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16 Abstract: Background: Antimicrobial resistance (AMR), driven by the 

17 extensive use of antibiotics in human and animal health, poses a significant 

18 global threat. In Ghana, the contribution of poultry farming to the high 

19 prevalence of AMR remains underexplored. This study investigates the 

20 genomic characteristics and prevalence of extended-spectrum beta-

21 lactamase (ESBL)-producing Escherichia coli in poultry and human 

22 populations. Methods: A total of 300 cloacal swabs from poultry and 60 stool 
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23 samples from poultry farm workers in peri-urban Accra were collected from 20 

24 poultry farms and cultured. Bacterial isolates were identified through MALDI-

25 TOF-MS, with ESBL production confirmed using the double disk synergy test. 

26 Whole-genome sequencing of 17 multi-drug resistant isolates selected was 

27 conducted on the MiSeq Illumina platform to characterize resistance genes, 

28 virulence genes, and sequence types. Results: ESBL production was detected 

29 in 84.8% (n = 123/145) in isolates from poultry and 67.5% (n = 27/40) in 

30 isolates from humans.. All isolates were resistant to cefotaxime, with 

31 significant resistance to tetracycline and sulfamethoxazole-trimethoprim also 

32 recorded. The blaCTX-M-15 gene was the most prevalent ESBL gene identified, 

33 with additional genes including blaCTX-M-27, blaOXA-1, blaOXA-181, blaTEM-1B, and 

34 blaDHA-1 also identified. Sequence typing revealed multiple resistance-

35 associated sequence types, notably ST10 and ST155. Plasmid replicon analysis 

36 identified IncF, Col, and IncI1 groups, many co-occurring with multiple 

37 resistance genes. Virulome profiling revealed the presence of avian 

38 pathogenic E. coli (APEC)-associated genes such as iroN, iss, ompT, and hlyF. 

39 Conclusions: This study highlights the prevalence and genomic 

40 characteristics of ESBL-producing E. coli at the human–poultry interface in 

41 Ghana, emphasizing poultry as a potential reservoir for multidrug-resistant 

42 bacteria. The findings provide actionable insights for small- to medium-scale 

43 poultry farmers, including the importance of prudent antibiotic use, enhanced 

44 hygiene, and biosecurity practices, and underscore the need for ongoing 

ACCEPTED MANUSCRIPTARTICLE IN PRESS

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



45 genomic surveillance to guide interventions aimed at reducing the spread of 

46 antimicrobial resistance in Ghana. 

47 Keywords: Antimicrobial resistance; Extended-spectrum beta-lactamase; 

48 whole-genome sequencing; Poultry farming; Escherichia coli; Ghana

49 Introduction

50 Antimicrobial resistance (AMR) has emerged as a significant global public 

51 health challenge, with an alarming potential to claim up to 10 million lives 

52 annually by 2050 [1]. Among the various forms of resistance, Extended-

53 Spectrum Beta-Lactamase (ESBL)-producing bacteria, particularly Escherichia 

54 coli, have gained prominence due to their association with severe infections 

55 and their role in the horizontal transfer of resistance genes. ESBLs are 

56 enzymes produced by Gram-negative bacteria, particularly members of the 

57 Enterobacteriaceae, that hydrolyze extended-spectrum cephalosporins, as 

58 well as monobactams, while remaining inhibited by β-lactamase inhibitors 

59 such as clavulanic acid. The ESBL phenotype is most commonly mediated by 

60 genes belonging to the blaCTX-M, blaTEM, and blaSHV families, which are 

61 frequently plasmid-encoded and often co-located with resistance 

62 determinants to other antimicrobial classes, thereby contributing to multidrug 

63 resistance [2, 3]. 

64 The increasing prevalence of ESBL-producing E. coli has raised significant 

65 concerns in both healthcare and agricultural sectors, particularly in low-and 

66 middle-income countries (LMICs), where the overuse of antibiotics in human 

ACCEPTED MANUSCRIPTARTICLE IN PRESS

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



67 medicine and livestock farming has become widespread [4, 5]. Poultry farming 

68 in Ghana is a widely practiced agricultural activity fueled by economic 

69 incentives, inadvertently increasing the risks of antibiotic misuse and overuse 

70 in these systems [6]. The emergence of ESBL-producing E. coli in poultry is 

71 particularly troubling, given their association with contamination in retail 

72 chicken and their potential to facilitate the transmission of resistance genes 

73 to human populations [7, 8, 9]. The close proximity of poultry farms to human 

74 settlements, often lacking appropriate biosecurity measures, intensifies public 

75 health concerns [10]. Despite the urgency, research exploring the dynamics 

76 of AMR dissemination between poultry and humans in Ghana has been limited, 

77 and primarily focused on human health [11]. This creates a critical gap in our 

