
Improved neutral lipid production from *Tetradesmus obliquus* through fed-batch mixotrophic cultivation at high pH using potato peel hydrolysate

Received: 11 July 2025

Accepted: 13 January 2026

Published online: 02 February 2026

Cite this article as: Gomaa M., Mohamed A.K.S.H., Youssef A.M. *et al.* Improved neutral lipid production from *Tetradesmus obliquus* through fed-batch mixotrophic cultivation at high pH using potato peel hydrolysate. *Sci Rep* (2026). <https://doi.org/10.1038/s41598-026-36418-0>

Mohamed Gomaa, Abdel Kareem S. H. Mohamed, Ahmed Mohamed Youssef & Abdel-Rahim A. El-Shanawany

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

1 **Improved Neutral Lipid Production from *Tetradesmus***
2 ***obliquus* through Fed-Batch Mixotrophic Cultivation at**
3 **High pH Using Potato Peel Hydrolysate**

4

5 **Mohamed Gomaa^{1,*}, Abdel Kareem S. H. Mohamed², Ahmed**
6 **Mohamed Youssef², Abdel-Rahim A. El-Shanawany²**

7

8

9 **¹ Botany & Microbiology Department, Faculty of Science,**
10 **Assiut University, 71516, Assiut, Egypt**

11 **² Department of Botany and Microbiology, Faculty of**
12 **Science, Al-Azhar University, Assiut 71524, Egypt**

13

14 ***Corresponding author**

15 **Dr. Mohamed Gomaa**

16 **Botany and Microbiology Department, Faculty of Science,**
17 **Assiut University, 71516 Assiut, Egypt**

18 **e-mail: m_gomaa@aun.edu.eg**

19 **<https://orcid.org/0000-0003-1544-3042>**

20

21

22 **Improved Neutral Lipid Production from *Tetraedesmus*
23 *obliquus* through Fed-Batch Mixotrophic Cultivation at
24 High pH Using Potato Peel Hydrolysate**

25

26 **Abstract**

27 This study investigated the use of potato peel hydrolysate (PPH),
28 obtained through fungal fermentation, as a low-cost organic
29 carbon source to promote the growth and lipid accumulation of
30 *Tetraedesmus obliquus* under initial alkaline conditions (pH 11.0).
31 Mixotrophic growth was investigated by incorporating different
32 volumes of PPH to the culture every two days, resulting in final
33 reducing sugar concentrations of 0.01, 0.02, and 0.03 mg mL⁻¹.
34 The mixotrophic fed-batch cultivation (0.02 mg mL⁻¹ PPH)
35 significantly enhanced microalgal biomass and neutral lipid (NL)
36 productivity, reaching 62.73 and 18.70 mg L⁻¹ day⁻¹, respectively,
37 which were 1.8 and 2.5 times higher than the autotrophic control.
38 Moreover, the mixotrophic fed-batch system was evaluated under
39 various nutrient conditions. Low nitrogen or sulfur deprivation
40 notably boosted NL productivity to 20.90 and 22.61 mg L⁻¹ day⁻¹,
41 respectively. The lipids produced under nutrient-limited
42 mixotrophic fed-batch conditions at pH 11.0 were rich in
43 monounsaturated fatty acids (77.49–80.79%) and saturated fatty
44 acids (15.39–19.23%), with the remaining portion comprising

45 polyunsaturated fatty acids. Additionally, various biodiesel
46 properties were assessed, and the results met international
47 standards. These findings suggest that mixotrophic fed-batch
48 cultivation under extreme alkaline conditions can enhance
49 microalgal productivity and promote cost-effective biofuel
50 production.

51 **Key words:** Potato peel hydrolysate; *Tetradesmus obliquus*;
52 mixotrophic fed-batch cultivation; Alkaline condition; Neutral
53 lipid; Biodiesel properties.

54 1. Introduction

55 The cultivation of microalgae, diverse organisms with a wide array
56 of unique characteristics, has garnered increasing attention in
57 recent years for biodiesel production. Microalgae are known for
58 their rapid growth rates, high photosynthetic efficiency, and the
59 advantage of not require arable land for cultivation ¹. Certain
60 species can accumulate substantial amounts of neutral lipids,
61 mainly in the form of triacylglycerols, which can be readily
62 converted into alkyl esters for biodiesel and other energy sources
63 ². The growth patterns and metabolite production of microalgae
64 are highly influenced by the composition of the culture medium
65 (e.g., nitrogen, phosphorus, iron, and sulfur sources and
66 concentrations) as well as environmental conditions such as
67 temperature, pH, and light intensity ³.

68 Microalgae can be cultivated under various trophic modes:
69 photoautotrophically (using light as an energy source and CO₂ as
70 a carbon source), heterotrophically (utilizing organic compounds
71 as both carbon and energy sources in the dark), and
72 mixotrophically (a combination of autotrophy and heterotrophy)⁴.
73 The main drawbacks of autotrophy are the high costs of CO₂
74 supply and the relatively low biomass and lipid productivities.
75 Heterotrophic and mixotrophic cultivation can enhance lipid
76 productivity compared to autotrophy, but these methods are
77 hindered by the high costs of organic carbon sources and
78 susceptibility to microbial contamination. Among these,
79 mixotrophic cultivation is often preferred, as it yields greater
80 microalgal biomass than both autotrophy and heterotrophy⁵.

81 The use of low-cost natural waste materials to stimulate
82 microalgal growth and lipid productivity has been identified as an
83 effective strategy to reduce the costs associated with mixotrophic
84 cultivation⁶. For instance, the use of agri-food wastes such as fruit
85 residues, potato peels, wheat bran, and sugarcane molasses have
86 been reported to enhance microalgal growth and lipid
87 accumulation, thereby supporting circular economy strategies⁷⁻¹². Potato
88 peel waste is primarily generated by the food processing
89 industry, especially in the production of potato-based products
90 like chips, fries, and dehydrated potatoes. The peeling process can
91 result in waste ranging from 15% to 40% of the initial product
92 mass, depending on the peeling method used. A total of 35.5
93 million tonnes of potato waste are generated globally¹³. Potato

94 peels, often considered a useless waste, pose significant
95 environmental challenges due to their rapid microbial spoilage
96 when discarded without proper treatment. However, they are rich
97 in nutrients and organic compounds, such as cellulose,
98 hemicellulose, starch, and lignin, making them suitable for
99 mixotrophic cultivation of various microalgae and cyanobacteria
100 ¹⁴. Proper pretreatment is essential to break down these
101 macromolecules into fermentable sugars that can be utilized by
102 microalgal cells during growth. Despite their potential, there have
103 been no attempts to use potato peels for mixotrophic microalgae
104 cultivation under alkaline conditions, particularly with varying
105 concentrations of nitrogen, phosphorus, and sulfur.

106 Cultivating microalgae under alkaline conditions can help to
107 prevent or mitigate microbial and predator contamination in
108 mixotrophic cultures, which increases stability and minimizes
109 culture crashes ¹⁵. Alkaline environments also promote higher CO₂
110 bio-fixation rates and increase CO₂ scavenging from the
111 atmosphere, supporting enhanced microalgal growth ¹⁶. For
112 instance, CO₂ solubility from the air (0.04 vol% CO₂) in water
113 increases with pH: 2.0×10^{-5} mol, 8.0×10^{-5} mol, 7.0×10^{-4} mol,
114 and 7.0×10^{-3} mol CO₂ per liter of water at pH values of 6.0, 7.0,
115 8.0, and 9.0, respectively ¹⁷. Alkaliphilic algae, which thrive in
116 environments with high pH values (pH > 9), are considered
117 promising candidates for large-scale cultivation and biofuel
118 production ^{15,16}. Due to their ability to survive and flourish at

119 elevated pH levels, these algae offer a promising avenue for
120 sustainable, large-scale biofuel generation^{15,16}.

121 The aim of this study was to evaluate an ecologically sustainable
122 process for utilizing potato peels as a cost-effective organic carbon
123 source in the fed-batch mixotrophic cultivation of *Tetradesmus*
124 *obliquus* under alkaline conditions. Fungal fermentation was
125 employed as a simple and low-cost method for pretreating potato
126 peels. The effects of varying volumes of potato peel hydrolysate,
127 nitrogen, phosphorus, and sulfur in the culture medium were
128 assessed in relation to algal biomass productivity and the
129 production of phospholipids, glycolipids, and neutral lipids.
130 Additionally, the fatty acid methyl ester profile was analyzed, and
131 potential biodiesel properties were calculated in accordance with
132 international standards.

133 **2. Materials and Methods**

134 **2.1. Collection of potato peels and pretreatment**

135 Potato peels from Irish potato (*Solanum tuberosum*) were
136 collected from local restaurants in the El-Sharqia region of Egypt.
137 They were washed thoroughly with water to remove any
138 undesirable particles and dried in a hot-air oven at 45°C until
139 reaching a constant weight, then crushed using a mortar and
140 pestle. The resulting powdered samples were stored in airtight
141 bags at room temperature until further use.

142 The pretreatment of the powdered potato peels was carried out
143 using semi-solid-state fermentation with the filamentous fungus
144 *Aspergillus niger*. For this, the powdered peels (70 g) were
145 suspended in distilled water (700 mL) and autoclaved at 121 °C
146 for 20 minutes under 1.5 bar pressure. The samples were then
147 inoculated with an *A. niger* spore suspension (1×10^7 cfu mL⁻¹)
148 and fermented at 27 °C for 4 days under continuous shaking at
149 120 rpm. After fermentation, the medium was filtered to remove
150 residual biomass and fungal mycelia. The concentration of
151 reducing sugars in the PPH was determined
152 spectrophotometrically using the dinitrosalicylic acid (DNS)
153 method,¹⁸ using glucose as a standard. The concentrations of total
154 sugars, proteins, and lipids in the PPH were estimated using UV-
155 H₂SO₄ method¹⁹, Lowry method²⁰, and phosphovanillin method
156²¹. The concentrations of phosphate, sulphate, and nitrate were
157 estimated spectrophotometrically using standard methods²²⁻²⁴.

158 2.2. Microalgal species and growth conditions

159 *Tetradesmus obliquus* was isolated from a water sample collected
160 from El-Ibrahimiya canal at Assiut, Egypt. The identification of the
161 microalga followed keys and descriptions of Bellinger and Sigee
162²⁵. The microalgal growth was carried out using an alkaline
163 medium (AM) of the following composition (g L⁻¹): NaNO₃, 0.25;
164 NH₄Cl, 0.05; MgSO₄.7H₂O, 0.075; CaCL₂.2H₂O, 0.025; NaCl,
165 0.025; Ferric ammonium citrate, 0.01; K₂HPO₄, 0.25; Na₂CO₃,
166 0.25; H₃BO₃, 2.4×10^{-3} ; MnCl₂.4H₂O, 1.0×10^{-3} ; ZnCl₂, 0.08 ×

167 10^{-3} ; $\text{CuCl}_2 \cdot 2\text{H}_2\text{O}$, 0.06×10^{-3} ; $\text{NaMoO}_4 \cdot 2\text{H}_2\text{O}$, 0.06×10^{-3} ;
168 $\text{CoCl}_2 \cdot 6\text{H}_2\text{O}$, 0.06×10^{-3} ; $\text{NiCl}_2 \cdot 6\text{H}_2\text{O}$, 0.04×10^{-3} ; KBr , $0.04 \times$
169 10^{-3} in 1.0 L of distilled water (pH 11.0). The inoculum of *T.*
170 *obliquus* was prepared by cultivation in 250 mL of sterile alkaline
171 medium (pH 11.0) in a 500 mL glass bottles under continuous
172 illumination ($48.4 \mu\text{mol m}^{-2}\text{s}^{-1}$) at 25 ± 2 °C for 7 days. The
173 culture was aerated with sterile air, and cells in the exponential
174 phase were harvested and used as the inoculum for subsequent
175 experiments.

