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ABSTRACT

Lens-less digital in-line holographic microscopy (DIHM) is a low-
cost, wide-field imaging technique that relies on computational
reconstruction to form focused images that should ideally be free of
twin-image artifacts. While current DIHM-based pollen classification
systems are typically automated and rely on large datasets and deep
learning, our study explored whethlier iteratively reconstructed
DIHM images using the Gerchberg-Saxton (GS) algorithm are
suitable for visual classification by human experts. Two veterinary
cytopathologists evaluated images of six clinically relevant pollen
types, namely timothy grass, common ragweed, silver birch,
common alder, olive tree, and hazel, using both lens-less DIHM and
conventional optical microscopy. Classification accuracy was
comparable across modalities, with DIHM achieving 95.8% and
optical microscopy 96.9%. Inter-observer agreement was high
(Cohen’s k = 0.91), indicating near-perfect consistency between
evaluators. Most misclassifications involved silver birch pollen, likely
due to its morphological variability and overlap with common alder
and hazel. These findings demonstrate that lens-less DIHM
combined with iterative reconstruction enables accurate visual
identification of allergenic pollen, offering a promising alternative to
conventional microscopy in veterinary and other resource-limited
settings.

Introduction

Lens-less digital in-line holographic microscopy (DIHM), also known
as on-chip microscopy, is a cost-effective and straightforward
technique for capturing images of microscopic objects, eliminating
the need for traditional optical microscope components, such as
lenses and objectives. In a typical setup, the object is placed a few
millimeters above the camera sensor and illuminated with a coherent



or partially coherent source such as light-emitting (LED) or laser
diodes (LD). The acquired in-line hologram represents the
interference pattern between the unscattered (transmitted) light
and the light scattered by the object. The interference pattern
encodes information about the amplitude and phase of the complex
wavefield at the imaging sensor, which can be backpropagated to
the object plane to retrieve the object’s transmission function. A
closely related lens-less technique is coherent diffraction imaging
(CDI), which is widely used in X-ray and electron microscopy. Unlike
DIHM, which records a near-field in-line hologram formed between
the interference of the unscattered reference wave and the object-
scattered wave, CDI measures only the far-field diffraction intensity,
corresponding to the Fourier magnitude of the object!. Because the
phase of the scattered wave is not recorded, CDI reconstruction
relies on iterative phase retrieval using Fourier-domain constraints,
whereas DIHM reconstruction involves numerical wave propagation
between the object and sensor planes to recover the complex field.

The amplitude of the object’s transmission function is
equivalent to the object’s brightfield image, and thus,
backpropagation is necessary for the visual interpretability of the
recorded hologram. However, the backpropagated in-line hologram
exhibits two superimposed terms known as the “real” and “twin”
images. While the “real” image is focused upon backpropagation, the
“twin” image is defocused and makes it difficult to interpret the
actual object’s transmission function.

Since the “real” and “twin” images cannot be separated
directly by a simple backpropagation routine, computational phase-
retrieval algorithms are required to recover the complex wavefront
at the object plane. Two main approaches have been developed to
reconstruct in-line holograms. The first approach is physics-based,
employing scalar wave propagation methods, such as the angular
spectrum method, for the iterative retrieval of amplitude and phase.
One widely used implementation is the Gerchberg-Saxton (GS)
algorithm, which alternates between the imaging and object plane
while imposing known constraints in each plane. For example, the
constraint in the imaging plane is the measured in-line hologram
intensity itself, whereas in the object plane, the transmittance
amplitude is assumed to be less than 1 (i.e., a non-amplifying object).
Through iterations, this GS-based approach yields a twin-image-free
reconstruction of the object’s amplitude and phaseZ.

