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Abstract 

Parkinson’s disease (PD) is the second most common neurological disorder, but its diagnosis 

remains challenging. Cerebral glucose metabolism has emerged as a promising biomarker for PD 

based on previous studies. While these studies have established a PD-related pattern of metabolic 

activity of glucose in the brain, cerebral oxygen metabolism is less explored, and there is no well-

established PD-related pattern of cerebral oxygen metabolism. This study investigates cerebral 

oxygen extraction fraction (OEF) as a measure of cerebral oxygen metabolism to monitor disease 

progression in early-stage PD. OEF was measured noninvasively using magnetic resonance 

imaging using the QSM+qBOLD technique in 50 PD patients and 30 healthy controls. Whole-

brain and region-of-interest analyses were conducted, focusing on key regions within the basal 

ganglia. Results revealed significantly elevated OEF in the basal ganglia of PD patients compared 

to controls. Moreover, OEF showed a positive correlation with Unified Parkinson’s Disease Rating 

Scale Part III scores, indicating an association between increased oxygen extraction and motor 

impairment severity in early PD. These findings support the potential of cerebral OEF as an early 

biomarker of motor symptom severity. Therefore, it can enhance our understanding of metabolic 

dysfunction in the basal ganglia during the early stages of PD.  

 

Keywords: Brain Metabolism; Cerebral Oxygen Metabolism; Motor Impairment; Oxygen 

Extraction Fraction; Parkinson’s Disease  
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Introduction 

Parkinson’s disease (PD) is the second most common neurological disorder after Alzheimer’s 

disease1. It is typically diagnosed based on the neurological examination of its motor symptoms, 

such as bradykinesia, resting tremors, and rigidity1. However, the non-specificity of these 

symptoms leads to a high rate of misdiagnosis, especially in the early stages of the disease2, 

creating problems for patient management, prognosis, and patient selection for clinical trials3. To 

enhance early diagnostic accuracy and deepen our understanding of PD’s pathophysiology, 

additional noninvasive biomarkers that reflect the severity of motor impairment should be explored. 

Cerebral metabolic rates, measured as cerebral glucose metabolic rate (CMRglc) via 18F-fluoro-

deoxyglucose (FDG) PET or cerebral metabolic rate of oxygen (CMRO2) via 15O-PET, show 

potential as early biomarkers of PD. PD-related metabolic pattern (PDRP)4-8 has been established 

as a characteristic glucose metabolism increase in the globus pallidus, putamen, subthalamic 

nucleus, thalamus, cerebellum, pons, and sensorimotor cortex, along with a decrease in the lateral 

frontal and parietooccipital area3,9,10. PDRP-like oxygen metabolism increase in the basal ganglia 

has been observed using 15O-PET7; however, this pattern is not well established11. Scarcity of 15O-

PET studies is likely due to difficulties of its clinical application, which is hampered by complex 

logistics, patient exposure to radiation, and the requirement for an on-site cyclotron to produce the 

15O isotope, which has a short half-life of 2ௗmin12. Alternatively, CMRO2 may be noninvasively 

measured using MRI with a two-step process: first, phase-contrast MRI or arterial spin labeling13 

measures cerebral blood flow (CBF), and second, T2-relaxation-under-spin-tagging14, quantitative 

susceptibility mapping (QSM)15, or quantitative blood oxygen level dependent (qBOLD)16 

imaging measures venous oxygenation17. While this combination of MRI measurements provides 
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a viable alternative to PET, oxygen extraction fraction (OEF), defined as the venous to arterial 

oxygenated hemoglobin concentration ratio, can be assessed independently of CBF measurements. 

As such, OEF may serve as a practical and informative biomarker for monitoring changes in 

cerebral oxygen metabolism as PD progresses as shown in previous studies18. 

On the other hand, OEF cannot be directly interpreted as a measurement of oxygen metabolism as 

CMRO₂ is the product of OEF and CBF. Previous studies have reported unaltered CBF in the basal 

ganglia for PD patients compared to healthy controls, while a positive correlation between disease 

severity and CBF was observed19,20. Building on these findings, this study examines changes in 

OEF within the basal ganglia to determine whether abnormalities in oxygen metabolism are 

present in this region. Consequently, routine OEF measurement may provide valuable insights into 

the physiological mechanisms underlying oxygen metabolism patterns associated with PD. 

