
Kernel mean matching enhances risk estimation under spatial distribution shifts

Received: 16 September 2025

Accepted: 16 January 2026

Published online: 02 February 2026

Cite this article as: Serov E., Koldasbayeva D. & Zaytsev A. Kernel mean matching enhances risk estimation under spatial distribution shifts. *Sci Rep* (2026). <https://doi.org/10.1038/s41598-026-36740-7>

Egor Serov, Diana Koldasbayeva & Alexey Zaytsev

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

Kernel Mean Matching enhances risk estimation under spatial distribution shifts

Egor Serov¹, Diana Koldasbayeva^{1,*}, and Alexey Zaytsev¹

¹Skolkovo Institute of Science and Technology, Moscow, Russia
 *diana.koldasbayeva@skoltech.ru

ABSTRACT

Accurate risk estimation under distribution shifts is critical for deploying machine learning models in real-world spatial applications, from ecological forecasting to medical image analysis. Conventional methods such as No Weighting (NW) and Importance Weighting (IW) fail in spatially structured data due to two challenges: (1) density ratio estimation in high-dimensional clustered distributions, and (2) non-stationarity from environmental gradients or sampling biases. Classifier-based approaches offer partial improvements but often yield miscalibrated risk estimates by prioritizing discriminative accuracy over distribution alignment.

We conduct a systematic evaluation of four risk estimation methods — NW, IW, Kernel Mean Matching (KMM), and classifier-based reweighting — across synthetic benchmarks (with controlled spatial clustering) and real-world datasets (species distributions and immune cell layouts). Results show that KMM achieves superior robustness, reducing Mean Absolute Percentage Error (MAPE) by 12.3–86.5% compared to alternatives in high-dimensional settings. This advantage stems from KMM’s direct minimization of distributional divergence via kernel embeddings, bypassing error-prone density ratio estimation. Our findings demonstrate that KMM is a principled solution for spatial risk estimation, particularly when source and target distributions exhibit complex clustering or sampling artifacts. Its consistency across ecological and biomedical domains suggests broad applicability for reliable model deployment in spatially heterogeneous environments.

Keywords — Kernel Mean Matching, spatial risk estimation, spatial modeling, importance reweighting; distribution shift robustness

1 Introduction

1 The risk of a model is the expected error of a data-based model on unseen data. Reliable risk estimation justifies or invalidates
 2 the use of a particular model, allowing a practitioner to assess its utility. Under independent and identically distributed (i.i.d.)
 3 assumptions, cross-validation and hold-out testing provide theoretically sound estimates. However, these methods can fail
 4 dramatically under distribution shift between training and test data, particularly in spatial settings where data exhibit complex
 5 dependencies. One example is covariate shift, where the distribution of a model input changes when switching from source
 6 (training) to target (test) data. Under the covariate shift, traditional estimators systematically underrate the true error¹. This
 7 issue is especially problematic in scientific and environmental applications, where overly optimistic error estimates can lead to
 8 incorrect conclusions.

9 For example, the simplest estimator, No Weighting (NW), computes the empirical error directly from available target
 10 samples. It implicitly assumes that the source and target distributions are similar. Under covariate shift, NW becomes biased².
 11 A more flexible family of estimators trains a probabilistic classifier to distinguish source from target data and converts its
 12 outputs into density-ratio weights^{3,4}. Although often more accurate than NW, classifier-based weighting inherits instability
 13 from imperfect class separation and remains sensitive to clustered or non-overlapping samples. The classical importance
 14 weighting (IW) estimator rescales source samples using the density ratio between target and source distributions. While IW is
 15 theoretically unbiased, it suffers from extreme weight variance in high dimensions or under sparse sampling⁵.

16 These challenges become more severe when data exhibit spatial structure. Spatial datasets are affected by non-stationarity,
 17 spatial autocorrelation, clustered sampling, and environmental gradients that induce strong distribution shifts. For example,
 18 mismatches between observed and modeled sea surface temperature trends indicate that standard climate models fail to capture
 19 important components of real-world climate dynamics⁶. Similarly, climate-driven shifts toward water-limited regimes are
 20 transforming terrestrial ecosystems, altering vegetation dynamics and ecosystem services⁷. Spatial biases also manifest in
 21 species-distribution data⁸, pollution monitoring⁹, and numerous biomedical settings.

22 In biomedical research, spatial artifacts strongly influence analyses¹⁰. A common pitfall occurs when adjacent normal
 23 tissue is used as a control in cancer studies: despite being anatomically normal, it is biologically altered by tumour-proximal
 24 effects, leading to biased differential-expression estimates¹¹. Kernel Maximum Mean Discrepancy (MMD) has been used to
 25 quantify these distributional differences and has shown improved sensitivity in identifying perturbed genes and pathways^{11,12}.
 26 Spatial clustering is also intrinsic to tumour-immune microenvironments¹³, further complicating risk estimation.

27 Several methodological frameworks address spatial dependence. Spatial and spatio-temporal cross-validation¹⁴ yields
 28 more realistic predictive performance estimates than random splitting but does not correct for covariate shift: it evaluates
 29 generalization under structured partitioning rather than reweighting samples to match the target distribution. Diagnostic tools
 30 such as the Area of Applicability (AOA)¹⁵ quantify how dissimilar a target location is from the training domain but do not
 31 estimate the model's error under shift.

32 Domain adaptation methods^{16,17} aim to improve predictive accuracy by aligning source and target distributions, yet their
 33 goal is optimization—not evaluation. In many scientific pipelines, the model is fixed, and the task is solely to estimate its error
 34 under distribution shift. Thus, domain adaptation and risk estimation solve fundamentally different problems.

35 Across the literature, a common limitation emerges: existing tools either assume i.i.d. data, diagnose shift without estimating
 36 error, or modify the model rather than evaluating it. Crucially, none provide a stable, unbiased risk estimator under *spatial
 37 covariate shift*, where clustered sampling, autocorrelation, and non-stationarity break classical density estimation and destabilize
 38 classifier-based ratio estimation.

39 To address this gap, we formulate spatial risk estimation as a sample-reweighting problem and systematically evaluate
 40 reweighting strategies under spatial covariate shift. We show that Kernel Mean Matching (KMM)¹⁸, originally proposed for
 41 covariate shift correction, yields stable and accurate risk estimates for spatially structured data. To quantify spatial structure, we
 42 incorporate the Local Correlation Function (LCF)¹⁹, a bounded, scale-invariant measure of spatial clustering, which provides
 43 an interpretable criterion for when reweighting is necessary.

44 Through experiments on synthetic Gaussian-mixture landscapes, Nordic plant-species occurrences, and tumour-immune
 45 spatial layouts, we demonstrate that KMM reduces Mean Absolute Percentage Error (MAPE) by up to 50% compared with IW
 46 while avoiding its weight-explosion pathology.

47 As illustrated in Figure 1, our comparison highlights the trade-offs among NW, IW, classifier-based weighting, and KMM,
 48 showing that direct distribution matching offers a robust solution for risk estimation under spatial covariate shift.

- 49 • We formulate spatial risk estimation as a reweighting problem for sample errors, extending classical importance-sampling
 50 theory to spatially structured settings in which source and target distributions differ. Our pipeline integrates the LCF
 51 score¹⁹ as an interpretable, scale-invariant measure of spatial clustering that indicates when reweighting is likely to be
 52 beneficial.
- 53 • We conduct a systematic empirical comparison of NW, IW, KMM, and a classifier-based estimator across synthetic and
 54 real-world spatial datasets, covering classification tasks and assessing risk estimation via regression-style loss metrics.
 55 Our evaluation spans (i) controlled Gaussian-mixture landscapes and other synthetic scenarios, (ii) Nordic plant-species
 56 occurrences, and (iii) tumour-immune cell layouts. Our experiments reveal systematic biases in risk estimation induced
 57 by shifts in spatial distribution and support LCF as a practical diagnostic of shift magnitude.
- 58 • Across all datasets considered, KMM remains a robust choice for spatial risk estimation under distribution shift,
 59 particularly when shifts are complex or labelled samples are limited. Specifically, the usage of KMM reweighting
 60 reduces the risk estimation error (MAPE) by up to 50% relative to IW while avoiding the weight-explosion pathologies
 61 of KDE-based density-ratio estimation for severe shifts.

62 2 Methods

63 2.1 Risk Estimation Task

64 We begin with a ground truth function $f(\mathbf{x})$ and a model that estimates this function, denoted as $\hat{f}(\mathbf{x})$. These functions are
 65 defined as maps from some region $\mathcal{X} \subseteq \mathbb{R}^d$ to \mathbb{R} for a regression problem. In this study, we explicitly assume that \mathcal{X}
 66 resides in a d -dimensional Euclidean space, utilizing the standard Euclidean metric, though the framework implies potential
 67 generalizability to other metric spaces. Next, we have labeled samples from the source distribution $g(\mathbf{x})$, on which we can
 68 evaluate our model using some error function $e(\mathbf{x}) = e(f(\mathbf{x}), \hat{f}(\mathbf{x}))$, defined in \mathcal{X} .

69 We are interested in the performance of our model $\hat{f}(\mathbf{x})$ on unlabeled points from another target distribution $p(\mathbf{x})$. The
 70 function $p(\mathbf{x})$ is similarly defined on the same region. The key challenge is that $p(\mathbf{x})$ and $g(\mathbf{x})$ are different: we deal with a
 71 distribution shift that leads to bias. Moreover, we lack the exact $p(\mathbf{x})$ and $g(\mathbf{x})$ and have access only to samples from them
 72 $D_p, D_g: D_p = \{(\mathbf{x}_i, f(\mathbf{x}_i))\}_{i=1}^{n_p}, \mathbf{x}_i \sim p(\mathbf{x}), D_g = \{(\mathbf{x}_i, f(\mathbf{x}_i))\}_{i=1}^{n_g}, \mathbf{x}_i \sim g(\mathbf{x})$ with $n_p = |D_p|, n_g = |D_g|$. The source and target

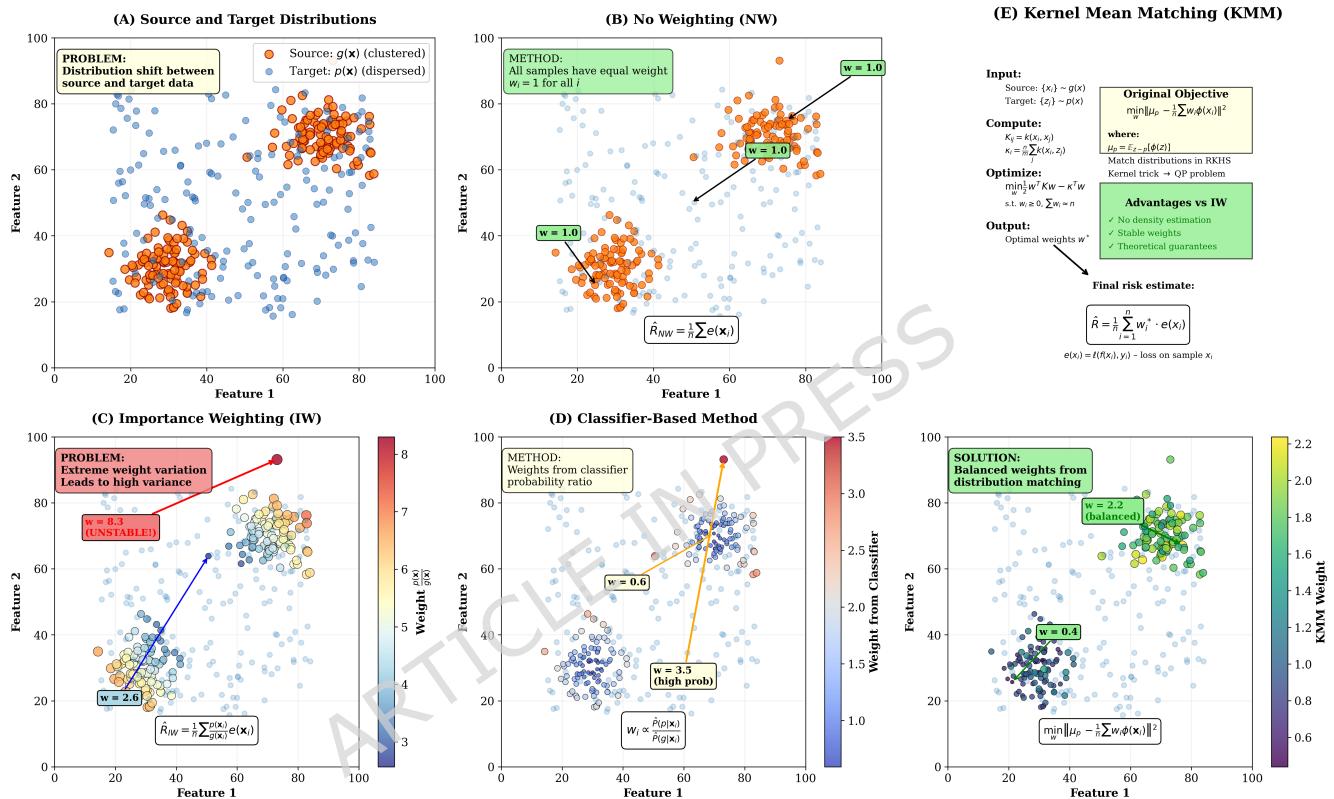


Figure 1. Visual comparison of risk estimation methods under distribution shift: (A) Problem formulation showing source (clustered) and target (dispersed) distributions; (B) No Weighting (NW) approach with uniform sample weights; (C) Importance Weighting (IW) method suffering from high variance; (D) Classifier-based probability ratio weighting; (E) Kernel Mean Matching (KMM) approach: upper section shows the optimization framework that matches source and target distributions, while lower section demonstrates the resulting balanced weight distribution that avoids extreme values while correcting for distribution shift.

73 data are split into training sets, D_g^{train} and D_p^{train} , and test sets, D_g^{test} and D_p^{test} , with respective sample sizes n_g^{train} , n_p^{train} , and n_g^{test} ,
 74 n_p^{test} . Formally, sample sizes can differ, and specific points are also distinct by construction, as they are generated from different
 75 distributions.

