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Abstract

Aims: This study explored the value of nonlinear features extracted from EEG signals
to facilitate the assessment of patients with disorders of consciousness (DOC) with
limited communication capacity.

Methods: We utilized a dataset comprising 104 participants, 56 with vegetative state
(VS)/unresponsive wakefulness syndrome (UWS) and 48 in a minimally conscious
state (MCS). For each participant, we computed channel-wise approximate entropy
(ApEn) from EEG time-series data using a sliding window approach under two
experimental paradigms: resting state and preferred music stimulation. These nonlinear
measures were then spatially interpolated to generate topographical maps. Both resting
state and preferred music stimulation data were processed as 1-second epochs using
identical convolutional neural networks (CNN) architectures. The classification
performance and validity of the CNN were compared against support vector machine
(SVM) and generalized regression neural network (GRNN) models.

Results: ApEn in the resting state and under stimulation with preferred music correlated
with the Coma Recovery Scale-Revised scores in patients with DOC, showing varied
regional responses. Notably, the CNNs resulted in a positive diagnostic performance
with an accuracy of 90.00% and an AUC of 0.902. The CNN was better than the SVM
and GRNN in differentiating between the VS/UWS and MCS states.

Conclusion: This study offers a convenient and accurate method for detecting
awareness in patients with VS/UWS and MCS using ApEn features in the resting state
and under preferred music stimulation using deep learning.

Trial registration: www.chictr.org.cn. Registration code: ChiCTR2300079310.

Registered 29 December 2023.
Keywords: convolutional neural networks; disorder of consciousness; support vector
machine; generalized regression neural networks; electroencephalography; nonlinear

dynamics analysis

Introduction
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Patients with brain injury may have varying degrees of disorders of consciousness
(DOCQ), even after their lives have been saved'. Depending on the degree of preserved
consciousness, the main categories include vegetative state (VS)/unresponsive
wakefulness syndrome (UWS), in which the eyes open spontaneously without any
conscious behavior, and minimal conscious state (MCS), which is characterized by
unstable yet reproducible signs of awareness>.

The frequency of misdiagnosis of unawareness is as high as 40% when diagnosed
solely by clinical consensus without corroboration using behavioral scales®. The most
sensitive scale used to distinguish between MCS and VS/UWS is the Revised Coma
Recovery Scale (CRS-R), which allows longitudinal monitoring of behavioral
reactivity in patients with DOC. Error rates can be attenuated by repeated assessment?.
However, patient factors may mask the true state of consciousness, including cognitive
(e.g., aphasia, apraxia) or sensory impairments (e.g., blindness, deafness), minor or
easily exhausted motor activity, and pain. In addition, the reliability of clinical
assessments is reduced due to the fluctuating response of patients with DOC to
instructions or external stimuli’. In ali these cases, the absence of observed purposeful
behaviors at the bedside cannot definitively prove the absence of consciousness. How
to accurately estimate the state of consciousness in patients with DOC to help guide
optimal healthcare choices and achieve desired patient outcomes remains uncertain.

Neuroimaging is increasingly recognized as helpful in behavioral diagnoses.
Notably, the amplitude of the electroencephalography (EEG) signal exhibits marked
random fluctuations over time and is non-stationary and nonlinear®. In many cases,
EEG signals exhibit intermittent repetitions of transient activity rather than sustained

oscillations at specific frequencies’?.

Entropy-based EEG analysis has received
attention in characterizing brain dynamics and has been widely used to assess the
“complexity” of EEG in DOC patients’!?. We selected approximate entropy (ApEn) as
our core metric because it: (1) reliably quantifies signal complexity from brief, noisy
recordings'!, (2) detects functional isolation through decreasing values'?, and (3) offers

clinical practicality with minimal data requirements (100-500 points)'®. The ApEn,

calculated using a sliding-window approach, precisely captures local dynamics and has



established validity in consciousness monitoring’-1%12:1415,

Resting-state EEG, which does not require a sophisticated setup or active
participation of the subject, has been increasingly used to diagnose DOC'®!”. However,
every state of consciousness is associated with emotions'®. Auditory stimuli prompt
brain activity and form a reliable observational network that helps differentiate between
MCS and VS/UWS'. The auditory system is less susceptible to damage compared with
other parts of the brain after DOC, and is susceptible to fluctuations in states of
consciousness'*?°,

Machine learning techniques may improve the diagnosis of DOC, especially in
non-specialist clinics. Deep learning (DL) approaches, specially building convolutional
neural networks (CNN), have drawn increasing attention for classification and
regression to improve estimation accuracy and robustness. CNN models can directly

utilize EEG images as input®!

