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Abstract 

The growing volume of industrial and electronic waste has intensified the need for sustainable 

material management strategies. Among these waste streams, cathode-ray-tube (CRT) glass is of 

particular concern due to its high density and lead-bearing composition, which typically contains 

about 20–25 wt.% lead oxide. Using recycled CRT glass (RCRT) as a fine aggregate in 

cementitious mixtures offers a practical means of reducing landfill disposal while enhancing 

mortar performance. However, the mechanical behavior of RCRT-containing mortars has not 

been sufficiently modeled, thereby constraining the optimized design of such sustainable 

mixtures. In this study, two white-box, soft-computing techniques, the Group Method of Data 

Handling (GMDH) and Gene Expression Programming (GEP), were developed to predict the 

compressive strength of mortars incorporating RCRT. The database consisted of 139 laboratory 

specimens, and the machine-learning models were trained using the following input variables: 

water-to-binder ratio (w/b), water content, cement content (CC), fly ash, sand content, RCRT 

content, and curing time (CT). The GMDH model demonstrated superior predictive performance, 

achieving an R² of 0.942 with RMSE and MAE values of 2.97 and 2.59, respectively. In contrast, 

the GEP model produced higher error levels (RMSE = 6.94 and MAE = 5.28). These findings 

indicate that transparent, data-driven modeling can capture the nonlinear interactions governing 
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strength development in RCRT-modified mortars and provides a reliable basis for designing 

sustainable, dense, and mechanically efficient mixtures suitable for both conventional and 

radiation-shielding applications. 

Keywords: Recycled cathode ray tube; Cement mortar; Compressive strength; Soft computing; Group 

Method of Data Handling; Gene Expression Programming. 

1. Introduction 

The development of the electronics industry has led to the production of a large volume of 

cathode ray tube glass (CRT) waste. The high concentration of heavy metals such as lead in CRT 

has made its proper disposal a significant environmental challenge. The primary environmental 

concern associated with CRT waste is lead leaching, as the high lead content poses the most 

serious risk of contaminating soil and groundwater. Extensive studies conducted using the 

Toxicity Characteristic Leaching Procedure (TCLP) have shown that CRT waste can result in a 

significant accumulation of hazardous substances. Therefore, the improper disposal of CRT 

materials can cause serious environmental issues [1].  

Researchers have explored approaches to minimize these risks, and several studies have 

confirmed that incorporating recycled CRT (RCRT) into alkaline cementitious environments can 

substantially reduce the leaching of hazardous ions due to the chemical stabilization offered by 

hydration products [2–3]. The alkaline conditions provided by cement hydration promote 

chemical binding of heavy metals, and previous research has demonstrated that CRT glass 

becomes more environmentally stable when incorporated into mortar systems. Zhao and Poon 

(2017) showed that nitric-acid-treated funnel glass (TFG) can produce mortars with significantly 

lower drying shrinkage, reduced ASR expansion, and substantially reduced lead leaching, with 
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all values remaining within regulatory limits. Similarly, Ling and Poon (2011, 2012) reported 

that processing and particle-size refinement of CRT glass affect shrinkage, fresh properties, and 

the extent of heavy-metal leaching, confirming the environmental viability of RCRT in alkaline 

matrices. 

Various laboratory studies have examined the use of RCRT as a fine aggregate in mortars, 

particularly in X-ray and radiation-shielding applications. Gao et al. evaluated the behavior of 

Portland cement and geopolymer mortars incorporating RCRT. Their findings showed that 

adding RCRT to Portland cement mortars led to a considerable reduction in compressive 

strength, reaching about 50% in some mixtures, primarily due to significant shrinkage. In 

contrast, the minimal shrinkage observed in geopolymer mortars resulted in only a negligible 

strength reduction, while heavy-metal leaching and shielding performance remained acceptable, 

thereby highlighting the potential of geopolymer binders for RCRT utilization. Ling and Poon 

[6] examined the influence of RCRT particle size on both environmental and mechanical 

characteristics of cement mortar. They reported that the smooth, non-porous surface of RCRT 

weakened the bond between glass particles and cement paste, resulting in reductions in 

compressive strength of 10–30%, depending on particle size. At the same time, they observed 

that the alkaline cement matrix significantly reduced heavy-metal leaching, confirming the 

environmental viability of RCRT. In another study, Ling and Poon [7] evaluated mortars with 

25%, 50%, 75%, and 100% sand-to-RCRT replacement. Their results showed that increasing 

RCRT content improved workability, reflected in the increased of flow spread from about 120 

mm to nearly 190 mm, and simultaneously decreased flexural and compressive strengths due to 

weak particle–paste bonding. 
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Previous studies have indicated that the high density of recycled CRT glass may enhance X-ray 

attenuation in cementitious mortars, suggesting potential radiation-related applications 

(Abouelnour et al., 2025; Mahmoud et al., 2025; Fattouh et al., 2025). Choi et al. [5] and Ling et 

al. [8] examined the use of recycled CRT glass as a fine aggregate in cementitious mortars and 

reported that increasing RCRT content can enhance radiation-shielding performance. However, 

these studies also indicated that such improvements are often accompanied by reductions in 

mechanical properties, primarily due to weak bonding at the paste–glass interface. These studies 

provide useful background on the multifunctional potential of RCRT-containing mortars; 

however, the present work is restricted to mechanical performance, with particular emphasis on 

compressive strength prediction.  

