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Abstract 

Aims: This study explored the value of nonlinear features extracted from EEG signals 

to facilitate the assessment of patients with disorders of consciousness (DOC) with 

limited communication capacity. 

Methods: We utilized a dataset comprising 104 participants, 56 with vegetative state 

(VS)/unresponsive wakefulness syndrome (UWS) and 48 in a minimally conscious 

state (MCS). For each participant, we computed channel-wise approximate entropy 

(ApEn) from EEG time-series data using a sliding window approach under two 

experimental paradigms: resting state and preferred music stimulation. These nonlinear 

measures were then spatially interpolated to generate topographical maps. Both resting 

state and preferred music stimulation data were processed as 1-second epochs using 

identical convolutional neural networks (CNN) architectures. The classification 

performance and validity of the CNN were compared against support vector machine 

(SVM) and generalized regression neural network (GRNN) models.  

Results: ApEn in the resting state and under stimulation with preferred music correlated 

with the Coma Recovery Scale-Revised scores in patients with DOC, showing varied 

regional responses. Notably, the CNNs resulted in a positive diagnostic performance 

with an accuracy of 90.00% and an AUC of 0.902. The CNN was better than the SVM 

and GRNN in differentiating between the VS/UWS and MCS states. 

Conclusion: This study offers a convenient and accurate method for detecting 

awareness in patients with VS/UWS and MCS using ApEn features in the resting state 

and under preferred music stimulation using deep learning. 

Trial registration: www.chictr.org.cn. Registration code: ChiCTR2300079310. 

Registered 29 December 2023. 

 

Keywords: convolutional neural networks; disorder of consciousness; support vector 

machine; generalized regression neural networks; electroencephalography; nonlinear 

dynamics analysis  
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Patients with brain injury may have varying degrees of disorders of consciousness 

(DOC), even after their lives have been saved1. Depending on the degree of preserved 

consciousness, the main categories include vegetative state (VS)/unresponsive 

wakefulness syndrome (UWS), in which the eyes open spontaneously without any 

conscious behavior, and minimal conscious state (MCS), which is characterized by 

unstable yet reproducible signs of awareness2.  

The frequency of misdiagnosis of unawareness is as high as 40% when diagnosed 

solely by clinical consensus without corroboration using behavioral scales3. The most 

sensitive scale used to distinguish between MCS and VS/UWS is the Revised Coma 

Recovery Scale (CRS-R), which allows longitudinal monitoring of behavioral 

reactivity in patients with DOC. Error rates can be attenuated by repeated assessment4. 

However, patient factors may mask the true state of consciousness, including cognitive 

(e.g., aphasia, apraxia) or sensory impairments (e.g., blindness, deafness), minor or 

easily exhausted motor activity, and pain. In addition, the reliability of clinical 

assessments is reduced due to the fluctuating response of patients with DOC to 

instructions or external stimuli5. In all these cases, the absence of observed purposeful 

behaviors at the bedside cannot definitively prove the absence of consciousness. How 

to accurately estimate the state of consciousness in patients with DOC to help guide 

optimal healthcare choices and achieve desired patient outcomes remains uncertain. 

Neuroimaging is increasingly recognized as helpful in behavioral diagnoses. 

Notably, the amplitude of the electroencephalography (EEG) signal exhibits marked 

random fluctuations over time and is non-stationary and nonlinear6. In many cases, 

EEG signals exhibit intermittent repetitions of transient activity rather than sustained 

oscillations at specific frequencies7,8. Entropy-based EEG analysis has received 

attention in characterizing brain dynamics and has been widely used to assess the 

“complexity” of EEG in DOC patients9,10. We selected approximate entropy (ApEn) as 

our core metric because it: (1) reliably quantifies signal complexity from brief, noisy 

recordings11, (2) detects functional isolation through decreasing values12, and (3) offers 

clinical practicality with minimal data requirements (100-500 points)13. The ApEn, 

calculated using a sliding-window approach, precisely captures local dynamics and has 
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established validity in consciousness monitoring7,10,12,14,15. 

Resting-state EEG, which does not require a sophisticated setup or active 

participation of the subject, has been increasingly used to diagnose DOC16,17. However, 

every state of consciousness is associated with emotions18. Auditory stimuli prompt 

brain activity and form a reliable observational network that helps differentiate between 

MCS and VS/UWS19. The auditory system is less susceptible to damage compared with 

other parts of the brain after DOC, and is susceptible to fluctuations in states of 

consciousness19,20.  

