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ABSTRACT

Few-shot semantic segmentation has gained significant attention in metal surface defect detection due to its ability to segment
unseen object classes with only a few annotated defect samples. Previous methods constrained to single-episode training
suffer from limited adaptability in semantic description of defect regions and coarse segmentation granularity. In this paper,
we propose an episode-adaptive memory network (EAMNet) that specifically addresses subtle variances between episodes
during training. The episode adaptive memory unit (EAMU) leverages an adaptive factor to model semantic dependencies
across different episodes. The context adaptation module (CAM) aggregates hierarchical features of support-query pairs for
fine-grained segmentation. The proposed global response mask average pooling (GRMAP) introduces a global response
normalization to obtain fine-grained cues directly from the support prototype. We also introduce an attention distillation (AD),
which leverages fine-grained semantic attention correspondence to process defect region cues and stabilize the cross-episode
adaptation in EAMU. Extensive experiments demonstrate that our approach estabiisiies new state-of-the-art performance on
both Surface Defect-4' and FSSD-12 datasets.

Introduction

Metal surface defect detection!™ is an essential quality control process on assembly lines. Different from conventional

classification*” and anchor box detection methods®, semantic segmentation attracted extensive attention recently for its
specific location description’'°. However, the generalization capability of most metal surface defect segmentation networks is
constrained by their dependency on large annotated datasets and poor transferability to unseen classes. Data collection and
manual annotation consume substantial time and resources, particularly for dense prediction tasks.

Few-shot semantic segmentation (FSS)'">1? emerges as a promising approach to address these challenges. Specifically,
FSS is formulated as a series of episodes, each containing a support set and a query set. In contrast to supervised semantic
segmentation'?, which only segiments the same classes presented in the training set, FSS utilizes a few annotated support
samples to segment unseen classes in the query set. Therefore, the core of FSS centers on how to best utilize the information in
the support set. However, the limited support knowledge available in a single episode compromises the model’s adaptability to
various defect types and often yields coarse segmentation results. As illustrated in Figure 1(1), traditional methods typically
conduct feature extraction and fusion operations confined within a single episode to generate pixel-level mask. When combined
with well-designed feature processing, these methods can deliver competitive performance. Nevertheless, the form of single
episode hinders the models from learning the category distribution and semantic characteristics of the support set, thus limiting
their ability to fully capture the defect patterns. This constraint fundamentally causes both limitations by inducing overfitting
to episodic features like the brightness of a scratch. Consequently, models lack semantic adaptability and produce coarse
segmentation, as they cannot discern essential defect characteristics.

In this paper, we propose an episode adaptive memory network (EAMNet) to overcome the above mentioned drawbacks.
Specifically, as shown in Figure 1(2), we design an episode adaptive memory unit (EAMU) to explore the relations between
episodes and conduct the cross-episode interaction. The EAMU generates an adaptive factor to model the semantic dependencies
across episodes for defect regions. Further, we propose context adaption module (CAM) and global response mask average
pooling (GRMAP) to segment fine-grained defect regions. Considering the effectiveness of deep level features in capturing
category distribution and semantic patterns, CAM employs the deep level features of the support-query pair within a single
episode to enable fine-grained prediction. Simultaneously, GRMAP further enhance the effectiveness of the support prototype
through regulating the state of mask average pooling via global response normalization'. The limited discriminability of
early-stage features during training poses a significant challenge to these modules, particularly the EAMU, which relies on
high-quality multi-level features. To overcome this bottleneck, we present an attention distillation (AD). The AD exploits
attention correspondence at fine-grained resolutions, meticulously extracting and transferring key semantic information across
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Figure 1. Comparison between (1) Traditional Methods and (2) Our EAMNet. (1) Traditional methods extract semantic
knowledge from a single episode, which is not able to learn the holistic semantic patterns. (2) Our EAMNet utilizes an adaptive
factor and an attention distillation to capture the semantic knowledge across episodes.



soft-target from attention map. This mechanism empowers the model to analyze the semantic cues across episodes rapidly and
adapt to diverse scenarios effectively.
Our contributions can be summarized as follows:

1) An EAMU generates a cross-episode adaptive factor to exploit the semantic dependence across episodes for metal surface
defect regions.