Although previous studies have provided valuable insights into the mechanical, 

environmental, and shielding performance of RCRT-modified mortars, they also highlight 

important limitations. Most of the available research has mainly focused on experimental results 

or on studying individual mixture variables, while predictive modeling has received far less 

attention. At the same time, one of the major challenges in civil engineering, particularly for 

concretes and mortars incorporating recycled materials, is the reliable prediction of mechanical 

properties [9-13]. Performing laboratory tests is a costly method to achieve a suitable mixing 

design. For this reason, researchers have increasingly turned to soft-computing and data-driven 

methods to estimate the mechanical behavior of cementitious materials containing recycled 

aggregates (de-Prado-Gil et al., 2024; Ghazavi et al., 2024; Jagadesh et al., 2023; Ghazavi et al., 

2025; de-Prado-Gil et al., 2022). These developments highlight the need for accurate and 

generalizable predictive tools, especially when multiple mixture parameters simultaneously 

interact and influence mechanical performance simultaneously [14-18].  

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



 

Ahmad et al. [18] applied linear regression models (LRM), nonlinear regression models 

(NLR), and multilinear regression models (MLR) to predict the compressive strength of mortar 

containing RCRT. The regression coefficient values of the LRM, NLR, and MLR methods were 

reported as 0.84, 0.87, and 0.85, respectively. Feridoni et al. [19] employed GMDH, GEP, and 

RSM methods to predict the compressive strength of concrete containing recycled brick 

aggregates. The R² values obtained for the GMDH, GEP, and RSM models were 0.84, 0.77, and 

0.88, respectively, indicating the promising accuracy of these soft computing techniques. Hoseini 

et al. [20] used soft computing methods to determine the self-healing properties of self-

compacting concrete. The results showed that the initial crack width was the most important 

parameter affecting the self-healing properties. In addition to these studies, de-Prado-Gil et al. 

(2022) applied several ANN-based models to predict the compressive strength of self-

compacting recycled aggregate concrete. Their results showed that the ANN models performed 

well, with the Bayesian Regularization and Levenberg–Marquardt algorithms providing the 

highest prediction accuracy. They also reported that cement content and water content were the 

most influential parameters affecting compressive strength.  

Although numerous studies have examined cement mortars containing recycled CRT 

glass and have reported their mechanical, environmental, and radiation-shielding performance, 

these investigations remain almost entirely experimental and do not provide predictive models 

for estimating compressive strength. In contrast, existing data-driven approaches in the literature 

focus only on mortars or concretes incorporating conventional waste glass or recycled aggregates 

and primarily rely on black-box techniques such as ANN or tree-based algorithms. These 

models are not related to CRT materials and therefore cannot be used to predict the compressive 

strength of mortars containing recycled CRT glass. Moreover, no research has applied 
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interpretable (white-box) soft-computing methods, such as GMDH or GEP, to model the 

mechanical behavior of RCRT-containing mortars. This gap highlights the need for predictive 

tools that not only achieve high accuracy but also provide explicit mathematical relationships 

and enable parameter sensitivity assessment. Therefore, the present study aims to (i) develop 

GMDH and GEP models for predicting the compressive strength of RCRT-modified mortars, (ii) 

compare their performance with respect to accuracy and interpretability, and (iii) conduct 

sensitivity analysis to identify the most influential mixture parameters. 

2. Database 

The selection of input parameters in this study was based on the physical and chemical 

mechanisms that affect the performance of cement mortars, as well as on previous research on 

compressive strength (Ling & Poon, 2011; Ling et al., 2012; Zhao & Poon, 2017; Choi et al., 

2016). The water-to-binder ratio, water and cement contents, fly ash ratio, natural sand ratio, 

recycled cathode ray tube glass ratio, and curing time are the main variables that govern the 

hydration reactions, microstructure formation, porosity, and the evolution of compressive 

strength. Therefore, the selection of these parameters as model inputs is fully consistent with the 

mechanisms and prior research findings. 

The water-to-binder ratio (w/b) is a fundamental factor in cementitious systems and directly 

affects hydration, microstructure formation, and, ultimately, compressive strength development. 