Machine learning techniques may improve the diagnosis of DOC, especially in 

non-specialist clinics. Deep learning (DL) approaches, specially building convolutional 

neural networks (CNN), have drawn increasing attention for classification and 

regression to improve estimation accuracy and robustness. CNN models can directly 

utilize EEG images as input21. CNN-based learning automatically extracts features that 

alleviate the reliance of traditional approaches on laborious feature engineering, 

requiring less expertise in domain knowledge and maintaining more information for 

accurate inference22. Specifically, CNNs using time-frequency transforms of EEG data 

have been used for brain-computer interfaces23, detection of focal epileptiform 

discharges, prediction of outcomes in patients with acute brainstem infarction24, and 

prediction of recovery from coma after cardiac arrest25. Nonetheless, the efficacy of 

CNN models in distinguishing patients with VS/UWS and MCS remains unclear. 

This study presents a novel integration of ApEn-derived nonlinear features from 

both resting-state and auditory stimulation EEG signals within a CNN framework, 

offering an enhanced approach for DOC diagnosis. It had two main aims. First, we 

aimed to develop a CNN tool that utilizes ApEn features in a resting state and under 

auditory stimulation to differentiate between patients with MCS and UWS. Second, to 

benchmark CNN’s performance against traditional ML methods, we constructed other 

baseline models using ML algorithms, including a linear support vector machine (SVM) 

and a generalized regression neural network (GRNN). 
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2 Materials and methods 

2.1 Patients 

This cross-sectional study recruited 104 participants with DOC who were admitted 

to the Rehabilitation Department of the Second Hospital of Shandong University 

between 17 October 2023 and 10 July 2024. The following inclusion criteria were used: 

(1) diagnosis of VS/UWS or MCS based on the CRS-R scores; (2) age >18 years. The 

following exclusion criteria were used: (1) patients with pre-existing known hearing 

loss; (2) Unstable state of consciousness characterized by signs of deterioration over 

the week; (3) diagnosed with locked-in syndrome; (4) electromyography (EMG) 

artifacts due to severe spasticity; (5) a record of skull fracture; (6) patients with 

schizophrenia/schizoaffective disorder; (7) the use of sedatives or muscle relaxants 

within a day before data collection. The Human Subject Ethics Committee of the 

Second Hospital of Shandong University approved the study protocol. The approval 

and registration codes are KYLL-2023-414 and ChiCTR2300079310, respectively. 

Written informed consent was signed by the participant's family member or legal 

guardian. The research procedures followed the principles of the Declaration of 

Helsinki, and all associated patient data were kept confidential.  

 

2.2 Data acquisition 

Demographic and clinical characteristics, including sex, age, and days post-injury, 

were collected from eligible participants. The diagnostic accuracy of EEG was 

determined using a CRS-R diagnosis obtained through a repeated standardized clinical 

assessment as a reference26. Trained and experienced rehabilitation physicians 

performed the CRS-R assessment at least once daily for five days. If ambiguity or 

disagreement persisted between the examiners, the patient was reassessed until the 

neuropsychological team reached a consensus. 

 

2.3 Experimental Paradigm 

Initially, EEG signals were recorded in a quiet state for 5 min. Subsequently, music 
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with ‘mood and arousal function’27 and ‘autobiographical priming’ 28 capacity was 

chosen as auditory stimulation to enhance the responsiveness of patients with DOC to 

external stimuli. EEG signals were recorded for another 5 min while patients listened 

to their preferred music, which was obtained through interviews with the patients’ 

family members. To ensure standardized auditory stimulation while minimizing 

potential artifacts, all preferred music (upbeat and optimistic to prevent emotional bias) 

was delivered via wireless Bluetooth earbuds with active noise cancellation at 60–70 

dB. This wireless setup eliminated cable-related interference and ensured symmetric 

binaural stimulation, preventing lateralized artifacts that could confound unilateral 

ApEn analysis. Additionally, EEG data were processed with a 50 Hz notch filter to 

further suppress any residual line noise. 

 

2.4 EEG Recordings 

Procedures were performed in a noise-free ward without additional electronic 

equipment. Data collection was conducted within controlled time windows (8:00–11:30 

AM and 1:30–5:00 PM), and patients exhibiting severe drowsiness were 

excluded. EEG signals were acquired using a wireless 16-channel ZN16E system 

(Chengdu, China) configured with 19 scalp electrodes positioned according to the 10-

20 system (FP1, FP2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, FPZ, A1, 

A2). The configuration employed: (1) bilateral earlobe references (A1-A2), (2) FPZ as 

ground electrode, and (3) the remaining 16 sites as active recording channels. The 

signals were digitized at a sampling rate of 500 Hz and a bandwidth of 0.3–100 Hz. 