. CNN-based learning automatically extracts features that
alleviate the reliance of traditional approaches on laborious feature engineering,
requiring less expertise in domain knowledge and maintaining more information for
accurate inference??. Specifically, CNNs using time-frequency transforms of EEG data
have been used for brain-computer interfaces®, detection of focal epileptiform
discharges, prediction of outcomes in patients with acute brainstem infarction®*, and
prediction of recovery from coma after cardiac arrest®®. Nonetheless, the efficacy of
CNN models in distinguishing patients with VS/UWS and MCS remains unclear.

This study presents a novel integration of ApEn-derived nonlinear features from
both resting-state and auditory stimulation EEG signals within a CNN framework,
offering an enhanced approach for DOC diagnosis. It had two main aims. First, we
aimed to develop a CNN tool that utilizes ApEn features in a resting state and under
auditory stimulation to differentiate between patients with MCS and UWS. Second, to
benchmark CNN’s performance against traditional ML methods, we constructed other

baseline models using ML algorithms, including a linear support vector machine (SVM)

and a generalized regression neural network (GRNN).



2 Materials and methods

2.1 Patients

This cross-sectional study recruited 104 participants with DOC who were admitted
to the Rehabilitation Department of the Second Hospital of Shandong University
between 17 October 2023 and 10 July 2024. The following inclusion criteria were used:
(1) diagnosis of VS/UWS or MCS based on the CRS-R scores; (2) age >18 years. The
following exclusion criteria were used: (1) patients with pre-existing known hearing
loss; (2) Unstable state of consciousness characterized by signs of deterioration over
the week; (3) diagnosed with locked-in syndrome; (4) electromyography (EMG)
artifacts due to severe spasticity; (5) a record of skull fracture; (6) patients with
schizophrenia/schizoaffective disorder; (7) the use of sedatives or muscle relaxants
within a day before data collection. The Human Subject Ethics Committee of the
Second Hospital of Shandong University approved the study protocol. The approval
and registration codes are KYLL-2023-414 and ChiCTR2300079310, respectively.
Written informed consent was signed by the participant's family member or legal
guardian. The research procedures followed the principles of the Declaration of

Helsinki, and all associated patient data were kept confidential.

2.2 Data acquisition

Demographic and clinical characteristics, including sex, age, and days post-injury,
were collected from eligible participants. The diagnostic accuracy of EEG was
determined using a CRS-R diagnosis obtained through a repeated standardized clinical
assessment as a reference’®. Trained and experienced rehabilitation physicians
performed the CRS-R assessment at least once daily for five days. If ambiguity or
disagreement persisted between the examiners, the patient was reassessed until the

neuropsychological team reached a consensus.

2.3 Experimental Paradigm

Initially, EEG signals were recorded in a quiet state for 5 min. Subsequently, music



with ‘mood and arousal function’®’ and ‘autobiographical priming’ 2

capacity was
chosen as auditory stimulation to enhance the responsiveness of patients with DOC to
external stimuli. EEG signals were recorded for another 5 min while patients listened
to their preferred music, which was obtained through interviews with the patients’
family members. To ensure standardized auditory stimulation while minimizing
potential artifacts, all preferred music (upbeat and optimistic to prevent emotional bias)
was delivered via wireless Bluetooth earbuds with active noise cancellation at 60—70
dB. This wireless setup eliminated cable-related interference and ensured symmetric
binaural stimulation, preventing lateralized artifacts that could confound unilateral

ApEn analysis. Additionally, EEG data were processed with a 50 Hz notch filter to

further suppress any residual line noise.

2.4 EEG Recordings

Procedures were performed in a noise-free ward without additional electronic
equipment. Data collection was conducted within controlled time windows (8:00—11:30
AM and 1:30-5:00 PM), and patients exhibiting severe drowsiness were
excluded. EEG signals were acquired using a wireless 16-channel ZN16E system
(Chengdu, China) configured with 19 scalp electrodes positioned according to the 10-
20 system (FP1, FP2, F3, F4, C3, C4, P3, P4, 01, 02, F7, F8, T3, T4, TS5, T6, FPZ, A1,
A2). The configuration employed: (1) bilateral earlobe references (A1-A2), (2) FPZ as
ground electrode, and (3) the remaining 16 sites as active recording channels. The
signals were digitized at a sampling rate of 500 Hz and a bandwidth of 0.3—-100 Hz.

