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Abstract
Steel is an indispensable material in modern industry, and its surface quality directly 
affects the performance and service life of products. To address problems of 
insufficient feature extraction capability, weak detection of small defects, and 
blurred target contours that lead to degraded edge information in steel surface 
defect detection, this paper proposes a novel edge-enhanced dual-branch steel 
surface defect recognition model, DEENet. First, a dual-encoder module based on 
CNN and Transformer is designed to extract image features and enhance the feature 
extraction capacity of the backbone network. Second, a Dual Channel Fusion module 
is introduced to perform cross-enhancement between the local features captured by 
the CNN and the global semantic features modeled by the Transformer, achieving 
feature complementarity and improving the detection accuracy for small defects. 
Finally, an edge enhancement module, C2f_EEM, is designed to highlight gradient 
differences between defective and normal regions through differential operations, 
thereby strengthening contour information and improving the model’s sensitivity to 
defect edges. Experimental results on the NEU-DET dataset show that, compared 
with other algorithms, DEENet achieves a superior mean Average Precision (mAP) 
of 81.4%, enabling more accurate detection of steel surface defects and providing 
valuable reference for defect inspection in real-world production scenarios.

Keywords: DEENet; dual-encoder; CNN–Transformer backbone; edge-
enhancement; industrial inspection

Introduction 
Steel is an indispensable foundational material in modern industry and has a major 
impact on the manufacture and safety of a wide range of industrial products. During 
steel production, surface defects can be introduced by fluctuations in process 
conditions, equipment wear, and variations in raw-material quality1. As illustrated 
in Fig. 1, typical defect categories include rolled-in scale (RS), patches (Pa), crazing 
(Cr), pitted surface (PS), inclusion (In), and scratches (Sc). These defects not only 
degrade the performance and service life of steel but also pose serious safety 
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hazards for subsequent processing and use2,3. Consequently, surface-defect 
inspection is critical for ensuring product quality in steel manufacturing4. With rapid 
advances in computer vision and deep learning, image-based methods for steel 
surface defect detection have been extensively studied and applied5. Traditional 
approaches6-8 rely primarily on manual inspection or simple image-processing 
techniques, which suffer from slow throughput, limited accuracy, and substantial 
human bias. By contrast, deep learning object detection algorithms can 
automatically learn and extract discriminative features from images, enabling 
efficient and accurate detection of steel surface defects.

(a) RS (b) Pa (c) Cr

(d) PS (e) In (f) Sc
Fig. 1. Common types of defects on the surface of steel strip.

Among object-detection algorithms, the YOLO (You Only Look Once) family9-11 has 
garnered wide attention for its efficiency and accuracy. By predicting the locations 
and categories of all objects in a single forward pass, YOLO achieves end-to-end 
detection. However, because defect morphology (shape, size, texture) varies widely 
and industrial backgrounds are complex and highly variable, the original YOLO 
variants12–14 struggle to robustly detect tiny and low-contrast defects and to maintain 
precise localization under cluttered backgrounds in steel surface–defect detection. 
It is therefore necessary to tailor YOLO-based methods with stronger multi-scale 
feature extraction, small-object sensitivity, and edge-aware representations to the 
specific requirements of this task. Lu et al.15 proposed an improved YOLOv5s-based 
model that incorporates the ULSAM attention mechanism to enhance contextual 
feature fusion and the extraction of small targets, but the resulting detection 
accuracy remained relatively low, especially for small and densely distributed 
defects. Lv et al.16 developed an enhanced YOLOv7 by adopting the lightweight 
CARAFE upsampling operator, an integrated cascade attention mechanism, and a 
decoupled head, effectively improving overall accuracy and speed; however, its 
performance on challenging defect categories and complex backgrounds still fell 
short of industrial requirements. Building on YOLOv8s, Zhang et al.17 introduced a 
C2f-Triplet module and the CARAFE upsampling operator to boost accuracy; 
nevertheless, performance on small targets remained suboptimal. Zhang et al.18 
further increased the model’s attention to small-defect features through multi-scale 
parallel processing and fusion of shallow and deep features, yet their approach still 
exhibited weakened edge representations and missed detections under severe 
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background interference. Overall, these YOLO-based improvements partially 
alleviate the limitations of the original series but do not fully resolve the combined 
challenges of multi-scale feature extraction, robust detection of small defects, and 
edge-preserving localization in real industrial scenarios.

Despite advances in both traditional and contemporary techniques for steel 
surface defect detection, persistent bottlenecks remain, as existing methods still 
struggle to learn discriminative features under complex backgrounds, to reliably 
detect tiny or densely distributed defects, and to accurately localize local structures 
and defect edges, which in turn limits both detection accuracy and inspection 
efficiency in real industrial settings. A deeper analysis reveals three key issues: (1) 
Traditional methods exhibit limitations in feature extraction. They struggle to 
simultaneously capture fine-grained local details and broader global context, so 
detection performance degrades when confronted with defects of diverse shapes 
and scales. (2) Many existing models perform inadequately on small-object 
detection. They have difficulty reliably distinguishing defects that are very small or 
densely distributed, which constrains both overall accuracy and robustness. (3) 
Current approaches demonstrate weak sensitivity to edge information along object 
contours. The boundaries between defective and normal regions are often indistinct, 
leading to attenuated edge features and ultimately hindering precise defect 
identification.

To overcome the aforementioned limitations, we propose DEENet, a novel detector 
for steel surface defects. Extensive experiments demonstrate that DEENet 
substantially enhances feature representation under complex backgrounds, 
improves detection of small and densely distributed defects, and strengthens edge 
localization, thereby increasing detection accuracy while maintaining low 
computational cost, providing a viable basis for future deployment in industrial 
production lines.

The primary contributions of this study are as follows:
(1) We design a backbone integrating a convolutional encoder and a Transformer 

encoder to strengthen feature extraction. The dual-path structure captures local 
details and global context, improving defect representation across different shapes, 
scales and textures.

(2) We introduce a Dual-Channel Fusion module that cross-enhances local CNN 
features with global Transformer semantics. This fusion improves the precision and 
robustness of small-defect detection, especially in dense or cluttered scenes.