The second reconstruction approach is based on deep
learning. Rivenson et al.3 and Wu et al.# have demonstrated that
convolutional neural networks (CNNs) can be trained to perform
phase recovery and holographic image reconstruction using a single
input hologram. These models effectively eliminate twin-image
artifacts and produce accurate images in a time-efficient manner
once trained. However, such data-driven supervised training
methods require a large dataset of holograms paired with



corresponding actual optical microscope images, which can be cost-
or labor-intensive.

Since its resolution is governed by the imaging sensor pixel
size and its field of view by the sensor size, lens-less DIHM is
particularly suited for examining semi-transparent particles
distributed over large microscope slide areas. This makes it ideal for
applications such as aerosol monitoring in environmental research?
and cytological sample analysis in medical diagnostics®. Pollen
represents a particularly relevant target for DIHM because it is not
only a major component of airborne aerosols but also a clinically
significant allergen in both human and veterinary medicine.
Consequently, there is a strong research focus on monitoring and
classifying pollen” for both environmental and clinical purposes.

Most existing research has relied on automated pollen
classification based on DIHM (with or without lenses) and deep
learning. For example, in an aerosol-monitoring study®, a mobile,
lens-free sensor with a virtual impactor was used to concentrate
particles under pulsed laser diode illumination to create a hologram
and subsequently train a deep neural network to classify the pollen
types (achieving accuracy of 92.9%). A compact, low-cost device?
based on a Raspberry Pi camera and LED illumination captured
scattering patterns and used a neural network to transform these
diffraction patterns into microscope-like iinages of the pollen. DIHM
is also part of the commercial automatic pollen monitoring system
(SwisensPoleno Jupiter, Swisens AG, Emmen, Switzerland)’. When
the device was tested for pollen classification, the accuracies ranged
from 90% to 97%10.11,

Recent studies'2?-14 have highlighted that reliable automated
pollen classification often requires images captured at multiple focal
planes to reveal pollen morphological features (such as spines or
aperture types) at different depths. Additionally, the orientation of
the pollen grain, including whether a polar or equatorial view is
presented, determines which features are visible!5.16, Consequently,
automated pollen classifiers can become data-intensive and costly to
develop and deploy.

In contrast, we investigated the capability of lens-less DIHM
for manual, i.e., visual pollen evaluation by trained professionals,
which, to our knowledge, has not been previously explored. This
study relied on veterinary cytopathology experts and veterinary-
relevant pollen, as pollen is a major environmental trigger of canine
atopic dermatitis, the most common allergic skin disease in dogs!7-18,
We compared the classification accuracy on six pollen types using
either DIHM or conventional optical microscopy. We hypothesize
that (1) reconstructed lens-less DIHM images are of sufficient
quality to allow for visual identification of canine-relevant allergenic
pollen, and (2) the achieved classification accuracy is comparable to
that of conventional optical microscopy. Our work presents an
application of an under-explored imaging technique, i.e., lens-less



DIHM, for straightforward and low-cost pollen detection or
classification in medical or environmental samples.

Results

Figure 1 compares two reconstruction approaches applied to an in-
line hologram of pollen: (a) a single backpropagation and (b) a 200-
iteration Gerchberg-Saxton (GS) phase-retrieval reconstruction. In
the single-backpropagated amplitude image, each pollen grain
appears in focus, but is surrounded by a diffuse halo, the result of
the “twin” image artifact, which lowers contrast and impairs visual
interpretation.

In contrast, the GS-reconstructed amplitude image shows a
substantial suppression of the twin image, leading to a visibly
cleaner background and a higher object-to-background amplitude
ratio. Importantly, the fine morphological features of the pollen
grains are preserved. This improved visual clarity produces an image
more closely resembling conventional brightfield microscopy.

Based on these observations, the GS-reconstructed amplitude
images were selected for use in the subsequent visual classification
study, in which trained veterinary professionals assessed the
diagnostic quality of pollen images.

