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Abstract: Background: Antimicrobial resistance (AMR), driven by the
extensive use of antibiotics in human and animal health, poses a significant
global threat. In Ghana, the contribution of poultry farming to the high
prevalence of AMR remains underexplored. This study investigates the
genomic characteristics and prevalence of extended-spectrum beta-
lactamase (ESBL)-producing £Escherichia coli in poultry and human

populations. Methods: A total of 300 cloacal swabs from poultry and 60 stool
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samples from poultry farm workers in peri-urban Accra were collected from 20
poultry farms and cultured. Bacterial isolates were identified through MALDI-
TOF-MS, with ESBL production confirmed using the double disk synergy test.
Whole-genome sequencing of 17 multi-drug resistant isolates selected was
conducted on the MiSeq lllumina platform to characterize resistance genes,
virulence genes, and sequence types. Results: ESBL production was detected
in 84.8% (n = 123/145) in isolates from poultry and 67.5% (n = 27/40) in
isolates from humans.. All isolates were resistant to cefotaxime, with
significant resistance to tetracycline and sulfamethoxazole-trimethoprim also
recorded. The blactx-m-15 gene was the most prevalent ESBL gene identified,
with additional genes including blacrx.m.27, blaoxa-1 blaoxa-181, blarem.15 and
blapus.; also identified. Sequence typing revealed multiple resistance-
associated sequence types, notably ST10 and ST155. Plasmid replicon analysis
identified IncF, Col, and !nclli groups, many co-occurring with multiple
resistance genes. Virulome profiling revealed the presence of avian
pathogenic £. coli (APEC)-associated genes such as /roN, iss, ompT, and AlyF.
Conclusions: This study highlights the prevalence and genomic
characteristics of ESBL-producing E. coli at the human-poultry interface in
Ghana, emphasizing poultry as a potential reservoir for multidrug-resistant
bacteria. The findings provide actionable insights for small- to medium-scale
poultry farmers, including the importance of prudent antibiotic use, enhanced

hygiene, and biosecurity practices, and underscore the need for ongoing
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genomic surveillance to guide interventions aimed at reducing the spread of

antimicrobial resistance in Ghana.

Keywords: Antimicrobial resistance; Extended-spectrum beta-lactamase;

whole-genome sequencing; Poultry farming; Escherichia coli; Ghana
Introduction

Antimicrobial resistance (AMR) has emerged as a significant global public
health challenge, with an alarming potential to claim up to 10 million lives
annually by 2050 [1]. Among the various forms of resistance, Extended-
Spectrum Beta-Lactamase (ESBL)-producing bacteria, particularly Escherichia
coli, have gained prominence due to their association with severe infections
and their role in the horizontal transfer of resistance genes. ESBLs are
enzymes produced by Gram-negative bacteria, particularly members of the
Enterobacteriaceae, that hydroiyze extended-spectrum cephalosporins, as
well as monobactaims, while remaining inhibited by B-lactamase inhibitors
such as clavulanic acid. The ESBL phenotype is most commonly mediated by
genes belonging to the blacrxm blarey, and blasyy, families, which are
frequently plasmid-encoded and often co-located with resistance
determinants to other antimicrobial classes, thereby contributing to multidrug

resistance [2, 3].

The increasing prevalence of ESBL-producing £. co// has raised significant
concerns in both healthcare and agricultural sectors, particularly in low-and

middle-income countries (LMICs), where the overuse of antibiotics in human
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medicine and livestock farming has become widespread [4, 5]. Poultry farming
in Ghana is a widely practiced agricultural activity fueled by economic
incentives, inadvertently increasing the risks of antibiotic misuse and overuse
in these systems [6]. The emergence of ESBL-producing £. co// in poultry is
particularly troubling, given their association with contamination in retail
chicken and their potential to facilitate the transmission of resistance genes
to human populations [7, 8, 9]. The close proximity of poultry farms to human
settlements, often lacking appropriate biosecurity measures, intensifies public
health concerns [10]. Despite the urgency, research exploring the dynamics
of AMR dissemination between poultry and humans in Gihana has been limited,
and primarily focused on human health [11]. This creates a critical gap in our
understanding of the complex interplay between poultry farming practices,
AMR, and potential zoonotic transmission routes. While existing studies on
AMR in Ghana have contributed valuable insights, they predominantly rely on
phenotypic analyses and do not include poultry farm workers [5], [12], [13],
which, although useful for identifying resistance patterns, do not provide a
comprehensive understanding of the underlying genetic mechanisms driving
resistance. Methods such as whole-genome sequencing and multi-locus
sequence typing have been rarely applied, limiting our ability to map the
genetic characteristics and potential transmission pathways of ESBL-
producing E. col/i across poultry and human populations [13, 14]. This gap is
concerning, considering the potential risks associated with the spread of

