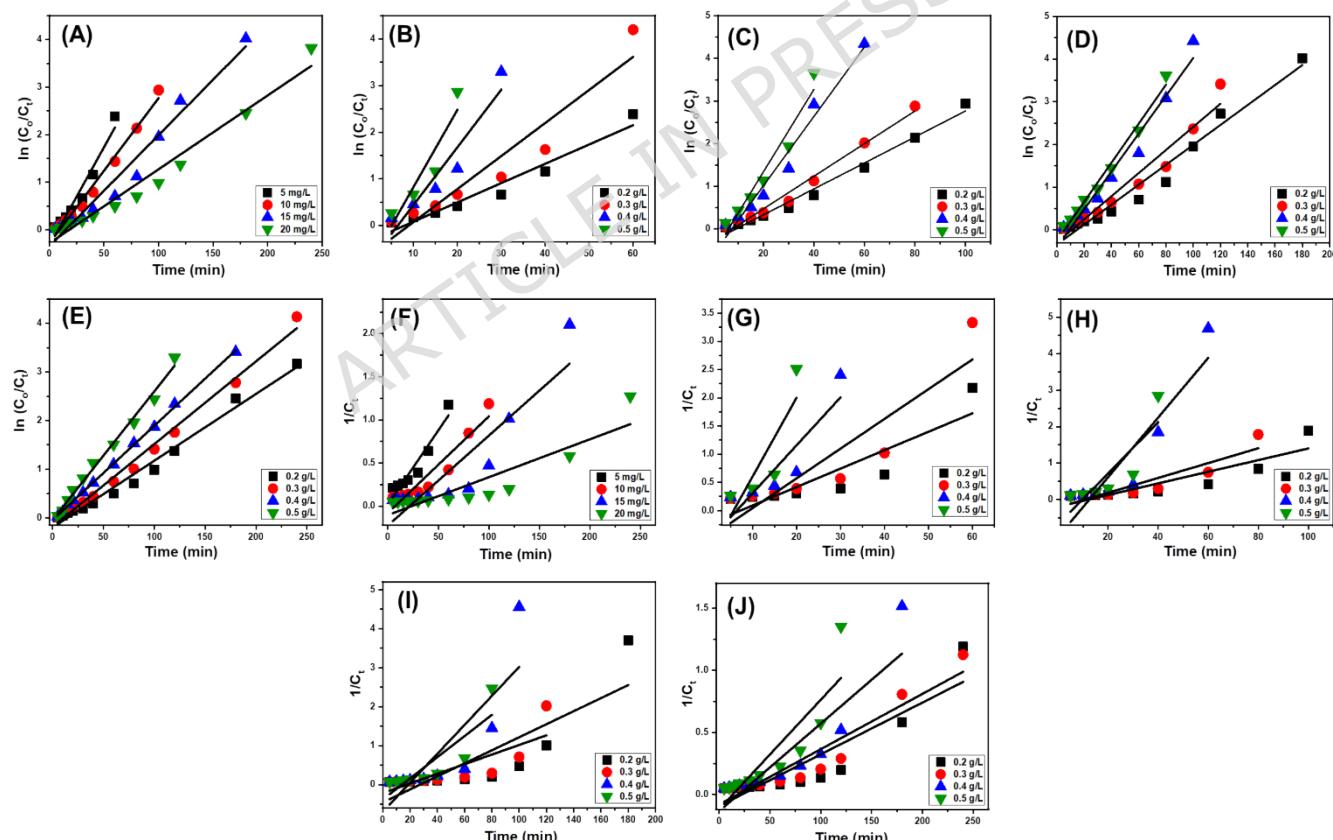
Fig.9. the synergistic effect of the integrated components on the adsorption and photocatalytic performances of ZnO@SB

The enhanced performance of ZnO@SB is ascribed to multiple interrelated mechanistic factors. The sulfonated bentonite framework promotes pre-adsorption of 4-CL molecules near catalytically active ZnO sites, effectively increasing local reactant concentrations. This enhances the likelihood of oxidative degradation once the photocatalytic reaction is initiated. The integration of ZnO further increases the available surface area and the number of photocatalytic sites, while its homogeneous dispersion across the sulfonated matrix prevents agglomeration, ensuring maximal light harvesting and reactive surface exposure. Additionally, the composite structure improves charge separation efficiency by facilitating the migration of photogenerated electrons and holes, thereby suppressing recombination losses. This prolongs the lifetime of reactive charge carriers and promotes the generation of highly oxidative species such as hydroxyl radicals ($\cdot\text{OH}$) and superoxide anions ($\text{O}_2\cdot^-$), which are crucial for efficient photocatalytic degradation.

The cumulative effects of enhanced adsorption affinity, expanded active surface area, efficient photon utilization, and improved charge carrier dynamics collectively account for the remarkable photocatalytic efficiency of ZnO@SB. These results underscore the advantages of material hybridization in achieving superior performance and demonstrate the potential of ZnO@SB as a robust, cost-effective, and scalable photocatalyst for the degradation of persistent organic pollutants. Its dual-functionality and visible-light responsiveness make it particularly attractive for environmental applications, including the treatment of industrial and pharmaceutical wastewater.

3.2.6. Kinetic behavior and quantum yield evaluation

To elucidate the underlying mechanism of 4-CL oxidation via photocatalysis over the ZnO@SB nanocomposite, a detailed kinetic investigation was conducted using both pseudo-first-order (Eq.1) and pseudo-second-order kinetic (Eq.2) models. The experimental data were fitted to their respective linearized rate expressions, as follows [26]:


$$\ln \frac{C_0}{C_t} = kt \quad (1)$$

$$\frac{1}{C_t} = \frac{1}{C_0} + k_2 t \quad (2)$$

Here, C_0 and C_t are the ammonium concentrations at time zero and time t , respectively, and k_1 , k_2 represent the corresponding rate constants for pseudo-first-order and pseudo-second-order kinetics. Analysis of the fitting results revealed that the oxidation of 4-CL consistently followed pseudo-first-order kinetics across all tested initial concentrations and photocatalyst dosages, particularly at specific 4-CL levels (Figure 10A-J; Table 1). This conclusion is supported by higher correlation coefficients and superior linear agreement with the pseudo-first-order model. These findings indicate that the reaction kinetics are primarily influenced by the availability of surface-active oxidizing species rather than by complex adsorption-desorption equilibria or multi-reactant interactions. However, both kinetic models provided insight into different concentration regimes, indicating that multiple parallel oxidation pathways may be operative. This suggests the generation of diverse reactive oxygen species (ROS), such as hydroxyl radicals ($\cdot\text{OH}$) and superoxide anions ($\text{O}_2\cdot^-$), during photocatalytic irradiation, contributing simultaneously to the degradation process. These

species are known to be strongly dependent on the surface interactions and photogenerated charge carriers of the semiconductor photocatalyst.

The calculated rate constants exhibited a decreasing trend with increasing 4-CL concentrations (Table 1), implying that elevated pollutant loads may hinder photocatalytic performance by reducing the number of available active sites or through radical scavenging, consistent with surface saturation effects. This inhibitory effect has also been linked to competitive adsorption and limited light penetration due to higher turbidity or solute interference. Conversely, increasing the ZnO@SB dosage resulted in a notable enhancement in rate constants, underscoring the role of additional photocatalytic surface area and increased ROS production in accelerating the degradation reaction. These results reinforce that optimal performance is achieved under low-to-moderate pollutant concentrations, where sufficient photocatalytic activity and photon absorption are maintained.