(3) We develop an edge-enhancement module, C2f_EEM, which fuses boundary 
cues with deep semantics to mitigate contour-detail loss. By strengthening edge 
features and clarifying defect boundaries, it reduces misclassification near edges.

The remainder of this paper is organized as follows. Section 2 reviews related work 
on traditional steel surface inspection methods and deep learning–based object 
detectors. Section 3 presents the proposed DEENet detector in detail, including its 
dual-encoder backbone, Dual-Channel Fusion module, and edge-enhancement 
module C2f_EEM. Section 4 describes the experimental setup, datasets, evaluation 
metrics, and reports extensive comparative and ablation studies that validate the 
effectiveness of DEENet. Section 5 summarizes the main findings and discusses 
potential directions for future industrial applications.

To maintain consistency in abbreviations and symbols, we have compiled all the 
major technical abbreviations and mathematical symbols in Table 1, and briefly 
explained their roles in the DEENet architecture.

Table 1. Abbreviations and Symbols
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Symbol Explain
DEENet This paper proposes an edge enhancement CNN–Transformer dual 

encoder model.
AKConv Adaptive-Kernel Convolution

DCF Dual Channel Fusion
C2f_EEM Edge-Enhancement Module

CBAM Convolutional Block Attention Module

Model

ViT Vision Transformer
mAP mean Average Precision

F1-score Harmonic mean of precision and recall
FPS Frames Per SecondEvaluation 

indicators GFLOPs Measuring the computational complexity and resource consumption of 
the model

iC  iT These represent feature maps from the CNN branch and the 
Transformer branch, respectively.

VKQ ,, Query, Key, and Value in Attention Mechanisms
 Sigmoid activation function
aF bF These represent the shallow and deep features in the edge 

enhancement module, respectively.
)(Z High-frequency feature maps are used to extract edge information 

through differential operations.

Mathematical 
symbols

 Element addition in residual join

Related works
Two-Stage Methods

In recent years, because traditional strip steel surface defect detection methods 
suffer from poor generalization ability, low production efficiency, and unsatisfactory 
product quality, deep learning–based surface defect recognition for strip steel has 
gradually become a research hotspot. Among deep learning approaches for defect 
detection, object detection algorithms have attracted wide attention, and 
researchers have been committed to developing more accurate and efficient 
algorithms to improve model accuracy and generalization. Deep learning–based 
object detection algorithms can be mainly divided into two categories: two-stage 
methods and single-stage methods. Common two-stage methods include Faster R-
CNN19, R-FCN20, and Mask R-CNN21. For example, Xia et al.22 proposed four 
improvements based on the Faster R-CNN algorithm: a bilateral filtering algorithm, 
a feature pyramid network built on ResNet-50, an ROI Align operation, and the K-
means algorithm, which were applied to plate surface defect detection. Weng et al.23 
improved the Mask R-CNN algorithm used for strip steel surface defect detection by 
introducing the K-means II clustering algorithm to enhance the anchor generation 
of the region proposal network (RPN), and by removing the mask branch to adjust 
the network structure of Mask R-CNN, thereby improving detection accuracy and 
speed. Although two-stage methods perform well in terms of detection accuracy and 
generalization ability, their high computational complexity and considerable 
hardware requirements create challenges. Overall, the limited real-time suitability 
and high deployment cost of existing two-stage methods provide an important 
motivation for the development of single-stage methods and also for the design of 
our model.

Single-Stage and Self-Supervised Methods
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To address these problems, single-stage methods have been proposed. Common 
single-stage methods include SSD24 and the YOLO series. For example, Liu et al.25 
improved the SSD model by integrating residual networks, feature fusion, and 
channel attention mechanisms, and formed the RAF-SSD network to increase 
detection accuracy. Wang et al.26 designed a strip steel surface defect detection 
method based on YOLOv5, which combines multi-scale detection blocks and a spatial 
attention mechanism. In addition, Song et al.27 introduced deformable convolutions, 
BiFPN, and attention mechanisms based on the YOLOv8 algorithm, which 
significantly enhanced the ability of the model to detect small targets and provided 
an efficient and accurate defect detection method for the steel industry. Zhou et al.28 
integrated large-kernel depthwise convolutions and a coordinate attention 
mechanism, improving the sensitivity of the model to defect locations and achieving 
further separation between defects and background. He et al.29 proposed an 
adaptive fine-grained channel attention mechanism to reduce the number of model 
parameters and introduced a normalized Wasserstein distance loss to optimize the 
localization of small defects. Ayon et al.30 introduced a learnable memory module to 
enhance the ability of Vision Transformers to capture long-range dependencies and 
improve the detection accuracy of subtle defects, but the training time is long, a 
large amount of labeled data is required, and interpretability is limited. Xu et al.31 
used the SimSiam self-supervised framework to pre-train on unlabeled data and then 
transferred the learned representations to Faster R-CNN for defect detection. 
Although this approach reduces the dependence on labeled data and improves 
scalability and generalization, the computational requirements remain high and the 
accuracy for some defect categories is still low. Overall, these single-stage, 
attention-based and self-supervised methods improve detection accuracy and reduce 
label dependence but still struggle with multi-scale features in complex backgrounds, 
robustness to tiny defects and high computation, which motivates the DEENet model 
in this paper to enhance feature extraction and fusion for small targets and edges 
within a single-stage framework.

In summary, existing steel surface defect detectors face three main bottlenecks, 
which DEENet aims to overcome: (1) Incomplete feature extraction: Pure 
convolutional neural networks (CNNs) lack global contextual information, while 
pure Transformers lack local details. DEENet addresses this issue through its 
convolutional neural network-Transformer dual encoder backbone network. (2) 
Noise interference in small targets: Single-scale fusion often fails in cluttered 
backgrounds. We propose a dual-channel fusion (DCF) module to cross-enhance 
local and global cues, specifically designed to suppress industrial noise. (3) Blurred 
edge localization: Standard pooling and convolution operations often weaken 
gradient information. The designed C2f_EEM module introduces a differential 
operation to explicitly enhance boundary cues.

