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ABSTRACT

Few-shot semantic segmentation has gained significant attention in metal surface defect detection due to its ability to segment
unseen object classes with only a few annotated defect samples. Previous methods constrained to single-episode training
suffer from limited adaptability in semantic description of defect regions and coarse segmentation granularity. In this paper,
we propose an episode-adaptive memory network (EAMNet) that specifically addresses subtle variances between episodes
during training. The episode adaptive memory unit (EAMU) leverages an adaptive factor to model semantic dependencies
across different episodes. The context adaptation module (CAM) aggregates hierarchical features of support-query pairs for
fine-grained segmentation. The proposed global response mask average pooling (GRMAP) introduces a global response
normalization to obtain fine-grained cues directly from the support prototype. We also introduce an attention distillation (AD),
which leverages fine-grained semantic attention correspondence to process defect region cues and stabilize the cross-episode
adaptation in EAMU. Extensive experiments demonstrate that our approach establishes new state-of-the-art performance on
both Surface Defect-4i and FSSD-12 datasets.

Introduction

Metal surface defect detection1–3 is an essential quality control process on assembly lines. Different from conventional
classification4–7 and anchor box detection methods8, semantic segmentation attracted extensive attention recently for its
specific location description9, 10. However, the generalization capability of most metal surface defect segmentation networks is
constrained by their dependency on large annotated datasets and poor transferability to unseen classes. Data collection and
manual annotation consume substantial time and resources, particularly for dense prediction tasks.

Few-shot semantic segmentation (FSS)11, 12 emerges as a promising approach to address these challenges. Specifically,
FSS is formulated as a series of episodes, each containing a support set and a query set. In contrast to supervised semantic
segmentation13, which only segments the same classes presented in the training set, FSS utilizes a few annotated support
samples to segment unseen classes in the query set. Therefore, the core of FSS centers on how to best utilize the information in
the support set. However, the limited support knowledge available in a single episode compromises the model’s adaptability to
various defect types and often yields coarse segmentation results. As illustrated in Figure 1(1), traditional methods typically
conduct feature extraction and fusion operations confined within a single episode to generate pixel-level mask. When combined
with well-designed feature processing, these methods can deliver competitive performance. Nevertheless, the form of single
episode hinders the models from learning the category distribution and semantic characteristics of the support set, thus limiting
their ability to fully capture the defect patterns. This constraint fundamentally causes both limitations by inducing overfitting
to episodic features like the brightness of a scratch. Consequently, models lack semantic adaptability and produce coarse
segmentation, as they cannot discern essential defect characteristics.

In this paper, we propose an episode adaptive memory network (EAMNet) to overcome the above mentioned drawbacks.
Specifically, as shown in Figure 1(2), we design an episode adaptive memory unit (EAMU) to explore the relations between
episodes and conduct the cross-episode interaction. The EAMU generates an adaptive factor to model the semantic dependencies
across episodes for defect regions. Further, we propose context adaption module (CAM) and global response mask average
pooling (GRMAP) to segment fine-grained defect regions. Considering the effectiveness of deep level features in capturing
category distribution and semantic patterns, CAM employs the deep level features of the support-query pair within a single
episode to enable fine-grained prediction. Simultaneously, GRMAP further enhance the effectiveness of the support prototype
through regulating the state of mask average pooling via global response normalization14. The limited discriminability of
early-stage features during training poses a significant challenge to these modules, particularly the EAMU, which relies on
high-quality multi-level features. To overcome this bottleneck, we present an attention distillation (AD). The AD exploits
attention correspondence at fine-grained resolutions, meticulously extracting and transferring key semantic information across
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Figure 1. Comparison between (1) Traditional Methods and (2) Our EAMNet. (1) Traditional methods extract semantic
knowledge from a single episode, which is not able to learn the holistic semantic patterns. (2) Our EAMNet utilizes an adaptive
factor and an attention distillation to capture the semantic knowledge across episodes.

/

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



soft-target from attention map. This mechanism empowers the model to analyze the semantic cues across episodes rapidly and
adapt to diverse scenarios effectively.

Our contributions can be summarized as follows:

1) An EAMU generates a cross-episode adaptive factor to exploit the semantic dependence across episodes for metal surface
defect regions.

2) We propose a CAM and a GRMAP leveraging hierarchical features and global response normalization respectively to
accomplish fine-grained segmentation.

3) To accelerate cross-episode semantic learning and enhance generalization, we introduce an AD that transfers fine-grained
semantic attention from high-resolution features.