Fig.10. linear fitting of the oxidation results with the First order (A (starting concentration), B (different dosages at 5 mg/L of 4-CL), C (different dosages at 10 mg/L of 4-CL), D (different dosages at 15 mg/L of 4-CL), and E (different dosages at 20 mg/L of 4-CL)) and Second order (F (starting concentration), G (different dosages at 5 mg/L of 4-CL), H (different dosages at 10 mg/L of 4-CL), I (different dosages at 15 mg/L of 4-CL), and J (different dosages at 20 mg/L of 4-CL)) kinetic models

To further quantify the system's photochemical efficiency, the quantum yield (Φ) was assessed. Quantum yield is defined as the ratio of the number of pollutant molecules degraded to the number of incident photons absorbed (Eq. 3), providing a fundamental measure of the efficiency of photon-to-chemical energy conversion [92, 93]. In this study, Φ was calculated via two complementary approaches: a direct molar ratio and a rate constant-based formulation (Eq. 4) [41, 94]:

$$\Phi = \frac{\text{Number of 4-CL}}{\text{Number of absorbed photons}} \quad (3)$$

$$\Phi = \frac{K_1}{2.303 \times I_{0,\lambda} \times \varepsilon\lambda \times l} \quad (4)$$

Where K_1 (s^{-1}) is the pseudo-first-order rate constant, $I_{0,\lambda}$ (Einstein·L $^{-1}·s^{-1}$) is the intensity of incident light at wavelength (λ), $\varepsilon\lambda$ ($cm^{-1}·M^{-1}$) is the molar absorptivity of the system, and l (cm) is the optical path length of the quartz reactor. The derived Φ values exhibited a clear inverse relationship with increasing ammonium concentrations. As pollutant levels rose, Φ decreased markedly, indicating a reduction in the system's photonic efficiency. This can be attributed to multiple inhibitory effects, including enhanced scattering and absorption of incident light by the denser solute matrix, saturation of active sites on the photocatalyst surface, and competitive consumption of ROS by excess ammonium ions. These phenomena collectively reduce the efficiency of photon utilization and charge carrier dynamics, ultimately hindering photocatalytic activity. On the other hand, increasing the ZnO@SB photocatalyst dosage significantly improved Φ , this can be attributed to enhance light absorption, increased number of active sites, and more efficient generation of ROS. The improved interaction between light photons and 4-CL molecules at higher photocatalyst loadings also contributes to enhanced quantum efficiency. These observations are in agreement with the kinetic trends and affirm the critical role of operational parameters in optimizing photocatalytic performance. In summary, the synergistic evaluation of reaction kinetics and quantum yield highlights the high photocatalytic competence of ZnO@SB, particularly under low pollutant concentrations—conditions often encountered in environmental remediation scenarios. These findings underscore the necessity of optimizing key operational variables, such as photocatalyst loading, initial contaminant concentration, and light intensity, to achieve maximal degradation rates and photonic efficiencies in practical applications.

Table 1. The estimated parameters of the kinetic models and the quantum yield efficiency

Conditions	First order model			Second order model			Quantum yield
	R ²	X ²	K ₁	R ²	X ²	K ₂	
Concentration							
5 mg/L	0.94	0.191	0.0414±0.0	0.90	0.058	0.0172±0.0	7.39 x 10 ⁻⁸
10 mg/L	0.98	0.118	0.0304±0.0	0.90	0.105	0.0112±0.001	5.42 x 10 ⁻⁸
15 mg/L	0.96	0.533	0.0233±0.0	0.80	0.693	0.0104±0.0	4.16 x 10 ⁻⁸
20 mg/L	0.96	0.546	0.0155±0.027	0.78	0.279	0.0043±0.008	2.76 x 10 ⁻⁸
Dosages at 5 mg/L 4-CL content							
0.2 g/L	0.94	0.191	0.0414±0.0	0.90	0.631	0.0172±0.0	7.39 x 10 ⁻⁸
0.3 g/L	0.89	0.105	0.0708±0.004	0.78	1.347	0.0527±0.011	1.26 x 10 ⁻⁷
0.4 g/L	0.88	0.543	0.1237±0.009	0.75	1.598	0.0851±0.023	2.21 x 10 ⁻⁷
0.5 g/L	0.81	0.489	0.1657±0.022	0.60	1.873	0.1398±0.053	2.96 x 10 ⁻⁷
Dosages at 10 mg/L 4-CL content							
0.2 g/L	0.98	0.118	0.0304±0.0	0.90	0.105	0.0112±0.001	5.42 x 10 ⁻⁸
0.3 g/L	0.98	0.112	0.0382±0.001	0.80	0.943	0.0203±0.003	6.82 x 10 ⁻⁸
0.4 g/L	0.96	0.406	0.0811±0.006	0.81	1.063	0.0818±0.015	1.45 x 10 ⁻⁷
0.5 g/L	0.94	0.403	0.0966±0.010	0.67	1.462	0.0923±0.020	1.72 x 10 ⁻⁷
Dosages at 15 mg/L 4-CL content							
0.2 g/L	0.96	0.533	0.0233±0.0	0.80	0.693	0.0104±0.0	4.16 x 10 ⁻⁸
0.3 g/L	0.95	0.568	0.0270±0.0021	0.62	1.122	0.0233±0.003	4.82 x 10 ⁻⁸
0.4 g/L	0.97	0.511	0.0443±0.0026	0.65	2.278	0.0371±0.006	7.91 x 10 ⁻⁸
0.5 g/L	0.98	0.129	0.0457±0.0020	0.71	1.173	0.0412±0.004	8.16 x 10 ⁻⁸
Dosages at 20 mg/L 4-CL content							
0.2 g/L	0.96	0.546	0.0155±0.027	0.78	0.279	0.0043±0.0081	2.76 x 10 ⁻⁸
0.3 g/L	0.98	0.164	0.0170±0.031	0.88	0.134	0.0044±0.007	3.03 x 10 ⁻⁸
0.4 g/L	0.99	0.099	0.0194±0.013	0.79	0.352	0.0070±0.001	3.46 x 10 ⁻⁸
0.5 g/L	0.98	0.1005	0.0264±0.017	0.75	0.328	0.0088±0.001	4.71 x 10 ⁻⁸

3.2.7. Suggested mechanism

3.2.7.1. The affected oxidizing species

The reactive species involved in the photocatalytic degradation of 4-chlorophenol (4-

CL) using ZnO@SB were examined through selective scavenging experiments.

Ethylenediaminetetraacetic acid disodium salt (EDTA-2Na), isopropanol (I-P), and 1,4-

benzoquinone (B-Q) were employed as quenchers for photogenerated holes (h⁺), hydroxyl

radicals (•OH), and superoxide radicals (O₂•⁻), respectively. Each scavenger (1 mM) was

introduced into the reaction system containing 0.5 g/L ZnO@SB and 5 mg/L 4-CL at pH 8, and

the photocatalytic trials were conducted under visible-light irradiation for 120 minutes. The

presence of these scavengers caused distinct reductions in the degradation performance,

providing clear insight into the dominant oxidative pathways. The removal efficiency dropped

to 16.4% with I-P, 47.2% with B-Q, and 94.8% with EDTA-2Na. The strong inhibitory effect of

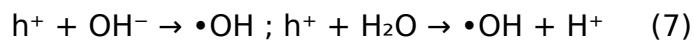
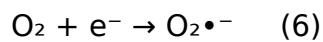
isopropanol indicates that hydroxyl radicals (•OH) constitute the principal oxidizing species

driving the degradation of 4-CL. Meanwhile, the significant reduction observed with

benzoquinone demonstrates the important secondary role of superoxide radicals (O₂•⁻). The

minimal suppression in the presence of EDTA-2Na suggests that photogenerated holes

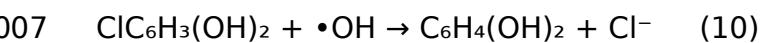
contribute only marginally to the overall process.

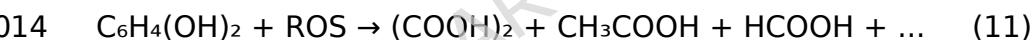


These findings highlight the mechanistic significance of radical pathways in the photocatalytic system. The dominance of $\cdot\text{OH}$ reflects highly efficient interfacial charge separation and strong oxidative activity at the ZnO-bentonite interface, while the contribution of $\text{O}_2\cdot^-$ indicates effective electron transfer and oxygen activation facilitated by the composite structure. The limited role of h^+ further suggests that electron-driven processes are favored, consistent with the enhanced charge mobility afforded by the sulfonated bentonite support. Overall, the scavenging results confirm that the superior performance of ZnO@SB originates from a synergistic radical-mediated mechanism dominated by hydroxyl radicals and supported by superoxide species.

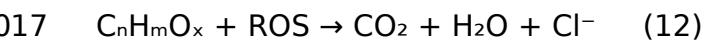
3.2.7.2. General oxidation mechanism and pathway

The photocatalytic degradation of 4-chlorophenol (4-CL) over the ZnO@sulfonated bentonite (ZnO@SB) nanocomposite is governed by a complex sequence of light-induced redox processes, molecular adsorption, generation of reactive oxygen species (ROS), and oxidative transformation of aromatic intermediates (Fig. 11) [95, 96]. Under visible-light irradiation, ZnO acts as the primary photoactive component, absorbing photons with energy equal to or greater than its bandgap and generating electron-hole pairs through excitation of valence band electrons to the conduction band (Eq. 5) [97].

