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Abstract

Steel is an indispensable material in modern industry, and its surface quality directly
affects the performance and service life of products. To address problems of
insufficient feature extraction capability, weak detection of small defects, and
blurred target contours that lead to degraded edge information in steel surface
defect detection, this paper proposes a novel edge-enhanced dual-branch steel
surface defect recognition model, DEENet. First, a dual-encoder module based on
CNN and Transformer is designed to extract image features and enhance the feature
extraction capacity of the backbone network. Second, a Dual Channel Fusion module
is introduced to perform cross-enhancement between the local features captured by
the CNN and the global semantic features modeled by the Transformer, achieving
feature complementarity and improving the detection accuracy for small defects.
Finally, an edge enhancement module, C2f EEM, is designed to highlight gradient
differences between defective and normal regions through differential operations,
thereby strengthening contour information and improving the model’s sensitivity to
defect edges. Experimental results on the NEU-DET dataset show that, compared
with other algorithms, DEENet achieves a superior mean Average Precision (mAP)
of 81.4%, enabling more accurate detection of steel surface defects and providing
valuable reference for defect inspection in real-world production scenarios.

Keywords: DEENet; dual-encoder; CNN-Transformer backbone; edge-
enhancement; industrial inspection

Introduction

Steel is an indispensable foundational material in modern industry and has a major
impact on the manufacture and safety of a wide range of industrial products. During
steel production, surface defects can be introduced by fluctuations in process
conditions, equipment wear, and variations in raw-material quality!. As illustrated
in Fig. 1, typical defect categories include rolled-in scale (RS), patches (Pa), crazing
(Cr), pitted surface (PS), inclusion (In), and scratches (Sc). These defects not only
degrade the performance and service life of steel but also pose serious safety



hazards for subsequent processing and use23. Consequently, surface-defect
inspection is critical for ensuring product quality in steel manufacturing*. With rapid
advances in computer vision and deep learning, image-based methods for steel
surface defect detection have been extensively studied and applied®. Traditional
approaches®8 rely primarily on manual inspection or simple image-processing
techniques, which suffer from slow throughput, limited accuracy, and substantial
human bias. By contrast, deep learning object detection algorithms can
automatically learn and extract discriminative features from images, enabling
efficient and accurate detection of steel surface defects.

Among object-detection algorithms, the YOLO (You Only Look Once) family%1! has
garnered wide attention for its eificiency and accuracy. By predicting the locations
and categories of all obiects in a single forward pass, YOLO achieves end-to-end
detection. However, because defect morphology (shape, size, texture) varies widely
and industrial backgrounds are complex and highly variable, the original YOLO
variants!2-14 struggle to robustly detect tiny and low-contrast defects and to maintain
precise localization under cluttered backgrounds in steel surface-defect detection.
It is therefore necessary to tailor YOLO-based methods with stronger multi-scale
feature extraction, small-object sensitivity, and edge-aware representations to the
specific requirements of this task. Lu et al.1®> proposed an improved YOLOv5s-based
model that incorporates the ULSAM attention mechanism to enhance contextual
feature fusion and the extraction of small targets, but the resulting detection
accuracy remained relatively low, especially for small and densely distributed
defects. Lv et al.16 developed an enhanced YOLOv7 by adopting the lightweight
CARAFE upsampling operator, an integrated cascade attention mechanism, and a
decoupled head, effectively improving overall accuracy and speed; however, its
performance on challenging defect categories and complex backgrounds still fell
short of industrial requirements. Building on YOLOv8s, Zhang et al.17 introduced a
C2f-Triplet module and the CARAFE upsampling operator to boost accuracy;
nevertheless, performance on small targets remained suboptimal. Zhang et al.l8
further increased the model’s attention to small-defect features through multi-scale
parallel processing and fusion of shallow and deep features, yet their approach still
exhibited weakened edge representations and missed detections under severe



background interference. Overall, these YOLO-based improvements partially
alleviate the limitations of the original series but do not fully resolve the combined
challenges of multi-scale feature extraction, robust detection of small defects, and
edge-preserving localization in real industrial scenarios.

