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Abstract

The growing volume of industrial and electronic waste has intensified the need for sustainable
material management strategies. Among these waste streams, cathode-ray-tube (CRT) glass is of
particular concern due to its high density and lead-bearing composition, which typically contains
about 20-25 wt.% lead oxide. Using recycled CRT glass (RCRT) as a fine aggregate in
cementitious mixtures offers a practical means of reducing landfill disposal while enhancing
mortar performance. However, the mechanical behavior of RCRT-containing mortars has not
been sufficiently modeled, thereby constraining the optimized design of such sustainable
mixtures. In this study, two white-box, soft-computing techniques, the Group Method of Data
Handling (GMDH) and Gerne Expression Programming (GEP), were developed to predict the
compressive strength of mortars incorporating RCRT. The database consisted of 139 laboratory
specimens, and the machine-learning models were trained using the following input variables:
water-to-binder ratio (w/b), water content, cement content (CC), fly ash, sand content, RCRT
content, and curing time (CT). The GMDH model demonstrated superior predictive performance,
achieving an R? of 0.942 with RMSE and MAE values of 2.97 and 2.59, respectively. In contrast,
the GEP model produced higher error levels (RMSE = 6.94 and MAE = 5.28). These findings

indicate that transparent, data-driven modeling can capture the nonlinear interactions governing
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strength development in RCRT-modified mortars and provides a reliable basis for designing
sustainable, dense, and mechanically efficient mixtures suitable for both conventional and

radiation-shielding applications.

Keywords: Recycled cathode ray tube; Cement mortar; Compressive strength; Soft computing; Group

Method of Data Handling; Gene Expression Programming.

1. Introduction

The development of the electronics industry has led to the production of a large volume of
cathode ray tube glass (CRT) waste. The high concentration of heavy metals such as lead in CRT
has made its proper disposal a significant environmental challenge. The primary environmental
concern associated with CRT waste is lead leaching, as tlic high lead content poses the most
serious risk of contaminating soil and groundwater. Extensive studies conducted using the
Toxicity Characteristic Leaching Procedure (TCLP) have shown that CRT waste can result in a
significant accumulation of hazardous substances. Therefore, the improper disposal of CRT

materials can cause serious environmental issues [1].

Researchers have explored approaches to minimize these risks, and several studies have
confirmed that incorporating recycled CRT (RCRT) into alkaline cementitious environments can
substantially reduce the leaching of hazardous ions due to the chemical stabilization offered by
hydration products [2-3]. The alkaline conditions provided by cement hydration promote
chemical binding of heavy metals, and previous research has demonstrated that CRT glass
becomes more environmentally stable when incorporated into mortar systems. Zhao and Poon
(2017) showed that nitric-acid-treated funnel glass (TFG) can produce mortars with significantly

lower drying shrinkage, reduced ASR expansion, and substantially reduced lead leaching, with



all values remaining within regulatory limits. Similarly, Ling and Poon (2011, 2012) reported
that processing and particle-size refinement of CRT glass affect shrinkage, fresh properties, and
the extent of heavy-metal leaching, confirming the environmental viability of RCRT in alkaline

matrices.

Various laboratory studies have examined the use of RCRT as a fine aggregate in mortars,
particularly in X-ray and radiation-shielding applications. Gao et al. evaluated the behavior of
Portland cement and geopolymer mortars incorporating RCRT. Their findings showed that
adding RCRT to Portland cement mortars led to a considerable reduction in compressive
strength, reaching about 50% in some mixtures, primarily due to significant shrinkage. In
contrast, the minimal shrinkage observed in geopolymer mortars resulted in only a negligible
strength reduction, while heavy-metal leaching and shiclding performance remained acceptable,
thereby highlighting the potential of geopolymier binders for RCRT utilization. Ling and Poon
[6] examined the influence of RCRT particle size on both environmental and mechanical
characteristics of cement mortar. They reported that the smooth, non-porous surface of RCRT
weakened the bond between glass particles and cement paste, resulting in reductions in
compressive strength of 10-30%, depending on particle size. At the same time, they observed
that the alkaline cement matrix significantly reduced heavy-metal leaching, confirming the
environmental viability of RCRT. In another study, Ling and Poon [7] evaluated mortars with
25%, 50%, 75%, and 100% sand-to-RCRT replacement. Their results showed that increasing
RCRT content improved workability, reflected in the increased of flow spread from about 120
mm to nearly 190 mm, and simultaneously decreased flexural and compressive strengths due to

weak particle—paste bonding.