resistant strains and their implications for public health. Moreover, the unique
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environmental and agricultural factors in Ghana, such as economic pressures
leading to increased, often unregulated, antibiotic use, further exacerbate the
potential spread of AMR. The lack of robust biosecurity measures in poultry
farms, combined with the close integration of these farms within human
communities, positions them as potential reservoirs for resistant bacteria [15,
16, 17]. Addressing these gaps in knowledge is essential for informing health
policy and intervention strategies aimed at curbing the threat of AMR. This
study sought to conduct genomic profiling of ESBL-producing E£. co/i isolated
from poultry and poultry farm workers across 20 poultry farms in Accra,
Ghana. By leveraging advanced genomic techniques, the study elucidated the
genetic diversity, resistance gene profiles, and dissemination of ESBL-
producing E. coli. The findings provide insights into the dynamics of AMR in
the poultry-human interface, contributing to a broader understanding of its

impact on public health.

2. Materials and Methods

2.1. Study site and sampling

This cross-sectional study was conducted in peri-urban areas of Accra, Ghana,
focusing on small-to-medium-scale poultry farms and their workers to
determine the prevalence and genomic characteristics of ESBL-producing £.
coli. A total of 360 samples were collected from 20 poultry farms in November
2023, comprising 300 cloacal swabs from chickens and 60 stool samples from

poultry farm workers. Each farm housed approximately 900-3000 chickens,
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and 15 randomly selected chickens were sampled per farm, along with stool
samples from three farm workers. Cloacal swabs were obtained from live
chickens using sterile swabs pre-moistened with phosphate-buffered saline
(PBS) (Oxoid, Basingstoke, Hampshire, UK) and transported in a cold box to
the laboratory. Stool samples were self-collected by poultry workers in sterile
containers, inoculated with PBS, and transported in a cold box to the
laboratory within 24 hours of collection. Participants were selected based on

their willingness to participate and their involvement in poultry farming.

The study was conducted in accordance with the Declaration of Helsinki and
approved by the Ethical and Protocol Review Committee of the College of
Health Sciences, University of Ghana (CHS-Et/M.2-P 4.6/2021-2022). All
methods were performed following the relevant guidelines and regulations
and in accordance with Animal Research: Reporting of In Vivo Experiments

(ARRIVE) guidelines.
2.2. [solation and ldentification

Cloacal swabs were incubated aerobically at 37 °C for 24 h, while
approximately one gram of each human stool sample was inoculated into
buffered peptone water (Oxoid, Basingstoke, Hampshire, UK) immediately
upon arrival and incubated at 37 °C for 24 h. Immediately after incubation, a
10 uL loopful of the culture was streaked onto selective MacConkey agar plates
(Sigma-Aldrich, St. Louis, MO, USA) supplemented with 4 pg/mL cefotaxime.

The inoculated plates were incubated at 37 °C for 24 hours under aerobic
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conditions. Following overnight incubation, morphologically distinct colonies
were observed, and up to five pink to reddish isolated colonies indicative of
lactose fermentation from each sample were selected. These colonies were
then sub-cultured on Nutrient agar (Oxoid, Basingstoke, Hampshire, UK) and
incubated at 37 °C for 24 hours to obtain pure cultures. The pure cultures were
initially screened using conventional biochemical tests (Triple sugar iron,
Citrate utilization tests, Urease, and Sulphur Indole motility biochemical tests)
and subsequently identified using the Matrix Assisted Laser Desorption
lonization Time of Flight Mass Spectrometry (MALDI-TOF, Bruker, Billerica, MA,
USA) analyzer. Isolates identified as £. co/iwere retairied for downstream ESBL
confirmation and genomic analyses while non-£. col/i Enterobacterales
identified were excluded from further analyses. For long-term storage and
future analyses, three to five representative colonies of the pure cultures of £.

coli were preserved in skim-milk-tryptone-glucose-glycerol broth at —80 °C.