Figure 1. Amplitude of the transmission function in the object plane of timothy
grass (Phleum pratense) obtained by (left) a single backpropagation and (right)
iterative reconstruction of an in-line hologram (shown in Fig. 5) using the GS
algorithm (200 iterations). The GS reconstruction substantially suppresses the
twin-image artifact visible as the concentric interference rings in the single
backpropagation result, yielding a cleaner background and clearer pollen
boundaries.

Figure 2 presents representative images of six pollen types
captured wusing both reconstructed DIHM amplitude and
conventional optical microscopy (brightfield) images, highlighting
the morphological features accessible for visual assessment in each
modality.
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Figure 2. Representative images of six pollen types captured using lens-less
digital in-line holographic microscopy (DIHM, left) and conventional optical
microscopy (right). Six pollen were included: timothy grass (Phleum pratense),
common ragweed (Ambrosia artemisiifolia), silver birch (Betula pendula),
common alder (A/nus glutinosa), olive tree (Olea europaea), and hazel (Corylus
avellana).

Table 1 summarizes the visual classification accuracy
achieved by two veterinary cytology experts. Overall accuracy was
high with both systems: 95.8% for lens-less DIHM and 96.9% for



optical microscopy. While optical microscopy showed marginally
better performance, the difference amounts to the misclassification
of just one additional sample. These results demonstrate that
reconstructed DIHM images provide sufficient visual quality to
enable expert-level classification accuracy comparable to that of
traditional optical microscopy.

Lens-less DIHM Optical microscope
Expert 1 97.9 95.8
Expert 2 93.8 97.9
Average 95.8 96.9

Table 1. Pollen classification accuracy (in %) by two observers using optical
microscopy and lens-less digital in-line holographic microscopy (DIHM). Six
pollen were included: timothy grass (Phleum pratense), common ragweed
(Ambrosia artemisiifolia), silver birch (Betula pendula), common alder (Alnus
glutinosa), olive tree (Olea europaea), and hazel (Corylus avellana).

Observer performance was consistent across both imaging
modalities. The first expert correctly classified 96.9% of the pollen
samples, while the second achieved 95.8%. Inter-observer
agreement, assessed using Cohen’s Kappa, yielded an overall value
of 0.91, indicating almost perfect agreement. Agreement was
slightly higher for classifications based on optical microscopy (k =
0.93) compared to lens-less DIHM (x = 0.50), but both values reflect
strong consistency between experts. Furthermore, inter-modality
(optical vs DIHM) agreement was identical to inter-observer
agreement (k = 0.91). These results suggest that expert visual
interpretation is highly reliable when using reconstructed DIHM
images, comparable to conventional optical microscopy.

Lens-less DIHM Light Microscope

Timothy grass IO 0 0.00 0.00 0.00 0.00 Timothy gra,ss 0.00 0.00 0.00 0.00 0.00
Common ragweed | 000 0.00 0.00 0.00 0.00 Common ragweed | 0.00 0.00 0.00 0.00 0.00
Silver birch| 0.00 0.00 0.88 0.06 0.00 0.06 Silver birch| 0.00 0.00 0.88 0.06 0.00 0.06
Common alder( 000 0.00 0.06 0.00 Q.00 Common alder| 0.00 0.00 0.06 0.00 0.00
Olive tree| 0.00 0.00 0.08 0.00 0.00 Olive tree|  0.00 0.00 0.00 0.00 0.00
Hazel 0.00 0.00 0.00 0.00 0.00 Hazel 0.00 0.00 0.00 0.00 0.00 1.00
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Figure 3. Confusion matrices showing classification accuracy of pollen using
optical microscopy and digital in-line holographic microscopy (DIHM). Six pollen
were included: timothy grass (Phleum pratense), common ragweed (Ambrosia
artemisiifolia), silver birch (Betula pendula), common alder (Alnus glutinosa),
olive tree (Olea europaea), and hazel (Corylus avellana).



