
Dietary patterns and emotion dysregulation in borderline personality disorder and eating disorders as a shared mechanism underlying symptom severity

Received: 11 July 2025

Accepted: 9 January 2026

Published online: 22 January 2026

Cite this article as: Kot E., Skimina E., Pietras T. *et al.* Dietary patterns and emotion dysregulation in borderline personality disorder and eating disorders as a shared mechanism underlying symptom severity. *Sci Rep* (2026). <https://doi.org/10.1038/s41598-026-36068-2>

Emilia Kot, Ewa Skimina, Tadeusz Pietras, Joanna Gromadzka-Ostrowska & Łukasz Mokros

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

1 **Dietary patterns and emotion dysregulation in borderline**
2 **personality disorder and eating disorders as a shared mechanism**
3 **underlying symptom severity**

4 Emilia Kot¹, Ewa Skimina², Tadeusz Pietras³, Joanna Gromadzka-
5 Ostrowska⁴, Łukasz Mokros^{5*}

6 ¹ Early Arthritis Clinic, National Institute of Geriatrics, Rheumatology and
7 Rehabilitation, 1 Spartańska Street, 02-637 Warsaw, Poland

8 emilia.kot@spartanska.pl

9 ² Institute of Psychology, SWPS University, 19/31 Chodakowska Street, 03-
10 815 Warsaw, Poland

11 eskimina@swps.edu.pl

12 ³ Department of Clinical Pharmacology, Medical University of Lodz, 22
13 Kopcińskiego Street, 90-153 Lodz, Poland

14 tadeusz.pietras@umed.lodz.pl

15 ⁴ Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw
16 University of Life Sciences, 159C Nowoursynowska Street, 02-776
17 Warsaw, Poland;

18 joanna_gromadzka-ostrowska@sggw.edu.pl

19 ⁵ Department of Child and Adolescent Psychiatry, Medical University of
20 Lodz, 8/10 Czechoslowacka Street, 92-216 Lodz, Poland

21 lukasz.mokros@umed.lodz.pl

22 * corresponding author:

23 lukasz.mokros@umed.lodz.pl

24 Address: Department of Child and Adolescent Psychiatry, Medical
25 University of Lodz, 8/10 Czechoslowacka Street, 92-216 Lodz, Poland

26 Email address: lukasz.mokros@umed.lodz.pl

27 **Abstract**

28 Borderline personality disorder (BPD) and eating disorders (EDs) are
29 often comorbid and share a core feature of emotion dysregulation (EDys).

30 While diet has been linked to mental health, its relationship with EDys
31 and symptom severity in these groups remains understudied. This study

32 investigated dietary intake in BPD, EDs, and their comorbidity, and
33 examined whether EDys mediates the relationship between diet and
34 symptom severity. Female inpatients with BPD ($n = 40$), ED ($n = 22$), and
35 BPD with comorbid ED (BPD+ED; $n = 37$), along with healthy controls
36 (HCs; $n = 37$) completed Food Frequency Questionnaire (FFQ-6),

37 Emotion Dysregulation Scale (EDS), and clinical self-report measures.

38 Dietary patterns differed between groups. Clinical groups consumed
39 sources of omega-3 polyunsaturated fatty acids and Mediterranean diet
40 (MD) foods less frequently than HCs. EDys fully mediated the link
41 between dietary patterns and symptom severity in most models. The
42 mediation was partial when omega-3 intake predicted ED severity in the
43 ED group.

44 Women with BPD and BPD+ED showed poorer diet quality, especially
45 regarding omega-3 and MD-aligned foods. EDys mediated the association
46 between low-quality diet and symptom severity, suggesting a

47 transdiagnostic mechanism. Nutritional interventions may positively
48 influence emotion regulation, thereby reducing the risk of developing and
49 maintaining symptoms of BPD and EDs.

50

51 **Keywords:** borderline personality disorder, eating disorders, diet, food
52 frequency, omega-3 fatty acids, Mediterranean diet

53

ARTICLE IN PRESS

54

1. Introduction

55 Borderline personality disorder (BPD) is a severe psychiatric
56 condition affecting approximately 1.8% of the global population¹.
57 Characterized by emotional dysregulation (EDys), impulsivity, unstable
58 interpersonal relationships, and a distorted self-image, BPD frequently
59 co-occurs with other mental disorders, such as mood disorders, anxiety
60 disorders, substance use disorders, and eating disorders (EDs)². BPD is
61 frequently associated with nonsuicidal self-injury (NSSI) and a
62 significantly elevated risk of suicide³.

63 **1.1. Nutrition and Physical Health in BPD: Beyond
64 Psychopathology**

65 The implications of BPD extend beyond mental well-being,
66 influencing overall physical health. Individuals with BPD face a greater
67 risk of developing non-communicable chronic diseases (NCDs), including
68 cardiovascular conditions, type 2 diabetes, metabolic syndrome, and
69 gastrointestinal disorders⁴⁻⁶. Furthermore, longitudinal analyses show
70 that individuals in long-term remission from BPD symptoms engage in
71 fewer unhealthy behaviors and have a lower incidence of NCDs compared
72 to those with BPD⁷. Chronic stress and lifestyle-related factors are
73 thought to contribute to this increased susceptibility^{5,8}, alongside
74 maladaptive emotion regulation patterns that may disrupt physiological
75 systems such as the hypothalamic-pituitary-adrenal (HPA) axis⁹.

76 Lifestyle behaviors, including physical activity, sleep, smoking, and
77 dietary habits, are increasingly recognized as crucial in both mental¹⁰ and
78 physical health¹¹. Poor diet quality has been linked to depression,

79 schizophrenia, and anxiety^{12,13}. Conversely, adherence to dietary patterns
80 associated with positive health outcomes, like the Mediterranean diet
81 (MD), which emphasizes fruits, vegetables, fish, whole grains, and
82 beneficial fats, has shown promise in reducing the risk of mental
83 disorders¹⁴ and improving their symptoms¹⁵. The MD offers anti-
84 inflammatory properties and supports gut health. It also reduces the
85 intake of saturated fatty acids (SFAs) and helps optimize the omega-6 to
86 omega-3 polyunsaturated fatty acids (PUFAs) ratio. These features are
87 associated with reduced risks of type 2 diabetes, metabolic disorders, and
88 certain cancers^{16,17}, as well as improved cardiometabolic markers,
89 including a reduction in cardiovascular events by approximately
90 30%^{14,18,19}.

91 Although research on the relationship between dietary patterns and
92 personality disorders is limited, existing evidence suggests that
93 neuroticism and alexithymia are linked to poor dietary habits, including
94 low consumption of fruits and vegetables and high intake of sweets and
95 SFA-rich foods²⁰. There is a lack of comprehensive studies on how
96 specific dietary components affect BPD symptoms. However, nutrient-
97 based interventions, such as omega-3 supplementation, have shown
98 potential in alleviating BPD symptoms, particularly impulsivity and
99 EDys^{21,22}. Additionally, supplementing with EPA, an omega-3 fatty acid,
100 has been found to reduce aggression in BPD patients²³.

101 Interesting data emerge from the study comparing vitamin D levels
102 in individuals who attempted suicide to those with depression who did not
103 attempt suicide and a healthy control group. Individuals with a history of

104 suicide attempts showed significantly lower vitamin D levels compared to
105 the other groups. Considering vitamin D's role in the nervous and skeletal
106 systems, and reports linking BPD with reduced bone density²⁴, a
107 hypothesis could be proposed regarding the relationship between suicidal
108 behaviors in this group and their nutritional status. In another study,
109 higher levels of visceral fat were observed in patients with major
110 depression and co-occurring BPD compared to those with major
111 depression without BPD²⁵. Additionally, a 10-year longitudinal study
112 found that cumulative BMI in BPD patients was associated with a
113 diagnosis of two or more NCDs²⁶.

114 **1.2. Intersecting Psychopathologies: BPD, Eating Disorders,
115 and the Role of Emotion Dysregulation**

116 Empirical evidence suggests a relationship between BPD and
117 obesity^{26,27}; however, a systematic review by Gerlach et al.²⁸ highlights
118 that this association is not unequivocal and may be influenced by co-
119 occurring binge eating disorder (BED). Notably, EDs are highly prevalent
120 in BPD, with up to 61% of hospitalized patients meeting diagnostic
121 criteria. BPD frequently co-occurs with bulimia nervosa (28%; BN), the
122 binge-purge subtype of anorexia nervosa (25%; AN), BED (12%), and
123 restrictive AN (10%)²⁹⁻³¹.

124 The significant symptom overlap and frequent co-occurrence of BPD
125 with EDs suggest shared underlying mechanisms, leading researchers to
126 adopt a transdiagnostic perspective. According to the biosocial model of
127 BPD, EDys is central to the onset and maintenance of BPD symptoms,
128 often manifesting in maladaptive behaviors like non-suicidal self-injury

129 (NSSI), risky behaviors, and disordered eating^{32,33}. Furthermore,
130 research suggests that BPD may mediate the relationship between
131 traumatic experiences and the development of EDs, with body image
132 disturbances and NSSI increasing the likelihood of EDs onset³⁴.

133 EDys is also an important transdiagnostic characteristic in EDs³⁵,
134 involving deficits such as heightened emotional intensity, lower
135 acceptance of emotions, reduced emotional awareness and clarity, and
136 increased reliance on dysfunctional emotion regulation strategies^{36,37}.

137 Some authors consider EDys a key factor maintaining eating pathology³⁸.
138 Interestingly, behaviors like binge eating or self-induced vomiting may
139 indicate impulsivity in BPD, while not being sufficient for diagnosing a co-
140 occurring EDs³⁹. Among patients with AN and BN, higher levels of EDys
141 are associated with greater severity of ED symptoms⁴⁰. In patients with
142 BPD, abnormal eating behaviors may serve as emotion regulation
143 strategies and are potentially linked to EDys, warranting further
144 investigation in scientific studies.

145 **1.3. Aims and Hypotheses**

146 Given the established association between dietary pattern and the
147 risk of NCDs¹¹, the elevated risk of NCDs in patients with BPD⁴⁻⁶, and the
148 lack of research on dietary pattern in this population, the aim of this
149 study was to evaluate dietary intake in individuals with BPD. In light of
150 evidence linking the MD and omega-3 PUFAs to a reduced risk of mental
151 disorders and improvements in psychiatric symptom severity¹⁹, we also
152 assessed the intake frequency of a) foods frequently consumed in MD, b)
153 sources of omega-3 PUFAs, and the intake of c) foods associated with

154 unhealthy dietary patterns. Due to the prevalence of abnormal eating
155 behaviors in BPD and the high comorbidity of EDs in this population,
156 dietary patterns were compared not only to healthy controls (HCs) but
157 also to clinical control (CC) groups: BPD patients with comorbid EDs and
158 ED patients without BPD. We hypothesized that individuals with BPD
159 would exhibit less healthy dietary pattern compared to HCs and distinct
160 dietary pattern relative to CC. Specifically, we expected the BPD group to
161 show higher consumption of foods rich in simple carbohydrates and
162 saturated fats, and lower intake of foods typical of the MD, including
163 omega-3-rich products, compared to HCs. Moreover, we hypothesized
164 that the CC groups would display generally lower intake of both MD and
165 omega-3-rich foods, as well as high-fat/high-sugar foods, relative to HCs,
166 and lower consumption of foods deviating from the MD pattern compared
167 to the BPD group.

