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Kernel Mean Matching enhances risk estimation
under spatial distribution shifts
Egor Serov1, Diana Koldasbayeva1, *, and Alexey Zaytsev1

1Skolkovo Institute of Science and Technology, Moscow, Russia
*diana.koldasbayeva@skoltech.ru

ABSTRACT

Accurate risk estimation under distribution shifts is critical for deploying machine learning models in real-world spatial
applications, from ecological forecasting to medical image analysis. Conventional methods such as No Weighting (NW) and
Importance Weighting (IW) fail in spatially structured data due to two challenges: (1) density ratio estimation in high-dimensional
clustered distributions, and (2) non-stationarity from environmental gradients or sampling biases. Classifier-based approaches
offer partial improvements but often yield miscalibrated risk estimates by prioritizing discriminative accuracy over distribution
alignment.
We conduct a systematic evaluation of four risk estimation methods — NW, IW, Kernel Mean Matching (KMM), and classifier-
based reweighting — across synthetic benchmarks (with controlled spatial clustering) and real-world datasets (species
distributions and immune cell layouts). Results show that KMM achieves superior robustness, reducing Mean Absolute
Percentage Error (MAPE) by 12.3–86.5% compared to alternatives in high-dimensional settings. This advantage stems from
KMM’s direct minimization of distributional divergence via kernel embeddings, bypassing error-prone density ratio estimation.
Our findings demonstrate that KMM is a principled solution for spatial risk estimation, particularly when source and target
distributions exhibit complex clustering or sampling artifacts. Its consistency across ecological and biomedical domains
suggests broad applicability for reliable model deployment in spatially heterogeneous environments.

Keywords — Kernel Mean Matching, spatial risk estimation, spatial modeling, importance reweighting; distribution shift
robustness

1 Introduction
The risk of a model is the expected error of a data-based model on unseen data. Reliable risk estimation justifies or invalidates1

the use of a particular model, allowing a practitioner to assess its utility. Under independent and identically distributed (i.i.d.)2

assumptions, cross-validation and hold-out testing provide theoretically sound estimates. However, these methods can fail3

dramatically under distribution shift between training and test data, particularly in spatial settings where data exhibit complex4

dependencies. One example is covariate shift, where the distribution of a model input changes when switching from source5

(training) to target (test) data. Under the covariate shift, traditional estimators systematically underrate the true error1. This6

issue is especially problematic in scientific and environmental applications, where overly optimistic error estimates can lead to7

incorrect conclusions.8

For example, the simplest estimator, No Weighting (NW), computes the empirical error directly from available target9

samples. It implicitly assumes that the source and target distributions are similar. Under covariate shift, NW becomes biased2.10

A more flexible family of estimators trains a probabilistic classifier to distinguish source from target data and converts its11

outputs into density-ratio weights3, 4. Although often more accurate than NW, classifier-based weighting inherits instability12

from imperfect class separation and remains sensitive to clustered or non-overlapping samples. The classical importance13

weighting (IW) estimator rescales source samples using the density ratio between target and source distributions. While IW is14

theoretically unbiased, it suffers from extreme weight variance in high dimensions or under sparse sampling5.15

These challenges become more severe when data exhibit spatial structure. Spatial datasets are affected by non-stationarity,16

spatial autocorrelation, clustered sampling, and environmental gradients that induce strong distribution shifts. For example,17

mismatches between observed and modeled sea surface temperature trends indicate that standard climate models fail to capture18

important components of real-world climate dynamics6. Similarly, climate-driven shifts toward water-limited regimes are19

transforming terrestrial ecosystems, altering vegetation dynamics and ecosystem services7. Spatial biases also manifest in20

species-distribution data8, pollution monitoring9, and numerous biomedical settings.21
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In biomedical research, spatial artifacts strongly influence analyses10. A common pitfall occurs when adjacent normal22

tissue is used as a control in cancer studies: despite being anatomically normal, it is biologically altered by tumour-proximal23

effects, leading to biased differential-expression estimates11. Kernel Maximum Mean Discrepancy (MMD) has been used to24

quantify these distributional differences and has shown improved sensitivity in identifying perturbed genes and pathways11, 12.25

Spatial clustering is also intrinsic to tumour–immune microenvironments13, further complicating risk estimation.26