The amount of water and cement also influences the workability of the mixture, and the volume 

of active paste, respectively, which govern the uniform distribution of constituents and, 

consequently, the mechanical performance. Fly ash, as a pozzolanic material, reacts with 

hydration products, increasing microstructural density, reducing porosity, and enhancing 

durability and compressive strength. In this study, recycled cathode ray tube glass (RCRT) was 
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also used as an alternative fine aggregate; it has been widely reported in previous research to 

influence both the mechanical and environmental performance of mortars. In addition, curing 

time is a key parameter that affects the progression of hydration and strength gain, and its 

significance has been extensively emphasized in the literature. 

The statistical summary of the input and output data (Table 1) and the histograms (Figure 

1) provide important descriptive information, including the mean, standard deviation (StD), 

coefficient of variation (CoV), and range of variation for each parameter. The variables have 

different levels of dispersion, which can be seen through their StD and CoV. As the target 

variable, the compressive strength also exhibits a sufficiently wide variability with a CoV of 

37.62%, which is suitable for developing predictive models. Notably, some parameters such as 

Sand, RCRT, and curing time exhibit relatively high coefficients of variation (CoV), indicating 

that the dataset covers a wide range of mixture proportions and curing durations. Such variability 

is typical in studies involving recycled materials and non-standardized mix designs and reflects 

the heterogeneous nature of the collected mixtures. To ensure the reliability and consistency of 

the data, the Modified Z-score method with a threshold of 3.5 was applied to identify and remove 

potential outliers. This procedure was performed on the input variables w/b, water, CC, fly ash, 

Sand, RCRT, and CT to detect any anomalous values within the dataset. 

After removing the outliers, all input variables were normalized using Z-score 

normalization (Zhang et al., 2024; Aksu et al., 2019; Safieh et al., 2024; Raju et al., 2024) to 

place the features on a comparable scale and to prevent parameters with high numerical 

dispersion from dominating the model training process. 

Table 1.  
Statistical information related to input and output data. 
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Variable Total Count Mean StD Variance CoV Min Max 

w/b 139 0.42842 0.04129 0.00170 9.64 0.35 0.45 

Water (kg/m³) 139 268.32 9.13 83.42 3.40 250 273.6 

Cement content (kg/m³) 139 497.01 85.89 7376.88 17.28 456 721 

Fly ash (kg/m³) 139 134.63 47.08 2216.06 34.97 0 152 

Sand (kg/m³) 139 597.3 553.3 306126.4 92.63 0 1520 

RCRT (kg/m³) 139 938.0 631.5 398752.1 67.32 0 1734 

Curing time (days) 139 30.29 33.26 1106.47 109.80 1 91 

Compressive strength (MPa) 139 33.91 12.76 162.75 37.62 7.73 59.36 
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Figure 1. Histograms of each input and output variable along with their corresponding 

distribution curves. 

3. Soft computing modeling 

3.1. Group Method of Data Handling method 

The GMDH method is a white-box, equation-based soft computing algorithm that models 

complex systems and identifies nonlinear relationships between variables (Ivakhnenko, 2007; 

Farlow, 2020). GMDH is a multilayer, network-based modeling approach that predates modern 

neural networks and is considered one of the earliest self-organizing learning algorithms. A key 
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advantage of GMDH is its ability to generate explicit and interpretable polynomial equations that 

describe the relationships between input and output variables (Ivakhnenko & Ivakhnenko, 1995). 

The GMDH process involves iteratively generating layers of candidate models, typically in the 

form of second-order polynomial neurons constructed from pairs of input variables. In each 

layer, the polynomial coefficients are estimated using the training subset, while model selection 

is performed using the validation subset error. Specifically, all candidate neurons are ranked 

according to their root-mean-square error on the validation data, and only the best-performing 

neurons are retained for the next layer. This validation-based criterion helps maintain a balance 

between model accuracy and structural complexity by automatically pruning weak nodes 

(Farlow, 2020; Babin et al., 2025). The iterative process continues until only a single neuron 

remains in the final layer, which represents the optimal model with the lowest validation error. 

Thanks to this self-organizing structure and the use of a separate validation subset, the GMDH 

algorithm effectively reduces overfitting and produces models with strong generalization 

capability. 

Similar observations about the effectiveness and generalization ability of intelligent soft-

computing models have also been reported in recent studies that employed Artificial Neural 

Networks (ANN), Genetic Algorithms (GA), the Water Cycle Algorithm (WCA), and Fuzzy 

Logic for concrete prediction tasks (Mahmoud et al., 2025; Dahish et al., 2025; Fathy et al., 

2025; Mahmoud et al., 2025; Zeyad et al., 2024). 