Previous studies have indicated that the high density of recycled CRT glass may enhance X-ray
attenuation in cementitious mortars, suggesting potential radiation-related applications
(Abouelnour et al., 2025; Mahmoud et al., 2025; Fattouh et al., 2025). Choi et al. [5] and Ling et
al. [8] examined the use of recycled CRT glass as a fine aggregate in cementitious mortars and
reported that increasing RCRT content can enhance radiation-shielding performance. However,
these studies also indicated that such improvements are often accompanied by reductions in
mechanical properties, primarily due to weak bonding at the paste—glass interface. These studies
provide useful background on the multifunctional potential of RCRT-containing mortars;
however, the present work is restricted to mechanical performance, with particular emphasis on

compressive strength prediction.

Although previous studies have provided valuable insights into the mechanical,
environmental, and shielding performance of RCKT-modified mortars, they also highlight
important limitations. Most of the available research has mainly focused on experimental results
or on studying individual mixture variables, while predictive modeling has received far less
attention. At the same time, one of the major challenges in civil engineering, particularly for
concretes and mortars incorporating recycled materials, is the reliable prediction of mechanical
properties [9-13]. Performing laboratory tests is a costly method to achieve a suitable mixing
design. For this reason, researchers have increasingly turned to soft-computing and data-driven
methods to estimate the mechanical behavior of cementitious materials containing recycled
aggregates (de-Prado-Gil et al., 2024; Ghazavi et al., 2024; Jagadesh et al., 2023; Ghazavi et al.,
2025; de-Prado-Gil et al., 2022). These developments highlight the need for accurate and
generalizable predictive tools, especially when multiple mixture parameters simultaneously

interact and influence mechanical performance simultaneously [14-18].



Ahmad et al. [18] applied linear regression models (LRM), nonlinear regression models
(NLR), and multilinear regression models (MLR) to predict the compressive strength of mortar
containing RCRT. The regression coefficient values of the LRM, NLR, and MLR methods were
reported as 0.84, 0.87, and 0.85, respectively. Feridoni et al. [19] employed GMDH, GEP, and
RSM methods to predict the compressive strength of concrete containing recycled brick
aggregates. The R? values obtained for the GMDH, GEP, and RSM models were 0.84, 0.77, and
0.88, respectively, indicating the promising accuracy of these soft computing techniques. Hoseini
et al. [20] used soft computing methods to determine the self-healing properties of self-
compacting concrete. The results showed that the initial crack width was the most important
parameter affecting the self-healing properties. In addition to these studies, de-Prado-Gil et al.
(2022) applied several ANN-based models to predict the compressive strength of self-
compacting recycled aggregate concrete. Their resulis showed that the ANN models performed
well, with the Bayesian Regularization and Levenberg—Marquardt algorithms providing the
highest prediction accuracy. They also reported that cement content and water content were the

most influential parameters aifecting compressive strength.

Although numerous studies have examined cement mortars containing recycled CRT
glass and have reported their mechanical, environmental, and radiation-shielding performance,
these investigations remain almost entirely experimental and do not provide predictive models
for estimating compressive strength. In contrast, existing data-driven approaches in the literature
focus only on mortars or concretes incorporating conventional waste glass or recycled aggregates
and primarily rely on black-box techniques such as ANN or tree-based algorithms. These
models are not related to CRT materials and therefore cannot be used to predict the compressive

strength of mortars containing recycled CRT glass. Moreover, no research has applied



interpretable (white-box) soft-computing methods, such as GMDH or GEP, to model the
mechanical behavior of RCRT-containing mortars. This gap highlights the need for predictive
tools that not only achieve high accuracy but also provide explicit mathematical relationships
and enable parameter sensitivity assessment. Therefore, the present study aims to (i) develop
GMDH and GEP models for predicting the compressive strength of RCRT-modified mortars, (i)
compare their performance with respect to accuracy and interpretability, and (iii) conduct

sensitivity analysis to identify the most influential mixture parameters.

2. Database

The selection of input parameters in this study was based on the physical and chemical
mechanisms that affect the performance of cement mortars, as weli as on previous research on
compressive strength (Ling & Poon, 2011; Ling et al., 2012; Zhao & Poon, 2017; Choi et al.,
2016). The water-to-binder ratio, water and cenient contents, fly ash ratio, natural sand ratio,
recycled cathode ray tube glass ratio, and curing time are the main variables that govern the
hydration reactions, microstructure formation, porosity, and the evolution of compressive
strength. Therefore, the selection of these parameters as model inputs is fully consistent with the

mechanisms and prior research findings.

