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ABSTRACT

Lens-less digital in-line holographic microscopy (DIHM) is a low-
cost, wide-field imaging technique that relies on computational 
reconstruction to form focused images that should ideally be free of 
twin-image artifacts. While current DIHM-based pollen classification 
systems are typically automated and rely on large datasets and deep 
learning, our study explored whether iteratively reconstructed 
DIHM images using the Gerchberg–Saxton (GS) algorithm are 
suitable for visual classification by human experts. Two veterinary 
cytopathologists evaluated images of six clinically relevant pollen 
types, namely timothy grass, common ragweed, silver birch, 
common alder, olive tree, and hazel, using both lens-less DIHM and 
conventional optical microscopy. Classification accuracy was 
comparable across modalities, with DIHM achieving 95.8% and 
optical microscopy 96.9%. Inter-observer agreement was high 
(Cohen’s κ = 0.91), indicating near-perfect consistency between 
evaluators. Most misclassifications involved silver birch pollen, likely 
due to its morphological variability and overlap with common alder 
and hazel. These findings demonstrate that lens-less DIHM 
combined with iterative reconstruction enables accurate visual 
identification of allergenic pollen, offering a promising alternative to 
conventional microscopy in veterinary and other resource-limited 
settings. 

Introduction
Lens-less digital in-line holographic microscopy (DIHM), also known 
as on-chip microscopy, is a cost-effective and straightforward 
technique for capturing images of microscopic objects, eliminating 
the need for traditional optical microscope components, such as 
lenses and objectives. In a typical setup, the object is placed a few 
millimeters above the camera sensor and illuminated with a coherent 

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



or partially coherent source such as light-emitting (LED) or laser 
diodes (LD). The acquired in-line hologram represents the 
interference pattern between the unscattered (transmitted) light 
and the light scattered by the object. The interference pattern 
encodes information about the amplitude and phase of the complex 
wavefield at the imaging sensor, which can be backpropagated to 
the object plane to retrieve the object’s transmission function. A 
closely related lens-less technique is coherent diffraction imaging 
(CDI), which is widely used in X-ray and electron microscopy. Unlike 
DIHM, which records a near-field in-line hologram formed between 
the interference of the unscattered reference wave and the object-
scattered wave, CDI measures only the far-field diffraction intensity, 
corresponding to the Fourier magnitude of the object1. Because the 
phase of the scattered wave is not recorded, CDI reconstruction 
relies on iterative phase retrieval using Fourier-domain constraints, 
whereas DIHM reconstruction involves numerical wave propagation 
between the object and sensor planes to recover the complex field.

The amplitude of the object’s transmission function is 
equivalent to the object’s brightfield image, and thus, 
backpropagation is necessary for the visual interpretability of the 
recorded hologram. However, the backpropagated in-line hologram 
exhibits two superimposed terms known as the “real” and “twin” 
images. While the “real” image is focused upon backpropagation, the 
“twin” image is defocused and makes it difficult to interpret the 
actual object’s transmission function. 

Since the “real” and “twin” images cannot be separated 
directly by a simple backpropagation routine, computational phase-
retrieval algorithms are required to recover the complex wavefront 
at the object plane. Two main approaches have been developed to 
reconstruct in-line holograms. The first approach is physics-based, 
employing scalar wave propagation methods, such as the angular 
spectrum method, for the iterative retrieval of amplitude and phase. 
One widely used implementation is the Gerchberg–Saxton (GS) 
algorithm, which alternates between the imaging and object plane 
while imposing known constraints in each plane. For example, the 
constraint in the imaging plane is the measured in-line hologram 
intensity itself, whereas in the object plane, the transmittance 
amplitude is assumed to be less than 1 (i.e., a non-amplifying object). 
Through iterations, this GS-based approach yields a twin-image-free 
reconstruction of the object’s amplitude and phase2. 