Each participant was assessed in the supine position; a standardized arousal
promotion regimen (i.e., deep pressure stimuli from the facial muscle tissue to the toes)
was implemented to keep the participant in the wake cycle. During the EEG recording,
patients with DOC were asked to relax, be quiet, wake up, and close their eyes._The
entire process was performed with the patients’ eyes closed to maximize EEG data
collection while minimizing ocular artifacts.

A rehabilitation physician monitored participants and EEG traces in real-time,

identifying potential drowsiness through clinical recognition of prolonged 0 bursts (>3



s duration) and spindle-like waveforms based on visual pattern analysis. The
participants were awakened when behavioral and EEG signs of drowsiness appeared.
Artifact-free epoch selection was performed offline by an experienced physician
through visual inspection of the recordings. Our artifact exclusion protocol consisted of
three key steps: (1) Pre-screening exclusion of patients with muscle hypertonia; (2)
Intra-recording ocular artifact suppression using light-dampening eye coverings; (3)
The physician excluded EEG signals mixed with visible EMG or ocular artefacts, and
a stable EEG epoch was recorded (i.e., the noisy portion at the beginning of the
recording was discarded). Data were processed using MATLAB software.

ApEn is susceptible to high-frequency components of the EEG signals, and the
entire montage is affected by interfering EMG (50-150 Hz). Data with a significant
increase in nonlinear metrics throughout the montage were excluded. Finally, each
patient with DOC was selected for 60 non-overlapping segments in the resting state
and under auditory stimulation to extract the ApEn topography and values under each
electrode for further analysis. Two EEG signal segments (resting state, preferred music),
each capturing approximately 32,768 consecutive data points (65.536 seconds), were
selected for further analysis. For analysis, a notch filter (50 Hz) was applied to remove
electrical noise, a low-pass filter (70 Hz) to reduce myoelectric interference, and a high-

pass filter (0.3 Hz) to attenuate artifacts.

2.5 EEG signal extraction

As the EEG time domain is a non-stationary state, effectively representing the
irregularity of EEG time series using conventional feature extraction is difficult.
Therefore, nonlinear dynamics were used to analyze EEG complexity characteristics.

ApEn® has a robust anti-interference capacity and high stability; minor anomalies
do not affect the overall calculation result. With sufficient data, it can be used for both
random and deterministic signals and has good generality. As large amounts of EEG
data contain both random and deterministic signals, ApEn is suitable for EEG signal
extraction. When applied to EEG signals, ApEn quantifies the complexity of neural

activity, which is a marker of the functional state of the cerebral cortex’. It quantifies



the predictability of the subsequent amplitude values of a data sequence based on the
knowledge of previous amplitude values. For completely regular data sequences, the
knowledge of previous values predicts subsequent values, and the ApEn value is zero.
For irregular sequences, the prediction of subsequent values worsens; the
approximation increases even if the previous values are known. The chosen parameters
included the length of the elapsed time (N), predicted subsequent value (m), and ApEn
filtering level (r). To improve the accuracy of the analysis, N was fixed at 4,096. The

ApEn was calculated as follows:

1 L-m migy A L-m+1 n
ApEn(m,r,L)_mZ“i:1 logC™(r) —L—m+1Zi=1 logC™(r) (1)

In this study, m was set to 2, and » = 20%standard deviation (SD) of the original
time series Xn. The sliding window length was determined using the sampling length
(2s) and was used to perform the ApEn calculations.

ApEn calibrates the degree to which a series of interrelationships quantify a
continuum from completely ordered (zero) to completely random (infinite); the larger
its value, the more complex or irregular the data. Thus, increasing irregularity (i.e.,
increasing ApEn) increases nonlinear cellular dynamics or interactions in the cortical

network?!.