176 The growth of the microalga was tested at different initial pH
177 values (7 - 11) to evaluate the effect of alkaline conditions on the
178 algal growth and biomass productivity. In this experiment the
179 initial pH of the AM was adjusted prior to autoclaving, and the
180 initial cell concentration was set to 0.1 units of optical density at
181 750 nm using a vis- spectrophotometer (JENWAY 7315).

182 **2.3. Fed-batch mixotrophic cultivation**

183 The PPH was used as an organic carbon source for the mixotrophic
184 cultivation of *Tetraedesmus obliquus*. Algal cells were harvested by
185 centrifugation (4800 g, 15 min) and used to inoculate 200 mL of
186 sterilized AM medium in 250 mL conical flasks (initial pH 11),
187 resulting in a final optical density (OD) of 0.1 at 750 nm,
188 equivalent to $0.08 \pm 0.005 \text{ g L}^{-1}$. Mixotrophic growth was
189 conducted using a fed-batch cultivation method, with different
190 volumes of PPH added at regular intervals. Aliquots of 1, 2, and 3
191 mL of PPH, containing 2.18 mg mL^{-1} of reducing sugars, were fed

192 into the microalgal medium every two days, achieving final
 193 reducing sugar concentrations of 0.01, 0.02, and 0.03 mg mL⁻¹,
 194 respectively. The mixotrophic growth proceeded for 10 days under
 195 these conditions and was compared with an autotrophic culture,
 196 prepared similarly but without the addition of PPH.

197 **2.4. Fed-batch mixotrophic cultivation under different
 198 nutrient concentrations**

199 A second experiment was also conducted to evaluate the
 200 mixotrophic growth under nutrient limited and deprived
 201 conditions as listed in Table 1. All the treatments were cultivated
 202 mixotrophically by feeding the culture medium with 2 mL of PPH
 203 every 2-days. Microalgal growth was proceeded under the
 204 aforementioned growth conditions.

205 **2.5. Evaluation of cell growth**

206 An aliquot of microalgal culture was taken at regular intervals,
 207 and its optical density (OD) was measured at 750 nm in order to
 208 calculate the cell density. For this purpose, a series of microalgal
 209 cultures with varied OD values were collected by centrifugation
 210 (4000 g, 15 min), and the pellet was subsequently oven-dried (60
 211 °C) ²⁶. The OD values were converted into dry cell weight (DCW)
 212 (mg L⁻¹) using a standard curve. Using the following formula ⁶,
 213 the algal biomass productivity (BP) was determined:

214
$$BP(\text{mg L}^{-1}\text{day}^{-1}) = \frac{(X_t - X_0)}{\Delta t} \quad (1)$$

215 where X_t is the DCW at the end of experiment (mg L⁻¹). X_0 is the
216 initial DCW (mg L⁻¹), and Δt is the total duration of fed batch
217 cultivation (day).

218 **2.6. Lipid analysis**

219 **2.6.1. Determination of total lipids (TL)**

220 Centrifugation was utilized to concentrate the microalgal cells,
221 and the pellet was then resuspended in a predetermined amount
222 of distilled water. After adding 2 mL of concentrated H₂SO₄ to 200
223 μ L of the concentrated algal cells, the mixture was heated for 10
224 minutes at 100 °C in a water bath. Each tube received 5 mL of the
225 phosphovanillin reagent after cooling ^{21,27}. After 15 minutes, the
226 absorbance was measured spectrophotometrically at 530 nm.
227 Sunflower oil was utilized as a standard ^{21,27}.

228 **2.6.2. Estimation of polar and non-polar lipids**

229 The extraction of total lipids (TL) from the wet microalgal biomass
230 was performed using chloroform: methanol (2:1 v/v) with shaking
231 for 48 h, followed by centrifugation to remove the residual cells.
232 The extracts were evaporated at 60 °C and 0.75 mL of HCl (3M)
233 was introduced to each tube for lipid hydrolysis for 2 h at 100°C,
234 then the volume was completed to 2 mL with deionized water. The
235 galactose released from glycolipids (GL) in the lipid hydrolysate
236 was determined by phenol sulfuric acid method ²⁸ at 490 nm using
237 galactose as a standard. The concentration of galactose was
238 multiplied by a factor (100/35 to) for conversion into GL ²⁹. On the

239 other hand, the released phosphate from phospholipids (PhL) was
240 estimated spectrophotometrically using molybdenum blue method
241 ²² using K_2HPO_4 as standard. PhL was computed by multiplying P
242 concentration by 25 ²⁹. Polar lipids (PL) were calculated as $PL =$
243 $GL + PhL$, while non-polar lipids (NL) were estimated as $NL = TL$
244 $- PL$.

245 **2.7. Determination of fatty acid methyl esters (FAME)**

246 The total lipids from the investigated microalga under optimum
247 growth conditions were extracted using chloroform: methanol
248 (2:1) and converted into FAME as described previously ³⁰. The
249 FAME profile was identified using gas chromatography/mass
250 spectrophotometry (GC/MS) in the Analytical Chemistry Unit in
251 the Chemistry Department, Faculty of Science, Assiut University,
252 Egypt using the method reported previously ³¹.

253 **2.8. Biodiesel characteristics**

254 The *FAME* profile of the *T. obliquus* was used for study of the
255 biodiesel characteristics using the following equations ^{32,33}:

256 Saponification value, $SV = \sum(560 \times N)/MW$
257 (2)

258 Iodine value, $IV = \sum(254 \times N \times D)/MW$
259 (3)

260 Cetane number, $CN = 46.3 + 5458/SV - (0.225 \times IV)$
 261 (4)

262 Degree of unsaturation, $DU = \sum MUFA + (2 \times PUFA)$
 263 (5)

264 Oxidation stability, $OS = -0.0384 \times DU + 7.77$
 265 (6)

266 Long-chain saturation factor, $LCSF = (0.1 \times C16:0) +$
 267 $(0.5 \times C18:0) + (1 \times C20:0) + (2 \times C24:0)$
 268 (7)

269 Cold filter plugging point, $CFPP = (3.1417 \times LCSF) - 16.477$
 270 (8)

271 Cloud point, $CP = (0.526 \times C16) - 4.992$
 272 (9)

273 Pour point, $PP = (0.571 \times C16) - 12.24$
 274 (10)

275 Kinematic viscosity,
 276 $\ln \nu_i = -12.503 + (2.496 \times \ln MW) - (0.178 \times N) \quad (11)$

277 Density, $\rho_i = 0.8463 + (4.9/MW) + (0.0118 \times N)$
 278 (12)

279 Higher heating value, $HHV = 46.19 - (1794/MW) - (0.21 \times N)$
 280 (13)

281 Flash point,

282
$$FP = 205.226 + 0.083 \times C16:0 - 1.723 \times C18:0 - 0.5717 \times C18:1$$

 - 0.3557 \times C18:2 - 0.46 \times C18:3 - 0.2287 \times C22

283 (14)

284 where N is the % of FAME, D is the number of double bonds, MW
 285 is the molecular weight, $MUFA$ is the monounsaturated FAME and
 286 $PUFA$ is the polyunsaturated FAME.

287 **2.9. Statistical analyses and cellular growth modeling**

288 At the 0.05 significance level, an analysis of variance (ANOVA)
 289 with post hoc Fisher's least significant difference (LSD) testing
 290 was used to examine the differences between treatment means
 291 using GNU PSPP statistical program (v 1.6.2).

292 The microalgal growth kinetics under different treatments were
 293 fitted to the modified logistic model using the following equation
 294 ³⁴,

295
$$X(t) = X_0 + \frac{(X_{max} - X_0)}{1 + \exp \left\{ \left(\frac{4\mu_{max}}{X_{max} - X_0} \right) (\lambda - t) + 2 \right\}} \quad (15)$$

296 where $X(t)$, X_0 , X_{max} are the time dependent increase in the
 297 microalgal biomass (g L^{-1}), the initial biomass concentration and
 298 the maximum biomass concentration, respectively. While μ_{max}
 299 indicates the maximum growth rate (day^{-1}) and λ is the lag time
 300 (day). The microalgal growth as a function of time was solved by
 301 applying the Newton's method in Microsoft Excel 2016 software
 302 by minimizing the value of the root mean square error (RMSE):

303
$$\text{RMSE} = \sqrt{\frac{\sum_{t=1}^N (X(t)_{\text{calc}} - X(t)_{\text{exp}})^2}{N}} \quad (16)$$

304 where $X(t)_{\text{calc}}$ and $X(t)_{\text{exp}}$ represent the calculated and the actual
 305 microalgal biomass at time t and N is the number of experimental
 306 points.

307 **3. Results**

308 **3.1. Effect of pH on *T. obliquus* growth, lipid content, and**
 309 **lipid productivity**

310 The biomass productivity of *T. obliquus* demonstrated a
 311 remarkable increase under alkaline pH conditions (8 - 11);
 312 ranging from 1.3 to 1.8-fold compared to neutral conditions (pH 7,
 313 26.06 mg L⁻¹ day⁻¹) (Fig. 1 a, b). Following 10 days of cultivation,
 314 the culture medium exhibited an alkaline pH, reaching 8.87 at an
 315 initial pH of 7.0, while the final culture pH was 9.14 and 9.18 when
 316 the initial pH values were 10 and 11, respectively (Fig. 1b). A
 317 significant enhancement in cellular lipid contents was observed at
 318 extreme alkaline conditions (pH 11), which increased to 17.00%
 319 (w/w) compared to 13.55% (w/w) at pH 7 (Fig. 1c). In contrast,
 320 non-significant variations in lipid contents were observed in the
 321 pH range 8–10 in relation to pH 7. Additionally, lipid productivity
 322 also showed a significant promotion to 6.57 - 10.20 mg L⁻¹ day⁻¹
 323 under alkaline pH (9 - 11), which was estimated to be 1.5 - 2.3-
 324 fold higher than the control at pH 7 (4.41 mg L⁻¹ day⁻¹) (Fig. 1c).

325

326 **3.2. Effect of mixotrophic fed-batch cultivation on *T.***
327 ***obliquus* growth and lipid composition**

328 The PPH sample contained reducing sugars (2.18 g L⁻¹), lipids
329 (0.18 g L⁻¹), proteins (4.76 g L⁻¹), total carbohydrates (82.71 g L⁻¹),
330 and phenolic compounds (0.04 g L⁻¹). The PPH also contained
331 inorganic nutrients such as nitrate (6.34 mg L⁻¹), phosphate (0.11
332 mg L⁻¹), and sulphate (0.41 mg L⁻¹).

333 The mixotrophic cultivation of *T. obliquus* using PPH was
334 evaluated at alkaline pH (pH 11) since it significantly enhanced
335 the algal biomass and lipid productivities under autotrophic
336 conditions.