The second reconstruction approach is based on deep 
learning. Rivenson et al.3 and Wu et al.4 have demonstrated that 
convolutional neural networks (CNNs) can be trained to perform 
phase recovery and holographic image reconstruction using a single 
input hologram. These models effectively eliminate twin-image 
artifacts and produce accurate images in a time-efficient manner 
once trained. However, such data-driven supervised training 
methods require a large dataset of holograms paired with 
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corresponding actual optical microscope images, which can be cost- 
or labor-intensive. 

Since its resolution is governed by the imaging sensor pixel 
size and its field of view by the sensor size, lens-less DIHM is 
particularly suited for examining semi-transparent particles 
distributed over large microscope slide areas. This makes it ideal for 
applications such as aerosol monitoring in environmental research5 
and cytological sample analysis in medical diagnostics6. Pollen 
represents a particularly relevant target for DIHM because it is not 
only a major component of airborne aerosols but also a clinically 
significant allergen in both human and veterinary medicine. 
Consequently, there is a strong research focus on monitoring and 
classifying pollen7 for both environmental and clinical purposes. 

Most existing research has relied on automated pollen 
classification based on DIHM (with or without lenses) and deep 
learning. For example, in an aerosol-monitoring study8, a mobile, 
lens-free sensor with a virtual impactor was used to concentrate 
particles under pulsed laser diode illumination to create a hologram 
and subsequently train a deep neural network to classify the pollen 
types (achieving accuracy of 92.9%). A compact, low-cost device9 
based on a Raspberry Pi camera and LED illumination captured 
scattering patterns and used a neural network to transform these 
diffraction patterns into microscope-like images of the pollen. DIHM 
is also part of the commercial automatic pollen monitoring system 
(SwisensPoleno Jupiter, Swisens AG, Emmen, Switzerland)7. When 
the device was tested for pollen classification, the accuracies ranged 
from 90% to 97%10,11.

Recent studies12–14 have highlighted that reliable automated 
pollen classification often requires images captured at multiple focal 
planes to reveal pollen morphological features (such as spines or 
aperture types) at different depths. Additionally, the orientation of 
the pollen grain, including whether a polar or equatorial view is 
presented, determines which features are visible15,16. Consequently, 
automated pollen classifiers can become data-intensive and costly to 
develop and deploy. 

In contrast, we investigated the capability of lens-less DIHM 
for manual, i.e., visual pollen evaluation by trained professionals, 
which, to our knowledge, has not been previously explored. This 
study relied on veterinary cytopathology experts and veterinary-
relevant pollen, as pollen is a major environmental trigger of canine 
atopic dermatitis, the most common allergic skin disease in dogs17,18. 
We compared the classification accuracy on six pollen types using 
either DIHM or conventional optical microscopy. We hypothesize 
that (1) reconstructed lens-less DIHM images are of sufficient 
quality to allow for visual identification of canine-relevant allergenic 
pollen, and (2) the achieved classification accuracy is comparable to 
that of conventional optical microscopy. Our work presents an 
application of an under-explored imaging technique, i.e., lens-less 
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DIHM, for straightforward and low-cost pollen detection or 
classification in medical or environmental samples. 

Results
Figure 1 compares two reconstruction approaches applied to an in-
line hologram of pollen: (a) a single backpropagation and (b) a 200-
iteration Gerchberg–Saxton (GS) phase-retrieval reconstruction. In 
the single-backpropagated amplitude image, each pollen grain 
appears in focus, but is surrounded by a diffuse halo, the result of 
the “twin” image artifact, which lowers contrast and impairs visual 
interpretation.

In contrast, the GS-reconstructed amplitude image shows a 
substantial suppression of the twin image, leading to a visibly 
cleaner background and a higher object-to-background amplitude 
ratio. Importantly, the fine morphological features of the pollen 
grains are preserved. This improved visual clarity produces an image 
more closely resembling conventional brightfield microscopy.

Based on these observations, the GS-reconstructed amplitude 
images were selected for use in the subsequent visual classification 
study, in which trained veterinary professionals assessed the 
diagnostic quality of pollen images.