The water-to-binder ratio (w/b) is a fundamental factor in cementitious systems and directly
affects hydration, microstructure formation, and, ultimately, compressive strength development.
The amount of water and cement also influences the workability of the mixture, and the volume
of active paste, respectively, which govern the uniform distribution of constituents and,
consequently, the mechanical performance. Fly ash, as a pozzolanic material, reacts with
hydration products, increasing microstructural density, reducing porosity, and enhancing

durability and compressive strength. In this study, recycled cathode ray tube glass (RCRT) was



also used as an alternative fine aggregate; it has been widely reported in previous research to
influence both the mechanical and environmental performance of mortars. In addition, curing
time is a key parameter that affects the progression of hydration and strength gain, and its

significance has been extensively emphasized in the literature.

The statistical summary of the input and output data (Table 1) and the histograms (Figure
1) provide important descriptive information, including the mean, standard deviation (StD),
coefficient of variation (CoV), and range of variation for each parameter. The variables have
different levels of dispersion, which can be seen through their StD and CoV. As the target
variable, the compressive strength also exhibits a sufficiently wide variability with a CoV of
37.62%, which is suitable for developing predictive models. Notably, some parameters such as
Sand, RCRT, and curing time exhibit relatively high coetficients of variation (CoV), indicating
that the dataset covers a wide range of mixture proportions and curing durations. Such variability
is typical in studies involving recycled materials and non-standardized mix designs and reflects
the heterogeneous nature of tiie collected mixtures. To ensure the reliability and consistency of
the data, the Modified Z-score method with a threshold of 3.5 was applied to identify and remove
potential outliers. This procedure was performed on the input variables w/b, water, CC, fly ash,

Sand, RCRT, and CT to detect any anomalous values within the dataset.

After removing the outliers, all input variables were normalized using Z-score
normalization (Zhang et al., 2024; Aksu et al., 2019; Safieh et al., 2024; Raju et al., 2024) to
place the features on a comparable scale and to prevent parameters with high numerical

dispersion from dominating the model training process.

Table 1.
Statistical information related to input and output data.



Variable Total Count Mean StD Variance CoV Min Max
w/b 139 0.42842 0.04129 0.00170 9.64 0.35 0.45
Water (kg/m?) 139 268.32 9.13 83.42 3.40 250 273.6
Cement content (kg/m?) 139 497.01 85.89 7376.88 17.28 456 721
Fly ash (kg/m?) 139 134.63 47.08 2216.06 34.97 0 152
Sand (kg/m?) 139 597.3 553.3 306126.4 92.63 0 1520
RCRT (kg/m?) 139 938.0 631.5 398752.1 67.32 0 1734
Curing time (days) 139 30.29 33.26 1106.47 109.80 1 91
Compressive strength (MPa) 139 3391 12.76  162.75 37.62 7.73 59.36
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Figure 1. Histograms of each input and output variable along with their corresponding

3. Soft computing modeling

3.1. Group Method of Data Handling method

distribution curves.

The GMDH method is a white-box, equation-based soft computing algorithm that models

complex systems and identifies nonlinear relationships between variables (Ivakhnenko, 2007,

Farlow, 2020). GMDH is a multilayer, network-based modeling approach that predates modern

neural networks and is considered one of the earliest self-organizing learning algorithms. A key



advantage of GMDH is its ability to generate explicit and interpretable polynomial equations that
describe the relationships between input and output variables (Ivakhnenko & Ivakhnenko, 1995).
The GMDH process involves iteratively generating layers of candidate models, typically in the
form of second-order polynomial neurons constructed from pairs of input variables. In each
layer, the polynomial coefficients are estimated using the training subset, while model selection
is performed using the validation subset error. Specifically, all candidate neurons are ranked
according to their root-mean-square error on the validation data, and only the best-performing
neurons are retained for the next layer. This validation-based criterion helps maintain a balance
between model accuracy and structural complexity by automatically pruning weak nodes
(Farlow, 2020; Babin et al., 2025). The iterative process continues until only a single neuron
remains in the final layer, which represents the optimal mode! with the lowest validation error.
Thanks to this self-organizing structure and the use of a separate validation subset, the GMDH
algorithm effectively reduces overfitting and produces models with strong generalization

capability.

Similar observations about the effectiveness and generalization ability of intelligent soft-
computing models have also been reported in recent studies that employed Artificial Neural
Networks (ANN), Genetic Algorithms (GA), the Water Cycle Algorithm (WCA), and Fuzzy
Logic for concrete prediction tasks (Mahmoud et al., 2025; Dahish et al., 2025; Fathy et al.,

2025; Mahmoud et al., 2025; Zeyad et al., 2024).