337 Fig 2a. depicts the growth curves of the microalga under fed-batch
338 mixotrophic conditions at different volumes of PPH. The final
339 culture pH after 10 days of growth in the autotrophic control was
340 9.42 ± 0.015, while in the mixotrophic fed-batch treatments, the
341 pH values were 9.65 ± 0.046, 9.60 ± 0.057, and 9.60 ± 0.036 using
342 1, 2, and 3 mL of PPH, respectively (Fig. 2b).

343 The results indicated significant enhancements in the *T. obliquus*
344 growth and biomass productivity by incorporating 1 and 2 mL of
345 PPH under fed-batch conditions. Under these treatments the
346 biomass productivity exhibited ~ 1.6 - 1.8-fold increase (54.75 ±
347 0.80 - 62.73 ± 3.48 mg L⁻¹ day⁻¹) in relation to the autotrophic
348 control (33.92 ± 9.29) (Fig. 2c). Additionally, the incorporation of
349 3 mL of PPH showed significant promotion in the algal growth and

350 biomass production, but the enhancement was only 1.3-fold higher
351 than the control treatment (Fig. 2c).

352 The microalgal growth was fitted with the modified logistic model,
353 which indicated a reasonable agreement with the experimental
354 values as indicated by high coefficient of determination values and
355 low RMSE values (Table 2). The results indicated a significant
356 enhancement of maximum growth rates (μ_{\max}) of *T. obliquus* under
357 mixotrophic conditions compared to autotrophic control, and the
358 highest values were obtained using 2 and 3 mL PPH (Table 2).
359 However, these treatments exhibited an increase in the lag-time
360 (λ), since the microalgal cells require a long period to adapt
361 themselves to these mixotrophic conditions.

362 The contents of different lipid classes varied significantly between
363 treatments. Phospholipid levels were reduced by nearly 30% in the
364 mixotrophic treatments compared to the autotrophic control (Fig.
365 2d). In contrast, glycolipid levels increased by approximately 40%
366 with the addition of 3 mL of PPH under fed-batch conditions
367 compared to the control (Fig. 2d). Despite these changes, the
368 overall productivity of polar lipids in the mixotrophic treatments
369 showed no significant variation compared to autotrophic control
370 (Fig. 2e).

371 On the other hand, *T. obliquus* cells accumulated more neutral
372 lipids (NL) under mixotrophic conditions, with their content
373 ranging from 30.29% to 36.72% (w/w) compared to 21.90% (w/w)
374 in the autotrophic control (Fig. 2d). These increases were 1.38 to

375 1.68 times higher than the control. Additionally, NL productivity
376 was significantly enhanced under mixotrophic conditions,
377 reaching a maximum of approximately $18.5 \text{ mg L}^{-1} \text{ day}^{-1}$ with the
378 addition of either 1 mL or 2 mL of PPH. This value was about 2.5
379 times higher than that of the autotrophic control (Fig. 2e).

380 Analysis of the total lipid content indicated a significant increase
381 under fed-batch mixotrophic cultivation with varying
382 concentrations of PPH compared to the autotrophic control (Fig.
383 2c). In the control treatment, total lipids accounted for 27.54%
384 (w/w), whereas supplementation with 1, 2, and 3 mL of PPH
385 resulted in significant increases to 37.67%, 34.47%, and 44.12%
386 (w/w), respectively (Fig. 2c). Similarly, the total lipid productivity
387 increased significantly to 20.77, 21.30, and $18.92 \text{ mg L}^{-1} \text{ day}^{-1}$
388 with the addition of 1, 2, and 3 mL PPH, respectively, representing
389 approximately a twofold increase compared to the control ($9.66 \text{ mg L}^{-1} \text{ day}^{-1}$) (Fig. 2c).

391 **3.3. Effect of different nutrients on *T. obliquus* growth
392 and lipid composition under mixotrophic fed-batch
393 cultivation**

394 Fig 3a. depicts the growth curves of *T. obliquus* under fed-batch
395 mixotrophic conditions using 2 mL of PPH under different nutrient
396 concentrations. The analysis of final culture pH after 10 days of
397 growth indicated that low or deprived sulphate-maintained culture
398 pH at above 10. However, all treatments maintained final pH at
399 above 9.5 (Fig. 3b).

400 The results presented in Fig. 3a,c indicate a significant increase
401 in the biomass productivity of *T. obliquus* under phosphate- or
402 sulfate-deprived conditions (T5 and T6 for phosphate, T7 and T8
403 for sulfate) during mixotrophic fed-batch cultivation. Under these
404 treatments, biomass productivity reached 72.05–75.65 mg L⁻¹
405 day⁻¹, approximately 1.2 times higher than the nutrient-sufficient
406 control (62.73 mg L⁻¹ day⁻¹) (Fig. 3c). Conversely, biomass
407 productivity was negatively affected when nitrogen salts (NH₄Cl
408 and NaNO₃) were omitted from the mixotrophic culture (T2).
409 Similarly, low nitrogen conditions (T3: 0.05 g L⁻¹ NH₄Cl) led to a
410 significant reduction in biomass productivity, whereas it was
411 restored under moderate nitrogen concentrations (T4: 0.1 g L⁻¹
412 NaNO₃ and 0.05 g L⁻¹ NH₄Cl) (Fig. 3c).

413 These trends corresponded with the treatments' effects on
414 microalgal growth rates. The modified logistic model showed a
415 significant reduction in μ_{max} values under nitrogen- (T2) and
416 sulfate-deprived (T7) conditions (Table 3). Additionally, the lag
417 time was prolonged under low nitrogen (T3), phosphate-deprived
418 (T5), and low sulfate (T8) conditions (Table 3).

419 The phospholipid content in *T. obliquus* cells cultivated
420 mixotrophically showed a significant increase under nutrient-
421 limited or deprived conditions compared to the control (Fig. 3c).
422 In contrast, glycolipid content exhibited the opposite trend (Fig.
423 3c). In the autotrophic control, the contents of phospholipids and
424 glycolipids were 0.49% and 6.71% (w/w), respectively. However,

under nitrate-, sulfate-, and phosphate-limited or deprived conditions, phospholipid content significantly increased to 1.78-2.37% (w/w), while glycolipid content significantly decreased to 0.31-2.44% (w/w) (Fig. 3c). Furthermore, there was a notable reduction in overall polar lipid productivity, ranging from 1.4- to 1.77-fold lower than the control.

Conversely, the NL content in the mixotrophically cultivated cells reached 39.08% (w/w) at low nitrate concentrations, which represents a 1.43-fold increase compared to the normal autotrophic condition (27.25% w/w) (Fig. 3c). However, there were no significant effects on NL content under moderate or deprived nitrogen conditions (Fig. 3c). Similarly, the removal or reduction of sulfate in the mixotrophic culture did not significantly impact the NL content of *T. obliquus* compared to the control. In contrast, phosphate-limited or deprived conditions significantly decreased NL content to 20.40-22.38% (w/w).

Additionally, NL productivities showed significant enhancement under low nitrate, low sulfate, and sulfate-deprived conditions, reaching 20.90, 22.61, and 20.78 mg L⁻¹ day⁻¹, respectively (Fig. 3d). These values were approximately 1.25 to 1.35 times higher than the control level of 16.69 mg L⁻¹ day⁻¹.

Analysis of total lipid content revealed a significant increase under low-nitrogen conditions (T3) compared to the control (Fig. 3c). In contrast, total lipid productivity showed no significant differences

449 under low-nitrogen (T3), sulfate-deprived (T7), or low-sulfate (T8)
450 conditions relative to the control (Fig. 3c).

451 A detailed comparison of the biomass and lipid productivities of *T.*
452 *obliquus* in relation to previous studies in mixotrophic cultivation
453 is presented in Table 4. In this study, mixotrophic cultivation was
454 performed under alkaline conditions using a low concentration of
455 potato peel hydrolysate in a fed-batch mode. The lipid productivity
456 obtained in this study was comparatively higher than those
457 reported for *Scenedesmus obliquus* cultivated using food
458 wastewater ³⁵, and *Tetraselmis indica* using kinnow peel ³⁶, but
459 lower than that reported for *Chlorella sorokiniana* using mixed
460 peel extracts ³⁷.

461 **3.4. Biodiesel properties**

462 The highest lipid productivity of *T. obliquus* was observed under
463 low nitrate (T3) and sulfate (T8) concentrations; thus, these
464 treatments were analyzed to identify the fatty acid methyl esters
465 (FAME) and their biodiesel characteristics in comparison to the
466 control (T1). The FAME profile indicated higher percentages of
467 monounsaturated fatty acids (MUFA), which contributed 74.59%,
468 80.79%, and 77.49% in T1, T3, and T8, respectively (Table 5). The
469 percentages of saturated fatty acids (SFA) were lower, reaching
470 25.40%, 15.39%, and 19.23% in T1, T3, and T8, respectively.
471 Furthermore, no polyunsaturated fatty acids (PUFA) were
472 detected in control, while lower percentages of PUFAs were
473 observed in T3 (3.82%) and T8 (3.27%) (Table 5).

474 For T1, the percentage of oleic acid in *T. obliquus* cells reached
475 59.46%, followed by palmitic acid (25.40%) and ricinoleic acid
476 (8.86%). In contrast, at low nitrate conditions (T3), oleic acid
477 constituted 44.51%, followed by cis-vaccenic acid (24.22%) and
478 palmitic acid (15.39%). Additionally, under low sulfate conditions
479 (T8), oleic acid comprised 38.65%, followed by palmitic acid
480 (19.23%) and trans-13-octadecenoic acid (14.81%) (Table 5).

481 Based on the FAME profile, several biodiesel characteristics were
482 calculated, with the results summarized in Table 6. The
483 saponification value (SV), which indicates the amount of
484 potassium hydroxide required to saponify one gram of oil, was
485 205.91, 187.92, and 201.69 mg KOH g⁻¹ fat for the control, T3,
486 and T8, respectively. The iodine value (IV) for the treatments
487 increased to 73.45 and 91.48 g I₂ 100 g⁻¹ fat in T3 and T8,
488 respectively, compared to 68.23 g I₂ 100 g⁻¹ fat in T1. The
489 estimated IV and cetane number (CN) values were within the
490 limits established by various international standards (EN 14214,
491 ASTM D6751, and IS 15607) (Table 6).

492 The degree of unsaturation (DU) for the T8-derived biodiesel
493 reached 84.04 wt.%, while T3 exhibited a DU of 88.42 wt.%,
494 compared to 74.60 wt.% for the control (Table 5). The estimated
495 cold filter plugging point (CFPP) values were -8.50, -11.64, and
496 -10.44 °C for T1, T3, and T8, respectively. Moreover, T3 and T8
497 were characterized by lower cloud point (CP) and pour point (PP)
498 compared to the control. The calculated viscosity (v) and density

499 (ρ) exhibited negligible variations between treatments, with
500 values falling within the limits specified by international
501 standards. Similarly, the higher heating value (HHV) and flash
502 point (FP) values showed minimal differences across the
503 treatments (Table 6).