The photogenerated conduction band electrons are scavenged by dissolved molecular oxygen, producing superoxide anion radicals ($\text{O}_2\cdot^-$), while valence band holes oxidize hydroxide ions or water molecules to yield hydroxyl radicals ($\cdot\text{OH}$) [98]. These fundamental redox reactions can be summarized by Eqs. 6 and 7


These ROS species are central to the oxidative degradation mechanism of 4-CL. Prior to oxidation, 4-CL is adsorbed onto the surface of ZnO@SB (Fig. 11) [96]. The sulfonated bentonite component enhances this adsorption through a combination of hydrogen bonding, electrostatic interactions, and acid-base affinities facilitated by its abundant $-\text{SO}_3\text{H}$ and $-\text{OH}$ groups [47, 50]. At a solution pH near 8, 4-CL exists partly in its phenolate anion form, which promotes stronger surface interactions with the polar bentonite structure (Eq. 8) [87, 99]:


997 Following adsorption, the initial ROS-driven transformation involves hydroxylation of
 998 the aromatic ring by $\cdot\text{OH}$ radicals (Eq. 9). This yields dihydroxylated chlorinated
 999 intermediates, such as 4-chlorocatechol, 4-chlorohydroquinone, and chlororesorcinol,
 000 depending on the site of radical attack (Fig. 11) [96, 100, 101]. These compounds are more
 001 susceptible to subsequent oxidation due to increased electron density and weakened C-Cl
 002 bonds:


004 Further oxidative steps lead to dechlorination, where the C-Cl bond is cleaved and
 005 chloride ions are released into solution (Eq. 10) [102-105]. The resulting intermediates are
 006 non-chlorinated dihydroxybenzenes, such as catechol, hydroquinone, and resorcinol:

008 The degradation then proceeds via aromatic ring cleavage, initiated by further ROS
 009 attack [89, 99]. These reactions produce open-chain dicarboxylic acids, such as muconic acid,
 010 maleic acid, and fumaric acid, which are successively oxidized to shorter-chain mono- and
 011 dicarboxylic acids including oxalic acid, formic acid, and acetic acid (Eq. 11) (Fig. 11) [96].
 012 These transformations reflect the progressive oxidative fragmentation of the aromatic
 013 structure:

015 Ultimately, the low molecular weight intermediates are mineralized to carbon dioxide
 016 and water, achieving complete detoxification of the original compound (Eq. 12) [96]:

018 The identification of key intermediates—such as chlorocatechols, hydroquinone, and
 019 oxalic acid—via chromatographic and spectroscopic analyses in similar systems confirms the
 020 validity of this mechanistic pathway. These compounds represent crucial markers for tracking
 021 reaction progression and evaluating degradation completeness. Notably, the release of
 022 chloride ions can be quantitatively monitored to assess the extent of dechlorination, a critical
 023 step toward pollutant detoxification.

024 The superior efficiency of the $\text{ZnO}@\text{SB}$ system is not solely due to the photoreactivity
 025 of ZnO but is greatly amplified by the synergistic role of the sulfonated bentonite matrix. This

026 component significantly improves the adsorption capacity of the composite, increasing the
027 local concentration of 4-CL near the photoactive surface. Additionally, its polar and acidic
028 surface functionalities facilitate water activation, enhance ROS generation, and stabilize
029 photogenerated charge carriers by acting as electron acceptors or trap states, thereby
030 suppressing recombination losses. The uniform dispersion of ZnO nanoparticles across the
031 layered bentonite surface also contributes to higher light-harvesting efficiency and improved
032 charge transport. This integrated mechanism demonstrates that ZnO@SB not only enables
033 visible-light-driven activation of oxygen and water but also sustains a cascade of well-coupled
034 redox reactions leading to the complete mineralization of 4-CL. The process is efficient under
035 ambient conditions, requires no sacrificial agents, and proceeds through detoxified
036 intermediates, making it highly suitable for application in advanced oxidation processes for
037 wastewater treatment. The cooperative behavior between semiconductor photoactivation and
038 functionalized support-mediated adsorption and charge control underpins the photocatalyst's
039 high activity and environmental compatibility.

040
041
042
043
044
045
046
047
048
049
050
051

052 **Fig.11.** Schematic diagram for the oxidation mechanism and pathway of 4-CL molecules over ZnO@SB
053 photocatalyst. Chemical structures drawn in ChemDraw Professional v25.0 (Revvity Signals,
054 <https://revvitysignals.com/products/chemdraw>), then arranged and annotated in Adobe Illustrator v29.8.1 (Adobe
055 Inc.).

056 **3.2.9. Comparison study**

057 A comprehensive comparison was conducted to contextualize the photocatalytic
 058 performance of the synthesized ZnO@SB photocatalyst in the degradation of 4-chlorophenol
 059 (4-CL). This assessment integrated the principal operational parameters—initial pollutant
 060 concentration, catalyst dosage, irradiation conditions, and reaction duration—and contrasted
 061 the activity of ZnO@SB with several state-of-the-art photocatalysts previously reported in the
 062 literature (Table 2). The results demonstrate that ZnO@SB exhibits outstanding visible-light-
 063 driven degradation efficiency, achieving complete removal of 4-CL within markedly shorter
 064 reaction times and with relatively low photocatalyst loading. This rapid and efficient
 065 degradation highlights the strong intrinsic activity of the ZnO@SB system and confirms its
 066 effectiveness across varying pollutant concentrations. The comparative assessment further
 067 reinforces the technical reliability and operational robustness of ZnO@SB. When
 068 benchmarking against Au/ZnO, BiVO₄/WO₃, g-C₃N₄-based hybrids, and other advanced
 069 catalysts, ZnO@SB consistently performs at equal or superior levels under milder conditions.
 070 The catalyst's ability to achieve near-quantitative degradation in significantly reduced
 071 irradiation times underscores its efficient light harvesting, improved charge separation, and
 072 optimized surface interactions.

073 **Table 2.** The photocatalytic performance of ZnO@SB during the degradation of 4-CL in comparison with other
 074 materials in literature

Catalysts	Dosage	Conc.,	Light source	Degradation performance	References
ZrO₂/g-C₃N₄	60 mg	30 mg/L	300 W Xe lamp	120 min, ca. 90 %	[106]
BiVO₄/WO₃	0.125 g/L	25 mg/L	50 W LED lamps	300 min, ca. 97 %	[107]
g-C₃N₄/Bi₂MoO₆/CeO₂	30 mg	10 mg/L	300 W Xe lamp	80 min, ca. 99.1 %	[108]
Au/ZnO NRs	-----	10 mg/L	Solar irradiation	300 min, ca. 100 %	[109]
ZnO/gC₃N₄/carbon xerogel	100 mg	10 mg/L	Visible light: 400 W lamp	300 min, ca. 92 %	[110]
FeTiO₃/TiO₂	-----	6 mg/L	UV	180 min, ca. 75 %	[111]
FeOCl/CDots	1.0 g/L	5 mg/L	Visible light	180 min, ca. 90.1 %	[112]
ZnO/PPy/CNTs	0.5 g/L	10 mg/L	500 W Xe lamp	130 min, ca. 100 %	[113]
Al Fe PILC	0.5 g/L	20 mg/L	Visible light	195 min, ca. 100 %	[114]
ZnO@SB	0.5 g/L	5 mg/L	400 W Metal halide lamp	30 min, ca. 100 %	This study
ZnO@SB	0.5 g/L	10 mg/L	400 W Metal halide lamp	60 min, ca. 100 %	This study
ZnO@SB	0.5 g/L	15 mg/L	400 W Metal halide lamp	100 min, ca. 100 %	This study

ZnO@SB	0.5 g/L	15 mg/L	400 W Metal halide lam	180 min, ca. 100 %	This study
--------	---------	---------	---------------------------	-----------------------	------------

075 Beyond its strong photocatalytic performance, ZnO@SB offers several practical and
 076 economic advantages. Its fabrication relies on abundant, naturally occurring bentonite, a low-
 077 cost precursor that can be readily modified through a simple sulfonation process. Combined
 078 with the accessible synthesis route of ZnO nanoparticles, the overall preparation remains
 079 straightforward, scalable, and economically favorable. This positions ZnO@SB as a credible
 080 alternative to more expensive or synthetically demanding catalysts, particularly for large-
 081 scale environmental treatment systems. Overall, the comparison highlights that the
 082 exceptional efficiency of ZnO@SB—together with its ease of preparation, stability, and
 083 economic viability—makes it a highly promising photocatalyst for real-world wastewater
 084 remediation applications.

086 **3.2.8. Health and safety aspects of ZnO@SB photocatalyst**

087 The implementation of photocatalytic materials in water treatment systems must align
 088 with global environmental safety standards and human health protection benchmarks (Fig.
 089 12). The integration of ZnO@SB photocatalyst into industrial and municipal water treatment
 090 systems necessitates a proactive assessment of occupational safety to ensure the protection
 091 of personnel during all stages of the photocatalyst's lifecycle. The immobilization of ZnO
 092 nanoparticles onto the sulfonated bentonite support markedly reduces the risk of nanoparticle
 093 aerosolization—a critical concern in occupational exposure scenarios involving free nano-ZnO.
 094 This structural immobilization minimizes potential inhalation hazards and limits photocatalyst
 095 dispersion onto surfaces or into ventilation systems. Furthermore, the composite operates
 096 efficiently under mild, ambient conditions (neutral pH, room temperature, and visible light),
 097 eliminating the need for hazardous reagents or high-temperature equipment, thereby
 098 reducing operator exposure to thermal stress, chemical burns, and phototoxicity. Its
 099 regeneration process—limited to simple water rinsing and drying—avoids the use of solvents
 100 or caustic agents, thus enabling safe and routine maintenance without requiring extensive
 101 personal protective equipment (PPE) or specialized disposal procedures (Fig. 12).