A total of 139 laboratory samples was used to develop the predictive models. In accordance with
common practice in soft-computing—based modeling, 80% of the data were randomly selected

for training and the remaining 20% were used for testing to evaluate model performance



(Fereidouni et al., 2025; Hosseini et al., 2025; Ghazavi & Afrakoti, 2025; Akossou & Palm,

2013; Fallahi et al., 2015).

In this study, the GMDH model was developed to predict the compressive strength of RCRT-
modified mortar. The optimal structure of the model consisted of four layers with 20 neurons in
each layer. This architecture was selected through a trial-and-error procedure to achieve the
highest prediction accuracy. Table 2 presents descriptive statistics, including minimum,
maximum, and mean values in both the training and test sets, to better understand the statistical
properties of the input and output data. This information provides an initial understanding of the

diversity and range of variables used.

Table 2.
Descriptive statistics of variables used in the GMDH method
. Train (111 data) Test (28 data)
Variable _— -
Min Mean Max Min Mean Max
w/b 0.35 0.43 0.45 0.35 0.4214  0.45
Water (kg/m’) 250 268.65 273.6 250 266.82  273.6
Cement content 456 49263 721 456 51564 721
(kg/m”)
Inputs Fly ash (kg/m’) 0 137.2 152 0 123.89 152
Sand (kg/m®) 0 608.10 1520 0 576.35 1520
RCRT (kg/m®) 0 931.26 1734 0 936.25 1734
Curing time (days) 1 29.59 91 1 34.107 91
Output  ComPressivestrength ) o001y a5 54006 11752 3586  50.93

(MPa)

Figure 2 shows the final architecture of the developed GMDH model. As shown, the model
consists of four hidden layers, with a maximum of 20 nodes (neurons) generated in each layer.
However, only the nodes that achieved the best prediction performance (based on the minimum
validation error) were transferred to the subsequent layers. This automatic selection of nodes is

a key feature of the GMDH method that helps prevent overfitting.
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Figure 2. The evolved structure of the GMDH generalized neural network

Based on the optimal model structure presented in Figure 2, the selected nodes in each layer are
constructed using a nonlinear combination of two input variables in the form of quadratic
polynomials. The equations corresponding to the selected nodes in the different layers are
presented in Eq. 1. These equations show how the compressive strength of RCRT-modified

mortar is computed stepwise from the initial inputs and the outputs of the intermediate layers.



y; ==73.78+0.291x CC+1.139 x CT —0.0002 x CC* —0.0058 x CT* —0.0006 x CC x CT
Y, =65.45-75.049x w /b+0.233x CT —70.348 x w / b> —0.0058 x CT? +1.422x w /bx CT
y3 =—690.22 +6.051x water —0.887 x CT —0.0126 x water” —0.0059 x CT? +0.00646 x water x CT

y, =21.641+0.00102x RCRT +0.9605x CT —3.1x107° x RCRT* - 0.00688 x CT* ~1.3x10™> x RCRT x CT

Y, =-15.595+1.98x y, —0.0047 x y, +0.0054 x y3 +0.0349 x y; —0.0544 x y, X y,
Y, =—15.609+1.943x y; +0.0321x y, +0.00571x y3 +0.0342 x y5 —0.0537y, x y,
Y, =-17.599+2.131x y, —0.0171x y, —0.0047 x y;{ +0.0261x y; —0.0374 x y, X y,

Y, =—4.299-9.415x Y, +10.692 x Y5 +0.981x Y7 +0.704x Y =1.69x Y, x Y;
Y, =—6.303-10.521x Y; +11.938x Y; +0.778 x Y;* + 0.458 x Y5 —1.243x Y, x Y,

Compressive strength = —1.873-8.29x Y, +9.32x Y, +3.818x Y/ +3.65x Y. =7.469x Y, x Y,

3.2. Gene Expression Programming method

The GEP method is an evolutionary aigorithm from the family of soft computing, derived from
the principles of genetic evolution, designed to model complex and nonlinear relationships
between variables (Ferreira, 2001; Ghanizadeh et al., 2024; Ghazavi & Afrakoti, 2025). This
method combines the advantages of Genetic Algorithms (GA) and Genetic Programming (GP). It
uses a fixed-length chromosome representation of mathematical functions and operators and can
automatically generate explicit mathematical equations for output prediction (Ferreira, 2006;
Ferreira, 2009). In GEP, each chromosome contains genes that are translated into expression
trees (ETs), and then through natural selection, mutation, and recombination, optimized models
with minimal errors are produced (Faraz et al., 2023). These features make GEP a white-box,
equation-based method not only in terms of accuracy but also in terms of the interpretability of

its model structure. Its high flexibility, ability to identify hidden relationships, and capability to