Formally, we are interested in estimating the risk:

$$R(e, p) = \int_{\mathcal{X}} e(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}. \quad (1)$$

76 In practice, the exact forms of the distributions $p(\mathbf{x})$ and $g(\mathbf{x})$ are unknown, and ground truth labels $f(\mathbf{x})$ for the target
 77 distribution are unavailable. Therefore, the estimation of the risk $R(e, p)$ must rely only on the following components:

78

- The model to be evaluated: $\hat{f}(\mathbf{x})$.
- 79 • A set of labeled samples from the source distribution: D_g .
- 80 • A set of unlabeled samples from the target distribution: $\{\mathbf{x}_j\}_{j=1}^{n_p}$, where $\mathbf{x}_j \sim p(\mathbf{x})$.

81 Below, we provide general types of solutions for risk estimation tasks. To address the challenge of estimating risk under a
 82 distribution shift, we explore a spectrum of methods. Our selection is motivated by the need to establish a clear performance
 83 hierarchy, starting from a naive baseline and progressing to more sophisticated, theoretically-grounded techniques for bias
 84 correction. We begin with the simplest approach, which ignores the distribution shift, to quantify the magnitude of the problem.
 85 Subsequently, we examine methods that explicitly attempt to correct the bias introduced by the shift. These corrective methods
 86 fall into two main categories: those that rely on estimating the density ratio either directly or indirectly, and those that match
 87 the distributions in a feature space without explicit density estimation. This progression enables a comprehensive evaluation of
 88 various strategies for addressing the covariate shift problem. The final performance of each method will be validated on the test
 89 data partitions, where risk estimates are computed using D_g^{test} and benchmarked against the ground truth risk calculated on D_p^{test} .

90 2.1.1 No weighting (NW)

91 The most straightforward approach would be to estimate the risk using samples from the target distribution $p(\mathbf{x})$:

$$\hat{R}_{GT}(e, p) = \frac{1}{n_p^{\text{test}}} \sum_{i=1}^{n_p^{\text{test}}} e(\mathbf{x}_i), \quad \mathbf{x}_i \sim p(\mathbf{x}). \quad (2)$$

92 To compute this value, we would hypothetically use the test sample D_p with its corresponding labels. This is an unbiased Monte
 93 Carlo estimate of the true risk $R(e, p)$, and its standard error decreases at a rate of $O(1/\sqrt{n_p^{\text{test}}})$. Consequently, for a sufficiently
 94 large sample size n , \hat{R}_{GT} provides a highly accurate and reliable benchmark against which alternative risk estimation methods
 95 can be validated. This is a typical method for estimating the risk of samples from a known distribution. However, as mentioned
 96 earlier, in practice, we do not have labeled samples from the target distribution $p(\mathbf{x})$, but we do have labeled samples from
 97 another source distribution $g(\mathbf{x})$.

98 The first idea is to estimate the risk similarly, but using samples from the source distribution. Thus, we have the NW
 99 method:

$$\hat{R}_{NW}(e, g) = \frac{1}{n_g^{\text{test}}} \sum_{i=1}^{n_g^{\text{test}}} e(\mathbf{x}_i), \quad \mathbf{x}_i \sim g(\mathbf{x}). \quad (3)$$

100 In the presence of a distribution shift, this method is obviously biased, and we should strive for an unbiased approach if our
 101 goal is to estimate the target risk accurately.

102 2.1.2 Importance Weighting (IW)

To correct for the bias introduced by using samples from $g(\mathbf{x})$ instead of $p(\mathbf{x})$, we can apply IW. Using this technique, we
 reweight the errors across samples according to the density ratio $\frac{p(\mathbf{x})}{g(\mathbf{x})}$. This is an intuitive way to achieve an unbiased risk
 estimate. Therefore, the risk can be expressed as follows:

$$R(e, p) = \int_{\mathcal{X}} e(\mathbf{x}) p(\mathbf{x}) d\mathbf{x} = \int_{\mathcal{X}} e(\mathbf{x}) p(\mathbf{x}) \frac{g(\mathbf{x})}{g(\mathbf{x})} d\mathbf{x} = \int_{\mathcal{X}} e(\mathbf{x}) \frac{p(\mathbf{x})}{g(\mathbf{x})} g(\mathbf{x}) d\mathbf{x}. \quad (4)$$

Thus, instead of integrating the error $e(\mathbf{x})$ over the target distribution, we can incorporate the reweighted error $\frac{p(\mathbf{x})}{g(\mathbf{x})}e(\mathbf{x})$ over the source distribution $g(\mathbf{x})$, resulting in a new unbiased risk estimation. We refer to this as IW:

$$R_{IW}(e, p, g) = \frac{1}{n_g^{\text{test}}} \sum_{i=1}^{n_g^{\text{test}}} \frac{p(\mathbf{x}_i)}{g(\mathbf{x}_i)} e(\mathbf{x}_i), \quad \mathbf{x}_i \sim g(\mathbf{x}). \quad (5)$$

103 In practice, the true densities $p(\mathbf{x})$ and $g(\mathbf{x})$ are unknown. We should estimate $g(\mathbf{x})$ and $p(\mathbf{x})$ from the data. For example,
104 using KDE and samples D_p^{train} and D_g^{train} , we get $\hat{g}(\mathbf{x})$ and $\hat{p}(\mathbf{x})$.

An example of the kernel density estimator for a multivariate density $g(\mathbf{x})$, where $\mathbf{x} \in \mathbb{R}^d$, is given by:

$$\hat{g}(\mathbf{x}) = \frac{1}{n_g^{\text{train}}} \sum_{i=1}^{n_g^{\text{train}}} |H|^{-1/2} K\left(H^{-1/2}(\mathbf{x} - \mathbf{x}_i)\right), \quad (6)$$

where $K(\cdot)$ is the multivariate kernel function, chosen as a multivariate Gaussian kernel:

$$K(\mathbf{u}) = \frac{1}{(2\pi)^{d/2}} \exp\left(-\frac{1}{2}\mathbf{u}^\top \mathbf{u}\right), \quad (7)$$

105 and $H \in \mathbb{R}^{d \times d}$ is the symmetric positive-definite bandwidth matrix that controls the smoothness of the estimate.

We select the bandwidth matrix H using Scott's rule²⁰:

$$H = \Sigma \left(n_g^{\text{train}}\right)^{-\frac{2}{d+4}} \quad (8)$$

106 where Σ is the sample covariance matrix of the data. We also considered using a fixed bandwidth. However, a constant value
107 does not adapt to the specific properties of the data, such as its scale or sample size. Scott's rule is a data-driven method that
108 uses the sample covariance and size to determine the bandwidth. This adaptability generally leads to more reliable density
109 estimates.

Using this method, we estimate the density functions $g(\mathbf{x})$ and $p(\mathbf{x})$ from the data and apply them in the IW:

$$\hat{R}_{IW}(e, \hat{p}, \hat{g}) = \frac{1}{n_g^{\text{test}}} \sum_{i=1}^{n_g^{\text{test}}} e(\mathbf{x}_i) \frac{\hat{p}(\mathbf{x}_i)}{\hat{g}(\mathbf{x}_i)}, \quad \mathbf{x}_i \sim g(\mathbf{x}). \quad (9)$$

110 **Challenges with High Weights for IW** One key problem with IW is that when the density ratio $p(\mathbf{x})/g(\mathbf{x})$ is large, specific
111 samples receive excessively high weights, leading to high variance of the estimate. This occurs especially in regions where
112 $g(\mathbf{x})$ is significantly smaller than $p(\mathbf{x})$, resulting in instability in the risk estimate and poor performance of the IW method
113 compared to other methods, regardless of bandwidth selection. We applied LCF function analysis to the spatial features of
114 datasets from our domain. The results reveal a stark contrast in their spatial structure. The source distribution exhibits a high
115 degree of clustering, with data points concentrated in specific areas. In contrast, the target distribution is significantly less
116 clustered, approaching a random spatial pattern. This structural mismatch means that the density ratio can become extremely
117 large, particularly in regions where the source distribution is sparse but the target is not. This leads to high variance in the
118 importance weights, destabilizing the IW estimator.

119 2.1.3 Classifier Method

120 This approach^{3,4} utilizes a probabilistic classifier to directly estimate the density ratio $p(\mathbf{x})/g(\mathbf{x})$ instead of independent
121 estimates of $p(\mathbf{x})$ and $g(\mathbf{x})$. These ratio estimates would serve as importance weights for risk estimation. The fundamental idea
122 is to train a classifier to discriminate between samples originating from the source distribution $g(\mathbf{x})$ and those from the target
123 distribution $p(\mathbf{x})$.

124 To begin, a dedicated training dataset is constructed for the auxiliary classifier using our training partitions. This dataset
125 is formed by taking the features from the source training set D_g^{train} and the features from the target training set D_p^{train} . These
126 combined samples are then assigned new binary labels: samples originating from D_g^{train} are labeled as class 0, and samples from
127 D_p^{train} are labeled as class 1.

The number of samples in this new training set from the source and target distributions are n_g^{train} and n_p^{train} , respectively. The empirical prior probabilities for an instance belonging to the source class or the target class are then:

$$\hat{\pi}_{g\text{-class}} = \frac{n_g^{\text{train}}}{n_g^{\text{train}} + n_p^{\text{train}}},$$

$$\hat{\pi}_{p\text{-class}} = \frac{n_p^{\text{train}}}{n_g^{\text{train}} + n_p^{\text{train}}}.$$

128 A probabilistic classifier, such as Gradient Boosting, is trained on this aggregated and labeled dataset. Using the empirical
129 priors $\hat{\pi}_{g\text{-class}}$ and $\hat{\pi}_{p\text{-class}}$, the classifier learns to model the posterior probability via Bayes' rule. Once trained, for any
130 given input instance \mathbf{x} , this classifier can provide an estimate of the probability that \mathbf{x} belongs to the class associated with the
131 target distribution $p(\mathbf{x})$, denoted as $\hat{P}(p|\mathbf{x})$, and consequently, the probability it belongs to the class associated with the source
132 distribution $g(\mathbf{x})$, $\hat{P}(g|\mathbf{x}) = 1 - \hat{P}(p|\mathbf{x})$.

The crucial insight is that the density ratio $p(\mathbf{x})/g(\mathbf{x})$ can be estimated using the outputs of this classifier. For a sample \mathbf{x}_i drawn from the source distribution $g(\mathbf{x})$, the estimated importance weight w_i , which approximates the true density ratio $p(\mathbf{x}_i)/g(\mathbf{x}_i)$, is given by:

$$w_i = \frac{\hat{\pi}_{g\text{-class}}}{\hat{\pi}_{p\text{-class}}} \frac{\hat{P}(p|\mathbf{x}_i)}{\hat{P}(g|\mathbf{x}_i)}. \quad (10)$$

Substituting the empirical priors and classifier probabilities, this expression becomes:

$$w_i = \frac{n_g^{\text{train}} / (n_g^{\text{train}} + n_p^{\text{train}})}{n_p^{\text{train}} / (n_g^{\text{train}} + n_p^{\text{train}})} \left(\frac{1 - \hat{P}(g|\mathbf{x}_i)}{\hat{P}(g|\mathbf{x}_i)} \right) = \frac{n_g^{\text{train}}}{n_p^{\text{train}}} \left(\frac{1}{\hat{P}(g|\mathbf{x}_i)} - 1 \right). \quad (11)$$

133 For practical stability, these estimated weights w_i are often clipped to a predefined range to mitigate issues arising from
134 extremely large or small weight values, which lead to high variance in the final risk estimate.

Finally, the risk is estimated using these importance weights w_i applied to the errors $e(\mathbf{x}_i)$ computed on samples \mathbf{x}_i drawn from the test part of the source distribution $g(\mathbf{x})$. The risk estimate is formulated as a standard importance-weighted average:

$$\hat{R}_{\text{Classifier}}(e, \mathbf{w}) = \frac{1}{n_g^{\text{test}}} \sum_{i=1}^{n_g^{\text{test}}} w_i e(\mathbf{x}_i), \quad \mathbf{x}_i \sim g(\mathbf{x}), \quad (12)$$

135 This method aims to provide an unbiased estimate of the risk under the target distribution $p(\mathbf{x})$ by appropriately re-weighting
136 observations from the source distribution $g(\mathbf{x})$.

137 This unbiased estimation property holds theoretically under certain conditions³. Notably if the support of the target
138 distribution $p(\mathbf{x})$ is contained within the support of the source distribution $g(\mathbf{x})$. If $g(\mathbf{x})$ is zero where $p(\mathbf{x})$ is positive, the true
139 density ratio is infinite, rendering the IW invalid for those regions.

140 2.1.4 Kernel Mean Matching (KMM)

141 We adopt the KMM formulation, following Huang et al.²¹, which involves solving a quadratic programming problem to estimate
142 sample weights. We employ KMM, which is a method for bias correction that estimates the density ratio between the source
143 distribution $g(\mathbf{x})$ and the target distribution $p(\mathbf{x})$ without directly computing the densities. It reweights the source data instances
144 such that the weighted distribution resembles the target distribution, and, according to theory, it remains an unbiased estimate.

145 KMM works by finding weights w_i that minimize the difference between the means of the source $g(\mathbf{x})$ and target $p(\mathbf{x})$ data
146 distributions in the feature space defined by a kernel function. The goal is to reweight the source data so that the weighted
147 distribution matches the target distribution.

