

Genomic profiling of extended-spectrum beta-lactamase-producing *Escherichia coli* isolated from poultry and poultry farm workers in Accra, Ghana

Received: 21 October 2025

Accepted: 13 January 2026

Published online: 05 February 2026

Cite this article as: Okyere I.J., Semevor G.O., Ablordey A. *et al.* Genomic profiling of extended-spectrum beta-lactamase-producing *Escherichia coli* isolated from poultry and poultry farm workers in Accra, Ghana. *Sci Rep* (2026). <https://doi.org/10.1038/s41598-026-36471-9>

Isaac J. Okyere, Grace O. Semevor, Anthony Ablordey, Sherry Johnson & Eric S. Donkor

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

1 Genomic Profiling of Extended-Spectrum Beta-Lactamase-Producing
2 *Escherichia coli* Isolated from Poultry and Poultry Farm Workers in Accra,
3 Ghana.

4 Isaac J. Okyere ^{1,4}, Grace O. Semevor ¹, Anthony Ablorodey ², Sherry Johnson ³,
5 and Eric S. Donkor ^{1*}

6 ¹ Department of Medical Microbiology, University of Ghana Medical School,
7 Korle Bu, Accra, P.O. Box KB 4236, Ghana

8 ² Department of Bacteriology, Noguchi Memorial Institute for Medical
9 Research, University of Ghana, Accra, P.O. Box LG 581, Ghana

10 ³ School of Veterinary Medicine, College of Basic and Applied Sciences,
11 University of Ghana, Accra, P.O. Box LG 68, Ghana

12 ⁴ Department of Chemistry, State University of New York College of
13 Environmental Science and Forestry, Syracuse, NY 13210

14 * Correspondence: esampane-donkor@ug.edu.gh or ericsdon@hotmail.com.
15 Tel: +233-553-527-140

16 **Abstract: Background:** Antimicrobial resistance (AMR), driven by the
17 extensive use of antibiotics in human and animal health, poses a significant
18 global threat. In Ghana, the contribution of poultry farming to the high
19 prevalence of AMR remains underexplored. This study investigates the
20 genomic characteristics and prevalence of extended-spectrum beta-
21 lactamase (ESBL)-producing *Escherichia coli* in poultry and human
22 populations. **Methods:** A total of 300 cloacal swabs from poultry and 60 stool

23 samples from poultry farm workers in peri-urban Accra were collected from 20
24 poultry farms and cultured. Bacterial isolates were identified through MALDI-
25 TOF-MS, with ESBL production confirmed using the double disk synergy test.
26 Whole-genome sequencing of 17 multi-drug resistant isolates selected was
27 conducted on the MiSeq Illumina platform to characterize resistance genes,
28 virulence genes, and sequence types. **Results:** ESBL production was detected
29 in 84.8% (n = 123/145) in isolates from poultry and 67.5% (n = 27/40) in
30 isolates from humans.. All isolates were resistant to cefotaxime, with
31 significant resistance to tetracycline and sulfamethoxazole-trimethoprim also
32 recorded. The *bla*_{CTX-M-15} gene was the most prevalent ESBL gene identified,
33 with additional genes including *bla*_{CTX-M-27}, *bla*_{OXA-1}, *bla*_{OXA-181}, *bla*_{TEM-1B}, and
34 *bla*_{DHA-1} also identified. Sequence typing revealed multiple resistance-
35 associated sequence types, notably ST10 and ST155. Plasmid replicon analysis
36 identified IncF, Col, and IncI1 groups, many co-occurring with multiple
37 resistance genes. Virulome profiling revealed the presence of avian
38 pathogenic *E. coli* (APEC)-associated genes such as *iroN*, *iss*, *ompT*, and *hlyF*.
39 **Conclusions:** This study highlights the prevalence and genomic
40 characteristics of ESBL-producing *E. coli* at the human-poultry interface in
41 Ghana, emphasizing poultry as a potential reservoir for multidrug-resistant
42 bacteria. The findings provide actionable insights for small- to medium-scale
43 poultry farmers, including the importance of prudent antibiotic use, enhanced
44 hygiene, and biosecurity practices, and underscore the need for ongoing

45 genomic surveillance to guide interventions aimed at reducing the spread of
46 antimicrobial resistance in Ghana.

47 **Keywords:** Antimicrobial resistance; Extended-spectrum beta-lactamase;
48 whole-genome sequencing; Poultry farming; *Escherichia coli*; Ghana

49 **Introduction**

50 Antimicrobial resistance (AMR) has emerged as a significant global public
51 health challenge, with an alarming potential to claim up to 10 million lives
52 annually by 2050 [1]. Among the various forms of resistance, Extended-
53 Spectrum Beta-Lactamase (ESBL)-producing bacteria, particularly *Escherichia*
54 *coli*, have gained prominence due to their association with severe infections
55 and their role in the horizontal transfer of resistance genes. ESBLs are
56 enzymes produced by Gram-negative bacteria, particularly members of the
57 Enterobacteriaceae, that hydrolyze extended-spectrum cephalosporins, as
58 well as monobactams, while remaining inhibited by β -lactamase inhibitors
59 such as clavulanic acid. The ESBL phenotype is most commonly mediated by
60 genes belonging to the *bla_{CTX-M}*, *bla_{TEM}*, and *bla_{SHV}* families, which are
61 frequently plasmid-encoded and often co-located with resistance
62 determinants to other antimicrobial classes, thereby contributing to multidrug
63 resistance [2, 3].

64 The increasing prevalence of ESBL-producing *E. coli* has raised significant
65 concerns in both healthcare and agricultural sectors, particularly in low-and
66 middle-income countries (LMICs), where the overuse of antibiotics in human

medicine and livestock farming has become widespread [4, 5]. Poultry farming in Ghana is a widely practiced agricultural activity fueled by economic incentives, inadvertently increasing the risks of antibiotic misuse and overuse in these systems [6]. The emergence of ESBL-producing *E. coli* in poultry is particularly troubling, given their association with contamination in retail chicken and their potential to facilitate the transmission of resistance genes to human populations [7, 8, 9]. The close proximity of poultry farms to human settlements, often lacking appropriate biosecurity measures, intensifies public health concerns [10]. Despite the urgency, research exploring the dynamics of AMR dissemination between poultry and humans in Ghana has been limited, and primarily focused on human health [11]. This creates a critical gap in our understanding of the complex interplay between poultry farming practices, AMR, and potential zoonotic transmission routes. While existing studies on AMR in Ghana have contributed valuable insights, they predominantly rely on phenotypic analyses and do not include poultry farm workers [5], [12], [13] , which, although useful for identifying resistance patterns, do not provide a comprehensive understanding of the underlying genetic mechanisms driving resistance. Methods such as whole-genome sequencing and multi-locus sequence typing have been rarely applied, limiting our ability to map the genetic characteristics and potential transmission pathways of ESBL-producing *E. coli* across poultry and human populations [13, 14]. This gap is concerning, considering the potential risks associated with the spread of resistant strains and their implications for public health. Moreover, the unique

90 environmental and agricultural factors in Ghana, such as economic pressures
91 leading to increased, often unregulated, antibiotic use, further exacerbate the
92 potential spread of AMR. The lack of robust biosecurity measures in poultry
93 farms, combined with the close integration of these farms within human
94 communities, positions them as potential reservoirs for resistant bacteria [15,
95 16, 17]. Addressing these gaps in knowledge is essential for informing health
96 policy and intervention strategies aimed at curbing the threat of AMR. This
97 study sought to conduct genomic profiling of ESBL-producing *E. coli* isolated
98 from poultry and poultry farm workers across 20 poultry farms in Accra,
99 Ghana. By leveraging advanced genomic techniques, the study elucidated the
100 genetic diversity, resistance gene profiles, and dissemination of ESBL-
101 producing *E. coli*. The findings provide insights into the dynamics of AMR in
102 the poultry-human interface, contributing to a broader understanding of its
103 impact on public health.

104 **2. Materials and Methods**

105 *2.1. Study site and sampling*

106 This cross-sectional study was conducted in peri-urban areas of Accra, Ghana,
107 focusing on small-to-medium-scale poultry farms and their workers to
108 determine the prevalence and genomic characteristics of ESBL-producing *E.*
109 *coli*. A total of 360 samples were collected from 20 poultry farms in November
110 2023, comprising 300 cloacal swabs from chickens and 60 stool samples from
111 poultry farm workers. Each farm housed approximately 900–3000 chickens,

112 and 15 randomly selected chickens were sampled per farm, along with stool
113 samples from three farm workers. Cloacal swabs were obtained from live
114 chickens using sterile swabs pre-moistened with phosphate-buffered saline
115 (PBS) (Oxoid, Basingstoke, Hampshire, UK) and transported in a cold box to
116 the laboratory. Stool samples were self-collected by poultry workers in sterile
117 containers, inoculated with PBS, and transported in a cold box to the
118 laboratory within 24 hours of collection. Participants were selected based on
119 their willingness to participate and their involvement in poultry farming.

120 The study was conducted in accordance with the Declaration of Helsinki and
121 approved by the Ethical and Protocol Review Committee of the College of
122 Health Sciences, University of Ghana (CHS-Et/M.2-P 4.6/2021-2022). All
123 methods were performed following the relevant guidelines and regulations
124 and in accordance with Animal Research: Reporting of In Vivo Experiments
125 (ARRIVE) guidelines.

126 *2.2. Isolation and Identification*

127 Cloacal swabs were incubated aerobically at 37 °C for 24 h, while
128 approximately one gram of each human stool sample was inoculated into
129 buffered peptone water (Oxoid, Basingstoke, Hampshire, UK) immediately
130 upon arrival and incubated at 37 °C for 24 h. Immediately after incubation, a
131 10 µL loopful of the culture was streaked onto selective MacConkey agar plates
132 (Sigma-Aldrich, St. Louis, MO, USA) supplemented with 4 µg/mL cefotaxime.
133 The inoculated plates were incubated at 37 °C for 24 hours under aerobic

134 conditions. Following overnight incubation, morphologically distinct colonies
135 were observed, and up to five pink to reddish isolated colonies indicative of
136 lactose fermentation from each sample were selected. These colonies were
137 then sub-cultured on Nutrient agar (Oxoid, Basingstoke, Hampshire, UK) and
138 incubated at 37 °C for 24 hours to obtain pure cultures. The pure cultures were
139 initially screened using conventional biochemical tests (Triple sugar iron,
140 Citrate utilization tests, Urease, and Sulphur Indole motility biochemical tests)
141 and subsequently identified using the Matrix Assisted Laser Desorption
142 Ionization Time of Flight Mass Spectrometry (MALDI-TOF, Bruker, Billerica, MA,
143 USA) analyzer. Isolates identified as *E. coli* were retained for downstream ESBL
144 confirmation and genomic analyses while non-*E. coli* Enterobacterales
145 identified were excluded from further analyses. For long-term storage and
146 future analyses, three to five representative colonies of the pure cultures of *E.*
147 *coli* were preserved in skim-milk-tryptone-glucose-glycerol broth at –80 °C.