78 understanding of the complex interplay between poultry farming practices, 

79 AMR, and potential zoonotic transmission routes. While existing studies on 

80 AMR in Ghana have contributed valuable insights, they predominantly rely on 

81 phenotypic analyses and do not include poultry farm workers [5], [12], [13] , 

82 which, although useful for identifying resistance patterns, do not provide a 

83 comprehensive understanding of the underlying genetic mechanisms driving 

84 resistance. Methods such as whole-genome sequencing and multi-locus 

85 sequence typing have been rarely applied, limiting our ability to map the 

86 genetic characteristics and potential transmission pathways of ESBL-

87 producing E. coli across poultry and human populations [13, 14]. This gap is 

88 concerning, considering the potential risks associated with the spread of 

89 resistant strains and their implications for public health. Moreover, the unique 
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90 environmental and agricultural factors in Ghana, such as economic pressures 

91 leading to increased, often unregulated, antibiotic use, further exacerbate the 

92 potential spread of AMR. The lack of robust biosecurity measures in poultry 

93 farms, combined with the close integration of these farms within human 

94 communities, positions them as potential reservoirs for resistant bacteria [15, 

95 16, 17]. Addressing these gaps in knowledge is essential for informing health 

96 policy and intervention strategies aimed at curbing the threat of AMR. This 

97 study sought to conduct genomic profiling of ESBL-producing E. coli isolated 

98 from poultry and poultry farm workers across 20 poultry farms in Accra, 

99 Ghana. By leveraging advanced genomic techniques, the study elucidated the 

100 genetic diversity, resistance gene profiles, and dissemination of ESBL-

101 producing E. coli. The findings provide insights into the dynamics of AMR in 

102 the poultry-human interface, contributing to a broader understanding of its 

103 impact on public health.

104 2. Materials and Methods

105 2.1. Study site and sampling

106 This cross-sectional study was conducted in peri-urban areas of Accra, Ghana, 

107 focusing on small-to-medium-scale poultry farms and their workers to 

108 determine the prevalence and genomic characteristics of ESBL-producing E. 

109 coli. A total of 360 samples were collected from 20 poultry farms in November 

110 2023, comprising 300 cloacal swabs from chickens and 60 stool samples from 

111 poultry farm workers. Each farm housed approximately 900–3000 chickens, 
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112 and 15 randomly selected chickens were sampled per farm, along with stool 

113 samples from three farm workers. Cloacal swabs were obtained from live 

114 chickens using sterile swabs pre-moistened with phosphate-buffered saline 

115 (PBS) (Oxoid, Basingstoke, Hampshire, UK) and transported in a cold box to 

116 the laboratory. Stool samples were self-collected by poultry workers in sterile 

117 containers, inoculated with PBS, and transported in a cold box to the 

118 laboratory within 24 hours of collection. Participants were selected based on 

119 their willingness to participate and their involvement in poultry farming.

120 The study was conducted in accordance with the Declaration of Helsinki and 

121 approved by the Ethical and Protocol Review Committee of the College of 

122 Health Sciences, University of Ghana (CHS-Et/M.2-P 4.6/2021–2022). All 

123 methods were performed following the relevant guidelines and regulations 

124 and in accordance with Animal Research: Reporting of In Vivo Experiments 

125 (ARRIVE) guidelines.

126 2.2. Isolation and Identification 

127 Cloacal swabs were incubated aerobically at 37 °C for 24 h, while 

128 approximately one gram of each human stool sample was inoculated into 

129 buffered peptone water (Oxoid, Basingstoke, Hampshire, UK)  immediately 

130 upon arrival and incubated at 37 °C for 24 h. Immediately after incubation, a 

131 10 µL loopful of the culture was streaked onto selective MacConkey agar plates 

132 (Sigma-Aldrich, St. Louis, MO, USA) supplemented with 4 µg/mL cefotaxime. 

133 The inoculated plates were incubated at 37 °C for 24 hours under aerobic 
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134 conditions. Following overnight incubation, morphologically distinct colonies 

135 were observed, and up to five pink to reddish isolated colonies indicative of 

136 lactose fermentation from each sample were selected. These colonies were 

137 then sub-cultured on Nutrient agar (Oxoid, Basingstoke, Hampshire, UK) and 

138 incubated at 37 °C for 24 hours to obtain pure cultures. The pure cultures were 

139 initially screened using conventional biochemical tests (Triple sugar iron, 

140 Citrate utilization tests, Urease, and Sulphur Indole motility biochemical tests) 

141 and subsequently identified using the Matrix Assisted Laser Desorption 

142 Ionization Time of Flight Mass Spectrometry (MALDI-TOF, Bruker, Billerica, MA, 

143 USA) analyzer. Isolates identified as E. coli were retained for downstream ESBL 

144 confirmation and genomic analyses while non–E. coli Enterobacterales 

145 identified were excluded from further analyses. For long-term storage and 

146 future analyses, three to five representative colonies of the pure cultures of E. 

147 coli were preserved in skim-milk-tryptone-glucose-glycerol broth at −80 °C.

148 2.3. Phenotypic detection of ESBL-producing E. coli

149 The phenotypic detection of ESBL production was carried out utilizing the 

150 double disk synergy test, following the guidelines established by the WHO 

151 [18]. Mueller-Hinton agar plates (Oxoid, Basingstoke, Hampshire, UK) were 

152 used as the growth medium. Briefly, an inoculum preparation of a bacterial 

153 suspension equivalent to a 0.5 McFarland standard was done, and the 

154 suspension was inoculated onto the agar plates using sterile cotton swabs to 

155 ensure uniform growth. After allowing the plates to air-dry for 3-5 minutes, 

156 cefotaxime (30μg), and ceftazidime (30μg), were placed approximately 20 mm 
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157 from the centrally positioned amoxicillin/clavulanic acid (20/10μg) disk using 

158 sterile forceps. The plates were incubated for 18 hours at 37°C under aerobic 

159 conditions and then examined for synergy effects indicated by increased 

160 zones of inhibition surrounding the cephalosporin disks, which confirmed 

161 positive ESBL production. 