2) We propose a CAM and a GRMAP leveraging hierarchical features and global response normalization respectively to
accomplish fine-grained segmentation.

3) To accelerate cross-episode semantic learning and enhance generalization, we introduce an AD that transfers fine-grained
semantic attention from high-resolution features.

4) Our EMANet sets new state-of-the-art results on both standard benchmarks: Surface Defect-4 and FSSD-12.

Related Work

Metal Surface Defect Detection

In metal surface defect detection, image classification, object detection, and semantic segmentation represent the fundamental
computer vision approaches. Notably, semantic segmentation-based methodologies, which offer pixel-level precision in
prediction outcomes, have recently garnered significant attention. Chao et al.!> conduct an information augmentation and
multiscale feature fusion algorithm based on YOLOvVS, which uses the information augmentation network to reduce the
information loss during feature downsampling extraction. Several studies employ unsupervised learning methods to address
metal surface defect challenges'®!7. Meanwhile, alternative approaches leverage attention mechanisms ' 1” to generate defect
attention maps for enhanced localization. Zhang et al.>? construct the innovative triple-attention mechanism to enhance the
models’ ability of expressing defect characteristics. Wei et al.>! introduce 2 vision transformer model that combines receptive-
field attention convolution and context broadcasting median to handle the high variability and sample imbalance in metal
defects. Zhang et al.?*> design a dual-branch local-guided global self-aitention network to achieve sufficient attention in local
details. Jin et al.>3 construct a human guidance to address the data scarcity and effectively leverage expert knowledge. Zhao et
al.>* propose a cross-supervised contrastive learning domain adaptation network with transformer to solve the differences that
steel defects exhibit in appearance and background. The aforementioned detection methods fail to address the critical issue of
labeled sample scarcity in metal defect inspection. The unsupervised and semi-supervised approaches offer partial remedies but
struggle with reliability. To directly overcome these limitations, our EAMNet introduces a few-shot learning paradigm, which
systematically addresses sample scarcity through meta-learning and achieves reliable generalization via explicit prototype-based
learning within each episode.

Few-Shot Semantic Segmeritation

Few-shot semantic segmentation (FSS) generates dense masks for novel classes using minimal annotated support samples.
Extending the prototypical learning framework from?3, contemporary FSS approaches’®?’ construct class-specific prototypes
to capture discriminative feature representations. Yang et al.’® propose a bi-orientated rectification few-shot segmentation
network based on fine-grained prototypes to address the limitations of current methods that only extract general target prototype.
Chen et al.?’ conduct a mask generation module and an iterative refinement module, respectively addressing the inherent two
challenges of locating segmented objects and deriving class-specific features in the absence of support mask and semantic
labels. Wang et al.3" leverage semantic word embedding and query set self-supplementing information to handle the inter-class
interference and information loss of generalized few-shot semantic segmentation. While these prototype-based methods remain
confined to a single episode, they overlook the valuable semantic information across episodes. To overcome the single-episode
limitation of these methods, EAMNet employs an EAMU to model cross-episode correlations, which then enables its CAM,
GRMAP, and AD to perform fine-grained segmentation.

Knowledge Distillation

Knowledge distillation (KD)?! is a widely-adopted technique for model compression. Larger models typically exhibit
greater representational capacity, while compact models feature fewer parameters, higher computational efficiency, and lower
deployment costs. The core objective of KD is to transfer knowledge from a high-capacity teacher model to a lightweight
student model while maintaining acceptable performance levels. The approach in 3> implements a self-distillation framework
to perform internal knowledge transfer which can enhance the model accuracy without external supervision. Self-distillation
operates by partitioning the model into multiple components and facilitating the transfer of knowledge from deeper layers
to shallower ones. Additionally, self-distillation is employed to exploit the intrinsic semantic correlations of models. Li et



al.33 utilize self-distillation from the last batch during model training to maximize the performance. Lu et al.>* introduce a
multi-stage dynamic anchor decoder that aggregation capabilities of the sparse attention mechanism to improve the effectiveness
of self-distillation. Peng et al.> leverage the hierarchical attention maps to create self-distillation resolution. Motivated by>* 33,
we design an attention distillation conducting the self-distillation of attention maps and ground-truth to enhance the adaptability
of our model.