Figure 1. Amplitude of the transmission function in the object plane of timothy 
grass (Phleum pratense) obtained by (left) a single backpropagation and (right) 
iterative reconstruction of an in-line hologram (shown in Fig. 5) using the GS 

algorithm (200 iterations). The GS reconstruction substantially suppresses the 
twin-image artifact visible as the concentric interference rings in the single 
backpropagation result, yielding a cleaner background and clearer pollen 

boundaries.
Figure 2 presents representative images of six pollen types 

captured using both reconstructed DIHM amplitude and 
conventional optical microscopy (brightfield) images, highlighting 
the morphological features accessible for visual assessment in each 
modality.
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Figure 2. Representative images of six pollen types captured using lens-less 
digital in-line holographic microscopy (DIHM, left) and conventional optical 

microscopy (right). Six pollen were included: timothy grass (Phleum pratense), 
common ragweed (Ambrosia artemisiifolia), silver birch (Betula pendula), 

common alder (Alnus glutinosa), olive tree (Olea europaea), and hazel (Corylus 
avellana).

Table 1 summarizes the visual classification accuracy 
achieved by two veterinary cytology experts. Overall accuracy was 
high with both systems: 95.8% for lens-less DIHM and 96.9% for 
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optical microscopy. While optical microscopy showed marginally 
better performance, the difference amounts to the misclassification 
of just one additional sample. These results demonstrate that 
reconstructed DIHM images provide sufficient visual quality to 
enable expert-level classification accuracy comparable to that of 
traditional optical microscopy.

Lens-less DIHM Optical microscope
Expert 1 97.9 95.8
Expert 2 93.8 97.9
Average 95.8 96.9

Table 1. Pollen classification accuracy (in %) by two observers using optical 
microscopy and lens-less digital in-line holographic microscopy (DIHM). Six 
pollen were included: timothy grass (Phleum pratense), common ragweed 

(Ambrosia artemisiifolia), silver birch (Betula pendula), common alder (Alnus 
glutinosa), olive tree (Olea europaea), and hazel (Corylus avellana).

Observer performance was consistent across both imaging 
modalities. The first expert correctly classified 96.9% of the pollen 
samples, while the second achieved 95.8%. Inter-observer 
agreement, assessed using Cohen’s Kappa, yielded an overall value 
of 0.91, indicating almost perfect agreement. Agreement was 
slightly higher for classifications based on optical microscopy (κ = 
0.93) compared to lens-less DIHM (κ = 0.90), but both values reflect 
strong consistency between experts. Furthermore, inter-modality 
(optical vs DIHM) agreement was identical to inter-observer 
agreement (κ = 0.91). These results suggest that expert visual 
interpretation is highly reliable when using reconstructed DIHM 
images, comparable to conventional optical microscopy.

Figure 3. Confusion matrices showing classification accuracy of pollen using 
optical microscopy and digital in-line holographic microscopy (DIHM). Six pollen 

were included: timothy grass (Phleum pratense), common ragweed (Ambrosia 
artemisiifolia), silver birch (Betula pendula), common alder (Alnus glutinosa), 

olive tree (Olea europaea), and hazel (Corylus avellana).
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Figure 3 shows normalized confusion matrices for both 
imaging modalities, optical microscopy and lens-less DIHM, with 
each row representing one of six pollen classes, based on 16 
evaluations per class. For both modalities, four pollen types, namely 
timothy grass, common ragweed, olive tree, and hazel, were 
correctly classified in all cases (accuracy = 1.00), except for a single 
unexplained error. Pooled per-class analysis showed perfect 
classification performance (F1 = 1.00) for timothy grass and 
common ragweed. The remaining pollen types exhibited slightly 
lower F1-scores, 0.889 for silver birch, 0.938 for common alder, 
0.984 for olive tree, and 0.970 for hazel.