168 The role of EDys in both BPD and ED psychopathology was outlined,
169 along with evidence supporting the efficacy of omega-3 PUFAs
170 supplementation in improving symptoms, including EDys, in BPD
171 patients²², and the protective role of the MD against ED development^{41,42}.
172 Considering that EDys is recognized as a contributing factor to the onset
173 and maintenance of BPD and ED symptoms³²⁻³⁴, a secondary aim was to
174 investigate the mediating role of EDys in the relationship between dietary
175 pattern and the severity of clinical symptoms in BPD and EDs. We
176 hypothesized that EDys would mediate the association between dietary
177 pattern and symptom severity in the following way: less frequent
178 consumption of products typical for MD and of foods rich in omega-3

179 PUFAs as well as more frequent consumption of foods deviating from the
180 MD pattern would be related to greater EDys, which in turn would be
181 associated with greater severity of BPD and EDs symptoms.

182 Additionally, we examined whether BPD and ED diagnoses
183 moderate the relationships among dietary pattern, EDys, and disorder-
184 specific symptoms. Specifically, we expected that the relationship
185 between dietary pattern and EDys would be similar across all
186 participants, whereas the effects on symptom severity would emerge
187 primarily within the relevant clinical groups. That is, dietary pattern and
188 EDys would predict BPD symptoms primarily in participants with a BPD
189 diagnosis, and ED symptoms primarily in participants with an ED
190 diagnosis. Mediation hypotheses are illustrated in Figure 1 and
191 moderation hypotheses are illustrated in Figure 2.

192

193 [Insert Figure 1 here]

194 [Insert Figure 2 here]

195

196 **2. Methods**

197 **2.1. Participants**

198 Due to the predominance of women among individuals diagnosed
199 with BPD (75%) and ED (90% in AN and BN)², only female participants
200 aged 18–50 of Polish origin were recruited. The final sample consisted of
201 136 women, following the exclusion of five individuals due to increased
202 symptom severity (in the HC group) or incomplete data (in all groups).
203 Participants were divided into four groups: women diagnosed with BPD

204 according to ICD-10 and DSM-5 ($n = 40$), women with EDs, including AN,
205 BN, and BED ($n = 22$), women with comorbid BPD and ED ($n = 37$), and
206 HC women ($n = 37$). Patients were recruited from the inpatient unit of
207 the Institute of Psychiatry and Neurology in Warsaw, Poland, while HC
208 participants were primarily university students matched for age.

209 Inclusion criteria required written informed consent, at least
210 primary education, normal intellectual functioning, Polish as a native
211 language, and adequate verbal communication skills. Exclusion criteria
212 included neurodevelopmental and neurological disorders, brain injury,
213 substance dependence, severe metabolic or diet-related illnesses, and
214 psychiatric conditions such as schizophrenia spectrum disorders, mania,
215 or psychosis. HC participants were additionally screened for BMI outside
216 the 18.5–25 kg/m² range and any history of psychiatric disorders. A
217 detailed characterization of the study groups is presented in Table 1.

218 [Insert Table 1 here]

219 **2.2. Procedure**

220 Study approval was obtained from the Bioethical Committee at the
221 Institute of Psychiatry and Neurology in Warsaw, Poland (no. 10/2020).
222 Subjects read the study description and signed the informed consent
223 sheet prepared in concordance with the current version of the
224 Declaration of Helsinki.

225 This study is part of a larger project that also assessed sleep and
226 physical activity over seven days, though these results are not included
227 here. The focus of this analysis is on dietary patterns, EDys, and clinical
228 symptoms. Clinical interviews were conducted using the SCID-5-PD in

229 clinical groups and SCID-5-SPQ⁴³ in the HC group to exclude personality
230 disorders. Additionally, selected health indicators were assessed during
231 the study (see Table 1), including body mass index (BMI) and waist-hip
232 ratio (WHR). Blood pressure, resting heart rate, and pulse pressure were
233 calculated as the average of two measurements. Participants in clinical
234 groups were examined within the first three weeks of hospitalization. All
235 participants completed a battery of measures described below.

236 Although the study design and hypotheses were formulated prior to
237 data collection, they were not preregistered.

238 **2.3. Measures**

239 **2.3.1. Dietary intake**

240 Dietary intake was assessed using the Food Frequency
241 Questionnaire (FFQ-6)⁴⁴, which evaluates the consumption frequency of
242 62 food groups over the past 12 months. Responses are recorded on an
243 ordinal scale and converted into a semi-quantitative scale based on daily
244 intake frequency (e.g., *never* = 0 times/day, *several times per month* =
245 0.1 times/day, *daily* = 1 time/day). The FFQ-6 has demonstrated internal
246 validity through test-retest reliability and has been used to identify
247 dietary patterns in previous studies^{44,45}. At the time of data collection, the
248 62-item version of the FFQ-6 was the most widely used in Poland.
249 However, a revised 72-item version has since been introduced⁴⁶, offering
250 expanded food group coverage for future studies.

251 In accordance with the recommendations of the questionnaire's
252 authors, we aggregated the 62 food groups into 25 broader categories
253 and calculated mean daily consumption frequencies⁴⁷. Additionally, for

254 the purpose of this study, we computed dietary indices relevant to mental
255 health, including: Omega-3 fatty acid intake index, based on the summed
256 frequency of consumption of vegetable oils, nuts, seeds, and fish. MD
257 adherence index, calculated separately for a) foods recommended in MD
258 (e.g., dairy, whole grains, fish, fruits, vegetables) and b) those advised to
259 be consumed in limited amounts (e.g., refined grains, processed meats,
260 sweets).

261 ***2.3.2. Emotion dysregulation***

262 EDys was assessed using the Difficulties in Emotion Regulation
263 Scale (DERS)^{48,49}, a 36-item self-report questionnaire measuring
264 difficulties in regulating negative emotions. The scale comprises six
265 subscales: Lack of Emotional Awareness, Lack of Emotional Clarity,
266 Impulse Control Difficulties, Difficulties Engaging in Goal-Directed
267 Behavior, Non-Acceptance of Emotional Responses, and Limited Access to
268 Emotion Regulation Strategies.

269 Participants responded using a 5-point Likert scale, with higher
270 scores indicating greater difficulties. Both the original and Polish versions
271 of the DERS have demonstrated good reliability and validity. In this
272 study, the total score and subscale scores were used to assess emotion
273 regulation difficulties. Internal consistency in our sample was satisfactory
274 (Cronbach's α : BPD = 0.81, ED = 0.75, BPD+ED = 0.83, HC = 0.86).

275 ***2.3.3. Severity of Borderline Personality Disorder Symptoms***

276 The Borderline Personality Disorder Checklist (BPD Checklist)⁵⁰ is a
277 self-report tool assessing BPD symptom severity over the past month.

278 Unlike the SCID-5-PD, which evaluates lifetime symptom presence, the
279 BPD Checklist measures current symptom intensity.

280 The questionnaire consists of 47 items reflecting DSM-IV/DSM-5
281 BPD criteria^{50,51}. Responses are rated on a 5-point Likert scale (from *not*
282 *at all* to *very much*), with scores ranging from 47 to 235, where higher
283 values indicate greater symptom severity. The scale provides both an
284 overall symptom severity score and scores across nine subscales:
285 Abandonment, Interpersonal Relationships, Identity, Impulsivity, Self-
286 mutilation/Parasuicide, Mood Instability, Emptiness, Anger, and
287 Dissociation.

288 Recent validation of the Polish version confirmed its high
289 reliability⁵¹, though normative data for the Polish population are not yet
290 available. The original validation in American clinical and non-clinical
291 samples suggested a score ≥ 100 indicates significant BPD symptoms,
292 while ≤ 67 reflects remission⁵². The internal consistency in this study was
293 high (Cronbach's α : BPD = 0.94; BPD+ED = 0.92; ED = 0.93; HC = 0.97).

294 **2.2.4. Severity of Eating Disorder Symptoms**

295 The Eating Attitudes Test (EAT-26)^{53,54} is a self-report
296 questionnaire assessing disordered eating behaviors. It includes four
297 subscales: Social Pressure, Dietary Restraint, Bulimia, and Food
298 Preoccupation. EAT-26 is used as a screening tool to identify individuals
299 at risk of developing EDs and as a research measure of ED symptom
300 severity.

301 The questionnaire consists of two parts (A and B), with Part A
302 comprising 26 items measuring ED symptoms. Responses are given on a

303 6-point Likert scale (*never-always*), with scores ranging from 0 to 78.
304 Higher scores indicate greater severity of disordered eating behaviors. A
305 total score of ≥ 20 suggests clinically relevant ED symptoms. The Polish
306 version has demonstrated good psychometric properties (Cronbach's α =
307 0.80 in a nonclinical sample)⁵⁴. In this study, high reliability was
308 confirmed (BPD: α = 0.90; ED: α = 0.88; BPD+ED: α = 0.92; HC: α =
309 0.86).

310 **2.2.5. Severity of Anxiety and Depression Symptoms**

311 The Hospital Anxiety and Depression Scale (HADS)^{55,56,57} is a 14-
312 item self-report questionnaire designed to measure psychological
313 distress. It consists of two 7-item subscales: Anxiety (HADS-A) and
314 Depression (HADS-D). Originally developed for rapid mental health
315 assessment in hospital settings, HADS is also widely used as a screening
316 tool for psychological distress in the general population and in research
317 assessing anxiety and depression severity in clinical populations.

318 Participants rated their experiences over the past week using a 4-
319 point Likert scale (0-3), with total scores ranging from 0 to 21 for each
320 subscale. Higher scores indicate greater symptom severity. The Polish
321 version of HADS has demonstrated good reliability (Cronbach's α = 0.81
322 for HADS-A and 0.80 for HADS-D)⁵⁷. In the present study, reliability was
323 confirmed across groups (BPD: HADS-A α = 0.82, HADS-D α = 0.84;
324 BPD+ED: HADS-A α = 0.88, HADS-D α = 0.83; ED: HADS-A α = 0.82,
325 HADS-D α = 0.88; HC: HADS-A α = 0.70, HADS-D α = 0.81).