(1a)

(1b)

(Ic)

(1d)



extract explicit mathematical functions have made GEP an efficient tool for engineering
applications (Alabduljabbar et al., 2023; Ghanizadeh et al., 2024). To better understand the
statistical characteristics of the input and output data used in the GEP method, Table 3 presents
descriptive statistics, including minimum, maximum, and mean values in both the training and

testing datasets.

Table 3.
Descriptive statistics of variables used in the GEP method
) Train (111 data) Test (28 data)
Variable - -
Min Mean Max Min Mean Max
w/b 0.35 0.4247 0.45 0.35 0.442 0.45
Water (kg/m’) 250 267.509  273.6 250 271.53  273.6
Cement content 456 503.927 721 456 469.57 721
(kg/m’)
Inputs Fly ash (kg/m’) 0 131.693 152 0 146.25 152
Sand (kg/m’) 0 550.729 1520 0 782.107 1520
RCRT (kg/m®) 0 978.171 1734 0 778.96 1734
Curing time (days) 1 29.324 91 1 34.142 91
Output ~ Compressivestrength 34 59.36 9.12 33576 52.16

(MPa)

In order to investigate the performance of the GEP method in predicting compressive strength,
three different models were developed with different parameter settings, the specifications of
which are presented in Table 4. These models used different mathematical base functions
(including trigonometric, exponential, logarithmic, and inverse functions), and also differed in
head size, number of genes, mutation rate, and gene combination rates. Moreover, three different
fitness functions including Relative Absolute Error (RAE), Root Mean Square Error (RMSE),
and Root Relative Squared Error (RRSE) were tested because each measures prediction error in a
distinct way, allowing the algorithm to determine which criterion provides the most stable and

accurate learning behavior for the variability present in the dataset. A comparison of the R?



values in the training and testing phases clearly shows that Model-1 achieved the highest

prediction accuracy among the three configurations. This model established a strong agreement

between the actual and predicted values , with R?=(0.734 for the training data and R?>=0.758 for

the testing data. These results indicate that Model-1 has greater accuracy and more stable

prediction performance than the other two models and can be considered the selected model for

further analyses.

Table 4.

Parameters used in the GEP model
Parameter Definition Model-1 Model-2 Model-3
P1 Fitness Function RAE RMSE RRSE
P2 Function set Ton X Sin, 4 - X,/ Exp, X5, +’3 %, /o v, X,

Cos, Atan Inv X

P3 Chromosomes 30 20 40
P4 Head size 8 6 5
P5 Number of genes 4 4 6
P6 Linking function Addition Addition Addition
P7 Mutation rate 0.0588 0.0856 0.0136
P8 Inversion rate 0.1 0.1 0.1
P9 One-point recombination rate 0.2 0.1 0.2
P10 Two-point recombination rate 0.2 0.1 0.3
P11 Gene recombination rate 0.3 0.5 0.2
P12 Gene transposition rate 0.1 0.1 0.1
P13 Constant per gene 10 10 10
P14 Training-R* 0.734 0.675 0.653
P15 Testing-R* 0.758 0.698 0.729

The final equation of the selected GEP model (Model-1) is as Eq. 2.



. 7.0152 3.66
Compressive strength = + +
Arctan(w /b) Arctan(w/b)

RCRT-1.121) | | )
| |*

[ cos(cos((ﬂy ashx w /b) x (—9.729))) x(w/bx CT)}

Arctan ((1.121-7.473) x (w / b x CT))+cos[

To better understand the mathematical structure of the model, Eq. 2 is also presented in the ETs
form in Figure 3, where the root represents the primary operator and the branches terminate in
the input functions and variables. This representation helps to better illustrate the nonlinear and

nested relationships between the parameters and the output.

Sub-ET 1 0 Sub-ET.2 0
|
olC oOlC




Sub-ET 4 °

Figure 3. ETs representation of the Eq.2 for predicting the compressive strength of RCRT-

modified mortar.