Each participant was assessed in the supine position; a standardized arousal 

promotion regimen (i.e., deep pressure stimuli from the facial muscle tissue to the toes) 

was implemented to keep the participant in the wake cycle. During the EEG recording, 

patients with DOC were asked to relax, be quiet, wake up, and close their eyes. The 

entire process was performed with the patients’ eyes closed to maximize EEG data 

collection while minimizing ocular artifacts. 

A rehabilitation physician monitored participants and EEG traces in real-time, 

identifying potential drowsiness through clinical recognition of prolonged θ bursts (>3 

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



s duration) and spindle-like waveforms based on visual pattern analysis. The 

participants were awakened when behavioral and EEG signs of drowsiness appeared. 

Artifact-free epoch selection was performed offline by an experienced physician 

through visual inspection of the recordings. Our artifact exclusion protocol consisted of 

three key steps: (1) Pre-screening exclusion of patients with muscle hypertonia; (2) 

Intra-recording ocular artifact suppression using light-dampening eye coverings; (3) 

The physician excluded EEG signals mixed with visible EMG or ocular artefacts, and 

a stable EEG epoch was recorded (i.e., the noisy portion at the beginning of the 

recording was discarded). Data were processed using MATLAB software.  

ApEn is susceptible to high-frequency components of the EEG signals, and the 

entire montage is affected by interfering EMG (50–150 Hz). Data with a significant 

increase in nonlinear metrics throughout the montage were excluded. Finally, each 

patient with DOC was selected for 60 non-overlapping segments in the resting state 

and under auditory stimulation to extract the ApEn topography and values under each 

electrode for further analysis. Two EEG signal segments (resting state, preferred music), 

each capturing approximately 32,768 consecutive data points (65.536 seconds), were 

selected for further analysis. For analysis, a notch filter (50 Hz) was applied to remove 

electrical noise, a low-pass filter (70 Hz) to reduce myoelectric interference, and a high-

pass filter (0.3 Hz) to attenuate artifacts. 

 

2.5 EEG signal extraction 

As the EEG time domain is a non-stationary state, effectively representing the 

irregularity of EEG time series using conventional feature extraction is difficult. 

Therefore, nonlinear dynamics were used to analyze EEG complexity characteristics. 

ApEn29 has a robust anti-interference capacity and high stability; minor anomalies 

do not affect the overall calculation result. With sufficient data, it can be used for both 

random and deterministic signals and has good generality. As large amounts of EEG 

data contain both random and deterministic signals, ApEn is suitable for EEG signal 

extraction. When applied to EEG signals, ApEn quantifies the complexity of neural 

activity, which is a marker of the functional state of the cerebral cortex30. It quantifies 
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the predictability of the subsequent amplitude values of a data sequence based on the 

knowledge of previous amplitude values. For completely regular data sequences, the 

knowledge of previous values predicts subsequent values, and the ApEn value is zero. 

For irregular sequences, the prediction of subsequent values worsens; the 

approximation increases even if the previous values are known. The chosen parameters 

included the length of the elapsed time (N), predicted subsequent value (m), and ApEn 

filtering level (r). To improve the accuracy of the analysis, N was fixed at 4,096. The 

ApEn was calculated as follows: 

 

 

In this study, m was set to 2, and r = 20%standard deviation (SD) of the original 

time series XN. The sliding window length was determined using the sampling length 

(2s) and was used to perform the ApEn calculations.  

ApEn calibrates the degree to which a series of interrelationships quantify a 

continuum from completely ordered (zero) to completely random (infinite); the larger 

its value, the more complex or irregular the data. Thus, increasing irregularity (i.e., 

increasing ApEn) increases nonlinear cellular dynamics or interactions in the cortical 

network31.  

 

2.6 Classifier 

2.6.1 Two-Way CNN 

A CNN typically comprises several layers, including input, convolutional, activation 

function, pooling, fully connected, and output layers25,32. A four-layer convolutional 

network was used for feature extraction, with each layer comprising 3×3 convolutions, 

batch normalization (to facilitate effective convergence), and a rectified linear unit 

activation function. The down-sampling process involved 2×2 max pooling with a 

stride of 2. The fully connected layer receives the features extracted from the 

convolutional network and outputs the final prediction results. The model was trained 

on a single NVIDIA GeForce RTX A6000 GPU with 48 GB of memory using a batch 

size of one and training for 500 epochs. An RMSProp optimizer was employed with a 
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learning rate of 0.01. The training parameters, including alpha = 0.99, weight decay = 