Method

Problem Setting

Our implementation adopts the standard few-shot segmentation paradigm3®37 based on episodic meta-learning. We partition
the dataset into training set Dyi, and testing set Dy, €ach containing numerous randomly sampled episodes. Each episode
comprises a support set .% and query set 2 from the same class c. During meta-training, models learn on classes Cain and are
evaluated on disjoint unseen classes Ceest (Cirain N Ciest = &). The FSS model processes . = { (Ié,M g) },K=1 and 2 = {(IQ,MQ)}
from class ¢ € Cirain to predict query mask MQ, where Ig,IQ € R¥>*H*W are RGB images. And M§7MQ € {0, 1}V are binary
masks, where H x W denotes spatial dimensions. During training, both My and My are utilized. At test time, only My is
available as input. Crucially, the meta-trained model directly generalizes to novel categories without test-time optimization, as
it leverages support semantic cues to localize query regions of interest.
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Figure 2. Overview of our Episode Adaptive Memory Network with the EAMU, CAM, GRMAP and AD. Where ® denotes
matrix multiplication and @ represents matrix addition.

Overview

As illustrated in Figure 2, our Episode Adaptive Memory Network (EAMNet) comprises four core components: episode
adaptive memory unit (EAMU), context adaptive module (CAM), global response mask average pooling (GRMAP), and
attention distillation (AD). More precisely, for the support image Is and query image Ip, we employ a shared backbone
network to extract L-level features concurrently, where L = 4. Subsequently, we introduce the EAMU, which is designed to
generate an adaptive factor p within the given support-query image pair. This factor, which captures and retains transferable
meta-knowledge across different tasks, operates at the cross-episode level Meanwhile, high-resolution features are processed
by CAM, which aims to produce context adaptive factor y for support-query pairs through capturing category distribution
and semantic patterns. CAM functions within a single episode, specializing in fine-grained and spatial context alignment
between the current support and query features. To achieve precise prediction, we then employ the GRMAP, which learns to
generate the prototype Pgypp from support foreground feature by the global response normalization. GRMAP acts as a support
enhancer prior to the query adaptation process and focus on producing a robust and globally-aware prototype. We then feed the
P, V¥, Pyypp and the query feature f, filtered by the activation function into a decoder to predict the final segmentation mask



M o for the query image. Then the model can be trained under the supervision of a binary cross-entropy loss .Zgcg computed
between the ground-truth mask M and the predicted mask M 0- Moreover, we design an extra AD in the end of training stage
to enhance the semantic expression at fine-grained resolutions by .Zap. It is crucial to note that AD is an optimization-oriented
module distinct from the inference path, designed exclusively to accelerate convergence through knowledge distillation across
network stages. Next, we provide a detailed elaboration of each of the previously mentioned modules.

Episode Adaptive Memory Unit

Inspired by SG-One?®, recent FSS models for metal surface defec usually leverage the prototypes from the support
and query set within a single episode to generate the prediction mask. As the constrained knowledge provided within a
single episode, the cross-episode semantic description of defect regions for prototypes is not incorporated into the model. To
counter this, the EAMU is employed to derive a cross-episode adaptive factor from the cumulative support-query pairs across
episodes by gate units*!, enabling the model to adaptively remember inter-episode semantic dependencies. Different from
sequence-modeling memories (e.g., LSTM*!) or static global memories (e.g., Transformer memory*?), our EAMU achieves
an episode-level memory for meta-learning. Designed for meta-learning, our EAMU operates at an episodic granularity,
maintaining a dynamic memory seed that updates only upon episodic task completion. Consequently, the gate units of EAMU
consolidate cross-episode experience and guide adaptation, thereby explicitly addressing inter-episode distribution shifts rather
than modeling sequences or storing global knowledge. As illustrated in Figure 2, the EAMU receives as input the current
episode’s support-query feature pair f;,f, € RE*"W where ¢, h and w denotes the channels, heights and width of the features
respectively. Note that the support-query feature pair f; and f, are generated by the feature pyramid network®3, which conduct
the first three level feature maps to obtain the contextual information. Then EAMU employs an architecture comprising an
input gate %, output gate .Zoyt, and memory gate Fmem to adaptively retain the semantic details within the current episode,
where the Fy,, Four and Fen, are comprised of various convolution and activation functions. To perform the cross-episode
knowledge, the input gate .%;, combines the current episode features f; € R>**** and the memory seed 8 € R It outputs a
condensed feature f;, € R!**" that encapsulates the novel semantic information learned from the current episode:

t39’ 40

fi=7(f;.f,)®6, ey

fin = Fin (f) © 1, (2)
where % is the concatenation operation, © represcnts matrix multiplication and 6 is a trainable parameter. Then, the output of
semantic information f,, € RV in the cuirent episode is processed by output gate .Fyy:

fout = <g\out (ft) S3) %n (fr) ’ (3)

where the @ denotes matrix addition.
Having the memory seed 6, we further process the cross-episode semantic description through memory gate Fmem:

fmern = ymem (ft) (24 67 (4)

where fipem € R/ initializes the memory information of defect regions, and fem € RV7*" leverages 6 to obtain the

holistic cross-episode semantic description. To achieve the corss-episode interaction, we integrate the new feature fj, with the
cross-episode semantic description fier, to generate the cell information f.e € RIxAxw.

fcell = fin S2) fmem~ (5)

Next, EAMNet utilizes a squeeze & excitation module (SEM)** to further process the fine-grained semantic information
from query feature in current episode:

P =1cen & fout ® ySEM (fq) 5 (6)

where .Zspy is the SEM, p € R denotes the adaptive factor which contains cross-episode semantic details and cues.



Context Adaptive Module
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Given the feature maps of L = 4 level processed by backbone, i.e., {f;} o, ERTT “22 and {t} o ERTAR T,
the contextual category distribution and semantic patterns can be captured through deep level feature maps. Specifically,

T Ix i . L L
we calculate the cosine similarity D! € R 27+2 22 of last two-stage support-query pairs {t,},_, ,and {f}_, | for

fine-grained semantic description, i.e., Déos and Déo_sl. As well as the procedure for multiple stage pairs follows analogously:

D, = Fsiv (£5 12 @ Fomask (Ms)) . (7

where Zgy calculates the cosine similarity of support-query pair, %Zmask reshapes the support mask My to be the same shape
as f€" Then we integrate the D _ and DL ! to generate the context adaptive factor y € RZ*** which depicts the contextual
semantic pattern of the defect regions in current episode:

Y= f@factor (}' (% (Déosw@cos (DSOZ] ))) ®ﬁ) ) (8)

where A is an activation function, 3 controls the adaptive weight of y during downstream and is initialized to 0.4, %Z..s reshapes
the DL.! to be the same shape as D% . and Z,cior reshapes the input shape to be the R>*"*",

Global Response Mask Average Pooling

Following the general form®-38, the key of mask average pooling is the knowledge of support set. However, current methods
that take support features as input directly suffer from coarse-grained foreground knowledge. Thus, we introduce the global
response normalization'# to enhance the effectiveness of support knowledge. Specificaily, given the c-channel support feature
fy, = {z1,22,...,2;};_,, we employ a response normalization to compute the feature normalization scores .4~ € R b1,

P o
il

where ||z;||, is the L2-norm of the i-th channel. Subsequently, we calibrate the original input features based on .4 to generate
the responsive support feature f, € R/

fy=(f,onA)+1, (10)

where 1 and 7 are learnable parameters. For holistic semantic information, we also produce the responsive query feature
f; € R*" through Eqs. (9)-(10) in the downstream work.