Transformer-based and DETR-style Detectors

Besides CNN-based methods, Vision Transformer (ViT) models have demonstrated 
strong capability in modeling long-range dependencies, which is critical for 
recognizing large-scale defects and those with irregular geometries. Wang et al.32 
introduced a Swin Transformer module into the one-stage YOLOv5 detection 
framework to enhance global representation while maintaining real-time efficiency 
and detection accuracy; however, the robustness of the resulting defect detector still 
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requires further verification under diverse industrial conditions. Liu et al.33 
proposed a dual-branch network in which a channel-wise global Transformer is 
employed to model long-range dependencies while preserving local-detail features, 
yet the overall architecture is relatively complex and its inference efficiency may 
become a practical bottleneck in deployment. Lv et al.34 integrated MobileViTv2 into 
the YOLOv8 framework to strengthen feature extraction for defects with complex 
morphology, improving global feature representation while controlling 
computational cost. Vasan et al.35 validated the feasibility of Vision Transformers for 
steel surface defect classification and further improved performance through 
hyperparameter configuration and optimization.

In addition, the DETR family, particularly real-time detectors such as RT-DETR36-

38, simplifies the detection pipeline by removing manually designed components 
such as non-maximum suppression. Nevertheless, although Transformer-based 
models are effective at capturing global semantic information, they often under-
emphasize fine-grained local textures and edge details, which are critical for 
characterizing subtle surface defects in steel. This limitation motivates the design 
of DEENet, which adopts a hybrid architecture to jointly exploit the local precision 
of CNNs and the global contextual modeling capability of Transformers.

The overview of methods
YOLOv8 is widely used in industrial inspection for its single-stage efficiency, mature 
training and inference pipeline, and ease of deployment, making it a practical 
scaffold for real-time steel surface analysis. Nevertheless, on steel surfaces with 
diverse and fine-grained defects under cluttered backgrounds, the vanilla pipeline 
shows limitations in multi-scale feature capture, sensitivity to small targets, and 
preservation of edge contours. Accordingly, we adopt YOLOv8 as the host framework 
because it employs a modular C2f-based design while other YOLO versions use 
different backbones and necks, and we introduce DEENet to address these gaps: a 
CNN–Transformer dual-encoder extracts complementary local and global 
representations; a Dual Channel Fusion (DCF) module performs cross-branch fusion 
to suppress noise and enhance small-defect cues; and an edge-enhancement neck 
(C2f_EEM) sharpens boundary information with low overhead. The architecture is 
shown in Fig. 2.
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Fig. 2. DEENet Network Architecture. The model consists of a dual-encoder backbone 
(CNN and Transformer branches), a cross-branch Dual Channel Fusion (DCF) module, and 

an edge-enhanced neck (C2f_EEM). Arrows indicate the data flow, where features from 
matched stages are fused to combine local textures and global semantics. The C  circle 

denotes the concatenation operation.

First, the input image is processed by the dual encoder. The convolutional branch 
captures local textures and fine-grained details, whereas the ViT branch partitions 
the image into 4×4 patches and models long-range dependencies to derive global 
semantic representations. Second, at matched stages, features from the CNN and 
ViT branches are fused by the Dual Channel Fusion (DCF) module to suppress 
irrelevant noise and strengthen small-defect cues under cluttered industrial 
backgrounds. Finally, we replace the backbone blocks within the C2f units of the 
neck with the proposed Edge-Enhancement Module (EEM), yielding C2f_EEM. This 
substitution increases sensitivity to boundary cues while reducing computational 
overhead, improving localization in edge-blurred scenarios and lowering both 
parameter count and inference time, thereby providing an accurate and deployable 
solution for industrial steel surface defect detection. Table 2 shows the tensor data 
flow of the DEE network at different stages.

Table 2. Tensor data streams at different stages of the DEENet
Input Output

Preprocessing / Patch 
Embedding (B, 3, 640, 640) CNN: (B, 64, 320, 320)

ViT: (B, 128, 160, 160)
Backbone Stage 1 Previous stage output CNN: (B, 128, 80, 80)

ViT: (B, 256, 80, 80)
DCF Fusion 1 CNN: (B, 128, 80, 80)

ViT: (B, 256, 80, 80) (B, 128, 80, 80)
Backbone Stage 2 CNN: (B, 128, 80, 80) CNN: (B, 256, 40, 40)
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ViT: (B, 256, 80, 80) ViT: (B, 512, 40, 40)
DCF Fusion 2 CNN: (B, 256, 40, 40)

ViT: (B, 512, 40, 40) (B, 256, 40, 40)

Backbone Stage 3 CNN: (B, 256, 40, 40)
ViT: (B, 512, 40, 40)

CNN: (B, 256, 20, 20)
ViT: (B, 512, 20, 20)

DCF Fusion 3 CNN: (B, 256, 20, 20)
ViT: (B, 512, 20, 20) (B, 512, 20, 20)

Neck
(B, 128, 80, 80)
(B, 256, 40, 40)
(B, 512, 20, 20)

(B, 896, 80, 80)
(B, 1664, 40, 40)
(B, 2176, 20, 20)

Dual Encoder Based on CNN and Transformer 

DEENet adopts a dual-encoder design, in which the CNN branch is implemented 
with ResNet-style building blocks, while the Transformer branch is realized using a 
Vision Transformer (ViT). Conventional convolution operations, constrained by fixed 
kernel shapes and a static parameterization, often struggle to effectively capture the 
irregular morphology and heterogeneous textures of real-world defects.

To mitigate this limitation, we introduce an Adaptive-Kernel Convolution 
(AKConv)39, which leverages flexible sampling patterns and learnable kernel 
parameterization to better adapt to the characteristics of steel-surface defects. By 
dynamically aligning the receptive field with local structures, AKConv extracts more 
discriminative features than fixed-kernel counterparts, thereby strengthening the 
representational capacity of the CNN branch. The overall architecture of AKConv is 
illustrated in Fig. 3.

Fig. 3. AKConv Network Structure

In DEENet, AKConv is integrated into the CNN encoder in the backbone to replace 
standard convolutions. Unlike traditional convolutions that operate on a fixed nn  
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grid, AKConv enables flexible feature sampling. For a given position 0p on the output 
feature mapY , its operation can be expressed as follows:





N

n
nnn pppXwpY

1
00 )()(                                              (1)

where N represents the number of sampling points, nw denotes the learnable 
weights, np is the predefined grid coordinate, and np is the learned offset for the 
$n$-th sampling point.