While most previous studies have focused on alterations in gray matter metabolic rates, recent 

evidence suggests that white matter (WM) may also include markers of PD21. WM hyperintensities 

in T2-weighted images have been reported to be closely linked with motor symptoms in PD patients. 

WM hyperintensities are an indicator of cerebral small vessel disease, which suggests an 

underlying hypoperfusion in the WM21, which should be taken into account when interpreting OEF 

measurements.  

In short, this study aims to investigate cerebral OEF as a potential biomarker for early to mid-stage 

PD. OEF was noninvasively measured using the QSM+qBOLD (QQ) method22 with a multi-

gradient-echo MRI experiment. OEF measurements were interpreted alongside previously 

reported CBF measurements20 for adequate assessment of cerebral oxygen metabolism. This 
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approach provides a deeper understanding of oxygen metabolism abnormalities in PD and explores 

the potential of OEF as an early biomarker for PD and its progression. 

Methods 

Participants 

Participants were recruited from Pusan National University Yangsan Hospital (Yangsan, Republic 

of Korea). All participants provided informed consent in accordance with the Declaration of 

Helsinki. The study protocol was approved by the local institutional review board, and all methods 

were carried out in accordance with relevant guidelines and regulations. PD was diagnosed by an 

experienced neurologist (J.H.L., with 20 years of experience in movement disorders) using the UK 

Parkinson’s Disease Society Brain Bank criteria23. None of the healthy control (HC) subjects had 

a history of head trauma, stroke, or any neurological or psychiatric illnesses. 

The study included 50 patients diagnosed with PD and 30 HC participants. For the PD group, 42 

participants’ UPDRS-III24 scores, Hoehn and Yahr (H-Y)25 stages, and the Korean version of the  

Mini-Mental State Examination (2nd edition) (MMSE)26 scores were assessed without requiring 

the withdrawal of PD medications, including levodopa or other dopamine agonists.  

Magnetic Resonance Imaging 

All participants underwent 3-T in vivo MRI (Magnetom Skyra; Siemens). A two-dimensional 

multi-gradient recalled echo (mGRE) sequence with six echoes was used. The echo times (TEs) 

were 3.1, 8.0, 13.5, 19.9, 24.4, and 30.0 ms. The repetition time (TR) was 2.03 s, scan time 6.5 

min, with a flip angle of 60 degrees. The matrix size was 192×192×60, with a resolution of 1×1×2 
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mm and a 0.2 mm slice gap. The imaging geometry was parallel to the anterior commissure–

posterior commissure line, while covering the whole brain. 

Quantitative Susceptibility Mapping and Oxygen Extraction Fraction Measurement 

Quantitative susceptibility mapping (QSM) was performed in the native mGRE space using the 

morphology-enabled dipole inversion with the automatic uniform cerebrospinal fluid zero 

reference (MEDI+0) algorithm27. Phase unwrapping was performed with Laplacian unwrapping, 

and background removal was performed using the projection onto dipole fields method28 (Figure 

1). QSM+qBOLD or QQ method29 was used for OEF mapping, which has been previously 

validated by comparison with 15O-PET and calibrated BOLD22 results, and has also been clinically 

applied to neurologic diseases29. With this method, OEF can be mapped without vascular 

challenges by utilizing both the magnitude and phase of mGRE data, a common sequence in any 

MRI system, making it well-suited for clinical use. This method combines QSM and qBOLD 

signal equations according to maximum likelihood under Gaussian noise approximation. One 

drawback, though, is that QQ results are highly sensitive to noise. To address this, various machine 

learning and deep learning algorithms have been developed30-32, among which the latest machine 

learning algorithm, termed temporal clustering, tissue composition, and total variation (CCTV), 

was utilized in this study. CCTV first employs the cluster analysis of time evolution (CAT) method, 

which creates clusters based on the signal characteristics (i.e., R2
* decay rate) and tissue type of 

voxels (i.e., gray or white matter). Averaging over these clusters increases the signal-to-noise ratio 