4) Our EMANet sets new state-of-the-art results on both standard benchmarks: Surface Defect-4i and FSSD-12.

Related Work
Metal Surface Defect Detection
In metal surface defect detection, image classification, object detection, and semantic segmentation represent the fundamental
computer vision approaches. Notably, semantic segmentation-based methodologies, which offer pixel-level precision in
prediction outcomes, have recently garnered significant attention. Chao et al.15 conduct an information augmentation and
multiscale feature fusion algorithm based on YOLOv8, which uses the information augmentation network to reduce the
information loss during feature downsampling extraction. Several studies employ unsupervised learning methods to address
metal surface defect challenges16, 17. Meanwhile, alternative approaches leverage attention mechanisms18, 19 to generate defect
attention maps for enhanced localization. Zhang et al.20 construct the innovative triple-attention mechanism to enhance the
models’ ability of expressing defect characteristics. Wei et al.21 introduce a vision transformer model that combines receptive-
field attention convolution and context broadcasting median to handle the high variability and sample imbalance in metal
defects. Zhang et al.22 design a dual-branch local-guided global self-attention network to achieve sufficient attention in local
details. Jin et al.23 construct a human guidance to address the data scarcity and effectively leverage expert knowledge. Zhao et
al.24 propose a cross-supervised contrastive learning domain adaptation network with transformer to solve the differences that
steel defects exhibit in appearance and background. The aforementioned detection methods fail to address the critical issue of
labeled sample scarcity in metal defect inspection. The unsupervised and semi-supervised approaches offer partial remedies but
struggle with reliability. To directly overcome these limitations, our EAMNet introduces a few-shot learning paradigm, which
systematically addresses sample scarcity through meta-learning and achieves reliable generalization via explicit prototype-based
learning within each episode.

Few-Shot Semantic Segmentation
Few-shot semantic segmentation (FSS) generates dense masks for novel classes using minimal annotated support samples.
Extending the prototypical learning framework from25, contemporary FSS approaches26, 27 construct class-specific prototypes
to capture discriminative feature representations. Yang et al.28 propose a bi-orientated rectification few-shot segmentation
network based on fine-grained prototypes to address the limitations of current methods that only extract general target prototype.
Chen et al.29 conduct a mask generation module and an iterative refinement module, respectively addressing the inherent two
challenges of locating segmented objects and deriving class-specific features in the absence of support mask and semantic
labels. Wang et al.30 leverage semantic word embedding and query set self-supplementing information to handle the inter-class
interference and information loss of generalized few-shot semantic segmentation. While these prototype-based methods remain
confined to a single episode, they overlook the valuable semantic information across episodes. To overcome the single-episode
limitation of these methods, EAMNet employs an EAMU to model cross-episode correlations, which then enables its CAM,
GRMAP, and AD to perform fine-grained segmentation.

Knowledge Distillation
Knowledge distillation (KD)31 is a widely-adopted technique for model compression. Larger models typically exhibit
greater representational capacity, while compact models feature fewer parameters, higher computational efficiency, and lower
deployment costs. The core objective of KD is to transfer knowledge from a high-capacity teacher model to a lightweight
student model while maintaining acceptable performance levels. The approach in 32 implements a self-distillation framework
to perform internal knowledge transfer which can enhance the model accuracy without external supervision. Self-distillation
operates by partitioning the model into multiple components and facilitating the transfer of knowledge from deeper layers
to shallower ones. Additionally, self-distillation is employed to exploit the intrinsic semantic correlations of models. Li et
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al.33 utilize self-distillation from the last batch during model training to maximize the performance. Lu et al.34 introduce a
multi-stage dynamic anchor decoder that aggregation capabilities of the sparse attention mechanism to improve the effectiveness
of self-distillation. Peng et al.35 leverage the hierarchical attention maps to create self-distillation resolution. Motivated by34, 35,
we design an attention distillation conducting the self-distillation of attention maps and ground-truth to enhance the adaptability
of our model.

Method

Problem Setting
Our implementation adopts the standard few-shot segmentation paradigm36, 37 based on episodic meta-learning. We partition
the dataset into training set Dtrain and testing set Dtest, each containing numerous randomly sampled episodes. Each episode
comprises a support set S and query set Q from the same class c. During meta-training, models learn on classes Ctrain and are
evaluated on disjoint unseen classes Ctest (Ctrain∩Ctest =∅). The FSS model processes S =

{(
Ii
S,M

i
S

)}K
i=1 and Q = {(IQ,MQ)}

from class c ∈Ctrain to predict query mask M̂MMQ, where Ii
S, IQ ∈R3×H×W are RGB images. And MMMi

S,MMMQ ∈ {0,1}H×W are binary
masks, where H ×W denotes spatial dimensions. During training, both MMMQ and MMMS are utilized. At test time, only MMMS is
available as input. Crucially, the meta-trained model directly generalizes to novel categories without test-time optimization, as
it leverages support semantic cues to localize query regions of interest.
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Figure 2. Overview of our Episode Adaptive Memory Network with the EAMU, CAM, GRMAP and AD. Where ⊗ denotes
matrix multiplication and ⊕ represents matrix addition.