0, momentum = 0, and epsilon = 1×10−8, were set to default values established in the 

literature33. From each patient's recordings, three EEG images were generated for each 

of the two conditions (resting state and preferred music), with 20 EEG topographies on 

each image, i.e., each patient ended up with 6 EEG images (120 topographies) that were 

incorporated into the CNN model. The patient’s EEG images, originally at a 512×512 

RGB resolution, were cropped to 256×256 pixels to address memory consumption 

concerns. Below is the detailed layer-wise structure in Table 1: 

2.6.2 GRNN 

Specht described generalized regression neural networks (GRNN) as probabilistic 

neural networks34. Similarly, in multilayer error backpropagation neural networks, 

GRNNs can approximate any functional relationship between the inputs and outputs 

under appropriate conditions. Specifically, GRNNs can be used as classifiers to 

categorize test samples into two or more classes. This algorithm is not prone to local 

minima, requires fewer tuning parameters for optimization, and can be used to analyze 

large and unstable datasets35. The GRNN-specific algorithms used here were based on 

our previous research36. The GRNN was built using an in-house software program in 

MATLAB (version R2021a, MathWorks, Natick, MA, USA). 

2.6.3 SVM 

A support vector machine (SVM) is a supervised learning algorithm used for 

binary and multiple classification problems. It classifies items by finding an optimal 

hyperplane in the feature space with maximum intervals. This study used the SVM 

toolbox function fitcsvm provided in MATLAB. The features and labels of the input 

function samples were used for model training. The input sample dimensions were 

76×15, where 76 represents the number of samples and 15 the number of features. 

 

2.6.4 Model performance 

The classification performance was evaluated using the area under the receiver 

operating characteristic curve (ROC-AUC). An AUC value >0.60 was considered to 

indicate enhanced classification ability. Delong’s test was used to assess the statistical 
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significance of the differences between the ROC curves of the three models. Based on 

the predicted results and the actual labels of the samples, they can be categorized into 

four types: true positive (TP), false positive (FP), true negative (TN), and false negative 

(FN). The confusion matrix for binary classification was then obtained, as shown in 

Table 1. Sensitivity, specificity, and accuracy can be derived from the confusion matrix. 

The corresponding formulae are as follows: 

 

 

 

 

 

 

 

 

2.7 Statistical analyses  

Data analyses were performed using IBM SPSS for Windows (version 26.0; IBM 

Corp., Armonk, NY). The Shapiro–Wilk test was used to assess the distribution 

normality for age, days post-injury, and total CRS-R score. Summary statistics for 

normally distributed data are presented as mean and standard deviation (SD), whereas 

summary statistics for non-normal data are presented as interquartile range (IQR). The 

independent samples t-test and Mann–Whitney U test were used to compare normal 

and non-normal data. Categorical variables are presented as percentages. Correlation 

analysis of the mean ApEn on the 16 electrodes with the total CRS-R score was 

performed using Spearman’s correlation analysis, with r indicating the strength of the 

correlation. The preferred music-induced ApEn values for patients with VS/UWS and 

MCS were compared using a one-way ANOVA with Bonferroni correction. The 

significant variables from the univariate analysis were incorporated into the SVM and 

GRNN classifiers. Figures were generated using GraphPad Prism version 6.01 (San 

Diego, CA, USA). Statistical significance was set at P <0.05.  
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3. Results 

3.1 Baseline patient characteristics 

The patient selection process is illustrated in Fig 1. A total of 111 patients with 

DOC were initially screened; of these, 3 were excluded because of motion artefacts and 

4 due to severe spasticity. Ultimately, 104 patients were included, of which 76 served 

as the training set; 28 served as the test set, and were used to evaluate the performance 

of the classifier model. The demographic information of the training and test sets is 

presented in Table 2. In the training set, patients in VS/UWS and MCS were 69.23% 

(n=27) and 67.57% (n=25) male, respectively, and had a median age of 60 and 69 years, 

duration post-injury of 76 and 75 days, CRS-R total scores of 4 and 9, and CRS auditory 

scores of 1 and 2. However, in the training set, significant differences existed between 

the VS/UWS and MCS groups in terms of injury location, with bilateral/diffuse damage 

in patients with MCS (P<0.05). Overview of the diagnosis of the framework in Fig 2. 

 

3.2 Association of EEG features with prognosis and clinical behavior 

Violin plots of the distribution of ApEn values in patients with DOC in the resting 

state and in the preferred music are shown in Fig 3A. We performed correlation analyses 

to identify the relationship between clinical variables and ApEn values in patients with 

DOC. The results of the correlation analysis are shown in Fig 3B. The mean value of 

ApEn on the electrodes was not significantly correlated with the total CRS-R scale 

score in patients with VS/UWS, either in a quiet state or with their preferred music (P > 

0.05). Moreover, the mean ApEn values of patients with MCS in preferred music were 

positively correlated with the total CRS-R score, with a correlation coefficient of 0.431 

(P = 0.008). The mean value under the ApEn electrode was positively correlated with 

the total CRS-R score in MCS patients in the resting state (R = 0.399, P = 0.014). 