3.3. Interpretability and Practical Applicability of the Proposed Equations

Previous studies employing white-box and transparent (equation-based) models to predict the
behavior of complex engineering materials, particularly concrete, have commonly led to the

formulation of relatively extensive mathematical relationships. This outcome mainly reflects the



use of nested polynomial structures required to capture the inherent complexity of such
materials. In several studies, methods such as GMDH and GEP have been explicitly referred to
as white-box approaches due to their ability to provide explicit and extractable mathematical
expressions (Amar & Ghahfarokhi, 2020; MolaAbasi et al., 2021). Accordingly, the complexity
of the derived equations should be interpreted as a reflection of the inherent complexity of

concrete behavior rather than as a limitation of the modeling approach.

The resulting equations, despite involving multiple terms, remain practically usable due to their
explicit structure, which allows straightforward implementation in common computational tools
such as Microsoft Excel. In practical engineering applications, such formulations enable rapid
evaluation of multiple mix design scenarios with minimal computational effort. Consequently,
equation-based models provide an efficient analytical framework for strength prediction and
optimization tasks, particularly when repeated calculations are required, offering a practical

alternative to purely black-box approaches (Ashrafian et al., 2020; Pham, 2025).

4. Model Performance Evaluation

4.1. Performance Assessment and Comparative Modeling Analysis

To investigate the accuracy, efficiency, and generalizability of the developed models in
compressive strength prediction, the performance of two white-box computational methods,
including GMDH and GEP, was evaluated in comparison with classical regression models,
including linear regression (LR), nonlinear regression (NLR), and multiple linear regression
(MLR). This evaluation was carried out using statistical indices such as R?, MAE, RMSE, and
the scatter index (SI). Comparing these indices in the training and testing datasets provides a

clearer understanding of model accuracy, error dispersion, and generalizability.



65 (3a)

(3b)

(3¢)

MAE = L (3d)
N

Figures 4 to 7 graphically compare the prediction accuracy of the different models based on
statistical indices such as R2, MAE, RMSE, and SI. The results indicated that the GMDH model
performed best among all methods. In the test data, its R? value was 0.942, which was higher
than that of all other models, and it achieved the lowest RMSE and MAE values of 2.97 and
2.59, respectively. The GEP model also showed acceptable performance but with lower accuracy
and generalizability than GMDLH.. In contrast, the classical regression models, including LR,
NLR, and MLR, performed poorly, especially the simple linear model (LR), whose R? value
was reported to be lower than 0.72. This difference in performance demonstrates that classical
methods have limitations in modeling the nonlinear and complex relationships between input
parameters and compressive strength (Ahmad et al., 2021; Kontoni et al., 2022; Aslam et al.,
2020). In addition, the SI index showed that the GMDH model had the lowest SI in the test data
(0.993), indicating a high level of agreement between the model predictions and the actual
values. Although the GEP model, with SI = 0.843, performed relatively well, it still exhibited

lower accuracy than GMDH.



In contrast, the classical regression models, particularly the LR model with SI = 0.116, exhibited
considerably weaker predictive accuracy, further highlighting the superiority of white-box
methods under complex and nonlinear conditions. The superiority of the GEP and GMDH soft-
computing methods lies in their capability to identify and model complex nonlinear
relationships without requiring a specific functional form or statistical assumptions (Ahmad et
al., 2021; Kontoni et al., 2022; Elshaarawy et al., 2024). Unlike black-box techniques such as
neural networks, these methods are white-box and generate interpretable mathematical equations
or tree structures that improve scientific understanding of the under!ying behavior. In addition,
their high structural flexibility, capability to learn from experimental data, generalization to
unseen conditions, and robustness to noise provide further advantages over traditional models.
Overall, soft-computing methods, particularly for problems involving multivariate and nonlinear
relationships such as compressive stiength prediction, offer a powerful and effective approach

that delivers more accurate, stable, and reliable results than classical regression models.
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Figure 4. R? of different models including GEP, GMDH, LR, NLR and MLR on training and

testing data for predicting compressive strength.
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testing data for predicting compressive strength.
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Figure 7. SI of different models including GEP, GMDH, LR, NLR and MLR on training and

testing data for predicting compressive strength.



Figures 8 to 10 include a scatter plot of the predicted and actual data, the absolute error, and a

regression plot to compare the performance of the two soft-computing models, GEP and GMDH,

in predicting compressive strength.
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Figure 8. Comparison between actual and predicted compressive strength data with absolute

error for the GMDH model.
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error for the GEP model.
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Figures 8 and 9 show that the GMDH model reconstructed the compressive strength values with
higher accuracy. The predicted points closely matched the actual values, and the absolute error
remained low. In contrast, the GEP model showed greater fluctuations in the output and higher

error dispersion, indicating that it was less accurate than the GMDH model.