102 From a human factors engineering perspective, the ZnO@SB system supports a user-
 103 centered operational model that enhances safety, usability, and efficiency (Fig. 12). Its

104 compatibility with low-complexity reactor designs and decentralized treatment infrastructure
 105 simplifies training requirements and minimizes the potential for human error during
 106 installation, operation, and regeneration. By removing the need for intensive process control,
 107 hazardous material handling, or complex instrumentation, the system reduces cognitive load
 108 and physical demands on operators, contributing to a safer and more ergonomic work
 109 environment. These features align with recognized principles of human-systems integration
 110 and occupational ergonomics, promoting sustained workforce performance while maintaining
 111 system reliability and process integrity. The photocatalyst's design thus supports compliance
 112 not only with environmental and public health standards, but also with occupational safety
 113 frameworks such as ISO 45001 and HFE-driven safety protocols.

114 A critical aspect of environmental and public health safety is the prevention of heavy
 115 metal leaching from photocatalytic materials. Elemental analysis of treated effluent revealed
 116 that Zn^{2+} release from $ZnO@SB$ remained consistently below 0.005 mg/L across all operating
 117 conditions (Fig. 12). This is well under the maximum permissible limits set by the World
 118 Health Organization (WHO) for drinking water (3.0 mg/L) and the U.S. EPA (5.0 mg/L),
 119 confirming the chemical stability of the composite and its negligible contribution to metal ion
 120 contamination. The immobilization of ZnO within the bentonite matrix prevents nanoparticle
 121 dissociation, a known concern with free nano- ZnO , which has been associated in literature
 122 with oxidative stress, cytotoxicity, and aquatic bioaccumulation.

123 The photocatalyst exhibited efficient and complete degradation of 4-chlorophenol (4-
 124 CL), a toxic compound classified by the U.S. Environmental Protection Agency (EPA) as a
 125 priority pollutant and regulated due to its carcinogenicity, endocrine-disrupting potential, and
 126 resistance to natural biodegradation. The oxidation pathway involved rapid aromatic
 127 hydroxylation, dechlorination, and subsequent ring cleavage, leading to full mineralization
 128 into carbon dioxide and water. This was confirmed by TOC measurements, indicating the
 129 absence of persistent or harmful intermediates. Importantly, no secondary byproducts such as
 130 chlorinated quinones or phenolic acids were detected, thereby fulfilling the detoxification
 131 requiremer

134

135

136

137

138

139

140

141

142 **Fig.12.** Schematic diagram for the health and environmental aspects of ZnO@SB as photocatalyst for the
143 oxidation of 4-CL molecules. *Created by the authors in BioRender.com (<https://biorender.com>).*

144 Taken together, the ZnO@SB composite satisfies a broad spectrum of environmental
145 and health performance criteria: high pollutant removal efficiency, full mineralization of toxic
146 organics, minimal heavy metal release, safe composition, and reusability without hazardous
147 residues. Its design and behavior are in accordance with the goals outlined in the United
148 Nations Sustainable Development Goals (SDGs), particularly SDG 6 (Clean Water and
149 Sanitation) and SDG 12 (Responsible Consumption and Production). The composite represents
150 a scalable, environmentally compliant solution for the detoxification of phenolic wastewater,
151 offering both regulatory safety and high technical value for industrial and municipal
152 applications.

153 **Conclusions**

154 A novel ZnO-loaded sulfonated carbonaceous bentonite (ZnO@SB) photocatalyst
155 was developed and demonstrated outstanding visible-light-driven performance for the
156 mineralization of 4-chlorophenol (4-CL) in aqueous solutions. The photocatalyst achieved
157 100% degradation of 4-CL (5 mg/L) within 30 minutes, and complete mineralization (100%
158 TOC removal) within 60 minutes under neutral pH and ambient temperature, using a
159 photocatalyst dosage of 0.5 g/L and a light intensity of 18.7 mW/cm². Kinetic modeling
160 revealed pseudo-first-order behavior with a maximum rate constant of $k_1 = 0.1657 \text{ min}^{-1}$,
161 while the quantum yield increased significantly from 7.39×10^{-8} to 2.96×10^{-7} as
162 photocatalyst dosage increased from 0.2 to 0.5 g/L. Mechanistic investigations confirmed the
163 generation of highly reactive oxygen species ($\cdot\text{OH}$, $\text{O}_2\cdot^-$), which drove successive

164 hydroxylation, dechlorination, and aromatic ring cleavage of 4-CL, yielding intermediates such
 165 as chlorocatechol and ultimately CO_2 and H_2O . Chloride ion monitoring validated the extent of
 166 dechlorination during the photocatalytic process. The $\text{ZnO}@\text{SB}$ photocatalyst demonstrated
 167 excellent reusability, retaining over 90.6% of its initial activity after five successive cycles,
 168 with zinc leaching consistently below 0.005 mg/L, well within WHO and EPA safety thresholds.

169 While these results demonstrate the promising potential of $\text{ZnO}@\text{SB}$ as an efficient,
 170 stable, and environmentally compliant photocatalyst for the removal of chlorinated organic
 171 contaminants, the present study was conducted under controlled laboratory conditions using
 172 synthetic wastewater. Therefore, further investigations are required to evaluate long-term
 173 stability, catalyst durability under continuous operation, and performance in complex real
 174 wastewater matrices. Future studies should also explore scale-up feasibility and reactor
 175 design optimization to assess the practical applicability of this material in real-world water
 176 treatment systems.

177 **Declarations:**

178 AI tools were used during manuscript preparation for language editing and refinement of
 179 schematic figures under the authors' supervision, who reviewed all outputs and take full
 180 responsibility for the final content

181 **Data availability:** The data will be available up on request to corresponding author
 182 Competing interest: The authors declare that they have no known competing or conflicting
 183 interests

184 **Funding statement:**

185 This work was supported and funded by the Deanship of Scientific Research at Imam
 186 Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP2502)

187 **Authors' contribution:**

- 188 1. ***Zeinab M. Ahmed:*** Methodology, Visualization, validation, Data curation, Formal analysis, Writing -
 189 original draft, Writing - review & editing,
- 190 2. ***Ahmed A. Allam:*** Methodology, Funding, Data curation, Formal analysis, Writing -original draft
- 191 3. ***Mohamed I. El-Sayed:*** Supervision, Validation, Writing - original draft, Writing - review & editing
- 192 4. ***Ibrahim Mohamed Abd El-Gaied:*** Supervision, Writing - review & editing
- 193 5. ***Yasser Salama:*** Methodology, Data curation, Formal analysis, Writing -original draft
- 194 6. ***Hassan A. Rudayni:*** Formal analysis, methodology, Writing - original draft, Writing - review &
 195 editing
- 196 7. ***Wail Al Zoubi:*** Validation, Writing - original draft, Writing - review & editing

197 8. **Mostafa R. Abukhadra:** Conceptualization, Formal analysis, supervision, Resources, Data
 198 curation, Visualization, methodology, validation, Writing - original draft, Writing - review & editing