326 **2.3. Statistical Analyses**

327 Statistical analyses were carried out with IBM SPSS Statistics 29
328 software⁵³. Before performing between-group comparisons, assumptions
329 for parametric methods were checked. Chi-square tests (χ^2) were used to
330 verify group equivalence, with no significant differences in group sizes
331 ($\chi^2(3) = 5.82, p = .120$). Normality of data distributions was assessed
332 using skewness and kurtosis values, with values exceeding 2.00
333 indicating non-normal distribution, prompting the use of the Kruskal-
334 Wallis test. For normally distributed data, Levene's test assessed
335 homogeneity of variances. Significant results ($p < .05$) led to Kruskal-
336 Wallis testing; otherwise, ANOVA was applied. Post-hoc analyses were
337 conducted using Bonferroni correction for both ANOVA and Kruskal-
338 Wallis tests. Effect sizes were calculated using eta squared (η^2), with
339 thresholds for small (.01-.05), medium (.06-.13), and large ($\geq .14$) effects
340 ⁵⁴.

341 Spearman's rank correlation was used to examine relationships
342 between variables due to non-normal data distributions. Correlations
343 were calculated on the whole sample to verify assumptions for mediation
344 analysis regarding relationships between variables included in the
345 model⁵⁵. Effect sizes were interpreted as follows: $rs = 0.10-0.29$ (weak),
346 $rs = 0.30-0.49$ (moderate), $rs \geq 0.50$ (strong)⁵⁶.

347 Mediation and moderated mediation analyses were performed using
348 the PROCESS macro⁵⁷, with models 4 and 15 for testing direct, indirect,
349 and total effects. Bootstrapping (10,000 samples) was used to generate
350 95% confidence intervals (CI) for indirect effects. Mediation effects were
351 considered significant if the confidence intervals did not contain zero.

352 Moderated mediation was assessed by testing interaction effects between
353 the moderator and mediator, and between the moderator and
354 independent variable.

355 A post-hoc sensitivity power analysis conducted using the
356 'WebPower' package⁵⁸ in R ($\alpha = .05$, power = .80) indicated that the
357 minimum detectable effect sizes were $\eta^2 = .08$ and rho = .24. The Monte
358 Carlo Power Analysis for Indirect Effects shiny app by Schoemann et al.⁵⁹
359 with 1000 replications and 20,000 draws per replication, indicated power
360 between .89 and .98 for indirect effects in this study. The
361 InteractionPoweR shiny app by Finsaas et al.⁶⁴ based on R package by
362 Baranger et al.⁶⁵ with 1000 simulations indicated power .66 for the
363 interaction effect found in this study.

364 3. Results

365 3.1. Between-Group Differences in Clinical Symptoms Severity and 366 Dietary Patterns

367 The between-group differences in symptoms severity analyzed in
368 ANOVA and Kruskal-Wallis test are presented in Table 2. HCs had
369 significantly lower levels of all symptoms and EDys than clinical groups.
370 The ED group differed significantly from BPD in BPD total score and
371 anger but not in impulsivity. However, the ED group revealed lower level
372 of impulsivity than BPD+ED. CCs had higher levels of ED symptoms than
373 BPD group. Clinical groups did not differ significantly in depression and
374 anxiety. ED group had lower level of EDys than BPD+ED.

375 [Insert Table 2 here]

376 The between-group differences in dietary patterns are presented in
377 Table 3. BPD group consumed vegetable fats, fruits, dried and processed
378 legumes, and nuts and seeds significantly less frequently, as well as
379 sugar-sweetened and energy drinks significantly more frequently than
380 HCs. Patients with EDs and those with BPD+ED diagnosis consumed
381 cheese, vegetable fats, red meat and game, and alcohol, significantly less
382 frequently than HCs. What is more, patients with BPD+ED diagnosis
383 consumed eggs and egg-based dishes, nuts and seeds, white meat, and
384 fish less frequently than HCs. Patients with BPD consumed butter and
385 cream more often than patients with BPD+ED. BPD and HC groups
386 consumed alcohol more frequently compared to patients with EDs. HCs
387 and CC groups consumed sources of omega-3 PUFAs more often than
388 patients with BPD. Moreover, HCs consumed products typical for MD
389 more frequently than BPD and BPD+ED groups. Effects were medium to
390 large, ranging from .06 to .16.

391 [Insert Table 3 here]

392 **3.2. Correlations Between Dietary Patterns, Emotion
393 Dysregulation, and Clinical Symptoms**

394 The results of Spearman's rank correlations are presented in
395 Supplementary Table S1. Intake of both Omega-3 PUFAs and products
396 typical for MD correlated significantly and negatively with EDys and all
397 clinical symptoms, including BPD (main score, impulsivity, and anger),
398 EDs symptoms, as well as anxiety and depression. Consumption
399 frequency of products that should be consumed only occasionally in the
400 MD (Anti-MD) correlated significantly and positively with EDys and anger

401 (a symptom of BPD). All effects were small to moderate, ranging from .19
402 to .40. Because the index of anti-MD diet did not correlate significantly
403 with clinical symptoms, this variable was not used as a predictor in
404 mediation models presented in the next section.

405 **3.3. Mediation and Moderated Mediation Models**

406 We tested eight models in total: four mediation models (see Figure
407 1) and four moderated mediation models (see Figure 2).

408 Table 4 presents the results of models examining the severity of
409 BPD symptoms as predicted by Omega-3 PUFAs (Model A) and adherence
410 to the MD (Model C), with EDys as a mediator. Models B and D tested
411 whether the indirect and direct effects in Models A and C, respectively,
412 were moderated by BPD diagnosis.

413 [Insert Table 4 here]

414 In Model A, Omega-3 PUFAs significantly predicted EDys: $R^2 = .11$,
415 $F(1, 134) = 16.92, p < .001$. BPD symptom severity was significantly
416 predicted by Omega-3 PUFAs together with EDys: $R^2 = .57, F(2, 133) =$
417 $88.19, p < .001$. The indirect effect through EDys was significant and the
418 direct effect was not, indicating full mediation. Model B did not reveal
419 any significant interaction.

420 In Model C, MD significantly predicted EDys: $R^2 = .07, F(1, 134) =$
421 $10.61, p < .001$. MD together with EDys significantly predicted BPD
422 symptom severity: $R^2 = .57, F(2, 133) = 89.85, p < .001$. Again, the
423 indirect effect was significant and the direct effect was not, indicating full
424 mediation. Model D did not reveal any significant interaction.

425 Table 5 presents the results of models examining the severity of
426 EDs symptoms as predicted by Omega-3 PUFAs consumption (Model E)
427 and adherence to the MD (Model G), with EDys as a mediator. Models F
428 and H tested whether the indirect and direct effects in Models E and G,
429 respectively, were moderated by EDs diagnosis.

430 [Insert Table 5 here]

431 Omega-3 PUFAs together with EDys significantly predicted the
432 severity of EDs symptoms: $R^2 = .28$, $F(2, 132) = 26.23$, $p < .001$. The
433 indirect effect in Model E was significant, while the direct effect was not,
434 indicating full mediation. Model F revealed a significant interaction
435 between Omega-3 PUFAs consumption and EDs diagnosis. Comparison of
436 conditional direct effects showed that the direct effect of Omega-3 PUFAs
437 consumption on EDs severity was significant among patients with an ED
438 diagnosis, but not among women without the diagnosis. Therefore, for
439 individuals with an ED diagnosis, the observed mediation was only
440 partial.

441 In Model G, the severity of EDs symptoms was significantly predicted
442 by MD together with EDys: $R^2 = .27$, $F(2, 132) = 24.29$, $p < .001$. The
443 indirect effect was significant, while the direct effect was not, indicating
444 full mediation. Model H did not reveal any significant interaction.

445 4. Discussion

446 4.1. Between-Group Differences in Dietary Pattern

447 The findings partially confirmed less healthy dietary pattern among
448 patients with BPD compared to HC, and a distinct pattern compared to
449 CC. More frequent consumption of sugar-sweetened beverages and

450 energy drinks—sources of simple carbohydrates—was observed in the
451 BPD group relative to HCs. These products have been linked to a higher
452 risk of type 2 diabetes, obesity, and cardiometabolic diseases⁶⁰⁻⁶², which
453 may have clinical relevance given the higher values of nutritional status
454 indicators, resting heart rate, and pulse pressure observed in our BPD
455 sample. In light of previous evidence suggesting an increased risk of
456 metabolic syndrome and cardiovascular diseases in this population^{5,8}, the
457 present results indicate that sweetened and energy drinks may represent
458 a potential dietary risk factor. However, longitudinal studies assessing
459 dietary intake and health outcomes in individuals with BPD are
460 warranted.

461 Patients with BPD showed less frequent intake of fruits, legumes,
462 nuts, and seeds compared to HCs, suggesting a reduced dietary fiber
463 supply from these sources. No differences were found in the intake of
464 specific fiber categories between patient groups. Previous studies have
465 linked high fiber intake to a lower risk of depression⁶³, which may be
466 particularly relevant given the high severity of depressive symptoms
467 observed across all clinical groups in our study. The underlying
468 mechanisms may involve the gut microbiota and oxidative stress^{63,64}, and
469 our findings indirectly align with reports of gut microbiota disturbances
470 in BPD and EDs⁶⁵⁻⁶⁷. Considering the established associations between
471 dietary fiber intake and reduced risk of type 2 diabetes, cardiovascular
472 disease, obesity, and certain cancers⁶⁸⁻⁷², as well as the increased
473 prevalence of these conditions in individuals with BPD^{4,8,27,73}, the

474 potential protective role of fiber intake in this group warrants further
475 investigation.

476 A higher frequency of butter and cream consumption was observed
477 in patients with BPD compared to those with BPD+ED, with no significant
478 differences in the intake of other SFA-rich products between the BPD,
479 HC, and CC groups. This may suggest a relatively higher intake of SFAs
480 from these specific sources in individuals with BPD without comorbid ED,
481 rather than a generally higher intake of SFAs. One possible explanation
482 could be the dietary restrictions typically associated with EDs, which
483 often involve the avoidance of high-calorie foods such as butter and
484 cream⁷⁴. Given that BMI and WHR values were higher in the BPD group,
485 future studies should investigate whether this dietary difference
486 contributes to differences in nutritional status, although no conclusions
487 can be drawn based on the current findings alone.

488 Patients with BPD reported a lower frequency of consumption of
489 foods rich in omega-3 PUFAs compared to HCs, as well as a different
490 intake pattern relative to CC. This finding aligns with previous evidence
491 supporting the efficacy of omega-3 PUFA supplementation in reducing
492 BPD symptoms such as impulsivity and aggression^{21,22,75}, and with
493 studies indicating a link between low dietary omega-3 intake and
494 aggressive behavior in children and adolescents—a potential risk factor
495 for the development of BPD^{76,77}. Considering the critical role of omega-3
496 PUFAs in the structure and functioning of the central nervous system,
497 particularly in emotional regulation^{78,79}, these results highlight the need

498 for further research into the relationship between omega-3 intake and
499 emotional functioning in individuals with BPD.