Several methodological frameworks address spatial dependence. Spatial and spatio-temporal cross-validation14 yields27

more realistic predictive performance estimates than random splitting but does not correct for covariate shift: it evaluates28

generalization under structured partitioning rather than reweighting samples to match the target distribution. Diagnostic tools29

such as the Area of Applicability (AOA)15 quantify how dissimilar a target location is from the training domain but do not30

estimate the model’s error under shift.31

Domain adaptation methods16, 17 aim to improve predictive accuracy by aligning source and target distributions, yet their32

goal is optimization—not evaluation. In many scientific pipelines, the model is fixed, and the task is solely to estimate its error33

under distribution shift. Thus, domain adaptation and risk estimation solve fundamentally different problems.34

Across the literature, a common limitation emerges: existing tools either assume i.i.d. data, diagnose shift without estimating35

error, or modify the model rather than evaluating it. Crucially, none provide a stable, unbiased risk estimator under spatial36

covariate shift, where clustered sampling, autocorrelation, and non-stationarity break classical density estimation and destabilize37

classifier-based ratio estimation.38

To address this gap, we formulate spatial risk estimation as a sample–reweighting problem and systematically evaluate39

reweighting strategies under spatial covariate shift. We show that Kernel Mean Matching (KMM)18, originally proposed for40

covariate shift correction, yields stable and accurate risk estimates for spatially structured data. To quantify spatial structure, we41

incorporate the Local Correlation Function (LCF)19, a bounded, scale-invariant measure of spatial clustering, which provides42

an interpretable criterion for when reweighting is necessary.43

Through experiments on synthetic Gaussian-mixture landscapes, Nordic plant-species occurrences, and tumour–immune44

spatial layouts, we demonstrate that KMM reduces Mean Absolute Percentage Error (MAPE) by up to 50% compared with IW45

while avoiding its weight-explosion pathology.46

As illustrated in Figure 1, our comparison highlights the trade-offs among NW, IW, classifier-based weighting, and KMM,47

showing that direct distribution matching offers a robust solution for risk estimation under spatial covariate shift.48

• We formulate spatial risk estimation as a reweighting problem for sample errors, extending classical importance-sampling49

theory to spatially structured settings in which source and target distributions differ. Our pipeline integrates the LCF50

score19 as an interpretable, scale-invariant measure of spatial clustering that indicates when reweighting is likely to be51

beneficial.52

• We conduct a systematic empirical comparison of NW, IW, KMM, and a classifier-based estimator across synthetic and53

real-world spatial datasets, covering classification tasks and assessing risk estimation via regression-style loss metrics.54

Our evaluation spans (i) controlled Gaussian-mixture landscapes and other synthetic scenarios, (ii) Nordic plant-species55

occurrences, and (iii) tumour–immune cell layouts. Our experiments reveal systematic biases in risk estimation induced56

by shifts in spatial distribution and support LCF as a practical diagnostic of shift magnitude.57

• Across all datasets considered, KMM remains a robust choice for spatial risk estimation under distribution shift,58

particularly when shifts are complex or labelled samples are limited. Specifically, the usage of KMM reweighting59

reduces the risk estimation error (MAPE) by up to 50% relative to IW while avoiding the weight-explosion pathologies60

of KDE-based density-ratio estimation for severe shifts.61

2 Methods62

2.1 Risk Estimation Task63

We begin with a ground truth function f (x) and a model that estimates this function, denoted as f̂ (x). These functions are64

defined as maps from some region X ⊆ Rd to R for a regression problem. In this study, we explicitly assume that X65

resides in a d-dimensional Euclidean space, utilizing the standard Euclidean metric, though the framework implies potential66

generalizability to other metric spaces. Next, we have labeled samples from the source distribution g(x), on which we can67

evaluate our model using some error function e(x) = e( f (x), f̂ (x)), defined in X .68

We are interested in the performance of our model f̂ (x) on unlabeled points from another target distribution p(x). The69

function p(x) is similarly defined on the same region. The key challenge is that p(x) and g(x) are different: we deal with a70

distribution shift that leads to bias. Moreover, we lack the exact p(x) and g(x) and have access only to samples from them71

