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“diana.koldasbayeva@skoltech.ru

ABSTRACT

Accurate risk estimation under distribution shifts is critical for deploying machine learning models in real-world spatial
applications, from ecological forecasting to medical image analysis. Conventional methods such as No Weighting (NW) and
Importance Weighting (IW) fail in spatially structured data due to two challenges: (1) density ratio estimation in high-dimensional
clustered distributions, and (2) non-stationarity from environmental gradients or sampling biases. Classifier-based approaches
offer partial improvements but often yield miscalibrated risk estimates by prioritizing discriminative accuracy over distribution
alignment.

We conduct a systematic evaluation of four risk estimation methods — NW, IW, Kernel Mean Matching (KMM), and classifier-
based reweighting — across synthetic benchmarks (with controlled spatial clustering) and real-world datasets (species
distributions and immune cell layouts). Results show that KMM achieves superioi robustness, reducing Mean Absolute
Percentage Error (MAPE) by 12.3—-86.5% compared to alternatives in high-dimerisional settings. This advantage stems from
KMM'’s direct minimization of distributional divergence via kernel embeddings, bypassing error-prone density ratio estimation.
Our findings demonstrate that KMM is a principled solution for spatial rick estimation, particularly when source and target
distributions exhibit complex clustering or sampling artifacts. Its consisiency across ecological and biomedical domains
suggests broad applicability for reliable model deployment in spatially heterogeneous environments.

Keywords — Kernel Mean Matching, spatial risk estimation, spatial modeling, importance reweighting; distribution shift
robustness

1 Introduction

The risk of a model is the expected error of a data-based model on unseen data. Reliable risk estimation justifies or invalidates
the use of a particular model, aliowing a practitioner to assess its utility. Under independent and identically distributed (i.i.d.)
assumptions, cross-validation and hold-out testing provide theoretically sound estimates. However, these methods can fail
dramatically under distribution shift between training and test data, particularly in spatial settings where data exhibit complex
dependencies. One example is covariate shift, where the distribution of a model input changes when switching from source
(training) to target (test) data. Under the covariate shift, traditional estimators systematically underrate the true error'. This
issue is especially problematic in scientific and environmental applications, where overly optimistic error estimates can lead to
incorrect conclusions.

For example, the simplest estimator, No Weighting (NW), computes the empirical error directly from available target
samples. It implicitly assumes that the source and target distributions are similar. Under covariate shift, NW becomes biased?.
A more flexible family of estimators trains a probabilistic classifier to distinguish source from target data and converts its
outputs into density-ratio weights>“. Although often more accurate than NW, classifier-based weighting inherits instability
from imperfect class separation and remains sensitive to clustered or non-overlapping samples. The classical importance
weighting (IW) estimator rescales source samples using the density ratio between target and source distributions. While IW is
theoretically unbiased, it suffers from extreme weight variance in high dimensions or under sparse sampling?.

These challenges become more severe when data exhibit spatial structure. Spatial datasets are affected by non-stationarity,
spatial autocorrelation, clustered sampling, and environmental gradients that induce strong distribution shifts. For example,
mismatches between observed and modeled sea surface temperature trends indicate that standard climate models fail to capture
important components of real-world climate dynamics®. Similarly, climate-driven shifts toward water-limited regimes are
transforming terrestrial ecosystems, altering vegetation dynamics and ecosystem services’. Spatial biases also manifest in
species-distribution data®, pollution monitoring®, and numerous biomedical settings.
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In biomedical research, spatial artifacts strongly influence analyses!?. A common pitfall occurs when adjacent normal
tissue is used as a control in cancer studies: despite being anatomically normal, it is biologically altered by tumour-proximal
effects, leading to biased differential-expression estimates!''. Kernel Maximum Mean Discrepancy (MMD) has been used to
quantify these distributional differences and has shown improved sensitivity in identifying perturbed genes and pathways!!-1%.
Spatial clustering is also intrinsic to tumour—immune microenvironments'?, further complicating risk estimation.

Several methodological frameworks address spatial dependence. Spatial and spatio-temporal cross-validation'* yields
more realistic predictive performance estimates than random splitting but does not correct for covariate shift: it evaluates
generalization under structured partitioning rather than reweighting samples to match the target distribution. Diagnostic tools
such as the Area of Applicability (AOA)!> quantify how dissimilar a target location is from the training domain but do not
estimate the model’s error under shift.

Domain adaptation methods'®!” aim to improve predictive accuracy by aligning source and target distributions, yet their
goal is optimization—not evaluation. In many scientific pipelines, the model is fixed, and the task is solely to estimate its error
under distribution shift. Thus, domain adaptation and risk estimation solve fundamentally different problems.

Across the literature, a common limitation emerges: existing tools either assume i.i.d. data, diagnose shift without estimating
error, or modify the model rather than evaluating it. Crucially, none provide a stable, unbiased risk estimator under spatial
covariate shift, where clustered sampling, autocorrelation, and non-stationarity break classical density estimation and destabilize
classifier-based ratio estimation.

To address this gap, we formulate spatial risk estimation as a sample—reweighting problem and systematically evaluate
reweighting strategies under spatial covariate shift. We show that Kernel Mean Matching (KMM)'8, originally proposed for
covariate shift correction, yields stable and accurate risk estimates for spatially structured data. To quantify spatial structure, we
incorporate the Local Correlation Function (LCF)'?, a bounded, scale-invariant measure of spatial clustering, which provides
an interpretable criterion for when reweighting is necessary.

Through experiments on synthetic Gaussian-mixture landscapes, Nordic plant-species occurrences, and tumour—immune
spatial layouts, we demonstrate that KMM reduces Mean Absolute Percentage Error (MAPE) by up to 50% compared with IW
while avoiding its weight-explosion pathology.

As illustrated in Figure 1, our comparison highlights the trade-offs among NW, IW, classifier-based weighting, and KMM,
showing that direct distribution matching offers a robust solution for risk estimation under spatial covariate shift.

* We formulate spatial risk estimation as a reweighting probiem for sample errors, extending classical importance-sampling
theory to spatially structured settings in which source and target distributions differ. Our pipeline integrates the LCF
score!? as an interpretable, scale-invariant measure of spatial clustering that indicates when reweighting is likely to be
beneficial.

* We conduct a systematic empirical comparison of NW, IW, KMM, and a classifier-based estimator across synthetic and
real-world spatial datasets, covering classification tasks and assessing risk estimation via regression-style loss metrics.
Our evaluation spans (i) controlled Gaussian-mixture landscapes and other synthetic scenarios, (ii) Nordic plant-species
occurrences, and (iii) tumour—-immune cell layouts. Our experiments reveal systematic biases in risk estimation induced
by shifts in spatial distribution and support LCF as a practical diagnostic of shift magnitude.

* Across all datasets considered, KMM remains a robust choice for spatial risk estimation under distribution shift,
particularly when shifts are complex or labelled samples are limited. Specifically, the usage of KMM reweighting
reduces the risk estimation error (MAPE) by up to 50% relative to IW while avoiding the weight-explosion pathologies
of KDE-based density-ratio estimation for severe shifts.

2 Methods

2.1 Risk Estimation Task

We begin with a ground truth function f(x) and a model that estimates this function, denoted as f(x). These functions are
defined as maps from some region .2~ C R to R for a regression problem. In this study, we explicitly assume that .2~
resides in a d-dimensional Euclidean space, utilizing the standard Euclidean metric, though the framework implies potential
generalizability to other metric spaces. Next, we have labeled samples from the source distribution g(x), on which we can
evaluate our model using some error function e(x) = e(f(x), f(x)), defined in 2"

We are interested in the performance of our model f(x) on unlabeled points from another target distribution p(x). The
function p(x) is similarly defined on the same region. The key challenge is that p(x) and g(x) are different: we deal with a
distribution shift that leads to bias. Moreover, we lack the exact p(x) and g(x) and have access only to samples from them
Dy, Dg: Dy = {(xi, f(x:))}:71, Xi ~ p(X), Dy = {(xi, f(x:)) }:%,+ Xi ~ g(x) with n, = |D,|,ns = |D,|. The source and target



(A) Source and Target Distributions

(B) No Weighting (NW)

(E) Kernel Mean Matching (KMM)
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Figure 1. Visual comparison of risk estimation methods under distribution shift: (A) Problem formulation showing source
(clustered) and target (dispersed) distributions; (B) No Weighting (NW) approach with uniform sample weights; (C)
Importance Weighting (IW) method suffering from high variance; (D) Classifier-based probability ratio weighting; (E) Kernel
Mean Matching (KMM) approach: upper section shows the optimization framework that matches source and target

distributions, while lower section demonstrates the resulting balanced weight distribution that avoids extreme values while
correcting for distribution shift.
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data are split into training sets, Dgai“ and Dgai“, and test sets, D' and D™, with respective sample sizes n ,and n
n;?“. Formally, sample sizes can differ, and specific points are also distinct by construction, as they are generated from dlfferent
distributions.

Formally, we are interested in estimating the risk:

Rie.p) = [ elx)p(x)dx. (1)

In practice, the exact forms of the distributions p(x) and g(x) are unknown, and ground truth labels f(x) for the target
distribution are unavailable. Therefore, the estimation of the risk R(e, p) must rely only on the following components:

+ The model to be evaluated: f(x).
* A set of labeled samples from the source distribution: D,.
* A set of unlabeled samples from the target distribution: {x ]} 7 |, where X; ~ p(x).