A total of 139 laboratory samples was used to develop the predictive models. In accordance with 

common practice in soft-computing–based modeling, 80% of the data were randomly selected 

for training and the remaining 20% were used for testing to evaluate model performance 
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(Fereidouni et al., 2025; Hosseini et al., 2025; Ghazavi & Afrakoti, 2025; Akossou & Palm, 

2013; Fallahi et al., 2015). 

In this study, the GMDH model was developed to predict the compressive strength of RCRT-

modified mortar. The optimal structure of the model consisted of four layers with 20 neurons in 

each layer. This architecture was selected through a trial-and-error procedure to achieve the 

highest prediction accuracy. Table 2 presents descriptive statistics, including minimum, 

maximum, and mean values in both the training and test sets, to better understand the statistical 

properties of the input and output data. This information provides an initial understanding of the 

diversity and range of variables used. 

Table 2.  
Descriptive statistics of variables used in the GMDH method 

Test (28 data)  Train (111 data) 
 Variable 

Max Mean Min  Max Mean Min 

0.45 0.4214 0.35  0.45 0.43 0.35 w/b 

Inputs 

273.6 266.82 250  273.6 268.65 250 Water (kg/m3) 

721 515.64 456  721 492.63 456 
Cement content 
(kg/m3) 

152 123.89 0  152 137.2 0 Fly ash (kg/m3) 
1520 576.35 0  1520 608.10 0 Sand (kg/m3) 
1734 936.25 0  1734 931.26 0 RCRT (kg/m3) 

91 34.107 1  91 29.59 1 Curing time (days) 

50.93 35.86 11.752  54.206 33.35 11.752 
Compressive strength 
(MPa) 

Output 

Figure 2 shows the final architecture of the developed GMDH model. As shown, the model 

consists of four hidden layers, with a maximum of 20 nodes (neurons) generated in each layer. 

However, only the nodes that achieved the best prediction performance (based on the minimum 

validation error) were transferred to the subsequent layers. This automatic selection of nodes is 

a key feature of the GMDH method that helps prevent overfitting. 
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Figure 2. The evolved structure of the GMDH generalized neural network 

Based on the optimal model structure presented in Figure 2, the selected nodes in each layer are 

constructed using a nonlinear combination of two input variables in the form of quadratic 

polynomials. The equations corresponding to the selected nodes in the different layers are 

presented in Eq. 1. These equations show how the compressive strength of RCRT-modified 

mortar is computed stepwise from the initial inputs and the outputs of the intermediate layers. 
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2 2
1 2 1 2 1 2Compressive strength 1.873 8.29 Y 9.32 Y 3.818 Y 3.65 Y 7.469 Y Y            

2 2
1 2 3 2 3 2 3

2 2
2 1 3 1 3 1 3

Y 4.299 9.415 Y 10.692 Y 0.981 Y 0.704 Y 1.69 Y Y

Y 6.303 10.521 Y 11.938 Y 0.778 Y 0.458 Y 1.243 Y Y

            

            

2 2
1

2 2
2

2 2
3

y 73.78 0.291 CC 1.139 CT 0.0002 CC 0.0058 CT 0.0006 CC CT

y 65.45 75.049 w / b 0.233 CT 70.348 w / b 0.0058 CT 1.422 w / b CT

y 690.22 6.051 water 0.887 CT 0.0126 water 0.0059 CT 0.00646 water CT

y

            

           

            
6 2 2 5

4 21.641 0.00102 RCRT 0.9605 CT 3.1 10 RCRT 0.00688 CT 1.3 10 RCRT CT              

2 2
1 2 4 2 4 2 4

2 2
2 3 4 3 4 3 4

2 2
3 1 4 1 4 1 4

Y 15.595 1.98 y 0.0047 y 0.0054 y 0.0349 y 0.0544 y y

Y 15.609 1.943 y 0.0321 y 0.00571 y 0.0342 y 0.0537y y

Y 17.599 2.131 y 0.0171 y 0.0047 y 0.0261 y 0.0374 y y

            

           

            

(1a) 

 

(1b) 

 

(1c) 
 

(1d)  

 

3.2. Gene Expression Programming method 

The GEP method is an evolutionary algorithm from the family of soft computing, derived from 

the principles of genetic evolution, designed to model complex and nonlinear relationships 

between variables (Ferreira, 2001; Ghanizadeh et al., 2024; Ghazavi & Afrakoti, 2025). This 

method combines the advantages of Genetic Algorithms (GA) and Genetic Programming (GP). It 

uses a fixed-length chromosome representation of mathematical functions and operators and can 

automatically generate explicit mathematical equations for output prediction (Ferreira, 2006; 

Ferreira, 2009). In GEP, each chromosome contains genes that are translated into expression 

trees (ETs), and then through natural selection, mutation, and recombination, optimized models 

with minimal errors are produced (Faraz et al., 2023). These features make GEP a white-box, 

equation-based method not only in terms of accuracy but also in terms of the interpretability of 

its model structure. Its high flexibility, ability to identify hidden relationships, and capability to 
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extract explicit mathematical functions have made GEP an efficient tool for engineering 

applications (Alabduljabbar et al., 2023; Ghanizadeh et al., 2024). To better understand the 

statistical characteristics of the input and output data used in the GEP method, Table 3 presents 

descriptive statistics, including minimum, maximum, and mean values in both the training and 

testing datasets. 