Overview
As illustrated in Figure 2, our Episode Adaptive Memory Network (EAMNet) comprises four core components: episode
adaptive memory unit (EAMU), context adaptive module (CAM), global response mask average pooling (GRMAP), and
attention distillation (AD). More precisely, for the support image IS and query image IQ, we employ a shared backbone
network to extract L-level features concurrently, where L = 4. Subsequently, we introduce the EAMU, which is designed to
generate an adaptive factor ρ within the given support-query image pair. This factor, which captures and retains transferable
meta-knowledge across different tasks, operates at the cross-episode level Meanwhile, high-resolution features are processed
by CAM, which aims to produce context adaptive factor ψ for support-query pairs through capturing category distribution
and semantic patterns. CAM functions within a single episode, specializing in fine-grained and spatial context alignment
between the current support and query features. To achieve precise prediction, we then employ the GRMAP, which learns to
generate the prototype PPPsupp from support foreground feature by the global response normalization. GRMAP acts as a support
enhancer prior to the query adaptation process and focus on producing a robust and globally-aware prototype. We then feed the
ρ , ψ , PPPsupp and the query feature fq filtered by the activation function into a decoder to predict the final segmentation mask
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M̂MMQ for the query image. Then the model can be trained under the supervision of a binary cross-entropy loss LBCE computed
between the ground-truth mask MMMQ and the predicted mask M̂MMQ. Moreover, we design an extra AD in the end of training stage
to enhance the semantic expression at fine-grained resolutions by LAD. It is crucial to note that AD is an optimization-oriented
module distinct from the inference path, designed exclusively to accelerate convergence through knowledge distillation across
network stages. Next, we provide a detailed elaboration of each of the previously mentioned modules.

Episode Adaptive Memory Unit
Inspired by SG-One38, recent FSS models for metal surface defect39, 40 usually leverage the prototypes from the support
and query set within a single episode to generate the prediction mask. As the constrained knowledge provided within a
single episode, the cross-episode semantic description of defect regions for prototypes is not incorporated into the model. To
counter this, the EAMU is employed to derive a cross-episode adaptive factor from the cumulative support-query pairs across
episodes by gate units41, enabling the model to adaptively remember inter-episode semantic dependencies. Different from
sequence-modeling memories (e.g., LSTM41) or static global memories (e.g., Transformer memory42), our EAMU achieves
an episode-level memory for meta-learning. Designed for meta-learning, our EAMU operates at an episodic granularity,
maintaining a dynamic memory seed that updates only upon episodic task completion. Consequently, the gate units of EAMU
consolidate cross-episode experience and guide adaptation, thereby explicitly addressing inter-episode distribution shifts rather
than modeling sequences or storing global knowledge. As illustrated in Figure 2, the EAMU receives as input the current
episode’s support-query feature pair fs, fq ∈ Rc×h×w where c, h and w denotes the channels, heights and width of the features
respectively. Note that the support-query feature pair fs and fq are generated by the feature pyramid network43, which conduct
the first three level feature maps to obtain the contextual information. Then EAMU employs an architecture comprising an
input gate Fin, output gate Fout, and memory gate Fmem to adaptively retain the semantic details within the current episode,
where the Fin, Fout and Fmem are comprised of various convolution and activation functions. To perform the cross-episode
knowledge, the input gate Fin combines the current episode features ft ∈R2c×h×w and the memory seed θ ∈Rh×w. It outputs a
condensed feature fin ∈ R1×h×w that encapsulates the novel semantic information learned from the current episode:

ft = C (fq, fs)⊗θ , (1)

fin = Fin (ft)⊗ ft , (2)

where C is the concatenation operation, ⊗ represents matrix multiplication and θ is a trainable parameter. Then, the output of
semantic information fout ∈ R1×h×w in the current episode is processed by output gate Fout:

fout = Fout (ft)⊕Fin (ft) , (3)

where the ⊕ denotes matrix addition.
Having the memory seed θ , we further process the cross-episode semantic description through memory gate Fmem:

fmem = Fmem (ft)⊗θ , (4)

where ftmem ∈ R1×h×w initializes the memory information of defect regions, and fmem ∈ R1×h×w leverages θ to obtain the
holistic cross-episode semantic description. To achieve the corss-episode interaction, we integrate the new feature fin with the
cross-episode semantic description fmem to generate the cell information fcell ∈ R1×h×w:

fcell = fin ⊕ fmem. (5)