148 2.3. Phenotypic detection of ESBL-producing *E. coli*

149 The phenotypic detection of ESBL production was carried out utilizing the
150 double disk synergy test, following the guidelines established by the WHO
151 [18]. Mueller-Hinton agar plates (Oxoid, Basingstoke, Hampshire, UK) were
152 used as the growth medium. Briefly, an inoculum preparation of a bacterial
153 suspension equivalent to a 0.5 McFarland standard was done, and the
154 suspension was inoculated onto the agar plates using sterile cotton swabs to
155 ensure uniform growth. After allowing the plates to air-dry for 3-5 minutes,
156 cefotaxime (30µg), and ceftazidime (30µg), were placed approximately 20 mm

157 from the centrally positioned amoxicillin/clavulanic acid (20/10 μ g) disk using
158 sterile forceps. The plates were incubated for 18 hours at 37°C under aerobic
159 conditions and then examined for synergy effects indicated by increased
160 zones of inhibition surrounding the cephalosporin disks, which confirmed
161 positive ESBL production.

162 *2.4. Antimicrobial susceptibility testing*

163 Antimicrobial susceptibility testing of *E. coli* isolates was conducted using the
164 Kirby-Bauer disk diffusion method following the Clinical and Laboratory
165 Standards Institute (CLSI) guidelines [19]. Pure colonies were selected and
166 suspended in sterile saline, and the bacterial concentration was adjusted to a
167 0.5 McFarland standard using a BD PhoenixSpec™ nephelometer (Beckton
168 Dickinson, Sparks, MD, USA). The standardized suspension was uniformly
169 spread across Mueller-Hinton agar plates (Oxoid, Basingstoke, Hampshire, UK)
170 using sterile cotton swabs to achieve confluent bacterial growth. Commercially
171 available antibiotic disks (Oxoid, Basingstoke, Hampshire, UK) were carefully
172 placed on the agar surface. The antibiotics tested included amikacin (30 μ g),
173 amoxicillin-clavulanate (20/10 μ g), tetracycline (30 μ g), gentamicin (10 μ g),
174 cefoxitin (30 μ g), piperacillin-tazobactam (100/10 μ g), chloramphenicol (30
175 μ g), ciprofloxacin (5 μ g), sulfamethoxazole-trimethoprim (10 μ g), meropenem
176 (10 μ g), ceftazidime (30 μ g), and cefotaxime (30 μ g). The plates were then
177 incubated at 37°C under aerobic conditions for 24 hours. A quality control
178 strain, *E. coli* ATCC 25922, was included in each batch to validate the results
179 and ensure accuracy. The inhibition zone diameters surrounding the antibiotic

180 disks were measured and recorded into WHONET 2024 software for
181 interpretation [20].

182 *2.5. Whole Genome Sequencing and Bioinformatic Analysis*

183 DNA extraction was performed on 17 ESBL-producing *E. coli* isolates, including
184 10 obtained from poultry and 7 from poultry farmworkers, selected based on
185 their similar multidrug-resistant patterns. The isolates were cultured on
186 nutrient agar after overnight incubation at 37°C under aerobic conditions, and
187 DNA was extracted using the QIAamp® DNA mini kit (QIAGEN Inc. GmbH,
188 Holden, Germany) according to the manufacturer's protocol. The quality and
189 concentration of genomic DNA were assessed using the NanoDrop™ 2000
190 Spectrophotometer (ThermoFisher Scientific, Waltham, MA, USA) and Qubit
191 Fluorometer (Invitrogen, Carlsbad, CA, USA). Genomic libraries were
192 generated with the Illumina DNA prep kit, adhering to the manufacturer's
193 guidelines for the Illumina MiSeq technology. The libraries were pooled and
194 subsequently loaded onto the MiSeq Illumina sequencer (Illumina Inc., San
195 Diego, CA, USA) to generate 250 bp x 2 paired-end reads for each ESBL-
196 producing *E. coli* isolate. All raw sequences were submitted to NCBI and
197 assigned a Bioproject accession number, PRJNA1208549.

198 The raw sequenced reads underwent quality assessment and trimming, using
199 FASTQC v0.12.1 and Trimmomatic v0.36 [21]. Trimmed reads were then *de*
200 *novo* assembled using the SPAdes assembler. Multi-locus sequence typing
201 analysis was conducted on the assembled genomes using the MLST 2.0 tool

202 hosted by the Center for Genomic Epidemiology (CGE)
203 (<http://cge.cbs.dtu.dk/services/MLST/>) according to the Achtman scheme,
204 which identifies sequence types (STs) based on variations in seven
205 housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA) [22]. Isolates
206 that could not be assigned ST through conventional MLST were further
207 analyzed using core genome MLST (cgMLST) in Enterobase to determine their
208 cgSTs. *In silico* analysis was conducted using the ResFinder tool v4.6.0 [23]
209 hosted on the CGE website at default threshold ID (90%) and minimum length
210 (60%) values to identify acquired antimicrobial resistance genes. Virulome and
211 plasmid analysis were also conducted using the VirulenceFinder 2.0 tool [24]
212 and PlasmidFinder 2.1 [25] hosted on the CGE website to identify the
213 virulence-associated genes. The phylogroups classification of the *E. coli*
214 genomes was then performed using the in silico Clermont-Typing 1.4.1 tool [26]
215 at default parameters before whole-genome sequences were uploaded to
216 CSIPhylogeny to analyze the evolutionary relatedness [27] among the 17
217 ESBL-producing *E. coli* and identify single-nucleotide polymorphisms (SNPs),
218 by comparing assembled sequences to the reference genome ASM584v2
219 (*Escherichia coli* str. K-12 substr. MG1655). The generated tree was visualized
220 and annotated using Interactive Tree of Life, iTOL v6 [28].

221 2.6. Data Analysis

222 Statistical analyses were conducted to evaluate differences in antibiotic
223 resistance patterns between poultry and human isolates. Fisher's exact test
224 was applied separately to each antibiotic resistance profile to determine

225 whether resistance frequencies varied significantly between the two sources.
226 A p-value < 0.05 was considered statistically significant. All statistical analyses
227 were performed using R v4.4.1 software

228 **3. Results**

229 *3.1. Prevalence of ESBL-Producing *E. coli**

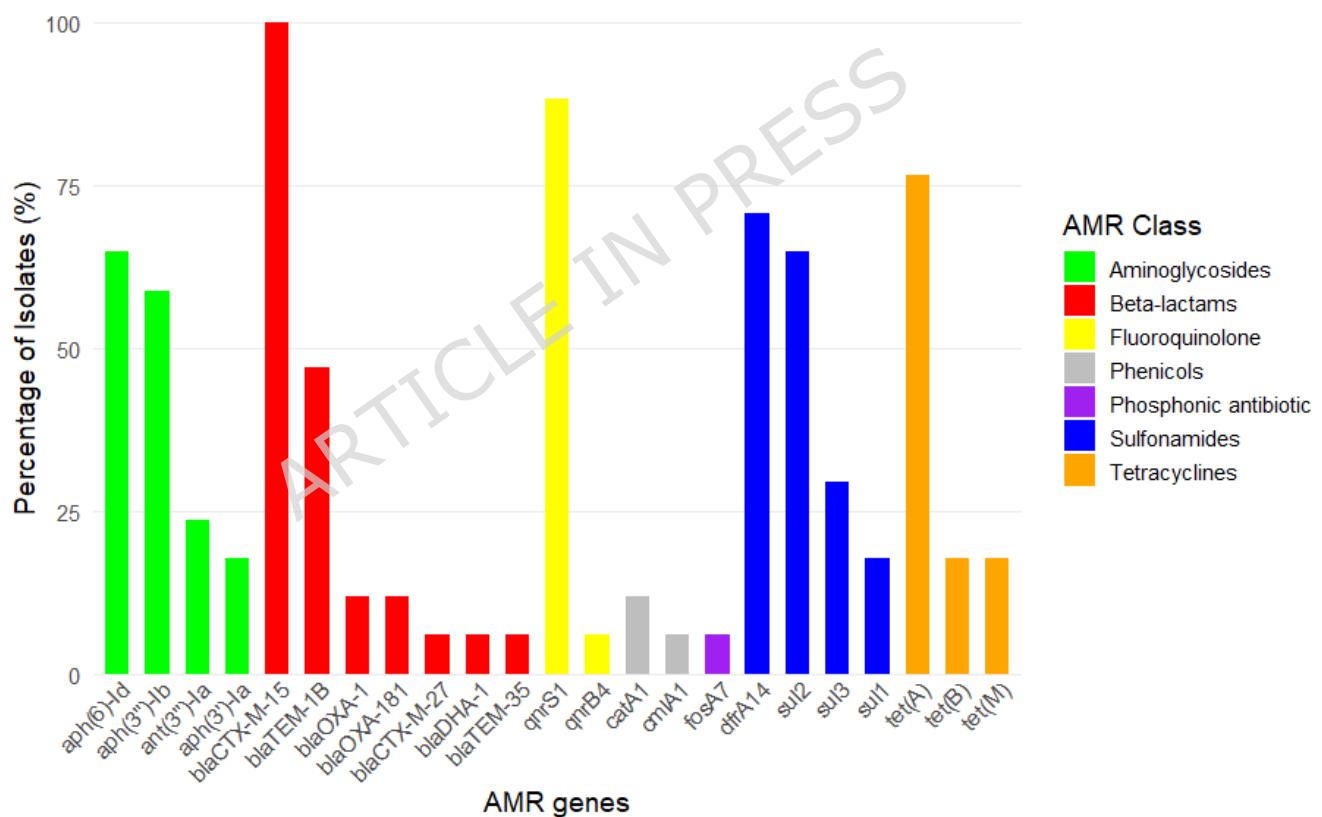
230 In this study, we assessed the prevalence of ESBL-producing *E. coli* within
231 poultry farms and among poultry farm workers. A total of 189 third-generation
232 cephalosporin-resistant bacterial isolates were obtained from 300 cloacal
233 swab samples (n = 149/300) and 60 fecal samples (n = 40/60) collected from
234 poultry workers. The isolated bacteria were predominantly *E. coli* (n =
235 185/189, 97.9%), with a smaller number of *Klebsiella pneumoniae* (n = 3/189,
236 1.6%) and *Enterobacter cloacae* (n = 1/189, 0.5%). Out of 185 *E. coli* isolates
237 recovered, 150 were phenotypically confirmed as ESBL producers. Among
238 poultry-derived isolates, 84.8% (n = 123/145) were confirmed as ESBL-
239 producing *E. coli*. Among isolates recovered from poultry farm workers, 67.5%
240 (n = 27/40) were confirmed as ESBL-producing *E. coli*. Notably, 16 out of the
241 20 farms exhibited at least one positive henhouse for ESBL-producing *E. coli*,
242 while at least one human from 10 farms also tested positive for ESBL-
243 producing *E. coli*. Farm-level analysis revealed significant variation in ESBL
244 prevalence. At the farm level, the proportion of samples from poultry testing
245 positive for ESBL-producing *E. coli* ranged from 40% (n = 6/15) to 60% (n =

246 9/15), while the carriage among humans ranged from 33.3% (n = 1/3) to
 247 66.7% (n = 2/3) per farm (Table S2).