The fundamental difference between AKConv and Deformable Convolution (DCN) 
lies in the kernel flexibility. While DCN typically adjusts a standard square grid, 
AKConv utilizes a coordinate generation algorithm to support an arbitrary number 
of parameters and arbitrary initial sampling shapes. This allows DEENet to adapt 
more precisely to the diverse and irregular morphologies of steel surface defects, 
such as elongated scratches or fragmented inclusions, without being constrained by 
fixed-size square receptive fields.

Dual Channel Fusion Module

As shown in Fig. 4, we propose a Dual-Channel Fusion (DCF) module to integrate 
the features extracted by the CNN and Transformer branches, thereby achieving 
complementary enhancement between local details and global semantics. Tailored 
to the small-object challenge in steel surface defect detection, DCF employs a 
dynamic feature-integration mechanism that strengthens the model’s sensitivity to 
minute defects while suppressing interference from cluttered industrial 
backgrounds. Operationally, features from the two encoders at corresponding 
hierarchy levels are first aligned in resolution, then undergo cross-branch 
interaction so that each stream is modulated by cues from the other. The resulting 
representations are fused with learnable weights and refined through lightweight 
normalization and residual aggregation, preserving discriminative information 
without incurring substantial computational overhead. This design enhances small-
scale feature expression and improves robustness under complex textures and 
illumination conditions.

Fig. 4. Dual Channel Fusion Module Architecture. iC  and iT  represent input features from 
the CNN and Transformer encoders, respectively. Q , K , and V  denote Query, Key, and 

Value vectors used in the multi-head cross-attention mechanism. The CBAM block performs 
sequential channel and spatial attention reweighting. The circle with 'C' signifies channel-

wise concatenation.
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For the CNN-extracted feature 𝐶i, a 1×1 convolution is first applied to adjust its 
channel dimension to match that of the Transformer-extracted feature 𝑇i. This 
operation standardizes the feature dimensionality, facilitating subsequent fusion 
and preventing information loss or additional computational overhead due to 
mismatched dimensions. The specific formulation is:

C'
i = Conv1x1(Ci)                                                                      (2)

Where Conv𝑣1x1( ⋅ ) denotes the parameterized 1×1 convolution kernel, which 
performs an efficient channel transformation via a learned weight matrix, thereby 
preserving the CNN's local texture details. Subsequently, the adjusted CNN feature 
𝐶'

i and the Transformer feature 𝑇i are respectively fed into the Convolutional Block 
Attention Module (CBAM), which applies Channel Attention followed by Spatial 
Attention in a sequential manner to dynamically reweight salient regions of the 
feature maps. The Channel Attention is computed as:

Mc(F) = σ(MLP(AvgPool(F) + MaxPool(F)))                                          (3)

where 𝜎( ⋅ ) denotes the Sigmoid activation function, MLP denotes a multilayer 
perceptron, and AvgPool and MaxPool extract average- and max-pooled features, 
respectively; the spatial attention is computed as:

Ms(F) = σ(Conv7x7([AvgPool(F);MaxPool(F)]))                                      (4)

The CBAM mechanism enhances the saliency of defect-relevant features while 
suppressing irrelevant noise. In particular, under low-contrast steel-surface 
conditions, it preferentially highlights the textural differences of small targets, 
thereby improving the discriminability of the feature representation.

Next, the CBAM-processed features are fed into a multi-head cross-attention 
mechanism. In the upper branch, the CNN features are used as the Query (Q) and 
Value (V), and the Transformer features are used as the Key (K); in the lower branch, 
the roles are reversed to realize bidirectional cross-integration. The specific 
attention is computed as:

Attention(Q,K,V) = Softmax (Q ⋅ KT

dk ) ⋅ V                                            (5)

where 𝑑k denotes the dimensionality of the key. The multi-head mechanism runs 
multiple attention heads in parallel and concatenates their outputs to further 
capture diverse dependencies. This cross-attention strategy achieves deep 
complementarity between local and global features, strengthens the semantic 
representation of small-scale defects, and mitigates the missed-detection issue of 
traditional single-encoder models in scenes with densely distributed small targets.

Edge-Enhancement Module

Although the C2f module in YOLOv8 exhibits certain advantages for steel surface 
defect detection—leveraging a Bottleneck structure for efficient feature aggregation 
and residual connections to preserve multi-level information—it can suffer from 
missed detections or localization biases when confronting tiny cracks or defects with 
blurred boundaries, where gradient cues are weak and edge information is easily 
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lost. The conventional C2f module is not well suited to these challenges, leading to 
a noticeable decline in detection performance.

To address this issue, we design an improved C2f module, termed C2f_EEM. Built 
upon the original C2f, the proposed module replaces the Bottleneck block with our 
Edge-Enhancement Module (EEM). By introducing a multi-scale feature extraction 
mechanism, C2f_EEM strengthens the network’s sensitivity to objects of varying 
sizes. In conjunction with an edge-feature enhancement strategy, it effectively 
mitigates localization inaccuracies and feature attenuation caused by boundary blur. 
The structure of the EEM Module is shown in Fig. 5.

Fig. 5. EEM module structure diagram. In the Enhance Module (right), the symbol '-' 
denotes the element-wise subtraction used to calculate gradient differences between 

shallow and deep features for boundary highlighting. The symbol '+' denotes the residual 
shortcut addition. DWConv stands for Depthwise Convolution, and AP indicates Average 

Pooling.

In the EEM module, the input first passes through a 3×3 DWConv layer for 
preliminary feature extraction; this depthwise separable convolution reduces 
computational complexity while capturing local texture details. This design enables 
efficient extraction of multi-scale preliminary features and avoids the excessive 
computational cost of standard convolutions. The specific formulation is:

Fout = DWConv3x3(Fin)                                                                 (6)

Subsequently, the features are distributed in parallel to multiple branches, namely 
DWConv 5×5, DWConv 7×7, DWConv 9×9 and DWConv 11×11. These large-kernel 
depthwise separable convolutions are designed to capture information under 
different receptive fields. All output feature maps are then fused via a Concat 
operation and a DWConv 1×1 to integrate features and restore the channel 
dimension, followed by a DWConv 3×3 to produce the final output feature map. 
Finally, an Upsample operation together with the Enhance Module restores the 
feature-map resolution and enhances the extraction of edge information.