Then we apply the mask average pooling to capture the guide prototype Pgypp € REW from £
Psupp:j\AVG (f_ly®MS)a (11)

where .Zayg is a 2D average pooling operation.
The enhanced query feature f’q guide prototype Pgypp, context adaptive factor y and cross-episode adaptive factor p are all

reshape to the same spatial size and concatenated to a representative prototype Py € R(2¢+3)xxw:

Pﬁnalzg(f;pPsuppaVﬂp)- (12)
Finally, Pg,, is fed into a decoder to produce segmentation mask M 0:
MQ:ycls (yconv (Pﬁnal))7 (]3)

where Z.onv and % are two consecutive modules that constitute the decoder.

Attention Distillation

The construction of the cross-episode adaptive factor relies on features from all network stages. However, in early training,
the shallow layers yield coarse-grained features due to limited supervision, which slows model convergence and degrades the
quality of factor. To address this, we introduce an attention distillation, which refines these early-stage features by transferring
knowledge from deeper layers, thereby preserving fine-grained information without compromising cross-episode learning.
Moreover, compared to the one-hot labels in ground-truth annotations, the soft targets used in distillation capture inter-category



dependencies, thereby providing richer semantic details within individual episodes. Specifically, we apply the .#sgy to collect
the soft-target X of query feature f,:

X, = ysoftmax (g\SEM (fq)) ) (14)

where Fgofimax 18 a softmax layer. Then the KL (Kullback-Leibler) divergence loss is used as supervision from the teacher to
student with their softmax output:

Zap = X,log(X;) — X log (Xy), 5)

where X; is the ground-truth M.
Finally, the loss function of our model during training can be formulated as:

L = LBcE+ LD, (16)
where « is a hyperparameter which set to 0.05.

Extend to K-shot Settings

Thus far, our discussion has focused on the one-shot setting, as summarized in Figure 2. To extend EAMNet to the K-shot
scenario (where K support images per category are available), we leverage the per-episode adaptive factor. To preserve
spatial information and maintain consistency across varying shot counts, we directly concatenate the support features f. =

€ (f{l ,fi"z, ,i{K) along the channel dimension, along with their corresponding masks.

Experiments

Datasets
Following the setting o , we use metal surface defect datasets, i.c., Surface Defect-4°37 and FSSD-12%, to evaluate
EAMNet. Surface Defect-4' is a general dataset containing 12 various classes of metal surface defect. FSSD-12 is a strip steel
surface defect dataset and also contains 12 categories.

For each dataset, we perform 3-fold cross-validation by partitioning all classes equally. Following®”*, we maintain
identical class splits for Surface Defect-4' and FSSD-12. Two folds serve as training data, with the remaining fold reserved for
testing.

£37.45,46

Metric and Evaluation

Following established practice, we adopt mean Intersection-over-Union (mloU) and foreground-background IoU (FB-IoU) as
evaluation metrics. For testing, we foliow the protocol from*’ to ensure experimental validity. Specifically, each experiment
consists of five independent trials using distinct random seeds, with final results representing the average across these trials.

Implementation Details

EAMNet is implemented in PyTorch and trained episodically for 200 epochs on Surface Defect-4' and FSSD-12. All models
are trained on 4 NVIDIA GeForce RTX 3090 GPUs with batch size 2, and tested on a single GPU with batch size 1. The
optimizer employed is consistent with?”, and the learning rate is set to 0.0001. To validate our method’s backbone-agnostic
efficacy, we evaluate it with ResNet-50*® and VGG-16* backbone. During inference, predictions are resized to match original
input resolution while preserving ground-truth labels.

Baseline

First, we exclude the EAMU, CAM, GRMAP, and AD from EAMNet. Then, we replace the enhanced query feature f’q in the
downstream network with the original query feature f, to construct the baseline model. The remaining experimental settings are
kept consistent with those of EAMNet.