248 The antibiotic susceptibility testing of the 150 ESBL-producing *E. coli* isolates
 249 showed widespread resistance across multiple antibiotic classes. All ESBL-
 250 positive isolates from both poultry (n=123/123, 100%) and farm workers
 251 (n=27/27, 100%) were resistant to cefotaxime, confirming the characteristic
 252 β -lactam resistance conferred by ESBL production. Among the ESBL-producing
 253 isolates, resistance to ceftazidime varied between poultry (n=118/123, 95.9%)
 254 and humans (n=22/27, 81.5%). Similarly, tetracycline resistance was notable
 255 in both poultry (n=121/123, 98.4%) and human (n=17/27, 63.0%) isolates.
 256 Resistance to sulfamethoxazole-trimethoprim was observed in (n=112/123,
 257 90.8%) poultry isolates and (n=19/27, 70.4%) of the human isolates (Table 1).

258 **Table 1.** Antimicrobial Resistance Profile of ESBL-producing *E. coli* isolates
 259 from poultry (n = 123) and poultry farm workers (n = 27).

Antibiotics	ESBL-positive		p- value
	Poultry	Humans	
	(n = 123)		(n = 27)
Amoxicillin/clavulanic acid (30 μ g)	31 (25.6%)	09 (33.3%)	0.634

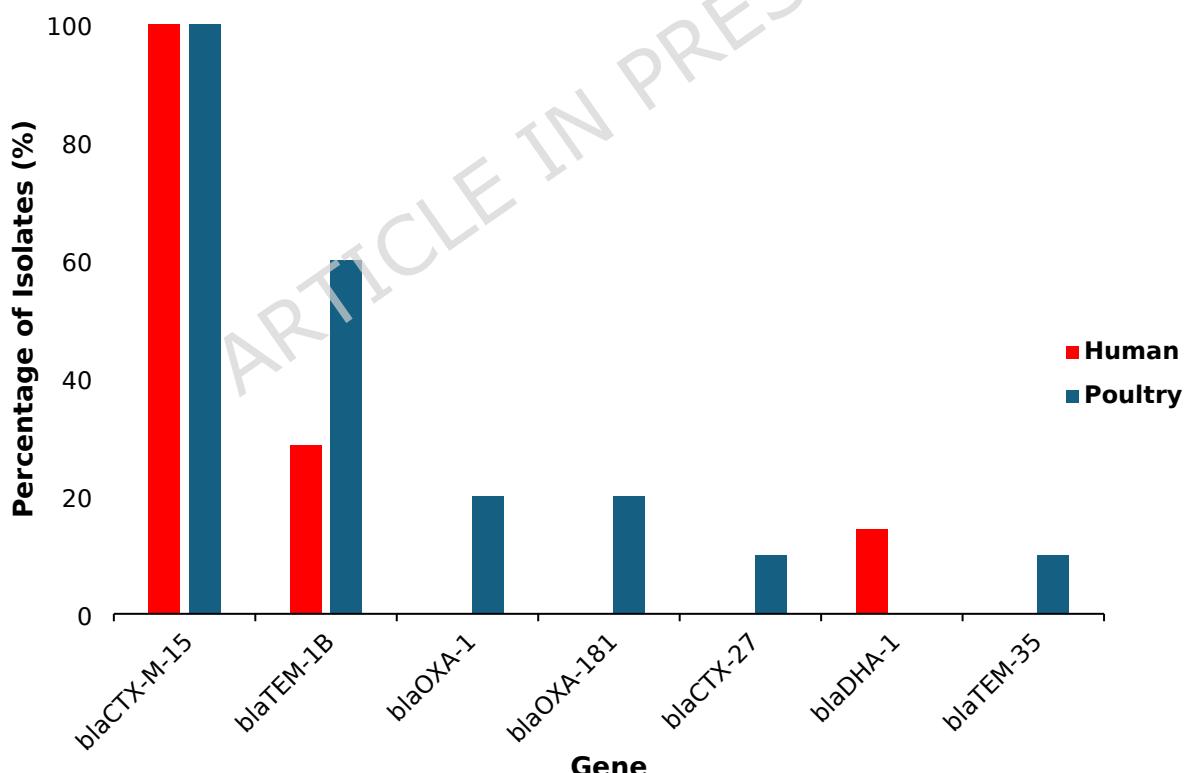

Piperacillin-tazobactam (30µg)	43 (34.6%)	09 (33.3%)	1
Cefotaxime (30µg)	123 (100%)	27 (100%)	NA
Ceftazidime (30µg)	118 (95.9%)	22 (81.4%)	0.017
Cefoxitin (30µg)	43 (34.6%)	10 (37.0%)	0.828
Meropenem (10µg)	02	00 (0.0%)	1
Gentamicin (10µg)	31 (25.2%)	12 (44.4%)	0.065
Amikacin (30µg)	46 (37.2%)	10 (37.0%)	0.828
Tetracycline (30µg)	121 (98.4%)	17 (63.0%)	<0.001
Chloramphenicol (30µg)	38 (31.0%)	11 (40.7%)	0.821
Ciprofloxacin (5µg)	93 (75.6%)	16 (59.3%)	0.154
Sulfamethoxazole-trimethoprim (1.25/23.75µg)	112 (90.8%)	19 (70.4%)	0.002

260 NA: Statistical comparison not applicable because all isolates were 100% resistant. *The values*
 261 *represent the number of resistant isolates, with percentages given in parentheses.*

262 *3.2. Distribution of acquired antimicrobial resistance genes*

263 Genomic analysis of the 17 ESBL-producing *E. coli* isolates, selected based on
 264 their similar multidrug resistance patterns in both poultry and human sources,
 265 identified a significant diversity of antimicrobial resistance genes. Notably, a
 266 total of 32 acquired antimicrobial resistance genes were identified with *bla*_{CTX-}

267 M-15 emerging as the most prevalent, present in all 17 isolates (Figure 1).
 268 Several other beta-lactamase genes were detected, including $\text{bla}_{\text{CTX-M-27}}$,
 269 $\text{bla}_{\text{DHA-1}}$, $\text{bla}_{\text{TEM-1B}}$, $\text{bla}_{\text{TEM-35}}$, $\text{bla}_{\text{OXA-1}}$, and $\text{bla}_{\text{OXA-181}}$. The $\text{bla}_{\text{OXA-181}}$ gene was
 270 observed exclusively in isolates that also exhibited resistance to meropenem.
 271 Beyond beta-lactam resistance, genes conferring resistance to
 272 aminoglycoside ($\text{aph}(6')\text{-Id}$, $\text{aph}(3')\text{-Ia}$, $\text{aph}(3'')\text{-Ib}$, $\text{ant}(3'')\text{-Ia}$, aadA2), folate
 273 inhibitors (sul1 , sul2 , dfrA12 , dfrA14) and quinolones ($\text{aac}(6')\text{-Ib-cr}$, qnrS1 ,
 274 qepA4) were also observed.

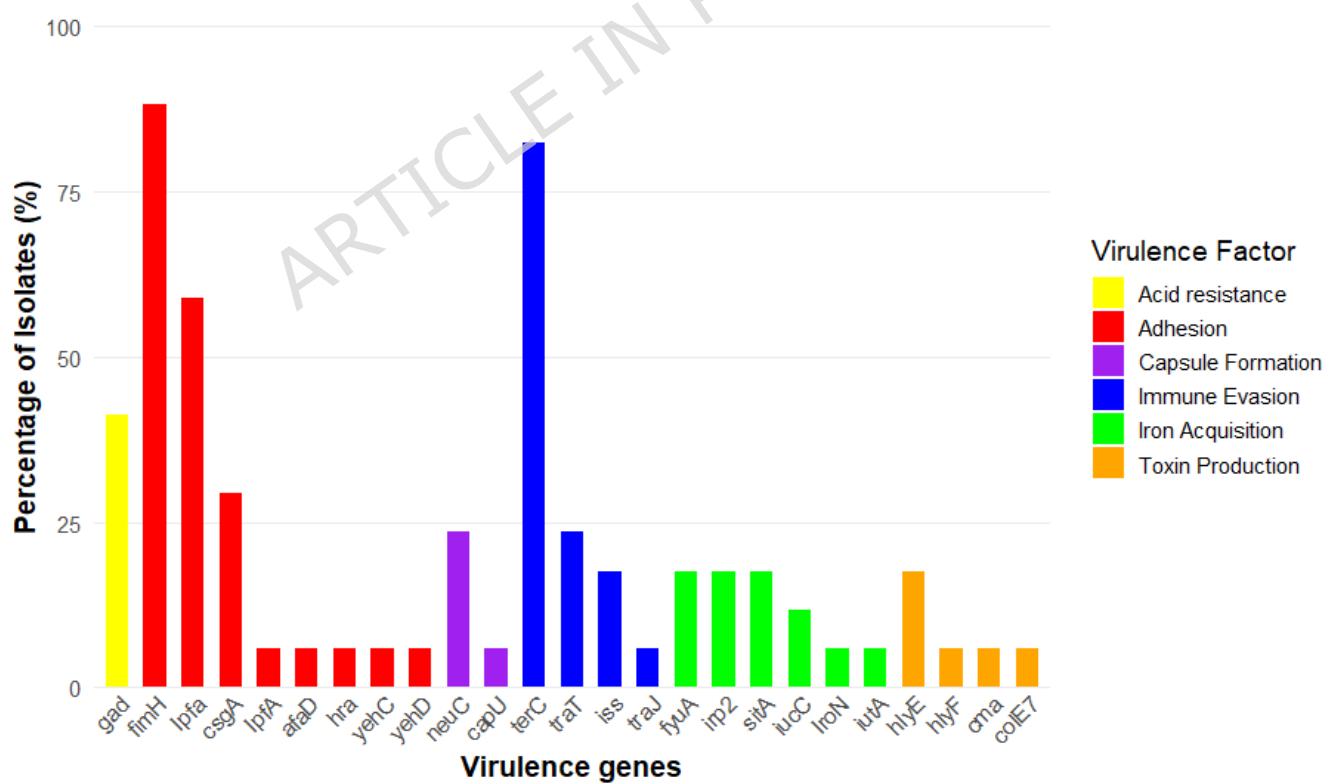


275

276 **Figure 1.** Antimicrobial resistance gene distribution.