(SNR) and mitigates noise sensitivity. Then, CCTV applies total variation regularization to 

alleviate the propagation of measurement noise into the parameter map32 (Figure 1). 
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Figure 1. Summary of the QSM and OEF mapping process. The arrows represent the flow of 

processing. Color coding indicates the use of that information in a particular process (e.g., the R2
*
 

map and magnitude images used as morphological priors in MEDI+0.) QSM, quantitative 

susceptibility mapping; OEF, oxygen extraction fraction; MEDI+0, morphology-enabled dipole 

inversion with an automatic uniform cerebrospinal fluid zero reference algorithm. 
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Subject Registration and Segmentation 

T2
*-weighted images acquired by averaging the last three echoes of mGRE images were used for 

the registration process. First, a preliminary linear registration was performed to create an average 

image using FMRIB’s Linear Image Registration Tool (FLIRT) (version 6.0.7.10)33. Once the 

average image is created, all subjects’ images are registered to it with affine and nonlinear 

registration using FLIRT and FNIRT tools of FSL. Transformation matrices from this process were 

used to register OEF maps to the average image space. For the region of interest analyses, each 

subject’s QSM was manually segmented using ITK-SNAP software (version 3.8.0)34 as the 

substantia nigra (SN), red nucleus (RN), putamen, globus pallidus (GP), and caudate nucleus (CN). 

The same rater segmented the regions after a six-month gap, and the Dice coefficients between the 

segmentations were 0.8691, 0.8597, 0.8628, 0.8119, and 0.8072 for the SN, RN, putamen, GP, and 

CN, respectively. White matter (WM) segmentation was performed using FSL’s FAST tool. 

Statistical Analysis 

Statistical analyses were performed with MATLAB software (version 2023a; MathWorks) and 

Python (version 3.11, Python Software Foundation). Demographic data were compared between 

the HC and PD patient groups using the 𝜒ଶ test for sex and the Mann-Whitney U test for age. For 

the whole-brain analysis, the General Linear Model (GLM) framework in FSL was performed on 

the registered OEF maps. Two analyses were conducted. First, the OEF difference between the PD 

and HC groups was investigated. Second, the correlation between UPDRS-III scores and OEF was 

investigated. Age and sex were included as nuisance variables for these analyses. To reduce false 

positives arising from noise, voxel-wise significance maps were subjected to cluster-based 
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thresholding where clusters smaller than 100 voxels were excluded to remove isolated voxels 

likely occurring by chance. 

For the ROI analysis, the mean intensity of the ROIs was calculated, and then the distribution of 

the mean intensities in the HC and PD groups was compared using the two-tailed t-test. Normality 

of the distribution of the mean OEF values in the ROIs was assessed with the Anderson-Darling 

test. Group differences were quantified using Cohen’s d, calculated as the difference in group 

means divided by the pooled standard deviation. For the PD group, Spearman correlation was 

calculated between UPDRS-III, H-Y stage, age, MMSE, and the mean OEF of the ROIs. To ensure 

that correlations between OEF and UPDRS-III scores were not due to the mediation of age, partial 

Spearman correlations were calculated with age as a control variable. 

 To calculate an interpretable effect size, the linear relationship between UPDRS-III and OEF was 

calculated with linear regression with age and sex as control variables, and the amount of OEF 

increase per 10 points of UPDRS-III score increase is reported. No major violations of linear 

regression assumptions were observed based on residual diagnostics. CBF measurements from a 

prior study20 were visualized along with the OEF measurements (under CC BY-NC 4.0 license for 

Pelizzari et al.20).  

Finally, the predictive power of the mean OEF of the ROIs for classifying PD was tested using 

binary logistic regression. Two models were tested: first with the mean OEF values and non-blood 

susceptibility, and second with mean OEF values alone. The two models were tested for all 

participants and participants with an average of OEF < 0.3 (HC = 17, PD = 17). Model performance 

was evaluated with receiver operating characteristic curve (ROC) analysis. These models were 

validated using leave-one-out cross validation, and the overall AUC scores are reported. 
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Results 

Demographic and Clinical Characteristics 

The HC group included 15 male and 15 female participants, while the PD group had 27 male and 

23 female participants. There were no significant differences in gender distribution between the 

two groups (χ²(1, N = 71) = 0.1156, p = 0.851) (Table 1). The PD group was 5.4 years older than 

the control group on average (z = −2.366, p = 0.018). The mean scores of UPDRS-III (19.9 ± 6.64, 

mean ± std), and H-Y stage (2.08 ± 0.44, mean ± std) suggest that the enrolled PD patients were 

in the early to mid-stages of the disease. All participants were non-demented at the time of the 

study, with a mean MMSE score of 28.1 ± 1.79 (mean ± std) for the PD group.  