 

3.3 Machine learning variable screening 
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We investigated the association between ApEn values and the state of 

consciousness (VS/UWS and MCS) in both paradigms (Table 3). In the resting state, 

patients with MCS had significantly higher ApEn values at FP1, F3, C3, P3, F7, T3, 

and T5 than did VS/UWS patients (P < 0.05, one-way ANOVA). With preferred musical 

stimulation, the ApEn values in FP1, F3, C3, P3, O1, F7, T3, and T5 were significantly 

higher in patients with MCS than in patients with VS/UWS (P < 0.05, one-way 

ANOVA). Thus, 15 variables were included in the SVM and GRNN models. 

 

3.4 Model performance in the validation set 

The comparative performance of all classifiers in the validation set is summarized 

in Table 4 and Fig 4 (showing confusion matrices and ROC curves). The CNN achieved 

numerically higher metrics than SVM, including AUC (0.902 vs 0.830, P>0.05 by 

DeLong test). While this difference was not statistically significant, both CNN and 

SVM significantly outperformed GRNN in AUC (P<0.05 by DeLong test). Complete 

performance metrics with 95% CIs are tabulated in Table 4. 

 

4. Discussion 

DOCs are often caused by brain lesions in individuals, resulting in similar states of 

unconsciousness. Given that selecting and managing an appropriate rehabilitation 

program requires awareness, an objective quantitative classification method for patients 

with DOC is urgently needed. Our study had several key findings. First, using EEG 

images from the resting state and preferred music, the CNN classified VS/UWS and 

MCS with an accuracy of 90.00% and an AUC of 0.902. Second, the CNN 

outperformed the SVM and GRNN in all evaluation metrics. Third, the ApEn of the 

resting state and preferred music correlated with behavioral CRS-R scores in patients 

with DOC, suggesting that the patients’ states of consciousness were highly 

synchronized with the ApEn.  

The availability and robustness of EEG make it a promising tool for bedside 

diagnostic evaluation of patients with DOC, at least as a first-line/screening diagnostic 
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procedure. Our team has conducted previous research showed a positive correlation 

between elevated mean ApEn values and CRS-R scores, i.e., ApEn values were higher 

in the MCS than in the VS. Emotion or familiarity attached to a stimulus reportedly 

elicits a stronger response than a neutral stimulus37; therefore, preferred music is more 

conductive to elicit the expression of residual cognitive functioning in the diagnosis of 

DOC. In a prognostic study of DOC patients38, the ‘task’ paradigm had lower sensitivity 

but higher specificity than the ‘resting state’ paradigm. Therefore, combining different 

EEG paradigms in clinical practice can potentially improve DOC classification 

accuracy. Emotional salience and autobiographical context may be important for 

accurately assessing residual cognitive ability15,28,39. 

Resting-state analyses revealed significantly higher ApEn in left cortical regions 

among MCS patients versus VS/UWS patients (p<0.05). Notably, these findings align 

with established neural correlates of consciousness, which demonstrate: (1) 

strengthened functional connectivity between the posterior cingulate cortex (default 

mode network) and left anterior insula (salience network); (2) elevated fractional 

amplitude of low-frequency fluctuations in the left prefrontal executive control network 

(ECN); and (3) a positive association between left ECN activity and behavioral 

responsiveness (CRS-R scores: r=0.34, p=0.04)40. Furthermore, left occipital glucose 

metabolism (CMRGlu) was markedly higher in MCS patients (P=0.013), suggesting 

residual environmental awareness may depend on preserved left occipital 

function41. Importantly, our finding of left-lateralized ApEn patterns, particularly 

enhanced left-hemispheric signal complexity in MCS versus VS/UWS patients during 

music stimulation-further implicates left-hemispheric network integrity in minimal 

consciousness. This observation aligns with existing evidence that low-frequency 

music selectively activates the left prefrontal cortex and primary somatosensory cortex 

(S1) in MCS patients42.  In stark contrast, VS/UWS patients typically demonstrate 

diffuse structural damage to thalamocortical and ascending reticular activating system 

(ARAS) pathways, which may account for their impaired network activation patterns 

and reduced responsiveness to sensory stimulation. 
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While ML in medicine has shown a remarkable potential to improve the diagnosis 

and prognosis of various neurological disorders. However, its application in diagnosing 