162 2.4. Antimicrobial susceptibility testing 

163 Antimicrobial susceptibility testing of E. coli isolates was conducted using the 

164 Kirby–Bauer disk diffusion method following the Clinical and Laboratory 

165 Standards Institute (CLSI) guidelines [19]. Pure colonies were selected and 

166 suspended in sterile saline, and the bacterial concentration was adjusted to a 

167 0.5 McFarland standard using a BD PhoenixSpecTM nephelometer (Beckton 

168 Dickinson, Sparks, MD, USA). The standardized suspension was uniformly 

169 spread across Mueller-Hinton agar plates (Oxoid, Basingstoke, Hampshire, UK) 

170 using sterile cotton swabs to achieve confluent bacterial growth. Commercially 

171 available antibiotic disks (Oxoid, Basingstoke, Hampshire, UK) were carefully 

172 placed on the agar surface. The antibiotics tested included amikacin (30 µg), 

173 amoxicillin-clavulanate (20/10 μg), tetracycline (30 μg), gentamicin (10 μg), 

174 cefoxitin (30 µg), piperacillin-tazobactam (100/10 µg), chloramphenicol (30 

175 μg), ciprofloxacin (5 µg), sulfamethoxazole-trimethoprim (10 μg), meropenem 

176 (10 µg), ceftazidime (30 µg), and cefotaxime (30 µg). The plates were then 

177 incubated at 37°C under aerobic conditions for 24 hours. A quality control 

178 strain, E. coli ATCC 25922, was included in each batch to validate the results 

179 and ensure accuracy. The inhibition zone diameters surrounding the antibiotic 
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180 disks were measured and recorded into WHONET 2024 software for 

181 interpretation [20].  

182 2.5. Whole Genome Sequencing and Bioinformatic Analysis

183 DNA extraction was performed on 17 ESBL-producing E. coli isolates, including 

184 10 obtained from poultry and 7 from poultry farmworkers, selected based on 

185 their similar multidrug-resistant patterns. The isolates were cultured on 

186 nutrient agar after overnight incubation at 37°C under aerobic conditions, and 

187 DNA was extracted using the QIAamp® DNA mini kit (QIAGEN Inc. GmbH, 

188 Holden, Germany) according to the manufacturer’s protocol. The quality and 

189 concentration of genomic DNA were assessed using the NanoDrop™ 2000 

190 Spectrophotometer (ThermoFisher Scientific, Waltham, MA, USA) and Qubit 

191 Fluorometer (Invitrogen, Carlsbad, CA, USA). Genomic libraries were 

192 generated with the Illumina DNA prep kit, adhering to the manufacturer's 

193 guidelines for the Illumina MiSeq technology. The libraries were pooled and 

194 subsequently loaded onto the MiSeq Illumina sequencer (Illumina Inc., San 

195 Diego, CA, USA) to generate 250 bp x 2 paired-end reads for each ESBL-

196 producing E. coli isolate. All raw sequences were submitted to NCBI and 

197 assigned a Bioproject accession number, PRJNA1208549.

198 The raw sequenced reads underwent quality assessment and trimming, using 

199 FASTQC v0.12.1 and Trimmomatic v0.36 [21]. Trimmed reads were then de 

200 novo assembled using the SPAdes assembler. Multi-locus sequence typing 

201 analysis was conducted on the assembled genomes using the MLST 2.0 tool 
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202 hosted by the Center for Genomic Epidemiology (CGE) 

203 (http://cge.cbs.dtu.dk/services/MLST/) according to the Achtman scheme, 

204 which identifies sequence types (STs) based on variations in seven 

205 housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA) [22]. Isolates 

206 that could not be assigned ST through conventional MLST were further 

207 analyzed using core genome MLST (cgMLST) in EnteroBase to determine their 

208 cgSTs. In silico analysis was conducted using the ResFinder tool v4.6.0 [23] 

209 hosted on the CGE website at default threshold ID (90%) and minimum length 

210 (60%) values to identify acquired antimicrobial resistance genes. Virulome and 

211 plasmid analysis were also conducted using the VirulenceFinder 2.0 tool [24] 

212 and PlasmidFinder 2.1 [25]  hosted on the CGE website to identify the 

213 virulence-associated genes. The phylogroups classification of the E. coli 

214 genomes was then performed using the in silico Clermon-Typing 1.4.1 tool [26] 

215 at default parameters before whole-genome sequences were uploaded to 

216 CSIPhylogeny to analyze the evolutionary relatedness [27] among the 17 

217 ESBL-producing E. coli and identify single-nucleotide polymorphisms (SNPs), 

218 by comparing assembled sequences to the reference genome ASM584v2 

219 (Escherichia coli str. K-12 substr. MG1655). The generated tree was visualized 

220 and annotated using Interactive Tree of Life, ITOL v6 [28]. 