277 *3.3 Distribution of Beta-lactam resistance genes by source*

278 The patterns of beta-lactam resistance genes in the ESBL-producing *E. coli*
 279 isolates from human and poultry sources reveal interesting trends. The gene
 280 *bla*_{CTX-M-15} was the most commonly identified resistance gene in both groups,
 281 with a higher prevalence in poultry samples (n = 10) compared to human
 282 isolates (n = 7). In addition to *bla*_{CTX-M-15}, the gene *bla*_{TEM-1B} was frequently
 283 detected, again showing greater occurrence in poultry (n = 6) than in humans
 284 (n = 2). Notably, other beta-lactam resistance genes such as *bla*_{OXA-1}, *bla*_{OXA-181},
 285 *bla*_{CTX-M-27}, and *bla*_{TEM-35} were unique to poultry samples, whilst *bla*_{DHA-1} (n
 286 = 1), was identified only in one isolate from the human samples. (Figure 2).

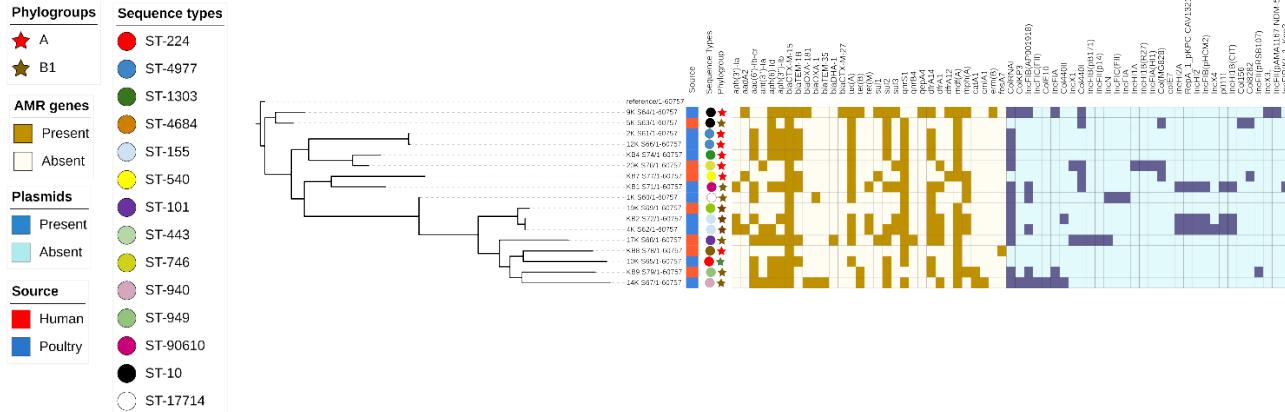

287

288 **Figure 2.** Distribution of Beta-lactam resistance genes by source.

289 3.4. *Virulence factors Distribution in Poultry and Human ESBL-producing E. coli*

290 *Isolates*

291 A virulome analysis conducted using the Virulence Finder tool from CGE
 292 identified 25 unique virulence-associated genes (VAGs) across the 17 ESBL-
 293 producing *E. coli* isolates. Among these, the most prevalent VAGs were *fimH*,
 294 present in 88% of the isolates (n = 15/17), followed closely by *terC* at 82% (n
 295 = 14/17), *lpfA* at 59% (n = 10/17), and *gad* at 41% (n = 7/17). The identified
 296 virulence factors were categorized based on their functional roles, including
 297 adhesion molecules, toxin production, iron acquisition systems, immune
 298 evasion, and acid resistance (Figure 3).


299

300 **Figure 3.** Distribution of Virulence genes in the ESBL-producing *E. coli*
301 isolates.

302 *3.5. Phylogenetic analysis of ESBL-producing E. coli isolates*

303 The phylogenetic analysis of the ESBL-producing *E. coli* isolates among the
304 strains derived from human and poultry sources (Figure 4) classified the
305 isolates into two major phylogroups, A and B1, with B1 predominantly
306 associated with poultry-derived strains, while A was more evenly distributed
307 between human and poultry isolates. Twelve sequence types (STs) were
308 identified, including ST-224, ST-746, and ST-10, with the identification of two
309 novel sequence types. Two isolates that could not be assigned STs through
310 conventional MLST were further analyzed using cgMLST in Enterobase, which
311 identified them as cgST 17714 (1K S60) and cgST 90610 (KB1 S70). Thirty
312 different plasmids were observed among the 17 ESBL-producing *E. coli* isolates
313 sequenced from poultry and human sources. The most prevalent plasmid
314 replicons belonged to Col (*ColRNAI*, *Col440I*, *ColKP3*, *ColE10*, *Col(MG828)*,
315 *Col440I*, *Col156*, *Col8282*, *Col(MG828)*, *Col8282*) and Inc (*IncY*,
316 *IncFIB(AP001918)*, *IncFIC(FII)*, *IncFIA*, *IncX1*, *IncFIB(pB171)*, *IncFII(p14)*, *IncN*,
317 *IncH1A*, *IncH1B(R27)*, *IncFIA(HI1)*, *IncH2A*, *IncH2*, *IncH1B(CIT)*, *IncX4*, *IncX3*,
318 *IncFII(pAMA1167-NDM-5)*, *IncFII(pRSB107)*, *IncFIB(K)_1_Kpn3*) groups. The
319 prevalent plasmid types were *ColRNAI* (n = 13/17), *IncY* (n = 7/17), *IncFIB*
320 (*AP001918*), and *Col440I* (n = 6/17 each), as shown (figure 4). *ColRNAI* was
321 the most prevalent in poultry (n = 9/17), whilst *Col440I* and *ColRNAI* (n = 4/17,
322 each) were prevalent in the isolates from poultry farm workers.

Tree scale: 0.1

323

324 **Figure 4.** A phylogenetic tree generated based on single-nucleotide
325 polymorphisms of the core genes of 17 ESBL-producing *E. coli* isolates,
326 showing resistance genes and plasmids against sequence types with reference
327 genome *E. coli* str. K-12 substr. MG1655 as an outgroup.

328 4. Discussion

Studies worldwide have shown increasing concerns regarding AMR impacting both human and animal health [29, 30]. This study highlights the genomic diversity of ESBL-producing *E. coli* from poultry and poultry farm workers in Accra, Ghana.

333 The detection rates of ESBL-producing *E. coli* observed suggest potential
334 differences in exposure risks, biosecurity measures, or antibiotic use practices
335 [31], which may contribute to variations in colonization patterns between
336 poultry and farm workers. These ESBL-producing *E. coli* isolates showed
337 significant resistance to multiple antibiotics across different classes such as

338 tetracycline, ciprofloxacin, and sulfamethoxazole-trimethoprim, highlighting
339 their multidrug-resistant nature and a widespread presence of antimicrobial-
340 resistant ESBL-producing *E. coli* in both animal and human populations on
341 farms. The findings align with previous studies that have similarly linked high
342 rates of ESBL production in *E. coli* to the development of multidrug resistance
343 in both poultry and human sources [32, 33, 34], reinforcing the notion that
344 farming practices may be instrumental in shaping the resistance profiles of
345 these pathogens. Notably, the observed resistance pattern was most evident
346 against penicillin, tetracycline, aminoglycosides, and sulfonamides which are
347 antimicrobials frequently employed for therapeutic purposes in both human
348 medicine and the poultry industry in Ghana [5, 35]. The high resistance rates
349 observed in poultry may reflect antibiotic exposure driven by agricultural
350 practices such as the use of antibiotics for growth promotion and disease
351 prevention. This trend raises questions about the efficacy of current
352 antimicrobial stewardship practices, highlighting the urgent need for revised
353 strategies to mitigate the selection and spread of resistance.

354 Whole genome sequencing revealed *bla_{CTX-M-15}* as the most occurring ESBL
355 gene in all the isolates. The predominance of *bla_{CTX-M-15}* among the ESBL-
356 producing *E. coli* isolates in this study aligns with its widespread distribution
357 in both clinical and agricultural settings [14, 36]. CTX-M-15 has been
358 frequently implicated in human infections and has been reported in various
359 geographic regions, particularly in LMICs where the burden of antimicrobial
360 resistance is high [37, 38, 39]. Its presence in Ghanaian hospital settings

361 further supports this trend, as previous studies have consistently identified
362 *bla*_{CTX-M-15} as the dominant ESBL gene in clinical isolates [40]. A study reported
363 that all ESBL-producing *E. coli* isolates carried a *bla*_{CTX-M} gene, with *bla*_{CTX-M-15}
364 detected in 98% of cases in 2016 at a hospital in Ghana [39]. Similarly, a more
365 recent study on ESBL-producing *E. coli* and *Klebsiella pneumoniae* isolates
366 from pediatric patients found that *bla*_{CTX-M} was the most prevalent ESBL gene,
367 detected in 92.4% of isolates in a hospital in Ghana [41]. This trend is not
368 unique to Ghana but is also in other LMICs, where a high prevalence of the
369 *bla*_{CTX-M} gene has been reported. In Senegal, *bla*_{CTX-M-15} has been reported to
370 be the predominant ESBL gene detected in ESBL-producing *E. coli* isolated
371 from broiler chickens sold in open wet markets [42]. Similarly, prevalence
372 rates of 83-88% have been reported for the detection of *bla*_{CTX-M-15} within
373 hospitals in Ethiopia [43, 44]. The detection of other beta-lactamase genes
374 such as *bla*_{CTX-M-27}, *bla*_{TEM-1B}, *bla*_{TEM-35}, and *bla*_{OXA-1}, in this study, further
375 underscores the genetic diversity of resistance within these isolates and
376 highlights their functional significance in conferring broad-spectrum β-lactam
377 resistance. Although *bla*_{OXA-1} and *bla*_{OXA-181} were identified in a few isolates,
378 their presence warrants attention. *bla*_{OXA-1} is often associated with resistance
379 to amoxicillin-clavulanate, compromising the effectiveness of β-lactamase
380 inhibitor combinations in treating infections caused by these resistant strains
381 [45, 46]. The *bla*_{OXA-181} gene, identified only in isolates that were meropenem
382 resistant, suggests a potential role in conferring meropenem resistance in
383 these specific strains. *bla*_{OXA-181} is a carbapenemase-producing gene and has