Despite advances in both traditional and contemporary techniques for steel
surface defect detection, persistent bottlenecks remain, as existing methods still
struggle to learn discriminative features under complex backgrounds, to reliably
detect tiny or densely distributed defects, and to accurately localize local structures
and defect edges, which in turn limits both detection accuracy and inspection
efficiency in real industrial settings. A deeper analysis reveals three key issues: (1)
Traditional methods exhibit limitations in feature extraction. They struggle to
simultaneously capture fine-grained local details and broader global context, so
detection performance degrades when confronted with defects of diverse shapes
and scales. (2) Many existing models perform inadequately on small-object
detection. They have difficulty reliably distinguishing defects that are very small or
densely distributed, which constrains both overall accuracy and robustness. (3)
Current approaches demonstrate weak sensitivity to edge information along object
contours. The boundaries between defective and normal regions are often indistinct,
leading to attenuated edge features and ultimately hindering precise defect
identification.

To overcome the aforementioned limitations, we propose DEENet, a novel detector
for steel surface defects. Extensive experiments demonstrate that DEENet
substantially enhances feature representation under complex backgrounds,
improves detection of small and densely distribuied defects, and strengthens edge
localization, thereby increasing detection accuracy while maintaining low
computational cost, providing a viable basis for future deployment in industrial
production lines.

The primary contributions of this study are as follows:

(1) We design a backbone integrating a convolutional encoder and a Transformer
encoder to strengthen feature extraction. The dual-path structure captures local
details and global context, improving defect representation across different shapes,
scales and textures

(2) We introduce a Dual-Channel Fusion module that cross-enhances local CNN
features with global Transformer semantics. This fusion improves the precision and
robustness of small-defect detection, especially in dense or cluttered scenes.

(3) We develop an edge-enhancement module, C2f EEM, which fuses boundary
cues with deep semantics to mitigate contour-detail loss. By strengthening edge
features and clarifying defect boundaries, it reduces misclassification near edges.

The remainder of this paper is organized as follows. Section 2 reviews related work
on traditional steel surface inspection methods and deep learning-based object
detectors. Section 3 presents the proposed DEENet detector in detail, including its
dual-encoder backbone, Dual-Channel Fusion module, and edge-enhancement
module C2f EEM. Section 4 describes the experimental setup, datasets, evaluation
metrics, and reports extensive comparative and ablation studies that validate the
effectiveness of DEENet. Section 5 summarizes the main findings and discusses
potential directions for future industrial applications.

To maintain consistency in abbreviations and symbols, we have compiled all the
major technical abbreviations and mathematical symbols in Table 1, and briefly
explained their roles in the DEENet architecture.

Table 1. Abbreviations and Symbols



Related works
Two-Stage Methods

In recent years, because traditional strip steel surface defect detection methods
suffer from poor generalization ability, low production efficiency, and unsatisfactory
product quality, deep learning-based suiface defect recognition for strip steel has
gradually become a research hcotspot. Among deep learning approaches for defect
detection, object detection algorithms have attracted wide attention, and
researchers have been committed to developing more accurate and efficient
algorithms to improve model accuracy and generalization. Deep learning-based
object detection algorithms can be mainly divided into two categories: two-stage
methods and single-stage methods. Common two-stage methods include Faster R-
CNN19, R-FCN29, and Mask R-CNNZ2!, For example, Xia et al.22 proposed four
improvements based on the Faster R-CNN algorithm: a bilateral filtering algorithm,
a feature pyramid network built on ResNet-50, an ROI Align operation, and the K-
means algorithm, which were applied to plate surface defect detection. Weng et al.23
improved the Mask R-CNN algorithm used for strip steel surface defect detection by
introducing the K-means II clustering algorithm to enhance the anchor generation
of the region proposal network (RPN), and by removing the mask branch to adjust
the network structure of Mask R-CNN, thereby improving detection accuracy and
speed. Although two-stage methods perform well in terms of detection accuracy and
generalization ability, their high computational complexity and considerable
hardware requirements create challenges. Overall, the limited real-time suitability
and high deployment cost of existing two-stage methods provide an important
motivation for the development of single-stage methods and also for the design of
our model.