Below, we provide general types of solutions for risk estimation tasks. To address the challenge of estimating risk under a
distribution shift, we explore a spectrum of methods. Our selection is motivated by the need to establish a clear performance
hierarchy, starting from a naive baseline and progressing to more sophisticated, theoretically-grounded techniques for bias
correction. We begin with the simplest approach, which ignores the distribution shift, to quantify the magnitude of the problem.
Subsequently, we examine methods that explicitly attempt to correct the bias introduced by the shift. These corrective methods
fall into two main categories: those that rely on estimating the density ratio either directly or indirectly, and those that match
the distributions in a feature space without explicit density estimation. This progression enables a comprehensive evaluation of
various strategies for addressing the covariate shift problem. The final performance of each method will be validated on the test
data partitions, where risk estimates are computed using D;,e“ and benchmarked against the ground truth risk calculated on D;f“.

2.1.1 No weighting (NW)
The most straightforward approach would be to estimate the risk using samples from the target distribution p(x):

lest

Ié test Z X’ X;~ p(X)' (2)

To compute this value, we would hypothetically use the test sample D), with its corresponding labels. This is an unbiased Monte
Carlo estimate of the true risk R(e, p), and its standard error decreases at a rate of O(1/, /nis*!). Consequently, for a sufficiently

large sample size n, Rgr provides a highly accurate and reliable benchmark against which alternative risk estimation methods
can be validated. This is a typical method for estimating the risk of samples from a known distribution. However, as mentioned
earlier, in practice, we do not have labeled samples from the target distribution p(x), but we do have labeled samples from
another source distribution g(x).

The first idea is to estimate the risk similarly, but using samples from the source distribution. Thus, we have the NW
method:

1€St

me Xi), Xi~g(x). 3)

Ryw(e,g)

In the presence of a distribution shift, this method is obviously biased, and we should strive for an unbiased approach if our
goal is to estimate the target risk accurately.

2.1.2 Importance Weighting (IW)

To correct for the bias introduced by using samples from g(x) instead of p(x), we can apply IW. Using this technique, we
reweight the errors across samples according to the density ratio (< ; This is an intuitive way to achieve an unbiased risk
estimate. Therefore, the risk can be expressed as follows:

Rep) = [ epiax= [ ewp0 X ax= [ o2 gxax @

2 g(x) g(x)
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Thus, instead of integrating the error e(x) over the target distribution, we can incorporate the reweighted error %e(x) over

the source distribution g(x), resulting in a new unbiased risk estimation. We refer to this as TW:

tesl
p(x
test
l’l i=1 g

Rw(e,p,g) X; ~ g(x). ©)

In practice, the true densities p(x) and g(x) are unknown. We should estimate g(x) and p(x) from the data. For example,
using KDE and samples D" and Dg*", we get g(x) and j(x).

An example of the kernel density estimator for a multivariate density g(x), where x € R?, is given by:

ptrain

1 8
§0) = o X 1H1K (P (xx)) ©

g i=1

where K(-) is the multivariate kernel function, chosen as a multivariate Gaussian kernel:

1 1
K(u) = WCXP <—2uTu> s (7)

and H € R9*? is the symmetric positive-definite bandwidth matrix that controls the smoothness of the estimate.
We select the bandwidth matrix H using Scott’s rule?”

H= Z( tram) %H (8)

where X is the sample covariance matrix of the data. We also considered using a fixed bandwidth. However, a constant value
does not adapt to the specific properties of the data, such as its scale or sample size. Scott’s rule is a data-driven method that
uses the sample covariance and size to determine the bandwidth. This adaptability generally leads to more reliable density
estimates.

Using this method, we estimate the density functions g(x) and p(x) from the data and apply them in the TW:

ptest

R s .)\ {,
R (e, p,8) = —— z X; ~ g(x). ©)
”g =1 §(xi)’

Challenges with High Weights for IW  One key problem with IW is that when the density ratio p(x)/g(x) is large, specific
samples receive excessively high weights, leading to high variance of the estimate. This occurs especially in regions where
g(x) is significantly smaller than p(x), resulting in instability in the risk estimate and poor performance of the IW method
compared to other methods, regardless of bandwidth selection. We applied LCF function analysis to the spatial features of
datasets from our domain. The results reveal a stark contrast in their spatial structure. The source distribution exhibits a high
degree of clustering, with data points concentrated in specific areas. In contrast, the target distribution is significantly less
clustered, approaching a random spatial pattern. This structural mismatch means that the density ratio can become extremely
large, particularly in regions where the source distribution is sparse but the target is not. This leads to high variance in the
importance weights, destabilizing the IW estimator.

2.1.3 Classifier Method

This approach®* utilizes a probabilistic classifier to directly estimate the density ratio p(x)/g(x) instead of independent
estimates of p(x) and g(x). These ratio estimates would serve as importance weights for risk estimation. The fundamental idea
is to train a classifier to discriminate between samples originating from the source distribution g(x) and those from the target
distribution p(x).

To begin, a dedicated training dataset is constructed for the auxiliary classifier using our training partitions. This dataset
is formed by taking the features from the source training set Dgai“ and the features from the target training set Dgﬁi“. These
combined samples are then assigned new binary labels: samples originating from Dgai“ are labeled as class 0, and samples from
D™ are labeled as class 1.
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The number of samples in this new training set from the source and target distributions are ngai“ and n

empirical prior probabilities for an instance belonging to the source class or the target class are then:

, respectively. The

train
e

o = —°
g—class train train ’
g +n >

train
A np

Tp—class = " 20
train train
ng + np

A probabilistic classifier, such as Gradient Boosting, is trained on this aggregated and labeled dataset. Using the empirical
priors fg_class and f,_class, the classifier learns to model the posterior probability via Bayes’ rule. Once trained, for any
given input instance X, this classifier can provide an estimate of the probability that x belongs to the class associated with the
target distribution p(x), denoted as P(p|x), and consequently, the probability it belongs to the class associated with the source
distribution g(x), P(g|x) = 1 — P(p|x).

The crucial insight is that the density ratio p(x)/g(x) can be estimated using the outputs of this classifier. For a sample
x; drawn from the source distribution g(x), the estimated importance weight w;, which approximates the true density ratio

p(x;)/g(x;), is given by:

o ﬁg—class p(P|Xi)

_ Mgeclass PUPIXi) (10)
" Fpetass Pglxi)
Substituting the empirical priors and classifier probabilities, this expression becomes:
ptrain /(ptrain + ptrain 1_pP . ptrain 1
i = tgrain/( tgrain f;ain) ( p (g|Xl)> = frain ( p o 1) : (1)
np /(ng +np ) P(g‘xi) np P<g‘xi)

For practical stability, these estimated weights w; are often clipped (o a predefined range to mitigate issues arising from
extremely large or small weight values, which lead to high variance in the final risk estimate.

Finally, the risk is estimated using these importance weights w; applied to the errors e(x;) computed on samples x; drawn
from the test part of the source distribution g(x). The risk esttinate is formulated as a standard importance-weighted average:

ntest

A 1
Rclassifier (€, W) = est Z wie(X;). %~ g(x), (12)
g i=1

This method aims to provide an unbiased estimate of the risk under the target distribution p(x) by appropriately re-weighting
observations from the source distribution g(x).

This unbiased estimation property holds theoretically under certain conditions®. Notably if the support of the target
distribution p(x) is contained within the support of the source distribution g(x). If g(x) is zero where p(x) is positive, the true
density ratio is infinite, rendering the IW invalid for those regions.

2.1.4 Kernel Mean Matching (KMM)
We adopt the KMM formulation, following Huang et al.”*, which involves solving a quadratic programming problem to estimate
sample weights. We employ KMM, which is a method for bias correction that estimates the density ratio between the source
distribution g(x) and the target distribution p(x) without directly computing the densities. It reweights the source data instances
such that the weighted distribution resembles the target distribution, and, according to theory, it remains an unbiased estimate.
KMM works by finding weights w; that minimize the difference between the means of the source g(x) and target p(x) data
distributions in the feature space defined by a kernel function. The goal is to reweight the source data so that the weighted
distribution matches the target distribution.