2.3. Phenotypic detection of ESBL-producing E. coli

The phenotypic detection of ESBL production was carried out utilizing the
double disk synergy test, following the guidelines established by the WHO
[18]. Mueller-Hinton agar plates (Oxoid, Basingstoke, Hampshire, UK) were
used as the growth medium. Briefly, an inoculum preparation of a bacterial
suspension equivalent to a 0.5 McFarland standard was done, and the
suspension was inoculated onto the agar plates using sterile cotton swabs to
ensure uniform growth. After allowing the plates to air-dry for 3-5 minutes,

cefotaxime (30ug), and ceftazidime (30ug), were placed approximately 20 mm
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from the centrally positioned amoxicillin/clavulanic acid (20/10ug) disk using
sterile forceps. The plates were incubated for 18 hours at 37°C under aerobic
conditions and then examined for synergy effects indicated by increased
zones of inhibition surrounding the cephalosporin disks, which confirmed

positive ESBL production.
2.4. Antimicrobial susceptibility testing

Antimicrobial susceptibility testing of £. co//isolates was conducted using the
Kirby-Bauer disk diffusion method following the Clinical and Laboratory
Standards Institute (CLSI) guidelines [19]. Pure colonies were selected and
suspended in sterile saline, and the bacterial concentration was adjusted to a
0.5 McFarland standard using a BD PhoenixSpec™ nephelometer (Beckton
Dickinson, Sparks, MD, USA). The standardized suspension was uniformly
spread across Mueller-Hintorn agar plates (Oxoid, Basingstoke, Hampshire, UK)
using sterile cotton swabs to achieve confluent bacterial growth. Commercially
available antibiotic disks (Oxoid, Basingstoke, Hampshire, UK) were carefully
placed on the agar surface. The antibiotics tested included amikacin (30 ug),
amoxicillin-clavulanate (20/10 pg), tetracycline (30 pg), gentamicin (10 pg),
cefoxitin (30 ug), piperacillin-tazobactam (100/10 ug), chloramphenicol (30
1g), ciprofloxacin (5 ug), sulfamethoxazole-trimethoprim (10 pg), meropenem
(10 ug), ceftazidime (30 ug), and cefotaxime (30 ug). The plates were then
incubated at 37°C under aerobic conditions for 24 hours. A quality control
strain, £. co/i ATCC 25922, was included in each batch to validate the results

and ensure accuracy. The inhibition zone diameters surrounding the antibiotic
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disks were measured and recorded into WHONET 2024 software for

interpretation [20].

2.5. Whole Genome Sequencing and Bioinformatic Analysis

DNA extraction was performed on 17 ESBL-producing £. co//isolates, including
10 obtained from poultry and 7 from poultry farmworkers, selected based on
their similar multidrug-resistant patterns. The isolates were cultured on
nutrient agar after overnight incubation at 37°C under aerobic conditions, and
DNA was extracted using the QlAamp® DNA mini kit (QIAGEN Inc. GmbH,
Holden, Germany) according to the manufacturer’s protocol. The quality and
concentration of genomic DNA were assessed using the NanoDrop™ 2000
Spectrophotometer (ThermoFisher Scientific, Waltham, MA, USA) and Qubit
Fluorometer (Invitrogen, Carlsbad, CA, USA). Genomic libraries were
generated with the Illumina DNA prep kit, adhering to the manufacturer's
guidelines for the lllumina MiSeq technology. The libraries were pooled and
subsequently loaded onto the MiSeq lllumina sequencer (lllumina Inc., San
Diego, CA, USA) to generate 250 bp x 2 paired-end reads for each ESBL-
producing E. coli isolate. All raw sequences were submitted to NCBI and

assighed a Bioproject accession number, PRJNA1208549.

The raw sequenced reads underwent quality assessment and trimming, using
FASTQC v0.12.1 and Trimmomatic v0.36 [21]. Trimmed reads were then de
novo assembled using the SPAdes assembler. Multi-locus sequence typing

analysis was conducted on the assembled genomes using the MLST 2.0 tool
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hosted by the Center  for Genomic Epidemiology (CGE)
(http://cge.cbs.dtu.dk/services/MLST/) according to the Achtman scheme,
which identifies sequence types (STs) based on variations in seven
housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA) [22]. Isolates
that could not be assigned ST through conventional MLST were further
analyzed using core genome MLST (cgMLST) in EnteroBase to determine their
cgSTs. /n silico analysis was conducted using the ResFinder tool v4.6.0 [23]
hosted on the CGE website at default threshold ID (90%) and minimum length
(60%) values to identify acquired antimicrobial resistance genes. Virulome and
plasmid analysis were also conducted using the ViruienceFinder 2.0 tool [24]
and PlasmidFinder 2.1 [25] hosted on the CGE website to identify the
virulence-associated genes. The phylcgroups classification of the E£. coli
genomes was then performed using the in silico Clermon-Typing 1.4.1 tool [26]
at default parameters before whole-genome sequences were uploaded to
CSIPhylogeny to analyze the evolutionary relatedness [27] among the 17
ESBL-producing £. co/i and identify single-nucleotide polymorphisms (SNPs),
by comparing assembled sequences to the reference genome ASM584v2
(Escherichia colistr. K-12 substr. MG1655). The generated tree was visualized

and annotated using Interactive Tree of Life, ITOL v6 [28].