Single-Stage and Self-Supervised Methods



To address these problems, single-stage methods have been proposed. Common
single-stage methods include SSD?4 and the YOLO series. For example, Liu et al.??
improved the SSD model by integrating residual networks, feature fusion, and
channel attention mechanisms, and formed the RAF-SSD network to increase
detection accuracy. Wang et al.26 designed a strip steel surface defect detection
method based on YOLOvV5, which combines multi-scale detection blocks and a spatial
attention mechanism. In addition, Song et al.2? introduced deformable convolutions,
BiFPN, and attention mechanisms based on the YOLOv8 algorithm, which

used the SimSiam self-supervised framework to pre-train on unlabeled data and then
transferred the learned representations to Faster R-CNN for defect detection.
Although this approach reduces the dependence on labeled data and improves
scalability and generalization, the computational requirements remain high and the
accuracy for some defect categories is still low. Overall, these single-stage,
attention-based and self-supervised methods improve detection accuracy and reduce
label dependence but still struggle with multi-scale features in complex backgrounds,
robustness to tiny defects and high computation, which motivates the DEENet model
in this paper to enhance feature extraction and fusion for small targets and edges
within a single-stage framework.
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scaffold for real-time steel surface analysis. Nevertheless, on steel surfaces with
diverse and fine-grained defects under cluttered backgrounds, the vanilla pipeline
shows limitations in multi-scale feature capture, sensitivity to small targets, and

different backbones and necks, and we introduce DEENet to address these gaps: a
CNN-Transformer dual-encoder extracts complementary local and global
representations; a Dual Channel Fusion (DCF) module performs cross-branch fusion
to suppress noise and enhance small-defect cues; and an edge-enhancement neck
(C2f EEM) sharpens boundary information with low overhead. The architecture is
shown in Fig. 2.
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Fig. 2. DEENet Network Architecture.
(CNN and Transformer branches), a cross-branch “ua: Channel Fusion (DCF) module, and

denotes the concatenation operation.

First, the input image is processed by the dual encoder. The convolutional branch
captures local textures and fine-grained details, whereas the ViT branch partitions
the image into 4x4 patches and models long-range dependencies to derive global
semantic representations. Second, at matched stages, features from the CNN and
ViT branches are fused by the Dual Channel Fusion (DCF) module to suppress
irrelevant noise and strengthen small-defect cues under cluttered industrial
backgrounds. Finally, we replace the backbone blocks within the C2f units of the
neck with the proposed Edge-Enhancement Module (EEM), yielding C2f EEM. This
substitution increases sensitivity to boundary cues while reducing computational
overhead, improving localization in edge-blurred scenarios and lowering both

parameter count and inference time, thereby providing an accurate and deployable
solution for industrial steel surface defect detection. H
Table 2. Tensor data streams at different stages of the DEENet
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Dual Encoder Based on CNN and Transformer

DEENet adopts a dual-encoder design, in which the CNN branch is implemented
with ResNet-style building blocks, while the Transformer branch is realized using a
Vision Transformer (ViT). Conventional convolution operations, constrained by fixed
kernel shapes and a static parameterization, often struggle to effectively capture the
irregular morphology and heterogeneous textures of real-world defects.

To mitigate this limitation, we introduce an Adaptive-Kernel Convolution
(AKConv)3?, which leverages flexible sampling patterns and learnable kernel
parameterization to better adapt to the characteristics of sieel-surface defects. By
dynamically aligning the receptive field with local structures, AKConv extracts more
discriminative features than fixed-kernel counteiparts, thereby strengthening the
representational capacity of the CNN branch. The overall architecture of AKConv is
illustrated in Fig. 3.
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Dual Channel Fusion Module