1.21

Practical Implementation for Risk Estimation In the context of risk estimation, once the weights w; are computed using
KMM, they can be incorporated into the risk estimate to adjust for the bias between the source and target distributions. The
weighted risk estimate is similarly given by:

nlCSt

N 1 &
RKMM(&W) = ntest Z Wie(X,'). (13)
g i=1
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Objective Function The weights w; are computed by solving the following general optimization problem:

2

lesl lesl

1 target source test
min | e Z o (x nm Z s..0<w; <B, Z wj = i (14)

lesl

where @ (x) represents the feature map induced by the chosen kernel (in our practical case, it will be a radial basis function), and
B is a hyperparameter that controls the upper bound of the weights to avoid extreme values. In our study, we are not focused on
clipping weights, so B is chosen to prevent this situation. To simplify the optimization, the objective function is expanded using
the kernel trick. We define the necessary components using our test data partitions:

test o lest

o Let K € R™ be the kernel matrix computed on the source test set, where each element K;; = K(x;,x;) for
Xi, X DtgeSt.

test . . . .
e Let k € R"  be a vector where each element k; represents the average kernel similarity between a source test point x;
and all target test points:

Iest

1
K= e Z K(x;,X}), where x; € D™ and x; € D™,
P j=
With these definitions, the optimization problem to find the weights w = (wy,.. ., wntgest)T can be rewritten.
1 2 lesl
min | — w' Kw— 5 k' wconst | s.t.0<w; <B, Zw —nte“' (15)
W\ Marget Miarget
For a radial basis function (RBF) kernel, the kernel matrix K is defined as:
x —z||?
K(x,z)=exp| ———5— |, 16
(x,2) = exp < 552 (16)

where o is a bandwidth parameter. In practical implementations, ¢ is dynamically adjusted based on the median pairwise
distance between the data points:

median (||x; —x;[|* | i,/ € 1,...,.7‘5?“7

2
o 17
test

logng
This ensures the kernel adapts to the scale of the data, making the matching more robust across varying datasets. We will

use this kernel to practically realise KMM, with the usage of the L, norm.

2.1.5 Summary of methods
We have explored several methods for estimating the target risk using samples from a source distribution, in the presence of a
distribution shift p(x) # g(x).

* No Weighting (NW): This method computes the empirical average of the error directly on the source samples, yielding.
It is the most straightforward approach, but it is inherently biased, as it does not account for the difference in distributions.

* Importance Weighting (IW): Corrects the bias by reweighting source samples using the true density ratio p(x)/g(x),
typically estimated via KDE. While theoretically unbiased, it suffers from high variance, especially in high dimensions
where density estimation fails.

¢ Classifier Method: Indirectly estimates the density ratio by training a probabilistic classifier to discriminate between
source and target samples. It avoids explicit density estimation but relies on classifier calibration and can be unstable
without weight clipping.

* Kernel Mean Matching (KMM): Directly computes sample weights to minimize the discrepancy between the mean
embeddings of the weighted source and target distributions in a RKHS. It bypasses explicit density or density ratio
estimation, offering a more robust and stable solution, particularly in high-dimensional settings.

In essence, NW is a simple but biased baseline, IW and Classifier methods attempt bias correction via explicit or implicit density
ratio estimation but face practical issues with high variance and support assumptions, while KMM tackles bias correction by
matching distributions in a kernel space through weight optimization.
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2.2 Data processing

The data used in this study come from two distinct sources: artificially generated datasets and real-world observations. The
artificial data allow for controlled experiments with known properties, such as specific degrees of spatial clustering, which are
essential for systematically testing the limits of risk estimation methods. The real-world data, comprising ecological species
occurrences and spatial layouts of immune cells from tumor microenvironments, provide critical validation in complex, practical
scenarios characterized by inherent spatial biases and distribution shifts. The following subsections detail their generation and
processing.

2.2.1 Artificial Data
To systematically evaluate the proposed estimator, we generated synthetic datasets designed to mimic complex spatial structures
and covariate shifts.

All artificial datasets were generated within a square domain 2" = [0,100]¢, where d represents the dimensionality, ranging
from 2 to 4 in our experiments. For each experiment, we sampled N = 10,000 data points for both the source g(x) and target
p(x) distributions. This process was repeated independently 100 times for each parameter configuration to ensure statistical
stability of the error metrics.

The core of our generation process relies on Gaussian Mixture Models (GMM). To simulate complex environmental
heterogeneity, we employed GMMs with 30 randomly centered components. This number was selected empirically to cover
the domain space stably without creating anomalies in specific sample generations. The spread of clusters is controlled by a
maximum covariance parameter (Xmax). A low Xax (e.g., 30 — 50) results in highly clustered, distinct populations, whereas a
high X« (e.g., 400) or the use of a Uniform distribution results in a spread-out, diffuse structure. Figure 2 visually compares
the generated GMM patterns under these different covariance constraints.

Max Cov: 10 Max Cov: 60 Max Cov: 110 Max Cov: 160 Max Cov: 210

8%

HE
#y 0

, # C Lad : A | e
0 100 0 100 © 100 0 100 0 100

Figure 2. Visualizing GMM patterns with increasing maximum covariance values, transitioning from distinct clusters to a
diffuse distribution.

2.2.2 Robustness Analysis Scenarios
While varying the degree of clustering provides a baseline for performance, real-world spatial data often exhibits more specific
structural biases. To rigorously stress-test the KMM approach, we designed a comprehensive suite of ten synthetic scenarios,
grouped into five distinct categories below. These configurations align with formal categorizations of dataset shift>> and are
specifically tailored to reflect challenges in ecological and biological surveys, such as sampling bias, environmental dependency
shifts, and scale mismatches. An overview of these patterns is visualized in Figure 3.

The following categories summarize the key types of domain shifts modeled in our experimental framework.

¢ Domain Truncation (Cropped vs. Full):
This category examines the impact of geometric restrictions on the domain, simulating partial observability.

— The first scenario restricts the source distribution, generated as a high-clustered GMM (X,2x = 50), to the lower
half of the domain (x, < 50). In contrast, the target covers the full domain with lower clustering (Xp,,x = 400).
This mimics selection bias caused by accessible terrain or political borders, where the model is trained on a
geographically limited subset but must generalize to the entire region.

— The second scenario reverses this configuration: the source is generated as a low-clustering GMM (L.« = 400)
covering the full domain, while the target is restricted to the lower half (x, < 50) with high clustering (Xax = 50).
This simulates a downscaling task where a model trained on regional data is applied to a specific local area,
requiring the estimator to filter out irrelevant global information.
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Domain Truncation Mode Complexity Correlation Shift Variance Scaling Support Mismatch
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Figure 3. Overview of the synthetic scenarios used for robustness testing. Blue points represent the source distribution (g(x)),
and orange points represent the target distribution (p(x)). These plots illustrate five representative configurations. Our
experiments also include the inverse directional shifts for these categories, totaling ten scenarios.

* Mode Complexity Mismatch (Expansion vs. Contraction):
This category evaluates the estimator’s behavior when the population diversity changes between domains.

— The mode expansion scenario involves a source consisting of a single centered cluster (i = 50) with a maximum
covariance of 50, while the target is a multimodal GMM comprising disjoint clusters with a tighter spread
(Zmax = 10). This tests the model’s ability to generalize from a homogeneous training set to a diverse landscape
containing multiple distinct subpopulations.

— The mode contraction scenario reverses this: the source comprises multiple scattered clusters (Xax = 10), whereas
the target is a single centered mode (it = 50, Xmax = 50). This evaluates how well a model trained on global
statistics adapts to a specific local area without underperforming due to the noise present in the global dataset.

¢ Correlation Structure Shift (Shift vs. Restoration):
Here, we manipulate the covariance matrices to be either axis-aligned (diagonal) or rotated (non-diagonal) to simulate
changing feature interactions.

— The correlation shift scenario starts with a source generated as a single centered component (1 = 50, X,.x = 150)
constrained to a diagonal covariance matrix. The target consists of the same centered component but with a
non-diagonal (rotated) covariance matrix. This tests robustness against changing environmental dependencies,
such as a shift in the relationship between temperature and elevation.

— The correlation restoration scenario moves from a rotated source (non-diagonal covariance) to an axis-aligned
target (diagonal covariance), with both distributions maintaining X,.x = 150. This tests the method’s adaptability
when complex dependencies or entangled features present in the training phase disappear or become independent
in the target environment.

* Variance Scaling (Focusing vs. Extrapolation):
We examine shifts in the spatial spread of the data to test robustness against scale differences.

— The first case transitions from a widely dispersed source (Xp.x = 400) to a tightly clustered target (Xiyax = 50).
This represents a focusing task, where a broad-scale survey is used to predict a localized phenomenon.

— The second case transitions from a tightly clustered source (X0x = 50) to a dispersed target (Xax = 400). This
represents an extrapolation challenge, where the model must predict in valid regions of the domain that were
sparsely sampled or entirely unseen during the training phase.

¢ Support Mismatch (Structured vs. Unstructured):
This represents an extreme covariate shift involving a Uniform distribution to test performance under severe information
imbalance.
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— The first scenario uses a source drawn from a uniform distribution covering the entire domain, while the target is a
high-clustered GMM with X« = 50. This requires the estimator to identify and upweight relevant signals hidden
within uninformative, unstructured noise.

— The second scenario uses a high-clustered GMM source (L, = 50) and a uniform target. This simulates the
difficulty of applying a model trained on highly specific, structured data to a completely random or unexplored
environment where the training structure may not apply.

These bidirectional scenarios ensure that our evaluation covers not only the magnitude of the shift but also its directionality,
distinguishing between problems of interpolation, extrapolation, and structural adaptation.