500 Patients with BPD and BPD+ED showed a lower frequency of
501 consumption of foods typical for the MD compared to HC, and a different
502 consumption pattern compared to CC. Although direct studies on diet in
503 BPD are lacking, this finding aligns with reports linking adherence to the
504 MD with a lower risk of mental disorders and reduced symptom
505 severity^{14,80}. Moreover, greater efficacy of the MD has been confirmed in
506 improving cardiovascular risk factors such as blood pressure, insulin
507 sensitivity, and lipid profile, as well as reducing oxidative stress and
508 inflammation⁸¹, which play roles in the pathogenesis of mental
509 disorders^{82,83}. Elevated markers of inflammation and oxidative stress
510 have been observed in patients with BPD^{24,84}, and antioxidant
511 supplementation shows benefits in symptom reduction²². These results
512 highlight the need for further research on the impact of diet, especially
513 the MD, on the course of BPD.

514 Patients with BPD did not differ from HC and CC in the frequency of
515 consumption of foods rarely consumed in the MD (potentially unhealthy).
516 This finding suggests that, in individuals with BPD, insufficient intake of
517 beneficial nutrients may be a more significant issue than excessive
518 consumption of components discouraged in the diet.

519 **4.2. Associations Between Dietary Patterns, Emotion 520 Dysregulation, and BPD Symptoms**

521 The identified association between the frequency of consuming foods
522 typical of the MD and products rich in omega-3 PUFAs and the severity of

523 BPD symptoms is indirectly supported by findings indicating the
524 effectiveness of omega-3 PUFAs supplementation in reducing symptoms
525 of this disorder. Furthermore, the observed link between frequent intake
526 of omega-3-rich foods and lower severity of BPD symptoms aligns with
527 the results of a meta-analysis on the impact of omega-3 supplementation
528 on functioning in individuals with BPD. These studies have shown that
529 omega-3-based interventions may particularly reduce EDys and
530 impulsivity²².

531 Consistently with these findings, mediation analysis demonstrated
532 that EDys fully explained the relationship between the frequency of
533 consumption of MD-typical foods and omega-3 sources and the severity of
534 BPD symptoms. This suggests that a health-promoting dietary pattern
535 may be associated with lower BPD symptom severity primarily through
536 the reduction of difficulties in emotion regulation. This assumption is
537 supported by studies showing the beneficial effects of the MD on nervous
538 system functioning—both in cognitive and emotional domains—as well as
539 its association with a lower risk of developing mental disorders⁸⁵. In light
540 of the key role of EDys in the development and maintenance of BPD
541 symptoms³³, it is plausible that nutrition supporting psychological
542 functioning may influence the mechanisms underlying BPD
543 symptomatology. However, these findings do not allow for causal
544 inference. To verify this hypothesis, randomized controlled trials are
545 needed to evaluate the effects of MD-based dietary interventions on
546 emotional functioning and clinical symptoms in individuals with BPD.

547 Moderated mediation analysis did not reveal a significant moderating
548 effect of BPD diagnosis—neither in the relationship between diet and BPD
549 symptom severity nor in the association between EDys and BPD
550 symptoms. These results suggest that the identified mediation mechanism
551 operates similarly regardless of BPD diagnosis. In other words, a health-
552 promoting dietary pattern may be linked to lower levels of BPD-related
553 traits both in clinical and non-clinical populations, with EDys acting as a
554 potential mediator. In reference to the biosocial theory of BPD
555 development^{32,33}, these findings are consistent with a psychopathological
556 model in which maladaptive dietary patterns—characterized by a
557 recurrent behavioral pattern inconsistent with the MD and poor in
558 omega-3 sources—may contribute to increased difficulties in emotion
559 regulation, which in turn underlie BPD symptoms. As suggested by the
560 moderated mediation results, such a mechanism may be relevant not only
561 among individuals with a BPD diagnosis—potentially sustaining the
562 disorder—but also among those without the diagnosis, contributing to the
563 development of BPD-related difficulties.

564 **4.3. Associations Between Dietary Patterns, Emotion**

565 **Dysregulation, and ED Symptoms**

566 A relationship was found between low frequency of consumption of
567 foods typical of the MD and sources of omega-3 PUFAs and higher
568 severity of ED symptoms. The direction of these associations aligns with
569 current knowledge on ED psychopathology, which includes both food
570 restriction and episodes of loss of control over eating⁸⁶, as well as with

571 studies indicating a protective role of adherence to the MD against the
572 development of ED symptoms⁴².

573 Mediation analysis revealed that EDys fully mediated the
574 relationship between the frequency of consuming MD-typical foods and
575 omega-3-rich products and the severity of ED symptoms. While previous
576 studies have reported omega-3 PUFA deficiencies in individuals with
577 ED^{87,88}, findings regarding the effectiveness of supplementation in
578 improving symptoms remain inconsistent^{89,90}. A meta-analysis by
579 Satogami et al.⁹⁷ associated omega-3 supplementation with benefits in
580 weight normalization but found no significant effects on ED or mood
581 symptoms. The present results suggest that the relationship between
582 omega-3 intake and ED symptoms may be indirect and operate through
583 reduced difficulties in emotion regulation, consistent with earlier
584 findings⁹².

585 One possible explanation is that diets lacking anti-inflammatory and
586 antioxidant nutrients may adversely affect central nervous system
587 functioning, leading to greater EDys and, consequently, more severe ED
588 symptoms. This mechanism is consistent with previous research on MD
589 adherence, and theories of EDys highlight the role of oxidative stress and
590 inflammation in its development⁹³. However, confirmation of this model
591 requires studies including biomarkers of inflammation and oxidative
592 stress.

593 In the moderated mediation analysis, no significant moderating
594 effect of ED diagnosis was observed on the relationship between MD food
595 consumption and ED symptoms or between EDys and ED symptoms. This

596 suggests that the mediating mechanism operates similarly regardless of
597 ED diagnosis. A different pattern emerged for omega-3 PUFA intake,
598 where ED diagnosis significantly moderated the link between dietary
599 intake and ED symptoms. The direct association was present only in the
600 clinical group, suggesting that in individuals without ED, omega-3
601 consumption was a predictor of ED symptom severity only indirectly
602 through EDys. Among those diagnosed with ED, however, omega-3 intake
603 may relate to symptom severity both directly and indirectly through its
604 effect on emotion regulation.

605 The observed interaction suggests a specific role of ED-related
606 pathophysiological mechanisms in the association between omega-3
607 intake and ED symptoms, differentiating this clinical group from
608 individuals without a diagnosis. Both EDys and EDs symptoms have been
609 found to be linked to alterations in oxidative stress and inflammatory
610 markers (independently of ED and BPD diagnoses), but there also
611 appears to be a ED-specific alteration in inflammation⁹⁴. Thus, it may
612 explain a disorder-specific link between omega-3 acids consumption
613 (which has anti-inflammatory and antioxidant properties), EDys and EDs
614 in the ED group, but not HC. Additionally, the distorted food perception
615 and low fat preference in the diet among ED patients (including anorexia
616 nervosa) may contribute to a declaration of low PUFAs consumption in
617 this group⁹⁵. Those hypotheses require further testing in experimental
618 studies with larger clinical samples. The use of complex, multifactorial
619 statistical models may also help determine whether a co-occurring BPD

620 diagnosis influences the pattern of associations between omega-3 intake,
621 EDys, and ED symptomatology.

622 **4.4. Limitations**

623 The results concerning dietary patterns should be interpreted with
624 caution. As the study included hospitalized patients, their diet during
625 participation was based on hospital-provided meals. Thus, dietary intake
626 was assessed retrospectively and subjectively, without prospective
627 methods such as food diaries or weighed food records, which could offer
628 more precise nutrient intake estimates and comparisons with population
629 norms. Nevertheless, the FFQ used is a widely accepted tool for
630 nutritional studies requiring simple and time-efficient methods⁹⁶.

631 Additionally, sodium intake—an important cardiovascular risk
632 factor⁹⁷—was not assessed. Another limitation stems from the
633 heterogeneity of the ED group. While AN, BN, and BED share
634 transdiagnostic features⁹⁸, differences in nutritional status and symptom
635 profiles likely influence dietary habits across ED types. Therefore,
636 comparisons involving the CC groups should be interpreted with caution
637 and refer to EDs as a whole rather than specific diagnoses⁷⁴.

638 Given the cross-sectional nature of our study, causal direction
639 cannot be determined. Although our models assume a pathway from
640 dietary patterns to symptom severity via EDys, alternative models remain
641 plausible. For instance, symptom severity may influence EDys, which in
642 turn could shape dietary patterns in patients. This reversed pathway is
643 consistent with existing literature indicating that symptoms of mental
644 disorders can contribute to maladaptive health behaviors, including poor

645 dietary choices¹⁰. While our proposed models are grounded in theoretical
646 frameworks such as the biosocial model of BPD³², future research
647 employing longitudinal or experimental designs (e.g., dietary
648 interventions) is necessary to test these pathways and evaluate
649 alternative explanations.

650 Importantly, some effects found in this study did not have sufficient
651 power, including group differences with $\eta^2 < .08$, rho correlations $< .24$
652 and the interaction effect. Hence, these findings should be interpreted
653 with caution. While a post hoc power analysis was conducted, we
654 acknowledge that a priori power calculations are preferred; future
655 studies should replicate these findings in larger samples based on a priori
656 power analysis.

657 Also, this is a single-centre, observational study with non-random
658 sampling, on a relatively small group. Thus, no conclusions on any causal
659 relationships can be drawn and the generalizability of the findings is
660 limited.

661 **4.5. Future directions**

662 To date, no studies have been published on dietary patterns among
663 patients with BPD, making the present findings an important starting
664 point for further investigation. Confirmation of these results in future
665 studies—ideally using prospective methods—is warranted. Although
666 retrospective assessment has limitations, it provides a valuable source of
667 data, as demonstrated in studies involving oncology patients and general
668 population samples in the context of anxiety and depression risk^{99,100}.

669 Prospective research, in turn, constitutes a cornerstone of evidence-based
670 nutrition¹⁰¹.

671 **4.6. Conclusions**

672 Patients with BPD are characterized by a less healthy dietary
673 pattern compared to HCs, involving more frequent consumption of
674 selected dietary sources of simple carbohydrates as well as less frequent
675 intake of selected sources of dietary fiber, omega-3 PUFAs, and foods
676 typical of the MD. Compared to CC, patients with BPD do not differ
677 significantly in the consumption frequency of most of these selected food
678 groups, except for a higher intake of SFA-rich butter and cream and
679 lower intake of omega-3 PUFAs sources.

680 Mediation analysis showed that EDys mediates the relationship
681 between dietary pattern and the severity of BPD symptoms and ED
682 symptoms, consistent with the transdiagnostic understanding of EDys in
683 these conditions. Moreover, these associations were observed both in
684 clinical and HC groups, suggesting that these mechanisms may operate
685 independently of psychiatric diagnosis.

686 Direct associations between dietary pattern and the severity of ED
687 symptoms were found only in individuals diagnosed with ED, which may
688 be due to the fact that non-normative eating behaviors constitute core
689 symptoms of these disorders.