Widespread Increase of OEF in PD group correlates with Motor Impairment 

Severity 

OEF was significantly elevated in the key regions of the basal ganglia for the PD group (Figure 2 

and Supplementary Figure 1 for all slices). Similarly, we have observed a correlation between 

UPDRS-III scores and the OEF values in widespread regions in the brain (Figure 2). These effects 

were observed in the white matter and deep gray matter regions with modest effect sizes. To 

minimize the influence of spurious findings, only clusters exceeding a minimum size threshold of 

100 voxels were retained, excluding isolated voxels likely due to chance. Notably, the spatial 

distribution of these clusters was not random, suggesting a systematic pattern of increased OEF 

associated with motor impairment severity. Therefore, we have further investigated these 

correlations through ROI based analysis. 
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Figure 2. Results of whole-brain analysis. A) Anatomical reference is shown with regions of 

interest in colored outlines. Three slices are shown at positions Z = -5, -3, 0 in reference to the 

average subject origin. B) Regional differences in OEF between PD and HC groups where T > 0 

indicates PD > HC. Age and sex have been included as nuisance variables.  C) OEF of regions that 

are correlated with UPDRS-III scores where T > 0 indicates positive correlation between UPDRS-

III scores and OEF. Age and sex have been included as nuisance variables.  Only p < 0.05 is shown. 
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Only clusters exceeding a minimum size threshold of 100 voxels were retained. OEF, oxygen 

extraction fraction; PD, Parkinson’s disease; HC, healthy control.  

Significantly Higher OEF in Basal Ganglia and White Matter 

The PD group showed, on average, ~8% elevated OEF in the target ROIs compared to the HC 

group (Figure 3). The ROIs were selected as key areas of the brain associated with PD, including 

the SN, where the difference was statistically significant (Two-tailed t-test: t(78) = 2.07, p = 0.042, 

d = 0.48). Similar significant increases in OEF were observed in the RN (p = 0.048, t(78) = 2.01, 

d = 0.46), GP (p = 0.044, t(78) = 2.02, d = 0.47) and putamen (p = 0.048, t(78) = 2.01, d = 0.46) 

with CN (p = 0.07, t(78) = 2.03, d = 0.42) and WM (p = 0.10, t(78) = 1.66, d = 0.38) showing 

marginal significance, although effect sizes were moderate (Supplementary Table 1). The findings 

suggest that these critical regions show higher metabolic activity or altered oxygen utilization in 

PD patients. 
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Figure 3. Group level comparison with the two-tailed t-test results of OEF in each ROI (n = 50 for 

PD, and n = 30 for HC). Asterisk “*” indicates p < 0.05. OEF, oxygen extraction fraction; PD, 

Parkinson’s disease; ROI, region of interest; HC, healthy control; DGM, deep gray matter. 

Positive Correlation Between PD Metrics and OEF 

The OEF values in the SN, RN, GP, and WM positively correlated with UPDRS-III motor scores 

(p < 0.05), with Spearman correlation coefficients ranging from 0.330 to 0.341 (Figure 4A-B). 

These relationships remained significant after controlling for age (Table 2). OEF increased by an 

average of 1.6% in RN, SN, GP, and WM per 10 points increase in UPDRS-III scores. OEF in the 

putamen also showed a positive trend with UPDRS-III (ρ = 0.288), but this did not reach statistical 

significance, indicating a marginal relationship (p < 0.1). Similarly, CN also showed a positive 

trend with no statistical significance. Additionally, a consistent pattern of positive correlation was 

noted between OEF and H-Y stage, although only the RN and WM regions reached significance 

(asterisk-marked, Figure 4A), suggesting that OEF elevations in the basal ganglia may track 

disease progression. 