The regression plot (Figure 10) depicts the correlation between the actual and predicted values
for both models based on the entire dataset. The GMDH model, with R?=0.906 and R = 0.952,
established a strong relationship close to the ideal line between the actual and predicted data. In
contrast, the GEP model, with lower values (R?> = 0.638 and R = 0.799), performed worse in
reconstructing the actual trend of compressive strength. These resulis are consistent with the
statistical indicators presented in the previous section and confirin the superiority of the GMDH

model over GEP in terms of accuracy, stability, and generalizability.

To further evaluate the predictive performarice and error behavior of the developed models, a
residual analysis was performed. Figure 11 illustrates the distribution of residuals (Actual —

Predicted) for the GEP and GMDH models, respectively.
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Figure 11. Residual distributions for the models: (a) GEP model; (b) GMDH model.

The histogram and normal—fit curve for the GEP model show that its residuals are widely
scattered and deviate from a normal pattern, indicating higher variability and the presence of
larger prediction errors. This confirms that the GEP model is less stable and exhibits weaker
generalization capability. In contrast, the residual distribution of the GMDH model is more
compact and closely follows a near-normal bell-shaped curve centered around zero. This pattern
indicates that the prediction errors are smaller, more symmetrically distributed, and free from
systematic bias. These findings are consistent with the higher R? values and lower error statistics
produced by the GMDH model and further confirm its superior accuracy and robustness

compared with the GEP model.

4.2 Analysis of K-fold Cross-Validation

To more precisely assess the stability and generalizability of the two soft-computing models,
GMDH and GEP, a 5-fold cross-validation process was conducted. The results of this analysis

are presented in Figure 12 using a spider plot.

Figure 12 illustrates that the GMDH model exhibits a relatively homogeneous and stable
behavior in all folds. The R? values range from 0.82 to 0.93, indicating consistently high
predictive capability. Moreover, the RMSE values across folds range from 2.09 to 4.47 MPa. The
MAE index also shows the model's accurate and stable performance, with values of 3.45, 3.17,
3.57, 3.29, and 1.72 MPa, respectively. Furthermore, the SI for different folds ranges from 0.17
to 0.31. These patterns confirm that the GMDH model is robust to variations in data

partitioning and demonstrates consistent overall behavior.



In contrast, the GEP model showed less stable performance, with greater variability. The R?
values of this model ranged from 0.52 to 0.68 across folds, indicating inconsistent predictive
performance. Furthermore, the RMSE index showed much higher values, ranging from 6.28 to
10.47 MPa. The MAE (from 5.13 to 8.43 MPa) and SI (from 0.47 to 0.75) indices also
confirmed the higher sensitivity and weaker generalizability of the GEP model compared with

the GMDH model.

Overall, the K-fold cross-validation analysis results clearly demonstrated that the GMDH model
is more stable, accurate, and reliable across all indices and outperforms the GEP model in

predicting compressive strength.
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Figure 12. Five-fold cross-validation performance of the GMDH and GEP for four statistical

metrics (R?, RMSE, MAE, and SI).

4.3. Sensitivity analysis

To evaluate the relative influence of the input parameters on the predicted compressive strength,
a SHAP-based sensitivity analysis was performed. SHAP (SHapley Additive exPlanations)
provides a global, scale-independent interpretation of model behavior and quantifies how much

each input contributes to the final prediction. Unlike traditional perturbation approaches, SHAP



inherently normalizes the effects of variables with different units and magnitudes, ensuring an

unbiased comparison among parameters.

Figure 13 shows the SHAP feature contribution scores for the GMDH model. According to these
results, water content was identified as the most influential variable, contributing more than any
other parameter to the variation in compressive strength. This is consistent with the fundamental
role of water in controlling the water-to-binder environment, hydration kinetics, pore structure
development, and the formation of the C—S—H gel (Ling & Poon, 2011; Choi et al., 2016). This
finding is consistent with previous ML-based studies, where the water-to-binder (or water-to-
cement) ratio has been consistently reported as the dominant f{actor governing strength

development (Wan et al., 2021; Meng et al., 2025; Shuai et al., 2025).

Curing time (CT) was ranked as the second most influential parameter, highlighting its critical
role in strength gain through the progressive hydration process (Shanthi Vengadeshwari et al.,
2025; Ashraf et al., 2024). Cement content (CC) showed a moderate contribution, consistent with
prior data-driven and experimental studies that emphasize the secondary role of binder dosage in

recycled-aggregate systems (Ahmad et al., 2021; de Prado-Gil et al., 2022).