Most misclassifications (6 out of 7) occurred among silver 
birch, common alder, and hazel. These errors likely reflect the 
morphological variability of silver birch pollen, which can resemble 
the triangular shape of hazel or the pentagonal shape of alder (as 
illustrated in Figure 4). Despite these minor overlaps, both imaging 
systems demonstrated strong and consistent classification 
performance across all pollen types, reinforcing the suitability of 
lens-less DIHM for expert-level visual identification.

Figure 4. Representative lens-less DIHM images of triangular-shaped pollen. 
Left: hazel (Corylus avellana), typically exhibiting a triangular appearance. 

Right: silver birch (Betula pendula), which can occasionally include pollen grains 
with similar triangular morphology (arrows).

Discussion
Unlike previous DIHM-based pollen studies that rely on automated 
deep-learning classification trained on large datasets8-10, the present 
work evaluates whether GS-reconstructed DIHM images provide 
sufficient morphological detail for manual expert interpretation, 
focusing on a fundamentally different objective that cannot be 
directly compared to automated systems.

The expert evaluation in the present study was based solely on 
single-plane, iteratively reconstructed holographic images. While 
these reconstructions provided sufficient visual detail for high 
classification accuracy, they represent only a fraction of the 
information contained in the raw in-line holograms. A key advantage 
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of lens-less DIHM is that a single recorded hologram captures the 
full complex wavefront, allowing for computational post-acquisition 
refocusing to any axial position. By varying the propagation distance 
h in the angular spectrum method or within iterative algorithms like 
Gerchberg–Saxton (GS), the same hologram can be reconstructed at 
multiple focal planes. This capability makes DIHM inherently 
volumetric and versatile, enabling the generation of multi-focus 
image stacks without re-imaging the sample. Such stacks can resolve 
ambiguities caused by overlapping or partially occluded pollen 
grains and provide depth-resolved morphological cues, features that 
have been shown to improve classification in automated systems12–
14. Incorporating multi-plane reconstructions in future studies may 
further enhance expert-level visual interpretation and diagnostic 
confidence.

The high classification accuracy of approximately 96% across 
both evaluators and imaging modalities confirms that the proposed 
lens-less DIHM system, combined with iterative GS reconstruction, 
delivers sufficient resolution and visual clarity for the recognition of 
key pollen features. Notably, the veterinary cytopathologists 
participating in this study were not specifically trained in detailed 
palynology, i.e., the study of pollen grains. As a result, most 
evaluations relied on overall pollen shape rather than on fine 
morphological details. Experts reported that having a clear and well-
defined pollen outline was crucial for their decision-making, favoring 
the higher-contrast, twin-image-suppressed reconstructions over 
single-backpropagation images, which exhibited halo artifacts and 
reduced edge definition. In practice, classification was primarily 
based on distinct shape features, with secondary cues drawn from 
visible spines (e.g., in common ragweed) and apertures (e.g., in hazel 
pollen). However, larger-scale morphological features such as 
overall shape and prominent spines were reliably visible in DIHM 
images, while finer features such as apertures and pores generally 
exhibited reduced contrast compared to optical microscopy. Anyway, 
high-quality edge definition in reconstructed DIHM images is 
sufficient for reliable visual classification of basic pollen, even 
without deep morphological training.

Moreover, the comparable classification performance between 
lens-less DIHM and conventional optical microscopy suggests that 
DIHM can replicate the diagnostic capability of optical microscopy, 
while offering notable advantages in terms of simplicity, cost-
efficiency, and portability. Our results align with previous studies on 
automated pollen classification using holographic microscopy, which 
reported accuracies ranging from 90% to 97%8,10,11 across similar 
numbers of pollen types (typically 6–8). The consistency in both 
classification accuracy and variety of pollen types reinforces the 
validity and generalizability of our approach, even when applied to 
manual expert evaluation rather than machine learning models.

