SCientiﬁc Reports https://doi.org/10.1038/s41598-026-35968-7
Article in Press

Negr1 deficiency alters glutamate signalling
and kynurenine pathway in a mouse model of
psychiatric disorders

Received: 1 July 2025 Carolin Kuuskmae, Kaie Mikheim, Narges Mohammadrahimi, Kalle Kilk, Maria Kaare,
Accepted: 9 January 2026 Mohan Jayaram, German lInitski, Este Leidmaa, Mari-Anne Philips & Eero Vasar

Published online: 16 January 2026

Cite this article as: Kuuskmae C We are providing an unedited version of this manuscript to give early access to its
Mikheim K.. Mohammadrahimi ;\l etal. findings. Before final publication, the manuscript will undergo further editing. Please

Negr1 deficiency alters glutamate note there may be errors present which affect the content, and all legal disclaimers

signalling and kynurenine pathway in a apply.
mouse model of psychiatric disorders.
Sci Rep (2026). https://doi.org/10.1038/
s41598-026-35968-7

If this paper is publishing under a Transparent Peer Review model then Peer
Review reports will publish with the final article.

©The Author(s) 2026. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative
Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


https://doi.org/10.1038/s41598-026-35968-7
https://doi.org/10.1038/s41598-026-35968-7
https://doi.org/10.1038/s41598-026-35968-7
http://creativecommons.org/licenses/by/4.0

—

NOoO ok, W DN

10
11

12
13

14

15
16
17
18
19
20

21
22
23
24
25
26
27
28

29
30
31
32
33
34

35
36
37

Negr1 Deficiency Alters Glutamate Signalling and
Kynurenine Pathway in a Mouse Model of Psychiatric
Disorders

Carolin Kuuskmae', Kaie Mikheim!, Narges Mohammadrahimi', Kalle Kilk2, Maria
Kaare', Mohan Jayaram’, German lInitski!, Este Leidmaa’, Mari-Anne Philips’, Eero
Vasar'

'Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu,
Tartu, Estonia. carolin.kuuskmae@ut.ee; kaie.mikheim@ut.ee; maria.kaare@kliinikum.ee;
mohan.jayaram@ut.ee; narges.mohammadrahimi@ut.ee; german.ilnitski@ut.ee; este.leidmaa@ut.ee;
mari-anne.philips@ut.ee; eero.vasar@ut.ee

2Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu,

Tartu, Estonia; kalle.kilk@ut.ee
Abstract

The NEGR1 gene has been implicated in several psychiatric disorders, and increased
NMDA receptor binding density has been demonstrated in vifro in hippocampal slices
from Negri1-deficient mice. In this study, we expanded on these findings by
investigating the behavioural response to NMDA receptor antagonism, expression of
NMDA receptor subunits, and kynurenine pathway metabolites in a Negr7-deficient
mouse model.

Male and female wild-type and Negri-deficient mice received daily injections of MK-
801, a non-competitive NMDA receptor antagonist, until behavioural tolerance
developed in the open field test (after 9 days in males and 5 days in females). In drug-
naive animals, acuie MK-801 administration (0.2 mg/kg) elicited a stronger motor
response in Negri-deficient males compared to wild-type controls. However, with
repeated dosing, Negr1-deficient males exhibited a blunted behavioural response and
attenuated progression of rapid behavioural tolerance during every-second-day MK-
801 administration, suggesting altered receptor sensitivity.

Gene expression analysis revealed sex- and brain region-specific changes in NMDA
receptor subunit expression. Additionally, kynurenine pathway metabolites showed
genotype- and sex-dependent alterations. These findings suggest that NEGR1 protein
modulates NMDA receptor function and tryptophan metabolism in a sex-dependent
manner, highlighting the importance of considering both genetic background and sex
in models of glutamatergic dysfunction relevant to neuropsychiatric disorders.
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Introduction

Psychiatric disorders such as anxiety, major depression, bipolar disorder, and
schizophrenia affect around 800 million people worldwide, often impairing quality of
life [1][2]. Genetic factors, including polymorphisms in specific genes, contribute to
their susceptibility. One such gene is neuronal growth regulator (NEGR1). This gene
encodes a cell adhesion molecule (NEGR1) involved in neural development, synapse
formation, and plasticity [3][4][5][6]. Genome-wide association studies (GWAS) have
identified NEGR1 as a risk gene for several psychiatric and neurodevelopmental
disorders [7][8][9][10][11][12]. However, the mechanisms through which NEGR1
influences behaviour and neurotransmitter systems remain poorly understood.

Recent evidence suggests that NEGR1 regulates synaptic function by modulating both
inhibitory and excitatory signalling. NEGR1 promotes palmitoylation-dependent
clearance of the GABA-synthesising enzyme GAD65 from the plasma membrane,
thereby maintaining normal GABAergic synapse density and inhibitory tone. Loss of
NEGR1 reduces GABAergic synapses and synaptic GABA levels, shifting the
excitation—inhibition balance toward increased excitatory drive [13]. Moreover, our
research group has previously shown that Negri-deficienit mice have a reduced
number of parvalbumin-positive inhibitory interneurons in the hippocampus [5]. In
parallel, NEGR1 has been implicated in glutamatergic AMPA receptor trafficking and
dendritic spine maturation [14]. These processes are crucial for NMDA-dependent
synaptic plasticity, suggesting that NEGR1 acts as a synaptic organiser coordinating
GABAergic and glutamatergic communication. Its deficiency may thus disrupt the
homeostatic regulation of excitatory neurotransmission relevant to psychiatric
disorders. In the dentate gyrus of Negri-deficient mice, long-term potentiation (LTP)
and miniature excitatory postsynaptic current (MEPSC) frequency are markedly
reduced [11]. These data indicate that NEGR1 could be required for balancing the
ratio of excitation and inhibition in the brain.

Previous findings have shown that MK-801 (dizocilpine) binding density at NMDA
receptors is higher in hippocampal sections of Negr1-deficient mice compared to wild-
type (WT) controls, suggesting increased N-methyl-D-aspartate (NMDA) receptor
availability in the Negr1-deficient brain [4]. Given the central role of NMDA receptors
in synaptic plasticity, learning, and memory [15][16][17], the glutamatergic system
emerges as a potential pathway linking Negr1 to psychiatric phenotypes. The NMDA
receptor is composed of multiple subunits (e.g., GIuN1, GIuN2A, GIuN2B), and
changes in their expression have been associated with cognitive and emotional
dysregulation [18][19]. Notably, GIuN1 and GIuNZ2A subunits serve as binding sites for
D-serine, a molecule that can act as either a co-agonist or antagonist depending on
the site [20].