221 2.6. Data Analysis

222 Statistical analyses were conducted to evaluate differences in antibiotic 

223 resistance patterns between poultry and human isolates. Fisher’s exact test 

224 was applied separately to each antibiotic resistance profile to determine 
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225 whether resistance frequencies varied significantly between the two sources. 

226 A p-value < 0.05 was considered statistically significant. All statistical analyses 

227 were performed using R v4.4.1 software

228 3. Results

229 3.1. Prevalence of ESBL-Producing E. coli

230 In this study, we assessed the prevalence of ESBL-producing E. coli within 

231 poultry farms and among poultry farm workers. A total of 189 third-generation 

232 cephalosporin-resistant bacterial isolates were obtained from 300 cloacal 

233 swab samples (n = 149/300) and 60 fecal samples (n = 40/60) collected from 

234 poultry workers. The isolated bacteria were predominantly E. coli (n = 

235 185/189, 97.9%), with a smaller number of Klebsiella pneumoniae (n = 3/189, 

236 1.6%) and Enterobacter cloacae (n = 1/189, 0.5%). Out of 185 E. coli isolates 

237 recovered, 150 were phenotypically confirmed as ESBL producers. Among 

238 poultry-derived isolates, 84.8% (n = 123/145) were confirmed as ESBL-

239 producing E. coli. Among isolates recovered from poultry farm workers, 67.5% 

240 (n = 27/40) were confirmed as ESBL-producing E. coli. Notably, 16 out of the 

241 20 farms exhibited at least one positive henhouse for ESBL-producing E. coli, 

242 while at least one human from 10 farms also tested positive for ESBL-

243 producing E. coli. Farm-level analysis revealed significant variation in ESBL 

244 prevalence. At the farm level, the proportion of samples from poultry testing 

245 positive for ESBL-producing E. coli ranged from 40% (n = 6/15) to 60% (n = 
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246 9/15), while the carriage among humans ranged from 33.3% (n = 1/3) to 

247 66.7% (n = 2/3) per farm (Table S2).

248 The antibiotic susceptibility testing of the 150 ESBL-producing E. coli isolates 

249 showed widespread resistance across multiple antibiotic classes. All ESBL-

250 positive isolates from both poultry (n=123/123, 100%) and farm workers 

251 (n=27/27, 100%) were resistant to cefotaxime, confirming the characteristic 

252 β-lactam resistance conferred by ESBL production. Among the ESBL-producing 

253 isolates, resistance to ceftazidime varied between poultry (n=118/123, 95.9%) 

254 and humans (n=22/27, 81.5%). Similarly, tetracycline resistance was notable 

255 in both poultry (n=121/123, 98.4%) and human (n=17/27, 63.0%) isolates. 

256 Resistance to sulfamethoxazole-trimethoprim was observed in (n=112/123, 

257 90.8%) poultry isolates and (n=19/27, 70.4%) of the human isolates (Table 1).

258 Table 1. Antimicrobial Resistance Profile of ESBL-producing E. coli isolates 

259 from poultry (n = 123) and poultry farm workers (n = 27).

Antibiotics
               ESBL-positive 

isolates

Poultry Humans
p-

value

(n = 123) (n = 27)

Amoxicillin/clavulanic acid (30µg) 31 (25.6%) 09 (33.3%) 0.634
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Piperacillin-tazobactam (30µg) 43 (34.6%) 09 (33.3%) 1

Cefotaxime (30µg) 123 (100%) 27 (100%) NA

Ceftazidime (30µg) 118 (95.9%) 22 (81.4%) 0.017

Cefoxitin (30µg) 43 (34.6%) 10 (37.0%) 0.828

Meropenem (10µg) 02 00 (0.0%) 1

Gentamicin (10µg) 31 (25.2%) 12 (44.4%) 0.065

Amikacin (30µg) 46 (37.2%) 10 (37.0%) 0.828

Tetracycline (30µg) 121 (98.4%) 17 (63.0%)
<0.00

1

Chloramphenicol (30µg) 38 (31.0%) 11 (40.7%) 0.821

Ciprofloxacin (5µg) 93 (75.6%) 16 (59.3%) 0.154

Sulfamethoxazole-trimethoprim 

(1.25/23.75µg)
112 (90.8%) 19 (70.4%) 0.002

260 NA: Statistical comparison not applicable because all isolates were 100% resistant. The values 

261 represent the number of resistant isolates, with percentages given in parentheses.

262 3.2. Distribution of acquired antimicrobial resistance genes 

263 Genomic analysis of the 17 ESBL-producing E. coli isolates, selected based on 

264 their similar multidrug resistance patterns in both poultry and human sources, 

265 identified a significant diversity of antimicrobial resistance genes. Notably, a 

266 total of 32 acquired antimicrobial resistance genes were identified with blaCTX-
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267 M-15 emerging as the most prevalent, present in all 17 isolates (Figure 1). 