Model Configuration The true function f(x) was modelled as a mixture of GMM kernels (referred to as "GMM"). For
the estimation of f(x), we employed the model Gradient Boosting Regression trained on 70% of the available samples. The
choice of these seemingly unconventional models was intentional, as the specific accuracy of the models is not the primary
concern in this study. Instead, our focus lies on estimating the risk associated with a model error when applied to the target

distribution. Squared error e(x) = (f(x) — f (X))2 served as the error metric. To evaluate the classifier-based method, we
trained a Gradient Boosting Classifier using the default parameters. To ensure that the classifier was sufficiently trained, we
calculated the ROC-AUC on the test set. The results are presented in Table S2 in the Supplementary Material. We prevent
clipping of the weights in KMM by setting B = 1000, which is sufficient according to the experiments shown in Figure S5 of
the Supplementary Material.

2.2.3 Real data
Species data

Study area The study area focuses on Finland, encompassing latitudinal and longitudinal extents that capture the primary
habitats of the selected plant species. This region is characterized by boreal to subarctic climatic conditions, with a transition
toward more temperate environments in southern Finland and along the coast. Prominent geographic features include numerous
lakes, extensive forested zones, and coastlines along the Baltic Sea.

Plant occurrence We collected occurrence data from 2000 to 2024 for several herbaceous and woody plant species native
to Finland: Tussilago farfara L.*>, Anemone nemorosa L.**, Caltha palustris L.>

These data were primarily obtained from the Global Biodiversity Information Facility (GBIF), which leveraged contributions
from citizen science projects. We sclected these species because they exhibit distinct phenological and ecological traits pertinent
to boreal and subarctic ecosystems and because sufficient presence and absence records were available for the specified period
(2000-2024).

Environmental predictors We used 19 bioclimatic variables to model species distributions. These predictors encompass
average and extreme temperature and precipitation patterns, as well as measures of climatic variability relevant to plant
physiology.

To prepare the environmental data, we employed several R packages, including raster, rgdal, terra, and s
We standardized all spatial layers with the WGS84 coordinate reference system and then masked and cropped them to the study
region, specifically Finland and relevant parts of Sweden. The final dataset was stacked into a single multi-layer raster stack for
subsequent modeling.

f26—29 .

Cell data The first dataset comprises tumor biopsy images depicting various immune cell types, including conventional
dendritic cells type 2 (cDC2), plasmacytoid dendritic cells (pDCs), myeloid cells, and B cells*’. Analyzing the spatial
distribution of these cells is crucial for understanding their interactions, which could lead to the identification of biomarkers for
therapy response’!. Following manual quality control, ensuring that at least half of the tissue remained intact, 78 images were
selected for analysis.

Positions and types of immune cells were identified using the ImmuNet pipeline*3%. The tissue boundaries were detected
through a segmentation algorithm implemented in the "inForm" software (v2.4.8, PerkinElmer).

Our LCF analysis, following the methodology of Martynova et al.'”, reveals different spatial patterns among cell types:
B cells exhibit high LCF values, indicating noticeable clustering, while myeloid cells show a minimal deviation from zero,
reflecting a scattered distribution. A marked peak in the LCF for cDC2s suggests potential interactions at short distances.



290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

Models configuration For both datasets, we used Gradient Boosting??, Logistic Regression, Random Forest Classifier and
MLP Classifier as our binary classification black box models. They are trained on 70% of the vailable samples. Moreover, we
prevent clipping of the weights in KMM by setting B = 1000, which is sufficient according to the experiments shown in Figure
S5 of the Supplementary Material. It is essential to perform data splitting and hyperparameter tuning to prevent overfitting on
both the source and target datasets. Since our task is formulated as a black-box risk estimation problem, we are not concerned
with model configuration or weight optimization, and therefore we do not perform hyperparameter tuning — we rely solely
on the model’s output. It is critical to distinguish this from the random hyperparameter sampling used in our model selection
experiment (Section 2.2.4); unlike tuning, which seeks an optimal model, sampling aims to generate a diverse portfolio of
model behaviors to rigorously stress-test the risk estimation methods under a wide range of conditions. However, overfitted
models tend to perform poorly on real-world data and introduce challenges in reliable risk estimation. We selected source-target
dataset pairs to ensure meaningful transfer learning scenarios based on their inherent clustering structure. Specifically, the
source dataset was chosen to exhibit a clustered structure, while the target dataset was selected to be less clustered. The degree
of clustering was quantified using the area under the LCF curve. Following the recommendations of the original study, we
individually selected the maximum radius values for AUC LCF for each data dimensionality and data type to obtain informative
and meaningful results. Only pairs with Area under the Receiver Operating Characteristic Curve (AUC-ROC) scores exceeding
0.7 were retained, ensuring robust classification performance while avoiding overfitting.
Classification performance was evaluated using the log-loss function e(x) for each data point x:

e(x) = = (f(x)log (%) + (1 - f(x)) log (1 - f(x))) (18)
where f(x) € {0,1} is the true label and f(x) is the predicted probability.

Data Preprocessing All features were standardized to a zero mean and unit variance. We applied Principal Component
Analysis (PCA) to align the feature space with our synthetic data experiments. The nuimber of principal components was selected
to preserve the intrinsic structure of the data: for clustered source datasets, components were retained to maintain separation
between clusters, while for less-clustered target datasets, componernts were chosen to reduce redundancy without enforcing
artificial structure. This approach ensured comparability with synthetic experiments while mitigating complexity. Figures S1-S2
(Supplementary material) illustrate the resulting 2D PCA projections for representative species and cell datasets, respectively,
highlighting the different structures of the source (more clustered) and target (less clustered) data after dimensionality reduction.

2.2.4 Evaluation procedure

Comparison of methods To evaluate the [W, we trained KDE models on train samples to approximate density ratios on test
samples, ensuring theoretically grounded risk estimation. To evaluate the classifier-based method, we trained the same Gradient
Boosting Classifier using the default parameters as described in Artificial data.

The performance of risk estimation was evaluated using three metrics: MAPE, Root Mean Square Error (RMSE), and Root
Mean Square Percentage Error (RMSPE) across all n source and target pairs. These metrics allow us to assess the accuracy of
risk estimation between the actual risk Rgr and the estimated risk R;;;in04- The subscript ‘method‘ indicates the estimation
approach, which can be NW, IW, KMM, or a Classifier-based method, evaluated across various datasets and scenarios.

The three metrics are defined as follows:

n (i) (i)
RY _R
MAPE:lZ Rer ~ Kot "
nia Ry
1 & i ; 2
s [15 ()’ N
n (i) (i) 2
RY —R
RMSPE — 12 Rer = Boatiod | . o
ni Ry

The MAPE measure (Eq. 19) clearly explains the performance of the estimation by quantifying the average percentage deviation
from a true risk. The RMSE captures the square root of the average squared differences between the estimated and true risks,
focusing more on the more significant deviations. Lastly, RMSPE measures the percentage error similarly to RMSE but
normalizes each difference by the true risk, allowing it to account for relative scale differences between datasets.

To better understand how the experiments were conducted across different dataset types and domain pairs, we provide a
general workflow diagram. This workflow outlines the pipeline used for data generation and preprocessing, as well as the



329 procedures for model training, validation, and risk estimation. It includes both artificial and real-world datasets (such as
a0 biological cells and species data) and demonstrates how we consistently applied the same evaluation logic across all settings.

331 The general workflow of our experiments is divided into two parts (See Figures 4 and 5). Figure 4 (Part A) illustrates how
a2 we construct both artificial and real datasets (cells and species data), define source and target domains, and preprocess the data
a3 including normalization, dimensionality reduction, and LCF-based splitting. Subsequently, Figure 5 (Part B) demonstrates the
s« validation pipeline used across all dataset types: we first train a model on the source data, then a domain classifier, and finally
a5 evaluate the performance on target data using risks estimated by methods such as Raw, Riw, RC]assiﬁer, Rxmm, and comparing
s  them to Rgr.
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Figure 4. Workflow for data construction and preprocessing.
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Figure 5. Workflow for model validation and risk estimation.

Practical Demonstration of Risk Estimation for Model Selection To demonstrate the practical significance of risk estimation,
we conducted an experiment that simulates model selection under distribution shift, using previously described species and
cell datasets. In real-world deployment scenarios, the true performance of a model on the target distribution is unknown. Risk
estimation methods aim to provide a reliable proxy for this true risk, guiding the selection of models that are likely to perform
well in the target environment. For this experiinent, using species and cell datasets, we generated a pool of 200 classification
models (100 Gradient Boosting, 100 Random Forest) trained on source data, with hyperparameters randomly sampled from
predefined ranges (e.g. ‘n_estimators* 3, 20, ‘max_depth‘ [1, 4], ‘learning_rate‘ [0.01, 0.3], etc.). We filtered these models,
retaining only those with a ROC AUC > 0.7 on the target test set to ensure a basic level of predictive applicability. For each
retained model m;, we calculated its true risk R(G’>T and its estimated risk Rf,;)el hoq USing each of the evaluated methods (NW,
IW, KMM, Classifier) based on the source data. The objective was to assess how well each estimation method identifies
models with low true risk using only its estimated risk Rf,;)etho ;- We varied the number of selected models (K) to observe its
impact on performance, focusing on K = 5 for our primary analysis. Our extended results show that selecting very few models
(K = 3) introduces significant noise, reflected in high standard deviations. In contrast, selecting more models (K = 10) leads to
stabilization, with reduced variance and closer convergence between methods. The detailed results for K = 3 and K = 10 are
provided in Supplementary Tables S3 and S4, and a comprehensive visualization of these trends is presented in Supplementary
Figure S6. We applied the following model selection algorithm for each risk estimation method:

(@)

1. For each model m;, determine the true risk R(G’)T (for evaluation purposes) and the estimated risk R, ;. .~

risk estimation method (NW, IW, KMM, or Classifier).

using a specific

2. Select the K = 5 models with the lowest estimated risk R(i)

methog a€cording to the method. Let A be the set of indices of
these models.