To assess the hemodynamic relevance of these metabolic findings, we have compared the 

relationship between UPDRS-III scores and CBF values in regions using previously published data 

from Pelizzari et al.20  (Figure 4C). Their analysis shows similar positive correlations between 

CBF and UPDRS-III in SN, RN, and GP (ρ = 0.35–0.55), reinforcing the link between regional 

metabolic demand and clinical severity in PD. The converging patterns between increased OEF 

and CBF with worsening motor symptoms support the hypothesis of region-specific metabolic 

compensation or vascular dysregulation in the basal ganglia circuitry. Collectively, these findings 
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underscore the clinical relevance of OEF alterations in PD and suggest that OEF, particularly in 

SN, RN, and GP, may serve as a sensitive biomarker for motor symptom severity. 

 

Figure 4. Results of correlation analysis. (A) Correlation table showing the Spearman correlation 

between patient metrics and OEF values in the selected ROIs. The asterisk represents p < 0.05, 

and the red outline highlights the significant and marginally significant correlations between OEF 

measures and UPDRS-III. (B) Highlighted correlations with the red rectangle in panel A are 

presented as scatter plots. (n = 42 for PD) (C) CBF vs UPDRS-III relationship based on the data 

from (Pelizzari, Laganà et al.)20. Cerebral blood flow (CBF) measurements from a prior study by 

Pelizzari et al. 20, available under a CC BY-NC 4.0 license, were plotted for comparisons. OEF, 

oxygen extraction fraction; PD, Parkinson’s disease; ROI, region of interest; CBF, cerebral blood 

flow.   
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Predictive Power of OEF for Classification 

ROC analysis for the binary logistic regression models revealed low predictive power with an area 

under the ROC curve (AUC) values of around 0.65 (cross-validation results around 0.58) 

(Supplementary Figure 2). While adding non-blood susceptibility as a variable marginally 

increased the model’s predictive power, this is likely due to overfitting with the two variable model 

based on leave-one-out cross validation results (Supplementary Table 2). Overall, this suggests 

that even though OEF is elevated in the PD group, it is insufficient to classify PD. However, these 

models worked relatively well when classifying the PD and HC groups for subjects with average 

OEF less than 0.3, with AUC values of 0.78 (cross-validation AUC = 0.75) in the SN. Possibly 

due to the wider distribution of OEF values for the HC group. 

Discussion 

We have investigated OEF as an early biomarker for PD. Results show that OEF is not only 

elevated in early to mid-stage PD patients (UPDRS-III = 19.9 ± 6.64, durations = 5.4 ± 3.8) but 

also correlates with UPDRS-III scores, showing its ability to reflect the severity of motor 

impairment. Therefore, OEF can provide insight into the onset and progression of PD. To the best 

of our knowledge, this is the first observation of a positive correlation between OEF and movement 

symptom severity in early-stage PD. 

When analyzed in tandem with previously reported CBF measurements, our OEF measurements 

support the presence of a PDRP-like pattern9,35,36 manifesting as oxygen hypermetabolism in the 

basal ganglia of early PD patients, in agreement with previous papers7,18. This metabolic pattern 

may reflect the characteristic changes in brain oxygen metabolism that occur due to the loss of 
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dopaminergic neurons and the resulting disruption of neural circuits in PD. Though 

hypermetabolism in the basal ganglia was well established for glucose metabolism, there are 

conflicting studies for oxygen metabolism11,37. Our results, along with previous evidence reporting 

unaltered perfusion in the basal ganglia19,20 in PD patients compared to healthy controls, favor the 

idea that oxygen metabolism, like glucose metabolism, increases in the early stages of PD in the 

basal ganglia. Moreover, current evidence shows that motor impairment severity correlates with 

both perfusion20 and OEF, suggesting a positive correlation between oxygen metabolic rates and 

motor impairment severity in the early stages of the disease. The coupled increase in glucose and 

oxygen metabolism may signify an aerobic respiration anomaly, possibly an inefficiency in the 

mitochondria due to oxidative stress.  

Unlike our findings in the deep gray matter, the observed increase in OEF within WM may reflect 

hypoperfusion, increased oxygen metabolism, or a combination of both, given the prior 

evidences21,38. According to these studies, it is likely that hypoperfusion is the primary cause of 

the correlation between UPDRS-III scores and OEF in the WM, since markers of hypoperfusion 

were reported to be highly correlated with motor impairment severity21. However, WM is not as 

extensively investigated as gray matter and is only recently gaining attention21, and whether the 

observed effect is due to hypoperfusion or increased oxygen metabolism requires perfusion 

measurements. Therefore, a complete understanding of oxygen metabolism in WM in PD requires 

further research. 