As shown in Fig. 4, we propose a Dual-Channel Fusion (DPCF) module to integrate
the features extracted by the CNN and Transformer braiches, thereby achieving
complementary enhancement between local details and global semantics. Tailored
to the small-object challenge in steel surface detect detection, DCF employs a
dynamic feature-integration mechanism that strengthens the model’s sensitivity to
minute defects while suppressing interference from cluttered industrial
backgrounds. Operationally, features from the two encoders at corresponding
hierarchy levels are first aligned in resolution, then undergo cross-branch
interaction so that each stream is modulated by cues from the other. The resulting
representations are fused with learnable weights and refined through lightweight
normalization and residual aggregation, preserving discriminative information
without incurring substantial computational overhead. This design enhances small-
scale feature expression and improves robustness under complex textures and
illumination conditions.
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Fig. 4. Dual Channel Fusion Module Architecture. _




For the CNN-extracted feature [J, a 1x1 convolution is first applied to adjust its
channel dimension to match that of the Transformer-extracted feature []. This
operation standardizes the feature dimensionality, facilitating subsequent fusion
and preventing information loss or additional computational overhead due to
mismatched dimensions. The specific formulation is:

C; = Conviy (G (2)

Where Conv[]; ,(-) denotes the parameterized 1x1 convolution kernel, which
performs an efficient channel transformation via a learned weight matrix, thereby
preserving the CNN's local texture details. Subsequently, the adjusted CNN feature

{ , and the Transformer feature [I; are respectively fed into the Convolutional Block
Attention Module (CBAM), which applies Channel Attention followed by Spatial
Attention in a sequential manner to dynamically reweight salient regions of the
feature maps. The Channel Attention is computed as:

M.(F) = o(MLP(AvgPool(F) + MaxPool(F))) (3)

where [(-) denotes the Sigmoid activation function, MLP denotes a multilayer
perceptron, and AvgPool and MaxPool extract average- and max-pooled features,
respectively; the spatial attention is computed as:

Mc(F) = o(Convy,7([AvgPool(F);MaxPoci(F)])) (4)

The CBAM mechanism enhances the saliency of defect-relevant features while
suppressing irrelevant noise. In particular, under low-contrast steel-surface
conditions, it preferentially highlights the textural differences of small targets,
thereby improving the discriminability of the feature representation.

Next, the CBAM-processed features are fed into a multi-head cross-attention
mechanism. In the upper branch, the CNN features are used as the Query (Q) and
Value (V), and the Transformer features are used as the Key (K); in the lower branch,
the roles are reversed to realize bidirectional cross-integration. The specific
attention is computed as:

KT
AP

where [I; denotes the dimensionality of the key. The multi-head mechanism runs
multiple attention heads in parallel and concatenates their outputs to further
capture diverse dependencies. This cross-attention strategy achieves deep
complementarity between local and global features, strengthens the semantic
representation of small-scale defects, and mitigates the missed-detection issue of
traditional single-encoder models in scenes with densely distributed small targets.

Attention(Q,K,V) = Softmax -V (5)

Edge-Enhancement Module

Although the C2f module in YOLOv8 exhibits certain advantages for steel surface
defect detection—leveraging a Bottleneck structure for efficient feature aggregation
and residual connections to preserve multi-level information—it can suffer from
missed detections or localization biases when confronting tiny cracks or defects with
blurred boundaries, where gradient cues are weak and edge information is easily



lost. The conventional C2f module is not well suited to these challenges, leading to
a noticeable decline in detection performance.

To address this issue, we design an improved C2f module, termed C2f EEM. Built
upon the original C2f, the proposed module replaces the Bottleneck block with our
Edge-Enhancement Module (EEM). By introducing a multi-scale feature extraction
mechanism, C2f EEM strengthens the network’s sensitivity to objects of varying
sizes. In conjunction with an edge-feature enhancement strategy, it effectively
mitigates localization inaccuracies and feature attenuation caused by boundary blur.
The structure of the EEM Module is shown in Fig. 5.
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In the EEM module, the input first passes through a 3x3 DWConv layer for
preliminary feature extraction; this depthwise separable convolution reduces
computational complexity while capturing local texture details. This design enables
efficient extraction of multi-scale preliminary features and avoids the excessive
computational cost of standard convolutions. The specific formulation is:

Fout = DWConvs,3(Fin) (6)

Subsequently, the features are distributed in parallel to multiple branches, namely
DWConv 5x5, DWConv 7x7, DWConv 9x9 and DWConv 11x11. These large-kernel
depthwise separable convolutions are designed to capture information under
different receptive fields. All output feature maps are then fused via a Concat
operation and a DWConv 1Xx1 to integrate features and restore the channel
dimension, followed by a DWConv 3x3 to produce the final output feature map.
Finally, an Upsample operation together with the Enhance Module restores the
feature-map resolution and enhances the extraction of edge information.