2.6. Data Analysis

Statistical analyses were conducted to evaluate differences in antibiotic
resistance patterns between poultry and human isolates. Fisher’'s exact test

was applied separately to each antibiotic resistance profile to determine
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whether resistance frequencies varied significantly between the two sources.
A p-value < 0.05 was considered statistically significant. All statistical analyses

were performed using R v4.4.1 software

3. Results

3.1. Prevalence of ESBL-Producing E. coli

In this study, we assessed the prevalence of ESBL-producing E. co/i within
poultry farms and among poultry farm workers. A total of 189 third-generation
cephalosporin-resistant bacterial isolates were obtained from 300 cloacal
swab samples (n = 149/300) and 60 fecal samples (n = 40/60) collected from
poultry workers. The isolated bacteria were predominantly £ coli (n =
185/189, 97.9%), with a smaller number of Klebsiella pneumoniae (n = 3/189,
1.6%) and Enterobacter cloacae (n = 1/189, 0.5%). Out of 185 E. co/jisolates
recovered, 150 were phenotypically confirmed as ESBL producers. Among
poultry-derived isolates, 84.8% (n = 123/145) were confirmed as ESBL-
producing E£. co/i. Among isolates recovered from poultry farm workers, 67.5%
(n = 27/40) were confirmed as ESBL-producing £. co/i. Notably, 16 out of the
20 farms exhibited at least one positive henhouse for ESBL-producing £. co/i,
while at least one human from 10 farms also tested positive for ESBL-
producing E. coli. Farm-level analysis revealed significant variation in ESBL
prevalence. At the farm level, the proportion of samples from poultry testing

positive for ESBL-producing E. co/i ranged from 40% (n = 6/15) to 60% (n =
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9/15), while the carriage among humans ranged from 33.3% (n = 1/3) to

66.7% (n = 2/3) per farm (Table S2).

The antibiotic susceptibility testing of the 150 ESBL-producing £. co/i isolates
showed widespread resistance across multiple antibiotic classes. All ESBL-
positive isolates from both poultry (n=123/123, 100%) and farm workers
(n=27/27, 100%) were resistant to cefotaxime, confirming the characteristic
B-lactam resistance conferred by ESBL production. Among the ESBL-producing
isolates, resistance to ceftazidime varied between poultry (n=118/123, 95.9%)
and humans (n=22/27, 81.5%). Similarly, tetracycline resistance was notable
in both poultry (n=121/123, 98.4%) and human (n=17/27, 63.0%) isolates.
Resistance to sulfamethoxazole-trimethoprirn was observed in (n=112/123,

90.8%) poultry isolates and (n=19/27, 70.4%) of the human isolates (Table 1).

Table 1. Antimicrobial Resistance Profile of ESBL-producing £. co/i isolates

from poultry (n = 123) and poultry farm workers (n = 27).

ESBL-positive

Antibiotics
isolates
P~
Poultry Humans
value
(n =123) (n = 27)
Amoxicillin/clavulanic acid (30ug) 31 (25.6%) 09 (33.3%) 0.634
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Piperacillin-tazobactam (30uq)
Cefotaxime (30ug)
Ceftazidime (30uQ)

Cefoxitin (30ug)

Meropenem (10ug)
Gentamicin (10ug)

Amikacin (30ug)

Tetracycline (30uQ)

Chloramphenicol (30uQ)
Ciprofloxacin (5ug)

Sulfamethoxazole-trimethoprim

(1.25/23.75u9)

NA: Statistical comparison not applicable because all isolates were 100% resistant. 7he values

43 (34.6%)

123 (100%)

118 (95.9%)

43 (34.6%)

02

31 (25.2%)

46 (37.2%)

121 (9Y8.4%)

38 (31.0%)

93 (75.6%)

112 (90.8%)

09 (33.3%)

27 (100%)

22 (81.4%)

10 (37.0%)

00 (0.0%)

12 (44.4%)

10 (37.0%)

17 (63.0%)

11 (40.7%)

16 (59.3%)

19 (70.4%)

represent the number of resistant isolates, with percentages given in parentheses.

3.2. Distribution of acquired antimicrobial resistance genes

Genomic analysis of the 17 ESBL-producing £. col//isolates, selected based on
their similar multidrug resistance patterns in both poultry and human sources,
identified a significant diversity of antimicrobial resistance genes. Notably, a

total of 32 acquired antimicrobial resistance genes were identified with b/actx.