148 **Practical Implementation for Risk Estimation** In the context of risk estimation, once the weights w_i are computed using
149 KMM, they can be incorporated into the risk estimate to adjust for the bias between the source and target distributions. The
150 weighted risk estimate is similarly given by:

$$\hat{R}_{\text{KMM}}(e, \mathbf{w}) = \frac{1}{n_g^{\text{test}}} \sum_{i=1}^{n_g^{\text{test}}} w_i e(\mathbf{x}_i). \quad (13)$$

151 **Objective Function** The weights w_i are computed by solving the following general optimization problem:

$$\min_{\mathbf{w}} \left\| \frac{1}{n_p^{\text{test}}} \sum_{i=1}^{n_p^{\text{test}}} \phi(\mathbf{x}_i^{\text{target}}) - \frac{1}{n_g^{\text{test}}} \sum_{j=1}^{n_g^{\text{test}}} w_j \phi(\mathbf{x}_j^{\text{source}}) \right\|^2 \text{ s.t. } 0 \leq w_j \leq B, \quad \sum_{j=1}^{n_g^{\text{test}}} w_j = n_g^{\text{test}}, \quad (14)$$

152 where $\phi(\mathbf{x})$ represents the feature map induced by the chosen kernel (in our practical case, it will be a radial basis function), and
 153 B is a hyperparameter that controls the upper bound of the weights to avoid extreme values. In our study, we are not focused on
 154 clipping weights, so B is chosen to prevent this situation. To simplify the optimization, the objective function is expanded using
 155 the kernel trick. We define the necessary components using our test data partitions:

- 156 • Let $K \in \mathbb{R}^{n_g^{\text{test}} \times n_g^{\text{test}}}$ be the kernel matrix computed on the source test set, where each element $K_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$ for
 $\mathbf{x}_i, \mathbf{x}_j \in D_g^{\text{test}}$.
- 157 • Let $\kappa \in \mathbb{R}^{n_g^{\text{test}}}$ be a vector where each element κ_i represents the average kernel similarity between a source test point \mathbf{x}_i
 and all target test points:

$$\kappa_i = \frac{1}{n_p^{\text{test}}} \sum_{j=1}^{n_p^{\text{test}}} K(\mathbf{x}_i, \mathbf{x}'_j), \quad \text{where } \mathbf{x}_i \in D_g^{\text{test}} \text{ and } \mathbf{x}'_j \in D_p^{\text{test}}.$$

With these definitions, the optimization problem to find the weights $\mathbf{w} = (w_1, \dots, w_{n_g^{\text{test}}})^\top$ can be rewritten.

$$\min_{\mathbf{w}} \left(\frac{1}{n_{\text{target}}^2} \mathbf{w}^\top K \mathbf{w} - \frac{2}{n_{\text{target}}^2} \kappa^\top \mathbf{w} + \text{const} \right) \text{ s.t. } 0 \leq w_j \leq B, \quad \sum_{j=1}^{n_g^{\text{test}}} w_j = n_g^{\text{test}} \quad (15)$$

For a radial basis function (RBF) kernel, the kernel matrix K is defined as:

$$K(\mathbf{x}, \mathbf{z}) = \exp \left(-\frac{\|\mathbf{x} - \mathbf{z}\|^2}{2\sigma^2} \right), \quad (16)$$

where σ is a bandwidth parameter. In practical implementations, σ is dynamically adjusted based on the median pairwise distance between the data points:

$$\sigma^2 = \frac{\text{median}(\|\mathbf{x}_i - \mathbf{x}_j\|^2 \mid i, j \in 1, \dots, n_g^{\text{test}})}{\log n_g^{\text{test}}}. \quad (17)$$

158 This ensures the kernel adapts to the scale of the data, making the matching more robust across varying datasets. We will
 159 use this kernel to practically realise KMM, with the usage of the L_2 norm.

160 2.1.5 Summary of methods

161 We have explored several methods for estimating the target risk using samples from a source distribution, in the presence of a
 162 distribution shift $p(\mathbf{x}) \neq g(\mathbf{x})$.

- 163 • **No Weighting (NW):** This method computes the empirical average of the error directly on the source samples, yielding.
 σ It is the most straightforward approach, but it is inherently biased, as it does not account for the difference in distributions.
- 165 • **Importance Weighting (IW):** Corrects the bias by reweighting source samples using the true density ratio $p(\mathbf{x})/g(\mathbf{x})$,
 σ typically estimated via KDE. While theoretically unbiased, it suffers from high variance, especially in high dimensions
 where density estimation fails.
- 168 • **Classifier Method:** Indirectly estimates the density ratio by training a probabilistic classifier to discriminate between
 σ source and target samples. It avoids explicit density estimation but relies on classifier calibration and can be unstable
 without weight clipping.
- 171 • **Kernel Mean Matching (KMM):** Directly computes sample weights to minimize the discrepancy between the mean
 σ embeddings of the weighted source and target distributions in a RKHS. It bypasses explicit density or density ratio
 estimation, offering a more robust and stable solution, particularly in high-dimensional settings.

174 In essence, NW is a simple but biased baseline, IW and Classifier methods attempt bias correction via explicit or implicit density
 175 ratio estimation but face practical issues with high variance and support assumptions, while KMM tackles bias correction by
 176 matching distributions in a kernel space through weight optimization.

177 2.2 Data processing

178 The data used in this study come from two distinct sources: artificially generated datasets and real-world observations. The
 179 artificial data allow for controlled experiments with known properties, such as specific degrees of spatial clustering, which are
 180 essential for systematically testing the limits of risk estimation methods. The real-world data, comprising ecological species
 181 occurrences and spatial layouts of immune cells from tumor microenvironments, provide critical validation in complex, practical
 182 scenarios characterized by inherent spatial biases and distribution shifts. The following subsections detail their generation and
 183 processing.

184 2.2.1 Artificial Data

185 To systematically evaluate the proposed estimator, we generated synthetic datasets designed to mimic complex spatial structures
 186 and covariate shifts.

187 All artificial datasets were generated within a square domain $\mathcal{X} = [0, 100]^d$, where d represents the dimensionality, ranging
 188 from 2 to 4 in our experiments. For each experiment, we sampled $N = 10,000$ data points for both the source $g(\mathbf{x})$ and target
 189 $p(\mathbf{x})$ distributions. This process was repeated independently 100 times for each parameter configuration to ensure statistical
 190 stability of the error metrics.

191 The core of our generation process relies on Gaussian Mixture Models (GMM). To simulate complex environmental
 192 heterogeneity, we employed GMMs with 30 randomly centered components. This number was selected empirically to cover
 193 the domain space stably without creating anomalies in specific sample generations. The spread of clusters is controlled by a
 194 maximum covariance parameter (Σ_{\max}). A low Σ_{\max} (e.g., 30 – 50) results in highly clustered, distinct populations, whereas a
 195 high Σ_{\max} (e.g., 400) or the use of a Uniform distribution results in a spread-out, diffuse structure. Figure 2 visually compares
 196 the generated GMM patterns under these different covariance constraints.

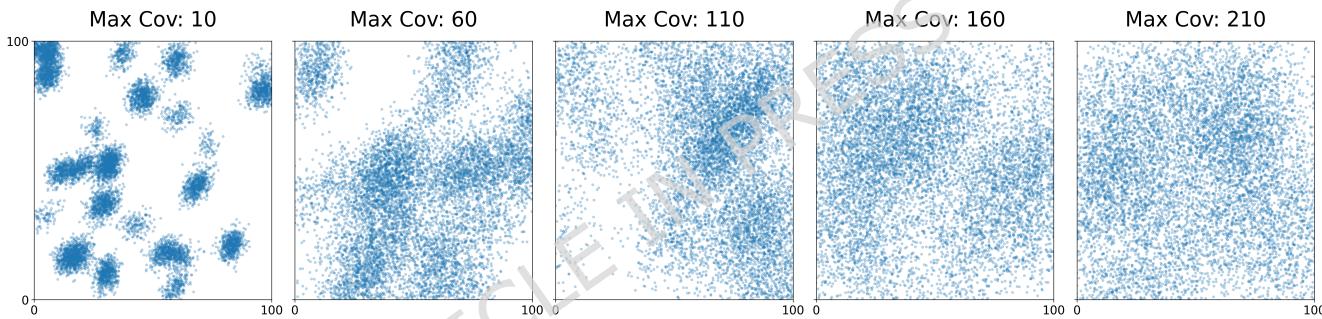


Figure 2. Visualizing GMM patterns with increasing maximum covariance values, transitioning from distinct clusters to a diffuse distribution.

197 2.2.2 Robustness Analysis Scenarios

198 While varying the degree of clustering provides a baseline for performance, real-world spatial data often exhibits more specific
 199 structural biases. To rigorously stress-test the KMM approach, we designed a comprehensive suite of ten synthetic scenarios,
 200 grouped into five distinct categories below. These configurations align with formal categorizations of dataset shift²² and are
 201 specifically tailored to reflect challenges in ecological and biological surveys, such as sampling bias, environmental dependency
 202 shifts, and scale mismatches. An overview of these patterns is visualized in Figure 3.

203 The following categories summarize the key types of domain shifts modeled in our experimental framework.

- 204 • **Domain Truncation (Cropped vs. Full):**

205 This category examines the impact of geometric restrictions on the domain, simulating partial observability.

- 206 – The first scenario restricts the source distribution, generated as a high-clustered GMM ($\Sigma_{\max} = 50$), to the lower
 207 half of the domain ($x_2 < 50$). In contrast, the target covers the full domain with lower clustering ($\Sigma_{\max} = 400$).
 208 This mimics selection bias caused by accessible terrain or political borders, where the model is trained on a
 209 geographically limited subset but must generalize to the entire region.
- 210 – The second scenario reverses this configuration: the source is generated as a low-clustering GMM ($\Sigma_{\max} = 400$)
 211 covering the full domain, while the target is restricted to the lower half ($x_2 < 50$) with high clustering ($\Sigma_{\max} = 50$).
 212 This simulates a downscaling task where a model trained on regional data is applied to a specific local area,
 213 requiring the estimator to filter out irrelevant global information.

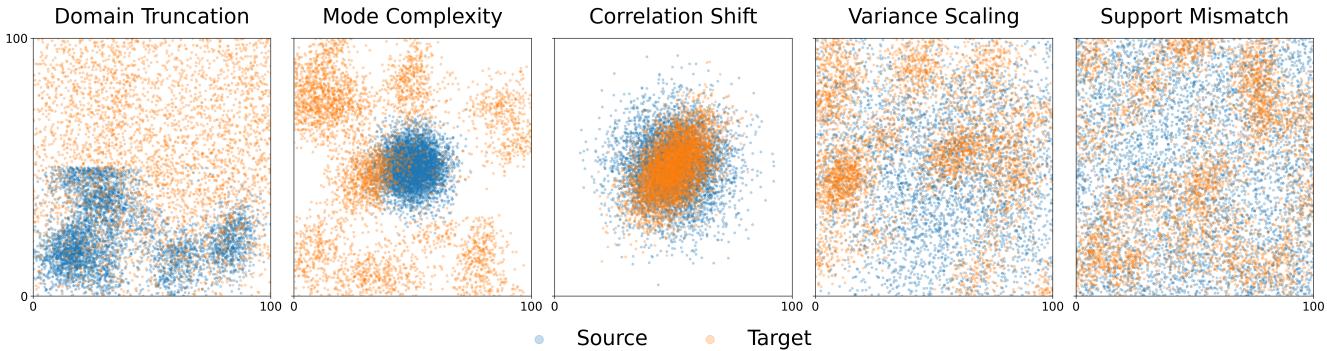


Figure 3. Overview of the synthetic scenarios used for robustness testing. Blue points represent the source distribution ($g(\mathbf{x})$), and orange points represent the target distribution ($p(\mathbf{x})$). These plots illustrate five representative configurations. Our experiments also include the inverse directional shifts for these categories, totaling ten scenarios.

214 • **Mode Complexity Mismatch (Expansion vs. Contraction):**

215 This category evaluates the estimator's behavior when the population diversity changes between domains.

216 – The mode expansion scenario involves a source consisting of a single centered cluster ($\mu = 50$) with a maximum
217 covariance of 50, while the target is a multimodal GMM comprising disjoint clusters with a tighter spread
218 ($\Sigma_{\max} = 10$). This tests the model's ability to generalize from a homogeneous training set to a diverse landscape
219 containing multiple distinct subpopulations.

220 – The mode contraction scenario reverses this: the source comprises multiple scattered clusters ($\Sigma_{\max} = 10$), whereas
221 the target is a single centered mode ($\mu = 50, \Sigma_{\max} = 50$). This evaluates how well a model trained on global
222 statistics adapts to a specific local area without underperforming due to the noise present in the global dataset.

223 • **Correlation Structure Shift (Shift vs. Restoration):**

224 Here, we manipulate the covariance matrices to be either axis-aligned (diagonal) or rotated (non-diagonal) to simulate
225 changing feature interactions.

226 – The correlation shift scenario starts with a source generated as a single centered component ($\mu = 50, \Sigma_{\max} = 150$)
227 constrained to a diagonal covariance matrix. The target consists of the same centered component but with a
228 non-diagonal (rotated) covariance matrix. This tests robustness against changing environmental dependencies,
229 such as a shift in the relationship between temperature and elevation.

230 – The correlation restoration scenario moves from a rotated source (non-diagonal covariance) to an axis-aligned
231 target (diagonal covariance), with both distributions maintaining $\Sigma_{\max} = 150$. This tests the method's adaptability
232 when complex dependencies or entangled features present in the training phase disappear or become independent
233 in the target environment.

234 • **Variance Scaling (Focusing vs. Extrapolation):**

235 We examine shifts in the spatial spread of the data to test robustness against scale differences.

236 – The first case transitions from a widely dispersed source ($\Sigma_{\max} = 400$) to a tightly clustered target ($\Sigma_{\max} = 50$).
237 This represents a focusing task, where a broad-scale survey is used to predict a localized phenomenon.

238 – The second case transitions from a tightly clustered source ($\Sigma_{\max} = 50$) to a dispersed target ($\Sigma_{\max} = 400$). This
239 represents an extrapolation challenge, where the model must predict in valid regions of the domain that were
240 sparsely sampled or entirely unseen during the training phase.

241 • **Support Mismatch (Structured vs. Unstructured):**

242 This represents an extreme covariate shift involving a Uniform distribution to test performance under severe information
243 imbalance.

- 244 – The first scenario uses a source drawn from a uniform distribution covering the entire domain, while the target is a
245 high-clustered GMM with $\Sigma_{\max} = 50$. This requires the estimator to identify and upweight relevant signals hidden
246 within uninformative, unstructured noise.
- 247 – The second scenario uses a high-clustered GMM source ($\Sigma_{\max} = 50$) and a uniform target. This simulates the
248 difficulty of applying a model trained on highly specific, structured data to a completely random or unexplored
249 environment where the training structure may not apply.

250 These bidirectional scenarios ensure that our evaluation covers not only the magnitude of the shift but also its directionality,
251 distinguishing between problems of interpolation, extrapolation, and structural adaptation.