2.6 Classifier
2.6.1 Two-Way CNN

A CNN typically comprises several layers, including input, convolutional, activation
function, pooling, fully connected, and output layers®=32. A four-layer convolutional
network was used for feature extraction, with each layer comprising 3x3 convolutions,
batch normalization (to facilitate effective convergence), and a rectified linear unit
activation function. The down-sampling process involved 2x2 max pooling with a
stride of 2. The fully connected layer receives the features extracted from the
convolutional network and outputs the final prediction results. The model was trained
on a single NVIDIA GeForce RTX A6000 GPU with 48 GB of memory using a batch

size of one and training for 500 epochs. An RMSProp optimizer was employed with a



learning rate of 0.01. The training parameters, including alpha = 0.99, weight decay =
0, momentum = 0, and epsilon = 1x10-8, were set to default values established in the
literature®. From each patient's recordings, three EEG images were generated for each
of the two conditions (resting state and preferred music), with 20 EEG topographies on
each image, i.e., each patient ended up with 6 EEG images (120 topographies) that were
incorporated into the CNN model. The patient’s EEG images, originally at a 512x512
RGB resolution, were cropped to 256x256 pixels to address memory consumption
concerns. Below is the detailed layer-wise structure in Table 1:
2.6.2 GRNN

Specht described generalized regression neural networks (GRNN) as probabilistic
neural networks®. Similarly, in multilayer error backpropagation neural networks,
GRNNs can approximate any functional relationship between the inputs and outputs
under appropriate conditions. Specifically, GRNNs can be used as classifiers to
categorize test samples into two or more classes. This algorithm is not prone to local
minima, requires fewer tuning parameters for optimization, and can be used to analyze
large and unstable datasets®. The GRNN-specific algorithms used here were based on
our previous research®. The GRNN was built using an in-house software program in
MATLAB (version R2021a, MathWorks, Natick, MA, USA).
2.6.3SVM

A support vector machine (SVM) is a supervised learning algorithm used for

binary and multiple classification problems. It classifies items by finding an optimal
hyperplane in the feature space with maximum intervals. This study used the SVM
toolbox function fitcsvm provided in MATLAB. The features and labels of the input
function samples were used for model training. The input sample dimensions were

76x15, where 76 represents the number of samples and 15 the number of features.

2.6.4 Model performance
The classification performance was evaluated using the area under the receiver
operating characteristic curve (ROC-AUC). An AUC value >0.60 was considered to

indicate enhanced classification ability._ Delong’s test was used to assess the statistical



significance of the differences between the ROC curves of the three models. Based on
the predicted results and the actual labels of the samples, they can be categorized into
four types: true positive (TP), false positive (FP), true negative (TN), and false negative
(FN). The confusion matrix for binary classification was then obtained, as shown in
Table 1. Sensitivity, specificity, and accuracy can be derived from the confusion matrix.

The corresponding formulae are as follows:

TP+TN

Accuracy = (2)
TP+TN + FP + FN
. TP
Sensitivity = —— 3
Y TP+ FN ( )
e TN
Specificity = ————— 4
P Y TN + FP ( )
Precison = P (5)
TP +FP
. 2*TP -
2TP+FP+ FN Y

2.7 Statistical analyses

Data analyses were performed using IBM SPSS for Windows (version 26.0; IBM
Corp., Armonk, NY). The Shapiro—Wilk test was used to assess the distribution
normality for age, days post-injury, and total CRS-R score. Summary statistics for
normally distributed data are presented as mean and standard deviation (SD), whereas
summary statistics for non-normal data are presented as interquartile range (IQR). The
independent samples 7-test and Mann—Whitney U test were used to compare normal
and non-normal data. Categorical variables are presented as percentages. Correlation
analysis of the mean ApEn on the 16 electrodes with the total CRS-R score was
performed using Spearman’s correlation analysis, with » indicating the strength of the
correlation. The preferred music-induced ApEn values for patients with VS/UWS and
MCS were compared using a one-way ANOVA with Bonferroni correction. The
significant variables from the univariate analysis were incorporated into the SVM and
GRNN classifiers. Figures were generated using GraphPad Prism version 6.01 (San

Diego, CA, USA). Statistical significance was set at P <0.05.



3. Results

3.1 Baseline patient characteristics

The patient selection process is illustrated in Fig 1. A total of 111 patients with
DOC were initially screened; of these, 3 were excluded because of motion artefacts and
4 due to severe spasticity. Ultimately, 104 patients were included, of which 76 served
as the training set; 28 served as the test set, and were used to evaluate the performance
of the classifier model. The demographic information of the training and test sets is
presented in Table 2. In the training set, patients in VS/UWS and MCS were 69.23%
(n=27) and 67.57% (n=25) male, respectively, and had a median age of 60 and 69 years,
duration post-injury of 76 and 75 days, CRS-R total scores of 4 and 9, and CRS auditory
scores of 1 and 2. However, in the training set, significant diffciences existed between
the VS/UWS and MCS groups in terms of injury location, with bilateral/diffuse damage

in patients with MCS (P<0.05). Overview of the diagnosis of the framework in Fig 2.