504 **4. Discussion**

505 The noteworthy positive impact of pH on the biomass productivity
506 of *T. obliquus* suggests its alkaliphilic nature, demonstrating
507 optimal growth within the pH range of 9-11. Raising the pH of the
508 culture generally leads to an increased supply of bicarbonate and
509 enhanced inorganic carbon uptake rates from the environment¹⁶.
510 Furthermore, contaminating microorganisms and predators are
511 suppressed under alkaline conditions (pH 11) which increases
512 stability and minimizes culture crashes¹⁶. In the present study, a
513 fed-batch mixotrophic cultivation method utilizing potato peel
514 hydrolysate (PPH) was employed to enhance the biomass and lipid
515 productivities of *T. obliquus* under alkaline conditions.

516 The method of hydrolysis of biomass has direct effects on its
517 efficiency for mixotrophic growth of microalgae. Recent findings
518 indicate that acidic hydrolysis of potato peels was ineffective in
519 enhancing algal biomass production and can even inhibit growth
520 due to the production of toxic by-products such as furfural and
521 hydroxymethylfurfural⁹. Therefore, the potato waste was
522 pretreated using fungal fermentation, a cost-effective and
523 environmentally friendly process compared to acid hydrolysis,

524 which relies on concentrated acids and high temperatures to
525 produce fermentable sugars. Furthermore, fungal fermentation
526 aligns with the principles of a circular economy, as it utilizes
527 biological processes to valorize agricultural wastes. The duration
528 of fungal pretreatment was optimized at 4 days to balance nutrient
529 extraction and pretreatment efficiency, making it a time-efficient
530 method for subsequent microalgae cultivation. The resulting PPH
531 was rich in carbohydrates, with reducing sugars estimated at 2.18
532 g L⁻¹. The *T. obliquus* cells effectively utilized the PPH, as
533 evidenced by increased biomass productivity compared to
534 autotrophic conditions. These findings align with previous reports
535⁸, which indicated that fungal fermentation can depolymerize
536 lignocellulosic waste into low molecular weight compounds
537 readily utilized by microalgal cells. Incorporating 2 mL of PPH into
538 the mixotrophic culture every two days significantly promoted
539 algal biomass productivity. However, a higher PPH volume (3 mL)
540 led to a decrease in *T. obliquus* growth compared to other
541 treatments. This observation may be attributed to the detrimental
542 effects of phenolic compound accumulation in the culture medium
543 from elevated PPH volumes. Generally, PPH provided a direct
544 organic carbon source, leading to faster cell division and higher
545 biomass accumulation (1.8-fold compared to autotrophic growth).
546 Furthermore, mixotrophic growth reduced reliance on light,
547 enhanced energy efficiency, and boosted neutral lipid productivity
548 (2.5-fold compared to autotrophic growth). This demonstrates that
549 the integration of organic carbon supply, nutrient management,

550 and alkaline cultivation provides a synergistic strategy for
551 improving both biomass and lipid productivity.

552 In this study, mixotrophic cultivation was performed under
553 alkaline conditions using a low concentration of potato peel
554 hydrolysate in a fed-batch mode. This approach helps reduce
555 microbial contamination and prevents culture crashes in large-
556 scale production. The alkaline environment also supports
557 favorable physiological stress conditions that can enhance lipid
558 accumulation in many microalgal species while decreasing the
559 need for sterilization, thereby lowering operational costs.

560 Additionally, the simple fungal fermentation process utilized is
561 more economically and environmentally friendly compared to
562 chemical and enzymatic methods. The lipid productivity obtained
563 in this study was comparatively higher than those reported for
564 *Scenedesmus obliquus* cultivated using food wastewater ³⁵, and
565 *Tetraselmis indica* using kinnow peel ³⁶, but lower than that
566 reported for *Chlorella sorokiniana* using mixed peel extracts ³⁷. On
567 the other hand, the composition of PPH in the present study (2.18
568 g L⁻¹ reducing sugars, 4.76 g L⁻¹ proteins, 0.18 g L⁻¹ lipids, and
569 0.04 g L⁻¹ phenolic compounds) is different from other biomass
570 hydrolysates reported for mixotrophic microalgal cultivation. For
571 example, fruit peel hydrolysates, such as orange peel, kinnow peel
572 or mixed fruit wastes, often provide phenolics and organic acids
573 along with sugars such as glucose and sucrose that can influence
574 lipid metabolism and inhibit microalgal growth at elevated
575 concentrations ³⁶⁻³⁸. Wheat bran hydrolysate prepared by fungal

576 fermentation contained higher reducing sugars but low protein
577 contents, which favored biomass productivity but did not markedly
578 promote lipid accumulation ⁸. **The moderate levels of sugars and**
579 **minimal inhibitory phenolics in the PPH contributed to stable algal**
580 **growth and elevated lipid productivity.** These differences highlight
581 that hydrolysate composition plays a crucial role in determining
582 microalgal metabolic responses, and further comparative studies
583 are required.

584 Variations in nutrient concentrations within algal cultures play a
585 crucial role in influencing biomass and lipid productivity. Nitrogen
586 limitation or deprivation has been reported to induce the
587 hyperaccumulation of cellular lipids, although it negatively affects
588 biomass production ^{39,40}. Consistent with these findings, the
589 present study indicated a decline in biomass productivity of *T.*
590 *obliquus* under nitrogen-deficient conditions compared to the
591 control. Accordingly, nitrate was identified as the most important
592 factor for promoting the biomass productivity of *T. obliquus* under
593 fed-batch mixotrophic growth using PPH. However, the balance
594 between inorganic nutrients, mainly nitrate, phosphate, and
595 sulphate, and external organic carbon (PPH) is crucial to maintain
596 microalgal growth and biomass production. The improved biomass
597 productivity of *T. obliquus* at low or deprived phosphate or
598 sulphate during mixotrophic fed-batch cultivation may indicate
599 that nitrogen availability could promote the rate of sugar uptake
600 from PPH and biomass production under phosphate- or sulfate-
601 deprived conditions. This observation was supported by the

602 results of Phalanisong et al. who reported an increase of
603 cumulative sugar consumption from sugarcane juice and
604 increased biomass production of microalgae consortia under P-
605 limited conditions compared to N-limited conditions ¹².

606 Interestingly, under low initial nitrogen concentration (T3, 0.05 g
607 L⁻¹ of NH₄Cl), the algal cells accumulated more neutral lipids,
608 resulting in a notable increase in lipid productivity, approximately
609 1.25-fold. Similarly, Gao et al. reported a simultaneous increase in
610 lipid content and a reduction in biomass productivity, achieving an
611 overall 1.1-fold increase in the lipid productivity of *Parachlorella*
612 *kessleri* cultivated mixotrophically under nitrogen-deficient
613 conditions ⁴¹. High pH and nutrient-limited conditions have also
614 been shown to promote the accumulation of neutral lipids in
615 microalgae ⁴². Generally, under nitrogen deficiency, microalgae
616 tend to degrade nitrogen-containing cellular compounds, leading
617 to an increased storage of lipids and carbohydrates ⁴³.

618 Under fed-batch mixotrophic conditions, decreasing phosphate
619 concentrations resulted in lower levels of neutral lipids (NL) and
620 glycolipids (GL), while promoting the accumulation of
621 phospholipids (PhL) compared to the control. Microalgae can
622 accumulate phosphorus (P) from the culture medium under P-
623 replete conditions, storing it as polyphosphate granules for reuse
624 during periods of P starvation ⁴⁴. However, microalgal cells
625 require a significant amount of time to adapt to phosphate-
626 deprived conditions before entering the logarithmic phase of rapid

627 cell division, as evidenced by a notable increase in lag time under
628 phosphate deprivation relative to nutrient-sufficient treatments.
629 Previous studies have reported that under phosphorus deficiency,
630 PhL are generally replaced by non-phosphorus GL, leading to
631 increased levels of NL as an effective P-conserving mechanism
632 ^{45,46}. The present study observed a significant negative correlation
633 between the contents of PhL and GL (Pearson's $R = -0.90$, $P =$
634 0.001), consistent with findings from earlier research ^{39,47}. In
635 phosphate-replete conditions (T1), the contents of PhL decreased
636 while GL increased; conversely, the opposite trend was observed
637 under phosphate-deprived (T5) or limited (T6) conditions. This
638 behavior may reflect the metabolic adjustments microalgae
639 undergo to cope with nutrient limitations. Overall, the response of
640 microalgae to P limitation is species-specific. For some species,
641 such as *Phaeodactylum tricornutum*, *Chaetoceros* sp., and *Pavlova*
642 *lutheri*, P limitation induces lipid accumulation ⁴⁸. In contrast,
643 species such as *Nannochloris atomus*, *Tetraselmis* sp., *Chlorella*
644 ^{48,49}, and *Botryococcus sudeticus*, along with *C. sorokiniana* and
645 *T. suecica* ⁵⁰, experience decreased lipid contents. This reduction
646 may be due to the accumulation of carbohydrates rather than
647 NL^{48,50}.

648 Similarly, sulfate deficiency increased the contents of
649 phospholipids (PhL) at the expense of glycolipids (GL), while the
650 levels of neutral lipids (NL) showed non-significant changes
651 compared to the control. The effects of sulfate concentration on
652 lipid accumulation in microalgae are generally species-specific,

653 and their impact can vary between non-significant, positive, and
654 negative effects ⁵⁰. Furthermore, sulfur (S) deprivation has been
655 reported to upregulate genes associated with sulfolipid
656 biosynthesis, which can be hydrolyzed to provide a source of S for
657 cellular metabolic activities ^{51,52}.

658 Maintaining PhL under nutrient deficiency is crucial for the
659 structural integrity and functionality of chloroplasts, as these
660 compounds are integral components of thylakoid membranes and
661 play a fundamental role in the activity of photosystems I and II ⁵³.
662 Thus, sustaining the photosynthetic efficiency of *T. obliquus* cells
663 provides sufficient carbon for cell division and growth.
664 Consequently, maximum biomass productivity (~1.2-fold higher
665 than the nutrient-sufficient control) was observed under
666 phosphorus (P) and sulfur (S) deficient or deprived conditions. In
667 a related study, Sakarika and Kornaros reported a significant
668 increase in the biomass productivity of *Chlorella vulgaris* under P-
669 limited heterotrophic conditions ⁵⁴. However, the same strain
670 exhibited a substantial reduction in biomass productivity under S
671 limitation, attributed to its higher demand for S to produce sulfur-
672 containing compounds compared to other microalgae ⁵⁴.

673 Generally, nitrogen (N) starvation has a more immediate and
674 adverse effect on cell division compared to phosphorus due to the
675 presence of stored P in the form of polyphosphates ⁵⁵. The present
676 results similarly indicated a significant reduction in algal biomass
677 productivity under nitrogen starvation compared to P- or S-

678 deprived conditions. This behavior may also stem from lower
679 consumption rates of organic carbon under N-deficient
680 mixotrophy compared to P-limited conditions⁵⁶. Furthermore, the
681 presence of organic carbon from potato peel hydrolysate (PPH) in
682 the culture medium enabled *T. obliquus* to utilize mixotrophic
683 energetic metabolism under nutrient-limited conditions,
684 supporting its requirements for cellular division.

685 Lipid productivity, which is derived from biomass productivity and
686 cellular lipid content, is a fundamental indicator of oil-producing
687 capacity. Under fed-batch mixotrophic cultivation, the highest
688 neutral lipid productivity was achieved at low nitrogen conditions
689 (T3: 20.90 mg L⁻¹ day⁻¹), low sulfate (T8: 22.61 mg L⁻¹ day⁻¹), and
690 sulfate-deprived conditions (T7: 20.77 mg L⁻¹ day⁻¹). Previous
691 studies have indicated that phosphorus plays a crucial role in
692 enhancing lipid productivity under nitrogen-deficient conditions,
693 facilitating the production of energy transfer molecules and
694 nucleic acids⁴⁹.