DOC remains limited. Notably, DL replaces the traditional complexity of manual 

feature extraction and avoids the influence of ML on the a priori knowledge of the 

results, allowing for the retention and processing of complex information and finding 

more accurate links between inputs and outputs43. Supporting this, Aellen et al 25 

developed a CNN model in their 2023 Brain study that analyzed early EEG patterns to 

predict 3-month awakening in comatose post-cardiac arrest patients undergoing target 

temperature management (TTM; 33°C/36°C), demonstrating robust performance 

(PPVs: 0.83-0.81; AUCs: 0.69-0.70). Similarly, another study reported an AUC of 

0.885 using one-dimensional CNNs44. Building on these developments, our CNN 

model attained 90.00% accuracy in ApEn-based EEG classification for DOC, a result 

comparable to the 87.6% accuracy achieved by Pan et al 45 using self-supervised 

contrastive domain generalization (SSCDG). Notably, Pan et al.'s framework enables 

knowledge transfer from healthy to DOC subjects through self-supervised 

learning, further advancing the field. Recent progress demonstrates the superiority of 

multiscale CNNs with few-shot learning (e.g., Cai et al.'s46 MSCNN-FSL), which 

outperforms conventional single-scale approaches by achieving >64% accuracy while 

mitigating overfitting in small datasets. Furthermore, DL applications continue to show 

advantages over traditional ML, as evidenced by Huan et al.'s 47 DeepDOC 

(AUC=0.927, accuracy=0.861) for rs-fMRI classification.  While our study confirms 

that traditional ML performs adequately in DOC diagnosis, DL algorithms maintain a 

clear performance advantage. 

Notably, our model significantly outperformed the SVM (discrimination score: 0.84) 

and GRNN baselines (P<0.05), underscoring the potential of simpler architectures 

when combined with ApEn feature engineering. SVM is a supervised learning 

algorithm popular in DOC research as a kernel-based classification method with built-

in mechanisms for controlling overfitting tendencies. Liang et al.48 constructed a 

multidimensional EEG nonlinear metric model to discriminate between two-
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dimensional consciousness using a genetic algorithm-based SVM and observed (AUC 

= 0.923) that it outperformed BP (Backpropagation) and RF (Random Forest) Neural 

Networks. Another study trained an SVM classifier using auditory-induced absolute 

power spectral density differences to predict DOC prognosis with an accuracy of 0.727 

and an average AUC of 0.87718. Diffusion tensor imaging combined with an SVM 

revealed that thalamic tracks reaching the frontal, parietal, and sensorimotor regions 

could discriminate VS, MCS−, and MCS+ across each region, with up to 100% 

accuracy49. Our previous study found that, based on clinical indicators, GRNN 

performed well in predicting the patient's prognosis36. Therefore, this study attempted 

to combine a GRNN with extracted EEG data features to diagnose DOC; however, its 

performance was lower than that of the SVM. Some studies have used GRNN to 

construct EEG-based classification models, mainly for epilepsy classification50 and 

recognition of control artifact tasks34; these perform relatively well. Overall, this 

study’s SVM and GRNN applications performed less well than the CNN in classifying 

DOC. We hypothesized that in DOC, the uncertainty of traditional ML feature 

extraction, owing to unknown pathogenic mechanisms and insufficient a priori 

knowledge, may help explain the poor results. 

This study has some limitations: First, this study only explored the diagnostic 

performance of ML models in VS/UWS and MCS states with a small sample size. 

Further studies should focus on more specific subgroups of patients-particularly 

Minimally Conscious State plus (MCS+), Minimally Conscious State minus (MCS-), 

and Atresia Syndrome—increase patient sample size, and improve methods for feature 

selection. Second, although patients are assessed in an 'awake' state, some VS/UWS 

patients are unable to fully monitor the patient's state of alertness during data acquisition 

due to the lack of a sleep-wake cycle. Therefore, the possibility that the patient fell 

asleep during the scanning process cannot be ruled out, which may affect the accuracy 

of the test results. Third, while our CNN model's supervised learning framework 

demonstrates strong classification performance, its generalizability across inter-subject 