NA

0.017

0.828

0.065

0.828

<0.00

0.821

0.154

0.002
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M-15 €merging as the most prevalent, present in all 17 isolates (Figure 1).
Several other beta-lactamase genes were detected, including b/actx-m-27,
blapua-1, blarem-1e, blarem-3s, blaoxa-1, and blaoxa-181. The blaoxa-181 gene was
observed exclusively in isolates that also exhibited resistance to meropenem.
Beyond beta-lactam resistance, genes conferring resistance to
aminoglycoside (aph(6)-1d, aph(3')-la, aph(3")-Ib, ant(3")-la, aadA2), folate
inhibitors (sull, sul2, dffA12, dfrA14) and quinolones (aac(6')-1b-cr, gnrSi,

qgepA4) were also observed.
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Figure 1. Antimicrobial resistance gene distribution.

3.3 Distribution of Beta-lactam resistance genes by source
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The patterns of beta-lactam resistance genes in the ESBL-producing E£. col/
isolates from human and poultry sources reveal interesting trends. The gene
blacrx-m-15 was the most commonly identified resistance gene in both groups,
with a higher prevalence in poultry samples (n = 10) compared to human
isolates (n = 7). In addition to b/actx-m-15, the gene blarsm.z5 was frequently
detected, again showing greater occurrence in poultry (n = 6) than in humans
(n = 2). Notably, other beta-lactam resistance genes such as b/apxa-1, blaoxa-
181, Blacrx-m-27, and blarey.35 were unique to poultry samples, whilst b/apms.-7 (n

= 1), was identified only in one isolate from the human samples. (Figure 2).
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Figure 2. Distribution of Beta-lactam resistance genes by source.
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3.4. Virulence factors Distribution in Poultry and Human ESBL-producing E. coli

/solates

A virulome analysis conducted using the Virulence Finder tool from CGE
identified 25 unique virulence-associated genes (VAGs) across the 17 ESBL-
producing £. coliisolates. Among these, the most prevalent VAGs were fimH,
present in 88% of the isolates (n = 15/17), followed closely by terCat 82% (n
= 14/17), IpfA at 59% (n = 10/17), and gad at 41% (n = 7/17). The identified
virulence factors were categorized based on their functional roles, including
adhesion molecules, toxin production, iron acquisition systems, immune

evasion, and acid resistance (Figure 3).
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Figure 3. Distribution of Virulence genes in the ESBL-producing E£. coli

isolates.
3.5. Phylogenetic analysis of ESBL-producing E. coli isolates

The phylogenetic analysis of the ESBL-producing £. co/i isolates among the
strains derived from human and poultry sources (Figure 4) classified the
isolates into two major phylogroups, A and Bl, with Bl predominantly
associated with poultry-derived strains, while A was more evenly distributed
between human and poultry isolates. Twelve sequence types (STs) were
identified, including ST-224, ST-746, and ST-10, with the identification of two
novel sequence types. Two isolates that could not be assigned STs through
conventional MLST were further analyzed using cgMLST in EnteroBase, which
identified them as cgST 17714 (1K 569) and cgST 90610 (KB1 S70). Thirty
different plasmids were obseirved among the 17 ESBL-producing E£. co//isolates
sequenced from poultry and human sources. The most prevalent plasmid
replicons belonged to Col (Co/RNA/, Col440/, ColKP3, ColE10, Col(MGS828),
Col440A, Coll56, Col8282, Col(MG828), Col8282) and Inc (/ncY,
IncFIB(AP0O01918), IncFIC(FIl), IncFIA, IncX1, IncFIB(pB171), IncFll(p14), Inch,
IncHI1A, IncHI1B(R27), IncFIA(HI1), IncHIZA, IncHI2, IncHI1B(CIT), IncX4, IncX3,
IncFIl(PAMA1167-NDM-5), IncFll(pRSB107), IncFIB(K) 1_Kpn3) groups. The
prevalent plasmid types were Co/RNA/ (n = 13/17), IncY (n = 7/17), IncFIB
(AP0O01918), and Co/440/ (n = 6/17 each), as shown (figure 4). Co/RNA/ was
the most prevalent in poultry (n = 9/17), whilst Co/440/and Co/RNA/(n = 4/17,

each) were prevalent in the isolates from poultry farm workers.
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324 Figure 4. A phylogenetic tree generated based on single-nucleotide
325 polymorphisms of the core genes of 17 ESBL-piroducing E£. coli isolates,
326 showing resistance genes and plasmids against sequence types with reference

327 genome E. colistr. K-12 substr. MG1655 as an outgroup.
328 4. Discussion

329 Studies worldwide have shown increasing concerns regarding AMR impacting
330 both human and animal health [29, 30]. This study highlights the genomic
331 diversity of ESBL-producing £. co/i from poultry and poultry farm workers in

332 Accra, Ghana.

333 The detection rates of ESBL-producing £. co/i observed suggest potential
334 differences in exposure risks, biosecurity measures, or antibiotic use practices
335 [31], which may contribute to variations in colonization patterns between
336 poultry and farm workers. These ESBL-producing E£. col/i isolates showed