The Enhance Module comprises two edge-enhancement blocks connected in series
and uses differencing to emphasize gradient contrasts between defects and
background. The shallow feature [], is obtained by applying a 3x3 convolution

followed by a 1x1 convolution to the input feature map [ . The deep feature [, is
produced by applying an average-pooling layer (AP) and a 1x1 convolution to the
shallow feature [],. Edge enhancement is then performed separately on the shallow

feature [J, and the deep feature [J,. The resulting feature map [ is differenced with
the processed deep feature [J,{0), and the output is passed through a 1x1
convolution to yield the high-frequency feature map [0(0). When 0 equals [,, the
shallow edge-enhanced feature [I([,) is obtained; when [ equals [1,, the deep edge-



enhanced feature [([,) is obtained. Finally, [0(0,) and ¢(F4) are concatenated and
fused via a 1x1 depthwise convolution, and the result is added element-wise to the

input feature map U to produce the final output feature map.

F, = DWConv;x1(DWConvsx3(X
Fd = DWConlel(AP( a
$(Z) = DWConv;x1(Z - F4(
Out = X + DWConvj«;(Concat(d(F,),d(Fy4)

Experiments
Dataset and Experimental Settings

This study uses the NEU-DET dataset?? from Northeastern University’s surface-
defect database. NEU-DET comprises six typical surface defects observed on hot-
rolled steel: rolled-in scale (RS), patches (Pa), crazing (Cr), pitted surface (PS),
inclusions (In), and scratches (Sc). Each category contains 300 samples, yielding a
total of 1,800 grayscale images with an original resolution of 200x200 pixels. For
experimental purposes, the dataset was randomly split 8:2 into training and test sets,
resulting in 1,440 training images and 360 test images. All images are stored in JPG
format. NEU-DET offers sufficient sample diversity and complexity across defect
types to enable a comprehensive evaluation of stecl surface defect detection
algorithms and to support model generalization.

All experiments were conducted on a Windows 10 operating system with an Intel
Xeon Gold 5218 CPU, 64 GB RAM, and an NVIDIA GeForce RTX 3090 GPU with 24
GB memory. The implementation was based on the PyTorch 2.0.0 deep learning
framework using Python 3.8, and model training was accelerated with NVIDIA CUDA
11.1.

During training, hyperparameters were carefully configured to improve
convergence. We adopted the Adam optimizer owing to its adaptive learning-rate
properties, with an initial leaining rate of 0.003. A learning-rate decay scheme was
employed: if the validation loss did not decrease appreciably for ten consecutive
epochs, the learning rate was reduced by a factor of 0.1 to facilitate convergence
and mitigate entrapment in local minima. The mini-batch size was set to 16, and
training proceeded for 1,000 iterations. A weight-decay coefficient of 0.00036 and a
momentum parameter of 0.937 were applied. Notably, the confidence threshold for
object filtering during inference was set at 0.25, ensuring a robust balance between
detection sensitivity and accuracy. The full set of experimental parameters is
summarized in Table 3.

Table 3. Experimental parameter settings

Name Setting
Optimizer Adam
Initial Learning Rate 0.003

Batch Size 16




Name Setting

Number of Epochs 1000
Decay Rate 0.00036
Momentum Parameter 0.937

Evaluation metrics

To assess both detection accuracy and speed for strip-steel surface defect detection,

we adopt Recall (L), Precision (l), Average Precision (AP, [I4), and mean Average
Precision (mAP, [,,4), with computations given in Egs. (11) = (14).

Re_ 1P (11)
Tp + Fy
_ P
P= Tp + Fp (12)
Pp = 61 P(R)dR (13)
> Pali)
Pra = =0 (14)

In these definitions, [Ip denotes the number of true positives, [Iy the number of
false negatives, [1p the number of false positives, and [ the total number of classes.
We also report computational cost (GFLOPs), parameter count (Parameters), and
inference throughput (Frames Per Second, FPS), which respectively characterize
computational efficiency, model capacity, and processing speed.