Our previous work demonstrated that Negri-deficient mice exhibit heightened
behavioural sensitivity to amphetamine, including exaggerated motor and stereotypic
responses, along with altered expression of dopaminergic markers [8]. These findings
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suggest that Negr1 influences dopaminergic reactivity and behavioural sensitisation.
Building on prior in vitro findings of increased MK-801 binding to NMDA receptors in
Negr1-deficient brain tissue, the present study investigates how MK-801, a non-
competitive NMDA receptor antagonist known to mimic glutamatergic dysfunction and
interfere with sensitisation processes [21][22][23], affects behaviour and molecular
markers of glutamate neurotransmission in Negr1-deficient mice.

We asked whether the expression of NMDA subunits or modulation by the NMDA co-
agonist D-serine could be altered in Negri-deficient mice. D-serine levels are
regulated by serine racemase (Srr), an enzyme that is thus critical for NMDA receptor
function. Disruptions in Srr activity have been implicated in schizophrenia spectrum
disorders [24][25][26]. Dysregulation of NMDA receptor subunits and Srr activity may
therefore provide a mechanistic link between Negr7-deficiency and the behavioural
abnormalities observed in psychiatric conditions. In addition to direct glutamatergic
modulation, we considered the role of the kynurenine pathway (KP), which
metabolises tryptophan into neuroactive compounds such as kynurenic acid (KYNA)
and quinolinic acid (QUIN). KYNA acts as an NMDA receptor antagonist at GIuN1
subunits, while QUIN acts as an agonist at GIuN2A and GIuN2B subunits
[19]1271[28][29][30][31]. Imbalances in these metabolites have been associated with
psychiatric and neurodegenerative disorders [19][32]{33], suggesting that KP
dysregulation may influence NMDA receptor furictiorn and excitatory signalling.

Despite growing evidence implicating the P in neuropsychiatric conditions, the
relationships between Negr1, NMDA receptor signalling, KP metabolites, and
glutamate levels remain poorly defined.

Thus, the present study aims to elucidate how Negr1 deficiency affects behaviour and
its underlying molecular mechanisms, focusing specifically on glutamatergic signalling
and kynurenine paihway metabolism. Using a Negr7-deficient mouse model, we
examined the expression of key NMDA receptor subunits (GIuN1, GIuN2A, GIuN2B)
and serine racemase (Srr) in the hippocampus and frontal cortex—regions crucial for
learning, memory, and higher cognitive functions that depend on NMDA receptor-
mediated plasticity [15][34][35]. Additionally, we measured kynurenine pathway
metabolites and glutamate levels, both known modulators of NMDA receptor activity
[34][35] and implicated in neuropsychiatric disease [37][38][39]. To evaluate
behavioural and molecular sensitivity to glutamatergic disruption, we assessed
responses to repeated MK-801 administration. Finally, we investigated sex differences
in these outcomes to determine whether Negri-related effects differ between male
and female mice. By linking behavioural phenotypes with glutamatergic and metabolic
alterations, this study provides new insights into the neurobiological mechanisms
underlying psychiatric disorders associated with NEGR1.
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Results

Effect of Repeated Treatment with MK-801 (0.2 mg/kg) on Locomotor Activity in
Male Wild-Type and Negr1-Deficient Mice

Based on the dose-response experiments performed in male mice, the optimal dose
for behavioural activation was determined to be 0.2 mg/kg (Supplementary Fig. S1A-
C). Acute administration of MK-801 at this dose produced a significantly stronger
motor activity response in Negri-deficient (Negr1-) mice compared to wild-type
controls (total distance covered - p < 0.0001; distance covered in corners - p < 0.05).
Interestingly, this enhanced response was not observed during the first day of testing
in the repeated administration experiment (Fig. 1A-C). Notably, the same cohort of
mice used for the dose-response curve, following a one-week washout period, was
also used for the repeated administration protocol. As a result, these mice were not
completely drug-naive at the start of the repeated treatment.

We hypothesised that the heightened acute response to MK-801 is specific to drug-
naive Negri-deficient mice. To test this, the acute administration experiment was
repeated in an independent cohort of drug-naive male mice. Consistent with our
hypothesis, Negr1-deficient mice in this new cohort again showed a stronger motor
activity response, as measured by the total distance covered (p < 0.05)
(Supplementary Fig. S1D).

Interestingly, during repeated MK-801 administration in males, Negr17- mice exhibited
a blunted behavioural response over time, suggesting altered sensitivity or tolerance
development. Namely, repeated administration of MK-801 elicited distinct locomotor
activity patterns in male mice across treatment days, highlighting both genotype-
dependent and temporal effects (Fig. 1-2, Supplementary Fig. S2-S3).
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Fig. 1. MK-801 effect on wild-type (WT) and Negr7-deficient mice’s behaviour in
the open field test. Figure shows the total distance covered (A, D), distance covered
in corners (B, E) and total rotations made (C, F) by both male and female mice until
behavioural tolerance developed (after 9 days in males and 5 days in females). Each
dot represents the day’s average (males n = 10, females n = 8-16), whiskers show
SEM. Main effects, calculated using three-way ANOVA (Tukey HSD test), are depicted
as symbols above graphs: * - treatment, # - genotype, & - day, $ - day and treatment
interaction, € - genotype and treatmernt interaction. One symbol - p < 0.05, two symbols
- p < 0.01, three symbols - p < 0.001, four symbols p < 0.0001. Exact values can be
found in the Supplementary Table S1.

Across the nine-day observation period, MK-801 treatment produced distinct temporal
patterns of locomotor activation in both wild-type (WT) and Negr7-- mice. On Day 1,
MK-801 elicited a robust stimulatory effect, significantly increasing total distance
covered (p < 0.0001 for both WT and Negr7- mice), distance covered in the corners
(p < 0.001 for WT; p < 0.05 for Negr17- mice), and the number of rotations (p < 0.0001
for both). By Day 2, this response had diminished; total distance remained elevated (p
< 0.05 for both), but only Negr1/- mice continued to display an increased number of
rotations (p < 0.05), while WT mice showed increased corner activity (p < 0.01). On
Day 3, a strong stimulatory effect re-emerged, with MK-801 again increasing total
distance covered (p < 0.00001 for WT; p < 0.001 for Negr1--), number of rotations (p
< 0.0001 for WT; p < 0.001 for Negr1-), and distance covered in corners (p < 0.0001
for WT; p < 0.05 for Negr1-).