690

691 **Acknowledgments.** We are deeply grateful to all participants who took
692 part in this study. We also thank the staff of the Department of Neuroses,

693 Personality Disorders, and Eating Disorders, Institute of Psychiatry and
694 Neurology, for their support during data collection.

695 **Funding.** The publication was funded by the National Institute of
696 Geriatrics, Rheumatology and Rehabilitation, the Medical University of
697 Lodz, the SWPS University Research Development Fund, and the Warsaw
698 University of Life Sciences.

699 **Author Contributions.** EK contributed to the conception and design of
700 the study, data curation, methodology, and project administration, and
701 drafted the manuscript. EK and ES conducted the formal analysis and
702 investigation. ES, LM, JGO, and TP supported the conceptualization and
703 contributed to writing, review, and editing. All authors approved the final
704 version of the manuscript.

705 **Data Availability Statement.** The datasets used and analyzed during the
706 current study are available from the corresponding author upon request.

707

References

- 708 1. Winsper, C. *et al.* The prevalence of personality disorders in the
709 community: a global systematic review and meta-analysis. *The British
710 Journal of Psychiatry* **216**, 69–78 (2020).
- 711 2. American Psychiatric Association. *Diagnostic and Statistical Manual
712 of Mental Disorders: DSM-5*. vol. 5 (American psychiatric association
713 Washington, DC, 2013).
- 714 3. Reichl, C. & Kaess, M. Self-harm in the context of borderline
715 personality disorder. *Current opinion in psychology* **37**, 139–144
716 (2021).
- 717 4. El-Gabalawy, R., Katz, L. Y. & Sareen, J. Comorbidity and associated
718 severity of borderline personality disorder and physical health
719 conditions in a nationally representative sample. *Psychosomatic
720 medicine* **72**, 641–647 (2010).
- 721 5. Kahl, K. G. *et al.* Prevalence of the metabolic syndrome in patients
722 with borderline personality disorder: results from a cross-sectional
723 study. *European Archives of Psychiatry and Clinical Neuroscience*
724 **263**, 205–213 (2013).
- 725 6. Levine, G. N. *et al.* Psychological health, well-being, and the mind-
726 heart-body connection: a scientific statement from the American
727 Heart Association. *Circulation* **143**, e763–e783 (2021).
- 728 7. Zanarini, M. C., Frankenburg, F. R., Reich, D. B., Hennen, J. & Silk,
729 K. R. Adult experiences of abuse reported by borderline patients and
730 Axis II comparison subjects over six years of prospective follow-up.
731 *The Journal of nervous and mental disease* **193**, 412–416 (2005).

- 732 8. Barber, T. A., Ringwald, W. R., Wright, A. G. & Manuck, S. B.
- 733 Borderline personality disorder traits associate with midlife
- 734 cardiometabolic risk. *Personality Disorders: Theory, Research, and*
- 735 *Treatment* **11**, 151 (2020).
- 736 9. Cavicchioli, M. *et al.* Emotion regulation, physical diseases, and
- 737 borderline personality disorders: conceptual and clinical
- 738 considerations. *Frontiers in Psychology* **12**, 567671 (2021).
- 739 10. Firth, J. *et al.* A meta-review of “lifestyle psychiatry”: the role of
- 740 exercise, smoking, diet and sleep in the prevention and treatment of
- 741 mental disorders. *World psychiatry* **19**, 360-380 (2020).
- 742 11. Ng, R., Sutradhar, R., Yao, Z., Wodchis, W. P. & Rosella, L. C.
- 743 Smoking, drinking, diet and physical activity—modifiable lifestyle risk
- 744 factors and their associations with age to first chronic disease.
- 745 *International journal of epidemiology* **49**, 113-130 (2020).
- 746 12. Jacka, F. N. *et al.* Diet quality in bipolar disorder in a population-
- 747 based sample of women. *Journal of affective disorders* **129**, 332-337
- 748 (2011).
- 749 13. Niarchou, M. *et al.* Genome-wide association study of dietary intake
- 750 in the UK biobank study and its associations with schizophrenia and
- 751 other traits. *Translational Psychiatry* **10**, 51 (2020).
- 752 14. Lai, J. S. *et al.* A systematic review and meta-analysis of dietary
- 753 patterns and depression in community-dwelling adults. *The American*
- 754 *journal of clinical nutrition* **99**, 181-197 (2014).

- 755 15. Bayes, J., Schloss, J. & Sibbritt, D. Effects of polyphenols in a
756 Mediterranean diet on symptoms of depression: a systematic
757 literature review. *Advances in Nutrition* **11**, 602–615 (2020).
- 758 16. Alonso-Domínguez, R. *et al.* Effectiveness of a multifactorial
759 intervention in increasing adherence to the Mediterranean diet
760 among patients with diabetes mellitus type 2: a controlled and
761 randomized study (EMID study). *Nutrients* **11**, 162 (2019).
- 762 17. Griffin, L. E. *et al.* A Mediterranean diet does not alter plasma
763 trimethylamine N-oxide concentrations in healthy adults at risk for
764 colon cancer. *Food & function* **10**, 2138–2147 (2019).
- 765 18. Guasch-Ferré, M. *et al.* The PREDIMED trial, Mediterranean diet and
766 health outcomes: how strong is the evidence? *Nutrition, Metabolism*
767 and *Cardiovascular Diseases* **27**, 624–632 (2017).
- 768 19. Ventriglio, A. *et al.* Mediterranean diet and its benefits on health and
769 mental health: a literature review. *Clinical practice and epidemiology*
770 in *mental health: CP & EMH* **16**, 156 (2020).
- 771 20. Esposito, C. M., Ceresa, A. & Buoli, M. The association between
772 personality traits and dietary choices: a systematic review. *Advances*
773 in *Nutrition* **12**, 1149–1159 (2021).
- 774 21. Bellino, S., Bozzatello, P., Rocca, G. & Bogetto, F. Efficacy of omega-3
775 fatty acids in the treatment of borderline personality disorder: a
776 study of the association with valproic acid. *Journal of*
777 *Psychopharmacology* **28**, 125–132 (2014).

- 778 22. Karaszewska, D. M., Ingenhoven, T. & Mocking, R. J. Marine omega-3
779 fatty acid supplementation for borderline personality disorder: A
780 meta-analysis. *The Journal of clinical psychiatry* **82**, 32819 (2021).
- 781 23. Zanarini, M. C. & Frankenburg, F. R. Omega-3 fatty acid treatment of
782 women with borderline personality disorder: a double-blind, placebo-
783 controlled pilot study. *American Journal of Psychiatry* **160**, 167-169
784 (2003).
- 785 24. Kahl, K. G. *et al.* Bone mineral density, bone turnover, and
786 osteoprotegerin in depressed women with and without borderline
787 personality disorder. *Psychosomatic medicine* **68**, 669-674 (2006).
- 788 25. Kahl, K. G. *et al.* Visceral fat deposition and insulin sensitivity in
789 depressed women with and without comorbid borderline personality
790 disorder. *Psychosomatic medicine* **67**, 407-412 (2005).
- 791 26. Frankenburg, F. R. & Zanarini, M. Relationship between cumulative
792 BMI and symptomatic, psychosocial, and medical outcomes in
793 patients with borderline personality disorder. *Journal of Personality
794 Disorders* **25**, 421-431 (2011).
- 795 27. Frankenburg, F. R. & Zanarini, M. C. Obesity and obesity-related
796 illnesses in borderline patients. *Journal of Personality Disorders* **20**,
797 71-80 (2006).
- 798 28. Gerlach, G., Loeber, S. & Herpertz, S. Personality disorders and
799 obesity: a systematic review. *Obesity Reviews* **17**, 691-723 (2016).
- 800 29. Chen, E. Eating///10///Disorders in Borderline Personality Disorder.
801 *Borderline Personality Disorder* 167 (2017).

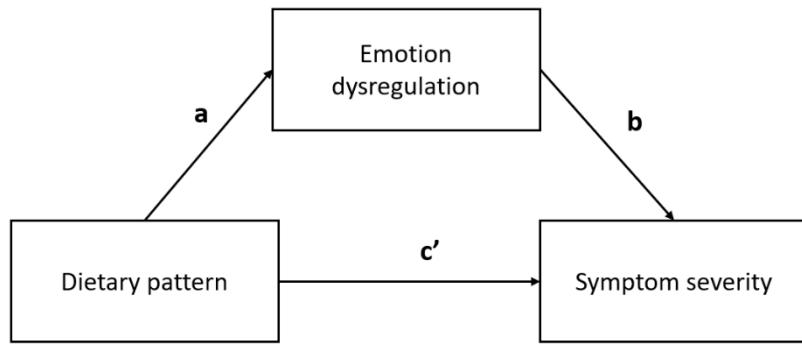
- 802 30. Marino, M. & Zanarini, M. Subtypes of eating disorder NOS comorbid
803 with borderline personality disorder. *International Journal of Eating*
804 *Disorders* **29**, 349–353 (2001).
- 805 31. Sansone, R. A. & Sansone, L. A. Gender patterns in borderline
806 personality disorder. *Innovations in clinical neuroscience* **8**, 16
807 (2011).
- 808 32. Crowell, S. E., Beauchaine, T. P. & Linehan, M. M. A biosocial
809 developmental model of borderline personality: Elaborating and
810 extending linehan's theory. *Psychological bulletin* **135**, 495 (2009).
- 811 33. Linehan, M. M. *Cognitive-Behavioral Treatment of Borderline*
812 *Personality Disorder*. (Guilford Publications, 1993).
- 813 34. Sansone, R. A. & Sansone, L. A. Childhood trauma, borderline
814 personality, and eating disorders: A developmental cascade. *Eating*
815 *disorders* **15**, 333–346 (2007).
- 816 35. Monell, E., Clinton, D. & Birgegård, A. Emotion dysregulation and
817 eating disorders—Associations with diagnostic presentation and key
818 symptoms. *International Journal of Eating Disorders* **51**, 921–930
819 (2018).
- 820 36. Lavender, J. M. *et al.* Dimensions of emotion dysregulation in
821 anorexia nervosa and bulimia nervosa: A conceptual review of the
822 empirical literature. *Clinical psychology review* **40**, 111–122 (2015).
- 823 37. Prefit, A.-B., Candea, D. M. & Szentagotai-Tătar, A. Emotion
824 regulation across eating pathology: A meta-analysis. *Appetite* **143**,
825 104438 (2019).