695 Saturated fatty acids (SFAs) and monounsaturated fatty acids
696 (MUFAs) generally exist as neutral lipids, which are essential for
697 biodiesel production, while polyunsaturated fatty acids (PUFAs)
698 are typically found in polar lipids. Therefore, high-quality biodiesel
699 should contain long-chain fatty acids with a low level of
700 unsaturation. The biodiesel obtained from *T. obliquus* in this study
701 was characterized by a higher percentage of MUFAs compared to
702 SFAs, with very little PUFA present. Moreover, all fatty acids

703 detected were either C16 or C18. Similarly, a recent study
704 indicated that 10% v/v PPH in BG-11 medium of *Spirulina* sp.
705 induced higher levels of MUFAs (C18:1 and C16:1) than SFAs and
706 PUFA ¹¹. Additionally, previous studies have shown that
707 increasing CO₂ concentration in the culture medium promotes the
708 production of C18:1 over C16:1, while adversely affecting the
709 production of C18:2, C16:0, and C18:3 ⁵⁷.

710 Ideally, biodiesel should contain lower quantities of PUFAs and
711 SFAs compared to MUFAs to mitigate issues related to oxidative
712 stability and cold flow ^{6,58,59}. The biodiesel obtained from the
713 optimized treatments exhibited a higher percentage of
714 monounsaturated fatty acids (MUFAs), which could improve
715 biodiesel oxidative stability and cold flow properties.
716 Furthermore, low PUFA minimizes polymerization risks. The
717 cetane number (CN), which relates to the ignition quality of fuel
718 in diesel engines, was found to be elevated in the investigated
719 treatments, ranging between 52.78 and 58.82. These values
720 exceed the minimum required by international standards, which is
721 51, and are associated with a higher concentration of saturated
722 and monounsaturated methyl esters. Enhanced CN levels
723 contribute to superior combustion, improving engine efficiency
724 and reducing nitrogen oxides emissions ⁶⁰.

725 Overall, the integration of alkaline cultivation with PPH and
726 controlled nutrient limitation demonstrated a synergistic effect
727 that enhanced both biomass and neutral lipid productivity. From

728 economic perspective, the utilization of zero-cost potato waste can
729 substantially reduce carbon source expenses in mixotrophy
730 compared to glucose. The major costs in scaling-up would be
731 associated with the photobioreactor design, along with the energy
732 requirements for aeration, mixing, and downstream processing
733 such as harvesting, and lipid extraction. Therefore, further
734 optimization in photobioreactor or open pond systems would be
735 essential to validate the scalability of this approach.

736 **5. Conclusion**

737 This study evaluated the growth of *T. obliquus* under extreme
738 alkaline conditions (pH 11) using potato peel hydrolysate (PPH) as
739 a sustainable and low-cost source of organic carbon. The fed-batch
740 mixotrophic cultivation significantly promoted the biomass and
741 lipid productivity of the microalga. Notably, the productivity of
742 non-polar lipids experienced remarkable enhancements under low
743 nitrate, low sulfate, and sulfate-deprived conditions, reaching
744 20.90, 22.61, and 20.78 mg L⁻¹ day⁻¹, respectively, with the
745 addition of 2 mL of PPH every 2 days. These values were
746 approximately three-fold higher than the autotrophic control level
747 of 7.44 mg L⁻¹ day⁻¹. Furthermore, the biodiesel produced under
748 the optimized mixotrophic conditions was rich in C16 and C18
749 fatty acids, exhibiting characteristics that align with international
750 specifications. These findings highlight the potential of cultivating
751 microalgae under extreme alkaline mixotrophic conditions for
752 biodiesel production. However, large-scale production requires

753 optimized bioreactor designs with high pH resistance, aeration
754 strategies, and cost-effective harvesting methods.

755 **Authors' contributions**

756 The authors confirm contribution to the paper as follows: study
757 conception and design was performed by M. Gomaa. Experiments
758 and data collection were performed by A. M. Youssef. Analysis and
759 interpretation of results were performed by M. Gomaa and A. M.
760 Youssef. The supervision of the experiments was performed by M.
761 Gomaa, A. K. S. H. Mohamed, and A. A. El-Shanawany. The first
762 draft of the manuscript was written by M. Gomaa, and A. M.
763 Youssef and all authors commented on previous versions of the
764 manuscript. All authors read and approved the final manuscript.

765 **Funding**

766 No funding was received for conducting this study.

767 **Availability of data and materials**

768 The datasets used and/or analyzed during the current study are
769 available from the corresponding author on reasonable request.

770 **Declarations**

771 **Ethics approval and consent to participate**

772 Not applicable.

773 **Consent for publication**

774 Not applicable.

775 **Competing interests**

776 The authors declare that they have no competing interests.

777

778 **References**

- 779 1. Rayati, M., Rajabi Islami, H. & Shamsaie Mehrgan, M. Light
780 Intensity Improves Growth, Lipid Productivity, and Fatty
781 Acid Profile of *Chlorococcum oleofaciens* (Chlorophyceae)
782 for Biodiesel Production. *BioEnergy Res.* **13**, 1235-1245
783 (2020).
- 784 2. Cagliari, A. *et al.* Biosynthesis of Triacylglycerols (TAGs) in
785 Plants and algae. *Int. J. Plant Biol.* **2**, e10 (2011).
- 786 3. Benavente-Valdés, J. R., Aguilar, C., Contreras-Esquivel, J.
787 C., Méndez-Zavala, A. & Montañez, J. Strategies to enhance
788 the production of photosynthetic pigments and lipids in
789 chlorophyceae species. *Biotechnol. Reports* **10**, 117-125
790 (2016).
- 791 4. Figueroa-Torres, G. M., Pittman, J. K. & Theodoropoulos, C.
792 A highly productive mixotrophic fed-batch strategy for
793 enhanced microalgal cultivation. *Sustain. Energy Fuels* **6**,
794 2771-2782 (2022).
- 795 5. Abreu, A. P., Morais, R. C., Teixeira, J. A. & Nunes, J. A
796 comparison between microalgal autotrophic growth and

797 metabolite accumulation with heterotrophic, mixotrophic
798 and photoheterotrophic cultivation modes. *Renew. Sustain.*
799 *Energy Rev.* **159**, 112247 (2022).

800 6. Gomaa, M., Fawzy, M. A. & El-Sheekh, M. M. Microalgae-
801 based biofuel synthesis. in *Green Approach to Alternative*
802 *Fuel for a Sustainable Future* 89-105 (Elsevier, 2023).
803 doi:10.1016/B978-0-12-824318-3.00023-0.

804 7. Guan, R. *et al.* Precise Structure and Anticoagulant Activity
805 of Fucosylated Glycosaminoglycan from Apostichopus
806 japonicus: Analysis of Its Depolymerized Fragments. *Mar.*
807 *Drugs* **17**, 195 (2019).

808 8. EL-Sheekh, M. M., Bedaiwy, M. Y., Osman, M. E. & Ismail,
809 M. M. Mixotrophic and heterotrophic growth of some
810 microalgae using extract of fungal-treated wheat bran. *Int. J.*
811 *Recycl. Org. Waste Agric.* **1**, 12 (2012).

812 9. Urme, S. R. A., Barth, L., Serrano-Carreón, L., Martinez, A.
813 & Morales-Sánchez, D. Mixotrophic Cultivation of Polar
814 Microalga Chlamydomonas sp. RCC2488 (Malina) Using
815 Potato Peel Hydrolysates as Carbon Source. *BioEnergy Res.*
816 **18**, 28 (2025).

817 10. Verma, S., Verma, P. K., Pande, V., Tripathi, R. D. &
818 Chakrabarty, D. Transgenic *Arabidopsis thaliana* expressing
819 fungal arsenic methyltransferase gene (WaarsM) showed
820 enhanced arsenic tolerance via volatilization. *Environ. Exp.*

821 11. Nguyen, T. T. H. Utilization of potato peel waste in
822 cyanobacterium *Spirulina* sp. cultivation for biodiesel
823 production and subsequent hydrochar production via
824 optimized hydrothermal carbonization process. *Renew.*
825 *Energy* **255**, 123815 (2025).

826

827 12. Phalanisong, P., Plangklang, P. & Reungsang, A.
828 Photoautotrophic and Mixotrophic Cultivation of
829 Polyhydroxyalkanoate-Accumulating Microalgae Consortia
830 Selected under Nitrogen and Phosphate Limitation.
831 *Molecules* **26**, 7613 (2021).

832

833 13. Vilakazi, S. P., Muchaonyerwa, P. & Buthelezi-Dube, N. N.
834 Characteristics and liming potential of biochar types from
potato waste and pine-bark. *PLoS One* **18**, e0282011 (2023).

835

836 14. Sedghi, M., Fagan, J., Sedghi, S., Küpper, F. C. & Amils, R.
837 Harnessing Symbiotic Mixotrophic Microalgal-Bacterial
838 Biofilms for N and P Elimination. *Phycology* **3**, 459–471
(2023).

839

840 15. Chowdhury, R., Keen, P. L. & Tao, W. Fatty acid profile and
841 energy efficiency of biodiesel production from an alkaliphilic
842 algae grown in the photobioreactor. *Bioresour. Technol.*
Reports **6**, 229–236 (2019).

843

16. Vadlamani, A., Viamajala, S., Pendyala, B. & Varanasi, S.

844 Cultivation of Microalgae at Extreme Alkaline pH
845 Conditions: A Novel Approach for Biofuel Production. *ACS*
846 *Sustain. Chem. Eng.* **5**, 7284-7294 (2017).

847 17. Kikuchi, Y., Kanai, D., Sugiyama, K. & Fujii, K. Biogas
848 Upgrading by Wild Alkaliphilic Microalgae and the
849 Application Potential of Their Biomass in the Carbon
850 Capture and Utilization Technology. *Fermentation* **10**, 134
851 (2024).

852 18. Miller, G. L. Use of Dinitrosalicylic Acid Reagent for
853 Determination of Reducing Sugar. *Anal. Chem.* **31**, 426-428
854 (1959).

855 19. Albalasmeh, A. A., Berhe, A. A. & Ghezzehei, T. A. A new
856 method for rapid determination of carbohydrate and total
857 carbon concentrations using UV spectrophotometry.
858 *Carbohydr. Polym.* **97**, 253-261 (2013).

859 20. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J.
860 Protein measurement with the Folin phenol reagent. *J. Biol.*
861 *Chem.* **193**, 265-275 (1951).

862 21. Mishra, S. K. *et al.* Rapid quantification of microalgal lipids
863 in aqueous medium by a simple colorimetric method.
864 *Bioresour. Technol.* **155**, 330-333 (2014).

865 22. Ganesh, S. *et al.* Spectrophotometric determination of trace
866 amounts of phosphate in water and soil. *Water Sci. Technol.*

867 66, 2653-2658 (2012).

868 23. Bulgariu, L. & Bulgariu, D. Direct determination of nitrate in
869 small volumes of natural surface waters using a simple
870 spectrophotometric method. *Rev. Anal. Chem.* **31**, 201-207
871 (2012).