The Enhance Module comprises two edge-enhancement blocks connected in series 
and uses differencing to emphasize gradient contrasts between defects and 
background. The shallow feature 𝐹a is obtained by applying a 3×3 convolution 
followed by a 1×1 convolution to the input feature map 𝑋 . The deep feature 𝐹d is 
produced by applying an average-pooling layer (AP) and a 1×1 convolution to the 
shallow feature 𝐹a. Edge enhancement is then performed separately on the shallow 
feature 𝐹a and the deep feature 𝐹d. The resulting feature map 𝑍 is differenced with 
the processed deep feature 𝐹d(𝑍), and the output is passed through a 1×1 
convolution to yield the high-frequency feature map 𝜙(𝑍). When 𝑍 equals 𝐹a, the 
shallow edge-enhanced feature 𝜙(𝐹a) is obtained; when 𝑍 equals 𝐹d, the deep edge-
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enhanced feature 𝜙(𝐹d) is obtained. Finally, 𝜙(𝐹a) and ϕ(Fd) are concatenated and 
fused via a 1×1 depthwise convolution, and the result is added element-wise to the 
input feature map 𝑋 to produce the final output feature map.

Fa = DWConv1×1(DWConv3×3(X))(7)
Fd = DWConv1×1(AP(Fa))(8)

ϕ(Z) = DWConv1×1(Z - Fd(Z))(9)
Out = X + DWConv1×1(Concat(ϕ(Fa),ϕ(Fd)))(10)

Experiments
Dataset and Experimental Settings

This study uses the NEU-DET dataset40 from Northeastern University’s surface-
defect database. NEU-DET comprises six typical surface defects observed on hot-
rolled steel: rolled-in scale (RS), patches (Pa), crazing (Cr), pitted surface (PS), 
inclusions (In), and scratches (Sc). Each category contains 300 samples, yielding a 
total of 1,800 grayscale images with an original resolution of 200×200 pixels. For 
experimental purposes, the dataset was randomly split 8:2 into training and test sets, 
resulting in 1,440 training images and 360 test images. All images are stored in JPG 
format. NEU-DET offers sufficient sample diversity and complexity across defect 
types to enable a comprehensive evaluation of steel surface defect detection 
algorithms and to support model generalization.

All experiments were conducted on a Windows 10 operating system with an Intel 
Xeon Gold 5218 CPU, 64 GB RAM, and an NVIDIA GeForce RTX 3090 GPU with 24 
GB memory. The implementation was based on the PyTorch 2.0.0 deep learning 
framework using Python 3.8, and model training was accelerated with NVIDIA CUDA 
11.1.

During training, hyperparameters were carefully configured to improve 
convergence. We adopted the Adam optimizer owing to its adaptive learning-rate 
properties, with an initial learning rate of 0.003. A learning-rate decay scheme was 
employed: if the validation loss did not decrease appreciably for ten consecutive 
epochs, the learning rate was reduced by a factor of 0.1 to facilitate convergence 
and mitigate entrapment in local minima. The mini-batch size was set to 16, and 
training proceeded for 1,000 iterations. A weight-decay coefficient of 0.00036 and a 
momentum parameter of 0.937 were applied. Notably, the confidence threshold for 
object filtering during inference was set at 0.25, ensuring a robust balance between 
detection sensitivity and accuracy. The full set of experimental parameters is 
summarized in Table 3.

Table 3. Experimental parameter settings

Name Setting

Optimizer Adam

Initial Learning Rate 0.003

Batch Size 16
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Name Setting

Number of Epochs 1000

Decay Rate 0.00036

Momentum Parameter 0.937

Evaluation metrics

To assess both detection accuracy and speed for strip-steel surface defect detection, 
we adopt Recall (𝑅), Precision (𝑃), Average Precision (AP, 𝑃A), and mean Average 
Precision (mAP, 𝑃mA), with computations given in Eqs. (11) – (14).

R = TP
TP + FN

                                                                               (11)

P = TP
TP + FP

                                                                               (12)
PA = ∫1

0   P(R)dR                                                                       (13)

PmA =
∑n

i=0   PA(i)
n                                                                     (14)

In these definitions, 𝑇P denotes the number of true positives, 𝐹N the number of 
false negatives, 𝐹P the number of false positives, and 𝑛 the total number of classes. 
We also report computational cost (GFLOPs), parameter count (Parameters), and 
inference throughput (Frames Per Second, FPS), which respectively characterize 
computational efficiency, model capacity, and processing speed.

Comparison between the Proposed Method and YOLOv8

To directly evaluate the effectiveness of the proposed approach, we conducted 
experiments on the NEU-DET dataset and recorded the results of YOLOv8 and 
DEENet for side-by-side comparison.

Table 4. Comparison of detection results of YOLOv8 and DEENet for each defect type
Methods Crazing Inclusion Patches Pitted Surface Rolled-in Scale Scratches

YOLOv8 43.9 83.6 92.6 82.8 66.3 89.9

DEENet 53.5 88.3 96.8 87.3 68.8 93.7

As shown in Table 4, the DEENet algorithm achieves a significant improvement 
in detection accuracy for the various defect categories. Specifically, for Crazing the 
detection accuracy increases from 43.9% to 53.5%, a gain of 9.6 percentage points. 
For Inclusion and Patches, the accuracies rise from 83.6% to 88.3% and from 92.6% 
to 96.8%, with increases of 4.7 and 4.2 percentage points. In the remaining 
categories of Pitted Surface, Rolled-in Scale and Scratches, the accuracies improve 
from 82.8% to 87.3%, 66.3% to 68.8% and 89.9% to 93.7%, corresponding to gains 
of 4.5, 2.5 and 3.8 percentage points. Based on the above experimental results, the 
Dual Channel Fusion module, through complementary fusion of local and global 
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features, addresses the problem of a high miss-detection rate for Crazing caused by 
the small target size and dense distribution. The advantage of the dual-encoder 
structure in handling irregularly shaped defects is reflected in the Inclusion category. 
C2f_EEM, by using multi-scale depthwise separable convolutions and a large-kernel 
design together with the differencing operation in the Enhance Module, highlights 
high-frequency edge features, avoids edge weakening, and improves the detection 
accuracy for Patches, Pitted Surface, Scratches, and Rolled-in Scale defects.