268 Several other beta-lactamase genes were detected, including blaCTX-M-27, 

269 blaDHA-1, blaTEM-1B, blaTEM-35, blaOXA-1, and blaOXA-181. The blaOXA-181 gene was 

270 observed exclusively in isolates that also exhibited resistance to meropenem. 

271 Beyond beta-lactam resistance, genes conferring resistance to 

272 aminoglycoside (aph(6)-Id, aph(3')-Ia, aph(3'')-Ib, ant(3'')-Ia, aadA2), folate 

273 inhibitors (sul1, sul2, dfrA12, dfrA14) and quinolones (aac(6')-Ib-cr, qnrS1, 

274 qepA4) were also observed. 

275

276 Figure 1. Antimicrobial resistance gene distribution.

277 3.3 Distribution of Beta-lactam resistance genes by source
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278 The patterns of beta-lactam resistance genes in the ESBL-producing E. coli 

279 isolates from human and poultry sources reveal interesting trends. The gene 

280 blaCTX-M-15 was the most commonly identified resistance gene in both groups, 

281 with a higher prevalence in poultry samples (n = 10) compared to human 

282 isolates (n = 7). In addition to blaCTX-M-15, the gene blaTEM-1B was frequently 

283 detected, again showing greater occurrence in poultry (n = 6) than in humans 

284 (n = 2). Notably, other beta-lactam resistance genes such as blaOXA-1, blaOXA-

285 181, blaCTX-M-27, and blaTEM-35 were unique to poultry samples, whilst blaDHA-1 (n 

286 = 1), was identified only in one isolate from the human samples. (Figure 2). 

287

288 Figure 2. Distribution of Beta-lactam resistance genes by source.
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289 3.4. Virulence factors Distribution in Poultry and Human ESBL-producing E. coli 

290 Isolates

291 A virulome analysis conducted using the Virulence Finder tool from CGE 

292 identified 25 unique virulence-associated genes (VAGs) across the 17 ESBL-

293 producing E. coli isolates. Among these, the most prevalent VAGs were fimH, 

294 present in 88% of the isolates (n = 15/17), followed closely by terC at 82% (n 

295 = 14/17), lpfA at 59% (n = 10/17), and gad at 41% (n = 7/17). The identified 

296 virulence factors were categorized based on their functional roles, including 

297 adhesion molecules, toxin production, iron acquisition systems, immune 

298 evasion, and acid resistance (Figure 3).

299
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300 Figure 3. Distribution of Virulence genes in the ESBL-producing E. coli 

301 isolates.

302 3.5. Phylogenetic analysis of ESBL-producing E. coli isolates

303 The phylogenetic analysis of the ESBL-producing E. coli isolates among the 

304 strains derived from human and poultry sources (Figure 4) classified the 

305 isolates into two major phylogroups, A and B1, with B1 predominantly 

306 associated with poultry-derived strains, while A was more evenly distributed 

307 between human and poultry isolates. Twelve sequence types (STs) were 

308 identified, including ST-224, ST-746, and ST-10, with the identification of two 

309 novel sequence types. Two isolates that could not be assigned STs through 

310 conventional MLST were further analyzed using cgMLST in EnteroBase, which 

311 identified them as cgST 17714 (1K S60) and cgST 90610 (KB1 S70). Thirty 

312 different plasmids were observed among the 17 ESBL-producing E. coli isolates 

313 sequenced from poultry and human sources. The most prevalent plasmid 

314 replicons belonged to Col (ColRNAI, Col440I, ColKP3, ColE10, Col(MG828), 

315 Col440II, Col156, Col8282, Col(MG828), Col8282) and Inc (IncY, 

316 IncFIB(AP001918), IncFIC(FII), IncFIA, IncX1, IncFIB(pB171), IncFII(p14), IncN, 

317 IncHI1A, IncHI1B(R27), IncFIA(HI1), IncHI2A, IncHI2, IncHI1B(CIT), IncX4, IncX3, 

318 IncFII(pAMA1167-NDM-5), IncFII(pRSB107), IncFIB(K)_1_Kpn3) groups. The 

319 prevalent plasmid types were ColRNAI (n = 13/17), IncY (n = 7/17), IncFIB 

320 (AP001918), and Col440I (n = 6/17 each), as shown (figure 4). ColRNAI was 

321 the most prevalent in poultry (n = 9/17), whilst Col440I and ColRNAI (n = 4/17, 

322 each) were prevalent in the isolates from poultry farm workers.
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323

324 Figure 4. A phylogenetic tree generated based on single-nucleotide 

325 polymorphisms of the core genes of 17 ESBL-producing E. coli isolates, 

326 showing resistance genes and plasmids against sequence types with reference 

327 genome E. coli str. K-12 substr. MG1655 as an outgroup.