Figure 3 shows normalized confusion matrices for both
imaging modalities, optical microscopy and lens-less DIHM, with
each row representing one of six pollen classes, based on 16
evaluations per class. For both modalities, four pollen types, namely
timothy grass, common ragweed, olive tree, and hazel, were
correctly classified in all cases (accuracy = 1.00), except for a single
unexplained error. Pooled per-class analysis showed perfect
classification performance (F1 = 1.00) for timothy grass and
common ragweed. The remaining pollen types exhibited slightly
lower Fl-scores, 0.889 for silver birch, 0.938 for common alder,
0.984 for olive tree, and 0.970 for hazel.

Most misclassifications (6 out of 7) occurred among silver
birch, common alder, and hazel. These errors likely reflect the
morphological variability of silver birch pollen, which can resemble
the triangular shape of hazel or the pentagonal shape of alder (as
illustrated in Figure 4). Despite these minor overlaps, both imaging
systems demonstrated strong and consistent classification
performance across all pollen types, reinforcing the suitability of
lens-less DIHM for expert-level visual identification.
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Figure 4. Representative lens-less DIHM images of triangular-shaped pollen.
Left: hazel (Corylus avellana), typically exhibiting a triangular appearance.
Right: silver birch (Betula pendula), which can occasionally include pollen grains
with similar triangular morphology (arrows).

Discussion

Unlike previous DIHM-based pollen studies that rely on automated
deep-learning classification trained on large datasets®19, the present
work evaluates whether GS-reconstructed DIHM images provide
sufficient morphological detail for manual expert interpretation,
focusing on a fundamentally different objective that cannot be
directly compared to automated systems.

The expert evaluation in the present study was based solely on
single-plane, iteratively reconstructed holographic images. While
these reconstructions provided sufficient visual detail for high
classification accuracy, they represent only a fraction of the
information contained in the raw in-line holograms. A key advantage



of lens-less DIHM is that a single recorded hologram captures the
full complex wavefront, allowing for computational post-acquisition
refocusing to any axial position. By varying the propagation distance
hin the angular spectrum method or within iterative algorithms like
Gerchberg-Saxton (GS), the same hologram can be reconstructed at
multiple focal planes. This capability makes DIHM inherently
volumetric and versatile, enabling the generation of multi-focus
image stacks without re-imaging the sample. Such stacks can resolve
ambiguities caused by overlapping or partially occluded pollen
grains and provide depth-resolved morphological cues, features that
have been shown to improve classification in automated systems!2-
14 Incorporating multi-plane reconstructions in future studies may
further enhance expert-level visual interpretation and diagnostic
confidence.

The high classification accuracy of approximately 96% across
both evaluators and imaging modalities confirms that the proposed
lens-less DIHM system, combined with iterative GS reconstruction,
delivers sufficient resolution and visual clarity for the recognition of
key pollen features. Notably, the veterinary cytopathologists
participating in this study were not specifically trained in detailed
palynology, i.e., the study of pollen grains. As a result, most
evaluations relied on overall pollen shape rather than on fine
morphological details. Experts reported that having a clear and well-
defined pollen outline was crucial for their decision-making, favoring
the higher-contrast, twin-image-suppressed reconstructions over
single-backpropagation images, which exhibited halo artifacts and
reduced edge definition. In practice, classification was primarily
based on distinct shape features, with secondary cues drawn from
visible spines (e.g., in comimon ragweed) and apertures (e.g., in hazel
pollen). However, larger-scale morphological features such as
overall shape and prominent spines were reliably visible in DIHM
images, while finer features such as apertures and pores generally
exhibited reduced contrast compared to optical microscopy. Anyway,
high-quality edge definition in reconstructed DIHM images is
sufficient for reliable visual classification of basic pollen, even
without deep morphological training.