3.2 Association of EEG features witli prognosis and clinical behavior

Violin plots of the distribution of ApEn values in patients with DOC in the resting
state and in the preferred music are shown in Fig 3A. We performed correlation analyses
to identify the relationship between clinical variables and ApEn values in patients with
DOC. The results of the correlation analysis are shown in Fig 3B. The mean value of
ApEn on the electrodes was not significantly correlated with the total CRS-R scale
score in patients with VS/UWS, either in a quiet state or with their preferred music (P >
0.05). Moreover, the mean ApEn values of patients with MCS in preferred music were
positively correlated with the total CRS-R score, with a correlation coefficient of 0.431
(P =0.008). The mean value under the ApEn electrode was positively correlated with

the total CRS-R score in MCS patients in the resting state (R =0.399, P = 0.014).

3.3 Machine learning variable screening



We investigated the association between ApEn values and the state of
consciousness (VS/UWS and MCS) in both paradigms (Table 3). In the resting state,
patients with MCS had significantly higher ApEn values at FP1, F3, C3, P3, F7, T3,
and T5 than did VS/UWS patients (P <0.05, one-way ANOVA). With preferred musical
stimulation, the ApEn values in FP1, F3, C3, P3, O1, F7, T3, and T5 were significantly
higher in patients with MCS than in patients with VS/UWS (P < 0.05, one-way
ANOVA). Thus, 15 variables were included in the SVM and GRNN models.

3.4 Model performance in the validation set

The comparative performance of all classifiers in the validation set is summarized
in Table 4 and Fig 4 (showing confusion matrices and ROC curves). The CNN achieved
numerically higher metrics than SVM, including AUC (0.902 vs 0.830, P>0.05 by
DeLong test). While this difference was not statistically significant, both CNN and
SVM significantly outperformed GRNN in AUC (P<:0.05 by DeLong test). Complete

performance metrics with 95% Cls are tabulated in Table 4.

4. Discussion

DOC:s are often caused by brain lesions in individuals, resulting in similar states of
unconsciousness. Given that selecting and managing an appropriate rehabilitation
program requires awareness, an objective quantitative classification method for patients
with DOC is urgently needed. Our study had several key findings. First, using EEG
images from the resting state and preferred music, the CNN classified VS/UWS and
MCS with an accuracy of 90.00% and an AUC of 0.902. Second, the CNN
outperformed the SVM and GRNN in all evaluation metrics. Third, the ApEn of the
resting state and preferred music correlated with behavioral CRS-R scores in patients
with DOC, suggesting that the patients’ states of consciousness were highly
synchronized with the ApEn.

The availability and robustness of EEG make it a promising tool for bedside

diagnostic evaluation of patients with DOC, at least as a first-line/screening diagnostic



procedure. Our team has conducted previous research showed a positive correlation
between elevated mean ApEn values and CRS-R scores, i.e., ApEn values were higher
in the MCS than in the VS. Emotion or familiarity attached to a stimulus reportedly
elicits a stronger response than a neutral stimulus®’; therefore, preferred music is more
conductive to elicit the expression of residual cognitive functioning in the diagnosis of
DOC. In a prognostic study of DOC patients*®, the ‘task’ paradigm had lower sensitivity
but higher specificity than the ‘resting state’ paradigm. Therefore, combining different
EEG paradigms in clinical practice can potentially improve DOC classification
accuracy. Emotional salience and autobiographical context may be important for
accurately assessing residual cognitive ability!>2%37,

Resting-state analyses revealed significantly higher ApEn in left cortical regions
among MCS patients versus VS/UWS patients (p<0.05). Notably, these findings align
with established neural correlates of consciousness, which demonstrate: (1)
strengthened functional connectivity between the posterior cingulate cortex (default
mode network) and left anterior insula (salicnce network); (2) elevated fractional
amplitude of low-frequency fluctuations in the left prefrontal executive control network
(ECN); and (3) a positive association between left ECN activity and behavioral
responsiveness (CRS-R scores: r=0.34, p=0.04)*". Furthermore, left occipital glucose
metabolism (CMRCIu) was markedly higher in MCS patients (P=0.013), suggesting
residual environmental awareness may depend on preserved left occipital
function*!. Importantly, our finding of left-lateralized ApEn patterns, particularly
enhanced left-hemispheric signal complexity in MCS versus VS/UWS patients during
music stimulation-further implicates left-hemispheric network integrity in minimal
consciousness. This observation aligns with existing evidence that low-frequency
music selectively activates the left prefrontal cortex and primary somatosensory cortex
(S1) in MCS patients*’. In stark contrast, VS/UWS patients typically demonstrate
diffuse structural damage to thalamocortical and ascending reticular activating system
(ARAS) pathways, which may account for their impaired network activation patterns

and reduced responsiveness to sensory stimulation.