EEG variability may be constrained. Similarly, the current ApEn-based feature 

extraction, though computationally efficient, could be enhanced to better capture 
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domain-invariant neural patterns. Building on recent advances in few-shot learning, 

future work will: (1) integrate multiscale convolutional architectures (MSCNN-FSL) to 

improve cross-subject generalization through hierarchical feature learning, and (2) 

implement self-supervised contrastive domain generalization (SSCDG) frameworks to 

enhance robustness against distribution shifts while reducing annotation 

dependence.  Fourth: This preliminary study demonstrates the feasibility of CNN-based 

analysis with single-metric ApEn EEG topography in a small exploratory cohort, 

highlighting the potential of nonlinear EEG features for DOC assessment. Future 

research should focus on the multimodal integration of complementary nonlinear 

measures-Lempel-Ziv Complexity, Correlation Dimension, and Largest Lyapunov 

Exponent-to develop more comprehensive diagnostic models. Finally, the CNN's 3×3 

convolutional kernels emulate local receptive fields, yet the model's decisions remain 

neurophysiologically opaque. While batch normalization improves training, techniques 

like Grad-CAM are ultimately required to localize clinically meaningful brain regions. 

 

Conclusion 

This study showed strong links between the ApEn characteristics of the EEG 

response (resting state, preferred music) and consciousness states, reflecting neural 

synchrony and complexity, which have been previously associated with the presence of 

consciousness. Given the heterogeneity of DOC pathophysiology, CNNs can retain and 

process complex information, allowing them to classify VS/UWS and MCS more 

accurately in an automated and user-independent manner. This result may also explain 

the superiority of CNNs over traditional ML. Our findings call for a more systematic 

use of auditory stimuli in clinical routines, combined with state-of-the-art DL 

algorithms, to assist and diagnose patients with DOC in the grey area of consciousness. 
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Table 1. Layer-wise architecture of the Two-Way CNN 

Abbreviations: Total Parameters: 453,95, BN: Batch Normalization, ReLU: Rectified Linear 

Unit. 

 

 

Table 2. Distributions of characteristics at baselines between the training and test sets. 

 Training set (n=76) Test set (n=28) 

 VS/UWS (n=39) MCS (n=37) VS/UWS (n=17) MCS (n=11) 

Age, days (IQR) 60.00 (47.00, 72.00) 69.00 (51.50, 76.50) 57.24 ±14.84 58.09±17.57 

Days post-injury, days (IQR) 76.00 (48.00, 154.00) 75.00 (46.50, 190.00) 118.00 (30.50,282.50) 149.00 (74.00, 359.00) 

Male, n (%) 27 (69.23%) 25 (67.57%) 11 (64.71%) 9 (81.81%) 

Etiology, n (%)     

Trauma 7 8 1 4 

Stroke 30 27 13 6 

Anoxia 2 1 3 1 

 0 1   

Injury location, n (%)     

Unilateral  10a 19 9 6 

Bilateral/diffuse 29 18 7 5 

CRS-R auditory scores, 

median (IQR) 

1 (1, 2)  2 (2, 3) 1 (1, 1) 3 (2, 3) 

CRS-R total scores, median 

(IQR) 

 4 (2, 5) b  9 (8,10)  5 (2, 6) b 8 (6,10) 

Abbreviations: IQR: interquartile range, CRS-R: Revised Coma Recovery Scale. 

aChi-square test found a significant difference.  

bOne-way ANOVA followed by Mann–Whitney U.  

  

Layer Operation Kernel/Stride Output Shape Trainable Parameters 

Input - - 256×256×3 0 

Conv1 + BN + ReLU 3×3 convolution 3×3 / 1 256×256×32 896 

MaxPool1 2×2 max pooling 2×2 / 2 128×128×32 0 

Conv2 + BN + ReLU 3×3 convolution 3×3 / 1 128×128×64 18,496 

MaxPool2 2×2 max pooling 2×2 / 2 64×64×64 0 

Conv3 + BN + ReLU 3×3 convolution 3×3 / 1 64×64×128 73,856 

MaxPool3 2×2 max pooling 2×2 / 2 32×32×128 0 

Conv4 + BN + ReLU 3×3 convolution 3×3 / 1 32×32×256 295,168 

MaxPool4 2×2 max pooling 2×2 / 2 16×16×256 0 

Flatten - - 65,536 0 

Dense Fully connected - 1 65,537 
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Table 3. Mean ApEn values to each condition and group by individual electrodes  

 