384 primarily been identified in enterobacteriaceae in hospitals in Ghana [44].
385 Although carbapenems are not used in poultry production, the presence of this
386 gene in poultry-associated isolates may reflect horizontal transfer of
387 carbapenemase genes within the farm environment. Detecting these clinically
388 significant resistance genes in poultry highlights the need for close monitoring
389 to control their spread into the broader community. While studies from Africa,
390 including this study, indicate a high predominance of *bla_{CTX-M-15}*, research
391 conducted in Europe reveals markedly lower rates of this gene in poultry
392 isolates [47, 48]. This disparity emphasizes the regional variations in the
393 prevalence of ESBL genes, which are likely influenced by differing antibiotic
394 usage patterns, agricultural practices, and the robustness of monitoring
395 frameworks [47].

396 A range of resistance determinants to non-beta-lactam antibiotics was also
397 identified. These included genes conferring resistance to quinolones,
398 aminoglycosides, tetracyclines, phenicols, and folate pathway inhibitors.
399 These findings are consistent with those reported in similar studies [12, 49,
400 50]. The presence of such genes underscores a multidrug-resistant profile
401 among the *E. coli* isolates from both poultry and human sources. This
402 occurrence of resistance determinants to multiple antibiotic classes poses a
403 significant challenge to existing antimicrobial therapies, as it greatly reduces
404 the pool of effective antibiotics. The diversity and prevalence of these
405 resistance genes highlight the adaptability and resilience of the ESBL-
406 producing *E. coli* isolates. This emphasizes the urgent need for enhanced

407 regional surveillance and strategic antimicrobial stewardship measures to
408 combat the spread of antimicrobial resistance effectively.

409 The genomic analysis further elucidated the genetic diversity present among
410 the ESBL-producing *E. coli* isolates, revealing 12 STs that were grouped into
411 two principal commensal phylogenetic groups: B1 and A. Phylogroup B1 was
412 predominantly composed of isolates from poultry, suggesting host adaptation
413 or persistence within the poultry environment. In contrast, phylogroup A
414 included isolates from both poultry and farm workers, indicating potential
415 genetic overlap and exchange across hosts. Within these, only ST10 emerged
416 as a shared sequence type between poultry and human sources, both of which
417 were recovered from the same farm. This co-occurrence points to a possible
418 overlap between hosts within a shared environment, suggesting possible
419 zoonotic potential. Conversely, ST155 and ST4977, found exclusively in
420 poultry isolates, may indicate a possible adaptation to avian hosts. The
421 association of ST10 and ST155 with high virulence and resistance-associated
422 gene counts raises concerns about their pathogenic potential, as their
423 adaptability and prevalence within microbial communities could facilitate the
424 transfer of critical genetic material, complicating efforts to control the spread
425 of antimicrobial resistance. Previous studies have established that these STs
426 are prevalent in both poultry and human populations, with frequent
427 identification in clinical settings [13, 51, 52]. These STs harbor a range of
428 virulence factors, such as adhesion factors (*fimH*), iron acquisition systems
429 (*fyuA*, *iroN*, *irp2*), serum resistance genes (*iss*), and hemolysins (*hlyF*), which

430 are commonly found in extraintestinal pathogenic *E. coli* strains [10, 53, 54].
431 This is consistent with our study, where ST10 and ST155 were predominantly
432 identified with these virulence genes (fig S1). The overlap between these STs
433 in agricultural and healthcare environments points to the risk of cross-species
434 transmission and emphasizes the necessity for monitoring these strains.

435 Virulome analysis of the ESBL-producing *E. coli* isolates revealed a complex
436 landscape of virulence factors linked to the pathogen's adaptability and
437 survival in both host environments. The high occurrence of *fimH* and *lpfA*
438 observed in this study highlights their critical roles in *E. coli* adhesion to host
439 cells. *FimH*, a key virulence factor mainly associated with Uropathogenic *E.*
440 *coli* encodes type 1 fimbriae [55] while *lpfA*, typically linked to Enterotoxigenic
441 *E. coli* encodes long polar fimbriae [56]. Both facilitate bacterial attachment to
442 epithelial surfaces, promoting colonization in poultry and humans [57, 58].
443 Together, these findings highlight the significant role of *fimH* and *lpfA* in
444 enhancing the ability of the ESBL-producing *E. coli* isolates to adhere to host
445 tissues, a key factor in their adaptability, persistence, and pathogenic
446 potential across diverse environments. Notably, none of the isolates carried
447 the set of virulence determinants defining diarrheagenic *E. coli* (DEC)
448 pathotypes, suggesting that classical DEC lineages were absent in this
449 population [59], [60], [61]. In contrast, several isolates harbored combinations
450 of avian pathogenic *E. coli* (APEC)-associated genes such as *iutA* (aerobactin
451 receptor gene), *traT* (outer membrane protein complement resistance), *iss*
452 (serum survival protein), *hlyE*; *hlyF* (haemolysins), *ompT* (outer membrane

453 protease), and *iroN* (salmochelin siderophore receptor) [62], [63], [64]. These
454 findings indicate that while diarrheagenic lineages were not represented, the
455 isolates exhibited virulence characteristics of APEC-like strains. This overlap of
456 virulence determinants in both poultry and human isolates highlights their
457 zoonotic relevance and raises concerns about the potential for extraintestinal
458 pathogenic infections, particularly in agricultural settings where frequent
459 human-animal contact occurs.

460 The widespread presence of *terC* among 82% of the isolates suggests that
461 this gene plays a significant role in environmental stress resistance [65, 66],
462 its contribution to the survival of *E. coli* in harsh conditions cannot be
463 overlooked. This suggests a potential evolutionary advantage, especially in
464 agricultural settings where selective pressures, such as antimicrobial use, are
465 common. Additional insights were gained from the identification of the *gad*
466 gene in 41% of the isolates, indicative of an enhanced resilience to acidic
467 environments, an essential trait for pathogens colonizing the gastrointestinal
468 tract at low pH [67, 68].

469 The plasmid replicons in this study indicate the potential of these isolates to
470 acquire new genetic material and transfer AMR genes among similar species
471 and other pathogens via plasmid-mediated resistance gene transmission. The
472 frequent use of antibiotics in poultry farming exerts selective pressure,
473 fostering the persistence of resistance genes within poultry-associated
474 bacteria, which can be transferred to human pathogens [14, 69, 70, 71, 72].
475 Notably, resistance genes, such as *bla_{OXA-181}*, *qnrS1*, *tet(A)*, and *sul2* were

476 detected together with the *ColKP3* plasmid replicon (Table S3), suggesting a
477 robust capacity for conferring resistance to third-generation cephalosporins,
478 tetracyclines, and fluoroquinolones, further complicating treatment options.

479 Another notable plasmid group identified in this study is the Inc plasmid
480 replicons with 19 different types observed as shown in figure 4. This group of
481 plasmids is often identified in Enterobacteriaceae isolated from humans and
482 animals [73, 74, 75, 76], where they serve as carriers of genes that code for
483 resistance against beta-lactam antibiotics and other resistance genes that
484 contribute to multidrug resistance mostly in *E. coli* [73, 74, 75, 76, 77, 78].

485 This aligns with the findings of this study, as these plasmids were observed to
486 co-occur with resistance genes such as *bla_{TEM-1B}*, *qnrS1*, *dfrA1*, *tet(A)*, *ter(C)*
487 and *aph(3')-Ib* (Table S3), conferring resistance to beta-lactams,
488 trimethoprim, tetracyclines, fluoroquinolones, and aminoglycosides, further
489 emphasizing their role in the dissemination of MDR traits.

490 Given the proximity of poultry farms to human communities in peri-urban
491 Ghana, the spread of AMR from animals to humans poses a public health risk,
492 particularly in settings with limited biosecurity measures, as it facilitates the
493 exchange of resistant bacteria between humans and animals and increases
494 the risk of treatment failures in clinical settings. These findings call for
495 targeted interventions, such as regulated antibiotic usage and enhanced
496 biosecurity practices in poultry farms, to mitigate the risk of AMR spread.

497 Antimicrobial susceptibility testing in this study was performed using the disc
498 diffusion method, which provides qualitative resistance profiles. Factors such

499 as agar thickness and potential AmpC β -lactamase overproduction may
500 influence resistance interpretation. Future studies incorporating quantitative
501 methods, such as broth microdilution for minimum inhibitory concentration
502 determination, would allow more precise assessment of resistance levels.
503 While this study provides valuable insights into AMR at the human-poultry
504 interface in Ghana, several limitations should be considered. First, the human
505 sample size was relatively small, which may limit the generalizability of the
506 findings. Future studies should consider increasing the human sample size and
507 incorporating more diverse populations. Additionally, environmental samples
508 were not included, which could have provided further context on potential
509 reservoirs of resistant strains. Also, expanding the WGS analysis to include a
510 larger and more phenotypically diverse set of isolates would further enhance
511 the robustness and representativeness of the genomic findings. In this study,
512 only 17 ESBL-producing *E. coli* isolates selected based on similar multidrug-
513 resistant patterns were subjected to WGS; therefore, the genomic results
514 reflect this highly resistant subset and do not fully capture the genetic
515 diversity of the total ESBL-producing *E. coli* population recovered. Also,
516 including antibiotic usage data could have strengthened the conclusions by
517 linking resistance patterns to specific antimicrobial exposures. Future
518 research should incorporate longitudinal sampling, which would provide a
519 more comprehensive understanding of the selective pressures driving AMR
520 and allow for assessment of transmission dynamics in poultry farming
521 systems.