199 References

- 200 1. M.H. Dehghani, S. Ahmadi, S. Ghosh, M.S. Khan, A. Othmani, W.A. Khanday, Ö. Gökkuş, C. Osagie, Md.
 201 Ahmaruzzaman, S.R. Mishra, E.C. Lima, N.M. Mubarak, R.R. Karri, K. Ansari, *Sustainable remediation*
 202 *technologies for removal of pesticides as organic micro-pollutants from water environments: A review*, *Appl.*
 203 *Surf. Sci. Adv.* 19 (2023) 100558.
- 204 2. P.C. Patel, P.K. Mishra, J. Kashyap, S. Awasthi, *Cation doped approach for photodegradation of 4-chlorophenol*
 205 *by highly efficient solar-active NiS photocatalyst: The case of Cu²⁺ doping*, *J. Photochem. Photobiol. A: Chem.*
 206 437 (2022) 114499.
- 207 3. M. Zarei, *Ultrasonic-assisted preparation of ZrO₂/g-C₃N₄ nanocomposites with high visible-light photocatalytic*
 208 *activity for degradation of 4-chlorophenol in water*, *Water-Energy Nexus* 3 (2020) 135–142.
- 209 4. M. Dai, Z. He, W. Cao, J. Zhang, W. Chen, Q. Jin, W. Que, S. Wang, *Rational construction of S-scheme*
 210 *BN/MXene/ZnIn₂S₄ heterojunction with interface engineering for efficient photocatalytic hydrogen production*
 211 *and chlorophenols degradation*, *Sep. Purif. Technol.* 309 (2022) 123004.
- 212 5. E. Taheri, A. Fatehizadeh, S. Hadi, M.M. Amin, M. Khiadani, M. Ghasemian, N. Rafiei, M. Rezakazemi, T.M.
 213 *Aminabhavi, Mesoporous bimetallic S-doped nanoparticles prepared via hydrothermal method for enhanced*
 214 *photodegradation of 4-chlorophenol*, *J. Environ. Manage.* 349 (2023) 119460.
- 215 6. Y.M. Hunge, A.A. Yadav, S.-W. Kang, H. Kim, *Facile synthesis of multitasking composite of silver nanoparticle*
 216 *with zinc oxide for 4-nitrophenol reduction, photocatalytic hydrogen production, and 4-chlorophenol*
 217 *degradation*, *J. Alloys Compd.* 928 (2022) 167133.
- 218 7. C. Lopes, J. Restivo, C.A. Orge, M.F.R. Pereira, O.S.G.P. Soares, *Catalytic hydrodechlorination of 4-chlorophenol:*
 219 *Role of metal phase supports and reaction pH*, *J. Water Process Eng.* 67 (2024) 106240.
- 220 8. F. Mumtaz, B. Li, M.R. Al Shehhi, X. Feng, K. Wang, *Treatment of phenolic wastewater by hybrid technologies: A*
 221 *review*, *J. Water Process Eng.* 57 (2024) 104695.
- 222 9. J. Ayach, W. El Malti, L. Duma, J. Lalevée, M. Al Ajami, H. Hamad, A. Hijazi, *Conventional versus advanced*
 223 *approaches for heavy-metal removal in wastewater: A filter-based perspective*, *Polymers* 16 (2024) 1959.
- 224 10. Y. Zhao, C. Chang, H. Ji, Z. Li, *Challenges of petroleum-wastewater treatment and trends in advanced*
 225 *technologies*, *J. Environ. Chem. Eng.* 13 (2024) 113767.
- 226 11. Oyetade, J.A., Machunda, R.L., Hilonga, A. and De Buysser, K., 2025. *Development of ternary PANI/GO-Fe3O4@*
 227 *AgNPs nanocomposites for photocatalytic remediation of toxic dye effluent under energy-efficient system*.
 228 *Journal of Molecular Structure*, 1324, p.140818.
- 229 12. Satyam, S. and Patra, S., 2024. *Innovations and challenges in adsorption-based wastewater remediation: A*
 230 *comprehensive review*. *Helion*, 10(9).
- 231 13. Nthunya, L.N., Bopape, M.F., Mahlangu, O.T., Mamba, B.B., Van der Bruggen, B., Quist-Jensen, C.A. and
 232 Richards, H., 2022. *Fouling, performance and cost analysis of membrane-based water desalination*
 233 *technologies: A critical review*. *Journal of Environmental Management*, 301, p.113922.
- 234 14. He, L., Ma, Y., Lei, X., Zhou, H., Yuan, Y., Du, W., Liu, Z., Miao, R. and Guan, Q., 2024. *Degradation of 4-*
 235 *chlorophenol through in situ generation of reactive chlorine species in a Zn2CoOx electrocatalytic*
 236 *system*. *Journal of Environmental Chemical Engineering*, 12(1), p.111911.
- 237 15. M.Y. Soomro, A. Balouch, E. Alveroglu, R. Larik, K. Shah, S.A. Chang, *Fe/Ni bimetallic magnetic nano-alloy as an*
 238 *efficient photo-Fenton-like catalyst for phenol degradation*, *Environ. Pollut.* 360 (2024) 124635.
- 239 16. Patil, D.J. and Grewal, H.S., 2025. *Comparative study of heterogeneous activation of H2O2 and*
 240 *peroxymonosulfate over nanoporous ZnFe2O4 for dye degradation via batch and continuous-flow channel*
 241 *approach*. *Journal of Water Process Engineering*, 75, p.108007.
- 242 17. V.A. Naik, V.A. Thakur, *Fe₃O₄@rGO@CdS/Bi₂S₃ magnetic nanocomposite for photo-Fenton dye degradation and*
 243 *Cr(VI) reduction under sunlight*, *Inorg. Chem. Commun.* 160 (2024) 111962.

244 18. Oyetade, J.A., Van Hulle, S.W., Machunda, R.L. and Hilonga, A., 2024. Development of photocatalytic
245 semiconductors and nanocomposites with excellent optoelectronic and electrochemical properties for dye
246 effluent remediation-A review. *Materials Science in Semiconductor Processing*, 184, p.108821.

247 19. Zhang, Y., Cui, K., Liu, X., Cui, M., Chen, X., Tang, Y., Li, H. and Wang, K., 2024. Important role of carbon doping
248 in photocatalytic peroxyomonosulfate activation of carbon nitride for efficient 4-Chlorophenol degradation.
249 *Chemical Engineering Journal*, 493, p.152482.

250 20. Patil, D.J., Kumar, R. and Grewal, H.S., 2024. Multifunctional smart engineering nano magnetic materials with
251 ultrahigh synergetic adsorption-photocatalytic performance. *Surfaces and Interfaces*, 46, p.104106..

252 21. W. Zeng, Y. Luo, C. Wang, Z. Liu, M. Xue, X. Xie, Recent advances in adsorption and photoreduction of Cr(VI): A
253 review, *Environ. Pollut. Bioavailab.* 37 (2025) 2493057.

254 22. de Moraes, N.P., de Campos Sanmartin, M.B., da Silva Rocha, R., de Siervo, A., de Vasconcelos Lanza, M.R.,
255 Reddy, D.A., Yu, L. and Rodrigues, L.A., 2024. ZnO/CeO₂/carbon xerogel composites with direct Z-scheme
256 heterojunctions: Enhancing photocatalytic remediation of 4-chlorophenol under visible light. *Journal of Rare
257 Earths*, 42(2), pp.314-322.

258 23. Wang, Y., Wong, N.H., Sunarso, J., Guo, R., Zhu, C., Liu, M., Chen, G., Dai, G. and Shen, Q., 2025. Fabrication of
259 core-shell shaped heterojunction Bi₂MoO₆/In₂O₃ nanofibers as a highly efficient photocatalyst toward
260 degradation of 4-chlorophenol. *Journal of Water Process Engineering*, 69, p.106702.

261 24. S. Ghanbari, A. Fatehizadeh, M. Khiadani, E. Taheri, H.M.N. Iqbal, UV/Cl₂/Br photolysis followed by adsorption
262 for dye-laden textile wastewater, *Environ. Sci. Pollut. Res.* 29 (2022) 39400-39409.

263 25. Md. Ahmaruzzaman, S.R. Mishra, V. Gadore, G. Yadav, S. Roy, B. Bhattacharjee, A. Bhuyan, B. Hazarika, J.
264 Darabdhara, K. Kumari, Phenolic compounds in water: Toxicity, sources and sustainable removal solutions, *J.
265 Environ. Chem. Eng.* 12 (2024) 112964.

266 26. X. Yang, J. Wang, A.M. El-Sherbeeny, A.A. AlHammadi, W.-H. Park, M.R. Abukhadra, Adsorption and oxidation
267 activity of ZnO/quartz core-shell for ibuprofen decontamination, *Chem. Eng. J.* 431 (2021) 134312.

268 27. M.K. Zamisa, T.W. Seadira, S.J. Baloyi, Catalytic wet-air oxidation with pillared clay catalysts for phenol
269 remediation, *Environ. Pollut.* 361 (2024) 124842.

270 28. Zaki, R.M., Jusoh, R., Chanakaewsomboon, I. and Setiabudi, H.D., 2024. Recent advances in metal oxide
271 photocatalysts for photocatalytic degradation of organic pollutants: A review on photocatalysts modification
272 strategies. *Materials Today: Proceedings*, 107, pp.59-67.

273 29. Ma, Y., Duan, Y., Su, H., Li, Y., Chen, Z. and Li, J., 2025. Status and challenges of photocatalysis in
274 environmental applications: Photocatalyst deactivation. *Nano Research*, 18(9).

275 30. A. Nawaz, A. Farhan, F. Maqbool, H. Ahmad, W. Qayyum, E. Ghazy, A. Rahdar, A.M. Díez-Pascual, S. Fathi-
276 karkan, Zinc oxide nanoparticles: Pathways to micropollutant adsorption, dye removal, and antibacterial
277 actions—A study of mechanisms, challenges, and future prospects, *J. Mol. Struct.* 1312 (2024) 138545.