By Day 4, the effects had waned, with only small but significant increases observed in
total distance (p < 0.05 for WT; p < 0.01 for Negr1--) and corner activity (p < 0.01 for
both). Rotational activity increased only in Negr1/-mice (p < 0.01). On Day 5, WT mice
exhibited peak activity, with highly significant increases in total distance (p < 1x1077),
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rotations (p < 1x107°), and corner distance (p < 0.0001). In contrast, Negr17- mice
showed no such increases, resulting in significant genotype differences across all
parameters (distance: p < 0.01; corners: p < 0.05; rotations: p < 0.05). By Day 6, the
effects of MK-801 declined markedly in both WT and Negr17- mice, reaching levels
comparable to those observed on Days 2 and 4. A gradual attenuation continued
through Days 7-9, and by Day 9, activity in both genotypes had dropped significantly
from the peak levels seen on Days 3 and 5.

Effect of Repeated Treatment with MK-801 (0.2 mg/kg) on Locomotor Activity in
Female Wild-Type and Negr7-Deficient Mice

Female mice displayed a distinct locomotor response profile compared to males,
characterised by rapid attenuation of MK-801’s effects (Fig. 1-2, Supplementary Fig.
S2-83), but no genotype effect was present.

On Day 1, MK-801 administration significantly increased total distance covered (p <
0.001 for both genotypes), the number of rotations (p < 0.01), and distance covered in
the corners (p < 0.001). By Day 2, this response was notably reduced, with significant
increases observed only in Negr1” mice (distance: p < 0.01; rotations: p < 0.05;
corners: p < 0.05). On Day 3, a partial response was evident, as both genotypes
showed increased distance (p < 0.05) and corner activity (p < 0.01), while only Negr1-
- mice continued to display an elevated number of rotations (p < 0.05). By Days 4 and
5, MK-801’s effects were nearly absent across all parameters, which had declined to
saline-control levels, indicating the development of tolerance and leading to the

discontinuation of treatment in females.

Sex Differences in Response to MK-801

Administering MK-801 resulted in both rapid and general behavioural tolerance, which
was measured daily as motor activity in the open field. The drug’s effect diminished
every second day in both sexes. General tolerance became evident on day 9 in males
and on day 5 in females, leading to sex-specific treatment durations. Notably, the
genotype effect was present only in male but not in female mice.

The effects of MK-801 on locomotor activity revealed significant gender-dependent
differences, particularly with repeated administrations. These differences became
most pronounced by Day 5, prompting a comparative analysis of Days 1 and 5.

In terms of total distance covered, wild-type (WT) males showed a significant increase
following MK-801 administration (p < 0.05), whereas Negr1-- males did not. Among
females, MK-801’s effect was significantly reduced by Day 5 in both WT (p < 0.001)
and Negri1”- mice (p < 0.0001). Moreover, female mice showed significantly lower
locomotor responses compared to their male counterparts (p < 0.0001 for WT; p <
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0.01 for Negr1-). A similar pattern emerged for the number of rotations: WT males
exhibited increased rotations on Day 5 (p < 0.05), while Negr1-- males showed no
change. In contrast, MK-801 treatment reduced the number of rotations in females,
with significant decreases observed in WT (p < 0.01) and Negr1 (p < 0.001) mice.
Female mice also demonstrated significantly fewer rotations than males on Day 5 (p
< 1x107% for WT; p < 0.01 for Negr17).

For distance covered in the corners, WT males again showed a significant increase (p
< 0.05), whereas Negr1/ males displayed no detectable change. In females, MK-801
reduced corner distance in Negr1-- mice (p < 0.0001) and, to a lesser extent, in WT (p
< 0.05). WT females exhibited a significantly lower response compared to WT males
(p < 0.01), while no sex difference was detected within the Negr1-- group.
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Fig. 2. Blunted progression of rapid behavioural tolerance in Negr7-deficient
mice. (A) Schematic representation of the NMDA receptor subunit composition and
the ligand-binding sites relevant to this study. The diagram illustrates the receptor as
the primary molecular target of MK-801, thereby providing a mechanistic context for
the behavioural tolerance data shown in panels B—H. The receptor consists of GIuN1
(encoded by Grin1), GIuN2A (encoded by Grin2a), and GIuN2B (encoded by Grin2b)
subunits (other subunits, such as GIuN3A, are known but were not investigated here).
The GIuN1 subunit binds glycine, D-serine, and kynurenic acid, while GIuN2A and
GIuN2B bind glutamate, NMDA, and quinolinic acid. At high concentrations, D-serine
may also bind to the GIUN2A subunit. MK-801 is a reversible, non-competitive
antagonist that blocks the NMDA receptor by binding within its open ion channel. (B—
H) MK-801-induced stereotypic behaviour and locomotor activity showed a consistent
reduction every second day during chronic administration. Delta values for days 1-2
(B-C), 3—4 (D-E), and 5-6 (F—H, available for males only) represent the change in
activity observed on each alternate day. Negr71-- mice exhibited smaller alterations in
behaviour compared to wild-type (WT) controls, indicating a blunted progression of
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rapid behavioural tolerance. These genotype-dependent fluctuations suggest altered
NMDA receptor sensitivity in Negr17- mice. Figure created using BioRender.com.

Changes in NMDA-Related Gene Expression Due to Repeated MK-801 Treatment
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Fig. 3. Changes in NMDBA-related gene expression in the frontal cortex and
hippocampus of mice. The gene expression of glutamate receptor subunit GluN1
encoded by Grin1 (A, D), subunit GIuN2A encoded by Grin2a (B, E), and GIuN2B
encoded by Grin2b (C, F) are depicted for both male and female mice. There are four
groups in each graph: WT mice injected with physiological solution (saline), WT mice
injected with MK-801, Negr1-deficient mice injected with physiological solution and
Negri-deficient mice injected with MK-801. In the frontal cortex (A-C), statistically
significant changes were observed only among female mice with Grin1 and Grin2b
genes showing sex, genotype and treatment effects. In the hippocampus (D-F),
statistically significant changes were observed only among male mice with Grin2a and
Grin2b genes showing sex, genotype, and treatment effects. In each group, n = 8-10.
Data represent mean + SEM, ordinary two-way ANOVA (Tukey HSD test). WT — wild-
type. * - p <0.05, ** - p < 0.01, *** - p < 0.001.

Frontal cortex

In male mice, NMDA-related gene expression tended to be lower than in female
littermates. However, MK-801 treatment did not cause significant alterations in gene
expression in male mice (Fig. 3A-C).
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In the frontal cortex of female mice, the expression of the Grin2a gene was unaffected
by MK-801 administration (Fig. 3B). For Grin1, a significant treatment effect was
observed (Fq,33 = 13.12, p < 0.001). Post hoc analysis (Tukey HSD test) revealed a
significant reduction in Grin1 expression in Negr1-deficient mice (p < 0.01), but not in
wild-type animals (Fig. 3A).