While ML in medicine has shown a remarkable potential to improve the diagnosis
and prognosis of various neurological disorders. However, its application in diagnosing
DOC remains limited. Notably, DL replaces the traditional complexity of manual
feature extraction and avoids the influence of ML on the a priori knowledge of the
results, allowing for the retention and processing of complex information and finding
more accurate links between inputs and outputs®. Supporting this, Aellen et al 2°
developed a CNN model in their 2023 Brain study that analyzed early EEG patterns to
predict 3-month awakening in comatose post-cardiac arrest patients undergoing target
temperature management (TTM; 33°C/36°C), demonstrating robust performance
(PPVs: 0.83-0.81; AUCs: 0.69-0.70). Similarly, another study reported an AUC of
0.885 using one-dimensional CNNs**. Building on these developments, our CNN
model attained 90.00% accuracy in ApEn-based EEG classification for DOC, a result
comparable to the 87.6% accuracy achieved by Pan et al * using self-supervised
contrastive domain generalization (SSCDG). Notably, Pan et al.'s framework enables
knowledge transfer from healthy to DOC subjects through self-supervised
learning, further advancing the field. Recent progress demonstrates the superiority of
multiscale CNNs with few-shot learning (e.g., Cai et al.'s*® MSCNN-FSL), which
outperforms conventionzl single-scale approaches by achieving >64% accuracy while
mitigating overfitting in small datasets. Furthermore, DL applications continue to show

advantages over traditional ML, as evidenced by Huan et al's % DeepDOC
(AUC=0.927, accuracy=0.861) for rs-fMRI classification. While our study confirms

that traditional ML performs adequately in DOC diagnosis, DL algorithms maintain a
clear performance advantage.

Notably, our model significantly outperformed the SVM (discrimination score: 0.84)
and GRNN baselines (P<0.05), underscoring the potential of simpler architectures
when combined with ApEn feature engineering. SVM is a supervised learning
algorithm popular in DOC research as a kernel-based classification method with built-
in mechanisms for controlling overfitting tendencies. Liang et al.*® constructed a

multidimensional EEG nonlinear metric model to discriminate between two-



dimensional consciousness using a genetic algorithm-based SVM and observed (AUC
= 0.923) that it outperformed BP (Backpropagation) and RF (Random Forest) Neural
Networks. Another study trained an SVM classifier using auditory-induced absolute
power spectral density differences to predict DOC prognosis with an accuracy of 0.727
and an average AUC of 0.877'%. Diffusion tensor imaging combined with an SVM
revealed that thalamic tracks reaching the frontal, parietal, and sensorimotor regions
could discriminate VS, MCS~, and MCS" across each region, with up to 100%
accuracy®. Our previous study found that, based on clinical indicators, GRNN
performed well in predicting the patient's prognosis®. Therefore, this study attempted
to combine a GRNN with extracted EEG data features to diagnose DOC; however, its
performance was lower than that of the SVM. Some studies have used GRNN to
construct EEG-based classification models, mainly for epilepsy classification®® and
recognition of control artifact tasks®*; these perform relatively well. Overall, this
study’s SVM and GRNN applications performed less well than the CNN in classifying
DOC. We hypothesized that in DOC, the uncertainty of traditional ML feature
extraction, owing to unknown pathogenic mechanisms and insufficient a priori
knowledge, may help explain the poor results.

This study has some limitations: First, this study only explored the diagnostic
performance of ML models in VS/UWS and MCS states with a small sample size.
Further studies should focus on more specific subgroups of patients-particularly
Minimally Conscious State plus (MCS+), Minimally Conscious State minus (MCS-),
and Atresia Syndrome—increase patient sample size, and improve methods for feature
selection. Second, although patients are assessed in an 'awake' state, some VS/UWS
patients are unable to fully monitor the patient's state of alertness during data acquisition
due to the lack of a sleep-wake cycle. Therefore, the possibility that the patient fell
asleep during the scanning process cannot be ruled out, which may affect the accuracy
of the test results. Third, while our CNN model's supervised learning framework
demonstrates strong classification performance, its generalizability across inter-subject
EEG variability may be constrained. Similarly, the current ApEn-based feature