278 31. J. Liu, H. Wang, H. Wu, Y. Yang, C. Wang, Q. Wang, B. Jia, J. Zheng, Research progress of zinc oxide-based
279 heterojunction photocatalysts, *J. Mater. Chem. A* (2024) (in press).

280 32. O.H. Aremu, C.O. Akintayo, E.B. Naidoo, S.M. Nelana, O.S. Ayanda, Synthesis and applications of nano-sized
281 zinc oxide in wastewater treatment: A review, *Int. J. Environ. Sci. Technol.* (2021) 1-20.

282 33. E. Zabihi, Z. Arab-Bafrani, S.M. Hoseini, E. Mousavi, A. Babaei, M. Khalili, M.M. Hashemi, N. Javid, Fabrication of
283 nano-decorated ZnO-fibrillar chitosan exhibiting a superior performance as a promising replacement for
284 conventional ZnO, *Carbohydr. Polym.* 274 (2021) 118639.

285 34. M. Dimitropoulos, C.A. Aggelopoulos, L. Sygellou, S.T. Tsantis, P.G. Koutsoukos, S.N. Yannopoulos, Unveiling the
286 photocorrosion mechanism of zinc oxide photocatalyst: Interplay between surface corrosion and regeneration,
287 *J. Environ. Chem. Eng.* 12 (2024) 112102.

288 35. N.O. Etafo, M.O. Bamidele, A. Bamisaye, Y.A. Alli, Revolutionizing photocatalysis: Unveiling efficient alternatives
289 to titanium(IV) oxide and zinc oxide for comprehensive environmental remediation, *J. Water Process Eng.* 62
290 (2024) 105369.

291 36. A.M. Saad, M.R. Abukhadra, S.A.K. Ahmed, A.M. Elzanaty, A.H. Mady, M.A. Betiha, J.J. Shim, A.M. Rabie,
292 *Photocatalytic degradation of malachite green dye using chitosan-supported ZnO and Ce-ZnO nano-flowers*
293 *under visible light*, *J. Environ. Manage.* 258 (2020) 110043.

294 37. A. Baig, M. Siddique, S. Panchal, *A review of visible-light-active zinc oxide photocatalysts for environmental*
295 *application*, *Catalysts* 15 (2025) 100.

296 38. S. Abou Zeid, Y. Leprince-Wang, *Advancements in ZnO-based photocatalysts for water treatment: A*
297 *comprehensive review*, *Crystals* 14 (2024) 611.

298 39. S.A. Ansari, *Development and photocatalytic performance of spherical shape zinc oxide nanoparticles for*
299 *environmental remediation*, *J. Nanoelectron. Optoelectron.* 20 (2025) 101-105.

300 40. K. Rabiei, *Recent application of clay-based heterogeneous catalyst in organic reactions*, *J. Inorg. Organomet.*
301 *Polym. Mater.* (2025) 1-22.

302 41. S.I. Othman, H.E. Alfassam, H.A. Alqhtani, M.H. Shemy, A.A. Allam, M.R. Abukhadra, *Characterization of green*
303 *ZnO-supported curcumin intercalated bentonite (ZnO@CU/BEN) as environmental catalysts for effective*
304 *oxidation of 5-fluorouracil residuals: Pathway and toxicity*, *J. Inorg. Organomet. Polym. Mater.* 34 (2024) 4116-
305 4132.

306 42. B. Zhang, W. Zhu, R. Hou, Y. Yue, J. Feng, A. Ishag, X. Wang, Y. Qin, Y. Sun, *Recent advances of application of*
307 *bentonite-based composites in environmental remediation*, *J. Environ. Manage.* 362 (2024) 121341.

308 43. S. Arabmofrad, S.M. Jafari, G. Lazzara, A.M. Ziaifar, H. Shahiri Tabarestani, G. Bahlakeh, G. Cavallaro, M.M.
309 *Calvino, M. Nasiri Sarvi, Preparation and characterization of surface-modified montmorillonite by cationic*
310 *surfactants for adsorption purposes*, *J. Therm. Anal. Calorim.* 148 (2023) 13803-13814.

311 44. M. Wasim, F. Shi, J. Liu, H. Zhang, K. Zhu, Z. Tian, *Synthesis and characterization of curcumin/MMT-clay-treated*
312 *bacterial cellulose as an antistatic and ultraviolet-resistive bioscafold*, *J. Polym. Res.* 29 (2022) 1-18.

313 45. L. Tong, T. Liang, Y. Tian, Q. Zhang, Y. Pan, *Research progress on treatment of mine wastewater by bentonite*
314 *composite*, *Arab. J. Geosci.* 15 (2022) 99 (Article ID).

315 46. F.M. Dardir, A.S. Mohamed, M.R. Abukhadra, E.A. Ahmed, M.F. Soliman, *Cosmetic and pharmaceutical*
316 *qualifications of Egyptian bentonite and its suitability as drug carrier for Praziquantel drug*, *Eur. J. Pharm. Sci.*
317 115 (2018) 320-329.

318 47. W.A. Hassan, E.A. Ahmed, M.A. Moneim, M.S. Shaban, A.M. El-Sherbeeny, N. Siddiqui, J.J. Shim, M.R. Abukhadra,
319 *Sulfonation of natural carbonaceous bentonite as a low-cost acidic catalyst for effective transesterification of*
320 *used sunflower oil into diesel, statistical modeling and kinetic properties*, *ACS Omega* 6 (2021) 31260-31271.

321 48. Z. Kang, Y. Zhao, D. Yang, *Review of oil shale in-situ conversion technology*, *Appl. Energy* 269 (2020) 115121.

322 49. A. Sobhy, A. Yehia, F.E. Hosiny, S.S. Ibrahim, R. Amin, *Application of statistical analysis for optimizing of column*
323 *flotation with pine oil for oil shale cleaning*, *Int. J. Coal Prep. Util.* 42 (2022) 2285-2298.

324 50. Refaai, M.G., Rudayni, H.A., Allam, A.A., Abukhadra, M.R. and Wahed, M.S.A., 2025. *Photocatalytic oxidation of*
325 *ammonia using copper-mediated phosphotungstic acid intercalated sulfonated bentonite for sustainable*
326 *eutrophication control: A case study from Lake Qarun*. *Environmental Research*, p.122351.

327 51. A.H. Jawad, A.S. Abdulhameed, M.M. Hanafiah, Z.A. ALOthman, M.R. Khan, S.N. Surip, *Numerical desirability*
328 *function for adsorption of methylene blue dye by sulfonated pomegranate peel biochar: Modeling, kinetic,*
329 *isotherm, thermodynamic, and mechanism study*, *Korean J. Chem. Eng.* 38 (2021) 1499-1509.

330 52. Y. Genel, İ. Genel, C. Saka, *Facile preparation of sulfonated carbon particles with pomegranate peels as*
331 *adsorbent for enhanced methylene blue adsorption from aqueous solutions*, *Biomass Convers. Biorefin.* 14
332 (2024) 30693-30705.

333 53. S. Sripada, J.R. Kastner, *Catalytic esterification using solid acid carbon catalysts synthesized by sustainable*
334 *hydrothermal and plasma sulfonation techniques*, *Ind. Eng. Chem. Res.* 61 (2022) 3928-3940.

335 54. V. Aniya, A. Kumari, D. De, D. Vidya, V. Swapna, P.K. Thella, B. Satyavathi, *Translation of lignocellulosic waste*
336 *to mesoporous solid acid catalyst and its efficacy in esterification of volatile fatty acid*, *Microporous*
337 *Mesoporous Mater.* 264 (2018) 198-207.

338 55. N.M. Alsebaili, X. Sun, M.A. Salam, M.R. Abukhadra, Tailoring the activity of sulfonated coal catalyst during the
 339 sonication and infrared-induced transesterification of castor (*Ricinus communis*) oil: Synergetic, optimization,
 340 kinetics, and CI engine assessment, *Ind. Crops Prod.* 210 (2024) 118174.

341 56. Bayram, H., Ustunisik, G., Önal, M. and Sarikaya, Y., 2021. Optimization of bleaching power by sulfuric acid
 342 activation of bentonite. *Clay minerals*, 56(2), pp.148-155.

343 57. Dhar, A.K., Himu, H.A., Bhattacharjee, M., Mostufa, M.G. and Parvin, F., 2023. Insights on applications of
 344 bentonite clays for the removal of dyes and heavy metals from wastewater: a review. *Environmental Science
 345 and Pollution Research*, 30(3), pp.5440-5474.

346 58. McLaren, A., Valdes-Solis, T., Li, G. and Tsang, S.C., 2009. Shape and size effects of ZnO nanocrystals on
 347 photocatalytic activity. *Journal of the American Chemical Society*, 131(35), pp.12540-12541.