328 4. Discussion

329 Studies worldwide have shown increasing concerns regarding AMR impacting 

330 both human and animal health [29, 30]. This study highlights the genomic 

331 diversity of ESBL-producing E. coli from poultry and poultry farm workers in 

332 Accra, Ghana.

333  The detection rates of ESBL-producing E. coli observed suggest potential 

334 differences in exposure risks, biosecurity measures, or antibiotic use practices 

335 [31], which may contribute to variations in colonization patterns between 

336 poultry and farm workers. These ESBL-producing E. coli isolates showed 

337 significant resistance to multiple antibiotics across different classes such as 
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338 tetracycline, ciprofloxacin, and sulfamethoxazole-trimethoprim, highlighting 

339 their multidrug-resistant nature and a widespread presence of antimicrobial-

340 resistant ESBL-producing E. coli in both animal and human populations on 

341 farms. The findings align with previous studies that have similarly linked high 

342 rates of ESBL production in E. coli to the development of multidrug resistance 

343 in both poultry and human sources [32, 33, 34], reinforcing the notion that 

344 farming practices may be instrumental in shaping the resistance profiles of 

345 these pathogens. Notably, the observed resistance pattern was most evident 

346 against penicillin, tetracycline, aminoglycosides, and sulfonamides which are 

347 antimicrobials frequently employed for therapeutic purposes in both human 

348 medicine and the poultry industry in Ghana [5, 35]. The high resistance rates 

349 observed in poultry may reflect antibiotic exposure driven by agricultural 

350 practices such as the use of antibiotics for growth promotion and disease 

351 prevention. This trend raises questions about the efficacy of current 

352 antimicrobial stewardship practices, highlighting the urgent need for revised 

353 strategies to mitigate the selection and spread of resistance.

354 Whole genome sequencing revealed blaCTX-M-15 as the most occurring ESBL 

355 gene in all the isolates. The predominance of blaCTX-M-15 among the ESBL-

356 producing E. coli isolates in this study aligns with its widespread distribution 

357 in both clinical and agricultural settings [14, 36]. CTX-M-15 has been 

358 frequently implicated in human infections and has been reported in various 

359 geographic regions, particularly in LMICs where the burden of antimicrobial 

360 resistance is high [37, 38, 39]. Its presence in Ghanaian hospital settings 
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361 further supports this trend, as previous studies have consistently identified 

362 blaCTX-M-15 as the dominant ESBL gene in clinical isolates [40]. A study reported 

363 that all ESBL-producing E. coli isolates carried a blaCTX-M gene, with blaCTX-M-15 

364 detected in 98% of cases in 2016 at a hospital in Ghana [39]. Similarly, a more 

365 recent study on ESBL-producing E. coli and Klebsiella pneumoniae isolates 

366 from pediatric patients found that blaCTX-M was the most prevalent ESBL gene, 

367 detected in 92.4% of isolates in a hospital in Ghana [41]. This trend is not 

368 unique to Ghana but is also in other LMICs, where a high prevalence of the 

369 blaCTX-M gene has been reported. In Senegal, blaCTX-M-15 has been reported to 

370 be the predominant ESBL gene detected in ESBL-producing E. coli isolated 

371 from broiler chickens sold in open wet markets [42]. Similarly, prevalence 

372 rates of 83-88% have been reported for the detection of blaCTX-M-15 within 

373 hospitals in Ethiopia [43, 44]. The detection of other beta-lactamase genes 

374 such as blaCTX-M-27, blaTEM-1B, blaTEM-35, and blaOXA-1, in this study, further 

375 underscores the genetic diversity of resistance within these isolates and 

376 highlights their functional significance in conferring broad-spectrum β-lactam 

377 resistance. Although blaOXA-1 and blaOXA-181 were identified in a few isolates, 

378 their presence warrants attention. blaOXA-1 is often associated with resistance 

379 to amoxicillin-clavulanate, compromising the effectiveness of β-lactamase 

380 inhibitor combinations in treating infections caused by these resistant strains 

381 [45, 46]. The blaOXA-181 gene, identified only in isolates that were meropenem 

382 resistant, suggests a potential role in conferring meropenem resistance in 

383 these specific strains. blaOXA-181 is a carbapenemase-producing gene and has 
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384 primarily been identified in enterobacteriaceae in hospitals in Ghana [44]. 

385 Although carbapenems are not used in poultry production, the presence of this 

386 gene in poultry-associated isolates may reflect horizontal transfer of 

387 carbapenemase genes within the farm environment. Detecting these clinically 

388 significant resistance genes in poultry highlights the need for close monitoring 

389 to control their spread into the broader community. While studies from Africa, 

390 including this study, indicate a high predominance of blaCTX-M-15, research 

391 conducted in Europe reveals markedly lower rates of this gene in poultry 

392 isolates [47, 48]. This disparity emphasizes the regional variations in the 

393 prevalence of ESBL genes, which are likely influenced by differing antibiotic 

394 usage patterns, agricultural practices, and the robustness of monitoring 

395 frameworks [47]. 

396 A range of resistance determinants to non-beta-lactam antibiotics was also 

397 identified. These included genes conferring resistance to quinolones, 

398 aminoglycosides, tetracyclines, phenicols, and folate pathway inhibitors. 

399 These findings are consistent with those reported in similar studies [12, 49, 

400 50]. The presence of such genes underscores a multidrug-resistant profile 

401 among the E. coli isolates from both poultry and human sources. This 

402 occurrence of resistance determinants to multiple antibiotic classes poses a 

403 significant challenge to existing antimicrobial therapies, as it greatly reduces 

404 the pool of effective antibiotics. The diversity and prevalence of these 

405 resistance genes highlight the adaptability and resilience of the ESBL-

406 producing E. coli isolates. This emphasizes the urgent need for enhanced 
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407 regional surveillance and strategic antimicrobial stewardship measures to 

408 combat the spread of antimicrobial resistance effectively.