(a) YOLOv8 (b) DEENet
                  Fig. 6. P-R curves before and after improvement of YOLOv8 algorithm

As shown in Fig. 6, the precision–recall (P–R) curves for YOLOv8 and DEENet 
further substantiate these improvements. In the high-recall regime, DEENet ’ s 
precision curve consistently lies above that of YOLOv8, indicating a substantial 
reduction in false positives while maintaining comprehensive recall. The advantage 
is especially pronounced when recall exceeds 0.8, demonstrating the practicality 
and reliability of DEENet for industrial applications.

To further evaluate the reliability of the model in industrial applications, Fig. 7 
shows a comparison of the detection error trade-off (DET) curves between the 
YOLOv8 baseline model and DEENet. Compared to YOLOv8, DEENet's curve is 
closer to the lower left corner of the coordinate axis, indicating that at the same 
false positive rate level, DEENet can maintain a lower false negative rate, achieving 
a better error trade-off. This is mainly due to the effective modeling of global 
semantics by the dual-encoder and the enhancement of edge information by the 
C2f_EEM module, enabling the model to extract identifiable features even when 
facing defects with extremely low contrast or small shapes (such as Crazing), 
significantly reducing the risk of false negatives. Experimental results demonstrate 
that DEENet has higher detection stability in complex industrial environments. 
Through the cross-enhancement of local and global features by the Dual Channel 
Fusion (DCF) module, DEENet effectively suppresses background noise interference, 
providing a more accurate and reliable visual judgment basis for automated 
production lines.
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Fig. 7. Comparison of DET curves between Yolov8 and DEENet

Model Performance Comparison

To evaluate the performance of different models for steel surface defect detection, we 
experimented with several representative algorithms; the comparative results are 
summarized in Table 5. Relative to the two-stage Faster R-CNN and the single-stage 
SSD, DEENet improves mAP by 20.8% and 9.0%, and increases recall by 9.3% and 0.8%, 
respectively. While maintaining only 8.2M parameters and 12.4G FLOPs, DEENet also 
surpasses the YOLO family baselines and RT-DETR in both mAP and recall. Under 
identical hyperparameter settings, our method yields mAP gains of 11.1% over YOLOv5s, 
7.7% over YOLOv9, 9.6% over YOLOv10, and 7.6% over YOLOv11. Moreover, despite its 
low computational cost, DEENet achieves notably higher precision and F1 score than 
the YOLOv10 baseline. DEENet also exhibits markedly lower computational complexity 
than RT-DETR, with FLOPs as low as 12.4G.
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Table 5. Comparative experimental results of models on the NEU-DET dataset
Methods mAP/% Precision/% Recall/% F1-score/% Param/M FLOPs/G

Faster RCNN 60. 6 77.9  76.3 78.9 60. 1 246.4

SSD 72. 4 79.3  84.8 82.0 25. 0 64.2

YOLOv5s 70. 3 78.5  78.5 81.2 7. 2 27.7

YOLOv9 73. 7 79.6 79.9 80.8 12. 1 32.9

YOLOv10 71. 8 80.3  81.4 81.3 8. 0 40.6

YOLOv11 73. 8 79.9  79.8 80.0 9. 4 42.8

RT-DETR41 75.0 79.3  81.4 79.9 42 136

MSD-YOLO42 80.9 83.2  82.4 84.9 35.3 54.2

MD-YOLO43 78.2 82.6 81.6 82.1 9.0 14.1

DEENet 81.4 84.8  85.6 85.2 8.2 12.4

As shown in Table 5, on the NEU-DET dataset the DEENet model performs well 
on multiple defect categories, especially achieving detection accuracies of 56.5% 
and 96.8% on the Cr and Pa categories, which are significantly higher than the 37.9% 
and 91.5% of Faster R-CNN, the 38.7% and 88.5% of SSD, and the corresponding 
values of the YOLO-series baseline models. Compared with YOLOv5s, DEENet 
improves the Cr, In, Pa, Ps and Sc categories by 10.5%, 6.3%, 5.8%, 3.3% and 3.9%, 
respectively; compared with YOLOv10, its increases on Cr, In, Pa and Ps reach 7.3%, 
6.7%, 3.4% and 15.2%. Although it is slightly lower than some models on the Rs 
category, the overall performance is balanced, and it shows advantages especially 
on small targets and defects with blurred edges (such as Cr and Ps). In addition, 
compared with advanced models such as MSD-YOLO and MD-YOLO, DEENet also 
achieves better results on In, Pa, Ps and Sc, with a higher average accuracy. These 
results show that, by using the dual-encoder structure and the edge-enhancement 
module, DEENet effectively improves the robustness of multi-scale and small-target 
detection, and is suitable for high-precision defect recognition in complex industrial 
scenarios.
Table 6. Comparative experimental results of models for each defect type on the NEU-DET 

dataset

Methods Cr In Pa Ps Rs Sc

Faster RCNN 37.9 77.8 91.5 80.4 60.2 89.6

SSD 38.7 76.8 88.5 78.0 65.4 77.4

YOLOv5s 46.0 82.0 91.0 84.0 71.4 89.8

YOLOv9 46.2 80.1 95.4 80.0 72.2 91.2
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Methods Cr In Pa Ps Rs Sc

YOLOv10 49.2 81.6 93.4 72.1 68.3 85.3

YOLOv11 44.4 81.7 94.8 82.1 70.5 93.6

RT-DETR41 45.5 85.7 91.8 83.7 67.8 91.3

MSD-YOLO42 56.3 84.3 92.0 83.1 72.3 97.7

MD-YOLO43 46.7 81.4 91.3 85.1 72.6 92.0

DEENet 56.5 88.3 96.8 87.3 68.8 93.7

As indicated in Table 6, the Crazing (Cr) category consistently exhibits the 
lowest detection accuracy across all evaluated models. A deeper analysis reveals 
that Crazing manifests as high-density, fine-grained, and net-like cracks with 
extremely low contrast against the steel background. Traditional models like Faster 
R-CNN and early YOLO versions struggle because the standard pooling and stride 
operations tend to discard these subtle high-frequency details during deep feature 
extraction. In contrast, DEENet achieves a significant gain of 10.5% over YOLOv5s 
and 7.3% over YOLOv10 in this category. This improvement is primarily attributed 
to two factors: (1) the Transformer branch maintains long-range spatial 
dependencies, preventing the total loss of sparse crack information, and (2) the 
C2f_EEM module explicitly sharpens the faint gradient differences between the 
cracks and the normal surface through its difference operation.