872 24. Torres, P. B. *et al.* Determination of sulfate in algal
873 polysaccharide samples: a step-by-step protocol using
874 microplate reader. *Ocean Coast. Res.* **69**, (2021).

875 25. Bellinger, E. G. & Sigee, D. C. *Freshwater Algae: Identification, Enumeration and Use as Bioindicators*. (John
876 Wiley & Sons, 2015).

877 26. Mamani Condori, M. A. *et al.* Sustainable treatment of
878 sugarcane vinasse using Chlorella sp. in scalable airlift flat-
879 panel photobioreactors: nutrient removal and biomass
880 valorization. *Environ. Sci. Pollut. Res.* **32**, 11708-11726
881 (2025).

882 27. Gomaa, M. & Ali, M. M. A. Enhancement of microalgal
883 biomass, lipid production and biodiesel characteristics by
884 mixotrophic cultivation using enzymatically hydrolyzed
885 chitin waste. *Biomass and Bioenergy* **154**, 106251 (2021).

886 28. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. &
887 Smith, F. Colorimetric Method for Determination of Sugars
888 and Related Substances. *Anal. Chem.* **28**, 350-356 (1956).

890 29. Bell, B. M., Daniels, D. G. H., Fearn, T. & Stewart, B. A.
891 Lipid compositions, baking qualities and other
892 characteristics of wheat varieties grown in the U.K. *J. Cereal*
893 *Sci.* **5**, 277-286 (1987).

894 30. Johnson, M. B. & Wen, Z. Production of Biodiesel Fuel from
895 the Microalga *Schizochytrium limacinum* by Direct
896 Transesterification of Algal Biomass. *Energy & Fuels* **23**,
897 5179-5183 (2009).

898 31. Fawzy, M. A., El-Naeb, E. H., Hifney, A. F., Adam, M. S. &
899 Gomaa, M. Growth behavior, phenol removal and lipid
900 productivity of microalgae in mixotrophic and heterotrophic
901 conditions under synergistic effect of phenol and
902 bicarbonate for biodiesel production. *J. Appl. Phycol.* **34**,
903 2981-2994 (2022).

904 32. Ramírez-Verduzco, L. F., Rodríguez-Rodríguez, J. E. &
905 Jaramillo-Jacob, A. del R. Predicting cetane number,
906 kinematic viscosity, density and higher heating value of
907 biodiesel from its fatty acid methyl ester composition. *Fuel*
908 **91**, 102-111 (2012).

909 33. Sarin, A. *et al.* Effect of blends of Palm-Jatropha-Pongamia
910 biodiesels on cloud point and pour point. *Energy* **34**, 2016-
911 2021 (2009).

912 34. Fawzy, M. A. & Gomaa, M. Pretreated fucoidan and alginate
913 from a brown seaweed as a substantial carbon source for

914 promoting biomass, lipid, biochemical constituents and
915 biodiesel quality of *Dunaliella salina*. *Renew. Energy* **157**,
916 246-255 (2020).

917 35. Ji, M.-K. *et al.* Effect of food wastewater on biomass
918 production by a green microalga *Scenedesmus obliquus* for
919 bioenergy generation. *Bioresour. Technol.* **179**, 624-628
920 (2015).

921 36. Amit & Kumar Ghosh, U. Utilization of kinnow peel extract
922 with different wastewaters for cultivation of microalgae for
923 potential biodiesel production. *J. Environ. Chem. Eng.* **7**,
924 103135 (2019).

925 37. Malakar, B., Das, D. & Mohanty, K. Utilization of Chlorella
926 Biomass Grown in Waste Peels-Based Substrate for
927 Simultaneous Production of Biofuel and Value-Added
928 Products Under Microalgal Biorefinery Approach. *Waste and*
929 *Biomass Valorization* **14**, 3589-3601 (2023).

930 38. Park, W.-K. *et al.* Use of orange peel extract for mixotrophic
931 cultivation of *Chlorella vulgaris*: Increased production of
932 biomass and FAMEs. *Bioresour. Technol.* **171**, 343-349
933 (2014).

934 39. Yaakob, M. A., Mohamed, R. M. S. R., Al-Gheethi, A.,
935 Aswathnarayana Gokare, R. & Ambati, R. R. Influence of
936 Nitrogen and Phosphorus on Microalgal Growth, Biomass,
937 Lipid, and Fatty Acid Production: An Overview. *Cells* **10**, 393

938 (2021).

939 40. Negi, S. *et al.* Impact of nitrogen limitation on biomass,
940 photosynthesis, and lipid accumulation in Chlorella
941 sorokiniana. *J. Appl. Phycol.* **28**, 803-812 (2016).

942 41. Gao, Y., Ji, L., Feng, J., Lv, J. & Xie, S. Effects of Combined
943 Nitrogen Deficient and Mixotrophic (+Glucose) Culture on
944 the Lipid Accumulation of Parachlorella Kessleri TY. *Water*
945 **13**, 3066 (2021).

946 42. Srinivasan, R. *et al.* Bicarbonate supplementation enhances
947 growth and biochemical composition of Dunaliella salina V-
948 101 by reducing oxidative stress induced during
949 macronutrient deficit conditions. *Sci. Rep.* **8**, 6972 (2018).

950 43. Abomohra, A., Li, M., Faisal, S., Li, L. & Elsayed, M.
951 Maximizing Nitrogen Removal and Lipid Production by
952 Microalgae under Mixotrophic Growth Using Response
953 Surface Methodology : Towards Enhanced Biodiesel
954 Production. (2022).

955 44. Arora, N., Patel, A., Pruthi, P. A. & Pruthi, V. Synergistic
956 dynamics of nitrogen and phosphorous influences lipid
957 productivity in Chlorella minutissima for biodiesel
958 production. *Bioresour. Technol.* **213**, 79-87 (2016).

959 45. Liang, K., Zhang, Q., Gu, M. & Cong, W. Effect of
960 phosphorus on lipid accumulation in freshwater microalga

961 Chlorella sp. *J. Appl. Phycol.* **25**, 311-318 (2013).

962 46. Gómez-De la Torre, A. E., Ochoa-Alfaro, A. E., Rocha-Uribe,
963 A. & Soria-Guerra, R. E. Effects of sulfur and phosphorus
964 concentration on the lipid accumulation and fatty acid
965 profile in Chlorella vulgaris (Chlorophyta). *Folia Microbiol.*
966 (*Praha*). **68**, 453-463 (2023).

967 47. Sato, N., Hagio, M., Wada, H. & Tsuzuki, M. Environmental
968 effects on acidic lipids of thylakoid membranes. *Biochem.*
969 *Soc. Trans.* **28**, 912-914 (2000).

970 48. Reitan, K. I., Rainuzzo, J. R. & Olsen, Y. Effect of nutrient
971 limitation on fatty acid and lipid content of marine
972 microalgae. *J. Phycol.* **30**, 972-979 (1994).

973 49. Chu, F.-F. *et al.* Phosphorus plays an important role in
974 enhancing biodiesel productivity of Chlorella vulgaris under
975 nitrogen deficiency. *Bioresour. Technol.* **134**, 341-346
976 (2013).

977 50. Ghafari, M., Rashidi, B. & Haznedaroglu, B. Z. Effects of
978 macro and micronutrients on neutral lipid accumulation in
979 oleaginous microalgae. *Biofuels* **9**, 147-156 (2018).

980 51. Sugimoto, K., Tsuzuki, M. & Sato, N. Regulation of synthesis
981 and degradation of a sulfolipid under sulfur-starved
982 conditions and its physiological significance in
983 Chlamydomonas reinhardtii. *New Phytol.* **185**, 676-686

984 (2010).

985 52. Wang, Q., Zhang, Y., Wu, H., Xu, N. & Li, A. Effects of sulfur
986 limitation on nitrogen and sulfur uptake and lipid
987 accumulation in *Scenedesmus acuminatus*. *J. Appl. Phycol.*
988 **33**, 301–311 (2021).

989 53. Koh, H. G. *et al.* Photosynthetic Improvement of Industrial
990 Microalgae for Biomass and Biofuel Production. in *Microbial*
991 *Photosynthesis* 285–317 (Springer Singapore, Singapore,
992 2020). doi:10.1007/978-981-15-3110-1_14.

993 54. Sakarika, M. & Kornaros, M. Kinetics of growth and lipids
994 accumulation in *Chlorella vulgaris* during batch
995 heterotrophic cultivation: Effect of different nutrient
996 limitation strategies. *Bioresour. Technol.* **243**, 356–365
997 (2017).

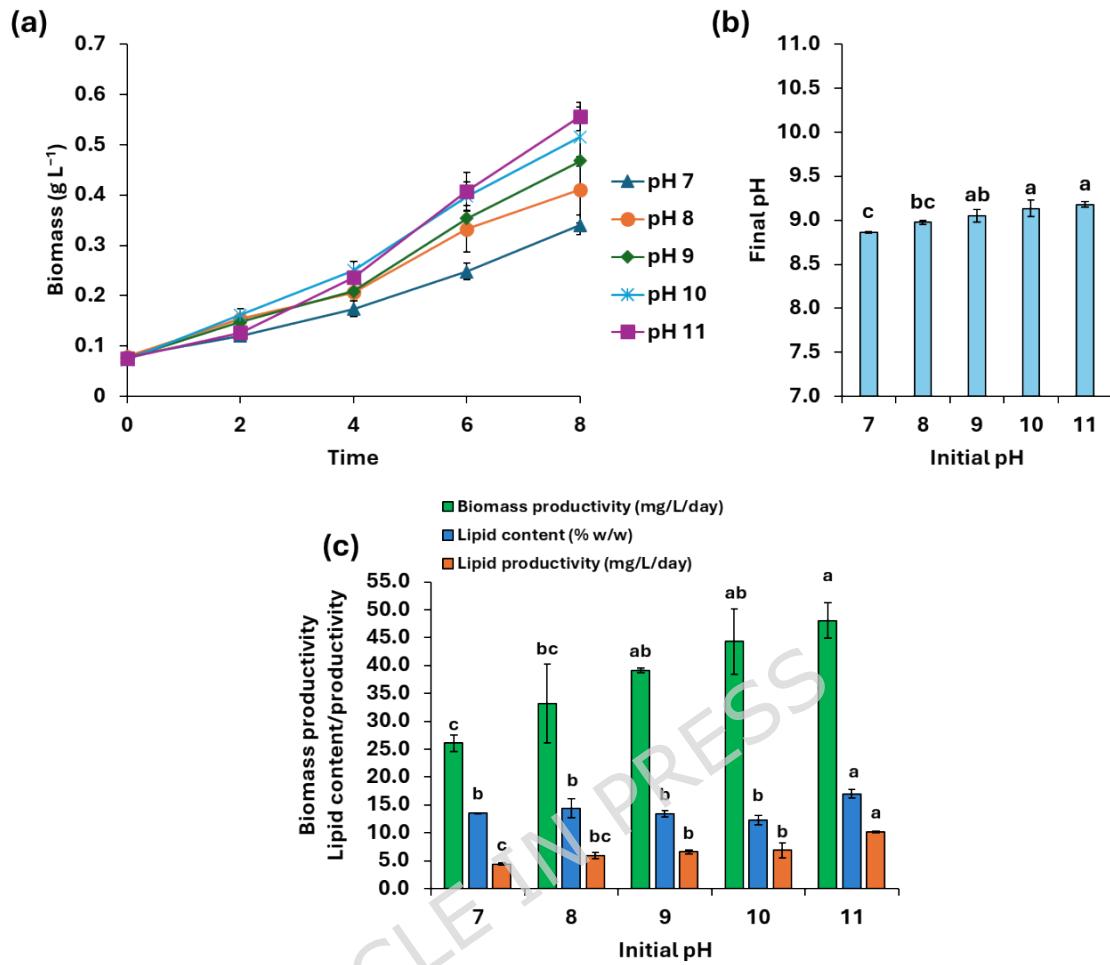
998 55. Abida, H. *et al.* Membrane Glycerolipid Remodeling
999 Triggered by Nitrogen and Phosphorus Starvation in
1000 *Phaeodactylum tricornutum*. *Plant Physiol.* **167**, 118–136
1001 (2015).