- 826 38. Trompeter, N., Bussey, K., Forbes, M. K. & Mitchison, D. Emotion
827 dysregulation within the CBT-E model of eating disorders: A narrative
828 review. *Cognitive Therapy and Research* **45**, 1021-1036 (2021).
- 829 39. Sansone, R. A. & Sansone, L. A. Personality pathology and its
830 influence on eating disorders. *Innovations in clinical neuroscience* **8**,
831 14 (2011).
- 832 40. Racine, S. E. & Wildes, J. E. Emotion dysregulation and symptoms of
833 anorexia nervosa: The unique roles of lack of emotional awareness
834 and impulse control difficulties when upset. *International Journal of
835 Eating Disorders* **46**, 713-720 (2013).
- 836 41. Bertoli, S. *et al.* Adherence to the Mediterranean diet is inversely
837 related to binge eating disorder in patients seeking a weight loss
838 program. *Clinical Nutrition* **34**, 107-114 (2015).
- 839 42. Leone, A. *et al.* Adherence to the Mediterranean dietary pattern and
840 incidence of anorexia and bulimia nervosa in women: The SUN
841 cohort. *Nutrition* **54**, 19-25 (2018).
- 842 43. First, M. B., Benjamin, L. S., Spitzer, R. L. & Williams, J. B. *SCID-5-
843 PD Ustrukturalizowany Wywiad Kliniczny Do Badania Zaburzeń
844 Osobowości Według DSM-5®: Podręcznik Klinicysty.* (American
845 Psychiatric Association Publishing, 2018).
- 846 44. Misiak, B. *et al.* Associations of gut microbiota alterations with
847 clinical, metabolic, and immune-inflammatory characteristics of
848 chronic schizophrenia. *Journal of Psychiatric Research* **171**, 152-160
849 (2024).

- 850 45. Pelc, A. *et al.* Evaluation of the relationship between body
851 composition and dietary habits of physically active people with
852 disabilities. *Scientific Reports* **14**, 10247 (2024).
- 853 46. Kowalkowska, J. & Wadolowska, L. The 72-item semi-quantitative
854 food frequency questionnaire (72-Item SQ-FFQ) for Polish young
855 adults: reproducibility and relative validity. *Nutrients* **14**, 2696
856 (2022).
- 857 47. Niedzwiedzka, E., Wadolowska, L. & Kowalkowska, J. Reproducibility
858 of a non-quantitative Food Frequency Questionnaire (62-item FFQ-6)
859 and PCA-driven dietary pattern identification in 13-21-year-old
860 females. *Nutrients* **11**, 2183 (2019).
- 861 48. Dragan-Polak, M. *Problemowe Picie Alkoholu Przez Młode Kobiety: Rola Niekorzystnych Doświadczeń i Samoregulacji Emocji*.
862 (Wydawnictwo Naukowe Scholar, 2016).
- 863 49. Gratz, K. L. & Roemer, L. Multidimensional assessment of emotion
864 regulation and dysregulation: Development, factor structure, and
865 initial validation of the difficulties in emotion regulation scale. *Journal
866 of psychopathology and behavioral assessment* **26**, 41-54 (2004).
- 867 50. American Psychiatric Association. *DSM-IV: Diagnostic and Statistical
868 Manual of Mental Disorders*. (American Psychiatric Association,
869 Washington, DC, 1994).
- 870 51. Brud, P. P. & Cieciuch, J. Polish adaptation of self-report instruments
871 for studying borderline personality traits-FFBI and FFBI-SF.
872 *Psychiatria Polska* **286**, 1-16 (2022).

- 874 52. Bloo, J., Arntz, A. & Schouten, E. The borderline personality disorder
875 checklist: Psychometric evaluation and factorial structure in clinical
876 and nonclinical samples. *Annals of Psychology* **20**, 311-336 (2017).
- 877 53. IBM Corp. SPSS Statistics for Windows, Version 29.0. Armonk, NY:
878 IBM Corp. *Google Search* (2022).
- 879 54. Cohen, J. *Statistical Power Analysis for the Behavioral Sciences*.
880 (routledge, 2013).
- 881 55. Baron, R. M. & Kenny, D. A. The moderator-mediator variable
882 distinction in social psychological research: Conceptual, strategic,
883 and statistical considerations. *Journal of personality and social
884 psychology* **51**, 1173 (1986).
- 885 56. Ellis, P. D. *The Essential Guide to Effect Sizes: Statistical Power,
886 Meta-Analysis, and the Interpretation of Research Results*.
887 (Cambridge university press, 2010).
- 888 57. Hayes, A. F. Mediation, moderation, and conditional process analysis.
889 *Introduction to mediation, moderation, and conditional process
890 analysis: A regression-based approach* **1**, 20 (2013).
- 891 58. Zhang, Z., Mai, Y., Yang, M., Xu, Z. & McNamara, C. Package
892 'WebPower'. Basic and Advanced Statistical Power Analysis. (2023).
- 893 59. Schoemann, A. M., Boulton, A. J. & Short, S. D. Determining power
894 and sample size for simple and complex mediation models. *Social
895 Psychological and Personality Science* **8**, 379-386 (2017).
- 896 60. Della Torre, S. B., Keller, A., Depeyre, J. L. & Kruseman, M. Sugar-
897 sweetened beverages and obesity risk in children and adolescents: a
898 systematic analysis on how methodological quality may influence

- 899 conclusions. *Journal of the Academy of Nutrition and Dietetics* **116**,
900 638-659 (2016).
- 901 61. Loh, D., Moy, F., Zaharan, N., Jalaludin, M. & Mohamed, Z.
902 Sugar-sweetened beverage intake and its associations with
903 cardiometabolic risks among adolescents. *Pediatric obesity* **12**, e1-e5
904 (2017).
- 905 62. United States. Dietary Guidelines Advisory Committee. *Dietary
906 Guidelines for Americans, 2010*. (US Department of Health and
907 Human Services, US Department of Agriculture, 2010).
- 908 63. Fatahi, S. *et al.* Association of dietary fiber and depression symptom:
909 A systematic review and meta-analysis of observational studies.
910 *Complementary therapies in medicine* **56**, 102621 (2021).
- 911 64. Swann, O. G., Kilpatrick, M., Breslin, M. & Oddy, W. H. Dietary fiber
912 and its associations with depression and inflammation. *Nutrition
913 Reviews* **78**, 394-411 (2020).
- 914 65. Di Lodovico, L. *et al.* Anorexia nervosa and gut microbiota: A
915 systematic review and quantitative synthesis of pooled
916 microbiological data. *Progress in Neuro-Psychopharmacology and
917 Biological Psychiatry* **106**, 110114 (2021).
- 918 66. Gupta, A., Osadchiy, V. & Mayer, E. A. Brain-gut-microbiome
919 interactions in obesity and food addiction. *Nature Reviews
920 Gastroenterology & Hepatology* **17**, 655-672 (2020).
- 921 67. Rössler, H., Flasbeck, V., Gatermann, S. & Brüne, M. Alterations of
922 the gut microbiota in borderline personality disorder. *Journal of
923 psychosomatic research* **158**, 110942 (2022).


- 924 68. Larsson, S., Giovannucci, E., Bergkvist, L. & Wolk, A. Whole grain
925 consumption and risk of colorectal cancer: a population-based cohort
926 of 60 000 women. *British journal of cancer* **92**, 1803–1807 (2005).
- 927 69. Liu, S. *et al.* Relation between changes in intakes of dietary fiber and
928 grain products and changes in weight and development of obesity
929 among middle-aged women. *The American journal of clinical nutrition*
930 **78**, 920–927 (2003).
- 931 70. Park, Y., Brinton, L. A., Subar, A. F., Hollenbeck, A. & Schatzkin, A.
932 Dietary fiber intake and risk of breast cancer in postmenopausal
933 women: the National Institutes of Health-AARP Diet and Health
934 Study. *The American journal of clinical nutrition* **90**, 664–671 (2009).
- 935 71. Pereira, M. A. *et al.* Dietary fiber and risk of coronary heart disease: a
936 pooled analysis of cohort studies. *Archives of internal medicine* **164**,
937 370–376 (2004).
- 938 72. Post, R. E., Mainous, A. G., King, D. E. & Simpson, K. N. Dietary fiber
939 for the treatment of type 2 diabetes mellitus: a meta-analysis. *The
940 Journal of the American Board of Family Medicine* **25**, 16–23 (2012).
- 941 73. Moran, P. *et al.* Personality disorder and cardiovascular disease:
942 results from a national household survey. *J Clin Psychiatry* **68**, 69–74
943 (2007).
- 944 74. Fairburn, C. G. *Cognitive Behavior Therapy and Eating Disorders*.
945 (Guilford Press, 2008).
- 946 75. Bozzatello, P., Rocca, P. & Bellino, S. Combination of omega-3 fatty
947 acids and valproic acid in treatment of borderline personality

- 948 disorder: A follow-up study. *Clinical drug investigation* **38**, 367-372
949 (2018).
- 950 76. Mohseni, H. *et al.* The relationship between history of dietary
951 nutrients intakes and incidence of aggressive behavior in adolescent
952 girls: A case-control study. *Clinical nutrition ESPEN* **43**, 200-205
953 (2021).
- 954 77. Rogosch, F. A. & Cicchetti, D. Child maltreatment, attention
955 networks, and potential precursors to borderline personality disorder.
956 *Development and psychopathology* **17**, 1071-1089 (2005).
- 957 78. Livialle, M., Denis, I., Guesnet, P. & Vancassel, S. Involvement of
958 omega-3 fatty acids in emotional responses and hyperactive
959 symptoms. *The Journal of Nutritional Biochemistry* **21**, 899-905
960 (2010).
- 961 79. Sinclair, A., Begg, D., Mathai, M. & Weisinger, R. Omega 3 fatty acids
962 and the brain: review of studies in depression. (2007).
- 963 80. Yin, W. *et al.* Mediterranean diet and depression: a population-based
964 cohort study. *International Journal of Behavioral Nutrition and*
965 *Physical Activity* **18**, 1-10 (2021).
- 966 81. Martínez-González, M. A. *et al.* Benefits of the Mediterranean diet:
967 insights from the PREDIMED study. *Progress in cardiovascular*
968 *diseases* **58**, 50-60 (2015).
- 969 82. Kim, S.-Y. *et al.* Physical activity and the prevention of depression: A
970 cohort study. *General hospital psychiatry* **60**, 90-97 (2019).

- 971 83. Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic
972 physiological signalling agents. *Nature reviews Molecular cell biology*
973 **21**, 363-383 (2020).
- 974 84. Lee, R. J., Gozal, D., Coccato, E. F. & Fanning, J. Narcissistic and
975 borderline personality disorders: Relationship with oxidative stress.
976 *Journal of Personality Disorders* **34**, 6-24 (2020).
- 977 85. Tolkien, K., Bradburn, S. & Murgatroyd, C. An anti-inflammatory diet
978 as a potential intervention for depressive disorders: A systematic
979 review and meta-analysis. *Clinical nutrition* **38**, 2045-2052 (2019).
- 980 86. Maine, M., McGilley, B. H. & Bunnell, D. *Treatment of Eating
981 Disorders: Bridging the Research-Practice Gap*. (Academic Press,
982 2010).
- 983 87. Caspar-Bauguil, S. *et al.* Anorexia nervosa patients display a deficit in
984 membrane long chain poly-unsaturated fatty acids. *Clinical Nutrition*
985 **31**, 386-390 (2012).
- 986 88. Swenne, I. & Rosling, A. Omega-3 essential fatty acid status is
987 improved during nutritional rehabilitation of adolescent girls with
988 eating disorders and weight loss. *Acta Paediatrica* **101**, 858-861
989 (2012).
- 990 89. Ayton, A. K., Azaz, A. & Horrobin, D. F. A pilot open case series of
991 ethyl-EPA supplementation in the treatment of anorexia nervosa.
992 *Prostaglandins, leukotrienes and essential fatty acids* **71**, 205-209
993 (2004).