There are limitations to this study. First, the PD group was on average 4.5 years older than the HC 

group. To account for this, we have included age as a covariate during the whole-brain GLM 

analyses and calculated the partial correlation coefficients for ROI analyses to control for age. Our 

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



 

results show that the observed relationship between UPDRS-III scores and OEF was not mediated 

by age. However, the age difference between groups represents a limitation, as residual 

confounding may remain. Second, the uniform nature of OEF39 across the brain complicates 

distinguishing metabolic rate differences in the ROIs, because an overall increase in cerebral OEF 

could mask regional variations. However, given the prior evidence showing increased CBF in basal 

ganglia regions, our results signify an increased oxygen metabolism in these regions for early PD 

patients. Third, the lack of perfusion measurements makes it difficult to interpret the relationship 

between OEF measurements and true metabolic changes. Moreover, the observed correlation 

between OEF and motor impairment severity was modest, and OEF alone showed low diagnostic 

classification, limiting its strength as a standalone biomarker. Fourth, participants in the study were 

not withdrawn from PD medications and levodopa equivalent daily dose (LEDD) was not 

calculated. Given that there is previous evidence suggesting a relationship between dopamine 

agonists and cerebral oxygen metabolism40, this should be controlled in future studies.  

In summary, although further research with perfusion measurements and longitudinal designs is 

necessary to fully understand the biological mechanisms responsible for the observed increase in 

cerebral OEF in PD patients, this study demonstrates the potential of cerebral OEF as a noninvasive 

and convenient biomarker for PD, which reflects motor impairment severity. Based on these 

findings, OEF may offer valuable insights into the oxygen metabolism in PD and its relationship 

with motor impairment severity. 

  

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



 

 

Table 1. Summary of participant demographics. H-Y stage, UPDRS-3 and MMSE scores are 

available for 42 patients.  *: Two-tailed t-test p < 0.05. 

  

 
Table 1. Participant Demographics 

 
Healthy 

Control (n 
= 30) 

Parkinson’s 
Patient (n = 

50) 

Gender 
(Male/Female) 15/15 27/23 

Age (mean ± std) 56.4 ± 
10.9 

61.4 ± 4.2* 

Disease duration 
(year) (mean ± std)  5.4 ± 3.8 

H-Y Stage  2.08 ± 0.46 

UPDRS-3 (Motor 
Eval)   19.7 ± 6.9 

MMSE  27.9 ± 1.97 
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Table 2. Correlations between PD metrics and OEF values 
Metric  Age MMSE UPDRS-III H-Y Stage 

OEF 

SN 
0.014, p = 

0.931 
-0.109, p = 

0.494 

0.336 (0.336), p 
= 0.030* 
(0.032*) 

0.282, p = 
0.070 

RN 
-0.0004, p = 

0.998 
-0.110, p = 

0.486 

0.330 (0.332), p 
= 0.033* 
(0.034*) 

0.309, p = 
0.046* 

GP 
-0.001, p = 

0.994 
-0.117, p = 

0.460 

0.338 (0.340), p 
= 0.028* 
(0.030*) 

0.298, p = 
0.049*  

Putamen 
-0.044, p = 

0.781 
-0.104, p = 

0.511 
0.288 (0.294), p 
= 0.064 (0.062) 

0.244, p = 
0.119 

CN 
-0.143, p = 

0.365 
-0.015, p = 

0.924 
0.250 (0.268), p 
= 0.110 (0.091) 

0.235, p = 
0.134 

White 
Matter 

-0.011, p = 
0.947 

-0.165, p = 
0.295 

0.341 (0.343), p 
= 0.027* 
(0.028*) 

0.313, p = 
0.044* 

 

Table 2. Spearman correlations between OEF values in selected ROIs and patient Age, MMSE, 

UPDRS-3, and H-Y stage for the PD group. Partial correlations (with age and MMSE as control 

variables) are shown in parenthesis.  *: p < 0.05. 
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