337 significant resistance to multiple antibiotics across different classes such as
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tetracycline, ciprofloxacin, and sulfamethoxazole-trimethoprim, highlighting
their multidrug-resistant nature and a widespread presence of antimicrobial-
resistant ESBL-producing £. co// in both animal and human populations on
farms. The findings align with previous studies that have similarly linked high
rates of ESBL production in £. colito the development of multidrug resistance
in both poultry and human sources [32, 33, 34], reinforcing the notion that
farming practices may be instrumental in shaping the resistance profiles of
these pathogens. Notably, the observed resistance pattern was most evident
against penicillin, tetracycline, aminoglycosides, and sulfonamides which are
antimicrobials frequently employed for therapeutic puiposes in both human
medicine and the poultry industry in Ghana [5, 35]. The high resistance rates
observed in poultry may reflect antibiotic exposure driven by agricultural
practices such as the use of antibiotics for growth promotion and disease
prevention. This trend raises questions about the efficacy of current
antimicrobial stewardship practices, highlighting the urgent need for revised

strategies to mitigate the selection and spread of resistance.

Whole genome sequencing revealed blacrx.m-75 as the most occurring ESBL
gene in all the isolates. The predominance of b/acrx.m.75 among the ESBL-
producing E£. coli isolates in this study aligns with its widespread distribution
in both clinical and agricultural settings [14, 36]. CTX-M-15 has been
frequently implicated in human infections and has been reported in various
geographic regions, particularly in LMICs where the burden of antimicrobial

resistance is high [37, 38, 39]. Its presence in Ghanaian hospital settings
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further supports this trend, as previous studies have consistently identified
blacrx.m-15 as the dominant ESBL gene in clinical isolates [40]. A study reported
that all ESBL-producing E£. col/isolates carried a blacrx.mgene, with blacrx.m-15
detected in 98% of cases in 2016 at a hospital in Ghana [39]. Similarly, a more
recent study on ESBL-producing E. co/i and Klebsiella pneumoniae isolates
from pediatric patients found that b/ac7x.ywas the most prevalent ESBL gene,
detected in 92.4% of isolates in a hospital in Ghana [41]. This trend is not
unique to Ghana but is also in other LMICs, where a high prevalence of the
blacrx.m gene has been reported. In Senegal, b/acrx.m-15 has been reported to
be the predominant ESBL gene detected in ESBL-producing E. col/ isolated
from broiler chickens sold in open wet markeats {42]. Similarly, prevalence
rates of 83-88% have been reported for the detection of blacrx.m-15 within
hospitals in Ethiopia [43, 44]. The detection of other beta-lactamase genes
such as blacrx-m-27 blarem.zs. blarem.z5, and blapxs-;, in this study, further
underscores the genctic diversity of resistance within these isolates and
highlights their functional significance in conferring broad-spectrum B-lactam
resistance. Although b/apxs.; and blapxa.1g1 were identified in a few isolates,
their presence warrants attention. b/apxa.; is often associated with resistance
to amoxicillin-clavulanate, compromising the effectiveness of B-lactamase
inhibitor combinations in treating infections caused by these resistant strains
[45, 46]. The blapxs-187 gene, identified only in isolates that were meropenem
resistant, suggests a potential role in conferring meropenem resistance in

these specific strains. blapxs.-767 1S @ carbapenemase-producing gene and has
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primarily been identified in enterobacteriaceae in hospitals in Ghana [44].
Although carbapenems are not used in poultry production, the presence of this
gene in poultry-associated isolates may reflect horizontal transfer of
carbapenemase genes within the farm environment. Detecting these clinically
significant resistance genes in poultry highlights the need for close monitoring
to control their spread into the broader community. While studies from Africa,
including this study, indicate a high predominance of blacrx.m-15 research
conducted in Europe reveals markedly lower rates of this gene in poultry
isolates [47, 48]. This disparity emphasizes the regional variations in the
prevalence of ESBL genes, which are likely influenced by differing antibiotic
usage patterns, agricultural practices, and the robustness of monitoring

frameworks [47].

A range of resistance determinants to non-beta-lactam antibiotics was also
identified. These included genes conferring resistance to quinolones,
aminoglycosides, tetracyclines, phenicols, and folate pathway inhibitors.
These findings are consistent with those reported in similar studies [12, 49,
50]. The presence of such genes underscores a multidrug-resistant profile
among the E. coli isolates from both poultry and human sources. This
occurrence of resistance determinants to multiple antibiotic classes poses a
significant challenge to existing antimicrobial therapies, as it greatly reduces
the pool of effective antibiotics. The diversity and prevalence of these
resistance genes highlight the adaptability and resilience of the ESBL-

producing £. coli isolates. This emphasizes the urgent need for enhanced
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regional surveillance and strategic antimicrobial stewardship measures to

combat the spread of antimicrobial resistance effectively.