For Grin2b, significant effects of genotype (F,3; = 6.06, p < 0.05) and treatment (F4,31
= 31.16, p < 0.00001) were identified (Fig. 3C). Post hoc analysis showed a significant
reduction in Grin2b expression in wild-type (p < 0.01) and Negr1-deficient mice (p <
0.001).

For Srr, MK-801 treatment had a significant effect (F4,33 = 6.89, p < 0.05), but post hoc
analysis did not reveal specific group differences (Supplementary Fig. S5).

Hippocampus

In female mice, MK-801 treatment did not result in significant changes in NMDA-
related gene expression in the hippocampus (Fig. 3D-F).

In male mice, a significant change was observed for Grin2a expression, with a
treatment effect (F1,3;3 = 6.08, p < 0.05) and genotype x treatment interaction (Fq,33 =
7.12, p < 0.01). Post hoc analysis showed a significant increase in Grin2a expression
in Negri1-deficient mice who were given physiological solution compared to the mice
who received MK-801 (p < 0.001) and wild-type mice (p < 0.05) (Fig. 3E). Regarding
Grin2b expression, a significant change was seen with a genotype x treatment
interaction (F1,33 = 4.56, p < 0.05). The levels of Grin2b expression were increased in
Negr1-deficient mice (p < 0.05) who were given physiological solution compared to
the mice who received MK-201 (Fig. 3F).

Ventral striatum

We also measured the expression of these genes in the ventral striatum
(Supplementary Fig. S4) and measured the Srr expression (Supplementary Fig. S5),
but found no significant differences between groups.

Correlational Analysis of Kynurenine Pathway Metabolites, Tryptophan and
Glutamate Across Brain Regions and Blood Plasma

In the correlation analysis, we compared WT and Negr1-deficient mice, both male and
female. Analysis included seven metabolites, which we determined most relevant to
this paper’s topic. Tryptophan and kynurenine were chosen because they are the
direct precursors to kynurenic acid and quinolinic acid, which are the NMDA receptor
co-antagonist and co-agonist, respectively. Picolinic acid and xanthurenic acid were
chosen due to their antioxidant properties and previously found connections to mental
disorders [40][41]. In addition, we looked at glutamate to better understand the
interaction between the kynurenine pathway and glutamate signalling. The data was
gathered from blood plasma and four brain regions: frontal cortex, hippocampus,
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hypothalamus and ventral striatum (Supplementary Fig. S6 and Fig. S7,
Supplementary tables S2-S5).

Similarities between groups

Analysis revealed several conserved and biologically meaningful correlations across
sexes and genotypes, indicating stable metabolic interactions within the kynurenine—
glutamate network (Supplementary Tables S2—S5). For example, xanthurenic acid in
the hippocampus was positively correlated with quinolinic acid in the same region in
both female Negr1-deficient (r = 0.76, p < 0.01) and female wild-type (r = 0.56, p <
0.05) groups, demonstrating a consistent association across genotypes. More broadly,
quinolinic acid and xanthurenic acid displayed positive correlations across multiple
regions, including the frontal cortex (r = 0.84, p < 0.001) and ventral striatum (r = 0.78,
p < 0.01), underscoring a preserved coupling between these metabolites.

Similarly, glutamate and quinolinic acid in the frontal cortex were positively correlated
in all groups (Supplementary Tables S2—-S5), supporting a core link between excitatory
neurotransmission and kynurenine pathway activity. Additional associations between
xanthurenic acid and glutamate were also observed, particularly in Negri-deficient
mice (e.g., frontal cortex males r = 0.57, p < 0.05; femaies r = 0.91, p < 1.36 x 107%),
suggesting a mutation-specific link between glutarnate and xanthurenic acid
metabolism. Xanthurenic acid in blood plasma additionally correlated with several
kynurenine metabolites in males. In maie wild-type mice, plasma xanthurenic acid
correlated positively with kynurenine in the ventral striatum (r = 0.55, p < 0.05) and
negatively with kynurenic acid in the ventral striatum (r = —=0.54, p < 0.05). In male
Negr1-deficient mice, plasma xanthurenic acid correlated inversely with kynurenine in
plasma (r = —=0.56, p < 0.05) and positively with glutamate in the frontal cortex (r =
0.57, p < 0.05) — indicating that while the direction of these relationships varied, the
involvement of xanthurenic acid remained a recurring feature across groups.

Differences between groups

Distinct patterns emerged when comparing male and female groups. Male mice
exhibited a higher number of significant correlations involving xanthurenic acid in
plasma, while female mice showed a greater emphasis on xanthurenic acid
correlations in the hippocampus (Supplementary tables S2-S5). Notably, female
Negri1-deficient mice demonstrated particularly strong xanthurenic acid-related
associations, including a robust correlation between quinolinic acid and xanthurenic
acid in the frontal cortex (r = 0.86, p < 0.001) and a similarly strong association
between glutamate and xanthurenic acid (r=0.81, p = 7.5 x 107™%).

When comparing Negr1-deficient and wild-type mice groups, several differentiating
features became apparent (Supplementary tables S2-S5). Male wild-type mice
displayed characteristic tryptophan—kynurenine pathway relationships involving
plasma xanthurenic acid and ventral striatum metabolites, such as positive
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correlations between xanthurenic acid in plasma and kynurenine in the ventral striatum
(r = 0.55, p = 0.042) and a negative correlation with kynurenic acid in the ventral

striatum (r=-0.54, p = 0.045). In contrast, male Negr1-deficient mice gained additional

cross-compartment associations linking plasma xanthurenic acid to both kynurenine
and glutamate, with xanthurenic acid and kynurenine in plasma showing a negative

correlation (r = —0.56, p = 0.046) and xanthurenic acid in plasma and glutamate in

frontal cortex a positive one (r = 0.57, p = 0.041). In addition, kynurenic acid showed
the fewest significant correlations in female Negri-deficient mice, suggesting a
selective reduction in KYNA-related interactions in this group.