Next, EAMNet utilizes a squeeze & excitation module (SEM)44 to further process the fine-grained semantic information
from query feature in current episode:

ρ = fcell ⊗ fout ⊗FSEM (fq) , (6)

where FSEM is the SEM, ρ ∈ R1×h×w denotes the adaptive factor which contains cross-episode semantic details and cues.
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Context Adaptive Module

Given the feature maps of L = 4 level processed by backbone, i.e.,
{

fl
q
}L

l=1 ∈ Rlc× h
2l+2

× w
2l+2 and

{
fl
s
}L

l=1 ∈ Rlc× h
2l+2

× w
2l+2 ,

the contextual category distribution and semantic patterns can be captured through deep level feature maps. Specifically,

we calculate the cosine similarity DDDl
cos ∈ R1× h

2l+2
× w

2l+2 of last two-stage support-query pairs
{

fl
q
}L

l=L−1 and
{

fl
s
}L

l=L−1 for
fine-grained semantic description, i.e., DDDL

cos and DDDL−1
cos . As well as the procedure for multiple stage pairs follows analogously:

DDDL
cos = FSIM

(
fL
q , f

L
s ⊗Rmask (MMMS)

)
, (7)

where FSIM calculates the cosine similarity of support-query pair, Rmask reshapes the support mask MMMS to be the same shape
as fhigh

s . Then we integrate the DDDL
cos and DDDL−1

cos to generate the context adaptive factor ψ ∈ R2×h×w which depicts the contextual
semantic pattern of the defect regions in current episode:

ψ = Rfactor
(
λ
(
C
(
DDDL

cos,Rcos
(
DDDL−1

cos
)))

⊗β
)
, (8)

where λ is an activation function, β controls the adaptive weight of ψ during downstream and is initialized to 0.4, Rcos reshapes
the DDDL−1

cos to be the same shape as DDDL
cos and Rfactor reshapes the input shape to be the R2×h×w.

Global Response Mask Average Pooling
Following the general form35, 38, the key of mask average pooling is the knowledge of support set. However, current methods
that take support features as input directly suffer from coarse-grained foreground knowledge. Thus, we introduce the global
response normalization14 to enhance the effectiveness of support knowledge. Specifically, given the c-channel support feature
fs = {z1,z2, ...,zi}c

i=1, we employ a response normalization to compute the feature normalization scores N ∈ Rc×1×1:

N =
∥zi∥2

∑
c
j=1∥z j∥2

, (9)

where ∥zi∥2 is the L2-norm of the i-th channel. Subsequently, we calibrate the original input features based on N to generate
the responsive support feature f′s ∈ Rc×h×w:

f′s = (fs ⊗ηN )+ τ, (10)

where η and τ are learnable parameters. For holistic semantic information, we also produce the responsive query feature
f′q ∈ Rc×h×w through Eqs. (9)-(10) in the downstream work.

Then we apply the mask average pooling to capture the guide prototype PPPsupp ∈ Rc×h×w from f′s:

PPPsupp = FAVG
(
f′s ⊗MMMS

)
, (11)

where FAVG is a 2D average pooling operation.
The enhanced query feature f′q, guide prototype PPPsupp, context adaptive factor ψ and cross-episode adaptive factor ρ are all

reshape to the same spatial size and concatenated to a representative prototype PPPfinal ∈ R(2c+3)×h×w:

PPPfinal = C
(
f′q,PPPsupp,ψ,ρ

)
. (12)

Finally, PPPfinal is fed into a decoder to produce segmentation mask M̂MMQ:

M̂MMQ = Fcls (Fconv (PPPfinal)) , (13)

where Fconv and Fcls are two consecutive modules that constitute the decoder.