In contrast, RCRT content and the w/b ratio showed smaller effects on strength, which is
consistent with earlier studies reporting that CRT glass mainly affects mechanical behavior
through its particle shape and weak interfacial bonding rather than chemical reactivity (Zhao &

Poon, 2017; Ling & Poon, 2013).
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Figure 13. Global SHAP-based feature contribution scores for input variables affecting

compressive strength.

To gain further insight into the directional impact of each variable, SHAP dependence plots were
generated (Figure 14). These plots illustrate how changes in individual input parameters affect
their corresponding SHAP values. For example, an increase in water content generally produced
negative SHAP values, indicating a reduction in compressive strength due to increased porosity
and dilution effects (Ling & Poon, 2011; Wan et al., 2021; Meng et al., 2025). Conversely, longer
curing times resulted in positive SHAP values, reflecting the expected improvement in strength
with extended hydration (Choi et al., 2016; Shanthi Vengadeshwari et al., 2025). The dependence
plots for CC and RCRT showed more localized and nonlinear behaviors, highlighting their
secondary but meaningful contributions to strength development (Zhao & Poon, 2017; Ling &

Poon, 2013; Ashraf et al., 2024).
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Figure 14. SHAP dependence plots for input variables showing parameter-wise influence

patterns on compressive strength.

Overall, the SHAP-based interpretation confirms that water content and curing time dominate the
mechanical response of RCRT-modified mortars, while CC, RCRT, and w/b exert more limited
but still measurable effects. The combined use of feature contribution scores and dependence
plots provides a comprehensive and interpretable assessment of variable importance, ensuring
that the sensitivity evaluation is independent of the physical units and scales of the input

parameters.

5. Conclusion



In this study, two advanced soft-computing methods, GMDH and GEP, were used to develop
accurate and interpretable models for predicting the compressive strength of RCRT-modified
mortar. The modeling was based on a dataset of 139 laboratory specimens with key mix-design
parameters, including w/b, water content, CC, fly ash, sand, RCRT, and CT. The performance of
these two models was evaluated against three classical regression methods (LR, NLR, and

MLR), and a sensitivity analysis was performed on the selected model.

The results showed that the GMDH model performed much more accurately than the other
models, with R> = 0.942 in the testing phase and low RMSE and MAE values (2.97 and 2.59,
respectively). The network-based structure and automatic node-selection algorithm in GMDH
enabled the final model to avoid excessive complexity and achicve high accuracy. In contrast, the
GEP model, while providing explicit equations and analytic tree-based structures, also showed
acceptable performance but was still ranked lower than GMDH in terms of prediction accuracy.
Classical regression models, especially the LR model, failed to establish a strong correlation with
actual data and performed poorly when faced with nonlinear relationships between input
parameters and compressive strength. This highlights the importance of using data-driven and
flexible models in analyzing the complex behavior of engineering materials. Due to their white-
box nature, GMDH and GEP methods, in addition to accurate prediction, also allow for
analyzing relationships between variables and identifying key factors affecting RCRT-modified

mortar behavior. This capability is generally not available in many black-box methods.

The sensitivity analysis results showed that water content had the most significant impact on the
compressive strength of RCRT-modified mortar, such that even slight variations in this

parameter led to notable changes in the model output. Other parameters, such as CC and CT,



also played an important role, while parameters such as sand and RCRT had a comparatively

smaller influence on the model output.

This study demonstrated that integrating recycled materials such as RCRT with soft-computing
techniques like GMDH and GEP provides an effective approach for developing sustainable and
high-performance cementitious mortars. These models were able to capture and predict the
complex and nonlinear relationships governing compressive strength with high accuracy, with
the GMDH model outperforming GEP due to its simpler structure and better interpretability.
Sensitivity analysis also showed that variables such as water, CC, and CT significantly
influence strength. In contrast, the results showed that RCRT has a negative influence on
compressive strength; however, within the low-to-moderate replacement levels represented in
this dataset, the magnitude of this effect is relatively small and remains secondary compared with
the dominant parameters such as water content, curing time, and cement dosage. Based on these
observations, RCRT can be incorporated in controlled amounts as an environmentally beneficial
fine-aggregate component without causing a considerable reduction in strength. This highlights

the potential of RCRT as a sustainable material option in mortar mix design.

In addition, future research may incorporate more advanced machine learning techniques such as
Random Forest, XGBoost, or neural network models to further expand the comparative analysis

and potentially improve predictive performance.
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