Table 3.  
Descriptive statistics of variables used in the GEP method 

Test (28 data)  Train (111 data) 
 Variable 

Max Mean Min  Max Mean Min 

0.45 0.442 0.35  0.45 0.4247 0.35 w/b 

Inputs 

273.6 271.53 250  273.6 267.509 250 Water (kg/m3) 

721 469.57 456  721 503.927 456 
Cement content 
(kg/m3) 

152 146.25 0  152 131.693 0 Fly ash (kg/m3) 
1520 782.107 0  1520 550.729 0 Sand (kg/m3) 
1734 778.96 0  1734 978.171 0 RCRT (kg/m3) 

91 34.142 1  91 29.324 1 Curing time (days) 

52.16 33.576 9.12  59.36 34 7.73 
Compressive strength 
(MPa) 

Output 

In order to investigate the performance of the GEP method in predicting compressive strength, 

three different models were developed with different parameter settings, the specifications of 

which are presented in Table 4. These models used different mathematical base functions 

(including trigonometric, exponential, logarithmic, and inverse functions), and also differed in 

head size, number of genes, mutation rate, and gene combination rates. Moreover, three different 

fitness functions including Relative Absolute Error (RAE), Root Mean Square Error (RMSE), 

and Root Relative Squared Error (RRSE) were tested because each measures prediction error in a 

distinct way, allowing the algorithm to determine which criterion provides the most stable and 

accurate learning behavior for the variability present in the dataset. A comparison of the R² 
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values in the training and testing phases clearly shows that Model-1 achieved the highest 

prediction accuracy among the three configurations. This model established a strong agreement 

between the actual and predicted values , with R²=0.734 for the training data and R²=0.758 for 

the testing data. These results indicate that Model-1 has greater accuracy and more stable 

prediction performance than the other two models and can be considered the selected model for 

further analyses.  

Table 4.  
Parameters used in the GEP model 

Model-3 Model-2 Model-1 Definition Parameter 

RRSE RMSE RAE Fitness Function P1 

+, -, ×, /, Inv, X2, 
X3  

+, -, ×, /, Exp, X2, 
Inv 

+, -, ×, /, Sin, 
Cos, Atan 

Function set P2 

40 20 30 Chromosomes P3 

5 6 8 Head size P4 

6 4 4 Number of genes P5 

Addition Addition Addition Linking function P6 

0.0136 0.0856 0.0588 Mutation rate P7 

0.1 0.1 0.1 Inversion rate P8 

0.2 0.1 0.2 One-point recombination rate P9 

0.3 0.1 0.2 Two-point recombination rate P10 

0.2 0.5 0.3 Gene recombination rate P11 

0.1 0.1 0.1 Gene transposition rate P12 

10 10 10 Constant per gene P13 

0.653 0.675 0.734 Training-R2 P14 

0.729 0.698 0.758 Testing-R2 P15 

The final equation of the selected GEP model (Model-1) is as Eq. 2. 
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   

    

7.0152 3.66
Compressive strength

Arc tan w / b Arc tan w / b

RCRT 1.121
                           

 

...

          Arct .an 1.121 7.473 w / b CT cos
CC

                       

.

 

.

                 
              

                    cos cos fly ash w / b 9.729 w / b CT       

(2)  

 

To better understand the mathematical structure of the model, Eq. 2 is also presented in the ETs 

form in Figure 3, where the root represents the primary operator and the branches terminate in 

the input functions and variables. This representation helps to better illustrate the nonlinear and 

nested relationships between the parameters and the output. 
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Figure 3. ETs representation of the Eq.2 for predicting the compressive strength of RCRT-

modified mortar. 

3.3. Interpretability and Practical Applicability of the Proposed Equations  

Previous studies employing white-box and transparent (equation-based) models to predict the 

behavior of complex engineering materials, particularly concrete, have commonly led to the 

formulation of relatively extensive mathematical relationships. This outcome mainly reflects the 
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use of nested polynomial structures required to capture the inherent complexity of such 

materials. In several studies, methods such as GMDH and GEP have been explicitly referred to 

as white-box approaches due to their ability to provide explicit and extractable mathematical 

expressions (Amar & Ghahfarokhi, 2020; MolaAbasi et al., 2021). Accordingly, the complexity 

of the derived equations should be interpreted as a reflection of the inherent complexity of 

concrete behavior rather than as a limitation of the modeling approach. 