3. Compute the average true risk for the selected models and method: R 404 = %Zie A R(GI)T This value represents the

actual performance of the models chosen based on the estimation method’s output.

3 Results

In this section, we compare the performance of the NW, IW, and KMM methods in synthetic and real-world datasets. We take
advantage of the insights and techniques derived from the analysis of synthetic data to ensure consistency and relevance in
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our experimental setup. A critical aspect of these experiments is the proper definition of the source and target distributions,
along with a thorough clustering analysis and evaluation using appropriate metrics. Our primary focus is on scenarios involving
high-clustered source data and low-clustered target data, characterized by significant distributional shifts between them.

3.1 Artificial Data

Initial experiments with synthetic data revealed critical insights into the limitations of IW and NW under distribution shift. We
observed that lower maximum covariance values in the generation of the source GMM distribution produced stronger clustering
(Figure 2), resulting in a significant distribution shift relative to the low-clustered target GMM distribution. Quantitative analysis
via LCF curves (Figure 6) confirmed this behaviour, showing distinct clustering patterns as described in Section 2 (Methods).

A comprehensive comparison of the risk estimation methods across the proposed scenarios is presented in Table 1. The
central and most consistent finding across all experimental configurations is the superior performance of the KMM method.
KMM achieves the lowest error metrics in the vast majority of cases, demonstrating remarkable stability not only under varying
degrees of clustering but also under geometric transformations and support mismatches.

Specifically, in scenarios involving Correlation Shift (Diagonal — Non-Diagonal) and Correlation Restoration, KMM
effectively handles the rotation of the feature space, maintaining a MAPE significantly lower than NW and IW, which struggle
to adapt to the changed feature dependencies. Furthermore, in the challenging Variance Scaling: Extrapolation scenario (Low
Variance — High Variance), where the model must generalize to a broader domain than it was trained on, KMM outperforms
density-ratio based approaches, which often exhibit unstable weights in low-density regions. Similarly, in cases of Support
Mismatch (e.g., Uniform — GMM), KMM correctly identifies relevant signal within unstructured data, whereas IW frequently
produces exploded error rates due to denominator instability in the density ratio estimation.



Table 1. Robustness evaluation of risk estimation methods under distinct structural biases and distribution shifts. The table
compares performance metrics (MAPE, RMSE, RMSPE) across 2D, 3D, and 4D dimensions for different synthetic scenarios
designed to stress-test estimator stability (e.g., domain truncation, correlation shifts, and mode mismatches). The
best-performing method per block (lowest MAPE) is in bold.

Method 2D 3D 4D
MAPE RMSE RMSPE MAPE RMSE RMSPE MAPE RMSE RMSPE
Domain Truncation: Cropped — Full
NW 839+1.2 1.91+0.15 84.1+£1.3 80.6+1.2 4.6+0.20 80.7+1.2 79.6+1.1 89+04 79.7+1.1
w 92.8+1.5 2.05+0.18 928+14 96.2+1.5 5.5£0.30 96.2+1.6 98.6+1.6 10.9+0.4 98.6+1.7
KMM 80.0 1.0 1.84 +0.09 80.4+1.0 742+1.1 4.26 +0.15 743+1.0 75.0+0.9 84+0.3 75.1+0.9
Classifier 89.9+1.3 2.00+0.16 90.0+14 90.6+14 5.240.20 90.7+14 939+14 10.4+0.4 939+1.4
Domain Truncation: Full — Cropped
NW 72.0+2.0 1.07+0.15 72.14+£2.0 92.0+1.5 5.6+£0.30 92.0+25 945+1.2 10.0+0.8 945+1.5
w 69.94+2.2 1.044+0.18 70.14+£2.2 751405 4.74+0.15 75.1+£0.7  70.7+3.0 7.8+1.0 70.9+3.0
KMM 59.5+3.0 0.92+0.20 60.2+3.0 729+3.5 4.5+0.11 732+35 66.5+1.5 71+0.6 66.9+1.8
Classifier  66.4+2.5 1.01+0.22 66.9+2.5 858+2.0 5.2+0.40 85.8+2.5 823413 8.8+0.7 82.6+1.8
Mode Complexity: Expansion (Single — Clusters)
NW 93.1+1.3 1.414+0.09 93.1+£13 909+1.3 5.0+0.20 909+13 91.0+14 12.34+0.5 91.1+1.4
w 97.4+1.4 1.474+0.11 974+14 993+1.6 5.4+0.30 99.3+1.5 999+1.6 13.44+0.5 99.9+1.6
KMM 90.1+0.9 1.37 £ 0.06 90.1+£0.9 85.7+1.0 4.77+0.14 858+1.0 87.5+0.8 11.9+0.3 87.6+0.8
Classifier  94.6+1.3 1.434+0.10 94.6+13 925+1.4 4.94+0.20 93.0+1.5 98.7+1.5 13.24+0.5 98.7+1.5
Mode Complexity: Contraction (Clusters — Single)
NW 57.7+2.0 0.58+0.05 59.84+2.0 594+1.9 246+0.12 61.5£2.0 547+1.8 4.13+0.15 57.5+2.0
w 58.34+2.0 0.60+0.05 63.84+2.0 92.6+1.6 3.1£0.20 93.1+1.7 909414 5.84+0.20 91.7+1.5
KMM 39.1+1.5 0.43+0.03 439+1.7 432+14 2.06 +0.08 478+1.6 41.3+1.2 3.37+0.11 44.8+1.3
Classifier  54.24+2.0 0.544+0.04 582420 91.4+1.6 3.1340.18 91.8+1.6 91.7+1.5 5.6+0.20 922+1.5
Correlation Shift: Diagonal — Non-Diagonal
NW 1754090 0.073+£0.008 19.6+1.0 21.4+09 0.224+0.020 228409 275+1.1 0.50+0.030 302+1.2
w 324030  0.0214+0.004 39403 53404  0.069=+0.008 6.1+£0.4 7.6+0.5 0.153+0.012 8.9+0.5
KMM 2.53+0.15  0.012 +0.002 3.2+0.2 3.94+60.2  0.041+0.005 4.5+0.3 3.4+0.2 0.072+0.006 4.1+0.3
Classifier  3.34+0.20  0.018+0.003 37403 41403 0.047 £0.006 4.6+0.3 7.6+04 0.2194+0.015 9.74+0.5
Correlation Shift: Restoration (Non-Diagonal — Diagonal)
NW 18.64+0.9 0.123+00i2 249+1.1 462+1.3 0.95+0.05 462+13 71.5+1.6 3.84+0.20 71.5+1.6
w 16.54+0.9 0.115+0.010  234+1.1 464+1.3 0.97+0.05 465+13 84.6+1.7 4.6+0.20 84.7+1.7
KMM 13.1+£0.7 0.081 £9.006 159+0.7 28.8+0.9 0.60 +0.03 28.8+0.9 59.5+1.1 3.26+0.12 59.6 +1.1
Classifier 1994+1.0 0.131--0.014 2024+1.0 31.5+1.0 0.68 +0.04 320+1.0 67.1+14 3.7+0.20 67.2+1.4
Support Mismatch: GMM — Uniform
NW 232423 0.160+£0.018 26.1+1.7 413+1.1 0.94+0.23 41.8+1.0 51.0+1.1 2.84+0.12 39.8+3.0
w 21.54+2.2 0.146+0.021 239+18 634+0.8 1.434+0.35 63.6+1.1 86.6+1.5 474+0.18 86.6 1.7
KMM 3.5+2.0 0.029+0.014 48+1.1 12.2+2.0 0.35+0.10 153+0.9 30.3+0.9 1.7+ 0.08 31.1+1.1
Classifier 19.74+2.2 0.147+0.018 23.0+1.6 332+1.2 0.77+0.28 34.0+13 424+1.0 2.3+0.11 42.7+1.2
Support Mismatch: Uniform — GMM
NW 19.64+0.9 0.143+0.012 209+1.0 7.6+0.5 0.324+0.020 10.0+£0.6 104+0.5 0.88+0.05 12.44+0.6
w 2224+1.1 0.162+0.015 23.7+1.1 13.7+£0.7 0.5040.040 16.5+0.8 12.4+0.7 1.09 +0.06 16.6+0.8
KMM 16.9£0.8 0.128+0.010 188+0.8 7.2+0.3 0.262+0.015 9.0+0.5 4.2+0.3 0.40+0.03 6.2+04
Classifier  26.0+1.2 0.180+0.016 27.0+13 31.1+£1.2 0.97 +£0.050 32.1+12 351+1.3 2.504+0.11 37.5+1.3
Variance Scaling: Focusing (High Variance — Low Variance)
NW 66.1+1.5 0.76 +0.14 66.74+2.0 63.2+1.1 2.30+0.09 63.5+14 628+1.0 4.9+40.03 63.1+1.3
w 69.3+1.2 0.80+0.14 69.9+1.8 81.6+0.7 2.90+0.13 81.7+£1.2 92.54+0.3 7.0+0.05 92.5+0.5
KMM 48.1+2.1 0.61 +0.09 50.54+2.0 42.2+2.1 1.64 +0.08 435+2.0 50.9+0.8 4.0 +0.04 51.4+1.9
Classifier  60.84+1.7 0.714+0.13 61.94+22 528+14 1.96+0.12 5414+1.8 51.7+0.5 4.14+0.04 524+14
Variance Scaling: Extrapolation (Low Variance — High Variance)
NW 20.1+£1.0  0.1654+0.015 22.8+1.1 11.1£0.6 0.474+0.030 144407 1594038 1.864+0.09 19.94+0.9
w 6.8+0.5 0.067 £0.008 8.5+0.5 11.2+0.6 0.454+0.030 13.1+£0.7 21.5+1.0 247+0.11 255+1.1
KMM 3.3+03 0.036 + 0.004 52+04 7.8+04  0.332+0.018 9.6 0.5 10.9 £ 0.6 1.31 £0.07 14.2+0.7
Classifier 6.0+04 0.060 £ 0.006 72+04 20.0+0.9 0.90+0.050 23.0+1.0 40.0+1.3 3.794+0.15 419+14
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To provide a more granular analysis of this behavior, we systematically evaluated risk estimation performance across a
range of maximum covariance limits for GMM source distribution, which directly control the intensity of the covariate shift.
The results of these experiments are presented for dimensions 2D, 3D, and 4D. Figure S3 details the performance metrics for
the uniform target distribution, while Figure S4 shows the corresponding results for the GMM target distribution.
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Figure 6. LCF analysis of clustering intensity for different covariance limits across dimensions (2D, 3D, and 4D) and target
distributions (low-clustered GMM and Uniform). The single figure consolidates the six scenarios, with rows indicating the
target distribution and columns representing the data dimensionality.