348 59. Huang, M., Lian, J., Si, R., Wang, L., Pan, X. and Liu, P., 2022. Spatial separation of electrons and holes among
 349 ZnO polar {0001} and {1010} facets for enhanced photocatalytic performance. *ACS omega*, 7(30), pp.26844-
 350 26852.

351 60. Isaacs, M.A., Robinson, N., Barbero, B., Durndell, L.J., Manayil, J.C., Parlett, C.M., D'Agostino, C., Wilson, K. and
 352 Lee, A.F., 2019. Unravelling mass transport in hierarchically porous catalysts. *Journal of Materials Chemistry A*,
 353 7(19), pp.11814-11825.

354 61. Liu, B., Bie, C., Zhang, Y., Wang, L., Li, Y. and Yu, J., 2021. Hierarchically porous ZnO/g-C3N4 S-scheme
 355 heterojunction photocatalyst for efficient H2O2 production. *Langmuir*, 37(48), pp.14114-14124.

356 62. S.I. Akinfalabi, U. Rashid, R. Yunus, Y.H. Taufiq-Yap, Synthesis of biodiesel from palm fatty acid distillate using
 357 sulfonated palm seed cake catalyst, *Renewable Energy* 111 (2017) 611-619.

358 63. M.A. Farabi, M.L. Ibrahim, U. Rashid, Y.H. Taufiq-Yap, Esterification of palm fatty acid distillate using sulfonated
 359 carbon-based catalyst derived from palm kernel shell and bamboo, *Energy Convers. Manage.* 181 (2019) 562-
 360 570.

361 64. L.J. Konwar, P. Mäkelä-Arvela, J.P. Mikkola, SO₃H-containing functional carbon materials: Synthesis, structure,
 362 and acid catalysis, *Chem. Rev.* 119 (2019) 11576-11630.

363 65. Z. Zailan, M. Tahir, M. Jusoh, Z.Y. Zakaria, A review of sulfonic group-bearing porous carbon catalyst for
 364 biodiesel production, *Renewable Energy* 175 (2021) 430-452.

365 66. W. Mateo, H. Lei, E. Villota, M. Qian, Y. Zhao, E. Huo, et al., One-step synthesis of biomass-based sulfonated
 366 carbon catalyst by direct carbonization-sulfonation for organosolv delignification, *Bioresour. Technol.* 319
 367 (2021) 124194.

368 67. M.A. Quintana, R.R. Solís, G. Blázquez, M. Calero, M.J. Munoz-Batista, Sulfonic grafted graphitic-like carbon
 369 nitride for the improved photocatalytic production of benzaldehyde in water, *Appl. Surf. Sci.* 656 (2024)
 370 159717.

371 68. F.H. Mustafa, H.A.A. Attia, R. Yahya, R.F. Elshaarawy, N. Hassan, Cellulose microfibrils-embedded sulfonated
 372 polyethersulfone for efficient Zn²⁺ ion removal from aqueous effluents, *Chem. Eng. Res. Des.* 186 (2022) 374-
 373 386.

374 69. K. Singh, S. Yadav, Biosynthesis of a range of ZnO nanoparticles utilising *Salvia hispanica* L. seed extract and
 375 evaluation of their bioactivity, *Sci. Rep.* 15 (2025) 4043.

376 70. M.A. Hessien, R.M. Khattab, H.E.H. Sadek, Synthesis and characterization of ZnO, Mn₃O₄, and ZnMn₂O₄ spinel
 377 by a new chelation-precipitation method: Magnetic and antimicrobial properties, *J. Inorg. Organomet. Polym.
 378 Mater.* (2024) 1-20.

379 71. P. Vassileva, I. Uzunov, T. Popova, D. Voykova, I. Avramova, D. Mehandjiev, Biochars as a solution for silver
 380 removal and antimicrobial activity in aqueous systems, *Appl. Sci.* 15 (2025) 2796.

381 72. B. Mekonnen, Synthesis and characterization of microporous materials: Towards a versatile adsorbent and a
 382 simple model material for the study of adsorption-induced deformation in microporous media, *Ph.D. thesis,
 383 Université de Pau et des Pays de l'Adour*, 2025.

384 73. N. Hijazi, A. Bavykina, I. Yarulina, T. Shoinkhorova, E.V. Ramos-Fernandez, J. Gascon, Chemical engineering of
 385 zeolites: Alleviating transport limitations through hierarchical design and shaping, *Chem. Soc. Rev.* (2025) (in
 386 press).

387 74. Raha, S. and Ahmaruzzaman, M., 2022. *ZnO nanostructured materials and their potential applications: progress, challenges and perspectives*. *Nanoscale advances*, 4(8), pp.1868-1925.

388 75. Rahimzadeh, H., Tabatabaei, M., Aghbashlo, M., Panahi, H.K.S., Rashidi, A., Goli, S.A.H., Mostafaei, M., Ardjmand, M. and Nizami, A.S., 2018. *Potential of acid-activated bentonite and SO₃H-functionalized MWCNTs for biodiesel production from residual olive oil under biorefinery scheme*. *Frontiers in Energy Research*, 6, p.137.

389 76. Sasikala, S.P., Nibila, T.A., Babitha, K.B., Mohamed, A.A.P. and Solaiappan, A., 2019. *Competitive photo-degradation performance of ZnO modified bentonite clay in water containing both organic and inorganic contaminants*. *Sustainable Environment Research*, 29(1), p.1.

390 77. Alshabanat, M., El-Saeid, M.H., Almuqati, N.S., Alshuhri, S.A., Alqarni, A.A., Albugami, T.M., Almansour, M., Albusayr, R., Alshatri, W. and Almarwan, D., 2025. *Preparation and characterization of zno/bentonite nanocomposites for enhanced photocatalytic degradation of pesticides in contaminated water*. *Scientific Reports*, 15(1), p.23816.

391 78. Zyoud, A.H., Zubi, A., Zyoud, S.H., Hilal, M.H., Zyoud, S., Qamhieh, N., Hajamohideen, A. and Hilal, H.S., 2019. *Kaolin-supported ZnO nanoparticle catalysts in self-sensitized tetracycline photodegradation: Zero-point charge and pH effects*. *Applied Clay Science*, 182, p.105294.

392 79. Aadnan, I., Zegaoui, O., El Mragui, A. and Esteves da Silva, J.C.G., 2021. *Physicochemical and photocatalytic properties under visible light of ZnO-Bentonite/Chitosan hybrid-biocomposite for water remediation*. *Nanomaterials*, 12(1), p.102.

393 80. Gebrye, A.B., Mehari, B. and Atlabachew, M., 2025. *Photocatalytic performance of ZnO immobilized on bentonite for catalytic degradation of malachite green under sunlight irradiation*. *Hybrid Advances*, p.100542.

394 81. Priatna, S.J., Yuliana, A., Melwita, E., Arsyad, F.S. and Mohadi, R., 2024. *Removal of methyl orange in aqueous medium using ZnO/bentonite as semiconductor by photocatalytic process*. *Science and Technology Indonesia*, 9(3), pp.539-545.

395 82. Wang, J., Wang, Z., Huang, B., Ma, Y., Liu, Y., Qin, X., Zhang, X. and Dai, Y., 2012. *Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO*. *ACS applied materials & interfaces*, 4(8), pp.4024-4030.

396 83. Julita, M., Shiddiq, M. and Khair, M., 2022. *Determination of band gap energy of ZnO/Au nanoparticles resulting in laser ablation in liquid*. *Indonesian Journal of Chemical Research*, 10(2), pp.83-87.

397 84. de Mattos Amadio, T., Hotza, D., Neto, J.B.R., Blosi, M., Costa, A.L. and Dondi, M., 2017. *Bentonites functionalized by impregnation with TiO₂, Ag, Pd and Au nanoparticles*. *Applied Clay Science*, 146, pp.1-6.

398 85. Li, X., Simon, U., Bekheet, M.F. and Gurlo, A., 2022. *Mineral-supported photocatalysts: a review of materials, mechanisms and environmental applications*. *Energies*, 15(15), p.5607.

399 86. Y. Gao, D. He, L. Wu, Z. Wang, Y. Yao, Z.-H. Huang, H. Yang, M.-X. Wang, *Porous and ultrafine nitrogen-doped carbon nanofibers from bacterial cellulose with superior adsorption capacity for adsorption removal of low-concentration 4-chlorophenol*, *Chem. Eng. J.* 420 (2020) 127411.

400 87. A.M. Farhan, E.S. Khaled, A.A. Abdel-Khalek, B. Salah, W. Al Zoubi, M.R. Abukhadra, *Characterization and statistical physics modeling of two coal hybridized nanostructures with two forms of polyaniline (nanofibers hydrogel and nanorods) as adsorbents for toxic 4-chlorophenol*, *J. Inorg. Organomet. Polym. Mater.* (2025) 1-23.