Comparison with State-of-the-Art Methods

Surface Defect-4'

Table 1 compares mIoU performance on the Surface Defect-4' dataset between our method and several representative models.
The results demonstrate that: (1) EAMNet achieves state-of-the-art (SOTA) performance under both 1-shot and 5-shot settings.
Notably, when using the VGG-16 backbone, EAMNet surpasses MAPTNet*¢ (the previous SOTA) by significant margins
of 4.43% and 5.89% for 1-shot and 5-shot, respectively, which demonstrates that the effective cross-episode adaptation and
intra-episode feature processing of EAMNet are key to its superior performance. (2) EAMNet substantially outperforms the



Table 1. Comparison of EAMNet with state-of-the-art methods and semantic networks for metal surface defect FSS on
Surface Defect-4', evaluated by mIoU and FB-IoU under 1-shot and 5-shot settings using the VGG-16 and ResNet-50
backbone. The best and second best results are highlighted accordingly. Improv. (%) represents the percentage improvement in
mloU over the Baseline.

Methods Backbone 1-shot 5-shot
Fold-0 Fold-1 Fold-2 Mean FBIoU Improv. (%) | Fold-0 Fold-1 Fold-2 Mean FBIoU Improv. (%)
HDMNet™ 31.10 2891 2126 27.09 5276 14.01 4233 28.00 2597 32.10 5145 14.47
DCPNet¢ 28.68 2745 2408 2674 52.22 13.65 2291 2781 2559 2544 5196 12.20
TGRNet(1-normal)>’ 2978 2515 2436 2643  51.50 13.35 3742 2466 2652 2953 5327 11.90
CPANet* 2203 2505 2407 2372 5135 10.63 3001 2595 1926 2511 5221 12.53
MAPTNet* VGGle | 3988 2598 2624 3070 5076 17.62 3993  31.66 29.82 33.80 5633 16.17
PFENet* 2328 1945 2048 21.07 5114 12.01 27.94 2167 2524 2495 5399 12.68
Baseline 2833 2454 1638 23.08 49.12 - 3811 2487 19.92 27.63 53.67 -
EAMNet 4701 3291 2546 35.13 5457 712.04 5490 32.64 3153 39.69 58.28 712.06
HDMNet® 3558 4079 27.50 34.62 56.01 18.41 38.62 4111 3261 3745 56.19 19.76
DCPNet?* 27.19 3196 2468 27.94 51.67 11.73 4278 3935 3221 3811 5877 110.43
TGRNet(1-normal)>’ 3546 3237 2475 30.86 53.62 14.65 41.61 2866 2787 3271 53.00 15.03
CPANet® 3252 29.65 24.66 2894 51.94 12.73 39.36  37.84 27.82 3501 57.73 17.32
MAPTNet* 4127 4020 2278 3475 5561 18.54 4649 4085 2620 37.85 5822 110.16
PFENet" ResNet50 | 29.45 2490 1621 2352 54.06 12.69 3398  30.07 2278 2894 56.92 11.26
HMNet*” 3949 28.10 2373 3044 53.97 14.23 44.00 30.19 2733 33.84 5674 16.15
Baseline 34.84 2417 19.63 2621 49.42 - 34.55 2453 2398 2769 50.66 -
EAMNet 4447 4039 2838 37.75 59.25 111.53 51.85 4125 3176 41.62 59.23 113.93

baseline. For instance, with the VGG-16 backbone, EAMNet achieves 35.13% mloU compared to the baseline’s 23.08%. This
improvement stems from the synergistic effect of its core components, with EAMU handling cross-episode adaptation, CAM
managing intra-episode refinement, GRMAP responsible for support enhancement, and AD ensuring stable convergence.

EAMNet achieves competitive efficiency with 54.47G FLOPs, indicative of its lightweight and adaptable design for diverse
tasks. A detailed comparison of computational costs with TGRNet, CPANet, and MAPTNet is presented in Table 2.

Table 2. Comparison with metal surface defect FSS in computational cost on Surface Defect-4'. The best results are
highlighted accordingly.