3.2 Real Data

We present experiments conducted on real-world datasets, which are critical for understanding the challenges and effectiveness
of risk estimation in spatial modeling. Real data often exhibit greater complexity and variability than synthetic datasets,
enabling us to evaluate our models in realistic scenarios.

A comprehensive comparison of the risk estimation methods on these real datasets (reduced to 2D, 3D, and 4D via PCA) is
presented in Table 2. Consistent with our findings from the artificial scenarios, the KMM method achieves the lowest error
metrics in the vast majority of cases. For instance, in the 4D Immune cells data, KMM maintains a manageable MAPE ranging
from 54.3% to 93.4% depending on the predictive model. In contrast, IW fails to produce stable estimates, yielding significantly
higher MAPE values ranging from 101.9% to 544.6%. This demonstrates that KMM is the most robust and reliable method for
risk estimation under spatial distribution shift, effectively overcoming the limitations of density-ratio-based approaches.
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Table 2. Performance comparison of NW, IW, KMM, and Classifier-based risk estimation methods across PCA dimensions
(2D, 3D, 4D) for real data. KMM method consistently outperforms all other approaches across the majority of datasets and
dimensionalities. The best-performing method per block (lowest MAPE) is in bold.

Method 2D 3D 4D

MAPE RMSE RMSPE MAPE RMSE RMSPE MAPE RMSE RMSPE

Species Gradient Boosting Model
NW 67.5+3.0 0.98 +0.07 70.0+3.0 53.1+2.0 0.914+0.05 60.2+2.5 475+2.0 0.72+0.05 542425
w 88.6+4.0 1.164+0.08 89.0+4.0 91.3+4.0 1.134+0.08 91.5+4.0 95.1+4.0 1.004+0.08 95.3+4.0
KMM 44.6 +2.0 0.78 +0.02 50.9+2.0 39.8+1.0 0.801 +0.003 49.7+2.0 33.5+1.5 0.61+0.01 43.5+2.0
Classifier 52.6+2.5 0.83+0.02 57.5+2.5 51.1+1.3 0.811+0.005 56.9+1.5 444+1.8 0.63+0.01 522425
Species Logistic Regression Model
NW 60.1+3.0 1.034+0.08 63.4+3.0 62.1+3.0 1.01+0.08 65.0+3.0 448+2.0 0.41+0.03 429420
w 88.5+4.0 1.28+0.10 89.1+4.0 92.2+4.0 1.30+0.10 92.5+4.0 89.9+4.0 0.79+0.06 90.0+4.0
KMM 36.9+1.8 0.78 +0.01 45.2+1.0 37.8+2.0 0.75 +0.02 45.2+2.0 343+1.5 0.33+0.01 41.2+0.3
Classifier 41.3+2.0 0.82+0.02 480+1.2 46.9+2.5 0.81+0.03 52.8+2.5 39.2+1.8 0.41+0.03 41.8+0.3
Species Random Forest Model
NW 83.8+4.0 3.854+0.03 86.4+4.0 67.6+3.0 1.63+0.02 742+3.5 63.1+3.0 1.994+0.02 69.8+3.5
w 92.6+4.5 3.90+0.05 93.1+4.5 92.1+4.5 1.724+0.06 92.5+4.5 96.4+4.5 2.074+0.06 96.5+4.5
KMM 70.7+1.5 3.775+0.004 79.6 0.5 52.1+2.5 1.59+0.01 66.3+2.0 49.5+2.0 1.944 1+ 0.003 61.6+1.5
Classifier 74.7+1.8 3.782+0.004 80.8+0.5 61.5+3.0 1.61+0.01 70.9+2.5 56.8+2.5 1.949+0.003 65.3+2.0
Species Neural Network Model
NW 40.1+2.0 0.60+0.04 485+2.5 45.5+2.0 0.814+0.06 523+2.5 423+2.0 0.50+0.03 46.8+2.0
w 85.24+4.0 1.0140.08 88.2+4.0 90.3+4.5 1.214+0.09 92.6+4.5 95.2+4.5 0.91+0.07 95.8+4.5
KMM 30.6+1.5 0.45+0.03 38.3+2.0 33.1+1.5 0.66 +0.05 41.542.0 329+1.5 0.35+0.04 36.9+1.8
Classifier 353+1.8 0.51+0.03 425+2.0 38.4+1.8 0.76 +0.05 15.9+2.2 37.5+1.8 0.43+0.04 40.8+2.0
Immune cells Gradient Boosting Model
NW 472425 0.89+0.03 54.5+2.0 91.2+4.0 16.1£0.8 97.5+4.5 84.5+2.0 16.2+0.3 88.9+1.5
w 55.2+3.0 0.93+0.05 60.8+2.5 242.0+10.0 151.0£10.0 1229.0+50.0 101.9+5.0 36.5+1.5 257.8+10.0
KMM 40.8+2.0 0.83+0.01 50.3+1.5 81.3 3.5 15.2+0.5 88.6 +4.0 799+1.5 15.5+0.19 85.6+1.0
Classifier 46.9+2.5 0.85+0.01 53.6+1.8 91.14+-4.0 15.94+0.2 95.7+4.3 84.4+2.0 16.1+0.3 88.3+1.2
Immune cells Logistic Regression Model
NW 53.0+2.5 2.274+0.04 64.7+3.0 88.4+2.5 1.014+0.02 88.6 2.5 90.9+3.0 1.134+0.02 91.0+3.0
w 57.2+3.0 2.274+0.04 652+3.0 6532+25.0 1.61+0.30 203.4+10.0 135.0+5.0 2.114+0.50 364.0+15.0
KMM 42.9+2.0 2.18+0.03 58.0+2.5 83.2+0.3 0.963 +0.005 83.5+0.5 84.6+0.3 1.075 +0.004 84.9+0.3
Classifier 52.7+2.5 2.2940.05 63.9+3.0 84.6+0.6 0.977 £0.006 84.8+0.6 85.3+0.3 1.087 £ 0.006 85.5+0.3
Immune cells Random Forest Model
NW 46.2+2.0 1.114+0.03 53.8+2.5 523425 2.454+0.05 57.3+3.0 70.4+3.0 4.76+0.06 72.6+3.5
w 523+25 1.134+0.03 57.4+3.0 64.3+3.0 3.41+0.50 197.1+10.0 149.3+8.0 14.9+1.0 375.6+15.0
KMM 355+1.5 1.02 £0.03 46.7 +2.0 28.3+1.0 2.34+0.01 38.9+1.5 54.3+2.5 4.63+0.02 59.5+3.0
Classifier 44.4+2.0 1.08+£0.03 52.1+2.5 341+1.5 2.374+0.01 424420 59.6+2.5 4.66+0.02 63.0+3.0
Immune cells Neural Network Model

NW 353+1.8 0.50+0.01 432420 98.9+0.2 12.55+0.05 99.0+0.1 97.6+1.0 17.97+£0.35 97.7+1.0
w 41.5+2.0 0.52+0.01 48.0+25 327.1+15.0 43.2+2.0 926.1 +40.0 544.6 +25.0 167.3+10.0 202.54+10.0
KMM 23.6+1.2 0.39+0.05 32.1+1.5 97.1+0.5 12.488 +0.005 97.3+0.2 93.4+0.8 17.23+0.15 93.5+0.8
Classifier 31.4+1.5 0.49+0.01 41.5+2.0 98.5+0.1 12.504 +0.005 98.7+0.1 95.1+0.8 17.59+0.16 95.43+0.8

3.2.1 Species Data
The first dataset contained information on various plant species, with features including longitude, latitude, and climate factors.