522 **5. Conclusions**

523 This study provides insights into the prevalence and genomic characteristics
524 of ESBL-producing *E. coli* at the human-poultry interface in Ghana, highlighting
525 the significant role of poultry as a potential reservoir for antimicrobial-resistant
526 bacteria. A high detection of ESBL production in *E. coli* isolates from both
527 poultry and farm workers was observed, underscoring the public health risks
528 associated with antimicrobial resistance at the human-poultry interface in
529 peri-urban Ghana. We report the co-occurrence of the *bla_{CTX-M-15}* gene in all
530 sequenced isolates, often with non-beta-lactamase resistance genes such as
531 *tetA*, *sul2*, and *qnrS1*. This suggests an increasing spread of multidrug-
532 resistant *E. coli* bacteria within the Ghanaian animal farming landscape. Our
533 data further revealed that ST10 and ST155 were the two sequence types that
534 predominantly carried a broad range of virulence factors typically associated
535 with both avian and human infections among the sequenced isolates.
536 Additionally, the co-occurrence of resistance determinants and plasmids
537 suggests a significant potential for horizontal gene transfer, facilitating the
538 spread of multidrug resistance between bacteria. While the genomic analysis
539 was based on a limited set of isolates, the findings remain highly relevant for
540 small- to medium-scale poultry farmers. These farming systems often operate
541 with fewer biosecurity safeguards and limited veterinary oversight, making
542 them particularly vulnerable to resistant bacteria. By providing evidence of
543 shared MDR *E. coli* patterns between poultry and humans, this study offers
544 actionable knowledge that can inform farmer-level practices, such as prudent

545 antibiotic use, enhanced hygiene, and farmworker training, thereby
546 supporting both poultry health and farmer well-being. These findings
547 underscore the urgency of implementing stricter antibiotic stewardship and
548 biosecurity measures to mitigate the spread of antibiotic resistance.
549 Continuous genomic surveillance is essential to monitor emerging resistance
550 patterns and inform targeted interventions that address the growing threat of
551 AMR within agricultural and healthcare systems.

552 **Author Contributions:** Conceptualization, ESD, SJ, AA, IJO; methodology, IJO,
553 ESD, GOS, AA, SJ; software, IJO.; validation, IJO, GOS, ESD, SJ, AA; formal
554 analysis, IJO.; investigation, IJO, GOS, ESD, SJ, AA.; resources, ESD.; data
555 curation, IJO, GOS; writing—original draft preparation, IJO, GOS, ESD, SJ, AA;
556 writing—review and editing, IJO, ESD, SJ, AA; visualization, IJO, GOS;
557 supervision, ESD, SJ, AA; project administration, ESD, SJ, AA; funding
558 acquisition, ESD. All authors have read and agreed to the published version of
559 the manuscript."

560 **Funding:** This work was funded by the National Institutes of Health, USA,
561 through the "Application of Data Science to Build Research Capacity in
562 Zoonoses and Food-Borne Infections in West Africa (DS-ZOOFOOD) Training
563 Programme" hosted at the Department of Medical Microbiology, University of
564 Ghana Medical School (Grant Number: UE5TW012566). The content is solely
565 the responsibility of the authors and does not necessarily represent the official
566 views of the National Institutes of Health.

567 **Institutional Review Board Statement:** The study was conducted in
568 accordance with the Declaration of Helsinki and approved by the Ethical and
569 Protocol Review Committee of the College of Health Sciences, University of
570 Ghana (CHS-Et/M.2-P 4.6/2021-2022).

571 **Informed Consent Statement:** Informed consent was obtained from all
572 subjects involved in the study.

573 **Clinical trial number:** Not applicable.

574 **Data Availability Statement:** The raw sequencing data are available at the
575 National Center for Biotechnology Information Sequence Read Archive under
576 the BioProject ID PRJNA1208549. All other raw data supporting the reported
577 results can be made available upon request from the corresponding author.

578 **Acknowledgments:** We are grateful to the poultry farm owners, workers, and
579 the laboratory and technical staff of the Department of Medical Microbiology,
580 University of Ghana Medical School.

581 **Conflicts of Interest:** The authors declare no conflicts of interest. The
582 funders had no role in the design of the study; in the collection, analyses, or
583 interpretation of data; in the writing of the manuscript; or in the decision to
584 publish the results.

585 **References**

586 [1] M. Naghavi *et al.*, "Global burden of bacterial antimicrobial resistance
587 1990-2021: a systematic analysis with forecasts to 2050," *The Lancet*,

588 vol. 404, no. 10459, pp. 1199–1226, Sept. 2024, doi: 10.1016/S0140-
589 6736(24)01867-1.

590 [2] A. Husna *et al.*, “Extended-Spectrum β -Lactamases (ESBL): Challenges
591 and Opportunities,” *Biomedicines*, vol. 11, no. 11, p. 2937, Oct. 2023,
592 doi: 10.3390/biomedicines11112937.

593 [3] S. Shaikh, J. Fatima, S. Shakil, S. Mohd. D. Rizvi, and M. A. Kamal,
594 “Antibiotic resistance and extended spectrum beta-lactamases: Types,
595 epidemiology and treatment,” *Saudi J Biol Sci*, vol. 22, no. 1, pp. 90–101,
596 Jan. 2015, doi: 10.1016/j.sjbs.2014.08.002.

597 [4] M. Nkansa, H. Agbekporu, B. Kikimoto, and C. Chandler, *Antibiotic Use
598 Among Poultry Farmers in the Dormaa Municipality, Ghana. Report for
599 Fleming Fund Fellowship Programme*. London School of Hygiene &
600 Tropical Medicine, 2020. doi: 10.17037/PUBS.04658868.

601 [5] E. K. Paintsil *et al.*, “Antimicrobial Usage in Commercial and Domestic
602 Poultry Farming in Two Communities in the Ashanti Region of Ghana,”
603 *Antibiotics (Basel)*, vol. 10, no. 7, p. 800, June 2021, doi:
604 10.3390/antibiotics10070800.

605 [6] B. Enyetornye, B. T. Velayudhan, and N. L. Gottdenker, “The poultry
606 sector of Ghana: regime transitions and its implications for poultry health
607 and management,” *World's Poultry Science Journal*, Dec. 2024,
608 Accessed: Dec. 11, 2024. [Online]. Available:
609 <https://www.tandfonline.com/doi/abs/10.1080/00439339.2024.2437184>

610 [7] M. K. Aworh *et al.*, "Characteristics of antimicrobial resistance in
611 Escherichia coli isolated from retail meat products in North Carolina,"
612 *PLoS ONE*, vol. 19, no. 1, p. e0294099, Jan. 2024, doi:
613 10.1371/journal.pone.0294099.

614 [8] J. Cohen Stuart, T. van den Munckhof, G. Voets, J. Scharringa, A. Fluit,
615 and M. L.-V. Hall, "Comparison of ESBL contamination in organic and
616 conventional retail chicken meat," *Int J Food Microbiol*, vol. 154, no. 3,
617 pp. 212–214, Mar. 2012, doi: 10.1016/j.ijfoodmicro.2011.12.034.

618 [9] I. Overdevest *et al.*, "Extended-spectrum β -lactamase genes of
619 Escherichia coli in chicken meat and humans, The Netherlands," *Emerg
620 Infect Dis*, vol. 17, no. 7, pp. 1216–1222, July 2011, doi:
621 10.3201/eid1707.110209.

622 [10] E. Foster-Nyarko *et al.*, "Genomic diversity of Escherichia coli isolates
623 from backyard chickens and guinea fowl in the Gambia," *Microbial
624 Genomics*, vol. 7, no. 1, Jan. 2021, doi: 10.1099/mgen.0.000484.

625 [11] E. E. Asare Yeboah *et al.*, "Genomic characterization of multi drug
626 resistant ESBL-producing Escherichia coli isolates from patients and
627 patient environments in a teaching hospital in Ghana," *BMC Microbiol*,
628 vol. 24, no. 1, p. 250, July 2024, doi: 10.1186/s12866-024-03406-1.

629 [12] M. Ayim-Akonor, R. Ohene Larbi, D. D. Owusu-Ntumy, B. K. Sasu, H. E.
630 Ohene Asa, and T. Odoom, "Antimicrobial Susceptibility Profile and
631 Extended-Spectrum Beta-Lactamase Phenotype of *E. coli* Isolated From

632 Poultry," *International Journal of Microbiology*, vol. 2025, no. 1, p.
633 9468425, 2025, doi: 10.1155/ijm/9468425.

634 [13]C. W. Akerten *et al.*, "Prevalence, Characterization, and Antimicrobial
635 Resistance of Extended-Spectrum Beta-Lactamase-Producing *Escherichia*
636 *coli* from Domestic Free-Range Poultry in Agogo, Ghana," *Foodborne*
637 *Pathogens and Disease*, vol. 20, no. 2, pp. 59–66, Feb. 2023, doi:
638 10.1089/fpd.2022.0060.

639 [14]L. Falgenhauer *et al.*, "Detection and Characterization of ESBL-Producing
640 *Escherichia coli* From Humans and Poultry in Ghana," *Front. Microbiol.*,
641 vol. 9, p. 3358, Jan. 2019, doi: 10.3389/fmicb.2018.03358.

642 [15]N. T. Nhung, N. Chansiripornchai, and J. J. Carrique-Mas, "Antimicrobial
643 Resistance in Bacterial Poultry Pathogens: A Review," *Front Vet Sci*, vol.
644 4, p. 126, 2017, doi: 10.3389/fvets.2017.00126.

645 [16]R. G. Alders and R. a. E. Pym, "Village poultry: still important to millions,
646 eight thousand years after domestication," *World's Poultry Science*
647 *Journal*, vol. 65, no. 2, pp. 181–190, June 2009, doi:
648 10.1017/S0043933909000117.

649 [17]J. T. Wong *et al.*, "Small-scale poultry and food security in resource-poor
650 settings: A review," *Global Food Security*, vol. 15, pp. 43–52, Dec. 2017,
651 doi: 10.1016/j.gfs.2017.04.003.

652 [18]WHO *Integrated Global Surveillance on ESBL-Producing E. Coli Using a*
653 *One Health Approach: Implementation and Opportunities*, 1st ed.
654 Geneva: World Health Organization, 2021.

655 [19]J. A. Hindler and A. N. Schuetz, "CLSI and the AST Subcommittee During
656 COVID-19," vol. 6, no. 1, 2021.