extraction, though computationally efficient, could be enhanced to better capture



domain-invariant neural patterns. Building on recent advances in few-shot learning,
future work will: (1) integrate multiscale convolutional architectures (MSCNN-FSL) to
improve cross-subject generalization through hierarchical feature learning, and (2)
implement self-supervised contrastive domain generalization (SSCDG) frameworks to
enhance robustness against distribution shifts while reducing annotation
dependence. Fourth: This preliminary study demonstrates the feasibility of CNN-based
analysis with single-metric ApEn EEG topography in a small exploratory cohort,
highlighting the potential of nonlinear EEG features for DOC assessment. Future
research should focus on the multimodal integration of complementary nonlinear
measures-Lempel-Ziv Complexity, Correlation Dimension, and Largest Lyapunov
Exponent-to develop more comprehensive diagnostic models._Finally, the CNN's 3x3
convolutional kernels emulate local receptive fields, yet the model's decisions remain
neurophysiologically opaque. While batch normalization improves training, techniques

like Grad-CAM are ultimately required to localize clinically meaningful brain regions.

Conclusion

This study showed strong links between the ApEn characteristics of the EEG
response (resting state, preferred music) and consciousness states, reflecting neural
synchrony and complexity, which have been previously associated with the presence of
consciousness. Given the heterogeneity of DOC pathophysiology, CNNs can retain and
process complex information, allowing them to classify VS/UWS and MCS more
accurately in an automated and user-independent manner. This result may also explain
the superiority of CNNs over traditional ML. Our findings call for a more systematic
use of auditory stimuli in clinical routines, combined with state-of-the-art DL

algorithms, to assist and diagnose patients with DOC in the grey area of consciousness.
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Table 1. Layer-wise architecture of the Two-Way CNN

Layer Operation Kernel/Stride Output Shape Trainable Parameters
Input - - 256x256%3 0
Convl + BN +ReLU  3x3 convolution 3x3/1 256%256x32 896
MaxPooll 2x2 max pooling 2%x2 [ 2 128x128%32 0
Conv2 + BN + ReLU 3x3 convolution 3x3/1 128x128%64 18,496
MaxPool2 2x2 max pooling 2%x2 [ 2 64x64x64 0
Conv3+BN +ReLU  3x3 convolution 3x3/1 64x64x128 73,856
MaxPool3 2x2 max pooling 2%x2/2 32x32x128 0
Conv4 + BN + ReLU  3x3 convolution 3x3/1 32x32x256 295,168
MaxPool4 2x2 max pooling 2%x2 [ 2 16x16%256 0
Flatten - - 65,536 0

Dense Fully connected - 1 65,537

Abbreviations: Total Parameters: 453,95, BN: Batch Normalization, ReLU: Rectified Linear
Unit.

Table 2. Distributions of characteristics at baselines between the training and test sets.

Training set (n=76) Test set (n=28)

VS/UWS (n=39) ~ MCS (n=37) VS/UWS (n=17) MCS (n=11)
Age, days (IQR) 60.00 (47.00. 72.00) ~  69.00 (51.50, 76.50) 57.24 +14.84 58.09+17.57
Days post-injury, days (IQR) 76.00 (48.00, 154.00) 75.00 (46.50, 190.00)  118.00 (30.50,282.50) 149.00 (74.00, 359.00)
Male, n (%) 27 (69.23%) 25 (67.57%) 11 (64.71%) 9 (81.81%)
Etiology, n (%)
Trauma 7 8 1 4
Stroke 30 27 13 6
Anoxia 2 1 3 1

0 1

Injury location, n (%)
Unilateral 10? 19 9 6
Bilateral/diffuse 29 18 7 5
CRS-R auditory scores, 1(1,2) 2(2,3) 1(1,1) 3(2,3)
CRS-R total scores, median 4(2,5)°" 9 (8,10) 5(2,6)" 8(6,10)

Abbreviations: IQR: interquartile range, CRS-R: Revised Coma Recovery Scale.
aChi-square test found a significant difference.

®One-way ANOVA followed by Mann—Whitney U.