252 **Model Configuration** The true function $f(\mathbf{x})$ was modelled as a mixture of GMM kernels (referred to as "GMM"). For
253 the estimation of $\hat{f}(\mathbf{x})$, we employed the model Gradient Boosting Regression trained on 70% of the available samples. The
254 choice of these seemingly unconventional models was intentional, as the specific accuracy of the models is not the primary
255 concern in this study. Instead, our focus lies on estimating the risk associated with a model error when applied to the target
256 distribution. Squared error $e(\mathbf{x}) = (f(\mathbf{x}) - \hat{f}(\mathbf{x}))^2$ served as the error metric. To evaluate the classifier-based method, we
257 trained a Gradient Boosting Classifier using the default parameters. To ensure that the classifier was sufficiently trained, we
258 calculated the ROC-AUC on the test set. The results are presented in Table S2 in the Supplementary Material. We prevent
259 clipping of the weights in KMM by setting $B = 1000$, which is sufficient according to the experiments shown in Figure S5 of
260 the Supplementary Material.

261 2.2.3 Real data

262 Species data

263 **Study area** The study area focuses on Finland, encompassing latitudinal and longitudinal extents that capture the primary
264 habitats of the selected plant species. This region is characterized by boreal to subarctic climatic conditions, with a transition
265 toward more temperate environments in southern Finland and along the coast. Prominent geographic features include numerous
266 lakes, extensive forested zones, and coastlines along the Baltic Sea.

267 **Plant occurrence** We collected occurrence data from 2000 to 2024 for several herbaceous and woody plant species native
268 to Finland: *Tussilago farfara* L.²³, *Anemone nemorosa* L.²⁴, *Caltha palustris* L.²⁵

269 These data were primarily obtained from the Global Biodiversity Information Facility (GBIF), which leveraged contributions
270 from citizen science projects. We selected these species because they exhibit distinct phenological and ecological traits pertinent
271 to boreal and subarctic ecosystems and because sufficient presence and absence records were available for the specified period
272 (2000–2024).

273 **Environmental predictors** We used 19 bioclimatic variables to model species distributions. These predictors encompass
274 average and extreme temperature and precipitation patterns, as well as measures of climatic variability relevant to plant
275 physiology.

276 To prepare the environmental data, we employed several R packages, including `raster`, `rgdal`, `terra`, and `sf`^{26–29}.
277 We standardized all spatial layers with the WGS84 coordinate reference system and then masked and cropped them to the study
278 region, specifically Finland and relevant parts of Sweden. The final dataset was stacked into a single multi-layer raster stack for
279 subsequent modeling.

280 **Cell data** The first dataset comprises tumor biopsy images depicting various immune cell types, including conventional
281 dendritic cells type 2 (cDC2), plasmacytoid dendritic cells (pDCs), myeloid cells, and B cells³⁰. Analyzing the spatial
282 distribution of these cells is crucial for understanding their interactions, which could lead to the identification of biomarkers for
283 therapy response³¹. Following manual quality control, ensuring that at least half of the tissue remained intact, 78 images were
284 selected for analysis.

285 Positions and types of immune cells were identified using the ImmuNet pipeline^{30,32}. The tissue boundaries were detected
286 through a segmentation algorithm implemented in the "inForm" software (v2.4.8, PerkinElmer).

287 Our LCF analysis, following the methodology of Martynova et al.¹⁹, reveals different spatial patterns among cell types:
288 B cells exhibit high LCF values, indicating noticeable clustering, while myeloid cells show a minimal deviation from zero,
289 reflecting a scattered distribution. A marked peak in the LCF for cDC2s suggests potential interactions at short distances.

290 **Models configuration** For both datasets, we used Gradient Boosting³³, Logistic Regression, Random Forest Classifier and
 291 MLP Classifier as our binary classification black box models. They are trained on 70% of the available samples. Moreover, we
 292 prevent clipping of the weights in KMM by setting $B = 1000$, which is sufficient according to the experiments shown in Figure
 293 S5 of the Supplementary Material. It is essential to perform data splitting and hyperparameter tuning to prevent overfitting on
 294 both the source and target datasets. Since our task is formulated as a black-box risk estimation problem, we are not concerned
 295 with model configuration or weight optimization, and therefore we do not perform hyperparameter tuning — we rely solely
 296 on the model’s output. It is critical to distinguish this from the random hyperparameter sampling used in our model selection
 297 experiment (Section 2.2.4); unlike tuning, which seeks an optimal model, sampling aims to generate a diverse portfolio of
 298 model behaviors to rigorously stress-test the risk estimation methods under a wide range of conditions. However, overfitted
 299 models tend to perform poorly on real-world data and introduce challenges in reliable risk estimation. We selected source-target
 300 dataset pairs to ensure meaningful transfer learning scenarios based on their inherent clustering structure. Specifically, the
 301 source dataset was chosen to exhibit a clustered structure, while the target dataset was selected to be less clustered. The degree
 302 of clustering was quantified using the area under the LCF curve. Following the recommendations of the original study, we
 303 individually selected the maximum radius values for AUC LCF for each data dimensionality and data type to obtain informative
 304 and meaningful results. Only pairs with Area under the Receiver Operating Characteristic Curve (AUC-ROC) scores exceeding
 305 0.7 were retained, ensuring robust classification performance while avoiding overfitting.

306 Classification performance was evaluated using the log-loss function $e(\mathbf{x})$ for each data point \mathbf{x} :

$$e(\mathbf{x}) = - (f(\mathbf{x}) \log \hat{f}(\mathbf{x}) + (1 - f(\mathbf{x})) \log (1 - \hat{f}(\mathbf{x}))) \quad (18)$$

307 where $f(\mathbf{x}) \in \{0, 1\}$ is the true label and $\hat{f}(\mathbf{x})$ is the predicted probability.

308 **Data Preprocessing** All features were standardized to a zero mean and unit variance. We applied Principal Component
 309 Analysis (PCA) to align the feature space with our synthetic data experiments. The number of principal components was selected
 310 to preserve the intrinsic structure of the data: for clustered source datasets, components were retained to maintain separation
 311 between clusters, while for less-clustered target datasets, components were chosen to reduce redundancy without enforcing
 312 artificial structure. This approach ensured comparability with synthetic experiments while mitigating complexity. Figures S1-S2
 313 (Supplementary material) illustrate the resulting 2D PCA projections for representative species and cell datasets, respectively,
 314 highlighting the different structures of the source (more clustered) and target (less clustered) data after dimensionality reduction.

315 2.2.4 Evaluation procedure

316 **Comparison of methods** To evaluate the IW, we trained KDE models on train samples to approximate density ratios on test
 317 samples, ensuring theoretically grounded risk estimation. To evaluate the classifier-based method, we trained the same Gradient
 318 Boosting Classifier using the default parameters as described in Artificial data.

319 The performance of risk estimation was evaluated using three metrics: MAPE, Root Mean Square Error (RMSE), and Root
 320 Mean Square Percentage Error (RMSPE) across all n source and target pairs. These metrics allow us to assess the accuracy of
 321 risk estimation between the actual risk R_{GT} and the estimated risk R_{method} . The subscript ‘method’ indicates the estimation
 322 approach, which can be NW, IW, KMM, or a Classifier-based method, evaluated across various datasets and scenarios.

The three metrics are defined as follows:

$$\text{MAPE} = \frac{1}{n} \sum_{i=1}^n \left| \frac{R_{GT}^{(i)} - R_{method}^{(i)}}{R_{GT}^{(i)}} \right|, \quad (19)$$

$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^n (R_{GT}^{(i)} - R_{method}^{(i)})^2}, \quad (20)$$

$$\text{RMSPE} = \sqrt{\frac{1}{n} \sum_{i=1}^n \left(\frac{R_{GT}^{(i)} - R_{method}^{(i)}}{R_{GT}^{(i)}} \right)^2}. \quad (21)$$

323 The MAPE measure (Eq. 19) clearly explains the performance of the estimation by quantifying the average percentage deviation
 324 from a true risk. The RMSE captures the square root of the average squared differences between the estimated and true risks,
 325 focusing more on the more significant deviations. Lastly, RMSPE measures the percentage error similarly to RMSE but
 326 normalizes each difference by the true risk, allowing it to account for relative scale differences between datasets.

327 To better understand how the experiments were conducted across different dataset types and domain pairs, we provide a
 328 general workflow diagram. This workflow outlines the pipeline used for data generation and preprocessing, as well as the

329 procedures for model training, validation, and risk estimation. It includes both artificial and real-world datasets (such as
 330 biological cells and species data) and demonstrates how we consistently applied the same evaluation logic across all settings.

331 The general workflow of our experiments is divided into two parts (See Figures 4 and 5). Figure 4 (Part A) illustrates how
 332 we construct both artificial and real datasets (cells and species data), define source and target domains, and preprocess the data
 333 including normalization, dimensionality reduction, and LCF-based splitting. Subsequently, Figure 5 (Part B) demonstrates the
 334 validation pipeline used across all dataset types: we first train a model on the source data, then a domain classifier, and finally
 335 evaluate the performance on target data using risks estimated by methods such as \hat{R}_{NW} , \hat{R}_{IW} , $\hat{R}_{\text{Classifier}}$, \hat{R}_{KMM} , and comparing
 336 them to R_{GT} .



Figure 4. Workflow for data construction and preprocessing.

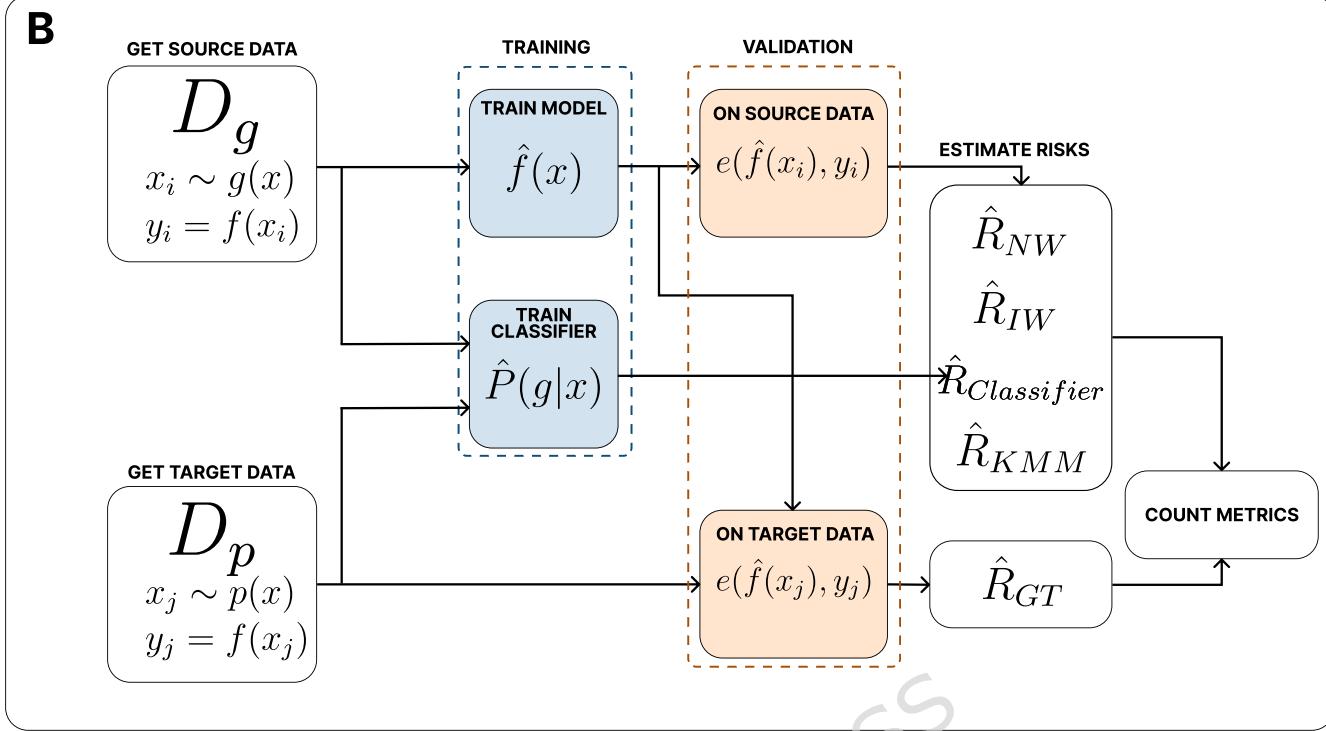


Figure 5. Workflow for model validation and risk estimation.

337 **Practical Demonstration of Risk Estimation for Model Selection** To demonstrate the practical significance of risk estimation,
 338 we conducted an experiment that simulates model selection under distribution shift, using previously described species and
 339 cell datasets. In real-world deployment scenarios, the true performance of a model on the target distribution is unknown. Risk
 340 estimation methods aim to provide a reliable proxy for this true risk, guiding the selection of models that are likely to perform
 341 well in the target environment. For this experiment, using species and cell datasets, we generated a pool of 200 classification
 342 models (100 Gradient Boosting, 100 Random Forest) trained on source data, with hyperparameters randomly sampled from
 343 predefined ranges (e.g. `'n_estimators'` [5, 20], `'max_depth'` [1, 4], `'learning_rate'` [0.01, 0.3], etc.). We filtered these models,
 344 retaining only those with a ROC AUC > 0.7 on the target test set to ensure a basic level of predictive applicability. For each
 345 retained model m_i , we calculated its true risk $R_{GT}^{(i)}$ and its estimated risk $R_{method}^{(i)}$ using each of the evaluated methods (NW,
 346 IW, KMM, Classifier) based on the source data. The objective was to assess how well each estimation method identifies
 347 models with low true risk using only its estimated risk $R_{method}^{(i)}$. We varied the number of selected models (K) to observe its
 348 impact on performance, focusing on $K = 5$ for our primary analysis. Our extended results show that selecting very few models
 349 ($K = 3$) introduces significant noise, reflected in high standard deviations. In contrast, selecting more models ($K = 10$) leads to
 350 stabilization, with reduced variance and closer convergence between methods. The detailed results for $K = 3$ and $K = 10$ are
 351 provided in Supplementary Tables S3 and S4, and a comprehensive visualization of these trends is presented in Supplementary
 352 Figure S6. We applied the following model selection algorithm for each risk estimation method:
 353

1. For each model m_i , determine the true risk $R_{GT}^{(i)}$ (for evaluation purposes) and the estimated risk $R_{method}^{(i)}$ using a specific risk estimation method (NW, IW, KMM, or Classifier).
2. Select the $K = 5$ models with the lowest estimated risk $R_{method}^{(i)}$ according to the method. Let A be the set of indices of these models.
3. Compute the average true risk for the selected models and method: $R_{method} = \frac{1}{K} \sum_{i \in A} R_{GT}^{(i)}$. This value represents the actual performance of the models chosen based on the estimation method's output.