Attention Distillation
The construction of the cross-episode adaptive factor relies on features from all network stages. However, in early training,
the shallow layers yield coarse-grained features due to limited supervision, which slows model convergence and degrades the
quality of factor. To address this, we introduce an attention distillation, which refines these early-stage features by transferring
knowledge from deeper layers, thereby preserving fine-grained information without compromising cross-episode learning.
Moreover, compared to the one-hot labels in ground-truth annotations, the soft targets used in distillation capture inter-category
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dependencies, thereby providing richer semantic details within individual episodes. Specifically, we apply the FSEM to collect
the soft-target XXX s of query feature fq:

XXX s = Fsoftmax (FSEM (fq)) , (14)

where Fsoftmax is a softmax layer. Then the KL (Kullback-Leibler) divergence loss is used as supervision from the teacher to
student with their softmax output:

LAD = XXX t log(XXX t)−XXX t log(XXX s) , (15)

where XXX t is the ground-truth MMMQ.
Finally, the loss function of our model during training can be formulated as:

L = LBCE +αLAD, (16)

where α is a hyperparameter which set to 0.05.

Extend to K-shot Settings
Thus far, our discussion has focused on the one-shot setting, as summarized in Figure 2. To extend EAMNet to the K-shot
scenario (where K support images per category are available), we leverage the per-episode adaptive factor. To preserve
spatial information and maintain consistency across varying shot counts, we directly concatenate the support features fl

s =

C
(

fl,1
s , fl,2

s , ..., fl,K
s

)
along the channel dimension, along with their corresponding masks.

Experiments
Datasets
Following the setting of37, 45, 46, we use metal surface defect datasets, i.e., Surface Defect-4i37 and FSSD-1245, to evaluate
EAMNet. Surface Defect-4i is a general dataset containing 12 various classes of metal surface defect. FSSD-12 is a strip steel
surface defect dataset and also contains 12 categories.

For each dataset, we perform 3-fold cross-validation by partitioning all classes equally. Following37, 45, we maintain
identical class splits for Surface Defect-4i and FSSD-12. Two folds serve as training data, with the remaining fold reserved for
testing.

Metric and Evaluation
Following established practice, we adopt mean Intersection-over-Union (mIoU) and foreground-background IoU (FB-IoU) as
evaluation metrics. For testing, we follow the protocol from47 to ensure experimental validity. Specifically, each experiment
consists of five independent trials using distinct random seeds, with final results representing the average across these trials.

Implementation Details
EAMNet is implemented in PyTorch and trained episodically for 200 epochs on Surface Defect-4i and FSSD-12. All models
are trained on 4 NVIDIA GeForce RTX 3090 GPUs with batch size 2, and tested on a single GPU with batch size 1. The
optimizer employed is consistent with37, and the learning rate is set to 0.0001. To validate our method’s backbone-agnostic
efficacy, we evaluate it with ResNet-5048 and VGG-1649 backbone. During inference, predictions are resized to match original
input resolution while preserving ground-truth labels.

Baseline
First, we exclude the EAMU, CAM, GRMAP, and AD from EAMNet. Then, we replace the enhanced query feature f′q in the
downstream network with the original query feature fq to construct the baseline model. The remaining experimental settings are
kept consistent with those of EAMNet.

Comparison with State-of-the-Art Methods
Surface Defect-4i

Table 1 compares mIoU performance on the Surface Defect-4i dataset between our method and several representative models.
The results demonstrate that: (1) EAMNet achieves state-of-the-art (SOTA) performance under both 1-shot and 5-shot settings.
Notably, when using the VGG-16 backbone, EAMNet surpasses MAPTNet46 (the previous SOTA) by significant margins
of 4.43% and 5.89% for 1-shot and 5-shot, respectively, which demonstrates that the effective cross-episode adaptation and
intra-episode feature processing of EAMNet are key to its superior performance. (2) EAMNet substantially outperforms the
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Table 1. Comparison of EAMNet with state-of-the-art methods and semantic networks for metal surface defect FSS on
Surface Defect-4i, evaluated by mIoU and FB-IoU under 1-shot and 5-shot settings using the VGG-16 and ResNet-50
backbone. The best and second best results are highlighted accordingly. Improv. (%) represents the percentage improvement in
mIoU over the Baseline.

Methods Backbone 1-shot 5-shot
Fold-0 Fold-1 Fold-2 Mean FBIoU Improv. (%) Fold-0 Fold-1 Fold-2 Mean FBIoU Improv. (%)

HDMNet35 31.10 28.91 21.26 27.09 52.76 ↑4.01 42.33 28.00 25.97 32.10 51.45 ↑4.47
DCPNet36

VGG16

28.68 27.45 24.08 26.74 52.22 ↑3.65 22.91 27.81 25.59 25.44 51.96 ↓2.20
TGRNet(1-normal)37 29.78 25.15 24.36 26.43 51.50 ↑3.35 37.42 24.66 26.52 29.53 53.27 ↑1.90