Ablation Studies

To verify the effectiveness of the improved YOLOv8 CCD algorithm, five groups of 
comparative ablation experiments were carried out using YOLOv8 as the baseline 
model. The experimental results are shown in Table 7, where “√” indicates that the 
module is used and “–” indicates that the module is not used. 

Table 7. Comparison of ablation experiment results for different module performance 
parameters

Methods Dual-Branch Backbone DCF C2f_EEM mAP(%) FLOPs/G Param/M

1 √ - - 78.6 8.0 10.3

2 - - √ 78.5 8.1 11.5

3 √ √ - 80.5 8.2 11.2

4 √ - √ 80.0 8.1 11.5

5 √ √ √ 81.4 8.2 12.4

As shown in Table 7, Method 1 represents the model with the Dual-Branch 
Backbone module introduced, with an mAP of 78.6%, FLOPs of 8.0G, and Param of 
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10.3M. Method 2 uses only the C2f_EEM module, making the mAP reach 78.5%, with 
FLOPs and Param slightly increased, which proves the effectiveness of the C2f_EEM 
module in the steel surface defect detection task. Method 3 combines the Dual-
Branch Backbone and DCF modules; compared with Method 1, the mAP increases 
by 1.9%, and FLOPs and Param increase slightly, indicating that the DCF module 
improves the accuracy and efficiency of defect target detection. Method 4 adopts 
the Dual-Branch Backbone and C2f_EEM modules, achieving an mAP of 80.0%, with 
FLOPs and Param basically stable, which shows that this combination has a certain 
effectiveness in improving detection accuracy. Method 5, namely the proposed 
DEENet algorithm, combines the Dual-Branch Backbone, DCF, and C2f_EEM 
modules, increasing the mAP from 76.6% of the baseline model to 81.4%, an increase 
of 4.8%, with FLOPs of 8.2G, although Param increases slightly. Overall, compared 
with the original YOLOv8 algorithm, the proposed DEENet algorithm for steel 
surface defect detection maintains high detection accuracy while reducing 
computational load, and has practical value in real-world steel surface defect 
detection applications.

Comparative Study of Activation Functions

To investigate the impact of different activation functions on the performance of 
DEENet, five activations, namely ReLU, SiLU, Leaky ReLU, PReLU, and Mish, were 
compared. For experimental purposes, the Mish activation in DEENet was replaced 
by ReLU, SiLU, Leaky ReLU, and PReLU. The comparative results are shown in Fig. 
8.

Fig. 8. Comparative experimental results of different activation functions

In Fig. 8, the computational complexity and parameter counts remain identical 
across all five activations, indicating that changing the activation does not materially 
affect these measures. Using ReLU yields an mAP of 77% and FPS of 79. SiLU and 
Leaky ReLU provide moderate improvements over ReLU, reaching 78% and 79% 
mAP with 94 and 84 FPS, respectively. PReLU outperforms SiLU, ReLU, and Leaky 
ReLU, increasing mAP by 2, 3, and 1 percentage points, with FPS of 99. Compared 
with the other four activations, Mish delivers the best overall performance, 
achieving an mAP of 81% and the highest FPS of 104. Overall, Mish yields the 
highest mAP and FPS among the tested activations, providing the best trade-off 
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between detection accuracy and inference speed without increasing model 
complexity. This advantage makes DEENet more suitable for accurate and efficient 
steel surface defect detection in practical industrial scenarios, so Mish is adopted as 
the activation function in the final model.

Further analysis

To visually assess DEENet’s performance gains and convergence behavior relative 
to YOLOv10 during training, we compare the evolution of precision, recall, mAP, and 
loss curves, thereby verifying the effectiveness of the proposed optimizations.

Fig. 9. Comparison of the training process between YOLOv10 and DEENet
As shown in the loss curves in Fig. 9, DEENet exhibits a larger decrease and 

reaches a stable state faster than YOLOv10. Although this figure focuses on the first 
100 epochs to highlight optimization efficiency, according to Table 3, the model was 
trained for a total of 1000 epochs, with the loss plateauing after the initial period, 
ensuring that performance reached its potential limits. In the precision curve, the 
precision of YOLOv10 increases slowly from about 0.0 at the beginning, with obvious 
fluctuations; in contrast, the precision curve of DEENet starts at a similar level but 
rises faster and with smaller fluctuations, indicating that the improved modules 
enhance the stability of feature extraction and improve the model’s ability to 
accurately recognize defects. The recall curves show a similar trend: the recall of 
YOLOv10 increases gradually, while DEENet shows a smoother increase, especially 
around epochs 40–60, reflecting that the dual-channel fusion improves the recall of 
small and multi-scale defects. The mAP curves further confirm this advantage and 
highlight the role of the edge-enhancement module in improving the overall 
detection accuracy. The loss curves show that both models decrease from their 
initial values, but DEENet drops faster, indicating that the improved model 
converges more quickly and that the training process is more efficient.