Some pollen types were consistently easier to identify due to 
their distinctive morphology. For example, olive tree pollen 
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resembled coffee beans, while common ragweed appeared as 
uniformly round grains with prominent spike-like surface features. 
Grass pollen was also relatively recognizable, and the presence of 
plant debris on the slides (Figure 1) may have provided contextual 
clues that aided classification. In contrast, the most frequent 
misclassifications involved silver birch, whose highly variable 
morphology led to confusion with common alder and hazel (Figures 
3 and 4), which made it harder for experts to consistently identify 
defining features. These observations suggest that classification 
accuracy may depend not only on image quality but also on whether 
the evaluator is able to locate characteristic, representative pollen 
grains within the field of view. This challenge mirrors a known 
limitation in automated pollen monitoring systems, where 
morphological overlap and orientation variability led to similar 
misclassifications15,16. 

Although inter-observer agreement was high (κ = 0.91), it fell 
slightly short of perfect agreement, indicating occasional differences 
in expert interpretation. Interestingly, only one misclassification was 
shared between both evaluators: a silver birch pollen grain that was 
mistakenly identified as hazel. This particular error is 
understandable given the morphological similarities and overlap 
between these two taxa, as discussed earlier.

Visual evaluation of pollen using lens-less DIHM holds 
significant promise for low-resource settings, such as veterinary 
medicine, where access to advanced laboratory equipment is often 
limited. In dogs, pollen is a major environmental trigger for canine 
atopic dermatitis (CAD), the most common allergic skin disease, 
affecting up to 15% of the canine population worldwide.17 CAD is 
characterized by chronic itching, inflammation, and recurrent skin 
infections, which substantially impact the quality of life for both 
animals and their owners. Although therapies such as 
immunotherapy and symptomatic treatment can help manage the 
condition, the underlying pathogenesis remains incompletely 
understood18,19, particularly regarding host–environment 
interactions. Notably, a recent study reported no clear correlation 
between airborne pollen levels and pruritus severity in atopic dogs20, 
highlighting the need for more direct and individualized pollen 
monitoring methods.21 Previous research has attempted to identify 
pollen grains on animal coats or in fecal samples using conventional 
optical microscopy.22,23 Thus, lens-less DIHM could provide a 
practical and scalable alternative for such applications without the 
need for expensive optical systems.

Despite the promising results, several limitations should be 
acknowledged. First, although the dataset was intentionally 
balanced with an equal number of samples per pollen type, this 
design choice may have introduced a subtle bias. Given the small 
sample size, evaluators might have inferred which classes were 
underrepresented, potentially influencing their decisions. Second, 
the pollen concentration per slide was relatively high, often 
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containing hundreds of grains. This likely increased the chance of 
encountering representative pollen, possibly enhancing 
classification performance compared to more challenging real-world 
scenarios. In clinical veterinary settings, impression samples taken 
from skin or fur may contain far fewer grains (as few as ~20), some 
of which may be damaged, partially obscured, or poorly oriented. 
Moreover, unlike routine microscopic analysis, where grains can be 
physically repositioned, our samples were fixed in silicone, 
preventing any manipulation. However, the higher number of visible 
grains in our setup may have partially offset this limitation by 
presenting multiple orientations on a single slide. Finally, plant 
debris was present in the grass pollen samples, but not in other 
types. This may have unintentionally aided recognition by providing 
contextual clues unrelated to the pollen morphology itself, 
representing another potential source of bias.

Methods

DIHM setup 
A custom-built, lens-less digital in-line holographic microscope 
(DIHM) was used to acquire holograms of pollen samples. The 
imaging system employed a board-level, no-mount monochrome 
camera (model daA3840-45um, Basler AG, Ahrensburg, Germany), 
equipped with a Sony IMX334 sensor. The sensor has a physical size 
of 7.68 × 4.32 mm² and a pixel size of 2.0 × 2.0 µm². A custom 3D-
printed slide holder was mounted above the camera on an XY 
translation stage, enabling precise positioning of samples. Standard 
1 mm-thick glass microscope slides were used, resulting in an object-
to-sensor distance of approximately 3–4 mm. Illumination was 
provided by a 658 nm red laser diode (L658P040, Thorlabs, Newton, 
NJ, USA), mounted in a TCLDM9 laser diode mount (Thorlabs) and 
positioned approximately 20 cm above the sensor. This configuration 
ensured that the incident wavefront could be treated as a quasi-
plane wave, providing the spatial coherence necessary for in-line 
holography. The long distance between the laser and sample, 
combined with the small emission area of the diode, maintained a 
high degree of spatial coherence across the field of view. The 
schematic of the experimental setup is provided in Fig. 5.
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Figure 5. Experimental setup of the DIHM and an example of a recorded 
hologram reconstructed in Fig. 1.