CPANet45 22.03 25.05 24.07 23.72 51.35 ↑0.63 30.11 25.95 19.26 25.11 52.21 ↓2.53
MAPTNet46 39.88 25.98 26.24 30.70 50.76 ↑7.62 39.93 31.66 29.82 33.80 56.33 ↑6.17

PFENet47 23.28 19.45 20.48 21.07 51.14 ↓2.01 27.94 21.67 25.24 24.95 53.99 ↓2.68
Baseline 28.33 24.54 16.38 23.08 49.12 - 38.11 24.87 19.92 27.63 53.67 -
EAMNet 47.01 32.91 25.46 35.13 54.57 ↑12.04 54.90 32.64 31.53 39.69 58.28 ↑12.06

HDMNet35 35.58 40.79 27.50 34.62 56.01 ↑8.41 38.62 41.11 32.61 37.45 56.19 ↑9.76
DCPNet36

ResNet50

27.19 31.96 24.68 27.94 51.67 ↑1.73 42.78 39.35 32.21 38.11 58.77 ↑10.43
TGRNet(1-normal)37 35.46 32.37 24.75 30.86 53.62 ↑4.65 41.61 28.66 27.87 32.71 53.00 ↑5.03

CPANet45 32.52 29.65 24.66 28.94 51.94 ↑2.73 39.36 37.84 27.82 35.01 57.73 ↑7.32
MAPTNet46 41.27 40.20 22.78 34.75 55.61 ↑8.54 46.49 40.85 26.20 37.85 58.22 ↑10.16

PFENet47 29.45 24.90 16.21 23.52 54.06 ↓2.69 33.98 30.07 22.78 28.94 56.92 ↑1.26
HMNet50 39.49 28.10 23.73 30.44 53.97 ↑4.23 44.00 30.19 27.33 33.84 56.74 ↑6.15
Baseline 34.84 24.17 19.63 26.21 49.42 - 34.55 24.53 23.98 27.69 50.66 -
EAMNet 44.47 40.39 28.38 37.75 59.25 ↑11.53 51.85 41.25 31.76 41.62 59.23 ↑13.93

baseline. For instance, with the VGG-16 backbone, EAMNet achieves 35.13% mIoU compared to the baseline’s 23.08%. This
improvement stems from the synergistic effect of its core components, with EAMU handling cross-episode adaptation, CAM
managing intra-episode refinement, GRMAP responsible for support enhancement, and AD ensuring stable convergence.

EAMNet achieves competitive efficiency with 54.47G FLOPs, indicative of its lightweight and adaptable design for diverse
tasks. A detailed comparison of computational costs with TGRNet, CPANet, and MAPTNet is presented in Table 2.

Table 2. Comparison with metal surface defect FSS in computational cost on Surface Defect-4i. The best results are
highlighted accordingly.

Methods mIoU FLOPs #Params.
TGRNet 26.43 83.69G 9.38M
CPANet 23.72 162.23G 11.98M

MAPTNet 30.70 66.80G 16.80G
EAMNet 35.13 54.47G 15.79M

FSSD-12
FSSD-12 is an extra validation dataset for the generalization of our model which only contains strip steel surface defect samples.
Table 3 compares mIoU and FB-IoU performance on the FSSD-12 dataset. Our EAMNet significantly outperforms recent
methods in both 1-shot and 5-shot settings using either VGG-16 or ResNet-50 backbones. With ResNet-50, EAMNet achieves
mIoU improvements of 1.92% over MAPTNet46 (1-shot) and 0.73% over HDMNet35 (5-shot) by leveraging episode adaptation
to exploit latent data correlations for enhanced training and prediction. In addition, EAMNet gains significant improvement
over the baseline models. For example, EAMNet with VGG-16 backbone achieves 15.93% and 15.02% mIoU improvement
over the baseline model, which proves the superiority of our model in such challenging scenarios.