359 **3 Results**

360 In this section, we compare the performance of the NW, IW, and KMM methods in synthetic and real-world datasets. We take
 361 advantage of the insights and techniques derived from the analysis of synthetic data to ensure consistency and relevance in

362 our experimental setup. A critical aspect of these experiments is the proper definition of the source and target distributions,
 363 along with a thorough clustering analysis and evaluation using appropriate metrics. Our primary focus is on scenarios involving
 364 high-clustered source data and low-clustered target data, characterized by significant distributional shifts between them.

365 **3.1 Artificial Data**

366 Initial experiments with synthetic data revealed critical insights into the limitations of IW and NW under distribution shift. We
 367 observed that lower maximum covariance values in the generation of the source GMM distribution produced stronger clustering
 368 (Figure 2), resulting in a significant distribution shift relative to the low-clustered target GMM distribution. Quantitative analysis
 369 via LCF curves (Figure 6) confirmed this behaviour, showing distinct clustering patterns as described in Section 2 (Methods).

370 A comprehensive comparison of the risk estimation methods across the proposed scenarios is presented in Table 1. The
 371 central and most consistent finding across all experimental configurations is the superior performance of the KMM method.
 372 KMM achieves the lowest error metrics in the vast majority of cases, demonstrating remarkable stability not only under varying
 373 degrees of clustering but also under geometric transformations and support mismatches.

374 Specifically, in scenarios involving Correlation Shift (Diagonal \rightarrow Non-Diagonal) and Correlation Restoration, KMM
 375 effectively handles the rotation of the feature space, maintaining a MAPE significantly lower than NW and IW, which struggle
 376 to adapt to the changed feature dependencies. Furthermore, in the challenging Variance Scaling: Extrapolation scenario (Low
 377 Variance \rightarrow High Variance), where the model must generalize to a broader domain than it was trained on, KMM outperforms
 378 density-ratio based approaches, which often exhibit unstable weights in low-density regions. Similarly, in cases of Support
 379 Mismatch (e.g., Uniform \rightarrow GMM), KMM correctly identifies relevant signal within unstructured data, whereas IW frequently
 380 produces exploded error rates due to denominator instability in the density ratio estimation.

Table 1. Robustness evaluation of risk estimation methods under distinct structural biases and distribution shifts. The table compares performance metrics (MAPE, RMSE, RMSPE) across 2D, 3D, and 4D dimensions for different synthetic scenarios designed to stress-test estimator stability (e.g., domain truncation, correlation shifts, and mode mismatches). The best-performing method per block (lowest MAPE) is in bold.

Method	2D			3D			4D		
	MAPE	RMSE	RMSPE	MAPE	RMSE	RMSPE	MAPE	RMSE	RMSPE
Domain Truncation: Cropped → Full									
NW	83.9 ± 1.2	1.91 ± 0.15	84.1 ± 1.3	80.6 ± 1.2	4.6 ± 0.20	80.7 ± 1.2	79.6 ± 1.1	8.9 ± 0.4	79.7 ± 1.1
IW	92.8 ± 1.5	2.05 ± 0.18	92.8 ± 1.4	96.2 ± 1.5	5.5 ± 0.30	96.2 ± 1.6	98.6 ± 1.6	10.9 ± 0.4	98.6 ± 1.7
KMM	80.0 ± 1.0	1.84 ± 0.09	80.4 ± 1.0	74.2 ± 1.1	4.26 ± 0.15	74.3 ± 1.0	75.0 ± 0.9	8.4 ± 0.3	75.1 ± 0.9
Classifier	89.9 ± 1.3	2.00 ± 0.16	90.0 ± 1.4	90.6 ± 1.4	5.2 ± 0.20	90.7 ± 1.4	93.9 ± 1.4	10.4 ± 0.4	93.9 ± 1.4
Domain Truncation: Full → Cropped									
NW	72.0 ± 2.0	1.07 ± 0.15	72.1 ± 2.0	92.0 ± 1.5	5.6 ± 0.30	92.0 ± 2.5	94.5 ± 1.2	10.0 ± 0.8	94.5 ± 1.5
IW	69.9 ± 2.2	1.04 ± 0.18	70.1 ± 2.2	75.1 ± 0.5	4.7 ± 0.15	75.1 ± 0.7	70.7 ± 3.0	7.8 ± 1.0	70.9 ± 3.0
KMM	59.5 ± 3.0	0.92 ± 0.20	60.2 ± 3.0	72.9 ± 3.5	4.5 ± 0.11	73.2 ± 3.5	66.5 ± 1.5	7.1 ± 0.6	66.9 ± 1.8
Classifier	66.4 ± 2.5	1.01 ± 0.22	66.9 ± 2.5	85.8 ± 2.0	5.2 ± 0.40	85.8 ± 2.5	82.3 ± 1.3	8.8 ± 0.7	82.6 ± 1.8
Mode Complexity: Expansion (Single → Clusters)									
NW	93.1 ± 1.3	1.41 ± 0.09	93.1 ± 1.3	90.9 ± 1.3	5.0 ± 0.20	90.9 ± 1.3	91.0 ± 1.4	12.3 ± 0.5	91.1 ± 1.4
IW	97.4 ± 1.4	1.47 ± 0.11	97.4 ± 1.4	99.3 ± 1.6	5.4 ± 0.30	99.3 ± 1.5	99.9 ± 1.6	13.4 ± 0.5	99.9 ± 1.6
KMM	90.1 ± 0.9	1.37 ± 0.06	90.1 ± 0.9	85.7 ± 1.0	4.77 ± 0.14	85.8 ± 1.0	87.5 ± 0.8	11.9 ± 0.3	87.6 ± 0.8
Classifier	94.6 ± 1.3	1.43 ± 0.10	94.6 ± 1.3	92.5 ± 1.4	4.9 ± 0.20	93.0 ± 1.5	98.7 ± 1.5	13.2 ± 0.5	98.7 ± 1.5
Mode Complexity: Contraction (Clusters → Single)									
NW	57.7 ± 2.0	0.58 ± 0.05	59.8 ± 2.0	59.4 ± 1.9	2.46 ± 0.12	61.5 ± 2.0	54.7 ± 1.8	4.13 ± 0.15	57.5 ± 2.0
IW	58.3 ± 2.0	0.60 ± 0.05	63.8 ± 2.0	92.6 ± 1.6	3.1 ± 0.20	93.1 ± 1.7	90.9 ± 1.4	5.8 ± 0.20	91.7 ± 1.5
KMM	39.1 ± 1.5	0.43 ± 0.03	43.9 ± 1.7	43.2 ± 1.4	2.06 ± 0.08	47.8 ± 1.6	41.3 ± 1.2	3.37 ± 0.11	44.8 ± 1.3
Classifier	54.2 ± 2.0	0.54 ± 0.04	58.2 ± 2.0	91.4 ± 1.6	3.13 ± 0.18	91.8 ± 1.6	91.7 ± 1.5	5.6 ± 0.20	92.2 ± 1.5
Correlation Shift: Diagonal → Non-Diagonal									
NW	17.5 ± 0.90	0.073 ± 0.008	19.6 ± 1.0	21.4 ± 0.9	0.22 ± 0.020	22.8 ± 0.9	27.5 ± 1.1	0.50 ± 0.030	30.2 ± 1.2
IW	3.2 ± 0.30	0.021 ± 0.004	3.9 ± 0.3	5.3 ± 0.4	0.069 ± 0.008	6.1 ± 0.4	7.6 ± 0.5	0.153 ± 0.012	8.9 ± 0.5
KMM	2.53 ± 0.15	0.012 ± 0.002	3.2 ± 0.2	3.9 ± 0.2	0.041 ± 0.005	4.5 ± 0.3	3.4 ± 0.2	0.072 ± 0.006	4.1 ± 0.3
Classifier	3.3 ± 0.20	0.018 ± 0.003	3.7 ± 0.3	4.1 ± 0.3	0.047 ± 0.006	4.6 ± 0.3	7.6 ± 0.4	0.219 ± 0.015	9.7 ± 0.5
Correlation Shift: Restoration (Non-Diagonal → Diagonal)									
NW	18.6 ± 0.9	0.123 ± 0.012	24.9 ± 1.1	46.2 ± 1.3	0.95 ± 0.05	46.2 ± 1.3	71.5 ± 1.6	3.8 ± 0.20	71.5 ± 1.6
IW	16.5 ± 0.9	0.115 ± 0.010	23.4 ± 1.1	46.4 ± 1.3	0.97 ± 0.05	46.5 ± 1.3	84.6 ± 1.7	4.6 ± 0.20	84.7 ± 1.7
KMM	13.1 ± 0.7	0.081 ± 0.006	15.9 ± 0.7	28.8 ± 0.9	0.60 ± 0.03	28.8 ± 0.9	59.5 ± 1.1	3.26 ± 0.12	59.6 ± 1.1
Classifier	19.9 ± 1.0	0.131 ± 0.014	20.2 ± 1.0	31.5 ± 1.0	0.68 ± 0.04	32.0 ± 1.0	67.1 ± 1.4	3.7 ± 0.20	67.2 ± 1.4
Support Mismatch: GMM → Uniform									
NW	23.2 ± 2.3	0.160 ± 0.018	26.1 ± 1.7	41.3 ± 1.1	0.94 ± 0.23	41.8 ± 1.0	51.0 ± 1.1	2.8 ± 0.12	39.8 ± 3.0
IW	21.5 ± 2.2	0.146 ± 0.021	23.9 ± 1.8	63.4 ± 0.8	1.43 ± 0.35	63.6 ± 1.1	86.6 ± 1.5	4.7 ± 0.18	86.6 ± 1.7
KMM	3.5 ± 2.0	0.029 ± 0.014	4.8 ± 1.1	12.2 ± 2.0	0.35 ± 0.10	15.3 ± 0.9	30.3 ± 0.9	1.7 ± 0.08	31.1 ± 1.1
Classifier	19.7 ± 2.2	0.147 ± 0.018	23.0 ± 1.6	33.2 ± 1.2	0.77 ± 0.28	34.0 ± 1.3	42.4 ± 1.0	2.3 ± 0.11	42.7 ± 1.2
Support Mismatch: Uniform → GMM									
NW	19.6 ± 0.9	0.143 ± 0.012	20.9 ± 1.0	7.6 ± 0.5	0.32 ± 0.020	10.0 ± 0.6	10.4 ± 0.5	0.88 ± 0.05	12.4 ± 0.6
IW	22.2 ± 1.1	0.162 ± 0.015	23.7 ± 1.1	13.7 ± 0.7	0.50 ± 0.040	16.5 ± 0.8	12.4 ± 0.7	1.09 ± 0.06	16.6 ± 0.8
KMM	16.9 ± 0.8	0.128 ± 0.010	18.8 ± 0.8	7.2 ± 0.3	0.262 ± 0.015	9.0 ± 0.5	4.2 ± 0.3	0.40 ± 0.03	6.2 ± 0.4
Classifier	26.0 ± 1.2	0.180 ± 0.016	27.0 ± 1.3	31.1 ± 1.2	0.97 ± 0.050	32.1 ± 1.2	35.1 ± 1.3	2.50 ± 0.11	37.5 ± 1.3
Variance Scaling: Focusing (High Variance → Low Variance)									
NW	66.1 ± 1.5	0.76 ± 0.14	66.7 ± 2.0	63.2 ± 1.1	2.30 ± 0.09	63.5 ± 1.4	62.8 ± 1.0	4.9 ± 0.03	63.1 ± 1.3
IW	69.3 ± 1.2	0.80 ± 0.14	69.9 ± 1.8	81.6 ± 0.7	2.90 ± 0.13	81.7 ± 1.2	92.5 ± 0.3	7.0 ± 0.05	92.5 ± 0.5
KMM	48.1 ± 2.1	0.61 ± 0.09	50.5 ± 2.0	42.2 ± 2.1	1.64 ± 0.08	43.5 ± 2.0	50.9 ± 0.8	4.0 ± 0.04	51.4 ± 1.9
Classifier	60.8 ± 1.7	0.71 ± 0.13	61.9 ± 2.2	52.8 ± 1.4	1.96 ± 0.12	54.1 ± 1.8	51.7 ± 0.5	4.1 ± 0.04	52.4 ± 1.4
Variance Scaling: Extrapolation (Low Variance → High Variance)									
NW	20.1 ± 1.0	0.165 ± 0.015	22.8 ± 1.1	11.1 ± 0.6	0.47 ± 0.030	14.4 ± 0.7	15.9 ± 0.8	1.86 ± 0.09	19.9 ± 0.9
IW	6.8 ± 0.5	0.067 ± 0.008	8.5 ± 0.5	11.2 ± 0.6	0.45 ± 0.030	13.1 ± 0.7	21.5 ± 1.0	2.47 ± 0.11	25.5 ± 1.1
KMM	3.3 ± 0.3	0.036 ± 0.004	5.2 ± 0.4	7.8 ± 0.4	0.332 ± 0.018	9.6 ± 0.5	10.9 ± 0.6	1.31 ± 0.07	14.2 ± 0.7
Classifier	6.0 ± 0.4	0.060 ± 0.006	7.2 ± 0.4	20.0 ± 0.9	0.90 ± 0.050	23.0 ± 1.0	40.0 ± 1.3	3.79 ± 0.15	41.9 ± 1.4

381 To provide a more granular analysis of this behavior, we systematically evaluated risk estimation performance across a
 382 range of maximum covariance limits for GMM source distribution, which directly control the intensity of the covariate shift.
 383 The results of these experiments are presented for dimensions 2D, 3D, and 4D. Figure S3 details the performance metrics for
 384 the uniform target distribution, while Figure S4 shows the corresponding results for the GMM target distribution.