1002 56. Belotti, G., Bravi, M., Caprariis, B. de, Filippis, P. de &
1003 Scarsella, M. Effect of Nitrogen and Phosphorus Starvations
1004 on <i>Chlorella vulgaris</i>
1005 Lipids Productivity and Quality under Different Trophic
1006 Regimens for Biodiesel Production. *Am. J. Plant Sci.* **04**, 44–
1007 51 (2013).

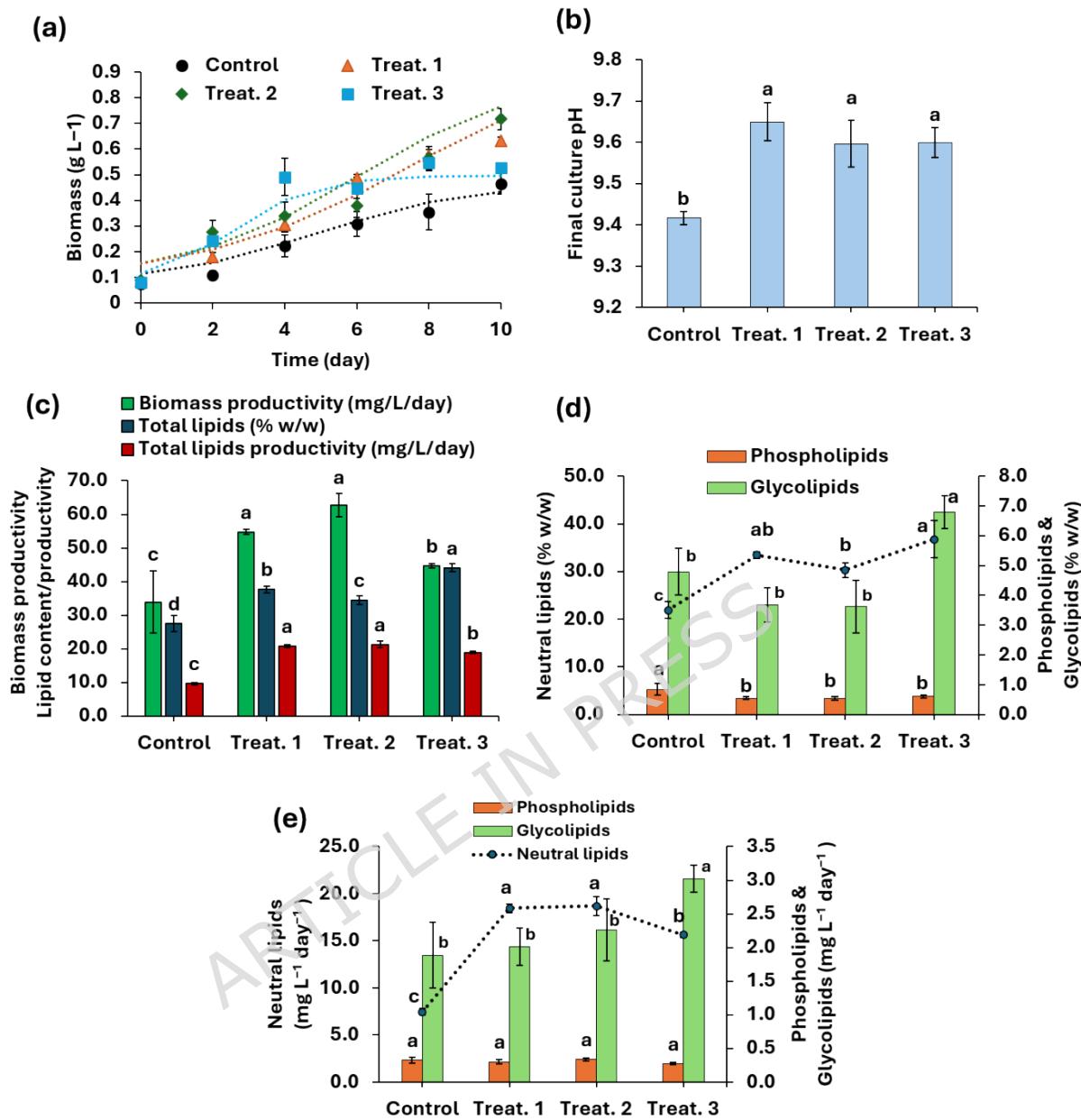
1008 57. Moreno-Garcia, L., Gariépy, Y., Barnabé, S. & Raghavan, V.
1009 Factors affecting the fatty acid profile of wastewater-grown-
1010 algae oil as feedstock for biodiesel. *Fuel* **304**, 121367
1011 (2021).

1012 58. Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E. &
1013 Natarajan, M. Review of biodiesel composition, properties,
1014 and specifications. *Renew. Sustain. Energy Rev.* **16**, 143-
1015 169 (2012).

1016 59. Anahas, A. M. P. & Muralitharan, G. Characterization of
1017 heterocystous cyanobacterial strains for biodiesel
1018 production based on fatty acid content analysis and
1019 hydrocarbon production. *Energy Convers. Manag.* **157**, 423-
1020 437 (2018).


1021 60. Knothe, G. Improving biodiesel fuel properties by modifying
1022 fatty ester composition. *Energy Environ. Sci.* **2**, 759 (2009).

1023


1024

1025

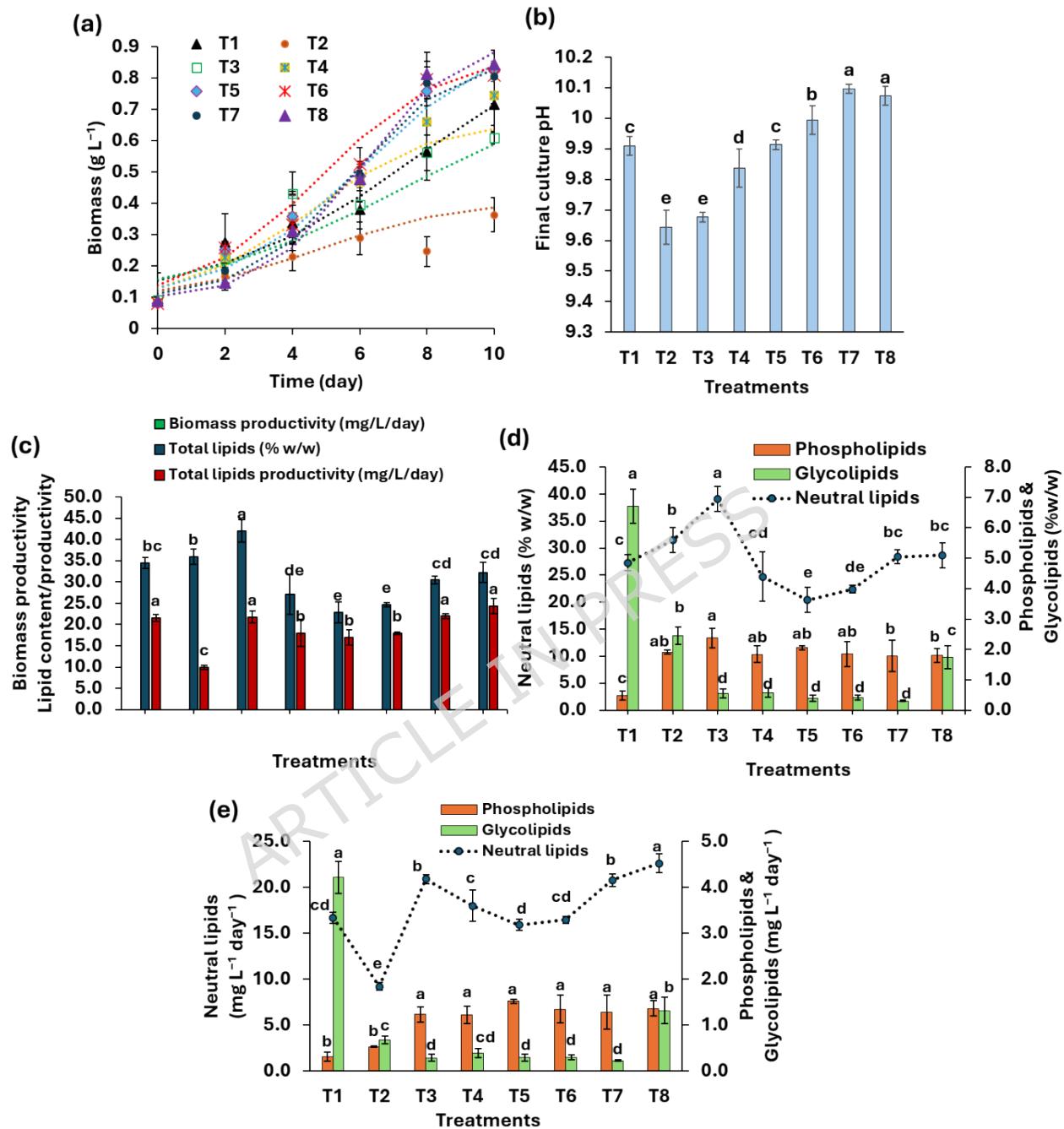

1026

Fig. 1: Growth curves (a), variations in biomass productivity, lipid content/productivity (b), and variation of final culture pH (c) of *T. obliquus* under photo-autotrophic conditions at different initial pH values. Values are measured as mean \pm standard deviation. Different letters above columns indicate significant differences at P-value < 0.05 .

Fig. 2: (a) Growth curves fitted by modified logistic model (dotted lines), (b) variations in final culture pH, (c) variation in biomass productivity, total lipids contents/productivity, (d) contents of neutral lipids, phospholipids, and glycolipids, and (e) productivities of neutral lipids, phospholipids, and glycolipids of *T. obliquus* under mixotrophic fed-batch conditions at initial pH 11 using different concentrations (Treat. 1: 1 mL, Treat. 2: 2 mL, and Treat. 3: 3 mL of potato peel hydrolysate) in relation to autotrophic control. Values are measured as mean \pm standard deviation. Different letters above columns indicate significant differences at P-value < 0.05 .