The target variable for our prediction task was the presence or absence of a given species.

For the source-target separation, we focused on temporal modeling. Specifically, our goal was to assess the risk in a less
clustered distribution of data while anticipating that future data will be more spatially dispersed. To achieve this, we divide the
data based on early and late years, enabling us to estimate the risk in the target distribution for the binary classification task.

We validated our framework on the clustered source and less-clustered target datasets, preprocessed and dimensionally
reduced as described in the Section 2. The degree of clustering, measured through the area of the LCF curve, confirmed
the structural distinction between the source and target datasets. For this classification, we have chosen Tussilago farfara L.,



404

405

406

407

408

409

410

411

412

413

414

415

416

418

419

420

421

422

423

424

425

426

Caltha palustris L., and Anemone nemorosa L. due to the appropriate LCF for source and target splitting and the presence of
both classes. Critically, when IW performed poorly relative to NW, we observed a replication of the synthetic data problem
- highlighting sensitivity to distributional mismatch. Quantitative results (Table 2) demonstrate the consistency of our risk
estimation metrics (MAPE, RMSE, RMSPE) across domain shifts, reinforcing the robustness of the KMM approach for exact
dimensions as in artificial data.

In addition to the dimension reduction via PCA, we applied the proposed risk estimators (NW, IW, KMM, Classifier)
directly to the original high-dimensional feature space. These results are presented in Table 3.

3.2.2 Immune Cell Data

The second dataset originates from a study on immune cells. This dataset comprises the positional and biological features of
four distinct types of immune cells. For our task, we split the dataset to conduct a binary classification of the cell types. We
have chosen B-cells and myeoild cells for this classification due to an appropriate LCF for source and target splitting. Similarly,
after using the same preprocessing, we selected less clustered data for the target distribution and more clustered data for the
source distribution. The example was demonstrated in Figure S2.

We evaluated the performance of the binary classification task for different dimensions, analogous to our experiments on
plant species data. The results, provided in Table 2, generally mirror the species data findings. Extreme mismatches in higher
dimensions (4D) caused significant instability in IW-based estimation, further validating KMM'’s superior constraint handling.
As with the species data, we also evaluated performance on the full, non-reduced feature set; these results are detailed in Table
3, showing even more pronounced differences between KMM and density-ratio methods in the original high-dimensional space.

Table 3. Performance comparison of NW, IW, KMM, and Classifier-based risk estiniation methods across original datasets (all
features) for different data types.

Species Dataset Immune Cells Dataset
Model Type ~ NW W KMM  Classifier NW W KMM Classifier
\’ Eadient Boosting
MAPE T71.9+3.5 174.6 £8.0 39._5i2.0 492425 102.5£5.0 6686 +300 66.4+3.0 794435
RMSE 0.901+0.04 3.00+0.15 0.53+0.01 0.76 £0.02 18.24 +0.90 716435 12.27 +0.15 12.65+0.18

RMSPE 74.1+£3.5 282.1412.0 46.9 +£2.2 57.0£2.8 116.0£5.5 4912£250 76.7+3.5 87.5+£4.0

Logistic Regression

MAPE 192.0+£9.0 543.4+250 3841+0.15 38.71+0.18 91.8+4.5 161180 60.3+1.0 63.0£1.2

RMSE 296+0.15 10.00£0.50 0.31+0.02 0.36+£0.02 0.64+0.03 70.6+3.5 0.527+0.006  0.543+0.007
RMSPE 355.04+£18.0 1372.6£70.0 4220+0.03 42284+0.04 131.9+£6.0 1923 +£95 65.0 0.6 66.8£0.7

Random Forest

MAPE 82.0£4.0 261.5+13.0 62.3+0.5 64.1£0.6 129.8+£6.0 661.8+30.0 85.8+0.2 86.5+£0.3
RMSE 1.08 £0.05 5.69+£0.25 0.87 £0.03 1.02+0.04 1432+£0.70 412.2+£20.0 14.284+0.007 14.301+0.008
RMSPE 83.4+£4.0 547.0£25.0 67.8+1.0 70.8+1.2 241.3+12.0 1412470 91.5+1.2 94.8+1.5

Neural Network

MAPE 80.1£4.0 251.8+12.0 34.6 0.8 36.7£0.9 122.7+£6.0 6618 £300 71.3+1.5 753+1.8
RMSE 1.03£0.05 5.12+£0.25  0.281+0.015 0.321+£0.015 14.53+£0.70 540.8£25.0 13.00+0.07 13.174+0.08
RMSPE 85.5+£4.0 504.0£25.0 37.9+0.5 39.3£0.6 186.3+£9.0 8321 £400 79.38+0.15 79.76+£0.18

3.3 Practical demonstration of risk estimation for model selection

The values of Rgeced fOr each method, dataset, and dimensionality are presented in Table 4. As shown in the table, the KMM
method consistently selected model sets with the lowest average true risk across various data configurations and tasks (species
and cells). This demonstrates its effectiveness in the practical task of identifying models likely to perform best when deployed
in a target domain with distribution shift, highlighting the value of accurate risk estimation.
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Table 4. Average true risk (Rgeected) for sets of K =5 models (values multiplied by 1000).

Data Type Dimensionality NW Iw KMM Classifier
2D 2.335+0.18 2.6634+0.20 1.549 +£0.12 2.2324+0.17
Species 3D 4.539+0.29 6.023+0.35 1.848 +0.14 4.204+0.26
P 4D 5.896 £0.34 7.499+041 2.892+0.21 4.806+0.28
ALL 11.594+0.52 12.381+£0.58 8.220+0.36 10.044 £0.44

2D 2.478+0.16 4.182+£0.27 2.233+0.14 2.376+0.15

Immune cells 3D 4.346+0.24 5.011+£0.29 3.591+0.19 4.190+£0.23
4D 4.9524+0.28 5.406+0.30 3.980 +0.22 5.160+0.25

ALL 6.848 £0.37 9.418+£0.49 5.258 £0.28 6.189+0.33

3.4 Comparison and Analysis

We show that KMM outperforms traditional methods and effectively addresses the issues caused by poor IW with KDE. This
improvement is particularly evident in the analysis of both artificial and real datasets. KMM’s superior performance is most
noticeable in situations where KDE struggles to estimate weights accurately, leading to biased results. KMM successfully
mitigates these problems by adjusting sample weights more effectively, leading to better risk estimation and overall model
performance. To ensure that our comparison of risk estimators is meaningful, we first validated the performance of these
models. Table S1 summarizes the ROC AUC scores for the four different predictive models used in our experiments. We
exclusively utilized models achieving an ROC AUC score greater than 0.7.

Table 1 and Table 2 present a comprehensive comparison of four risk estimation methods: NW, IW, KMM, and Classifier.
Performance is evaluated using three metrics: MAPE, RMSE, and RMSPE. The results cover distinct experimental scenarios:
nine synthetic scenarios designed to stress-test estimator stability (Table 1) and real-world datasets (Species and Immune cells)
with varying PCA dimensionality (Table 2).

In the artificial data experiments, particularly in scenarios involving Support Mismatch (e.g., Uniform vs. GMM) and
Variance Scaling, KMM consistently demonstrates superior performance across all dimensions and metrics. For instance, in the
Extrapolation scenario (Low Variance — High Variance), KMM achieves an MAPE substantially lower than both NW and IW.
This pattern persists in geometric shifts such as Domain Truncation, although the absolute error values naturally vary with the
complexity of the shift. Notably, while NW and TW show substantial degradation in high-variance or unstructured settings,
KMM maintains relatively better performance, indicating its greater robustness to structural distribution mismatches.

Similar patterns emerge in the Mode Complexity and Correlation Shift scenarios, where KMM consistently outperforms
alternative methods. This demonstiates KMM’s effectiveness in handling more complex, multi-modal, and rotated target
distributions where density estimation becomes unstable.

As illustrated in Figure S3 and Figure S4, KMM consistently outperforms NW, IW, and the classifier-based approach across
all metrics, regardless of the severity of the shift controlled by the maximum covariance parameter. These figures also highlight
a critical weakness in the IW method. As the source data become more strongly clustered (lower covariance), the magnitude of
the covariate shift increases. Consequently, the performance of IW deteriorates sharply, whereas KMM maintains robust and
superior performance, demonstrating its effectiveness in scenarios where traditional methods fail.

To further illustrate this phenomenon, Figure S5 in the Supplementary Material shows the distribution of IW weights for
both real and artificial data compared to KMM. This figure confirms that IW weights are frequently much larger than those of
KMM, as described in the Methods section, providing direct evidence of the “exploding” weights effect.

The experiments with real-world datasets (Table 2) further validate KMM’s superiority. In the species data, KMM reduces
the MAPE significantly compared to NW and by an even larger margin compared to IW across all dimensionalities. The
Immune cells data presents the most challenging scenario, with high baseline errors for all methods. Here, KMM’s advantage is
particularly striking, dramatically reducing MAPE compared to both NW and IW, especially in the 4D case, where IW fails
with an extremely high error rate.