The genomic analysis further elucidated the genetic diversity present among
the ESBL-producing £. coli isolates, revealing 12 STs that were grouped into
two principal commensal phylogenetic groups: B1 and A. Phylogroup B1 was
predominantly composed of isolates from poultry, suggesting host adaptation
or persistence within the poultry environment. In contrast, phylogroup A
included isolates from both poultry and farm workers, indicating potential
genetic overlap and exchange across hosts. Within these, only ST10 emerged
as a shared sequence type between poultry and human sources, both of which
were recovered from the same farm. This co-cccurrence points to a possible
overlap between hosts within a shared environment, suggesting possible
zoonotic potential. Conversely, ST155 and ST4977, found exclusively in
poultry isolates, may indicate a possible adaptation to avian hosts. The
association of ST10 and ST155 with high virulence and resistance-associated
gene counts raises concerns about their pathogenic potential, as their
adaptability and prevalence within microbial communities could facilitate the
transfer of critical genetic material, complicating efforts to control the spread
of antimicrobial resistance. Previous studies have established that these STs
are prevalent in both poultry and human populations, with frequent
identification in clinical settings [13, 51, 52]. These STs harbor a range of
virulence factors, such as adhesion factors (#im#H), iron acquisition systems

(FfYuA, iroN, irp2), serum resistance genes (/ss), and hemolysins (A/yF), which
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are commonly found in extraintestinal pathogenic £. co/i strains [10, 53, 54].
This is consistent with our study, where ST10 and ST155 were predominantly
identified with these virulence genes (fig S1). The overlap between these STs
in agricultural and healthcare environments points to the risk of cross-species

transmission and emphasizes the necessity for monitoring these strains.

Virulome analysis of the ESBL-producing £. co/i isolates revealed a complex
landscape of virulence factors linked to the pathogen's adaptability and
survival in both host environments. The high occurrence of #imH and /pfA
observed in this study highlights their critical roles in £. co/i adhesion to host
cells. FimH, a key virulence factor mainly associated with Uropathogenic E.
coliencodes type 1 fimbriae [55] while /p7A, tyuically linked to Enterotoxigenic
E. coliencodes long polar fimbriae [56]. Both facilitate bacterial attachment to
epithelial surfaces, promoting colonization in poultry and humans [57, 58].
Together, these findings hignlight the significant role of fimH and /pfA in
enhancing the abiiity of the ESBL-producing £. co/i isolates to adhere to host
tissues, a key factor in their adaptability, persistence, and pathogenic
potential across diverse environments. Notably, none of the isolates carried
the set of virulence determinants defining diarrheagenic E£. co/i (DEC)
pathotypes, suggesting that classical DEC lineages were absent in this
population [59], [60], [61]. In contrast, several isolates harbored combinations
of avian pathogenic E. coli (APEC)-associated genes such as /utA (aerobactin
receptor gene), fraT (outer membrane protein complement resistance), /ss

(serum survival protein), AlyE; hlyF (haemolysins), ompT (outer membrane
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protease), and /ro/N (salmochelin siderophore receptor) [62], [63], [64]. These
findings indicate that while diarrheagenic lineages were not represented, the
isolates exhibited virulence characteristics of APEC-like strains. This overlap of
virulence determinants in both poultry and human isolates highlights their
zoonotic relevance and raises concerns about the potential for extraintestinal
pathogenic infections, particularly in agricultural settings where frequent

human-animal contact occurs.

The widespread presence of fterC among 82% of the isolates suggests that
this gene plays a significant role in environmental stress resistance [65, 66],
its contribution to the survival of E. coli in harsh conditions cannot be
overlooked. This suggests a potential evolutionary advantage, especially in
agricultural settings where selective pressures, such as antimicrobial use, are
common. Additional insights were gained from the identification of the gad
gene in 41% of the isclates, indicative of an enhanced resilience to acidic
environments, an essential trait for pathogens colonizing the gastrointestinal

tract at low pH [67, 68].

The plasmid replicons in this study indicate the potential of these isolates to
acquire new genetic material and transfer AMR genes among similar species
and other pathogens via plasmid-mediated resistance gene transmission. The
frequent use of antibiotics in poultry farming exerts selective pressure,
fostering the persistence of resistance genes within poultry-associated
bacteria, which can be transferred to human pathogens [14, 69, 70, 71, 72].