Changes in the Kynurenine Pathway and Glutamate Levels of Negr1-Deficient
Mice

As a result of the correlation analysis, we focused on kynurenic acid, quinolinic acid,
xanthurenic acid and glutamate in the frontal cortex, hippocampus and blood plasma
(Fig. 4 and 5). We also looked at the levels of these metabolites in hypothalamus and
ventral striatum, but did not see as many significant differences (Supplementary Fig.
S8 - Fig. S17).
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A B Cc D
Kynurenic acid Quinolinic acid Xanthurenic acid Glutamate
Males Females Males Females Males Females Males Females
**k *
4 2 3 . 4 4 4 2 4
| *% 1 * 1 *
X 1 r 2 11 I 2 i 2 | 1 —.— 2 |
g - 0 e 2 4 L . 3 == : e .
A od- 4 4 o i 4 _-.-:,-_ 1 ‘fi':t E A _1—_
2 ) o2 o 2 2 H 2 2 .~
2 T T 3 T T 24— T 4 T T 4 T T -4 T T -3 T T - T T
WT Negri-/- WT Negri-- WT Negri/- WT Negri-/- WT Negri-/- WT Negri=/- WT Negri-/- WT Negri--
Hippocampus
E F G H
Kynurenic acid Quinolinic acid Xanthurenic acid Glutamate
Males Females Males Females Males Females Males Females
2 2 4 2 4 3 2 2
1 1 . 2 T 2 2 1 Aot -
: X e e : : = opE-
E 0 ) e % 0 i % o i § [
N = x N : —l— N Ottt L N : - .
1 L
1 1 2 : 1 2 4 1 2
2 T T 2 T T -+ T 2 T ‘| - T T 2 T T -2 T T hd T T
WT Negri-/- WT Negri-- WT Negri-/- WT Negri-- WT Negri-- WT Negri- WT Negri-- WT Negri-/-

Fig. 4. Changes in the frontal cortex and hippocampus metabolite levels of
Negr1-deficient mice (Cohort 2). The figure depicts z-scores of the kynurenic acid
(A, E), quinolinic acid (B, F), xanthurenic acid (C, G) and glutamate (D, H) levels in
wild-type and Negri-deficient male and female mice. Results show significant
differences in the xanthurenic acid and glutamate levels between Negr1” and WT
male and female mice in the frontal cortex, with the levels being elevated in Negr1-/-
males and diminished in Negr17- females. There was also a statistically significant
decline in the quinolinic acid levels of Negr1-- female mice. No statistically significant
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differences were observed in the measured metabolite levels between WT and Negr1-
~ mice in the hippocampus. Data represent mean + SEM, unpaired t-test results, n =
12 - 14. WT — wild type. * - p < 0.05, ** - p < 0.01.

There was no statistically significant difference in the kynurenic acid and quinolinic
acid levels between WT and Negr1-deficient male mice in the frontal cortex, although
there seemed to be a trend for an increase among mutant mice compared to the WT
controls (Fig. 4A and B). The xanthurenic acid (p < 0.01) and glutamate levels (p <
0.05), however, were significantly increased in the Negr1-deficient male mice (Fig. 4C
and D).

The level of kynurenic acid remained unchanged for the female mice in the frontal
cortex (Fig. 4A), but contrary to the male mice, the levels of quinolinic acid (p < 0.01),
xanthurenic acid (p < 0.01) and glutamate (p < 0.05) were considerably reduced (Fig.
4B-D).

The levels of measured metabolites in the hippocampus of Negr1-deficient male and
female mice were not significantly altered compared to the wild-type mice (Fig. 4E-H).
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Fig. 5. Changes in the blood plasma metabolite levels of Negr1-deficient mice
(Cohorts 2 and 3). The figure depicts z-scores of the kynurenic acid (A, E), quinolinic
acid (B, F), xanthurenic acid (C, G) and glutamate (D, H) levels in wild-type and Negr1-
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deficient male and female mice. Shown are data from cohort 2 (5-month-olds) and
cohort 3 (7-month-olds). There was a significant decrease in the quinolinic acid level
among the older Negr17- male mice and an increase in the kynurenic acid level of older
Negr1”- female mice. Xanthurenic acid and glutamate levels remained approximately
the same for both genders. Data represent mean + SEM, 2-way ANOVA results (Tukey
HSD test), n = (6)8 - 14. WT — wild type. * - p < 0.05, ** - p < 0.01, *** - p < 0.001.

The blood plasma analysis included two cohorts to estimate the dynamics of the
biochemical shifts during ageing: cohort 2 consisted of 5-month-old mice, and cohort
3 of 7-month-old mice (Fig. 5). Our results indicate that older mice were more strongly
influenced by genotype. Specifically, male Negr1-- mice showed a significant decrease
in quinolinic acid levels (p < 0.001) (Fig. 5B), and female Negr17- mice exhibited a
significant increase in kynurenic acid levels (p < 0.05) (Fig. 5E) compared to age-
matched wild-type controls (5-month-olds). The reduction in quinolinic acid levels in
male mice remained significant when the two age groups were combined (p < 0.01),
whereas the increase in kynurenic acid in females did not (Supplementary Fig. S14).
Xanthurenic acid and glutamate levels remained relatively unchanged across sex,
age, and genotype groups.

Discussion

This study is the first to demonstrate a link betweein Negr1, NMDA receptor function,
and kynurenine pathway metabolites, resuiting in significant behavioural alterations.
While NEGR1 has been associated with various psychiatric disorders [42], we
extended this research using MK-801, a non-competitive NMDA receptor antagonist,
to model glutamatergic imbalances observed in neuropsychiatric and
neurodegenerative conditions [24][25][26].

Behavioural analyses revealed significant differences between saline- and MK-801-
treated mice. Acute MK-801 administration elicited a heightened motor response in
drug-naive Negr1-deficient males compared to wild-type controls. However, with
repeated exposure, Negri-deficient males displayed a blunted response, indicating
altered NMDA receptor sensitivity or tolerance development. The most pronounced
changes were observed in total distance covered, distance covered in corners, and
rotational behaviour. MK-801—induced hyperlocomotion is attributed to its action on
GABAergic interneurons; NMDA receptor blockade reduces inhibitory tone and
indirectly enhances excitatory output [43]. The exaggerated initial response in Negr1-
deficient mice may reflect a baseline reduction in GABAergic tone [5][44], amplifying
the disinhibitory effects of MK-801, consistent with prior findings of disrupted excitatory
and inhibitory balance in models of psychiatric disease [45]. Recent evidence suggests
a mechanistic explanation for this phenotype: NEGR1 promotes clearance of the
GABA-synthesising enzyme GADG65 from the plasma membrane, thereby maintaining
inhibitory synapse density and GABAergic tone [13]. Loss of NEGR1 reduces the
number of GABAergic synapses and synaptic GABA levels, shifting the excitation—
inhibition balance toward excessive excitatory drive. This mechanism could sensitise
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neuronal networks to NMDA receptor blockade, explaining the heightened acute
response to MK-801 observed in Negr1-deficient mice.