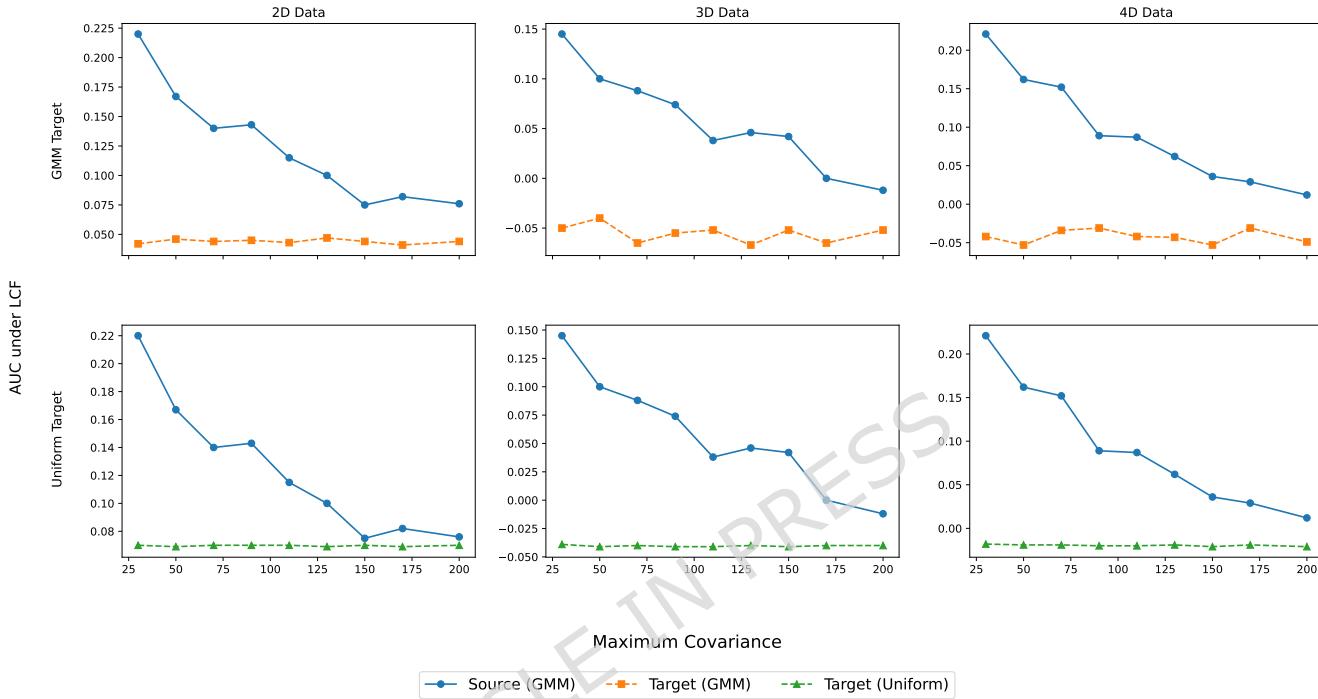


Figure 6. LCF analysis of clustering intensity for different covariance limits across dimensions (2D, 3D, and 4D) and target distributions (low-clustered GMM and Uniform). The single figure consolidates the six scenarios, with rows indicating the target distribution and columns representing the data dimensionality.

385 **3.2 Real Data**

386 We present experiments conducted on real-world datasets, which are critical for understanding the challenges and effectiveness
 387 of risk estimation in spatial modeling. Real data often exhibit greater complexity and variability than synthetic datasets,
 388 enabling us to evaluate our models in realistic scenarios.

389 A comprehensive comparison of the risk estimation methods on these real datasets (reduced to 2D, 3D, and 4D via PCA) is
 390 presented in Table 2. Consistent with our findings from the artificial scenarios, the KMM method achieves the lowest error
 391 metrics in the vast majority of cases. For instance, in the 4D Immune cells data, KMM maintains a manageable MAPE ranging
 392 from 54.3% to 93.4% depending on the predictive model. In contrast, IW fails to produce stable estimates, yielding significantly
 393 higher MAPE values ranging from 101.9% to 544.6%. This demonstrates that KMM is the most robust and reliable method for
 394 risk estimation under spatial distribution shift, effectively overcoming the limitations of density-ratio-based approaches.

Table 2. Performance comparison of NW, IW, KMM, and Classifier-based risk estimation methods across PCA dimensions (2D, 3D, 4D) for real data. KMM method consistently outperforms all other approaches across the majority of datasets and dimensionalities. The best-performing method per block (lowest MAPE) is in bold.

Method	2D			3D			4D		
	MAPE	RMSE	RMSPE	MAPE	RMSE	RMSPE	MAPE	RMSE	RMSPE
Species Gradient Boosting Model									
NW	67.5 \pm 3.0	0.98 \pm 0.07	70.0 \pm 3.0	53.1 \pm 2.0	0.91 \pm 0.05	60.2 \pm 2.5	47.5 \pm 2.0	0.72 \pm 0.05	54.2 \pm 2.5
IW	88.6 \pm 4.0	1.16 \pm 0.08	89.0 \pm 4.0	91.3 \pm 4.0	1.13 \pm 0.08	91.5 \pm 4.0	95.1 \pm 4.0	1.00 \pm 0.08	95.3 \pm 4.0
KMM	44.6 \pm 2.0	0.78 \pm 0.02	50.9 \pm 2.0	39.8 \pm 1.0	0.801 \pm 0.003	49.7 \pm 2.0	33.5 \pm 1.5	0.61 \pm 0.01	43.5 \pm 2.0
Classifier	52.6 \pm 2.5	0.83 \pm 0.02	57.5 \pm 2.5	51.1 \pm 1.3	0.811 \pm 0.005	56.9 \pm 1.5	44.4 \pm 1.8	0.63 \pm 0.01	52.2 \pm 2.5
Species Logistic Regression Model									
NW	60.1 \pm 3.0	1.03 \pm 0.08	63.4 \pm 3.0	62.1 \pm 3.0	1.01 \pm 0.08	65.0 \pm 3.0	44.8 \pm 2.0	0.41 \pm 0.03	42.9 \pm 2.0
IW	88.5 \pm 4.0	1.28 \pm 0.10	89.1 \pm 4.0	92.2 \pm 4.0	1.30 \pm 0.10	92.5 \pm 4.0	89.9 \pm 4.0	0.79 \pm 0.06	90.0 \pm 4.0
KMM	36.9 \pm 1.8	0.78 \pm 0.01	45.2 \pm 1.0	37.8 \pm 2.0	0.75 \pm 0.02	45.2 \pm 2.0	34.3 \pm 1.5	0.33 \pm 0.01	41.2 \pm 0.3
Classifier	41.3 \pm 2.0	0.82 \pm 0.02	48.0 \pm 1.2	46.9 \pm 2.5	0.81 \pm 0.03	52.8 \pm 2.5	39.2 \pm 1.8	0.41 \pm 0.03	41.8 \pm 0.3
Species Random Forest Model									
NW	83.8 \pm 4.0	3.85 \pm 0.03	86.4 \pm 4.0	67.6 \pm 3.0	1.63 \pm 0.02	74.2 \pm 3.5	63.1 \pm 3.0	1.99 \pm 0.02	69.8 \pm 3.5
IW	92.6 \pm 4.5	3.90 \pm 0.05	93.1 \pm 4.5	92.1 \pm 4.5	1.72 \pm 0.06	92.5 \pm 4.5	96.4 \pm 4.5	2.07 \pm 0.06	96.5 \pm 4.5
KMM	70.7 \pm 1.5	3.775 \pm 0.004	79.6 \pm 0.5	52.1 \pm 2.5	1.59 \pm 0.01	66.3 \pm 2.0	49.5 \pm 2.0	1.944 \pm 0.003	61.6 \pm 1.5
Classifier	74.7 \pm 1.8	3.782 \pm 0.004	80.8 \pm 0.5	61.5 \pm 3.0	1.61 \pm 0.01	70.9 \pm 2.5	56.8 \pm 2.5	1.949 \pm 0.003	65.3 \pm 2.0
Species Neural Network Model									
NW	40.1 \pm 2.0	0.60 \pm 0.04	48.5 \pm 2.5	45.5 \pm 2.0	0.81 \pm 0.06	52.3 \pm 2.5	42.3 \pm 2.0	0.50 \pm 0.03	46.8 \pm 2.0
IW	85.2 \pm 4.0	1.01 \pm 0.08	88.2 \pm 4.0	90.3 \pm 4.5	1.21 \pm 0.09	92.6 \pm 4.5	95.2 \pm 4.5	0.91 \pm 0.07	95.8 \pm 4.5
KMM	30.6 \pm 1.5	0.45 \pm 0.03	38.3 \pm 2.0	33.1 \pm 1.5	0.66 \pm 0.05	41.5 \pm 2.0	32.9 \pm 1.5	0.35 \pm 0.04	36.9 \pm 1.8
Classifier	35.3 \pm 1.8	0.51 \pm 0.03	42.5 \pm 2.0	38.4 \pm 1.8	0.76 \pm 0.05	45.9 \pm 2.2	37.5 \pm 1.8	0.43 \pm 0.04	40.8 \pm 2.0
Immune cells Gradient Boosting Model									
NW	47.2 \pm 2.5	0.89 \pm 0.03	54.5 \pm 2.0	91.2 \pm 4.0	16.1 \pm 0.8	97.5 \pm 4.5	84.5 \pm 2.0	16.2 \pm 0.3	88.9 \pm 1.5
IW	55.2 \pm 3.0	0.93 \pm 0.05	60.8 \pm 2.5	242.0 \pm 10.0	151.0 \pm 10.0	1229.0 \pm 50.0	101.9 \pm 5.0	36.5 \pm 1.5	257.8 \pm 10.0
KMM	40.8 \pm 2.0	0.83 \pm 0.01	50.3 \pm 1.5	81.3 \pm 3.5	15.2 \pm 0.5	88.6 \pm 4.0	79.9 \pm 1.5	15.5 \pm 0.19	85.6 \pm 1.0
Classifier	46.9 \pm 2.5	0.85 \pm 0.01	53.6 \pm 1.8	91.1 \pm 4.0	15.9 \pm 0.2	95.7 \pm 4.3	84.4 \pm 2.0	16.1 \pm 0.3	88.3 \pm 1.2
Immune cells Logistic Regression Model									
NW	53.0 \pm 2.5	2.27 \pm 0.04	64.7 \pm 3.0	88.4 \pm 2.5	1.01 \pm 0.02	88.6 \pm 2.5	90.9 \pm 3.0	1.13 \pm 0.02	91.0 \pm 3.0
IW	57.2 \pm 3.0	2.27 \pm 0.04	65.2 \pm 3.0	653.2 \pm 25.0	1.61 \pm 0.30	203.4 \pm 10.0	135.0 \pm 5.0	2.11 \pm 0.50	364.0 \pm 15.0
KMM	42.9 \pm 2.0	2.18 \pm 0.03	58.0 \pm 2.5	83.2 \pm 0.3	0.963 \pm 0.005	83.5 \pm 0.5	84.6 \pm 0.3	1.075 \pm 0.004	84.9 \pm 0.3
Classifier	52.7 \pm 2.5	2.29 \pm 0.05	63.9 \pm 3.0	84.6 \pm 0.6	0.977 \pm 0.006	84.8 \pm 0.6	85.3 \pm 0.3	1.087 \pm 0.006	85.5 \pm 0.3
Immune cells Random Forest Model									
NW	46.2 \pm 2.0	1.11 \pm 0.03	53.8 \pm 2.5	52.3 \pm 2.5	2.45 \pm 0.05	57.3 \pm 3.0	70.4 \pm 3.0	4.76 \pm 0.06	72.6 \pm 3.5
IW	52.3 \pm 2.5	1.13 \pm 0.03	57.4 \pm 3.0	64.3 \pm 3.0	3.41 \pm 0.50	197.1 \pm 10.0	149.3 \pm 8.0	14.9 \pm 1.0	375.6 \pm 15.0
KMM	35.5 \pm 1.5	1.02 \pm 0.03	46.7 \pm 2.0	28.3 \pm 1.0	2.34 \pm 0.01	38.9 \pm 1.5	54.3 \pm 2.5	4.63 \pm 0.02	59.5 \pm 3.0
Classifier	44.4 \pm 2.0	1.08 \pm 0.03	52.1 \pm 2.5	34.1 \pm 1.5	2.37 \pm 0.01	42.4 \pm 2.0	59.6 \pm 2.5	4.66 \pm 0.02	63.0 \pm 3.0
Immune cells Neural Network Model									
NW	35.3 \pm 1.8	0.50 \pm 0.01	43.2 \pm 2.0	98.9 \pm 0.2	12.55 \pm 0.05	99.0 \pm 0.1	97.6 \pm 1.0	17.97 \pm 0.35	97.7 \pm 1.0
IW	41.5 \pm 2.0	0.52 \pm 0.01	48.0 \pm 2.5	327.1 \pm 15.0	43.2 \pm 2.0	926.1 \pm 40.0	544.6 \pm 25.0	167.3 \pm 10.0	202.5 \pm 10.0
KMM	23.6 \pm 1.2	0.39 \pm 0.05	32.1 \pm 1.5	97.1 \pm 0.5	12.488 \pm 0.005	97.3 \pm 0.2	93.4 \pm 0.8	17.23 \pm 0.15	93.5 \pm 0.8
Classifier	31.4 \pm 1.5	0.49 \pm 0.01	41.5 \pm 2.0	98.5 \pm 0.1	12.504 \pm 0.005	98.7 \pm 0.1	95.1 \pm 0.8	17.59 \pm 0.16	95.43 \pm 0.8

3.2.1 Species Data

The first dataset contained information on various plant species, with features including longitude, latitude, and climate factors. The target variable for our prediction task was the presence or absence of a given species.

For the source-target separation, we focused on temporal modeling. Specifically, our goal was to assess the risk in a less clustered distribution of data while anticipating that future data will be more spatially dispersed. To achieve this, we divide the data based on early and late years, enabling us to estimate the risk in the target distribution for the binary classification task.