409 The genomic analysis further elucidated the genetic diversity present among 

410 the ESBL-producing E. coli isolates, revealing 12 STs that were grouped into 

411 two principal commensal phylogenetic groups: B1 and A. Phylogroup B1 was 

412 predominantly composed of isolates from poultry, suggesting host adaptation 

413 or persistence within the poultry environment. In contrast, phylogroup A 

414 included isolates from both poultry and farm workers, indicating potential 

415 genetic overlap and exchange across hosts. Within these, only ST10 emerged 

416 as a shared sequence type between poultry and human sources, both of which 

417 were recovered from the same farm. This co-occurrence points to a possible 

418 overlap between hosts within a shared environment, suggesting possible 

419 zoonotic potential. Conversely, ST155 and ST4977, found exclusively in 

420 poultry isolates, may indicate a possible adaptation to avian hosts. The 

421 association of ST10 and ST155 with high virulence and resistance-associated 

422 gene counts raises concerns about their pathogenic potential, as their 

423 adaptability and prevalence within microbial communities could facilitate the 

424 transfer of critical genetic material, complicating efforts to control the spread 

425 of antimicrobial resistance. Previous studies have established that these STs 

426 are prevalent in both poultry and human populations, with frequent 

427 identification in clinical settings [13, 51, 52].  These STs harbor a range of 

428 virulence factors, such as adhesion factors (fimH), iron acquisition systems 

429 (fyuA, iroN, irp2), serum resistance genes (iss), and hemolysins (hlyF), which 
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430 are commonly found in extraintestinal pathogenic E. coli strains [10, 53, 54]. 

431 This is consistent with our study, where ST10 and ST155 were predominantly 

432 identified with these virulence genes (fig S1). The overlap between these STs 

433 in agricultural and healthcare environments points to the risk of cross-species 

434 transmission and emphasizes the necessity for monitoring these strains. 

435 Virulome analysis of the ESBL-producing E. coli isolates revealed a complex 

436 landscape of virulence factors linked to the pathogen's adaptability and 

437 survival in both host environments. The high occurrence of fimH and lpfA 

438 observed in this study highlights their critical roles in E. coli adhesion to host 

439 cells. FimH, a key virulence factor mainly associated with Uropathogenic E. 

440 coli encodes type 1 fimbriae [55] while lpfA, typically linked to Enterotoxigenic 

441 E. coli encodes long polar fimbriae [56]. Both facilitate bacterial attachment to 

442 epithelial surfaces, promoting colonization in poultry and humans [57, 58]. 

443 Together, these findings highlight the significant role of fimH and lpfA in 

444 enhancing the ability of the ESBL-producing E. coli isolates to adhere to host 

445 tissues, a key factor in their adaptability, persistence, and pathogenic 

446 potential across diverse environments. Notably, none of the isolates carried 

447 the set of virulence determinants defining diarrheagenic E. coli (DEC) 

448 pathotypes, suggesting that classical DEC lineages were absent in this 

449 population [59], [60], [61]. In contrast, several isolates harbored combinations 

450 of avian pathogenic E. coli (APEC)-associated genes such as iutA (aerobactin 

451 receptor gene), traT (outer membrane protein complement resistance), iss 

452 (serum survival protein), hlyE; hlyF (haemolysins), ompT (outer membrane 
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453 protease), and iroN (salmochelin siderophore receptor) [62], [63], [64]. These 

454 findings indicate that while diarrheagenic lineages were not represented, the 

455 isolates exhibited virulence characteristics of APEC-like strains. This overlap of 

456 virulence determinants in both poultry and human isolates highlights their 

457 zoonotic relevance and raises concerns about the potential for extraintestinal 

458 pathogenic infections, particularly in agricultural settings where frequent 

459 human–animal contact occurs.

460  The widespread presence of terC among 82% of the isolates suggests that 

461 this gene plays a significant role in environmental stress resistance [65, 66], 

462 its contribution to the survival of E. coli in harsh conditions cannot be 

463 overlooked. This suggests a potential evolutionary advantage, especially in 

464 agricultural settings where selective pressures, such as antimicrobial use, are 

465 common. Additional insights were gained from the identification of the gad 

466 gene in 41% of the isolates, indicative of an enhanced resilience to acidic 

467 environments, an essential trait for pathogens colonizing the gastrointestinal 

468 tract at low pH [67, 68]. 

469 The plasmid replicons in this study indicate the potential of these isolates to 

470 acquire new genetic material and transfer AMR genes among similar species 

471 and other pathogens via plasmid-mediated resistance gene transmission. The 

472 frequent use of antibiotics in poultry farming exerts selective pressure, 

473 fostering the persistence of resistance genes within poultry-associated 

474 bacteria, which can be transferred to human pathogens [14, 69, 70, 71, 72]. 

475 Notably, resistance genes, such as blaOXA-181, qnrS1, tet(A), and sul2 were 
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476 detected together with the ColKP3 plasmid replicon (Table S3), suggesting a 

477 robust capacity for conferring resistance to third-generation cephalosporins, 

478 tetracyclines, and fluoroquinolones, further complicating treatment options. 