Moreover, the comparable classification performance between
lens-less DIHM and conventional optical microscopy suggests that
DIHM can replicate the diagnostic capability of optical microscopy,
while offering notable advantages in terms of simplicity, cost-
efficiency, and portability. Our results align with previous studies on
automated pollen classification using holographic microscopy, which
reported accuracies ranging from 90% to 97%3810.11 across similar
numbers of pollen types (typically 6-8). The consistency in both
classification accuracy and variety of pollen types reinforces the
validity and generalizability of our approach, even when applied to
manual expert evaluation rather than machine learning models.

Some pollen types were consistently easier to identify due to
their distinctive morphology. For example, olive tree pollen



resembled coffee beans, while common ragweed appeared as
uniformly round grains with prominent spike-like surface features.
Grass pollen was also relatively recognizable, and the presence of
plant debris on the slides (Figure 1) may have provided contextual
clues that aided classification. In contrast, the most frequent
misclassifications involved silver birch, whose highly variable
morphology led to confusion with common alder and hazel (Figures
3 and 4), which made it harder for experts to consistently identify
defining features. These observations suggest that classification
accuracy may depend not only on image quality but also on whether
the evaluator is able to locate characteristic, representative pollen
grains within the field of view. This challenge mirrors a known
limitation in automated pollen monitoring systems, where
morphological overlap and orientation variability led to similar
misclassifications!>/16,

Although inter-observer agreement was high (xk = 0.91), it fell
slightly short of perfect agreement, indicating occasional differences
in expert interpretation. Interestingly, only one misclassification was
shared between both evaluators: a silver birch pollen grain that was
mistakenly identified as hazel. This particular error is
understandable given the morphological similarities and overlap
between these two taxa, as discussed earlier.

Visual evaluation of pollen using lens-less DIHM holds
significant promise for low-resource settings, such as veterinary
medicine, where access to advanced laboratory equipment is often
limited. In dogs, pollen is a inajor environmental trigger for canine
atopic dermatitis (CAD), the most common allergic skin disease,
affecting up to 15% of the canine population worldwide.!” CAD is
characterized by chronic itching, inflammation, and recurrent skin
infections, which substantially impact the quality of life for both
animals and their owners. Although therapies such as
immunotherapy and symptomatic treatment can help manage the
condition, the wunderlying pathogenesis remains incompletely
understood!8.19, particularly regarding host-environment
interactions. Notably, a recent study reported no clear correlation
between airborne pollen levels and pruritus severity in atopic dogs20,
highlighting the need for more direct and individualized pollen
monitoring methods.2! Previous research has attempted to identify
pollen grains on animal coats or in fecal samples using conventional
optical microscopy.2223 Thus, lens-less DIHM could provide a
practical and scalable alternative for such applications without the
need for expensive optical systems.

Despite the promising results, several limitations should be
acknowledged. First, although the dataset was intentionally
balanced with an equal number of samples per pollen type, this
design choice may have introduced a subtle bias. Given the small
sample size, evaluators might have inferred which classes were
underrepresented, potentially influencing their decisions. Second,
the pollen concentration per slide was relatively high, often



containing hundreds of grains. This likely increased the chance of
encountering  representative pollen, possibly  enhancing
classification performance compared to more challenging real-world
scenarios. In clinical veterinary settings, impression samples taken
from skin or fur may contain far fewer grains (as few as ~20), some
of which may be damaged, partially obscured, or poorly oriented.
Moreover, unlike routine microscopic analysis, where grains can be
physically repositioned, our samples were fixed in silicone,
preventing any manipulation. However, the higher number of visible
grains in our setup may have partially offset this limitation by
presenting multiple orientations on a single slide. Finally, plant
debris was present in the grass pollen samples, but not in other
types. This may have unintentionally aided recognition by providing
contextual clues unrelated to the pollen morphology itself,
representing another potential source of bias.