Notably, resistance genes, such as blapxa-181, gqnrS1, tet(A), and su/l2 were
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detected together with the Co/KP3 plasmid replicon (Table S3), suggesting a
robust capacity for conferring resistance to third-generation cephalosporins,
tetracyclines, and fluoroquinolones, further complicating treatment options.
Another notable plasmid group identified in this study is the Inc plasmid
replicons with 19 different types observed as shown in figure 4. This group of
plasmids is often identified in Enterobacteriaceae isolated from humans and
animals [73, 74, 75, 76], where they serve as carriers of genes that code for
resistance against beta-lactam antibiotics and other resistance genes that
contribute to multidrug resistance mostly in £. coli[73, 74, 75, 76, 77, 78].
This aligns with the findings of this study, as these plasinids were observed to
co-occur with resistance genes such as b/aren.16, gnrS1, dfrAl, tet(A), ter(C)
and aph(3”)-lb (Table S3), conferring resistance to beta-lactams,
trimethoprim, tetracyclines, fluoroquinolones, and aminoglycosides, further

emphasizing their role in the dissemination of MDR traits.

Given the proximity of poultry farms to human communities in peri-urban
Ghana, the spread of AMR from animals to humans poses a public health risk,
particularly in settings with limited biosecurity measures, as it facilitates the
exchange of resistant bacteria between humans and animals and increases
the risk of treatment failures in clinical settings. These findings call for
targeted interventions, such as regulated antibiotic usage and enhanced

biosecurity practices in poultry farms, to mitigate the risk of AMR spread.

Antimicrobial susceptibility testing in this study was performed using the disc

diffusion method, which provides qualitative resistance profiles. Factors such
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as agar thickness and potential AmpC B-lactamase overproduction may
influence resistance interpretation. Future studies incorporating quantitative
methods, such as broth microdilution for minimum inhibitory concentration
determination, would allow more precise assessment of resistance levels.
While this study provides valuable insights into AMR at the human-poultry
interface in Ghana, several limitations should be considered. First, the human
sample size was relatively small, which may limit the generalizability of the
findings. Future studies should consider increasing the human sample size and
incorporating more diverse populations. Additionally, environmental samples
were not included, which could have provided further context on potential
reservoirs of resistant strains. Also, expanding the WGS analysis to include a
larger and more phenotypically diverse set of isolates would further enhance
the robustness and representativeness of the genomic findings. In this study,
only 17 ESBL-producing £. co/i isolates selected based on similar multidrug-
resistant patterns were subjected to WGS; therefore, the genomic results
reflect this highly resistant subset and do not fully capture the genetic
diversity of the total ESBL-producing E. col/i population recovered. Also,
including antibiotic usage data could have strengthened the conclusions by
linking resistance patterns to specific antimicrobial exposures. Future
research should incorporate longitudinal sampling, which would provide a
more comprehensive understanding of the selective pressures driving AMR
and allow for assessment of transmission dynamics in poultry farming

systems.
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5. Conclusions

This study provides insights into the prevalence and genomic characteristics
of ESBL-producing E£. co/i at the human-poultry interface in Ghana, highlighting
the significant role of poultry as a potential reservoir for antimicrobial-resistant
bacteria. A high detection of ESBL production in E. co// isolates from both
poultry and farm workers was observed, underscoring the public health risks
associated with antimicrobial resistance at the human-poultry interface in
peri-urban Ghana. We report the co-occurrence of the b/acrx.m-75 gene in all
sequenced isolates, often with non-beta-lactamase resistance genes such as
tetA, sul2, and gnrS1. This suggests an increasing spread of multidrug-
resistant £. co// bacteria within the Ghanaian animal farming landscape. Our
data further revealed that ST10 and ST155 were the two sequence types that
predominantly carried a broad range of virulence factors typically associated
with both avian and human infections among the sequenced isolates.
Additionally, the co-occurrence of resistance determinants and plasmids
suggests a significant potential for horizontal gene transfer, facilitating the
spread of multidrug resistance between bacteria. While the genomic analysis
was based on a limited set of isolates, the findings remain highly relevant for
small- to medium-scale poultry farmers. These farming systems often operate
with fewer biosecurity safeguards and limited veterinary oversight, making
them particularly vulnerable to resistant bacteria. By providing evidence of
shared MDR E. coli patterns between poultry and humans, this study offers

actionable knowledge that can inform farmer-level practices, such as prudent
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antibiotic use, enhanced hygiene, and farmworker training, thereby
supporting both poultry health and farmer well-being. These findings
underscore the urgency of implementing stricter antibiotic stewardship and
biosecurity measures to mitigate the spread of antibiotic resistance.
Continuous genomic surveillance is essential to monitor emerging resistance
patterns and inform targeted interventions that address the growing threat of

AMR within agricultural and healthcare systems.
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