Comparison between the Proposed Method and YOLOv8

To directly evaluate the effectiveness of the proposed approach, we conducted
experiments on the NEU-DET dataset and recorded the results of YOLOv8 and
DEENet for side-by-side comparison.

Table 4. Comparison of detection results of YOLOv8 and DEENet for each defect type

Methods Crazing Inclusion Patches Pitted Surface Rolled-in Scale Scratches
YOLOvS8 43.9 83.6 92.6 82.8 66.3 89.9
DEENet 53.5 88.3 96.8 87.3 68.8 93.7

As shown in Table 4, the DEENet algorithm achieves a significant improvement
in detection accuracy for the various defect categories. Specifically, for Crazing the
detection accuracy increases from 43.9% to 53.5%, a gain of 9.6 percentage points.
For Inclusion and Patches, the accuracies rise from 83.6% to 88.3% and from 92.6%
to 96.8%, with increases of 4.7 and 4.2 percentage points. In the remaining
categories of Pitted Surface, Rolled-in Scale and Scratches, the accuracies improve
from 82.8% to 87.3%, 66.3% to 68.8% and 89.9% to 93.7%, corresponding to gains
of 4.5, 2.5 and 3.8 percentage points. Based on the above experimental results, the
Dual Channel Fusion module, through complementary fusion of local and global



features, addresses the problem of a high miss-detection rate for Crazing caused by
the small target size and dense distribution. The advantage of the dual-encoder
structure in handling irregularly shaped defects is reflected in the Inclusion category.
C2f EEM, by using multi-scale depthwise separable convolutions and a large-kernel
design together with the differencing operation in the Enhance Module, highlights
high-frequency edge features, avoids edge weakening, and improves the detection
accuracy for Patches, Pitted Surface, Scratches, and Rolled-in Scale defects.
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Fig. 6. P-R curves before and after improvement of YOLOv8 algorithm

As shown in Fig. 6, the precision-recall (P-R) curves for YOLOv8 and DEENet
further substantiate these improvements. In the high-recall regime, DEENet s
precision curve consistently lies above that of YOLOvVS, indicating a substantial
reduction in false positives while maintaining comprehensive recall. The advantage
is especially pronounced when recall exceeds 0.8, demonstrating the practicality
and reliability of DEENet for industrial applications.
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Model Performance Comparison

To evaluate the performance of different modeis for steel surface defect detection, we
experimented with several representative algorithms; the comparative results are
summarized in Table 5. Relative to the two-stage Faster R-CNN and the single-stage
SSD, DEENet improves mAP by 20.8% and 9.0%, and increases recall by 9.3% and 0.8%,
respectively. While maintaining only §.2M parameters and 12.4G FLOPs, DEENet also
surpasses the YOLO family baselines and RT-DETR in both mAP and recall. Under
identical hyperparameter settings, our method yields mAP gains of 11.1% over YOLOVS5s,
7.7% over YOLOV9, 9.6% over YOLOv10, and 7.6% over YOLOv11. Moreover, despite its
low computational cost, DEENet achieves notably higher precision and F1 score than
the YOLOvV10 baseline. DEENet also exhibits markedly lower computational complexity
than RT-DETR, with FLOPs as low as 12.4G.



Table 5. Comparative experimental results of models on the NEU-DET dataset

Methods mAP/% Precision/% Recall/% F1l-score/% Param/M FLOPs/G
Faster RCNN 60. 6 77.9 76.3 78.9 60. 1 246.4
SSD 72. 4 79.3 84.8 82.0 25.0 64.2
YOLOv5s 70. 3 78.5 78.5 81.2 7.2 27.7
YOLOV9 73.7 79.6 79.9 80.8 12.1 32.9
YOLOv10 71.8 80.3 81.4 81.3 8.0 40.6
YOLOv11 73.8 79.9 79.8 80.0 9.4 42.8
RT-DETR*! 75.0 79.3 81.4 79.9 42 136
MSD-YOLO#2 80.9 83.2 82.4 84.9 35.3 54.2
MD-YOLO%3 78.2 82.6 81.6 82.1 9.0 14.1
DEENet 81.4 84.8 85.6 85.7 8.2 12.4