Montage 

Resting-state Preferred music 

VS/UWS MCS F P-value VS/UWS MCS F P-value 

FP1 0.60±0.14 0.72±0.18 9.96 0.002 0.59±0.17 0.77±0.18 18.92 ＜0.001 

FP2 0.61±0.17 0.65±0.17 0.96 0.332 0.64±0.18 0.66±0.18 0.43 0.516 

F3 0.68±0.19 0.78±0.24 5.08 0.027 0.70±0.22 0.82±0.24 5.89 0.018 

F4 0.66±0.15 0.74±0.21 3.50 0.066 0.68±0.18 0.75±0.18 3.01 0.087 

C3 0.62±0.18 0.77±0.24 10.22 0.002 0.62±0.17 0.81±0.24 15.93 ＜0.001 

C4 0.68±0.17 0.75±0.20 2.33 0.131 0.70±0.16 0.76±0.18 2.67 0.107 

P3 0.67±0.19 0.79±0.19 7.62 0.007 0.68±0.17 0.82±0.18 11.96 0.001 

P4 0.64±0.19 0.71±0.22 2.35 0.129 0.66±0.21 0.73±0.22 2.36 0.129 

O1 0.67±0.18 0.74±0.19 2.93 0.091 0.67±0.18 0.78±0.20 6.13 0.016 

O2 0.67±0.18 0.75±0.20 0.07 0.066 0.70±0.19 0.78±0.19 2.89 0.093 

F7 0.62±0.21 0.72±0.21 4.36 0.040 0.63±0.22 0.77±0.22 7.27 0.009 

F8 0.70±0.19 0.75±0.19 1.64 0.205 0.71±0.19 0.78±0.19 2.62 0.110 

T3 0.66±0.20 0.76±0.20 4.41 0.039 0.66±0.20 0.79±0.18 8.44 0.005 

T4 0.70±0.18 0.73±0.23 0.58 0.450 0.72±0.19 0.78±0.22 1.94 0.168 

T5 0.64±0.19 0.75±0.20 5.90 0.018 0.66±0.20 0.78±0.19 7.87 0.006 

T6 0.71±0.19 0.74±0.22 0.25 0.617 0.73±0.19 0.78±0.16 1.78 0.187 

Abbreviations: ApEn: approximate entropy, CNN: convolutional neural network, MCS: minimally 

conscious state, VS/UWS: vegetable state/unresponsive wakefulness syndrome, SVM: support 

vector machine, GRNN: generalized regression neural network.  
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Table 4. Performance comparison of machine learning 

Model AUC Accuracy Sensitivity Specificity PPV NPV 

CNN 
0.902 

(0.737, 0.980) 

90.00% 

(73.47%, 97.89%) 

89.47% 

(66.86%, 98.70%) 

90.91% 

(58.72%, 99.77%) 

94.44% 

(72.27%, 99.11%) 

83.33% 

(57.08%, 94.95%) 

SVM 
0.830 

(0.649, 0.942) 

83.33% 

(65.28%, 94.36%) 

84.21% 

(60.42%, 96.62%) 

81.82% 

(48.22%, 97.72%) 

88.89%  

(69.23%,96.60%) 

75.00% 

(50.59%, 89.79%) 

GRNN 
0.770 

(0.581, 0.903) 

76.67% 

(57.72%, 90.07%) 

76.19% 

(52.83%, 91.78%) 

77.78% 

(39.99%, 97.19%) 

88.89% 

(69.72%, 96.53%) 

58.33% 

(37.65%, 76.45) 

Abbreviations: AUC: Area under the curve, PPV: Positive Prediction Value, NPV: Negative 

Prediction Value. 

 

 

 

  

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



Figure Legends 

Figure 1. Patient selection process. ApEn: approximate entropy, CNN: convolutional 

neural network, EEG: Electroencephalogram, MCS: minimally conscious state, 

VS/UWS: vegetable state/unresponsive wakefulness syndrome. 
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Figure 2. Schematic diagram of the computational framework. (A) Participant 
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enrolment, clinical evaluation, and scanning procedures. (B) Construction CNNs. (C) 

Construction of traditional machine learning frameworks, i.e., SVM and GRNN. ApEn: 

approximate entropy, CNN: convolutional neural network, EEG: 

Electroencephalogram, MCS: minimally conscious state, VS/UWS: vegetable 

state/unresponsive wakefulness syndrome. 

 

 

 

 

 

 

 

 

 

Figure 3. Violin plot and correction analysis. (A) Distribution of ApEn in VS/UWS and 
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MCS patients in the resting state and under stimulation with preferred music. (B) 

Correlation between CRS-R total score and ApEn means in VS/UWS and MCS patients. 

ApEn: approximate entropy, CNN: convolutional neural network, EEG: 

Electroencephalogram, MCS: minimally conscious state, VS/UWS: vegetable 

state/unresponsive wakefulness syndrome. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Confusion matrices and ROC curves. ApEn: approximate entropy, CNN: 
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convolutional neural network, EEG: Electroencephalogram, MCS: minimally 

conscious state, VS/UWS: vegetable state/unresponsive wakefulness syndrome. 
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