Pollen samples 
The pollen samples used in this study were obtained from Nextmune 
AB (Stockholm, Sweden), which provided individual vials containing 
pure, dry pollen of each species. Six pollen types were included in 
this study based on their clinical relevance to canine atopic 
dermatitis: timothy grass (Phleum pratense), common ragweed 
(Ambrosia artemisiifolia), silver birch (Betula pendula), common 
alder (Alnus glutinosa), olive tree (Olea europaea), and hazel 
(Corylus avellana). Each pollen type was presented on 10 microscope 
slides, resulting in a total of 60 slides.

To prepare the slides, pollen was embedded in a silicone 
mounting medium (PlatSil® SiliGlass, Polytek Development Corp., 
Easton, PA, USA) and sealed with coverslips. For each preparation, 
1.5 g of Phase A and 1.5 g of Phase B silicone were measured 
separately. 40–50 mg of dry pollen was mixed into one of the phases, 
depending on the pollen type. Then, 400 µL from each phase was 
combined and thoroughly mixed. From this mixture, 30–40 µL was 
pipetted onto each slide, followed by placement of a coverslip. Slides 
were left to cure at room temperature until the silicone solidified.

In some cases, further dilution was required to ensure 
comparable visual pollen densities across slides. This was achieved 
by adding 40–80 µL of silicone (either Phase A or B) to the base 
mixture before pipetting. For each pollen type, 10 slides with 
different dilution levels were prepared to achieve visually balanced 
concentrations across all samples.

Reconstruction of the in-line holograms 
To reconstruct the object-plane amplitude from a raw in-line 
hologram, we first applied the angular spectrum method, a scalar 
diffraction model that represents wave propagation between two 
planes as a superposition of plane waves traveling at different 
angles.24 This single-step backpropagation yields a complex 
wavefield in the object plane. However, it still includes the defocused 
“twin” image artifact, a well-known limitation of in-line holography 
that degrades visual clarity and contrast.
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To address this limitation, we additionally implemented an 
iterative phase-retrieval approach based on the Gerchberg–Saxton 
(GS) algorithm, which aims to eliminate the twin image by 
alternately propagating the complex wavefield between the object 
and imaging planes while imposing physical constraints in each 
domain. The method follows the implementation described by 
Latychevskaia2, and a summary of the reconstruction workflow is 
presented in Figure 6.

The final output of the iterative GS reconstruction is a twin-
image-suppressed, high-contrast amplitude image, which more 
closely resembles a brightfield optical microscopy image and was 
used for all expert evaluations in this study.

Figure 6. Flowchart for iterative reconstruction of in-line holographic images

The reconstruction procedure began with the raw hologram 𝐻𝑚𝑒𝑎𝑠
(𝑥,𝑦,ℎ) , which represents the intensity at the imaging plane located 
at a distance h from the object. The hologram was first normalized 
to a background value, and its square root was used to form the 
initial guess of the complex wavefield 𝑈(𝑥,𝑦,ℎ) at the imaging plane:

𝑈(𝑥,𝑦,ℎ) = 𝐻𝑚𝑒𝑎𝑠(𝑥,𝑦,𝑧).
Accurate estimation of the propagation distance h is critical, as it 
significantly affects reconstruction quality. In this study, we 
determined h by performing a single backpropagation and manually 
selecting the axial distance at which the pollen grains appeared 
visually sharpest. While this distance could, in principle, be 
measured experimentally, micrometer-level precision is difficult to 
achieve reliably in practice. On average, the refocusing distance h 
between the imaging and object planes for all pollen types was 2546 
µm (standard deviation 54 µm).