401 88. S. Hadi, E. Taheri, M.M. Amin, A. Fatehizadeh, T.M. Aminabhavi, *Advanced oxidation of 4-chlorophenol via combined pulsed light and sulfate radicals methods: Effect of co-existing anions*, *J. Environ. Manage.* 291 (2021) 112595.

402 89. R.R. Abdullah, K.M. Shabeed, A.B. Alzubaydi, Q.F. Alsalhy, *Novel photocatalytic polyether sulphone ultrafiltration membrane reinforced with oxygen-deficient tungsten oxide (WO_{2.89}) for Congo red dye removal*, *Chem. Eng. Res. Des.* 177 (2022) 526-540.

403 90. C. Wang, R. Sun, R. Huang, Y. Cao, *A novel strategy for enhancing heterogeneous Fenton degradation of dye wastewater using natural pyrite: Kinetics and mechanism*, *Chemosphere* 272 (2021) (Article ID).

435 91. M.A. Salam, M.R. AbuKhadra, A.S. Mohamed, Effective oxidation of methyl parathion pesticide in water over
436 recycled glass-based MCM-41 decorated by green Co_3O_4 nanoparticles, *Environ. Pollut.* 259 (2020) 113874.

437 92. M.V. Martin, O.M. Alfano, M.L. Satuf, Cerium-doped TiO_2 thin films: Assessment of radiation absorption
438 properties and photocatalytic reaction efficiencies in a microreactor, *J. Environ. Chem. Eng.* 7 (2019) 103478.

439 93. S. Cao, L. Piao, Considerations for a more accurate evaluation method for photocatalytic water splitting,
440 *Angew. Chem. Int. Ed.* 59 (2020) 18312-18320.

441 94. A. Huda, R. Ichwani, C.T. Handoko, M.D. Bustan, B. Yudono, F. Gulo, Comparative photocatalytic performances
442 towards acid yellow 17 and direct blue 71 degradation using Sn_3O_4 flower-like structure, *J. Phys. Conf. Ser.*
443 1282 (2019) 012097.

444 95. A. Zada, M. Khan, M.A. Khan, Q. Khan, A. Habibi-Yangjeh, A. Dang, M. Maqbool, Review on the hazardous
445 applications and photodegradation mechanisms of chlorophenols over different photocatalysts, *Environ. Res.*
446 195 (2021) 110742.

447 96. D. Mostafa, M.D. Alqahtani, N. Shehata, M.N.B. Jumah, N.M. Alotaibi, N.A. Alenazi, H.A. Rudayni, A.A. Allam,
448 M.R. Abukhadra, Insight into the impact of calcination on the catalytic performance of synthetic hematite nano-
449 rods during the photo-Fenton oxidation of 4-chlorophenol toxic residuals, *Surf. Interfaces* (2025) 105970.

450 97. A. Baig, M. Siddique, S. Panchal, A review of visible-light-active zinc oxide photocatalysts for environmental
451 application, *Catalysts* 15 (2025) 100.

452 98. G. Rangarajan, A. Jayaseelan, R. Farnood, Photocatalytic reactive oxygen species generation and their
453 mechanisms of action in pollutant removal with biochar-supported photocatalysts: A review, *J. Cleaner Prod.*
454 346 (2022) 131155.

455 99. J.R. Domínguez, C.J. Durán-Valle, G. Mateos-García, Synthesis and characterisation of acid/basic modified
456 adsorbents: Application for chlorophenols removal, *Environ. Res.* 207 (2022) 112187.

457 100. Q. Zhuo, J. Lu, J. Niu, J.C. Crittenden, G. Yu, S. Wang, B. Yang, Z. Chen, Electrocatalytic oxidation processes
458 for treatment of halogenated organic pollutants in aqueous solution: A critical review, *ACS ES&T Eng.* 2 (2022)
459 1756-1775.

460 101. X. Liu, L. Zhang, Q. Zhang, M. Li, Z. Zhao, B. Lin, J. Peng, H. Shen, Q. He, Fenton-like system of UV/glucose-
461 oxidase@kaolin coupled with organic green rust: UV-enhanced enzyme activity and the mechanism of UV
462 synergistic degradation of photosensitive pollutants, *Environ. Res.* 247 (2024) 118257.

463 102. K. Yang, I.M. Abu-Reesh, Z. He, Degradation of 4-chlorophenol through cooperative reductive and oxidative
464 processes in an electrochemical system, *J. Hazard. Mater.* 442 (2023) 130126.

465 103. H. Mun, D. Wang, J. Zheng, S. Ahmad, M. Ri, C. Ri, J. Tang, Complete 2,4,6-trichlorophenol degradation by
466 anaerobic sludge acclimated with 4-chlorophenol: Synergetic effect of nZVI@BMPC and sodium lactate as an
467 external nutrient, *J. Hazard. Mater.* 476 (2024) 135063.

468 104. P. Veerakumar, A. Sangili, S.M. Chen, R.S. Kumar, G. Arivalagan, M.J. Firdhouse, K.S. Hameed, S.
469 Sivakumar, Photocatalytic degradation of phenolic pollutants over palladium-tungsten trioxide nanocomposite,
470 *Chem. Eng. J.* 489 (2024) 151127.

471 105. M. Lei, Q. Gao, K. Zhou, P. Gogoi, J. Liu, J. Wang, H. Song, S. Wang, X. Liu, Catalytic degradation and
472 mineralization mechanism of 4-chlorophenol oxidized by phosphomolybdic acid/ H_2O_2 , *Sep. Purif. Technol.* 257
473 (2021) 117933.

474 106. M. Zarei, Ultrasonic-assisted preparation of $ZrO_2/g-C_3N_4$ nanocomposites with high visible-light
475 photocatalytic activity for degradation of 4-chlorophenol in water, *Water-Energy Nexus* 3 (2020) 135-142.

476 107. A. Dehdar, G. Asgari, M. Leili, T. Madrakian, A. Seid-Mohammadi, Step-scheme $BiVO_4/WO_3$ heterojunction
477 photocatalyst under visible LED light irradiation removing 4-chlorophenol in aqueous solutions, *Journal of
478 Environmental Management* 297 (2021) 113338.

479 108. Q. Gao, Z. Wang, J. Li, B. Liu, C. Liu, Facile synthesis of ternary dual Z-scheme $g-C_3N_4/Bi_2MoO_6/CeO_2$
480 photocatalyst with enhanced 4-chlorophenol removal: Degradation pathways and mechanism, *Environmental
481 Pollution* 315 (2022) 120436

482 109. Z. Al-Sharji, J. Al-Sabahi, H.H. Kyaw, M.T.Z. Myint, M. Al-Abri, *Plasmon enhanced photocatalytic degradation*
483 *of 4-chlorophenol using zinc oxide nanorods decorated with gold nanoparticles as supported catalysts under*
484 *natural sunlight*, *Chemical Engineering and Processing - Process Intensification* 188 (2023) 109369

485 110. J.G.M. De Sousa, T.V.C. Da Silva, N.P. De Moraes, M.L.C.P. Da Silva, R. Da Silva Rocha, R. Landers, L.A.
486 *Rodrigues*, *Visible light-driven ZnO/g-C3N4/carbon xerogel ternary photocatalyst with enhanced activity for 4-*
487 *chlorophenol degradation*, *Materials Chemistry and Physics* 256 (2020) 123651

488 111. Y. Ma, J. Chen, Y. Wang, Y. Zhao, G. Zhang, T. Sun, *Synthesis of FeTiO₃/TiO₂ composites by a cross-linking*
489 *method for enhanced photocatalytic degradation of 4-chlorophenol and dyes*, *Research on Chemical*
490 *Intermediates* 47 (2020) 997-1007. <https://doi.org/10.1007/s11164-020-04312-7>.

491 112. J. Zhang, G. Zhang, Q. Ji, H. Lan, J. Qu, H. Liu, *Carbon nanodot-modified FeOCl for photo-assisted Fenton*
492 *reaction featuring synergistic in-situ H₂O₂ production and activation*, *Applied Catalysis B Environment and*
493 *Energy* 266 (2020) 118665.

494 113. H. Xing, C. An, L. Wu, Y. Xu, *Fabrication of ZnO/Polypyrrole/Carbon Nanotube Nanocomposite and its*
495 *Application for Removal of 4-Chlorophenol from Wastewater*, *International Journal of Electrochemical Science*
496 17 (2022) 220510.

497 114. C. Catrinescu, D. Arsene, P. Apopei, C. Teodosiu, *Degradation of 4-chlorophenol from wastewater through*
498 *heterogeneous Fenton and photo-Fenton process, catalyzed by Al-Fe PILC*, *Applied Clay Science* 58 (2012) 96-
499 101.

500

ARTICLE IN PRESS