To enable a direct comparison between DEENet and YOLOv10, we randomly 
sampled images from the dataset for defect detection; representative results are 
shown in Fig. 10.
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Crazing Inclusion Patche Pitted Surface Rolled-in Scale Scratches

(a)The defect detection performance of the YOLOv10 algorithm

Crazing Inclusion Patche Pitted Surface Rolled-in Scale Scratches

(b)The defect detection performance of the DEENet algorithm
                Fig. 10. Defect detection performance of YOLOv10 algorithm before and 

after improvement

For Crazing, YOLOv10 produces loose detection regions that include extraneous 
background, whereas DEENet yields tighter boundaries with fewer false positives, 
highlighting the edge-enhancement module’s precise capture of fine cracks. For 
Inclusion, YOLOv10 exhibits overlapping boxes and low confidence, while DEENet 
reflects the complementary effect of dual-channel fusion on multi-scale features. 
Under Patches, YOLOv10 shows blurred boundaries, whereas DEENet provides 
clearer delineation. Similar trends are observed for Pitted Surface, Rolled-in Scale, 
and Scratches. Overall, across all six defect categories, DEENet achieves higher 
accuracy than YOLOv10, with improvements in confidence, boundary precision, and 
defect coverage. YOLOv10 often produces loose or overlapping bounding boxes that 
fail to encompass the entire crack region, whereas DEENet generates much tighter 
and more accurate boundaries. This visual evidence substantiates that the proposed 
edge-enhancement module effectively captures the fine crack structures that are 
otherwise missed by conventional backbones. These results substantiate the 
effectiveness of the proposed modules for complex steel-surface defects and provide 
more reliable visual evidence for industrial inspection.

Generalization Analysis on GC10-DET Dataset

To further verify the generalization capability of DEENet, we conducted 
experiments on the GC10-DET dataset, which features diverse industrial surface 
defects. As shown in Table 8, DEENet maintains a competitive mAP of 71.5%, 
outperforming YOLOv10 by 1.1%. This consistency across different datasets 
demonstrates that our dual-encoder architecture and edge-enhancement strategy 
are not limited to NEU-DET but are robustly applicable to varied industrial 
inspection tasks.

Table 8. Comparative experimental results of models for each defect type on the GC10-
DET dataset
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Methods mAP/% Precision/% Recall/% Param/M FLOPs/G

YOLOv5s 64. 3 68.1  53.2 7. 2 27.7

YOLOv9 68. 7 64.3 55.7 12. 1 32.9

YOLOv8 69.2 65.7 63.5 12.4 8.2

YOLOv10 70. 4 69.7  70.1 8. 0 40.6

YOLOv11 69. 7 69.2  68.2 9. 4 42.8

RT-DETR34 69.4 68.8  68.6 42 136

MSD-YOLO35 65.6 63.9  64.3 35.3 54.2

MD-YOLO36 69.3 69.0 70.4 9.0 14.1

DEENet 71.5 70.3  71.6 8.2 12.4

Robustness Analysis

We simulated interference in a real industrial environment by applying Gaussian 
noise to the test set and adjusting the brightness. In the disturbance type, we set 
the brightness to decrease by 30%, increase by 30%, decrease the contrast by 30%, 
increase the contrast by 30%, and add 5% Gaussian noise. Fig. 11 shows the surface 
defect image of the strip after adding perturbation.

Image

-30% 
brightness

+30% 
brightness

-30% contrast
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+30% contrast

+5% Gaussian 
noise

Fig. 11. Comparison of surface defect images of strip steel after adding perturbation

As shown in Table 9, even in extreme cases where low brightness (-30% brightness) 
causes texture blurring or Gaussian noise (5% Gaussian noise) leads to detail loss, 
DEENet still effectively captures key defect features. This excellent robustness is 
mainly attributed to the model's dual-branch architecture: the Transformer encoder 
ensures semantic stability under global disturbances by modeling long-range 
dependencies, while the C2f_EEM module enhances the gradient information of 
defect edges through differentiation operations, thus achieving accurate boundary 
localization in low-contrast backgrounds. When various environmental disturbances 
are introduced, although the various indicators fluctuate, the overall decline is 
limited to a low range. DEENet not only performs excellently on standard datasets 
but also possesses generalization value and practicality when facing diverse 
industrial production environments.

Table 9. NEU-DET dataset detection results after image perturbation

Precision Recall mAP
Image 84.8 85.6 81.4

-30% brightness 79.7 71.3 78.6
+30% brightness 84.6 81.4 80.5

-30% contrast 81.0 79.3 79.1
+30% contrast 81.9 78.8 79.7

-5% Guassian noise 80.4 77.6 78.4

Discussion
The superior performance of DEENet is primarily attributed to the synergy between 
its core modules. The dual-encoder backbone successfully captures both local 
textures and global context, while the DCF module integrates these features to 
suppress industrial noise. Furthermore, the C2f_EEM module's ability to sharpen 
boundary information through differential operations significantly mitigates 
localization inaccuracies in edge-blurred scenarios.

However, this study has several limitations. First, the parameter count remains 
relatively high, which could be a bottleneck for deployment on resource-constrained 
edge devices. Second, the current evaluation is primarily based on the NEU-DET 
dataset, lacking validation against the diverse noise found in broader real-world 
industrial environments. Lastly, the model's robustness under extreme illumination 
or occlusion still requires optimization.

Future work will focus on model lightweighting through techniques such as 
knowledge distillation or pruning. We also plan to explore multimodal fusion—such 
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as integrating infrared imagery—to enhance the model's generalization across 
various industrial settings. Furthermore, incorporating adaptive learning strategies 
will be essential for improving responsiveness to dynamic defect scenarios.

Conclusion
This research introduced DEENet, a novel dual-encoder model designed to address 
the challenges of insufficient feature extraction, weak small-object detection, and 
blurred edge perception in steel surface inspection. By integrating a CNN-
Transformer backbone, a Dual Channel Fusion (DCF) module, and the C2f_EEM 
edge-enhancement module, DEENet achieves high-precision detection in complex 
industrial scenarios. Experimental results on the NEU-DET dataset demonstrate that 
DEENet achieves a superior mean average precision (mAP) of 81.4%, significantly 
outperforming existing baseline models in terms of accuracy, recall, and 
convergence speed. These findings validate the effectiveness of the proposed 
approach and provide a valuable reference for advanced defect inspection in modern 
steel production lines.

Data availability 
The publicly available dataset utilized in this research can be accessed via the 
following link: https://www.kaggle.com/datasets/kaustubhdikshit/neu-surface-
defect-database.
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