After determining h, we applied an iterative phase-retrieval 
algorithm based on the GS method, propagating the complex 
wavefield back and forth between the imaging and object planes. At 
each iteration, constraints were applied in both planes:
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● In the object plane, we imposed an amplitude constraint 
assuming that the object cannot amplify light. The 
transmission amplitude 𝑇(𝑥,𝑦) was clipped such that values 
exceeding 1 were set to 1, and the corresponding phase values 
𝜙(𝑥,𝑦) were reset to zero.

● In the imaging plane, the amplitude of 𝑈(𝑥,𝑦,ℎ) was updated at 
each iteration using the measured hologram intensity:

|𝑈(𝑥,𝑦,ℎ)|← 𝐻𝑚𝑒𝑎𝑠(𝑥,𝑦,𝑧)

The algorithm was run for 200 iterations, which was sufficient to 
achieve convergence in all cases. The final result is the 
reconstructed object transmission function, comprising the 
amplitude 𝑇(𝑥,𝑦), which corresponds to a brightfield-like image, and 
the phase 𝜙(𝑥,𝑦), which was not further analyzed in this study. Only 
the amplitude reconstructions were used for visual evaluation by the 
experts.

Evaluation of pollen samples 
In parallel with holographic imaging, the same areas of each 
microscope slide were scanned using a conventional inverted 
microscope (Nikon Ti2-E) equipped with a 10×/0.3 NA objective 
(Nikon CFI Plan Fluor) and a Basler ACE acA1920-155um color 
camera mounted on the side port via a C-DA C-Mount adapter. The 
resulting uncompressed color images were saved in TIFF format at 
a resolution of 15,876 × 7,783 pixels, with 24-bit color depth and 96 
DPI, resulting in a file size of approximately 360 MB per image.

By comparison, the uncompressed holographic images were 
also saved as TIFF files, with a resolution of 3,840 × 2,160 pixels, a 
12-bit depth, and a file size of approximately 16 MB per image.

Two evaluators, both holding Doctor of Veterinary Medicine 
(DVM) degrees with specialized training in veterinary cytopathology, 
participated in the visual classification study. The evaluation was 
conducted over two consecutive days, with each imaging modality 
assessed on a separate day. To minimize order bias, one evaluator 
began with the DIHM images, while the other started with optical 
microscopy images. On the second day, the evaluators switched 
modalities.

Each evaluator was presented with 60 images per modality, 
consisting of 48 test images and 12 training images (two per pollen 
type). Training images were randomly selected from the full dataset 
and were available for continuous reference throughout the session. 
The 48 test images were shown in a randomized order, which was 
unique for each modality. During evaluation, images were displayed 
one at a time, and evaluators were required to classify the pollen 
type without the option to revisit previous images.

No specialized image analysis tools (e.g., segmentation, size 
measurement) were used. All evaluations were conducted using the 
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default Windows 10 Photos application, simulating standard 
diagnostic workflows in microscopy, where visual inspection is the 
primary diagnostic method.

Classification accuracy was calculated as the number of 
correctly classified test images divided by the total number of test 
images (n = 48), computed separately for each evaluator and 
modality. Inter-observer/-modality agreements were assessed using 
Cohen’s Kappa coefficient, which accounts for chance-level 
agreement between two raters. A Kappa value of 1.0 indicates 
perfect agreement, while 0.0 indicates agreement expected by 
chance.

All statistical analyses were performed in Python 3.12.2 using 
the Scikit-learn library (version 1.7.0) for Kappa calculation 
(cohen_kappa_score) and Matplotlib (version 3.6.3) for plotting 
confusion matrices. Analyses were run in the Spyder IDE (version 
6.0.7).

Data availability statement
The datasets generated during and/or analysed during the current 
study are available from the corresponding author on reasonable 
request.
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