As shown in Table 5, on the NEU-DET dataset the DEENet model performs well
on multiple defect categories, especially achieving detection accuracies of 56.5%
and 96.8% on the Cr and Pa categories, which are significantly higher than the 37.9%
and 91.5% of Faster R-CNN, the 38.7% and 88.5% of SSD, and the corresponding
values of the YOLO-series baseline models. Compared with YOLOv5s, DEENet
improves the Cr, In, Pa, Ps and Sc categories by 10.5%, 6.3%, 5.8%, 3.3% and 3.9%,
respectively; compared with YOLOvV10, its increases on Cr, In, Pa and Ps reach 7.3%,
6.7%, 3.4% and 15.2%. Although it is slightly lower than some models on the Rs
category, the overall performance is balanced, and it shows advantages especially
on small targets and defects with blurred edges (such as Cr and Ps). In addition,
compared with advanced models such as MSD-YOLO and MD-YOLO, DEENet also
achieves better results on In, Pa, Ps and Sc, with a higher average accuracy. These
results show that, by using the dual-encoder structure and the edge-enhancement
module, DEENet effectively improves the robustness of multi-scale and small-target
detection, and is suitable for high-precision defect recognition in complex industrial
scenarios.

Table 6. Comparative experimental results of models for each defect type on the NEU-DET

dataset
Methods Cr In Pa Ps Rs Sc
Faster RCNN 37.9 77.8 91.5 80.4 60.2 89.6
SSD 38.7 76.8 88.5 78.0 65.4 77.4
YOLOv5s 46.0 82.0 91.0 84.0 71.4 89.8

YOLOV9 46.2 80.1 95.4 80.0 72.2 91.2



Methods Cr In Pa Ps Rs Sc

YOLOV10 49.2 81.6 93.4 72.1 68.3 85.3
YOLOv11 44.4 81.7 94.8 82.1 70.5 93.6
RT-DETR4! 45.5 85.7 91.8 83.7 67.8 91.3
MSD-YOLO%2 56.3 84.3 92.0 83.1 72.3 97.7
MD-YOLO43 46.7 81.4 91.3 85.1 72.6 92.0
DEENet 56.5 88.3 96.8 8713 68.8 93.7
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To verify the effectiveness of the improved YOLOv8 CCD algorithm, five groups of
comparative ablation experiments were carried out using YOLOvS8 as the baseline
model. The experimental results are shown in Table 7, where “v" indicates that the
module is used and “-” indicates that the module is not used.

Table 7-_?

Methods Dual-Branch Backbone DCF C2f EEM mAP (%) FLOPs/G Param/M
1 v - - 78.6 8.0 10.3
2 - - v 78.5 8.1 11.5
3 v v - 80.5 8.2 11.2
4 4 - v 80.0 8.1 11.5
5 v v v 81.4 8.2 12.4

As shown in Table 7, Method 1 represents the model with the Dual-Branch
Backbone module introduced, with an mAP of 78.6%, FLOPs of 8.0G, and Param of



10.3M. Method 2 uses only the C2f EEM module, making the mAP reach 78.5%, with
FLOPs and Param slightly increased, which proves the effectiveness of the C2f EEM
module in the steel surface defect detection task. Method 3 combines the Dual-
Branch Backbone and DCF modules; compared with Method 1, the mAP increases
by 1.9%, and FLOPs and Param increase slightly, indicating that the DCF module
improves the accuracy and efficiency of defect target detection. Method 4 adopts
the Dual-Branch Backbone and C2f EEM modules, achieving an mAP of 80.0%, with
FLOPs and Param basically stable, which shows that this combination has a certain
effectiveness in improving detection accuracy. Method 5, namely the proposed
DEENet algorithm, combines the Dual-Branch Backbone, DCF, and C2f EEM
modules, increasing the mAP from 76.6% of the baseline model to 81.4%, an increase
of 4.8%, with FLOPs of 8.2G, although Param increases slightly. Overall, compared
with the original YOLOv8 algorithm, the proposed DEENet algorithm for steel
surface defect detection maintains high detection accuracy while reducing
computational load, and has practical value in real-world steel surface defect
detection applications.