479 Another notable plasmid group identified in this study is the Inc plasmid 

480 replicons with 19 different types observed as shown in figure 4. This group of 

481 plasmids is often identified in Enterobacteriaceae isolated from humans and 

482 animals [73, 74, 75, 76], where they serve as carriers of genes that code for 

483 resistance against beta-lactam antibiotics and other resistance genes that 

484 contribute to multidrug resistance mostly in E. coli [73, 74, 75, 76, 77, 78]. 

485 This aligns with the findings of this study, as these plasmids were observed to 

486 co-occur with resistance genes such as blaTEM-1B, qnrS1, dfrA1, tet(A), ter(C) 

487 and aph(3'')-Ib (Table S3), conferring resistance to beta-lactams, 

488 trimethoprim, tetracyclines, fluoroquinolones, and aminoglycosides, further 

489 emphasizing their role in the dissemination of MDR traits. 

490 Given the proximity of poultry farms to human communities in peri-urban 

491 Ghana, the spread of AMR from animals to humans poses a public health risk, 

492 particularly in settings with limited biosecurity measures, as it facilitates the 

493 exchange of resistant bacteria between humans and animals and increases 

494 the risk of treatment failures in clinical settings. These findings call for 

495 targeted interventions, such as regulated antibiotic usage and enhanced 

496 biosecurity practices in poultry farms, to mitigate the risk of AMR spread.

497 Antimicrobial susceptibility testing in this study was performed using the disc 

498 diffusion method, which provides qualitative resistance profiles. Factors such 
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499 as agar thickness and potential AmpC β-lactamase overproduction may 

500 influence resistance interpretation. Future studies incorporating quantitative 

501 methods, such as broth microdilution for minimum inhibitory concentration 

502 determination, would allow more precise assessment of resistance levels. 

503 While this study provides valuable insights into AMR at the human–poultry 

504 interface in Ghana, several limitations should be considered. First, the human 

505 sample size was relatively small, which may limit the generalizability of the 

506 findings. Future studies should consider increasing the human sample size and 

507 incorporating more diverse populations. Additionally, environmental samples 

508 were not included, which could have provided further context on potential 

509 reservoirs of resistant strains. Also, expanding the WGS analysis to include a 

510 larger and more phenotypically diverse set of isolates would further enhance 

511 the robustness and representativeness of the genomic findings. In this study, 

512 only 17 ESBL-producing E. coli isolates selected based on similar multidrug-

513 resistant patterns were subjected to WGS; therefore, the genomic results 

514 reflect this highly resistant subset and do not fully capture the genetic 

515 diversity of the total ESBL-producing E. coli population recovered. Also, 

516 including antibiotic usage data could have strengthened the conclusions by 

517 linking resistance patterns to specific antimicrobial exposures. Future 

518 research should incorporate longitudinal sampling, which would provide a 

519 more comprehensive understanding of the selective pressures driving AMR 

520 and allow for assessment of transmission dynamics in poultry farming 

521 systems.
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522 5. Conclusions

523 This study provides insights into the prevalence and genomic characteristics 

524 of ESBL-producing E. coli at the human-poultry interface in Ghana, highlighting 

525 the significant role of poultry as a potential reservoir for antimicrobial-resistant 

526 bacteria. A high detection of ESBL production in E. coli isolates from both 

527 poultry and farm workers was observed, underscoring the public health risks 

528 associated with antimicrobial resistance at the human–poultry interface in 

529 peri-urban Ghana. We report the co-occurrence of the blaCTX-M-15 gene in all 

530 sequenced isolates, often with non-beta-lactamase resistance genes such as 

531 tetA, sul2, and qnrS1. This suggests an increasing spread of multidrug-

532 resistant E. coli bacteria within the Ghanaian animal farming landscape. Our 

533 data further revealed that ST10 and ST155 were the two sequence types that 

534 predominantly carried a broad range of virulence factors typically associated 

535 with both avian and human infections among the sequenced isolates. 

536 Additionally, the co-occurrence of resistance determinants and plasmids 

537 suggests a significant potential for horizontal gene transfer, facilitating the 

538 spread of multidrug resistance between bacteria. While the genomic analysis 

539 was based on a limited set of isolates, the findings remain highly relevant for 

540 small- to medium-scale poultry farmers. These farming systems often operate 

541 with fewer biosecurity safeguards and limited veterinary oversight, making 

542 them particularly vulnerable to resistant bacteria. By providing evidence of 

543 shared MDR E. coli patterns between poultry and humans, this study offers 

544 actionable knowledge that can inform farmer-level practices, such as prudent 
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545 antibiotic use, enhanced hygiene, and farmworker training, thereby 

546 supporting both poultry health and farmer well-being. These findings 

547 underscore the urgency of implementing stricter antibiotic stewardship and 

548 biosecurity measures to mitigate the spread of antibiotic resistance. 

549 Continuous genomic surveillance is essential to monitor emerging resistance 

550 patterns and inform targeted interventions that address the growing threat of 

551 AMR within agricultural and healthcare systems.
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