- 994 90. Barbarich, N. C. *et al.* Use of nutritional supplements to increase the
995 efficacy of fluoxetine in the treatment of anorexia nervosa.
996 *International Journal of Eating Disorders* **35**, 10-15 (2004).
- 997 91. Satogami, K. *et al.* Relationship between polyunsaturated fatty acid
998 and eating disorders: Systematic review and meta-analysis.
999 *Prostaglandins, Leukotrienes and Essential Fatty Acids* **142**, 11-19
1000 (2019).
- 1001 92. Harrison, A., Sullivan, S., Tchanturia, K. & Treasure, J. Emotional
1002 functioning in eating disorders: attentional bias, emotion recognition
1003 and emotion regulation. *Psychological medicine* **40**, 1887-1897
1004 (2010).
- 1005 93. Petruso, F., Giff, A. E., Milano, B. A., De Rossi, M. M. & Saccaro, L. F.
1006 Inflammation and emotional regulation: a narrative review of
1007 evidence and mechanisms in emotional dysregulation disorders.
1008 (2023).
- 1009 94. Ruiz-Guerrero, F. *et al.* Oxidative stress and inflammatory pathways
1010 in female eating disorders and borderline personality disorders with
1011 emotional dysregulation as linking factors with impulsivity and
1012 trauma. *Psychoneuroendocrinology* **158**, 106383 (2023).
- 1013 95. Zitron-Emanuel, N., Ganel, T., Albini, E., Abbate-Daga, G. & Marzola,
1014 E. The perception of food size and food shape in anorexia nervosa.
1015 *Appetite* **169**, 105858 (2022).
- 1016 96. Cui, Q. *et al.* Validity of the food frequency questionnaire for adults in
1017 nutritional epidemiological studies: a systematic review and meta-

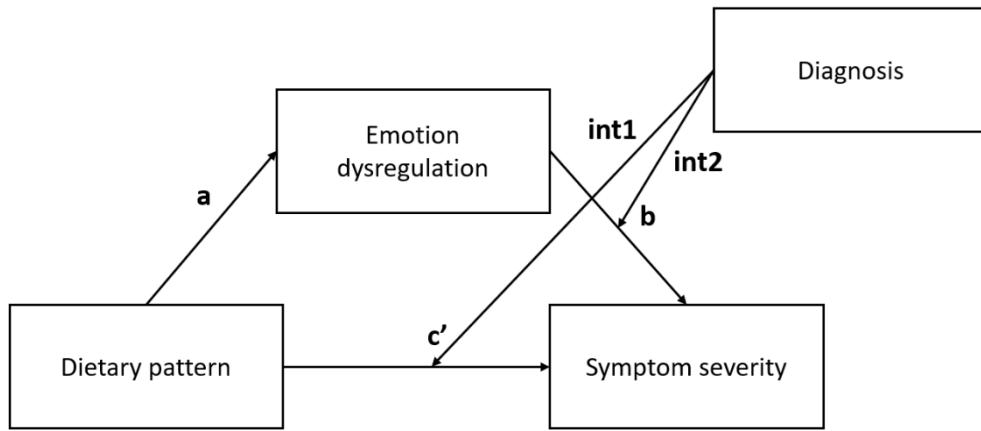

- 1018 analysis. *Critical reviews in food science and nutrition* **63**, 1670-1688
1019 (2023).
- 1020 97. He, F. J., Tan, M., Ma, Y. & MacGregor, G. A. Salt reduction to
1021 prevent hypertension and cardiovascular disease: JACC state-of-the-
1022 art review. *Journal of the American College of Cardiology* **75**, 632-
1023 647 (2020).
- 1024 98. Puttevils, L., Vanderhasselt, M. & Vervaet, M. Investigating
1025 transdiagnostic factors in eating disorders: Does self-esteem
1026 moderate the relationship between perfectionism and eating disorder
1027 symptoms? *European Eating Disorders Review* **27**, 381-390 (2019).
- 1028 99. Custódio, I. D. D. *et al.* Prospective analysis of food consumption and
1029 nutritional status and the impact on the dietary inflammatory index in
1030 women with breast cancer during chemotherapy. *Nutrients* **11**, 2610
1031 (2019).
- 1032 100. Sun, M. *et al.* Association of ultra-processed food consumption with
1033 incident depression and anxiety: a population-based cohort study.
1034 *Food & Function* **14**, 7631-7641 (2023).
- 1035 101. Neale, E. P. & Tapsell, L. C. Perspective: the evidence-based
1036 framework in nutrition and dietetics: implementation, challenges, and
1037 future directions. *Advances in Nutrition* **10**, 1-8 (2019).

Figure 1*Mediation Models Tested in This Study*

Note. Dietary pattern meant Mediterranean diet or sources of omega-3 PUFAs. Emotion dysregulation meant the general score of the Difficulties in Emotion Regulation Scale. Symptom severity meant severity of borderline personality disorder symptoms or severity of eating disorders symptoms.

1039 **Figure 2**

1040 *Moderated Mediation Models Tested in This Study*

1041

1042 *Note.* Dietary pattern meant Mediterranean diet or sources of omega-3 PUFAs. Emotion
1043 dysregulation meant the general score of the Difficulties in Emotion Regulation Scale.
1044 Symptom severity meant severity of borderline personality disorder (BPD) symptoms or
1045 severity of eating disorders (ED) symptoms. Diagnosis meant BPD or ED diagnosis.

Table 1

Group Characteristics Including Between-group Differences Based on ANOVA with Bonferroni Correction and Kruskal-Wallis test with Dunn-Bonferroni Post-hoc Test

Variable	BPD (n = 40)		BPD+ED (n = 37)		ED (n = 22)		HC (n = 37)		For H	η^2	Post hoc
	<i>M</i>	<i>SD</i>	<i>M</i>	<i>SD</i>	<i>M</i>	<i>SD</i>	<i>M</i>	<i>SD</i>			
Age	26.27	7.37	24.03	5.61	28.45	7.31	27.35	6.10	<i>F</i> = 2.58	.06	ns
BMI	26.29	6.05	23.69	8.01	21.37	7.69	21.24	2.24	<i>H</i> = 23.24***	.15	BPD > ED, HC, BPD+ED
WHR	0.78	0.06	0.77	0.06	0.76	0.05	0.74	0.04	<i>H</i> = 14.02**	.08	BPD > HC, ED, BPD+ED
Heart rate	84.20	11.64	76.07	9.82	72.36	11.02	76.32	9.89	<i>F</i> = 7.35***	.14	BPD > BPD+ED, HC
Systolic blood pressure	118.93	13.56	112.96	13.88	112.75	14.13	114.57	8.89	<i>F</i> = 1.84	.04	ns
Diastolic blood pressure	71.09	10.47	70.00	11.82	70.04	10.49	69.68	8.62	<i>F</i> = 0.13	.003	ns
Pulse pressure	47.84	9.06	42.96	6.18	42.70	5.25	44.89	4.32	<i>F</i> = 4.45**	.09	BPD > BPD+ED

Note. BPD = women diagnosed with borderline personality disorder; BPD+ED = women diagnosed with comorbid borderline personality disorder and eating disorders; ED = women diagnosed with eating disorders; HC = healthy controls; BMI = body mass index; WHR = waist-hip ratio.

** $p < .01$. *** $p < .001$. ns = not statistically significant.

Table 2

Between-group Differences in Symptoms Severity and Emotion Dysregulation Based on ANOVA with Bonferroni Correction and Kruskal-Wallis test with Dunn-Bonferroni Post-hoc Test

Variable	BPD (n = 40)			BPD+ED (n = 37)			ED (n = 22)			HC (n = 37)			For H	η^2	Post hoc
	M	SD	Mdn	M	SD	Mdn	M	SD	Mdn	M	SD	Mdn			
BPD: Total score	128.6	31.2	129.0	136.9	28.8	139.0	95.6	26.5	96.5	64.4	13.7	60.0	H = 81.75***	.60	BPD, BPD+ED > ED > HC
BPD: Impulsivity	14.7	5.3	13.5	16.9	5.1	17.0	12.9	3.5	11.5	10.2	1.6	10.0	H = 49.89***	.36	BPD, BPD+ED, ED > HC; BPD+ED > ED
BPD: Anger	9.1	3.8	9.0	9.9	3.6	10.0	6.6	2.7	6.0	5.2	1.0	5.0	H = 48.59***	.35	BPD, BPD+ED > ED, HC
EAT-26	12.70	11.79	10.0	36.43	17.79	42.0	33.73	15.89	36.5	4.16	4.06	3.0	H = 74.32***	.53	BPD+ED, ED > HC, BPD
HADS: Anxiety	15.1	4.4	15.5	15.1	4.4	15.0	12.5	5.1	14.0	6.5	3.2	6.0	F = 34.98***	.45	BPD, BPD+ED, ED > HC
HADS: Depression	11.6	5.0	11.0	10.1	5.3	10.0	8.7	4.7	9.0	2.4	2.1	2.0	H = 59.24***	.43	BPD, BPD+ED, ED > HC
DERS	123.40	21.69	125.0	130.30	17.98	131.0	109.23	24.29	108.5	76.65	19.73	75.0	F = 49.61***	.53	BPD, BPD+ED, ED > HC; BPD+ED > ED

Note. BPD = women diagnosed with borderline personality disorder; BPD+ED = women diagnosed with comorbid borderline personality disorder and eating disorders; ED = women diagnosed with eating disorders; HC = healthy controls. DERS = total score of the Difficulties in Emotion Regulation Scale. EAT-26 = total score of the Eating Attitudes Test. BPD = the Borderline Personality Disorder Checklist. HADS = the Hospital Anxiety and Depression Scale.