We validated our framework on the clustered source and less-clustered target datasets, preprocessed and dimensionally reduced as described in the Section 2. The degree of clustering, measured through the area of the LCF curve, confirmed the structural distinction between the source and target datasets. For this classification, we have chosen *Tussilago farfara L.*,

404 *Caltha palustris L.*, and *Anemone nemorosa L.* due to the appropriate LCF for source and target splitting and the presence of
 405 both classes. Critically, when IW performed poorly relative to NW, we observed a replication of the synthetic data problem
 406 - highlighting sensitivity to distributional mismatch. Quantitative results (Table 2) demonstrate the consistency of our risk
 407 estimation metrics (MAPE, RMSE, RMSPE) across domain shifts, reinforcing the robustness of the KMM approach for exact
 408 dimensions as in artificial data.

409 In addition to the dimension reduction via PCA, we applied the proposed risk estimators (NW, IW, KMM, Classifier)
 410 directly to the original high-dimensional feature space. These results are presented in Table 3.

411 **3.2.2 Immune Cell Data**

412 The second dataset originates from a study on immune cells. This dataset comprises the positional and biological features of
 413 four distinct types of immune cells. For our task, we split the dataset to conduct a binary classification of the cell types. We
 414 have chosen B-cells and myeloid cells for this classification due to an appropriate LCF for source and target splitting. Similarly,
 415 after using the same preprocessing, we selected less clustered data for the target distribution and more clustered data for the
 416 source distribution. The example was demonstrated in Figure S2.

417 We evaluated the performance of the binary classification task for different dimensions, analogous to our experiments on
 418 plant species data. The results, provided in Table 2, generally mirror the species data findings. Extreme mismatches in higher
 419 dimensions (4D) caused significant instability in IW-based estimation, further validating KMM's superior constraint handling.
 420 As with the species data, we also evaluated performance on the full, non-reduced feature set; these results are detailed in Table
 421 3, showing even more pronounced differences between KMM and density-ratio methods in the original high-dimensional space.

Table 3. Performance comparison of NW, IW, KMM, and Classifier-based risk estimation methods across original datasets (all features) for different data types.

Model Type	Species Dataset				Immune Cells Dataset			
	NW	IW	KMM	Classifier	NW	IW	KMM	Classifier
Gradient Boosting								
MAPE	71.9 \pm 3.5	174.6 \pm 8.0	39.5 \pm 2.0	49.2 \pm 2.5	102.5 \pm 5.0	6686 \pm 300	66.4 \pm 3.0	79.4 \pm 3.5
RMSE	0.90 \pm 0.04	3.00 \pm 0.15	0.53 \pm 0.01	0.76 \pm 0.02	18.24 \pm 0.90	716 \pm 35	12.27 \pm 0.15	12.65 \pm 0.18
RMSPE	74.1 \pm 3.5	282.1 \pm 12.0	46.9 \pm 2.2	57.0 \pm 2.8	116.0 \pm 5.5	4912 \pm 250	76.7 \pm 3.5	87.5 \pm 4.0
Logistic Regression								
MAPE	192.0 \pm 9.0	543.4 \pm 25.0	38.41 \pm 0.15	38.71 \pm 0.18	91.8 \pm 4.5	1611 \pm 80	60.3 \pm 1.0	63.0 \pm 1.2
RMSE	2.96 \pm 0.15	10.00 \pm 0.50	0.31 \pm 0.02	0.36 \pm 0.02	0.64 \pm 0.03	70.6 \pm 3.5	0.527 \pm 0.006	0.543 \pm 0.007
RMSPE	355.0 \pm 18.0	1372.6 \pm 70.0	42.20 \pm 0.03	42.28 \pm 0.04	131.9 \pm 6.0	1923 \pm 95	65.0 \pm 0.6	66.8 \pm 0.7
Random Forest								
MAPE	82.0 \pm 4.0	261.5 \pm 13.0	62.3 \pm 0.5	64.1 \pm 0.6	129.8 \pm 6.0	661.8 \pm 30.0	85.8 \pm 0.2	86.5 \pm 0.3
RMSE	1.08 \pm 0.05	5.69 \pm 0.25	0.87 \pm 0.03	1.02 \pm 0.04	14.32 \pm 0.70	412.2 \pm 20.0	14.284 \pm 0.007	14.301 \pm 0.008
RMSPE	83.4 \pm 4.0	547.0 \pm 25.0	67.8 \pm 1.0	70.8 \pm 1.2	241.3 \pm 12.0	1412 \pm 70	91.5 \pm 1.2	94.8 \pm 1.5
Neural Network								
MAPE	80.1 \pm 4.0	251.8 \pm 12.0	34.6 \pm 0.8	36.7 \pm 0.9	122.7 \pm 6.0	6618 \pm 300	71.3 \pm 1.5	75.3 \pm 1.8
RMSE	1.03 \pm 0.05	5.12 \pm 0.25	0.281 \pm 0.015	0.321 \pm 0.015	14.53 \pm 0.70	540.8 \pm 25.0	13.00 \pm 0.07	13.17 \pm 0.08
RMSPE	85.5 \pm 4.0	504.0 \pm 25.0	37.9 \pm 0.5	39.3 \pm 0.6	186.3 \pm 9.0	8321 \pm 400	79.38 \pm 0.15	79.76 \pm 0.18

422 **3.3 Practical demonstration of risk estimation for model selection**

423 The values of R_{selected} for each method, dataset, and dimensionality are presented in Table 4. As shown in the table, the KMM
 424 method consistently selected model sets with the lowest average true risk across various data configurations and tasks (species
 425 and cells). This demonstrates its effectiveness in the practical task of identifying models likely to perform best when deployed
 426 in a target domain with distribution shift, highlighting the value of accurate risk estimation.

Table 4. Average true risk (R_{selected}) for sets of $K = 5$ models (values multiplied by 1000).

Data Type	Dimensionality	NW	IW	KMM	Classifier
Species	2D	2.335 ± 0.18	2.663 ± 0.20	1.549 ± 0.12	2.232 ± 0.17
	3D	4.539 ± 0.29	6.023 ± 0.35	1.848 ± 0.14	4.204 ± 0.26
	4D	5.896 ± 0.34	7.499 ± 0.41	2.892 ± 0.21	4.806 ± 0.28
	ALL	11.594 ± 0.52	12.381 ± 0.58	8.220 ± 0.36	10.044 ± 0.44
Immune cells	2D	2.478 ± 0.16	4.182 ± 0.27	2.233 ± 0.14	2.376 ± 0.15
	3D	4.346 ± 0.24	5.011 ± 0.29	3.591 ± 0.19	4.190 ± 0.23
	4D	4.952 ± 0.28	5.406 ± 0.30	3.980 ± 0.22	5.160 ± 0.25
	ALL	6.848 ± 0.37	9.418 ± 0.49	5.258 ± 0.28	6.189 ± 0.33

427 3.4 Comparison and Analysis

428 We show that KMM outperforms traditional methods and effectively addresses the issues caused by poor IW with KDE. This
 429 improvement is particularly evident in the analysis of both artificial and real datasets. KMM's superior performance is most
 430 noticeable in situations where KDE struggles to estimate weights accurately, leading to biased results. KMM successfully
 431 mitigates these problems by adjusting sample weights more effectively, leading to better risk estimation and overall model
 432 performance. To ensure that our comparison of risk estimators is meaningful, we first validated the performance of these
 433 models. Table S1 summarizes the ROC AUC scores for the four different predictive models used in our experiments. We
 434 exclusively utilized models achieving an ROC AUC score greater than 0.7.

435 Table 1 and Table 2 present a comprehensive comparison of four risk estimation methods: NW, IW, KMM, and Classifier.
 436 Performance is evaluated using three metrics: MAPE, RMSE, and RMSPE. The results cover distinct experimental scenarios:
 437 nine synthetic scenarios designed to stress-test estimator stability (Table 1) and real-world datasets (Species and Immune cells)
 438 with varying PCA dimensionality (Table 2).

439 In the artificial data experiments, particularly in scenarios involving Support Mismatch (e.g., Uniform vs. GMM) and
 440 Variance Scaling, KMM consistently demonstrates superior performance across all dimensions and metrics. For instance, in the
 441 Extrapolation scenario (Low Variance \rightarrow High Variance), KMM achieves an MAPE substantially lower than both NW and IW.
 442 This pattern persists in geometric shifts such as Domain Truncation, although the absolute error values naturally vary with the
 443 complexity of the shift. Notably, while NW and IW show substantial degradation in high-variance or unstructured settings,
 444 KMM maintains relatively better performance, indicating its greater robustness to structural distribution mismatches.

445 Similar patterns emerge in the Mode Complexity and Correlation Shift scenarios, where KMM consistently outperforms
 446 alternative methods. This demonstrates KMM's effectiveness in handling more complex, multi-modal, and rotated target
 447 distributions where density estimation becomes unstable.

448 As illustrated in Figure S3 and Figure S4, KMM consistently outperforms NW, IW, and the classifier-based approach across
 449 all metrics, regardless of the severity of the shift controlled by the maximum covariance parameter. These figures also highlight
 450 a critical weakness in the IW method. As the source data become more strongly clustered (lower covariance), the magnitude of
 451 the covariate shift increases. Consequently, the performance of IW deteriorates sharply, whereas KMM maintains robust and
 452 superior performance, demonstrating its effectiveness in scenarios where traditional methods fail.

453 To further illustrate this phenomenon, Figure S5 in the Supplementary Material shows the distribution of IW weights for
 454 both real and artificial data compared to KMM. This figure confirms that IW weights are frequently much larger than those of
 455 KMM, as described in the Methods section, providing direct evidence of the “exploding” weights effect.

456 The experiments with real-world datasets (Table 2) further validate KMM's superiority. In the species data, KMM reduces
 457 the MAPE significantly compared to NW and by an even larger margin compared to IW across all dimensionalities. The
 458 Immune cells data presents the most challenging scenario, with high baseline errors for all methods. Here, KMM's advantage is
 459 particularly striking, dramatically reducing MAPE compared to both NW and IW, especially in the 4D case, where IW fails
 460 with an extremely high error rate.

461 Table 3 extends our analysis to the full-dimensional feature space without dimensionality reduction through PCA. This
 462 table compares the same methods on the two real-world datasets using the same three performance metrics. The results further
 463 emphasize KMM's robustness and effectiveness in high-dimensional spaces.

464 In the Species dataset with all features, KMM achieves a MAPE significantly lower than both NW and IW. The improvement
 465 is even more dramatic for RMSE, where KMM shows a substantial reduction compared to NW and an even larger reduction
 466 compared to IW. This pattern is consistent across all metrics. The Immune Cells dataset presents an even more challenging
 467 scenario across the entire feature space, with NW and IW methods exhibiting extremely high error rates. In stark contrast,
 468 KMM maintains remarkable stability.

469 These results collectively demonstrate that KMM consistently provides more accurate risk estimation across various datasets,
 470 dimensionalities, and structural shifts. Its superior performance is particularly evident in challenging scenarios involving
 471 high dimensionality or complex geometric mismatches, where traditional methods, such as IW with KDE, frequently fail
 472 catastrophically. The robustness of KMM to the curse of dimensionality and its ability to handle complex, real-world data
 473 distributions make it a preferable choice for covariate shift adaptation in practical applications.

474 4 Discussion

475 Although sample reweighting is asymptotically unbiased, it often proves inaccurate for finite sample datasets, particularly
 476 when sample selection bias is substantial, as demonstrated in the classifier analysis by Liu et al.³⁴. For example, as shown in
 477 Table 1 under the Support Mismatch scenario (GMM → Uniform) in 4D, IW yields an MAPE of 86.6% compared to KMM's
 478 30.3%. This performance gap stems from IW's reliance on KDE. As dimensionality increases, KDE requires exponentially
 479 more samples to maintain accuracy, which directly impacts IW's weight estimates. KMM avoids this issue by reweighting
 480 samples to minimize the MMD between distributions in an RKHS. Critically, MMD can be estimated with $O(1/\sqrt{n})$ error
 481 without explicit density estimation. This explains KMM's robustness in high dimensions, while IW fails catastrophically (for
 482 instance, Immune Cells 4D MAPE > 500% in Table 2).

483 The practical implication is clear: for spatial modeling tasks where environmental covariates naturally create high-
 484 dimensional feature spaces, KMM provides the only reliable risk estimates among the methods tested. This explains its strong
 485 performance on the Species dataset (Table 3), where incorporating multiple climate variables would typically exacerbate IW's
 486 instability.

487 Both IW and classifier-based methods share a critical vulnerability: they depend on estimating the density ratio $p(\mathbf{x})/g(\mathbf{x})$,
 488 albeit through different approaches. IW fails when the source distribution $g(\mathbf{x})$ is underestimated in sparse regions, for example,
 489 as it was shown in our case (Figure S1). Although classifier-based methods outperform IW in our experiments (for example,
 490 reducing Species Logistic Regression MAPE from 543.37% to 38.71%), they suffer from inherent limitations. As Bickel
 491 et al. (2009)³ demonstrate, these methods prioritize discriminative accuracy over density ratio estimation, often producing
 492 miscalibrated probabilities when classifiers overfit to dataset-specific artifacts. In the 4D immune cells setting in Table 2),
 493 classifier-based risk estimates consistently trail KMM, with gaps ranging from 0.7 to 5.3 MAPE across all models, averaging
 494 about 3.1 MAPE. This gap occurs because classifiers optimize for discriminative accuracy³ rather than density ratio calibration.
 495 When classifiers overfit to biased or non-generalizable patterns in the training data (for instance, spurious spatial correlations
 496 caused by sampling imbalances), their probability estimates become poorly calibrated — a flaw KMM circumvents by directly
 497 matching distributions in kernel space.

498 This suggests that while classifier-based approaches are a useful heuristic, they cannot match KMM's theoretical guarantees.
 499 The latter's direct minimization of MMD provides a principled alternative that aligns with recent work on robust predictive
 500 inference³⁵, although we focus on risk estimation rather than their conformal prediction framework.