The resulting equations, despite involving multiple terms, remain practically usable due to their 

explicit structure, which allows straightforward implementation in common computational tools 

such as Microsoft Excel. In practical engineering applications, such formulations enable rapid 

evaluation of multiple mix design scenarios with minimal computational effort. Consequently, 

equation-based models provide an efficient analytical framework for strength prediction and 

optimization tasks, particularly when repeated calculations are required, offering a practical 

alternative to purely black-box approaches (Ashrafian et al., 2020; Pham, 2025). 

4. Model Performance Evaluation 

4.1. Performance Assessment and Comparative Modeling Analysis 

To investigate the accuracy, efficiency, and generalizability of the developed models in 

compressive strength prediction, the performance of two white-box computational methods, 

including GMDH and GEP, was evaluated in comparison with classical regression models, 

including linear regression (LR), nonlinear regression (NLR), and multiple linear regression 

(MLR). This evaluation was carried out using statistical indices such as R², MAE, RMSE, and 

the scatter index (SI). Comparing these indices in the training and testing datasets provides a 

clearer understanding of model accuracy, error dispersion, and generalizability. 
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Figures 4 to 7 graphically compare the prediction accuracy of the different models based on 

statistical indices such as R², MAE, RMSE, and SI. The results indicated that the GMDH model 

performed best among all methods. In the test data, its R² value was 0.942, which was higher 

than that of all other models, and it achieved the lowest RMSE and MAE values of 2.97 and 

2.59, respectively. The GEP model also showed acceptable performance but with lower accuracy 

and generalizability than GMDH. In contrast, the classical regression models, including LR, 

NLR, and MLR, performed poorly, especially the simple linear model (LR), whose R² value 

was reported to be lower than 0.72. This difference in performance demonstrates that classical 

methods have limitations in modeling the nonlinear and complex relationships between input 

parameters and compressive strength (Ahmad et al., 2021; Kontoni et al., 2022; Aslam et al., 

2020). In addition, the SI index showed that the GMDH model had the lowest SI in the test data 

(0.993), indicating a high level of agreement between the model predictions and the actual 

values. Although the GEP model, with SI = 0.843, performed relatively well, it still exhibited 

lower accuracy than GMDH. 
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In contrast, the classical regression models, particularly the LR model with SI = 0.116, exhibited 

considerably weaker predictive accuracy, further highlighting the superiority of white-box 

methods under complex and nonlinear conditions. The superiority of the GEP and GMDH soft-

computing methods lies in their capability to identify and model complex nonlinear 

relationships without requiring a specific functional form or statistical assumptions (Ahmad et 

al., 2021; Kontoni et al., 2022; Elshaarawy et al., 2024). Unlike black-box techniques such as 

neural networks, these methods are white-box and generate interpretable mathematical equations 

or tree structures that improve scientific understanding of the underlying behavior. In addition, 

their high structural flexibility, capability to learn from experimental data, generalization to 

unseen conditions, and robustness to noise provide further advantages over traditional models. 

Overall, soft-computing methods, particularly for problems involving multivariate and nonlinear 

relationships such as compressive strength prediction, offer a powerful and effective approach 

that delivers more accurate, stable, and reliable results than classical regression models. 
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Figure 4. R² of different models including GEP, GMDH, LR, NLR and MLR on training and 

testing data for predicting compressive strength. 

 

Figure 5. MAE of different models including GEP, GMDH, LR, NLR and MLR on training and 

testing data for predicting compressive strength. 
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Figure 6. RMSE of different models including GEP, GMDH, LR, NLR and MLR on training and 

testing data for predicting compressive strength. 

 

Figure 7. SI of different models including GEP, GMDH, LR, NLR and MLR on training and 

testing data for predicting compressive strength. 
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Figures 8 to 10 include a scatter plot of the predicted and actual data, the absolute error, and a 

regression plot to compare the performance of the two soft-computing models, GEP and GMDH, 

in predicting compressive strength. 

 

 

Figure 8. Comparison between actual and predicted compressive strength data with absolute 

error for the GMDH model. 
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Figure 9. Comparison between actual and predicted compressive strength data with absolute 

error for the GEP model. 

 

Fig 10. Comparison between actual and predicted compressive strength values using GEP and 

GMDH models. 
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Figures 8 and 9 show that the GMDH model reconstructed the compressive strength values with 

higher accuracy. The predicted points closely matched the actual values, and the absolute error 

remained low. In contrast, the GEP model showed greater fluctuations in the output and higher 

error dispersion, indicating that it was less accurate than the GMDH model. 