Qualitative Results
We report some qualitative results generated from several models for metal surface defect detection and our EAMNet on the
Surface Defect-4i benchmarks. Compared with these representative models, EAMNet exhibits the following advantages as
shown in Figure 3. (1) EAMNet can more accurately segment the target class, while the previous methods incorrectly segments
the seen classes as the target classes (1st to 3rd columns). (2) EAMNet can capture subtle defect details for semantic description
of defect regions to address the limited adaptability problem caused by single-episode (4th to 6th columns). (3) EAMNet
can provide better fine-grained resolution through the contextual adaptive factor from CAM and the support guidance from
GRMAP (7th to 8th columns). (4) Some failure case are exhibited from 9th to 10th columns. These challenges stems from
inherent problem in the data, where the model underperforms on subtle defects with low contrast against the background texture.
Nevertheless, comparative results show that EAMNet, via its cross-episode adaptive analysis, can capture potential defect cues
to coarsely segment the main defect area, outperforming other popular networks in such challenging scenarios.
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Table 3. Comparison of EAMNet with state-of-the-art methods and semantic networks for metal surface defect FSS on
FSSD-12, evaluated by mIoU and FB-IoU under 1-shot and 5-shot settings using the VGG-16 and ResNet-50 backbone. The
best and second best results are highlighted accordingly. Improv. (%) represents the percentage improvement in mIoU over the
Baseline.

Methods Backbone 1-shot 5-shot
Fold-0 Fold-1 Fold-2 Mean FBIoU Improv. (%) Fold-0 Fold-1 Fold-2 Mean FBIoU Improv. (%)

HDMNet35 50.12 49.05 45.51 48.23 66.57 ↑6.10 48.26 49.60 46.11 47.99 66.69 ↑3.10
DCPNet36

VGG16

53.30 44.52 40.98 46.27 66.01 ↑4.14 50.07 48.69 43.07 47.28 67.28 ↑2.39
TGRNet(0-normal)37 63.74 51.68 49.95 55.12 73.36 ↑13.00 66.16 60.24 51.07 59.16 74.48 ↑14.27

CPANet45 50.90 47.39 53.38 50.56 69.26 ↑8.43 50.15 37.41 43.39 43.65 64.73 ↓1.24
MAPTNet46 65.87 55.59 51.49 57.65 72.90 ↑15.52 62.84 58.93 47.41 56.39 74.88 ↑11.50

PFENet47 43.65 37.89 36.12 39.22 67.72 ↓2.91 44.86 40.66 36.57 40.70 68.92 ↓4.19
Baseline 48.40 38.04 39.94 42.13 63.94 - 48.85 43.98 41.84 44.89 65.24 -
EAMNet 63.75 56.00 54.43 58.06 74.46 ↑15.93 65.73 61.87 52.14 59.91 75.68 ↑15.02

HDMNet35 60.50 65.46 51.42 59.13 74.33 ↑12.33 63.03 68.22 53.74 61.66 77.33 ↑11.78
DCPNet36

ResNet50

59.65 63.13 51.84 58.21 74.79 ↑11.41 61.68 61.80 52.71 58.73 74.10 ↑8.85
TGRNet(0-normal)37 61.09 63.24 51.28 58.54 75.20 ↑11.74 61.59 65.81 56.27 61.22 76.74 ↑11.34

CPANet45 54.40 52.59 48.39 51.79 65.15 ↑4.99 56.73 55.06 51.92 54.57 71.19 ↑4.69
MAPTNet46 68.20 58.24 55.34 60.59 75.64 ↑13.79 63.57 62.52 52.85 59.65 73.47 ↑9.76

PFENet47 49.00 47.87 41.78 46.22 73.76 ↓0.58 50.11 50.98 42.34 47.81 74.77 ↓2.07
HMNet50 62.15 54.96 50.56 55.89 71.10 ↑9.09 60.21 60.02 50.53 56.92 72.12 ↑7.04
Baseline 53.95 43.53 42.92 46.80 64.66 - 55.84 50.24 43.57 49.88 67.74 -
EAMNet 68.73 64.11 54.71 62.52 75.80 ↑15.72 64.35 65.92 56.91 62.39 78.24 ↑12.51
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Figure 3. Qualitative results of the MAPTNet, TGRNet, CPANet and proposed EAMNet on Surface Defect-4i.
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Ablation Study
We perform ablation studies using the VGG-16 backbone in the 1-shot setting on the Surface Defect-4i dataset.

Components Analysis
EAMNet comprises four key components: the Episode Adaptive Memory Unit (EAMU) for cross-episode interaction, the
Context Adaptation Module (CAM), Global Response Mask Average Pooling (GRMAP), and Attention Distillation (AD).
Table 4 summarizes the effectiveness of each component. As the most critical component for facilitating cross-episode
interaction, EAMU contributes a significant 5.69% improvement in mIoU. Meanwhile, CAM, GRMAP, and AD are also
essential. Collectively, these four modules enable EAMNet to achieve state-of-the-art performance.