501 While KMM demonstrated superior performance in our study, several limitations should be acknowledged. An important
 502 implication of our decision not to perform hyperparameter tuning on predictive models is that it strengthens the robustness of our
 503 comparative findings. Since all risk estimation methods (NW, IW, KMM, Classifier) were evaluated on the same set of untuned
 504 models, the consistent outperformance of KMM across this diverse range of model behaviors underscores its superiority as a
 505 risk estimation technique, independent of model optimization. Although tuning would likely improve the absolute predictive
 506 performance of the models, we expect the relative ranking of the risk estimation methods to remain unchanged. This concern
 507 is mitigated by our model selection experiment (Section 2.2.4), which demonstrated that KMM's superiority was consistent
 508 across a wide pool of 200 models with varying performance, confirming the robustness of our comparative findings.

509 The effectiveness of KMM, like all kernel-based methods, is highly dependent on the choice of the kernel function and
 510 its hyperparameters. An inadequately chosen kernel may fail to capture the complex relationships within the data, leading to
 511 suboptimal weight estimation and less accurate risk assessments. Our analysis relied on a standard kernel with a common
 512 heuristic for parameter selection, but a more exhaustive search or adaptive selection process could potentially yield further
 513 improvements, representing an avenue for future work.

514 Moreover, KMM faces computational challenges with very large datasets. The core of the method involves the computation
 515 of a Gram matrix, which scales quadratically with the number of samples. While techniques like random Fourier features or
 516 divide-and-conquer approaches can improve scalability, these were not employed in our study. As a result, applying KMM
 517 to massive spatial datasets may require these more advanced computational strategies. We have shown these tendencies in
 518 Supplementary Figure S7, which illustrates the computational cost of this method as a function of sample size. The plot clearly
 519 shows the super-linear, polynomial growth in KMM's evaluation time on Species data.

520 Finally, our study focuses on methods that correct for distribution shift primarily through sample reweighting. However, a
 521 separate class of "doubly robust" estimators exists that combines IW with a regression-based component (a control functional)
 522 to simultaneously correct for sampling bias and reduce variance. As demonstrated by³⁶, such doubly robust estimators can

523 achieve superior performance, especially in complex settings where samples are biased and affected by noise, conditions
 524 often encountered in real-world spatial analysis. By focusing only on reweighting techniques, our study may overlook these
 525 potentially more powerful and stable estimators, marking a clear direction for future comparative studies.

526 Spatial data amplifies conventional distribution shift problems through two mechanisms: (1) inherent clustering due
 527 to environmental gradients (evidenced by LCF curves in Figure 6), and (2) sampling biases where certain regions are
 528 overrepresented in source data. Traditional methods fail spectacularly here. For instance, IW's weights can explode when
 529 source clusters fail to cover target areas — reaching 6618% MAPE on Immune cells with a neural network (Table 3). NW also
 530 consistently underestimates risks, with errors ranging from 71.9–192% across datasets. KMM succeeds by explicitly matching
 531 the spatial structure of distributions through their kernel embeddings. For ecological or medical applications, this means that
 532 KMM can correct biases where traditional sampling underrepresented critical spatial regions, enabling more reliable risk
 533 estimates in underrepresented areas. For example, this study³⁷ demonstrated that pneumonia screening models fail significantly
 534 when overrepresentation of certain demographics creates spurious correlations, mirroring our findings with IW's MAPE >
 535 6000% under spatial changes. KMM's kernel-based matching avoids such pitfalls by explicitly aligning distributions without
 536 relying on biased density estimates, enabling reliable risk predictions even in underrepresented regions.

537 These findings underscore that distribution shifts in spatial data, whether due to sampling bias, environmental gradients, or
 538 inherent biological or spatial structure, can severely distort standard risk estimation, particularly for methods like IW that rely
 539 on direct density ratio estimation. The Classifier-based approach offers a more robust alternative to NW and IW, but can still be
 540 less accurate than KMM. The ability of KMM to correct for such shifts by matching distributions in a kernel feature space,
 541 without requiring explicit density estimation or labeled target data for error calculation, makes it particularly well-suited for
 542 spatial modeling in fields such as ecology, environmental science, and medical imaging, where model reliability under changing
 543 conditions is crucial.

544 5 Conclusions

545 We addressed the challenge of risk estimation under spatial covariate shift by formulating it as a sample-reweighting problem.
 546 Our systematic evaluation reveals that KMM consistently outperforms traditional methods across both synthetic and real-world
 547 spatial datasets. While standard estimations become significantly biased under distribution shifts, KMM provides a reliable
 548 solution.

549 Our analysis shows that KMM overcomes the fundamental limitations of density ratio approaches, such as NW, IW and
 550 classifier-based methods. Unlike these estimations, KMM employs a direct distribution matching paradigm. By avoiding explicit
 551 density ratio estimation, it ensures stability even under complex structural shifts like Variance Scaling or in high-dimensional
 552 settings. For instance, where traditional density estimation fails, leading to IW errors exceeding 6000% in 4D immune cell data,
 553 KMM remains robust.

554 Quantitatively, KMM reduces estimation errors by 12.3% to 86.5% compared to alternative methods. It consistently
 555 outperforms classifier-based reweighting, highlighting that high discriminative accuracy alone is insufficient for proper
 556 distribution alignment. To assist in diagnosing these shifts, we integrated the LCF into our framework. Our results confirm
 557 that LCF is an effective, interpretable measure of spatial clustering that indicates the magnitude of a shift and signals when
 558 reweighting is necessary.

559 Our findings have immediate relevance for multiple domains. In ecological modeling, KMM can compensate for sampling
 560 biases in species distribution data. In biomedical applications, particularly spatial omics, it addresses significant variations in
 561 cell-type representation. Finally, this approach offers a robust solution for any field dealing with spatially heterogeneous data.

562 **References**

- 563 1. Shimodaira, H. Improving predictive inference under covariate shift by weighting the log-likelihood function. *J. statistical
planning inference* **90**, 227–244 (2000).
- 564 2. James, F. Monte carlo theory and practice. *Reports on progress Phys.* **43**, 1145 (1980).
- 565 3. Bickel, S., Brückner, M. & Scheffer, T. Discriminative learning under covariate shift. *J. Mach. Learn. Res.* **10**, 2137–2155
(2009).
- 566 4. Zadrozny, B. Learning and evaluating classifiers under sample selection bias. In *Proceedings of the 21st International
Conference on Machine Learning*, 114, DOI: [10.1145/1015330.1015425](https://doi.org/10.1145/1015330.1015425) (ACM, Banff, Alberta, Canada, 2004).
- 567 5. Tokdar, S. T. & Kass, R. E. Importance sampling: a review. *Wiley Interdiscip. Rev. Comput. Stat.* **2**, 54–60 (2010).
- 568 6. Wills, R. C., Dong, Y., Prostosecu, C., Armour, K. C. & Battisti, D. S. Systematic climate model biases in the large-scale
572 patterns of recent sea-surface temperature and sea-level pressure change. *Geophys. Res. Lett.* **49**, e2022GL100011 (2022).
- 573 7. Denissen, J. M. *et al.* Widespread shift from ecosystem energy to water limitation with climate change. *Nat. Clim. Chang.*
574 **12**, 677–684 (2022).
- 575 8. Ben-Said, M. Spatial point-pattern analysis as a powerful tool in identifying pattern-process relationships in plant ecology:
576 an updated review. *Ecol. Process.* **10**, 1–23 (2021).
- 577 9. Gatrell, A. C., Bailey, T. C., Diggle, P. J. & Rowlingson, B. S. Spatial point pattern analysis and its application in
578 geographical epidemiology. *Transactions Inst. Br. geographers* 256–274 (1996).
- 579 10. Vokinger, K. N., Feuerriegel, S. & Kesselheim, A. S. Mitigating bias in machine learning for medicine. *Commun. medicine*
580 **1**, 25 (2021).
- 581 11. Zhao, Z. *et al.* Identification of lung cancer gene markers through kernel maximum mean discrepancy and information
582 entropy. *BMC medical genomics* **12**, 1–10 (2019).
- 583 12. Vegas, E., Oller, J. M. & Reverter, F. Inferring differentially expressed pathways using kernel maximum mean discrepancy-
584 based test. *BMC bioinformatics* **17**, 399–405 (2016).
- 585 13. Maley, C. C., Koelble, K., Natrajan, R., Aktipis, A. & Yuan, Y. An ecological measure of immune-cancer colocalization as
586 a prognostic factor for breast cancer. *Breast Cancer Res.* **17**, 1–13 (2015).
- 587 14. Roberts, D. *et al.* Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure.
588 *Ecography* **40**, DOI: [10.1111/ecog.02881](https://doi.org/10.1111/ecog.02881) (2016).
- 589 15. Meyer, H. & Pebesma, E. Predicting into unknown space? estimating the area of applicability of spatial prediction models.
590 *Methods Ecol. Evol.* **12**, 1620–1633, DOI: [10.1111/2041-210x.13650](https://doi.org/10.1111/2041-210x.13650) (2021).
- 591 16. Tuia, D., Persello, C. & Bruzzone, L. Domain adaptation for the classification of remote sensing data: An overview of
592 recent advances. *IEEE Geosci. Remote. Sens. Mag.* **4**, 41–57, DOI: [10.1109/MGRS.2016.2548504](https://doi.org/10.1109/MGRS.2016.2548504) (2016).
- 593 17. Wilson, G. & Cook, D. J. A survey of unsupervised deep domain adaptation. *ACM Transactions on Intell. Syst. Technol.
(TIST)* **11**, 1–46 (2020).
- 594 18. Gretton, A. *et al.* Covariate shift by kernel mean matching. *Dataset shift machine learning* **3**, 5 (2009).
- 595 19. Martynova, E. & Textor, J. A uniformly bounded correlation function for spatial point patterns. In *Proceedings of the 30th
597 ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, 2177–2188 (2024).
- 598 20. Scott, D. W. On optimal and data-based histograms. *Biometrika* **66**, 605–610, DOI: [10.1093/biomet/66.3.605](https://doi.org/10.1093/biomet/66.3.605) (1979).
- 599 21. Huang, J., Gretton, A., Borgwardt, K., Schölkopf, B. & Smola, A. Correcting sample selection bias by unlabeled data. *Adv.
600 neural information processing systems* **19** (2006).
- 601 22. Quionero-Candela, J., Sugiyama, M., Schwaighofer, A. & Lawrence, N. D. *Dataset Shift in Machine Learning* (The MIT
602 Press, 2009).
- 603 23. GBIF.org. Occurrence download: *Tussilago farfara* L. [https://www.gbif.org/occurrence/download/
604 0031125-240626123714530](https://www.gbif.org/occurrence/download/0031125-240626123714530) (2024). Accessed: 20 July 2024.
- 605 24. GBIF.org. Occurrence download: *Anemone nemorosa* L. [https://www.gbif.org/occurrence/download/
606 0031144-240626123714530](https://www.gbif.org/occurrence/download/0031144-240626123714530) (2024). Accessed: 20 July 2024.
- 607 25. GBIF.org. Occurrence download: *Caltha palustris* L. [https://www.gbif.org/occurrence/download/
608 0031146-240626123714530](https://www.gbif.org/occurrence/download/0031146-240626123714530) (2024). Accessed: 20 July 2024.

609 26. Hijmans, R. J. *et al.* Package ‘raster’. *R package* **734**, 473 (2015).

610 27. Bivand, R. *et al.* Package ‘rgdal’. *Bind. for Geospatial Data Abstr. Libr. Available online: <https://cran.r-project.org/web/packages/rgdal/index.html> (accessed on 15 Oct. 2017)* **172** (2015).

612 28. Pebesma, E. J. *et al.* Simple features for r: standardized support for spatial vector data. *R J.* **10**, 439 (2018).

613 29. Hijmans, R. J. *et al.* Package ‘terra’. *Maintainer: Vienna, Austria* (2022).

614 30. van der Hoorn, I. A. *et al.* Detection of dendritic cell subsets in the tumor microenvironment by multiplex immunohisto-
615 chemistry. *Eur. J. Immunol.* **54**, 2350616 (2024).

616 31. van der Woude, L. L., Gorris, M. A., Halilovic, A., Figdor, C. G. & de Vries, I. J. M. Migrating into the tumor: a roadmap
617 for t cells. *Trends cancer* **3**, 797–808 (2017).

618 32. Sultan, S. *et al.* A segmentation-free machine learning architecture for immune land-scape phenotyping in solid tumors by
619 multichannel imaging. *BioRxiv* 2021–10 (2021).

620 33. Friedman, J. H. Greedy function approximation: a gradient boosting machine. *Annals statistics* 1189–1232 (2001).

621 34. Liu, A. & Ziebart, B. D. Robust classification under sample selection bias. In Ghahramani, Z., Welling, M., Cortes, C.,
622 Lawrence, N. & Weinberger, K. (eds.) *Advances in Neural Information Processing Systems*, vol. 27 (Curran Associates,
623 Inc., 2014).

624 35. Cauchois, M., Gupta, S., Ali, A. & Duchi, J. C. Robust validation: Confident predictions even when distributions shift. *J.
625 Am. Stat. Assoc.* **119**, 3033–3044 (2024).

626 36. Lam, H. & Zhang, H. Doubly robust stein-kernelized monte carlo estimator: Simultaneous bias-variance reduction and
627 supercanonical convergence (2023). [2110.12131](https://arxiv.org/abs/2110.12131).

628 37. Zech, J. R. *et al.* Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a
629 cross-sectional study. *PLoS medicine* **15**, e1002683 (2018).

630 6 Code availability

631 For the data, preprocessing and modeling details to reproduce the calculations, we refer the reader to the repository of the
632 project <https://github.com/awesomeslayer/Importance-reweighting>.

633 7 Author contributions statement

634 Conceptualization: A.Z., E.S. and D.K.; methodology: E.S., A.Z., D.K.; software: E.S.; validation: E.S., A.Z.; formal analysis:
635 E.S., D.K.; investigation: A.Z., E.S.; data curation: D.K., E.S.; writing—original draft preparation: E.S., D.K.; writing—review
636 and editing: D.K., E.S. and A.Z.; visualization: E.S., D.K.; supervision: A.Z.; project administration: A.Z., D.K. All authors
637 have read and agreed to the published version of the manuscript.

638 8 Fundings

639 The work was supported by the grant for research centers in the field of AI provided by the Ministry of Economic Development
640 of the Russian Federation in accordance with the agreement 000000C313925P4F0002 and the agreement with Skoltech
641 №139-10-2025-033

642 9 Competing interests

643 The authors declare no conflicts of interest.