The regression plot (Figure 10) depicts the correlation between the actual and predicted values 

for both models based on the entire dataset. The GMDH model, with R² = 0.906 and R = 0.952, 

established a strong relationship close to the ideal line between the actual and predicted data. In 

contrast, the GEP model, with lower values (R² = 0.638 and R = 0.799), performed worse in 

reconstructing the actual trend of compressive strength. These results are consistent with the 

statistical indicators presented in the previous section and confirm the superiority of the GMDH 

model over GEP in terms of accuracy, stability, and generalizability. 

To further evaluate the predictive performance and error behavior of the developed models, a 

residual analysis was performed. Figure 11 illustrates the distribution of residuals (Actual – 

Predicted) for the GEP and GMDH models, respectively. 

  

(a) (b) 
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Figure 11. Residual distributions for the models: (a) GEP model; (b) GMDH model. 

The histogram and normal–fit curve for the GEP model show that its residuals are widely 

scattered and deviate from a normal pattern, indicating higher variability and the presence of 

larger prediction errors. This confirms that the GEP model is less stable and exhibits weaker 

generalization capability. In contrast, the residual distribution of the GMDH model is more 

compact and closely follows a near-normal bell-shaped curve centered around zero. This pattern 

indicates that the prediction errors are smaller, more symmetrically distributed, and free from 

systematic bias. These findings are consistent with the higher R² values and lower error statistics 

produced by the GMDH model and further confirm its superior accuracy and robustness 

compared with the GEP model. 

4.2 Analysis of K-fold Cross-Validation 

To more precisely assess the stability and generalizability of the two soft-computing models, 

GMDH and GEP, a 5-fold cross-validation process was conducted. The results of this analysis 

are presented in Figure 12 using a spider plot. 

Figure 12 illustrates that the GMDH model exhibits a relatively homogeneous and stable 

behavior in all folds. The R² values range from 0.82 to 0.93, indicating consistently high 

predictive capability. Moreover, the RMSE values across folds range from 2.09 to 4.47 MPa. The 

MAE index also shows the model's accurate and stable performance, with values of 3.45, 3.17, 

3.57, 3.29, and 1.72 MPa, respectively. Furthermore, the SI for different folds ranges from 0.17 

to 0.31. These patterns confirm that the GMDH model is robust to variations in data 

partitioning and demonstrates consistent overall behavior. 
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In contrast, the GEP model showed less stable performance, with greater variability. The R² 

values of this model ranged from 0.52 to 0.68 across folds, indicating inconsistent predictive 

performance. Furthermore, the RMSE index showed much higher values, ranging from 6.28 to 

10.47 MPa. The MAE (from 5.13 to 8.43 MPa) and SI (from 0.47 to 0.75) indices also 

confirmed the higher sensitivity and weaker generalizability of the GEP model compared with 

the GMDH model. 

Overall, the K-fold cross-validation analysis results clearly demonstrated that the GMDH model 

is more stable, accurate, and reliable across all indices and outperforms the GEP model in 

predicting compressive strength. 
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Figure 12. Five-fold cross-validation performance of the GMDH and GEP for four statistical 

metrics (R², RMSE, MAE, and SI). 

4.3. Sensitivity analysis 

To evaluate the relative influence of the input parameters on the predicted compressive strength, 

a SHAP-based sensitivity analysis was performed. SHAP (SHapley Additive exPlanations) 

provides a global, scale-independent interpretation of model behavior and quantifies how much 

each input contributes to the final prediction. Unlike traditional perturbation approaches, SHAP 
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inherently normalizes the effects of variables with different units and magnitudes, ensuring an 

unbiased comparison among parameters. 

Figure 13 shows the SHAP feature contribution scores for the GMDH model. According to these 

results, water content was identified as the most influential variable, contributing more than any 

other parameter to the variation in compressive strength. This is consistent with the fundamental 

role of water in controlling the water-to-binder environment, hydration kinetics, pore structure 

development, and the formation of the C–S–H gel (Ling & Poon, 2011; Choi et al., 2016). This 

finding is consistent with previous ML-based studies, where the water-to-binder (or water-to-

cement) ratio has been consistently reported as the dominant factor governing strength 

development (Wan et al., 2021; Meng et al., 2025; Shuai et al., 2025). 

Curing time (CT) was ranked as the second most influential parameter, highlighting its critical 

role in strength gain through the progressive hydration process (Shanthi Vengadeshwari et al., 

2025; Ashraf et al., 2024). Cement content (CC) showed a moderate contribution, consistent with 

prior data-driven and experimental studies that emphasize the secondary role of binder dosage in 

recycled-aggregate systems (Ahmad et al., 2021; de Prado-Gil et al., 2022). 