Methods | inloU FLOPs  #Params.
TGRNeﬂL 2643  83.69G  9.38M
CPANet | 2372 162.23G  11.98M

MAPTNet | 30.70 66.80G 16.80G
~ EAMNet | 35.13 54.47G 15.79M

FSSD-12

FSSD-12 is an extra validation dataset for the generalization of our model which only contains strip steel surface defect samples.
Table 3 compares mloU and FB-IoU performance on the FSSD-12 dataset. Our EAMNet significantly outperforms recent
methods in both 1-shot and 5-shot settings using either VGG-16 or ResNet-50 backbones. With ResNet-50, EAMNet achieves
mloU improvements of 1.92% over MAPTNet*® (1-shot) and 0.73% over HDMNet>> (5-shot) by leveraging episode adaptation
to exploit latent data correlations for enhanced training and prediction. In addition, EAMNet gains significant improvement
over the baseline models. For example, EAMNet with VGG-16 backbone achieves 15.93% and 15.02% mloU improvement
over the baseline model, which proves the superiority of our model in such challenging scenarios.

Qualitative Results

We report some qualitative results generated from several models for metal surface defect detection and our EAMNet on the
Surface Defect-4' benchmarks. Compared with these representative models, EAMNet exhibits the following advantages as
shown in Figure 3. (1) EAMNet can more accurately segment the target class, while the previous methods incorrectly segments
the seen classes as the target classes (1st to 3rd columns). (2) EAMNet can capture subtle defect details for semantic description
of defect regions to address the limited adaptability problem caused by single-episode (4th to 6th columns). (3) EAMNet
can provide better fine-grained resolution through the contextual adaptive factor from CAM and the support guidance from
GRMAP (7th to 8th columns). (4) Some failure case are exhibited from 9th to 10th columns. These challenges stems from
inherent problem in the data, where the model underperforms on subtle defects with low contrast against the background texture.
Nevertheless, comparative results show that EAMNet, via its cross-episode adaptive analysis, can capture potential defect cues
to coarsely segment the main defect area, outperforming other popular networks in such challenging scenarios.



Table 3. Comparison of EAMNet with state-of-the-art methods and semantic networks for metal surface defect FSS on

FSSD-12, evaluated by mloU and FB-IoU under 1-shot and 5-shot settings using the VGG-16 and ResNet-50 backbone. The
best and second best results are highlighted accordingly. Improv. (%) represents the percentage improvement in mloU over the
Baseline.

Query

Support

TGRNet MAPTNet Image & GT Image & GT

Methods Backbone I-shot 3-shot
Fold-0 Fold-1 Fold-2 Mean FBIoU Improv. (%) | Fold-0 Fold-1 Fold-2 Mean FBIoU Improv. (%)
HDMNet®> 50.12  49.05 4551 4823  66.57 16.10 4826  49.60 46.11 4799  66.69 13.10
DCPNet* 5330 4452 4098 4627  66.01 14.14 50.07 48.69 43.07 4728 67.28 12.39
TGRNet(0-normal)>’ 63.74 51.68 4995 5512 73.36 113.00 66.16 6024 51.07 59.16 74.48 114.27
CPANet® 50.90 47.39 5338 50.56  69.26 18.43 50.15  37.41 4339 43,65 6473 11.24
MAPTNet* VGG16 6587 5559 5149 57.65 7290 115.52 62.84 5893 4741 5639 74.88 111.50
PFENet" 4365 37.89 36.12 3922 67.72 1291 4486 40.66  36.57 40.70  68.92 14.19
Baseline 4840 3804 3994 4213 63.94 - 48.85 4398 41.84 44.89 65.24 -
EAMNet 6375 5600 54.43 58.06 74.46 115.93 6573 61.87 5214 5991 75.68 115.02
HDMNet™ 60.50 6546 5142 59.13 7433 112.33 63.03 6822 5374 61.66 77.33 111.78
DCPNet¢ 59.65 63.13 51.84 5821 7479 T11.41 61.68 61.80 5271 5873 74.10 18.85
TGRNet(0-normal)>’ 61.09 6324 5128 5854 75.20 111.74 61.59 6581 5627 6122 76.74 111.34
CPANet* 5440 5259 4839 5179  65.15 14.99 56.73  55.06 5192 5457 71.19 14.69
MAPTNet*® 6820 5824 5534 6059 75.64 113.79 63.57 6252 5285 59.65 7347 19.76
PFENet* ResNet50 | 49.00 47.87 41.78 4622 73.76 10.58 50.11 5098 4234 4781 7477 12.07
HMNet” 62.15 5496 5056 5589 71.10 19.09 6021  60.02 50.53 5692 72.12 17.04
Baseline 5395 4353 4292 46.80 64.66 - 55.84 5024 4357 49.88 67.74 -
EAMNet 6873 64.11 5471 6252 75.80 115.72 6435 6592 5691 6239 78.24 112.51

CPANet

Ours

Figure 3. Qualitative results of the MAPTNet, TGRNet, CPANet and proposed EAMNet on Surface Defect-4'.