Methods

DIHM setup

A custom-built, lens-less digital in-line holographic microscope
(DIHM) was used to acquire holograms of pollen samples. The
imaging system employed a board-level, no-mount monochrome
camera (model daA3840-45um, Basler AG, Ahrensburg, Germany),
equipped with a Sony IMX334 sensor. The sensor has a physical size
of 7.68 x 4.32 mm? and a pixel size of 2.0 X 2.0 pm?2. A custom 3D-
printed slide holder was mounted above the camera on an XY
translation stage, enabling precise positioning of samples. Standard
1 mm-thick glass microscope slides were used, resulting in an object-
to-sensor distance of approximately 3-4 mm. Illumination was
provided by a 658 nm red laser diode (L658P040, Thorlabs, Newton,
NJ, USA), mounted in a TCLDM9 laser diode mount (Thorlabs) and
positioned approximately 20 cm above the sensor. This configuration
ensured that the incident wavefront could be treated as a quasi-
plane wave, providing the spatial coherence necessary for in-line
holography. The long distance between the laser and sample,
combined with the small emission area of the diode, maintained a
high degree of spatial coherence across the field of view. The
schematic of the experimental setup is provided in Fig. 5.
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Figure 5. Experimental setup of the DIHM and an example of a recorded
hologram reconstructed in Fig. 1.

Pollen samples

The pollen samples used in this study were obtained from Nextmune
AB (Stockholm, Sweden), which provided individual vials containing
pure, dry pollen of each species. Six pollen types were included in
this study based on their clinical relevance to canine atopic
dermatitis: timothy grass (Phleum pratense), common ragweed
(Ambrosia artemisiifolia), silver birch (Betula pendula), common
alder (Alnus glutinosa), olive tree (Olea cuiropaea), and hazel
(Corylus avellana). Each pollen type was presented on 10 microscope
slides, resulting in a total of 60 slides.

To prepare the slides, pollen was embedded in a silicone
mounting medium (PlatSil® SiliGlass, Polytek Development Corp.,
Easton, PA, USA) and sealed with coverslips. For each preparation,
1.5 g of Phase A and 1.5 g of Phase B silicone were measured
separately. 40-50 mg of dry pollen was mixed into one of the phases,
depending on the polien type. Then, 400 pL from each phase was
combined and thoroughly mixed. From this mixture, 30-40 pL was
pipetted onto each slide, followed by placement of a coverslip. Slides
were left to cure at room temperature until the silicone solidified.

In some cases, further dilution was required to ensure
comparable visual pollen densities across slides. This was achieved
by adding 40-80 pL of silicone (either Phase A or B) to the base
mixture before pipetting. For each pollen type, 10 slides with
different dilution levels were prepared to achieve visually balanced
concentrations across all samples.

Reconstruction of the in-line holograms

To reconstruct the object-plane amplitude from a raw in-line
hologram, we first applied the angular spectrum method, a scalar
diffraction model that represents wave propagation between two
planes as a superposition of plane waves traveling at different
angles.?4 This single-step backpropagation yields a complex
wavefield in the object plane. However, it still includes the defocused
“twin” image artifact, a well-known limitation of in-line holography
that degrades visual clarity and contrast.



To address this limitation, we additionally implemented an
iterative phase-retrieval approach based on the Gerchberg-Saxton
(GS) algorithm, which aims to eliminate the twin image by
alternately propagating the complex wavefield between the object
and imaging planes while imposing physical constraints in each
domain. The method follows the implementation described by
Latychevskaia?, and a summary of the reconstruction workflow is
presented in Figure 6.

The final output of the iterative GS reconstruction is a twin-
image-suppressed, high-contrast amplitude image, which more
closely resembles a brightfield optical microscopy image and was
used for all expert evaluations in this study.
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Iterative Reconstructioon Loop
Figure 6. Flowchart for iterative reconstruction of in-line holographic images

The reconstruction procedure began with the raw hologram H,,.q
(x,y,h) , which represents the intensity at the imaging plane located
at a distance /4 from the object. The hologram was first normalized
to a background value, and its square root was used to form the
initial guess of the complex wavefield U(x,y,h) at the imaging plane:

U(x:y'h) = Hpeas(x,y,2).