Table 3. Mean ApEn values to each condition and group by individual electrodes

Resting-state Preferred music
Montage VS/UWS MCS F P-value VS/UWS MCS F P-value
FP1 0.60+0.14 0.72+0.18 9.96 0.002 0.59+0.17 0.77+0.18 18.92 <0.001
FP2 0.61+0.17 0.65+0.17 0.96 0.332 0.64+0.18 0.66+0.18 0.43 0.516
F3 0.68+0.19 0.78+0.24 5.08 0.027 0.70+0.22 0.82+0.24 5.89 0.018
F4 0.66+0.15 0.74+0.21 3.50 0.066 0.68+0.18 0.75+0.18 3.01 0.087
C3 0.62+0.18 0.77+0.24 10.22 0.002 0.62+0.17 0.81+£0.24 15.93 <0.001
C4 0.68+0.17 0.75+0.20 233 0.131 0.70+0.16 0.76+0.18 2.67 0.107
P3 0.67+0.19 0.79+0.19 7.62 0.007 0.68+0.17 0.82+0.18 11.96 0.001
P4 0.64+0.19 0.71+0.22 2.35 0.129 0.66+0.21 0.73+0.22 2.36 0.129
o1 0.67+0.18 0.74+0.19 293 0.091 0.67+0.18 0.78+0.20 6.13 0.016
02 0.67+0.18 0.75+0.20 0.07 0.066 0.70+0.19 0.78+0.19 2.89 0.093
F7 0.62+0.21 0.72+0.21 4.36 0.040 0.63+0.22 0.77+£0.22 7.27 0.009
F8 0.70+0.19 0.75+0.19 1.64 0.205 0.71£0.19 0.78+0.19 2.62 0.110
T3 0.66+0.20 0.76+0.20 441 0.039 0.66+0.20 0.79+0.18 8.44 0.005
T4 0.70+0.18 0.73+0.23 0.58 0.450 0.72+0.19 0.78+0.22 1.94 0.168
T5 0.64+0.19 0.75+0.20 5.90 0.018 0.66+0.20 0.78+0.19 7.87 0.006
T6 0.71£0.19 0.74+0.22 0.25 0.617 0.73+0.19 0.78+0.16 1.78 0.187

Abbreviations: ApEn: approximate entropy, CNN: convolutional neural network, MCS: minimally
conscious state, VS/UWS: vegetable state/unresponsive wakefulness syndrome, SVM: support
vector machine, GRNN: generalized regression neural network.



Table 4. Performance comparison of machine learning

Model AUC Accuracy Sensitivity Specificity PPV NPV
0.902 90.00% 89.47% 90.91% 94.44% 83.33%
CNN (0.737,0.980)  (73.47%, 97.89%) (66.86%, 98.70%) (58.72%, 99.77%) (72.27%, 99.11%) (57.08%, 94.95%)
0.830 83.33% 84.21% 81.82% 88.89% 75.00%
SYM (0.649,0.942)  (65.28%, 94.36%) (60.42%, 96.62%) (48.22%, 97.72%) (69.23%,96.60%) (50.59%, 89.79%)
GRAN 0.770 76.67% 76.19% 77.78% 88.89% 58.33%

(0.581,0.903)  (57.72%, 90.07%)  (52.83%, 91.78%)  (39.99%, 97.19%)  (69.72%, 96.53%)  (37.65%, 76.45)

Abbreviations: AUC: Area under the curve, PPV: Positive Prediction Value, NPV: Negative
Prediction Value.



Figure Legends
Figure 1. Patient selection process. ApEn: approximate entropy, CNN: convolutional
neural network, EEG: Electroencephalogram, MCS: minimally conscious state,

VS/UWS: vegetable state/unresponsive wakefulness syndrome.
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Figure 2. Schematic diagram of the computational framework. (A) Participant



enrolment, clinical evaluation, and scanning procedures. (B) Construction CNNs. (C)

Construction of traditional machine learning frameworks, i.e., SVM and GRNN. ApEn:

approximate  entropy, = CNN:  convolutional

neural  network,

EEG:

Electroencephalogram, MCS: minimally conscious state, VS/UWS: vegetable

state/unresponsive wakefulness syndrome.
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MCS patients in the resting state and under stimulation with preferred music. (B)

Correlation between CRS-R total score and ApEn means in VS/UWS and MCS patients.

ApEn: approximate entropy, CNN: convolutional

neural

network, EEG:

Electroencephalogram, MCS: minimally conscious state, VS/UWS: vegetable

state/unresponsive wakefulness syndrome.
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convolutional neural network, EEG: Electroencephalogram, MCS: minimally

conscious state, VS/UWS: vegetable state/unresponsive wakefulness syndrome.
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