Table 4. Ablation studies of each component on Surface Defect-4i

Components 1-shot
∆

ρ ψ PPPsupp LAD Fold-0 Fold-1 Fold2 Mean
✓ 34.88 30.24 21.19 28.77 ↑5.69
✓ ✓ 35.64 31.57 22.16 29.79 ↑6.71
✓ ✓ ✓ 45.77 31.24 24.78 33.93 ↑10.85
✓ ✓ ✓ ✓ 47.01 32.91 25.46 35.13 ↑12.05

Baseline 28.33 24.54 16.38 23.08 -

β in CAM
To investigate the performance of our contextual adaptive factor within the CAM, we evaluated β values from {0.1,0.2,0.3,0.4,0.5}.
As shown in Table 5, EAMNet achieves its peak performance with β = 0.4, and the second-best result with β = 0.5. Conse-
quently, we set β to 0.4 for all subsequent experiments.

Table 5. 1-shot mIoU of ablation study for hyperparameter β on Surface Defect-4i

β
1-shot

∆Fold-0 Fold-1 Fold-2 Mean
0.10 45.30 30.62 24.26 33.40 ↑10.31
0.20 45.48 30.92 24.20 33.53 ↑10.45
0.30 46.44 31.47 24.40 34.10 ↑11.02
0.40 47.01 32.91 25.46 35.13 ↑12.05
0.50 47.00 32.13 25.57 34.90 ↑11.82

Baseline 28.33 24.54 16.38 23.08 -

α in loss function
As shown in Table 6, we compare the various hyperparameter α which lies in our loss function to validate the effectiveness of
AD. When the α = 0.05, we can see this strategy achieves 12.05% mIoU improvement and outperforms other settings.

Table 6. 1-shot mIoU of ablation study for hyperparameter α on Surface Defect-4i

α
1-shot

∆Fold-0 Fold-1 Fold-2 Mean
0.01 47.48 30.89 25.45 34.61 ↑11.53
0.03 47.46 31.51 25.25 34.74 ↑11.66
0.05 47.01 32.91 25.46 35.13 ↑12.05
0.07 46.81 33.36 24.91 35.03 ↑11.94
0.09 46.87 32.08 24.85 34.60 ↑11.52

Baseline 28.33 24.54 16.38 23.08 -
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Conclusions
We propose an episode adaptive memory network (EAMNet) with four major parts (i.e., EAMU, CAM, GRMAP and AD) to the
few-shot semantic segmentation for metal surface defect. The EAMU generates an adaptive factor at the cross-episode diagram
while alleviating the limited adaptability in semantic description of defect regions within the conventional single-episode
training stage. The CAM and GRMAP obtains fine-grained resolution from the contextual adaptive factor and support guidance,
as a supplement to the semantic information in a single episode. An attention distillation is designed to store the memory
of semantic defect cues between episodes and boost adaptive performance by leveraging semantic attention correspondence.
Comprehensive experiments show that EAMNet achieves state-of-the-art performance under all settings.
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9. Tabernik, D., Šela, S., Skvarč, J. & Skočaj, D. Segmentation-based deep-learning approach for surface-defect detection. J.
Intell. Manuf. 31, 759–776 (2020).

10. Guo, B., Wang, Y., Zhen, S., Yu, R. & Su, Z. Speed: Semantic prior and extremely efficient dilated convolution network
for real-time metal surface defects detection. IEEE Transactions on Ind. Informatics 19, 11380–11390 (2023).

11. Ma, J., Xie, G.-S., Zhao, F. & Li, Z. Afanet: Adaptive frequency-aware network for weakly-supervised few-shot semantic
segmentation. IEEE Transactions on Multimed. 1–11 (2025).

12. Wang, C. et al. Taylor series-inspired local structure fitting network for few-shot point cloud semantic segmentation. In
Proceedings of the AAAI Conference on Artificial Intelligence, 7527–7535 (2025).

/

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS

https://doi.org/10.5281/zenodo.18174740
https://doi.org/10.5281/zenodo.18174740


13. Mai, H., Sun, R., Zhang, T. & Wu, F. Rankmatch: Exploring the better consistency regularization for semi-supervised
semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
3391–3401 (2024).

14. Woo, S. et al. Convnext v2: Co-designing and scaling convnets with masked autoencoders. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 16133–16142 (2023).

15. Chao, C. et al. Iamf-yolo: Metal surface defect detection based on improved yolov8. IEEE Transactions on Instrumentation
Meas. 74, 1–17 (2025).

16. Zhang, X., Fang, T., Saniie, J., Bakhtiari, S. & Heifetz, A. Unsupervised learning-enabled pulsed infrared thermographic
microscopy of subsurface defects in stainless steel. Sci. Reports 14, 14865 (2024).
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