Table 3 extends our analysis to the full-dimensional feature space without dimensionality reduction through PCA. This
table compares the same methods on the two real-world datasets using the same three performance metrics. The results further
emphasize KMM'’s robustness and effectiveness in high-dimensional spaces.

In the Species dataset with all features, KMM achieves a MAPE significantly lower than both NW and IW. The improvement
is even more dramatic for RMSE, where KMM shows a substantial reduction compared to NW and an even larger reduction
compared to IW. This pattern is consistent across all metrics. The Immune Cells dataset presents an even more challenging
scenario across the entire feature space, with NW and IW methods exhibiting extremely high error rates. In stark contrast,
KMM maintains remarkable stability.
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These results collectively demonstrate that KMM consistently provides more accurate risk estimation across various datasets,
dimensionalities, and structural shifts. Its superior performance is particularly evident in challenging scenarios involving
high dimensionality or complex geometric mismatches, where traditional methods, such as IW with KDE, frequently fail
catastrophically. The robustness of KMM to the curse of dimensionality and its ability to handle complex, real-world data
distributions make it a preferable choice for covariate shift adaptation in practical applications.

4 Discussion

Although sample reweighting is asymptotically unbiased, it often proves inaccurate for finite sample datasets, particularly
when sample selection bias is substantial, as demonstrated in the classifier analysis by Liu et al.>*. For example, as shown in
Table 1 under the Support Mismatch scenario (GMM — Uniform) in 4D, IW yields an MAPE of 86.6% compared to KMM’s
30.3%. This performance gap stems from IW’s reliance on KDE. As dimensionality increases, KDE requires exponentially
more samples to maintain accuracy, which directly impacts IW’s weight estimates. KMM avoids this issue by reweighting
samples to minimize the MMD between distributions in an RKHS. Critically, MMD can be estimated with O(1/+/n) error
without explicit density estimation. This explains KMM’s robustness in high dimensions, while IW fails catastrophically (for
instance, Immune Cells 4D MAPE > 500% in Table 2).

The practical implication is clear: for spatial modeling tasks where environmental covariates naturally create high-
dimensional feature spaces, KMM provides the only reliable risk estimates among the methods tested. This explains its strong
performance on the Species dataset (Table 3), where incorporating multiple climate variables would typically exacerbate IW’s
instability.

Both IW and classifier-based methods share a critical vulnerability: they depend on estimating the density ratio p(x)/g(x),
albeit through different approaches. IW fails when the source distribution g(x) is underestimated in sparse regions, for example,
as it was shown in our case (Figure S1). Although classifier-based methods outperforiii IW in our experiments (for example,
reducing Species Logistic Regression MAPE from 543.37% to 38.71%), they suifer from inherent limitations. As Bickel
et al. (2009) * demonstrate, these methods prioritize discriminative accuiracy over density ratio estimation, often producing
miscalibrated probabilities when classifiers overfit to dataset-specific artifacts. In the 4D immune cells setting in Table 2),
classifier-based risk estimates consistently trail KMM, with gaps ranging from 0.7 to 5.3 MAPE across all models, averaging
about 3.1 MAPE. This gap occurs because classifiers optimize for discriminative accuracy? rather than density ratio calibration.
When classifiers overfit to biased or non-generalizable patterns in the training data (for instance, spurious spatial correlations
caused by sampling imbalances), their probability estimates become poorly calibrated — a flaw KMM circumvents by directly
matching distributions in kernel space.

This suggests that while classifier-based approaches are a useful heuristic, they cannot match KMM’s theoretical guarantees.
The latter’s direct minimization of MMD provides a principled alternative that aligns with recent work on robust predictive
inference™®, although we focus on risk estimation rather than their conformal prediction framework.

While KMM demonstrated superior performance in our study, several limitations should be acknowledged. An important
implication of our decision not to peiform hyperparameter tuning on predictive models is that it strengthens the robustness of our
comparative findings. Since all risk estimation methods (NW, IW, KMM, Classifier) were evaluated on the same set of untuned
models, the consistent outperformance of KMM across this diverse range of model behaviors underscores its superiority as a
risk estimation technique, independent of model optimization. Although tuning would likely improve the absolute predictive
performance of the models, we expect the relative ranking of the risk estimation methods to remain unchanged. This concern
is mitigated by our model selection experiment (Section 2.2.4), which demonstrated that KMM’s superiority was consistent
across a wide pool of 200 models with varying performance, confirming the robustness of our comparative findings.

The effectiveness of KMM, like all kernel-based methods, is highly dependent on the choice of the kernel function and
its hyperparameters. An inadequately chosen kernel may fail to capture the complex relationships within the data, leading to
suboptimal weight estimation and less accurate risk assessments. Our analysis relied on a standard kernel with a common
heuristic for parameter selection, but a more exhaustive search or adaptive selection process could potentially yield further
improvements, representing an avenue for future work.

Moreover, KMM faces computational challenges with very large datasets. The core of the method involves the computation
of a Gram matrix, which scales quadratically with the number of samples. While techniques like random Fourier features or
divide-and-conquer approaches can improve scalability, these were not employed in our study. As a result, applying KMM
to massive spatial datasets may require these more advanced computational strategies. We have shown these tendencies in
Supplementary Figure S7, which illustrates the computational cost of this method as a function of sample size. The plot clearly
shows the super-linear, polynomial growth in KMM’s evaluation time on Species data.

Finally, our study focuses on methods that correct for distribution shift primarily through sample reweighting. However, a
separate class of "doubly robust" estimators exists that combines IW with a regression-based component (a control functional)
to simultaneously correct for sampling bias and reduce variance. As demonstrated by>°, such doubly robust estimators can
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achieve superior performance, especially in complex settings where samples are biased and affected by noise, conditions
often encountered in real-world spatial analysis. By focusing only on reweighting techniques, our study may overlook these
potentially more powerful and stable estimators, marking a clear direction for future comparative studies.

Spatial data amplifies conventional distribution shift problems through two mechanisms: (1) inherent clustering due
to environmental gradients (evidenced by LCF curves in Figure 6), and (2) sampling biases where certain regions are
overrepresented in source data. Traditional methods fail spectacularly here. For instance, IW’s weights can explode when
source clusters fail to cover target areas — reaching 6618% MAPE on Immune cells with a neural network (Table 3). NW also
consistently underestimates risks, with errors ranging from 71.9-192% across datasets. KMM succeeds by explicitly matching
the spatial structure of distributions through their kernel embeddings. For ecological or medical applications, this means that
KMM can correct biases where traditional sampling underrepresented critical spatial regions, enabling more reliable risk
estimates in underrepresented areas. For example, this study>’ demonstrated that pneumonia screening models fail significantly
when overrepresentation of certain demographics creates spurious correlations, mirroring our findings with IW’s MAPE >
6000% under spatial changes. KMM’s kernel-based matching avoids such pitfalls by explicitly aligning distributions without
relying on biased density estimates, enabling reliable risk predictions even in underrepresented regions.

These findings underscore that distribution shifts in spatial data, whether due to sampling bias, environmental gradients, or
inherent biological or spatial structure, can severely distort standard risk estimation, particularly for methods like IW that rely
on direct density ratio estimation. The Classifier-based approach offers a more robust alternative to NW and IW, but can still be
less accurate than KMM. The ability of KMM to correct for such shifts by matching distributions in a kernel feature space,
without requiring explicit density estimation or labeled target data for error calculation, makes it particularly well-suited for
spatial modeling in fields such as ecology, environmental science, and medical imaging, where model reliability under changing
conditions is crucial.

5 Conclusions

We addressed the challenge of risk estimation under spatial covariate shift by formulating it as a sample-reweighting problem.
Our systematic evaluation reveals that KMM consistently outperforms traditional methods across both synthetic and real-world
spatial datasets. While standard estimations become significantly biased under distribution shifts, KMM provides a reliable
solution.

Our analysis shows that KMM overcomes the fundamental limitations of density ratio approaches, such as NW, IW and
classifier-based methods. Unlike these estimations, KMM empioys a direct distribution matching paradigm. By avoiding explicit
density ratio estimation, it ensures stability even under complex structural shifts like Variance Scaling or in high-dimensional
settings. For instance, where traditional density estimation fails, leading to IW errors exceeding 6000% in 4D immune cell data,
KMM remains robust.

Quantitatively, KMM reduces cstimation errors by 12.3% to 86.5% compared to alternative methods. It consistently
outperforms classifier-based reweighting, highlighting that high discriminative accuracy alone is insufficient for proper
distribution alignment. To assist in diagnosing these shifts, we integrated the LCF into our framework. Our results confirm
that LCF is an effective, interpretable measure of spatial clustering that indicates the magnitude of a shift and signals when
reweighting is necessary.

Our findings have immediate relevance for multiple domains. In ecological modeling, KMM can compensate for sampling
biases in species distribution data. In biomedical applications, particularly spatial omics, it addresses significant variations in
cell-type representation. Finally , this approach offers a robust solution for any field dealing with spatially heterogeneous data.
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