657 [20]T. F. O'Brien and J. M. Stelling, "WHONET: an information system for
658 monitoring antimicrobial resistance," *Emerg Infect Dis*, vol. 1, no. 2, p.
659 66, 1995, doi: 10.3201/eid0102.950209.

660 [21]A. M. Bolger, M. Lohse, and B. Usadel, "Trimmomatic: a flexible trimmer
661 for Illumina sequence data," *Bioinformatics*, vol. 30, no. 15, pp. 2114-
662 2120, Aug. 2014, doi: 10.1093/bioinformatics/btu170.

663 [22]M. V. Larsen *et al.*, "Multilocus sequence typing of total-genome-
664 sequenced bacteria," *J Clin Microbiol*, vol. 50, no. 4, pp. 1355-1361, Apr.
665 2012, doi: 10.1128/JCM.06094-11.

666 [23]V. Bortolaia *et al.*, "ResFinder 4.0 for predictions of phenotypes from
667 genotypes," *Journal of Antimicrobial Chemotherapy*, vol. 75, no. 12, pp.
668 3491-3500, Dec. 2020, doi: 10.1093/jac/dkaa345.

669 [24]K. G. Joensen *et al.*, "Real-time whole-genome sequencing for routine
670 typing, surveillance, and outbreak detection of verotoxigenic *Escherichia*
671 *coli*," *J Clin Microbiol*, vol. 52, no. 5, pp. 1501-1510, May 2014, doi:
672 10.1128/JCM.03617-13.

673 [25]A. Carattoli *et al.*, "In silico detection and typing of plasmids using
674 PlasmidFinder and plasmid multilocus sequence typing," *Antimicrob
675 Agents Chemother*, vol. 58, no. 7, pp. 3895-3903, July 2014, doi:
676 10.1128/AAC.02412-14.

677 [26]J. Beghain, A. Bridier-Nahmias, H. Le Nagard, E. Denamur, and O.
678 Clermont, "ClermonTyping: an easy-to-use and accurate in silico method
679 for *Escherichia* genus strain phylotyping," *Microb Genom*, vol. 4, no. 7, p.
680 e000192, June 2018, doi: 10.1099/mgen.0.000192.

681 [27]"Solving the Problem of Comparing Whole Bacterial Genomes across
682 Different Sequencing Platforms | PLOS ONE." Accessed: Feb. 15, 2025.
683 [Online]. Available:
684 <https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0104984>

685 [28]I. Letunic and P. Bork, "Interactive Tree Of Life (iTOL) v5: an online tool
686 for phylogenetic tree display and annotation," *Nucleic Acids Research*,
687 vol. 49, no. W1, pp. W293–W296, July 2021, doi: 10.1093/nar/gkab301.

688 [29]"Antimicrobial resistance," WOAH - World Organisation for Animal
689 Health. Accessed: Feb. 15, 2025. [Online]. Available:
690 <https://www.woah.org/en/what-we-do/global-initiatives/antimicrobial-resistance/>

691 [30]C. J. L. Murray *et al.*, "Global burden of bacterial antimicrobial resistance
692 in 2019: a systematic analysis," *The Lancet*, vol. 399, no. 10325, pp.
693 629–655, Feb. 2022, doi: 10.1016/S0140-6736(21)02724-0.

694 [31]A. B. Aliyu, A. Jalila, A. A. Saleha, and Z. Zunita, "ESBL Producing *E. coli*
695 in Chickens and Poultry Farms Environment in Selangor, Malaysia: A
696 Cross-Sectional Study on Their Occurrence and Associated Risk Factors

699 With Environment and Public Health Importance," *Zoonoses Public*
700 *Health*, vol. 71, no. 8, pp. 962-971, Dec. 2024, doi: 10.1111/zph.13179.

701 [32]M. J. Day *et al.*, "Extended-spectrum β -lactamase-producing *Escherichia*
702 *coli* in human-derived and foodchain-derived samples from England,
703 Wales, and Scotland: an epidemiological surveillance and typing study,"
704 *The Lancet Infectious Diseases*, vol. 19, no. 12, pp. 1325-1335, Dec.
705 2019, doi: 10.1016/S1473-3099(19)30273-7.

706 [33]M. K. Halabi *et al.*, "Antibiotic Resistance Pattern of Extended Spectrum
707 Beta Lactamase Producing *Escherichia coli* Isolated From Patients With
708 Urinary Tract Infection in Morocco," *Frontiers in Cellular and Infection*
709 *Microbiology*, vol. 11, p. 720701, Aug. 2021, doi:
710 10.3389/fcimb.2021.720701.

711 [34]D. R. Ibrahim *et al.*, "Multidrug-Resistant ESBL-Producing *E. coli* in
712 Clinical Samples from the UK," *Antibiotics*, vol. 12, no. 1, p. 169, Jan.
713 2023, doi: 10.3390/antibiotics12010169.

714 [35]S. Johnson, K. Bugyei, P. Nortey, and W. Tasiame, "Antimicrobial drug
715 usage and poultry production: Case study in Ghana," *Animal Production*
716 *Science*, vol. 59, no. 1, pp. 177-182, 2019, doi: 10.1071/AN16832.

717 [36]K. F. Chah *et al.*, "Detection and molecular characterisation of extended-
718 spectrum β -lactamase-producing enteric bacteria from pigs and chickens
719 in Nsukka, Nigeria," *Journal of Global Antimicrobial Resistance*, vol. 15,
720 pp. 36-40, Dec. 2018, doi: 10.1016/j.jgar.2018.06.002.

721 [37]A. E. Ghenea *et al.*, "TEM,CTX-M,SHV Genes in ESBL-Producing
722 Escherichia coli and Klebsiella pneumoniae Isolated from Clinical
723 Samples in a County Clinical Emergency Hospital Romania-Predominance
724 of CTX-M-15," *Antibiotics (Basel)*, vol. 11, no. 4, p. 503, Apr. 2022, doi:
725 10.3390/antibiotics11040503.

726 [38]J. Manyahi *et al.*, "Detection of CTX-M-15 beta-lactamases in
727 Enterobacteriaceae causing hospital- and community-acquired urinary
728 tract infections as early as 2004, in Dar es Salaam, Tanzania," *BMC*
729 *Infectious Diseases*, vol. 17, no. 1, p. 282, Apr. 2017, doi:
730 10.1186/s12879-017-2395-8.

731 [39]N. Fam *et al.*, "CTX-M-15-Producing Escherichia coli Clinical Isolates in
732 Cairo (Egypt), Including Isolates of Clonal Complex ST10 and Clones
733 ST131, ST73, and ST405 in Both Community and Hospital Settings,"
734 *Microbial Drug Resistance*, vol. 17, no. 1, pp. 67-73, Mar. 2011, doi:
735 10.1089/mdr.2010.0063.

736 [40]A. Agyekum, A. Fajardo-Lubián, D. Ansong, S. R. Partridge, T. Agbenyega,
737 and J. R. Iredell, "blaCTX-M-15 carried by IncF-type plasmids is the
738 dominant ESBL gene in Escherichia coli and Klebsiella pneumoniae at a
739 hospital in Ghana," *Diagn Microbiol Infect Dis*, vol. 84, no. 4, pp. 328-
740 333, Apr. 2016, doi: 10.1016/j.diagmicrobio.2015.12.010.

741 [41]C. W. Akerten *et al.*, "Carriage of ESBL-producing Klebsiella pneumoniae
742 and Escherichia coli among children in rural Ghana: a cross-sectional

743 study," *Antimicrob Resist Infect Control*, vol. 12, p. 60, July 2023, doi:
744 10.1186/s13756-023-01263-7.

745 [42]A. Cissé *et al.*, "Prevalence, Antimicrobial Susceptibility, and Resistance
746 Genes of Extended-Spectrum β -Lactamase-Producing *Escherichia coli*
747 from Broilers Sold in Open Markets of Dakar, Senegal," *Microorganisms*,
748 vol. 12, no. 11, p. 2357, Nov. 2024, doi:
749 10.3390/microorganisms12112357.

750 [43]A. Muhummed *et al.*, "Fecal carriage of ESBL-producing *E. coli* and
751 genetic characterization in rural children and livestock in the Somali
752 region, Ethiopia: a one health approach," *Antimicrob Resist Infect
753 Control*, vol. 13, p. 148, Dec. 2024, doi: 10.1186/s13756-024-01502-5.

754 [44]T. Sewunet *et al.*, "Polyclonal spread of *bla*CTX-M-15 through high-risk
755 clones of *Escherichia coli* at a tertiary hospital in Ethiopia," *Journal of
756 Global Antimicrobial Resistance*, vol. 29, pp. 405-412, June 2022, doi:
757 10.1016/j.jgar.2021.09.017.

758 [45]M. Sugumar, K. M. Kumar, A. Manoharan, A. Anbarasu, and S. Ramaiah,
759 "Detection of OXA-1 β -Lactamase Gene of *Klebsiella pneumoniae* from
760 Blood Stream Infections (BSI) by Conventional PCR and In-Silico Analysis
761 to Understand the Mechanism of OXA Mediated Resistance," *PLOS ONE*,
762 vol. 9, no. 3, p. e91800, Mar. 2014, doi: 10.1371/journal.pone.0091800.

763 [46]L. K. Siu, J. Y. Lo, K. Y. Yuen, P. Y. Chau, M. H. Ng, and P. L. Ho, "beta-
764 lactamases in *Shigella flexneri* isolates from Hong Kong and Shanghai
765 and a novel OXA-1-like beta-lactamase, OXA-30," *Antimicrob Agents*

766 *Chemother*, vol. 44, no. 8, pp. 2034–2038, Aug. 2000, doi:
767 10.1128/AAC.44.8.2034-2038.2000.

768 [47]S. Mahazu *et al.*, “Possible Dissemination of *Escherichia coli* Sequence
769 Type 410 Closely Related to B4/H24RxC in Ghana,” *Front. Microbiol.*, vol.
770 12, Dec. 2021, doi: 10.3389/fmicb.2021.770130.

771 [48]L. P. Randall *et al.*, “Prevalence of *Escherichia coli* carrying extended-
772 spectrum β -lactamases (CTX-M and TEM-52) from broiler chickens and
773 turkeys in Great Britain between 2006 and 2009,” *Journal of*
774 *Antimicrobial Chemotherapy*, vol. 66, no. 1, pp. 86–95, Jan. 2011, doi:
775 10.1093/jac/dkq396.