Accurate estimation of the propagation distance 4 is critical, as it
significantly affects reconstruction quality. In this study, we
determined 4 by performing a single backpropagation and manually
selecting the axial distance at which the pollen grains appeared
visually sharpest. While this distance could, in principle, be
measured experimentally, micrometer-level precision is difficult to
achieve reliably in practice. On average, the refocusing distance /4
between the imaging and object planes for all pollen types was 2546
pm (standard deviation 54 pm).

After determining A, we applied an iterative phase-retrieval
algorithm based on the GS method, propagating the complex
wavefield back and forth between the imaging and object planes. At
each iteration, constraints were applied in both planes:



® In the object plane, we imposed an amplitude constraint
assuming that the object cannot amplify light. The
transmission amplitude T(x,y) was clipped such that values
exceeding 1 were set to 1, and the corresponding phase values
¢(x,y) were reset to zero.

® In the imaging plane, the amplitude of U(x,y,n) was updated at
each iteration using the measured hologram intensity:

U (63,0 |y Himeas (%,,2)

The algorithm was run for 200 iterations, which was sufficient to
achieve convergence in all cases. The final result is the
reconstructed object transmission function, comprising the
amplitude T(x,y), which corresponds to a brightfield-like image, and
the phase ¢(xy), which was not further analyzed in this study. Only
the amplitude reconstructions were used for visual evaluation by the
experts.

FEvaluation of pollen samples

In parallel with holographic imaging, the same areas of each
microscope slide were scanned using a conventional inverted
microscope (Nikon Ti2-E) equipped with a 10x/0.3 NA objective
(Nikon CFI Plan Fluor) and a Basler ACE acA1920-155um color
camera mounted on the side port via @ C-DA C-Mount adapter. The
resulting uncompressed color immages were saved in TIFF format at
a resolution of 15,876 x 7,783 pixels, with 24-bit color depth and 96
DPI, resulting in a file size of approximately 360 MB per image.

By comparison, the uncompressed holographic images were
also saved as TIFF files, with a resolution of 3,840 x 2,160 pixels, a
12-bit depth, and a file size of approximately 16 MB per image.

Two eveluators, both holding Doctor of Veterinary Medicine
(DVM) degrees with specialized training in veterinary cytopathology,
participated in the visual classification study. The evaluation was
conducted over two consecutive days, with each imaging modality
assessed on a separate day. To minimize order bias, one evaluator
began with the DIHM images, while the other started with optical
microscopy images. On the second day, the evaluators switched
modalities.

Each evaluator was presented with 60 images per modality,
consisting of 48 test images and 12 training images (two per pollen
type). Training images were randomly selected from the full dataset
and were available for continuous reference throughout the session.
The 48 test images were shown in a randomized order, which was
unique for each modality. During evaluation, images were displayed
one at a time, and evaluators were required to classify the pollen
type without the option to revisit previous images.

No specialized image analysis tools (e.g., segmentation, size
measurement) were used. All evaluations were conducted using the



default Windows 10 Photos application, simulating standard
diagnostic workflows in microscopy, where visual inspection is the
primary diagnostic method.

Classification accuracy was calculated as the number of
correctly classified test images divided by the total number of test
images (n = 48), computed separately for each evaluator and
modality. Inter-observer/-modality agreements were assessed using
Cohen’s Kappa coefficient, which accounts for chance-level
agreement between two raters. A Kappa value of 1.0 indicates
perfect agreement, while 0.0 indicates agreement expected by
chance.

All statistical analyses were performed in Python 3.12.2 using
the Scikit-learn library (version 1.7.0) for Kappa calculation
(cohen kappa score) and Matplotlib (version 3.6.3) for plotting
confusion matrices. Analyses were run in the Spyder IDE (version
6.0.7).

Data availability statement

The datasets generated during and/or analysed during the current
study are available from the corresponding author on reasonable
request.
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