Comparative Study of Activation Functions

To investigate the impact of different activation functions on the performance of
DEENet, five activations, namely ReLU, SiLU, Leaky ReLlJ, PReLU, and Mish, were
compared. For experimental purposes, the Mish activation in DEENet was replaced
by ReLU, SiLU, Leaky ReLU, and PReLU. The comperative results are shown in Fig.
8.
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Fig. 8. Comparative experimental results of different activation functions

In Fig. 8, the computational complexity and parameter counts remain identical
across all five activations, indicating that changing the activation does not materially
affect these measures. Using ReLU yields an mAP of 77% and FPS of 79. SiLU and
Leaky ReLU provide moderate improvements over ReLU, reaching 78% and 79%
mAP with 94 and 84 FPS, respectively. PReLU outperforms SiL.U, ReLU, and Leaky
RelU, increasing mAP by 2, 3, and 1 percentage points, with FPS of 99. Compared
with the other four activations, Mish delivers the best overall performance,
achieving an mAP of 81% and the highest FPS of 104. Overall, Mish yields the
highest mAP and FPS among the tested activations, providing the best trade-off



between detection accuracy and inference speed without increasing model
complexity. This advantage makes DEENet more suitable for accurate and efficient
steel surface defect detection in practical industrial scenarios, so Mish is adopted as
the activation function in the final model.

Further analysis

To visually assess DEENet’s performance gains and convergence behavior relative
to YOLOV10 during training, we compare the evolution of precision, recall, mAP, and
loss curves, thereby verifying the effectiveness of the proposed optimizations.
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Comparison of the training process between YOLOv10 and DEENet

In the precision curve, the
precision of YOLOvV10 increases slowly from about 0.0 at the beginning, with obvious
fluctuations; in contrast, the precision curve of DEENet starts at a similar level but
rises faster and with smaller fluctuations, indicating that the improved modules
enhance the stability of feature extraction and improve the model’s ability to
accurately recognize defects. The recall curves show a similar trend: the recall of
YOLOV10 increases gradually, while DEENet shows a smoother increase, especially
around epochs 40-60, reflecting that the dual-channel fusion improves the recall of
small and multi-scale defects. The mAP curves further confirm this advantage and
highlight the role of the edge-enhancement module in improving the overall
detection accuracy. The loss curves show that both models decrease from their
initial values, but DEENet drops faster, indicating that the improved model
converges more quickly and that the training process is more efficient.

To enable a direct comparison between DEENet and YOLOv10, we randomly
sampled images from the dataset for defect detection; representative results are
shown in Fig. 10.
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Fig. 10. Defect detection performance of YOLOv10 algorithm before and
after improvement

For Crazing, YOLOv10 produces loose detection regions that include extraneous
background, whereas DEENet yields tighter boundaries with fewer false positives,
highlighting the edge-enhancement module’s precise capture of fine cracks. For
Inclusion, YOLOv10 exhibits overlapping boxes and low confidence, while DEENet
reflects the complementary effect of dual-chiannel fusion on multi-scale features.
Under Patches, YOLOv10 shows blurred boundaries, whereas DEENet provides
clearer delineation. Similar trends are obseived for Pitted Surface, Rolled-in Scale,
and Scratches. Overall, across all six defect categories, DEENet achieves higher
accuracy than YOLOv10, with improvements in confidence, boundary precision, and
defect coverage.

hese results substantiate the
effectiveness of the proposed modules for complex steel-surface defects and provide
more reliable visual evidence for industrial inspection.

Generalization Analysis on GC10-DET Dataset




Robustness Analysis




Fig.11. Comparison of surface defect images of strip steel after adding perturbation




Data availability

The publicly available dataset utilized in this research can be accessed via the
following link:  https://www.kaggle.com/datasets/kaustubhdikshit/neu-surface-
defect-database.
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