An unexpected zig-zag pattern in behavioural responsiveness emerged, marked by
reduced activity every other day, suggesting the rapid development of behavioural
tolerance to daily MK-801 administration. The underlying mechanism remains unclear
but may involve residual drug accumulation due to MK-801’s long half-life [26] or
transient NMDA receptor desensitisation [46]. Repeated exposure could trigger rapid
yet reversible neuroadaptive processes, such as receptor upregulation or alterations
in downstream signalling [16]. After a brief recovery period, receptor sensitivity may
reset, restoring responsiveness. Although this pattern was evident in both genotypes,
Negr1-deficient mice showed a stronger progression of tolerance, indicating altered
NMDA receptor sensitivity.

In addition, Negr1-deficient male mice exhibited a stronger acute response to MK-801
but developed tolerance more rapidly with repeated dosing. Behavioural suppression
— seen as reduced locomotion and stereotypy — diminished more quickly in Negr1-
deficient mice compared to wild-type controls, particularly across treatment intervals
(delta days 1-2, 3—4, and 5-6; Fig. 2 and supplementary Fig. 33).

These findings suggest that Negr1 deficiency alters NMDA receptor function or
regulation, potentially due to increased receptor availability [4]. Elevated baseline
NMDA receptor density may heighten initial MK-801 sensitivity while accelerating
desensitisation or downstream adaptations during repeated exposure. Overall, the
data indicate dysregulated NMDA receptor dynamics in Negr1-deficient mice,
influencing both acute responsiveriess and the trajectory of tolerance development.

At the molecular level, our data indicate a complex, sex- and region-specific
modulation of NMDA receptor subunit expression. Previous studies have shown that
receptors with a higher GIuN2B-to-GIuN2A (Grin2b-to-Grin2a) ratio are more
susceptible to quinolinic acid—induced neurotoxicity due to their predominant
expression in immature neurons and extrasynaptic sites, where they can promote
excitotoxicity [47][48][49]. In the present study, a similar pattern appeared in the frontal
cortex of adult female mice but was not observed in the hippocampus or in male mice.
However, some studies have reported contrasting findings — highlighting a critical role
for GIuN2B in intracellular signalling and excitotoxicity and suggesting that both
GIuN2A and GIuN2B subunits contribute equally to extrasynaptic signalling [50][51].
Furthermore, we found that female Negr1-deficient mice treated with MK-801 exhibited
reduced expression of GIluN1 (Grin1) in the frontal cortex. Together, these findings
suggest a sex- and brain region-specific interaction between Negr1 deficiency and
NMDA receptor regulation.

In male mice, expression levels of NMDA receptor subunit genes in the frontal cortex
did not differ significantly between genotypes. In contrast, in the hippocampus, Grin2a
and Grin2b were significantly upregulated in Negri-deficient mice treated with
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physiological solution compared to wild-type controls. This finding aligns with earlier
evidence of increased NMDA receptor binding density in the hippocampus of Negr1-
deficient animals [4], suggesting elevated baseline receptor availability in this brain
region under non-challenged conditions. Interestingly, MK-801 administration
normalised the expression of these subunits to levels comparable with wild-type
controls. This pattern may reflect a compensatory mechanism, wherein Negri-
deficient mice upregulate NMDA receptor subunits to counterbalance impaired
receptor function or altered inhibitory signalling. Alternatively, increased expression
could serve to maintain excitatory-inhibitory homeostasis in the context of disrupted
GABAergic tone. In addition to our current findings concerning excitatory NMDA
receptors, NEGR1 has been implicated in AMPA receptor trafficking and dendritic
spine maturation [14], suggesting that its loss may impair excitatory synaptic
organisation and plasticity. Such disruption could lead to compensatory upregulation
of NMDA receptor subunits as the system attempts to stabilise synaptic strength. MK-
801 treatment may override this compensatory adaptation by saturating receptor
activity and externally shifting the excitatory-inhibitory balance. However, previous
studies have shown that overexpression of Grin2a and Grin2b can exacerbate
neuronal vulnerability [51], and GIuN2A overexpression has been associated with
impaired synaptic structure and function [52]. In contrast, G!luN2B overexpression has
been linked to improved learning and memory |53][54][55]. These contrasting
outcomes highlight the complexity of NMDA receptor regulation and emphasise the
need for further research to determine whethier such subunit overexpression is
neuroprotective or detrimental in the context of Negr1 deficiency. Although gene
expression was assessed after behavioural adaptation to MK-801, this reflects a
typical compromise in longitudinai siudy designs. Future studies could build on these
findings by targeting more specific time points — such as day 5 in males and day 3 in
females — when behavioural phenotypes diverge most clearly. These adjustments
would help to refine tiie temporal resolution of gene expression dynamics and strength
causal interpretations.

One of the most notable findings of this study was the emergence of clear sex
differences, underscoring the importance of including both male and female animals
in neurobiological research [56][57]. Previous studies have reported sex-specific
differences in NMDA receptor function and responses to NMDA receptor antagonists
[58][59][60]. Our results extend these observations by showing that sex differences in
Negri-deficient mice are evident not only in behaviour but also in kynurenine pathway
metabolites and glutamate levels. Over the course of five days, wild-type males
displayed a progressive increase in locomotor activity following repeated MK-801
administration, indicative of sensitisation. In contrast, Negr1-deficient males showed
minimal behavioural change, suggesting altered receptor responsiveness or
adaptation. Female mice, regardless of genotype, exhibited more rapid tolerance and
sensitisation to MK-801, reflected by a decline in locomotor activity over time. These
findings highlight a dynamic interplay between sex, genotype, and NMDA receptor
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function and point to sex-specific mechanisms of behavioural plasticity in response to
glutamatergic disruption.

Although we anticipated that kynurenic acid (KYNA) and quinolinic acid (QUIN) levels
would directly influence NMDA receptor function in Negr1-deficient mice, our findings
suggest a more nuanced relationship. While levels of kynurenine pathway metabolites
were altered in the Negri-deficient group, these changes did not appear to drive
NMDA receptor-related behavioural outcomes directly. This may indicate that NMDA
receptor function was maintained through compensatory mechanisms involving other
co-agonists or modulatory systems. In addition, correlation analyses revealed that
kynurenine pathway metabolite profiles were region-specific. The frontal cortex was
the most affected by Negr1 deficiency, whereas other brain regions exhibited few
significant changes (Supplementary Fig. S6-S7; Supplementary Table S2-S5;
Supplementary Fig. S8-S17). These findings emphasise the importance of spatial
context when studying neuroimmune-metabolic interactions and suggest that the
impact of Negr1 on kynurenine metabolism may be anatomically selective.
Furthermore, the effects of Negr1 deficiency became more pronounced with age, with
older mice showing stronger genotype-related shifts in kynurenine pathway
metabolites. This suggests that ageing may exacerbate or unmask metabolic
consequences of Negr1 deficiency.