Fig. 3: (a) Growth curves fitted by modified logistic model (dotted lines), (b) variations in final culture pH, (c) variation in biomass productivity, total lipids contents/productivity, (d) contents of neutral lipids, phospholipids, and glycolipids, and (e) productivities of neutral lipids, phospholipids, and glycolipids of *T. obliquus* under mixotrophic fed-batch conditions at initial pH 11 using 2 mL of potato peel hydrolysate and different conditions of nutrient

availability. T1: Control (alkaline medium (AM)), T2: Nitrogen deprivation (the AM lacked NaNO_3 , and NH_4Cl), T3: Low nitrogen (the AM lacked NaNO_3 but contained 0.05 g L^{-1} of NH_4Cl), T4: Moderate nitrogen (the AM contained 0.1 g L^{-1} of NaNO_3 and 0.05 g L^{-1} of NH_4Cl), T5: Phosphate deprivation (the AM lacked K_2HPO_4), T6: Low phosphate (the AM contained 0.1 g L^{-1} of K_2HPO_4), T7: Sulphate deprivation (the AM lacked $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$), T8: Low sulphate (the AM contained 0.02 g L^{-1} of $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$). Values are measured as mean \pm standard deviation. Different letters above columns indicate significant differences at P -value < 0.05 .

Table 1: Different nutrient limited and deprived conditions for the fed-batch mixotrophic growth of *T. obliquus* using 2 mL potato peel hydrolysate at 2-days interval

Code	Name	Treatment conditions
T1	Control	Alkaline medium (AM)
T2	Nitrogen deprivation	The AM lacked NaNO_3 and NH_4Cl
T3	Low nitrogen	The AM lacked NaNO_3 but contained $0.05 \text{ g L}^{-1} \text{NH}_4\text{Cl}$
T4	Moderate nitrogen	The AM contained $0.1 \text{ g L}^{-1} \text{NaNO}_3$ and $0.05 \text{ g L}^{-1} \text{NH}_4\text{Cl}$
T5	Phosphate deprivation	The AM lacked K_2HPO_4
T6	Low phosphate	The AM contained $0.1 \text{ g L}^{-1} \text{K}_2\text{HPO}_4$
T7	Sulphate deprivation	The AM lacked $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$
T8	Low sulphate	The AM contained $0.02 \text{ g L}^{-1} \text{MgSO}_4 \cdot 7\text{H}_2\text{O}$

Table 2: Variations of maximum growth rate (μ_{\max}) and lag time of *T. obliquus* growth under mixotrophic fed-batch conditions at initial pH 11 using different concentrations (1, 2, and 3 mL of potato peel hydrolysate) in relation to the autotrophic control.

Treatments	μ_{\max}	Lag time	R²	RMSE
Control	0.05 ± 0.01 ^c	0.86 ± 0.71 ^b	0.99	0.02
1 mL	0.08 ± 0.002 ^b	1.19 ± 0.05 ^b	0.98	0.05
2 mL	0.11 ± 0.009 ^a	1.82 ± 0.69 ^{ab}	0.98	0.05
3 mL	0.12 ± 0.008 ^a	2.40 ± 0.38 ^a	0.75	0.19

Values are measured as mean ± standard deviation.

Different superscript letters indicate significant differences at $p < 0.05$.

R^2 : coefficient of determination.

RMSE: root mean square error.

Table 3: Variations of maximum growth rate (μ_{\max}) and lag time of *T. obliquus* at initial pH 11 using 2 mL of potato peel hydrolysate and different conditions of nutrient availability. T1: Control (alkaline medium (AM)), T2: Nitrogen deprivation (the AM lacked NaNO₃, and NH₄Cl), T3: Low nitrogen (the AM lacked NaNO₃ but contained 0.05 g L⁻¹ of NH₄Cl), T4: Moderate nitrogen (the AM contained 0.1 g L⁻¹ of NaNO₃ and 0.05 g L⁻¹ of NH₄Cl), T5: Phosphate deprivation (the AM lacked K₂HPO₄), T6: Low phosphate (the AM contained 0.1 g L⁻¹ of K₂HPO₄), T7: Sulphate deprivation (the AM lacked MgSO₄.7H₂O), T8: Low sulphate (the AM contained 0.02 g L⁻¹ of MgSO₄.7H₂O).

Treatments	μ_{\max}	Lag time	R²	RMSE
	0.14 ± 0.003 ^{ab}	2.19 ± 0.70 ^b	0.96	0.17
T1	0.10 ± 0.003 ^{cd}	1.95 ± 0.35 ^{bc}	0.87	0.19
	0.14 ± 0.01 ^{ab}	3.63 ± 0.15 ^a	0.87	0.14
T2	0.12 ± 0.001 ^{bc}	1.50 ± 0.15 ^{bc}	0.95	0.13
	0.19 ± 0.026 ^a	3.42 ± 0.37 ^a	0.97	0.08
T3	0.15 ± 0.015 ^{ab}	1.04 ± 0.04 ^c	0.98	0.14
	0.07 ± 0.01 ^d	0.99 ± 0.65 ^c	0.98	0.07
T4	0.11 ± 0.04 ^{bc}	3.75 ± 1.19 ^a	0.94	0.10
T5				
T6				
T7				
T8				

Values are measured as mean \pm standard deviation.

Different superscript letters indicate significant differences at $p < 0.05$.

R^2 : coefficient of determination.

RMSE: root mean square error.

Microalga	Waste pretreatment	Medium	pH	Light intensity	Biomass		Lipid	Ref.
					mgL⁻¹day⁻¹	%w/w		
<i>Synechococcus elongatus</i> BDU 10144	Potato peel waste (PPW) (Ultrasonication)	PPW (10%) in fertilizer seawater medium	9	50 $\mu\text{mol m}^{-2}\text{s}^{-1}$ (continuous)	120.70	-	-	(Chandra & Mallick, 2022)
<i>Tetraselmis indica</i>	Kinnow peel (Homogenization)	Peel extract in sewage wastewater	7	94.5 $\mu\text{mol m}^{-2}\text{s}^{-1}$ (16 light: 8 dark h)	54.77	32	17.52	(Amit & Kumar Ghosh, 2019)
<i>Scenedesmus obliquus</i>	-	Food wastewater (1%) in Bold's Basal medium	-	120 $\mu\text{mol m}^{-2}\text{s}^{-1}$ (16 light: 8 dark h)	-	19.7	13.30	(Ji et al., 2015)
<i>Chlorella sorokiniana</i>	Potato, banana, and sweet lime (acid pretreatment followed by enzymatic hydrolysis)	25% mixed waste in water	7	5000 lux (16 light: 8 dark h)	206.00	25.87	53.29	(Malakar et al., 2023)
<i>Chlamydomonas</i> sp. RCC2488 (Malina)	Potato peel waste (acid pretreatment in autoclave followed by enzymatic hydrolysis)	10% v/v PPH in modified f/2 medium	-	120 $\mu\text{mol m}^{-2}\text{s}^{-1}$ (continuous)	39.3	45.00	-	(Urme et al., 2025)
<i>Spirulina</i> sp.	Potato peel waste (acid pretreatment in autoclave	10% v/v PPH in BG-11 medium	7.5	2000 lux (12 dark:12 light h)	59.84	19.87	-	(Nguyen, 2025)

	followed by enzymatic hydrolysis)							
<i>Tetradesmus obliquus</i>	Potato peel waste (Fungal fermentation)	1% v/v potato peel hydrolysate every 2 days (synthetic medium)	11	48.4 $\mu\text{mol m}^{-2}\text{s}^{-1}$ (continuous)	75.65	32.24	24.39	This study

Table 4: comparison between biomass productivity, lipid content, and lipid productivity between the mixotrophic fed-batch cultivation proposed in the present study and previous studies.

- Not reported

Table 5: Percentage of fatty acids of *T. obliquus* under mixotrophic fed-batch treatments using 2 mL potato peel hydrolysate incorporated every 2 days. Control: growth under nutrient sufficient medium, T3: Low nitrogen (the AM lacked NaNO₃ but contained 0.05 g L⁻¹ of NH₄Cl), T8: Low sulphate (the AM contained 0.02 g L⁻¹ of MgSO₄.7H₂O).

Fatty acids (%)	Code	Control	T3	T8
Undecylenic acid	C11:1	3.00	-	-
9-Tetradecenoic acid	C14:1	0.35	-	-
Hexadecanoic acid (Palmitic acid)	C16:0	25.40	15.39	19.23
7-Hexadecenoic acid	C16:1	0.31	-	-
9-Hexadecenoic acid	C16:1	-	0.84	-
Hexadecenoic acid z-11	C16:1	0.31	-	-
9-Octadecenoic acid (oleic acid)	C18:1	59.46	44.51	38.65
cis-Vaccenic acid	C18:1	1.01	24.22	3.46
Ricinoleic acid	C18:1	8.86	-	-
cis-13-Octadecenoic acid	C18:1	-	-	7.88
trans-9-Octadecenoic acid (Elaidic acid)	C18:1	-	2.39	6.15
6-Octadecenoic acid	C18:1	-	3.58	-
trans-13-Octadecenoic acid	C18:1	1.29	5.25	14.81
11-octadecenoate	C18:1	-	-	3.85
cis-13-Eicosenoic acid	C20:1	-	-	2.69
9,12-Octadecadienoic acid (Z,Z)-	C18:2	-	3.82	3.27
% Saturated fatty acids		25.40	15.39	19.23
% Monounsaturated fatty acids		74.59	80.79	77.49
% Polyunsaturated fatty acids		00.00	3.82	3.27

Table 6: Biodiesel characteristics of *T. obliquus* under under mixotrophic fed-batch treatments using 2 mL potato peel hydrolysate incorporated every 2 days. Control: growth under nutrient sufficient medium, T3: Low nitrogen (the AM lacked NaNO₃ but contained 0.05 g L⁻¹ of NH₄Cl), T8: Low sulphate (the AM contained 0.02 g L⁻¹ of MgSO₄.7H₂O).

Biodiesel characters	Control	T3	T8	International Standards		
				EN 14214	ASTM D6751-02	IS 15607
SV (mg KOH g⁻¹ fat)	205.91	187.92	201.69	-	-	-
IV (g I₂ 100 g⁻¹ fat)	68.23	73.45	91.48	≤120	-	-
CN	57.45	58.82	52.78	≥ 51	≥ 47	≥ 51
DU (wt. %)	74.60	88.42	84.04	-	-	-
OS (h)	4.91	4.37	4.54	≥ 6	≥ 3	≥ 6
LCSF	2.54	1.54	1.92	-	-	-
CFPP (°C)	-8.50	-11.64	-10.44	≤5/-20		6/18
CP (°C)	8.36	3.54	5.12	-	-	-
PP (°C)	2.26	-2.97	-1.26	-	-	3/15
ν (mm² s⁻¹)	3.24	3.74	3.96	3.5 -5.0	1.9 -6.0	2.5 -6.0

ρ (g cm⁻³)	0.88	0.88	0.88	0.86- 0.90	0.86- 0.90	0.86- 0.90
HHV (MJ Kg⁻¹)	39.29	39.82	39.97	-	-	-
FP (°C)	166.961	162.153	165.217	>120	>130	>120

EN: European Committee for Standardization, **ASTM**: American Society for Testing and Materials, **IS**: Indian standard, **SV**: saponification value; **IV**: iodine value; **CN**: cetane number; **DU**: degree of unsaturation; **OS**: oxidation stability; **LCSF**: long chain saturation factor; **CFPP**: cold filter plugging point; **CP**: cloud point; **PP**: pour point; **ν** : kinematic viscosity; **ρ** : density; **HHV**: higher heating value and **FP**: flash point.