*** $p < .001$.

ARTICLE IN PRESS

Table 3

Between-group Differences in Consumption Frequency (Times/Day) Based on ANOVA with Bonferroni Correction and Kruskal-Wallis test with Dunn-Bonferroni Post-hoc Test

Food group	BPD (n = 40)			BPD+ED (n = 37)			ED (n = 22)			HC (n = 37)			For H	η^2	Post hoc
	<i>M</i>	<i>SD</i>	<i>Mdn</i>	<i>M</i>	<i>SD</i>	<i>Mdn</i>	<i>M</i>	<i>SD</i>	<i>Mdn</i>	<i>M</i>	<i>SD</i>	<i>Mdn</i>			
Sugar, sweets, and snacks	1.8	1.4	1.3	1.8	1.8	1.6	1.4	1.5	1.0	1.4	1.4	0.9	$H = 2.42$.004	ns
Milk, fermented milk	1.0	0.8	0.8	1.0	1.0	0.7	1.2	1.0	1.1	1.1	0.7	1.1	$F = 0.45$.01	ns
beverages, and cottage cheese															
Sweetened dairy products	0.4	0.6	0.1	0.4	0.7	0.1	0.4	0.5	0.1	0.2	0.3	0.1	$H = 2.30$.005	ns
Cheese	0.3	0.3	0.1	0.3	0.5	0.1	0.3	0.3	0.1	0.5	0.4	0.6	$H = 13.67^{**}$.08	BPD+ED. ED < HC
Eggs and egg-based dishes	0.3	0.3	0.1	0.2	0.3	0.1	0.2	0.3	0.1	0.5	0.3	0.6	$F = 5.16^{**}$.11	
Breakfast cereals	0.3	0.4	0.1	0.3	0.4	0.1	0.2	0.3	0.1	0.1	0.3	0	$H = 2.24$.005	ns
Whole grain cereal products	0.7	0.7	0.6	0.9	0.9	0.7	1.0	0.9	0.8	1.0	0.6	1.1	$F = 1.10$.02	ns
Refined cereal products	0.8	0.6	0.7	0.7	0.7	0.7	0.8	0.8	0.6	0.7	0.5	0.7	$F = 0.14$.003	ns
Butter and cream	0.7	0.6	0.6	0.4	0.6	0.1	0.5	0.5	0.1	0.5	0.6	0.6	$H = 13.95^{**}$.08	BPD+ED < BPD
Other animal fats	0.02	0.0	0	0.0	0.2	0	0.0	0.0	0	0.00	0.0	0	$H = 2.06$.007	
	9		3		1	2		2	1						
Vegetable fats	0.4	0.3	0.1	0.3	0.4	0.1	0.3	0.4	0.1	0.8	0.5	0.6	$H = 24.04^{***}$.16	BPD. BPD+ED. ED < HC
Margarine, mayonnaise, and dressings	0.3	0.4	0.1	0.2	0.4	0.03	0.2	0.5	0.02	0.2	0.3	0.1	$H = 3.86$.007	
Fruits	0.7	0.6	0.6	0.9	0.7	0.6	1.0	0.6	0.8	1.1	0.7	1.0	$H = 8.35^{*}$.04	BPD < HC
Vegetables (excluding potatoes)	0.9	0.7	1.0	1.0	0.8	1.0	1.1	0.7	1.0	1.3	0.6	1.0	$F = 2.11$.05	
Dried and processed legumes	0.1	0.2	0.03	0.3	0.4	0.1	0.2	0.4	0.1	0.3	0.3	0.1	$H = 9.19^{*}$.05	BPD < HC
Potatoes	0.3	0.3	0.1	0.3	0.3	0.3	0.3	0.4	0.1	0.2	0.2	0.1	$H = 0.66$.02	
Nuts and seeds	0.3	0.4	0.2	0.5	0.7	0.1	0.6	0.9	0.2	0.7	0.5	0.7	$H = 11.82^{**}$.07	BPD. BPD+ED < HC
Processed meat products	0.5	0.6	0.2	0.5	1.2	0	0.3	0.7	0	0.5	0.6	0.2	$H = 10.09^{*}$.05	
Red meat and game	0.2	0.4	0.03	0.2	0.7	0	0.0	0.0	0	0.2	0.2	0.1	$H = 19.23^{***}$.12	BPD+ED. ED < HC

Food group	BPD (n = 40)			BPD+ED (n = 37)			ED (n = 22)			HC (n = 37)			For H	η^2	Post hoc
	<i>M</i>	<i>SD</i>	<i>Mdn</i>	<i>M</i>	<i>SD</i>	<i>Mdn</i>	<i>M</i>	<i>SD</i>	<i>Mdn</i>	<i>M</i>	<i>SD</i>	<i>Mdn</i>			
White meat	0.2	0.3	0.1	0.1	0.4	0.02	0.1	0.2	0.03	0.3	0.3	0.1	$H = 10.71^*$.06	BPD+ED < HC
Fish	0.1	0.2	0.1	0.2	0.7	0.1	0.1	0.1	0.1	0.2	0.3	0.1	$H = 13.37^{**}$.08	BPD+ED < HC
Fruit and vegetable juices	0.4	0.4	0.1	0.5	1.0	0.1	0.3	0.5	0.1	0.3	0.4	0.1	$H = 4.86$.01	ns
Sugar-sweetened and energy drinks	0.5	0.7	0.1	0.5	0.7	0.1	0.3	0.4	0.04	0.1	0.4	0.03	$H = 11.50^{**}$.06	BPD > HC
Alcohol	0.3	0.4	0.1	0.2	0.5	0.1	0.1	0.2	0	0.2	0.3	0.2	$H = 19.79^{***}$.13	BPD. HC > ED; BPD+ED < HC
Sources of omega-3 PUFAs	0.8	0.5	0.8	1.0	1.4	0.4	1.0	1.2	0.6	1.7	0.9	1.7	$H = 23.99^{***}$.16	BPD < BPD+ED. ED. HC
Mediterranean diet	5.1	1.8	5.0	5.7	4.3	3.9	6.2	3.3	5.0	7.7	2.6	7.4	$H = 19.66^{***}$.13	BPD. BPD+ED < HC
Anti-Mediterranean diet	3.3	2.0	3.0	3.2	3.7	1.8	2.5	2.5	2.3	2.7	2.0	2.1	$H = 4.33$.01	ns

Note. BPD = women diagnosed with borderline personality disorder; BPD+ED = women diagnosed with comorbid borderline personality disorder and eating disorders; ED = women diagnosed with eating disorders; HC = healthy controls; PUFAs = polyunsaturated fatty acids; Anti-Mediterranean diet = total consumption frequency of products that should be consumed only occasionally in the Mediterranean diet.

* $p < .05$. ** $p < .01$. *** $p < .001$. ns = not statistically significant

Table 4

Results of Mediation and Moderated Mediation Models of Relationship Between Dietary Patterns and Symptoms of Borderline Personality Disorder

Model	Effect	B	β/R2ch	SE	t	p	BootCI/CI
A	a	-9.26	-0.33	2.25	-4.11	< .001	[-13.72; -4.81]
	b	1.01	0.77	0.08	12.69	< .001	[0.86; 1.17]
	ab	-9.38	-0.26	2.79	3.36		[-15.41; -4.46]
	c'	1.23	0.03	2.21	0.56	.578	[-3.14; 5.60]
	c	-8.15	-0.22	3.08	-2.64	.009	[-14.24; -2.05]
B	Int ₁	0.58	0.0001	4.06	0.14	.887	[-7.46; 8.61]
	Int ₂	-0.09	0.0007	0.18	-0.51	.614	[-0.45; 0.27]
C	a	-2.50	-0.27	0.77	-3.46	.001	[-4.01; -0.98]
	b	0.97	0.73	0.08	12.48	< .001	[0.82; 1.12]
	ab	-2.42	-0.20	0.79	3.06		[-4.05; -0.98]
	c'	-0.95	-0.08	0.72	-1.32	.189	[-2.36; 0.47]
	c	-3.37	-0.28	1.01	-3.33	.001	[-5.37; -1.37]
D	Int ₁	0.27	0.0001	1.35	0.20	.840	[-2.39; 2.94]
	Int ₂	-0.08	0.0005	0.18	-0.42	.675	[-0.43; -0.28]

Note. N = 136. Model A = mediation model of the relationship between omega-3 PUFAs and BPD symptom severity. Model B = Mediation from Model A moderated by BPD diagnosis (1 = yes, 0 = no). Model C = mediation model of the relationship between Mediterranean diet and BPD symptom severity. Model D = Mediation from Model C moderated by BPD diagnosis (1 = yes, 0 = no). BootCI = 95% Bootstrap Confidence Interval with 10,000 samples. CI = confidence interval. a = effect of dietary pattern on mediator variable. b = effect of mediator on symptom severity when dietary pattern was controlled. c = total effect of dietary pattern on symptom severity. c' = direct effect of dietary pattern on symptom severity when mediator was controlled. ab = indirect effect. Int₁ = interaction between dietary pattern and moderator (BPD diagnosis). Int₂ = interaction between mediator (emotion dysregulation) and moderator (BPD diagnosis).

Table 5

Results of Mediation and Moderated Mediation Models of Relationship Between Dietary Patterns and Symptoms of Eating Disorders (EDs)

Model	Effect	B	β /R2ch	SE	t	p	BootCI/CI
E	a	-9.23	-0.33	2.26	-4.09	< 0.001	[-13.71; -4.76]
	b	0.30	0.47	0.05	6.01	< 0.001	[0.20; 0.40]
	ab	-2.75	-0.16	0.93	2.96		[-4.87; -1.23]
	c'	-2.47	-0.14	1.37	-1.80	0.074	[-5.18; 0.24]
	c	-5.22	-0.30	1.45	-3.59	< 0.001	[-8.10; -2.35]
F	Int ₁	-5.75	0.03	2.14	-2.68	0.008	[-9.98; -1.51]
	Int ₂	0.04	0.001	0.08	0.46	0.645	[-0.13; 0.21]
	c' no-ED	1.18		1.77	0.67	0.506	[-2.32; 4.68]
	c' ED	-4.57		1.21	-3.79	< 0.001	[-6.95; -2.18]
G	a	-2.49	-0.27	0.77	-3.23	0.002	[-4.01; -0.96]
	b	0.32	0.50	0.05	6.51	< 0.001	[0.23; 0.42]
	ab	-0.79	-0.14	0.28	-2.82		[-1.42; -0.30]
	c'	-0.29	-0.05	0.45	-0.63	0.527	[-1.18; 0.61]
	c	-1.08	-0.18	0.50	-2.17	0.032	[-2.07; -0.10]
H	Int ₁	-0.65	0.003	0.72	-0.89	0.374	[-2.08; 0.79]
	Int ₂	0.10	0.004	0.09	1.11	0.270	[-0.08; 0.27]

Note. N = 136. Model E = mediation model of the relationship between omega-3 PUFAs and EDs symptom severity. Model F = Mediation from Model E moderated by EDs diagnosis (1 = yes, 0 = no). Model G = mediation model of the relationship between Mediterranean diet and EDs symptom severity. Model H = Mediation from Model G moderated by EDs diagnosis (1 = yes, 0 = no). BootCI = 95% Bootstrap Confidence Interval with 10,000 samples. CI = confidence interval. a = effect of dietary pattern on mediator variable. b = effect of mediator on symptom severity when dietary pattern was controlled. c = total effect of dietary pattern on symptom severity. c' = direct effect of dietary pattern on symptom severity when mediator was controlled. ab = indirect effect. Int₁ = interaction between dietary pattern and moderator (EDs diagnosis). Int₂ =

interaction between mediator (emotion dysregulation) and moderator (EDs diagnosis).

No-ED = women without EDs

diagnosis. ED = women with EDs diagnosis