776 [49]P. M. C. Huijbers *et al.*, “Extended-spectrum and AmpC β -lactamase-
777 producing *Escherichia coli* in broilers and people living and/or working on
778 broiler farms: prevalence, risk factors and molecular characteristics,”
779 *Journal of Antimicrobial Chemotherapy*, vol. 69, no. 10, pp. 2669–2675,
780 Oct. 2014, doi: 10.1093/jac/dku178.

781 [50]G. Muteeb, M. T. Rehman, M. Shahwan, and M. Aatif, “Origin of
782 Antibiotics and Antibiotic Resistance, and Their Impacts on Drug
783 Development: A Narrative Review,” *Pharmaceuticals (Basel)*, vol. 16, no.
784 11, p. 1615, Nov. 2023, doi: 10.3390/ph16111615.

785 [51]F. Pasquali *et al.*, “Genetic Diversity and Antimicrobial Resistance of
786 Extraintestinal *E. coli* Populations Pre- and Post-Antimicrobial Therapy on
787 Broilers Affected by Colisepticemia,” *Animals : an Open Access Journal*

788 from *MDPI*, vol. 13, no. 16, p. 2590, Aug. 2023, doi:
789 10.3390/ani13162590.

790 [52]M. K. Aworh, J. K. P. Kwaga, R. S. Hendriksen, E. C. Okolocha, and S.
791 Thakur, "Genetic relatedness of multidrug resistant *Escherichia coli*
792 isolated from humans, chickens and poultry environments," *Antimicrob
793 Resist Infect Control*, vol. 10, no. 1, p. 58, Dec. 2021, doi:
794 10.1186/s13756-021-00930-x.

795 [53]C. R. Bergeron *et al.*, "Chicken as Reservoir for Extraintestinal
796 Pathogenic *Escherichia coli* in Humans, Canada," *Emerging Infectious
797 Diseases*, vol. 18, no. 3, p. 415, Mar. 2012, doi:
798 10.3201/eid1803.111099.

799 [54]A. R. Manges *et al.*, "Multilocus sequence typing and virulence gene
800 profiles associated with *Escherichia coli* from human and animal
801 sources," *Foodborne Pathog Dis*, vol. 12, no. 4, pp. 302-310, Apr. 2015,
802 doi: 10.1089/fpd.2014.1860.

803 [55]C. M. Müller, A. Åberg, J. Strasevičiene, L. Emődy, B. E. Uhlin, and C.
804 Balsalobre, "Type 1 Fimbriae, a Colonization Factor of Uropathogenic
805 *Escherichia coli*, Are Controlled by the Metabolic Sensor CRP-cAMP,"
806 *PLoS Pathog*, vol. 5, no. 2, p. e1000303, Feb. 2009, doi:
807 10.1371/journal.ppat.1000303.

808 [56]D. Sváb *et al.*, "The long polar fimbriae (lpf) operon and its flanking
809 regions in bovine *Escherichia coli* O157:H43 and STEC O136:H12

810 strains," *Pathog Dis*, vol. 68, no. 1, p. 10.1111/2049-632X.12038, June
811 2013, doi: 10.1111/2049-632X.12038.

812 [57]M. Prorok-Hamon *et al.*, "Colonic mucosa-associated diffusely adherent
813 afaC+ *Escherichia coli* expressing IpfA and pks are increased in
814 inflammatory bowel disease and colon cancer," *Gut*, vol. 63, no. 5, p.
815 761, July 2013, doi: 10.1136/gutjnl-2013-304739.

816 [58]Z. Hojati, B. Zamanzad, M. Hashemzadeh, R. Molaie, and A. Gholipour,
817 "The FimH Gene in Uropathogenic *Escherichia coli* Strains Isolated From
818 Patients With Urinary Tract Infection," *Jundishapur Journal of
819 Microbiology*, vol. 8, no. 2, p. e17520, Feb. 2015, doi: 10.5812/jjm.17520.

820 [59]T. A. T. Gomes *et al.*, "Diarrheagenic *Escherichia coli*," *Braz J Microbiol*,
821 vol. 47, no. Suppl 1, pp. 3-30, Nov. 2016, doi:
822 10.1016/j.bjm.2016.10.015.

823 [60]J. P. Nataro and J. B. Kaper, "Diarrheagenic *Escherichia coli*," *Clin
824 Microbiol Rev*, vol. 11, no. 1, pp. 142-201, Jan. 1998, doi:
825 10.1128/cmr.11.1.142.

826 [61]L. R. Trabulsi, R. Keller, and T. A. T. Gomes, "10.321/eid0805.Typical and
827 Atypical Enteropathogenic *Escherichia coli*," *Emerg Infect Dis*, vol. 8, no.
828 5, pp. 508-513, May 2002, doi: 10.3201/eid0805.010385.

829 [62]D. Kathayat, D. Lokesh, S. Ranjit, and G. Rajashekara, "Avian Pathogenic
830 *Escherichia coli* (APEC): An Overview of Virulence and Pathogenesis
831 Factors, Zoonotic Potential, and Control Strategies," *Pathogens*, vol. 10,
832 no. 4, p. 467, Apr. 2021, doi: 10.3390/pathogens10040467.

833 [63]T. Thomrongsuwannakij, P. J. Blackall, S. P. Djordjevic, M. L. Cummins,
834 and N. Chansiripornchai, "A comparison of virulence genes, antimicrobial
835 resistance profiles and genetic diversity of avian pathogenic *Escherichia*
836 *coli* (APEC) isolates from broilers and broiler breeders in Thailand and
837 Australia," *Avian Pathology*, Sept. 2020, Accessed: Oct. 01, 2025.
838 [Online]. Available:
839 <https://www.tandfonline.com/doi/abs/10.1080/03079457.2020.1764493>
840 [64]C. Ewers, T. Janssen, and L. H. Wieler, "[Avian pathogenic *Escherichia*
841 *coli* (APEC)]," *Berl Munch Tierarztl Wochenschr*, vol. 116, no. 9-10, pp.
842 381-395, 2003.
843 [65]H. Zhang *et al.*, "Dissecting the metal resistance genes contributed by
844 virome from mining-affected metal contaminated soils," *Front. Environ.*
845 *Sci.*, vol. 11, May 2023, doi: 10.3389/fenvs.2023.1182673.
846 [66]R. Kormutakova, L. Klucar, and J. Turna, "DNA sequence analysis of the
847 tellurite-resistance determinant from clinical strain of *Escherichia Coli*
848 and identification of essential genes," *Biometals*, vol. 13, no. 2, pp. 135-
849 139, June 2000, doi: 10.1023/A:1009272122989.
850 [67]K.-A. G. Karatzas, L. Suur, and C. P. O'Byrne, "Characterization of the
851 Intracellular Glutamate Decarboxylase System: Analysis of Its Function,
852 Transcription, and Role in the Acid Resistance of Various Strains of
853 *Listeria monocytogenes*," *Applied and Environmental Microbiology*, vol.
854 78, no. 10, p. 3571, May 2012, doi: 10.1128/AEM.00227-12.

855 [68]H. Yang, M. He, and C. Wu, "Cross protection of lactic acid bacteria
856 during environmental stresses: Stress responses and underlying
857 mechanisms," *LWT*, vol. 144, p. 111203, June 2021, doi:
858 10.1016/j.lwt.2021.111203.

859 [69]M. Reig and F. Toldrá, "Veterinary drug residues in meat: Concerns and
860 rapid methods for detection," *Meat Sci*, vol. 78, no. 1-2, pp. 60-67, Jan.
861 2008, doi: 10.1016/j.meatsci.2007.07.029.

862 [70]V. Goetting, K. A. Lee, and L. A. Tell, "Pharmacokinetics of veterinary
863 drugs in laying hens and residues in eggs: a review of the literature," *J
864 Vet Pharmacol Ther*, vol. 34, no. 6, pp. 521-556, Dec. 2011, doi:
865 10.1111/j.1365-2885.2011.01287.x.

866 [71]Q. E. Yang *et al.*, "IncF plasmid diversity in multi-drug resistant
867 *Escherichia coli* strains from animals in China," *Front. Microbiol.*, vol. 6,
868 Sept. 2015, doi: 10.3389/fmicb.2015.00964.

869 [72]A. J. Mathers, G. Peirano, and J. D. D. Pitout, "The role of epidemic
870 resistance plasmids and international high-risk clones in the spread of
871 multidrug-resistant *Enterobacteriaceae*," *Clin Microbiol Rev*, vol. 28, no.
872 3, pp. 565-591, July 2015, doi: 10.1128/CMR.00116-14.

873 [73]M. Rozwandowicz *et al.*, "Plasmids carrying antimicrobial resistance
874 genes in *Enterobacteriaceae*," *Journal of Antimicrobial Chemotherapy*,
875 vol. 73, no. 5, pp. 1121-1137, May 2018, doi: 10.1093/jac/dkx488.

876 [74]X.-P. Liao *et al.*, "Comparison of Plasmids Coharboring 16S rRNA
877 Methylase and Extended-Spectrum β -Lactamase Genes among

878 *Escherichia coli* Isolates from Pets and Poultry," *Journal of Food*
879 *Protection*, vol. 76, no. 12, pp. 2018-2023, Dec. 2013, doi:
880 10.4315/0362-028X.JFP-13-200.

881 [75]O. O. Adelowo *et al.*, "A survey of extended-spectrum beta-lactamase-
882 producing Enterobacteriaceae in urban wetlands in southwestern Nigeria
883 as a step towards generating prevalence maps of antimicrobial
884 resistance," *PLoS One*, vol. 15, no. 3, p. e0229451, 2020, doi:
885 10.1371/journal.pone.0229451.

886 [76]B.-T. Liu *et al.*, "Dissemination and Characterization of Plasmids Carrying
887 oqxAB-blaCTX-M Genes in *Escherichia coli* Isolates from Food-Producing
888 Animals," *PLOS ONE*, vol. 8, no. 9, p. e73947, Sept. 2013, doi:
889 10.1371/journal.pone.0073947.

890 [77]J. G. M. Soncini *et al.*, "Genomic insights of high-risk clones of ESBL-
891 producing *Escherichia coli* isolated from community infections and
892 commercial meat in southern Brazil," *Sci Rep*, vol. 12, no. 1, p. 9354,
893 June 2022, doi: 10.1038/s41598-022-13197-y.

894 [78]A. Carattoli, "Plasmids and the spread of resistance," *International*
895 *Journal of Medical Microbiology*, vol. 303, no. 6, pp. 298-304, Aug. 2013,
896 doi: 10.1016/j.ijmm.2013.02.001.

897