Limitations

Despite our best efforts, this study has some limitations that should be addressed.
Gene expression was assessed after behavioural adaptation to MK-801, limiting the
understanding of gene expression during the behavioural experiments. In the future,
gene expression should be assessed on the 3rd day for female and 5th day for male
mice as these were thic days with the biggest statistical significance between the
studied groups. Furthermore, the present study examined transcript-level changes
regarding NMDA receptors without direct assessment of protein abundance or
receptor function, which  will require complementary biochemical or
electrophysiological approaches. Finally, due to methodological limitations, we could
not study NMDA receptor sensitivity and kynurenine pathway metabolites in the same
mice cohort, which limits the ability to establish direct integration of molecular and
behavioural outcomes.

Implications for future research

Altogether, these findings identify Negr1 as a key modulator of glutamatergic
signalling, with potential implications for understanding individual susceptibility to
conditions involving NMDA receptor dysfunction. The observed sex- and region-
specific effects indicate that Negri-related pathways may influence excitatory—
inhibitory balance through distinct regulatory mechanisms across neural circuits.
These results provide a framework for exploring how Negri-dependent modulation of
NMDA receptor function interacts with metabolic processes, particularly the
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kynurenine pathway, to influence neuronal and behavioural outcomes.
Mechanistically, NEGR1 appears to function as a synaptic organiser that coordinates
inhibitory and excitatory signalling through regulation of GAD65 turnover and AMPA
receptor trafficking [13][14]. Its absence, therefore, likely disturbs the molecular
scaffolding required for balanced neurotransmission, leading to maladaptive plasticity
and altered NMDA receptor dynamics observed in this study. By establishing a link
between Negr1, NMDA receptor dynamics, and kynurenine metabolism, our data
position Negr1 as a useful entry point for probing metabolic—synaptic interactions in
neuropsychiatric disease models. These results therefore offer a good foundation and
testable hypotheses for research into Negri-related neurobiology and its contribution
to glutamate-driven behavioural phenotypes. A deeper understanding of these
mechanisms may help identify novel therapeutic targets for disorders characterised by
glutamatergic dysregulation.

Conclusion

This study demonstrates that Negr1 deficiency leads to pronounced, sex-specific
alterations in glutamatergic signalling, behavioural responses to NMDA receptor
antagonism, and kynurenine pathway metabolism. These effects were both brain
region— and sex—dependent, underscoring the importance of considering biological
sex and genetic background when modelling neuropsychiatric disorders. Our findings
suggest that Negr1 influences NMDA receptor availability and dynamics, contributing
to altered sensitivity and tolerance to glutamatergic disruption. Moreover, the observed
region-specific changes in kynurenine metabolites highlight a possible link between
neuroimmune metabolism and glutaiatergic function in the Negr7-deficient brain.
Taken together, these results provide novel insights into the neurobiological
mechanisms associated with Negr1 and support its relevance as a molecular node
connecting genetic risk, glutamate dysregulation, and sex-dependent vulnerability in
psychiatric disorders. Targeting Negr7-related pathways may open new avenues for
understanding and eventually mitigating glutamate-related dysfunction in mental
illness.
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Fig. 6. General description of the study. Created with BioRender.

Animals

Adult male and female wild-type (WT) mice and their homozygous Negr1-deficient
littermates (Negr1--), previously generated and described by Lee et al. (2012), were
used in this study [£1]. All mice were on an F2 hybrid background: ((129S5/SvEvBrd
x C57BL/6N) % (129S5/SvEvBrd x C57BL/6N)). The mouseline was maintained on a
mixed background and no further backcrossing was performed to avoid the congenic
footprint—retention of embryonic stem cell-derived chromosomal segments flanking
the targeted allele—which can confound phenotype interpretation [62]. Animals were
group-housed (10 per cage) in standard laboratory cages (42.5 x 26.6 x 15.5 cm)
under controlled environmental conditions (22 £ 1 °C; 12:12 h light/dark cycle, with
lights off at 19:00). Each cage contained a 2 cm layer of aspen bedding and 0.5 L of
aspen nesting material (Tapvei, Paekna, Estonia), which were changed weekly. Food
pellets (R70, Lactamin AB, Kimstad, Sweden) and water were provided ad libitum.
Breeding and maintenance were carried out at the animal facility of the Institute of
Biomedicine and Translational Medicine, University of Tartu, Estonia.

All behavioural testing was conducted between 8:00 a.m. and 5:00 p.m. Prior to
testing, mice were kept in group housing conditions to minimise stress.

Three separate mouse cohorts were used in this study (Fig. 6):
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Cohort 1: Included 2-month-old male and female mice, with equal representation of
WT and Negr1--genotypes. The age of the mice was chosen to match the age of mice
used in Singh et al. (2018) where the differential receptor sensitivity to MK-801 was
shown in vitro in Negr1-- hippocampal slices. Half of the mice in each genotype group
received the NMDA receptor antagonist MK-801, while the remaining animals received
physiological solution (saline). Body weight was monitored throughout the experiment
and before each injection. No significant changes in body weight were observed during
the experimental period; therefore, body weights measured at the end of the
experiment, immediately before brain dissection and blood collection, are reported.
The mean body weight of female WT (saline) mice was 23.8 (SD £ 1.5) g, 22.7 (£ 2.1)
g for female WT (MK-801) mice, 22.7 (+ 1.4) g for female Negr1 (saline) mice, 21.3
(£ 2.5) g for female Negr1/- (MK-801) mice. The mean body weight of male WT (saline)
mice was 27.1 (SD + 3.0) g, 26.4 (+ 2.5) g for male WT (MK-801) mice, 27.4 (+ 2.6) g
for male Negr1” (saline) mice, 26.8 (+ 2.9) g for male Negr1-- (MK-801) mice. This
cohort was used to investigate the role of NMDA receptor function in a schizophrenia
spectrum disorder model.

Cohort 2: Comprised 5-month-old male and female WT and Negr1-- mice. The mean
body weight of female WT mice was 23.7 (SD + 2.3) g, 21.8 (+ 1.6) g for female Negr1-
~mice, 32.2 (+ 3.4) g for male WT mice and 29.8 (+ 2.4) g for male Negr1-- mice. Brain
tissues and blood plasma were collected for analysis of tryptophan pathway
metabolites and glutamate.