Ablation Study
We perform ablation studies using the VGG-16 backbone in the 1-shot setting on the Surface Defect-4' dataset.

Components Analysis

EAMNet comprises four key components: the Episode Adaptive Memory Unit (EAMU) for cross-episode interaction, the
Context Adaptation Module (CAM), Global Response Mask Average Pooling (GRMAP), and Attention Distillation (AD).
Table 4 summarizes the effectiveness of each component. As the most critical component for facilitating cross-episode
interaction, EAMU contributes a significant 5.69% improvement in mloU. Meanwhile, CAM, GRMAP, and AD are also
essential. Collectively, these four modules enable EAMNet to achieve state-of-the-art performance.

Table 4. Ablation studies of each component on Surface Defect-4!

Components 1-shot A
p v Pyp Zap | Fold-0 Fold-1 Fold2 Mean
v 34.88 3024 21.19 28.77 | 15.69
v v 35.64  31.57 22.16 29.79 | 16.71
v v v 4577  31.24 2478 3393 | 110.85
v v v v 47.01 3291 2546 35.13 | 112.05
Baseline 28.33 2454 1638 23.08 -

B in CAM

To investigate the performance of our contextual adaptive factor within the CAM, we evaluated f3 values from {0.1,0.2,0.3,0.4,0.5}.
As shown in Table 5, EAMNet achieves its peak performance with 8 = 0.4, and the second-best result with B = 0.5. Conse-
quently, we set § to 0.4 for all subsequent experiments.

Table 5. 1-shot mIoU of ablation study for hyperparameter 8 on Surface Defect-4'

1-shot
B Fold-0 Fold-1 Fold-2 Mean A
0.10 4530 30.62 2426 33.40 | 110.31
0.20 4548 3092 2420 33.53 | 110.45
0.30 46.44 3147 2440 34.10 | 111.02
0.40 47.01 3291 2546 3513 | 112.05
0.50 47.00 32.13 25,57 3490 | 111.82
Baseline | 28.33 2454 16.38 23.08 -

o in loss function
As shown in Table 6, we compare the various hyperparameter & which lies in our loss function to validate the effectiveness of
AD. When the a = 0.05, we can see this strategy achieves 12.05% mloU improvement and outperforms other settings.

Table 6. 1-shot mIoU of ablation study for hyperparameter ¢ on Surface Defect-4!

o 1-shot A
Fold-0 Fold-1 Fold-2 Mean
0.01 4748 30.89 2545 34.61 | 111.53
0.03 47.46  31.51 2525 34.74 | 111.66
0.05 47.01 3291 2546 35.13 | 112.05
0.07 46.81 3336 2491 3503 | 111.94
0.09 46.87 32.08 2485 34.60 | 111.52

Baseline | 28.33 2454 1638 23.08 -




Conclusions

We propose an episode adaptive memory network (EAMNet) with four major parts (i.e., EAMU, CAM, GRMAP and AD) to the
few-shot semantic segmentation for metal surface defect. The EAMU generates an adaptive factor at the cross-episode diagram
while alleviating the limited adaptability in semantic description of defect regions within the conventional single-episode
training stage. The CAM and GRMAP obtains fine-grained resolution from the contextual adaptive factor and support guidance,
as a supplement to the semantic information in a single episode. An attention distillation is designed to store the memory
of semantic defect cues between episodes and boost adaptive performance by leveraging semantic attention correspondence.
Comprehensive experiments show that EAMNet achieves state-of-the-art performance under all settings.
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