In contrast, RCRT content and the w/b ratio showed smaller effects on strength, which is 

consistent with earlier studies reporting that CRT glass mainly affects mechanical behavior 

through its particle shape and weak interfacial bonding rather than chemical reactivity (Zhao & 

Poon, 2017; Ling & Poon, 2013). 
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Figure 13. Global SHAP-based feature contribution scores for input variables affecting 

compressive strength. 

To gain further insight into the directional impact of each variable, SHAP dependence plots were 

generated (Figure 14). These plots illustrate how changes in individual input parameters affect 

their corresponding SHAP values. For example, an increase in water content generally produced 

negative SHAP values, indicating a reduction in compressive strength due to increased porosity 

and dilution effects (Ling & Poon, 2011; Wan et al., 2021; Meng et al., 2025). Conversely, longer 

curing times resulted in positive SHAP values, reflecting the expected improvement in strength 

with extended hydration (Choi et al., 2016; Shanthi Vengadeshwari et al., 2025). The dependence 

plots for CC and RCRT showed more localized and nonlinear behaviors, highlighting their 

secondary but meaningful contributions to strength development (Zhao & Poon, 2017; Ling & 

Poon, 2013; Ashraf et al., 2024). 
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Figure 14. SHAP dependence plots for input variables showing parameter-wise influence 

patterns on compressive strength. 

Overall, the SHAP-based interpretation confirms that water content and curing time dominate the 

mechanical response of RCRT-modified mortars, while CC, RCRT, and w/b exert more limited 

but still measurable effects. The combined use of feature contribution scores and dependence 

plots provides a comprehensive and interpretable assessment of variable importance, ensuring 

that the sensitivity evaluation is independent of the physical units and scales of the input 

parameters. 

5. Conclusion 

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



 

In this study, two advanced soft-computing methods, GMDH and GEP, were used to develop 

accurate and interpretable models for predicting the compressive strength of RCRT-modified 

mortar. The modeling was based on a dataset of 139 laboratory specimens with key mix-design 

parameters, including w/b, water content, CC, fly ash, sand, RCRT, and CT. The performance of 

these two models was evaluated against three classical regression methods (LR, NLR, and 

MLR), and a sensitivity analysis was performed on the selected model. 

The results showed that the GMDH model performed much more accurately than the other 

models, with R² = 0.942 in the testing phase and low RMSE and MAE values (2.97 and 2.59, 

respectively). The network-based structure and automatic node-selection algorithm in GMDH 

enabled the final model to avoid excessive complexity and achieve high accuracy. In contrast, the 

GEP model, while providing explicit equations and analytic tree-based structures, also showed 

acceptable performance but was still ranked lower than GMDH in terms of prediction accuracy. 

Classical regression models, especially the LR model, failed to establish a strong correlation with 

actual data and performed poorly when faced with nonlinear relationships between input 

parameters and compressive strength. This highlights the importance of using data-driven and 

flexible models in analyzing the complex behavior of engineering materials. Due to their white-

box nature, GMDH and GEP methods, in addition to accurate prediction, also allow for 

analyzing relationships between variables and identifying key factors affecting RCRT-modified 

mortar behavior. This capability is generally not available in many black-box methods. 

The sensitivity analysis results showed that water content had the most significant impact on the 

compressive strength of RCRT-modified mortar, such that even slight variations in this 

parameter led to notable changes in the model output. Other parameters, such as CC and CT, 
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also played an important role, while parameters such as sand and RCRT had a comparatively 

smaller influence on the model output. 

This study demonstrated that integrating recycled materials such as RCRT with soft-computing 

techniques like GMDH and GEP provides an effective approach for developing sustainable and 

high-performance cementitious mortars. These models were able to capture and predict the 

complex and nonlinear relationships governing compressive strength with high accuracy, with 

the GMDH model outperforming GEP due to its simpler structure and better interpretability. 

Sensitivity analysis also showed that variables such as water, CC, and CT significantly 

influence strength. In contrast, the results showed that RCRT has a negative influence on 

compressive strength; however, within the low-to-moderate replacement levels represented in 

this dataset, the magnitude of this effect is relatively small and remains secondary compared with 

the dominant parameters such as water content, curing time, and cement dosage. Based on these 

observations, RCRT can be incorporated in controlled amounts as an environmentally beneficial 

fine-aggregate component without causing a considerable reduction in strength. This highlights 

the potential of RCRT as a sustainable material option in mortar mix design. 

In addition, future research may incorporate more advanced machine learning techniques such as 

Random Forest, XGBoost, or neural network models to further expand the comparative analysis 

and potentially improve predictive performance. 
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