Cohort 3: Included 7-month-old male and female mice of both genotypes. The mean
body weight of female WT mice was 24.8 (SD +1.9) g, 24.9 (+ 3.7) g for female Negr1-
~ mice, 32.3 (+ 2.3) g for male WT mice and 30.8 (+ 2.6) g for male Negr1- mice.
These mice were harndlad identically to those in Cohort 2, although at a different time
point. Blood plasma was collected for additional tryptophan pathway metabolites and
glutamate analysis. Older mice were used to estimate the dynamics of the biochemical
shifts during ageing.

All animal procedures were carried out by licensed professionals in accordance with
the European Communities Directive (2010/63/EU) and approved by the Laboratory
Animal Centre at the Institute of Biomedicine and Translational Medicine, University
of Tartu, Estonia. The study was conducted under a permit from the Estonian National
Board of Animal Experiments (Permit No. 150, 27 September 2019). We confirm this
study is reported in accordance with the ARRIVE (Animal Research: Reporting of In
Vivo  Experiments) guidelines as outlined at hiips://arrivequidelines.org
(Supplementary ARRIVE guidelines checklist.)

MK-801 treatment

In the dose response experiment, mice received MK-801 (dizocilpine) in three different
dosages: 0.1 mg/kg, 0.2 mg/kg and 0.4 mg/kg (Supplementary Fig. S1). A
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concentration of 0.2 mg/kg was chosen for the chronic MK-801 experiment. All
participating mice received an intraperitoneal injection. Control mice received a
corresponding injection of physiological solution (saline).

Open field test

Locomotor activity of individual mice was measured with the illumination level of 450
Ix for 30 min in soundproof photoelectric motility boxes (44.8 x 44.8 x 45 cm)
connected to a computer (TSE, Technical & Scientific Equipment GmbH, Berlin,
Germany). The floor of the testing apparatus was cleaned with 70% ethanol and dried
thoroughly after each mouse. The system automatically registered the movement of
the animal and the time it took to do all the following activities: the distance covered in
total, and in corners of the box, the number of rearings, rotations (clockwise +
counterclockwise) and corner visits.

During the behavioural experiment period, all animals were monitored daily for signs
of weight loss and injuries that could potentially be caused by group housing. After the
behavioural experiments, mice were euthanised by rapid decapitation using surgical
scissors as the primary method, allowing the collection of both trunk blood and brain
tissues. No anaesthesia was used as it could confound the interpretation of
downstream molecular analyses, including gPCR and mass spectrometry.

RT-gPCR Analysis in Mouse Brain Areas

Gene expression was deteriined by two-step RT-gPCR in the frontal cortex,
hippocampus and ventra! striatum. These regions were selected because they are
implicated in psychiatiic disorders, exhibit high levels of NMDA receptor expression,
and have previously been shown to display alterations in excitatory and/ or inhibitory
neurotransmission in Negr1-deficient mice. Total RNA was extracted from each tissue
sample by using Trizol reagent (Invitrogen) according to the manufacturer’s protocol.
First-strand cDNA was synthesised by using FIREScript® RT cDNA synthesis MIX
with Oligo (dT) and Random primers (Solis BioDyne, Tartu, Estonia) according to the
manufacturer’s protocol.

In gPCR, four NMDA receptor subunit-related genes were studied: glutamate
ionotropic receptor NMDA type subunit 1 (GIuN1, gene Grin1), glutamate ionotropic
receptor NMDA type subunit 2a (GIUN2A, gene Grin2a), glutamate ionotropic receptor
NMDA type subunit 2b (GIuN2B, gene Grin2b) and serine racemase (Srr, gene Srr).
HPRT (hypoxanthine guanine phosphoribosyltransferase) was used as a
housekeeper gene. The same primers have been previously described in Varul et al.,
2021 [63]. Primer sequences can be found in Supplementary Table S6. For qPCR, all
reactions were performed in a final volume of 10 uL, using 5 ng of cDNA and HOT
FIREPoI® EvaGreen® gPCR Supermix (Solis BioDyne). Every reaction was made in
four parallel replicates to minimise possible errors. ABI Prism 7900HT Sequence
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Detection System with ABI Prism 7900 SDS 2.4.2 software (Applied Biosystems) was
used for gPCR detection. Data in the Figures is presented on a linear scale, calculated

as 272CT where ACT is the difference in cycle threshold (CT) between the target genes
and the housekeeper gene.

Measurement of biomarkers

From all the second and third cohorts’ mice’s blood plasma, the levels of 8 different
tryptophan pathway metabolites and glutamate were measured using high-
performance liquid chromatography-mass spectrometry (Waters Xevo TQ-XS with
Acquity H-class UPLC). From the second cohort, the same metabolite levels were also
measured in the frontal cortex, hippocampus, hypothalamus and ventral striatum.

For quantification 10 pl of plasma or tissue homogenate was mixed with internal
standards (Ds-nicotinic acid, '3Cio-kynurenine, Ds-dopamine) and derivatized with
phenylisothiocyanate for 1 h at room temperature. After drying under a stream of
nitrogen the samples were extracted with methanol and diluted with water to 50%.
Standard curves from known concentrations of commercial compounds were created.
In addition to separate measurements, the blood plasma data was also pooled
together from the second and third cohort to see more significant differences between
the Negr1-deficient mice and the wild-type conirol mice.

Statistical analysis

Data are presented as mean values * standard error of the mean (SEM). Before the
analyses, an outlier test was performed on all the data. Log-transformation was used
to normalise the data before analysis. Normality of data distribution was assessed
using the Shapiro—\Viik test. Brain metabolite levels were analysed using Student’s t-
test or the Mann—Whitney U test for non-parametric data. Blood plasma metabolites
and qPCR data were evaluated using two-way ANOVA followed by Tukey’s post hoc
test. (In the supplementary, one-way ANOVA was used for blood plasma to allow
pooling the data.)

Statistical analyses for behavioural experiments and metabolite measurements, as
well as correlation plot generation, were conducted using R (version 4.3.1). Analysis
of qPCR data and generation of all other graphs (excluding correlation plots) were
performed using GraphPad Prism (version 10.2.1). Z-scores were calculated for each
sample when necessary to standardise and compare data across groups (between
different brain regions and blood serum) using the mean and standard deviation of the
control group:

Xi — Ucontrol
I =

O control
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where X is the log,-transformed value for each subject, u the group mean, and o the
standard deviation.

Statistical significance was defined as p < 0.05. lllustrative figures were created using
BioRender.com.

Data availability

The data that support the findings of this study are available upon reasonable request
to the corresponding author.
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Cohort | — * —)p  Cohort II Cohort il

92 mice, 129Sv/BI6
male + female, F2 generation
Negr1” + WT,

saline + MK-801
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Behavioural
experiments using
MK-801 &
physiological
solution
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analyses
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