Dp,Dg: Dp = {(xi, f (xi))}
np
i=1, xi ∼ p(x), Dg = {(xi, f (xi))}

ng
i=1, xi ∼ g(x) with np = |Dp|,ng = |Dg|. The source and target72
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Figure 1. Visual comparison of risk estimation methods under distribution shift: (A) Problem formulation showing source
(clustered) and target (dispersed) distributions; (B) No Weighting (NW) approach with uniform sample weights; (C)
Importance Weighting (IW) method suffering from high variance; (D) Classifier-based probability ratio weighting; (E) Kernel
Mean Matching (KMM) approach: upper section shows the optimization framework that matches source and target
distributions, while lower section demonstrates the resulting balanced weight distribution that avoids extreme values while
correcting for distribution shift.
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data are split into training sets, Dtrain
g and Dtrain

p , and test sets, Dtest
g and Dtest

p , with respective sample sizes ntrain
g , ntrain

p , and ntest
g ,73

ntest
p . Formally, sample sizes can differ, and specific points are also distinct by construction, as they are generated from different74

distributions.75

Formally, we are interested in estimating the risk:

R(e, p) =
∫

X
e(x)p(x)dx. (1)

In practice, the exact forms of the distributions p(x) and g(x) are unknown, and ground truth labels f (x) for the target76

distribution are unavailable. Therefore, the estimation of the risk R(e, p) must rely only on the following components:77

• The model to be evaluated: f̂ (x).78

• A set of labeled samples from the source distribution: Dg.79

• A set of unlabeled samples from the target distribution: {x j}
np
j=1, where x j ∼ p(x).80

Below, we provide general types of solutions for risk estimation tasks. To address the challenge of estimating risk under a81

distribution shift, we explore a spectrum of methods. Our selection is motivated by the need to establish a clear performance82

hierarchy, starting from a naive baseline and progressing to more sophisticated, theoretically-grounded techniques for bias83

correction. We begin with the simplest approach, which ignores the distribution shift, to quantify the magnitude of the problem.84

Subsequently, we examine methods that explicitly attempt to correct the bias introduced by the shift. These corrective methods85

fall into two main categories: those that rely on estimating the density ratio either directly or indirectly, and those that match86

the distributions in a feature space without explicit density estimation. This progression enables a comprehensive evaluation of87

various strategies for addressing the covariate shift problem. The final performance of each method will be validated on the test88

data partitions, where risk estimates are computed using Dtest
g and benchmarked against the ground truth risk calculated on Dtest

p .89

2.1.1 No weighting (NW)90

The most straightforward approach would be to estimate the risk using samples from the target distribution p(x):91

R̂GT (e, p) =
1

ntest
p

ntest
p

∑
i=1

e(xi), xi ∼ p(x). (2)

To compute this value, we would hypothetically use the test sample Dp with its corresponding labels. This is an unbiased Monte92

Carlo estimate of the true risk R(e, p), and its standard error decreases at a rate of O(1/
√

ntest
p ). Consequently, for a sufficiently93

large sample size n, R̂GT provides a highly accurate and reliable benchmark against which alternative risk estimation methods94

can be validated. This is a typical method for estimating the risk of samples from a known distribution. However, as mentioned95

earlier, in practice, we do not have labeled samples from the target distribution p(x), but we do have labeled samples from96

another source distribution g(x).97

The first idea is to estimate the risk similarly, but using samples from the source distribution. Thus, we have the NW98

method:99

R̂NW (e,g) =
1

ntest
g

ntest
g

∑
i=1

e(xi), xi ∼ g(x). (3)

In the presence of a distribution shift, this method is obviously biased, and we should strive for an unbiased approach if our100

goal is to estimate the target risk accurately.101

2.1.2 Importance Weighting (IW)102

To correct for the bias introduced by using samples from g(x) instead of p(x), we can apply IW. Using this technique, we
reweight the errors across samples according to the density ratio p(x)

g(x) . This is an intuitive way to achieve an unbiased risk
estimate. Therefore, the risk can be expressed as follows:

R(e, p) =
∫

X
e(x)p(x)dx =

∫
X

e(x)p(x)
g(x)
g(x)

dx =
∫

X
e(x)

p(x)
g(x)

g(x)dx. (4)
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Thus, instead of integrating the error e(x) over the target distribution, we can incorporate the reweighted error p(x)
g(x) e(x) over

the source distribution g(x), resulting in a new unbiased risk estimation. We refer to this as IW:

RIW (e, p,g) =
1

ntest
g

ntest
g

∑
i=1

p(xi)

g(xi)
e(xi), xi ∼ g(x). (5)

In practice, the true densities p(x) and g(x) are unknown. We should estimate g(x) and p(x) from the data. For example,103

using KDE and samples Dtrain
p and Dtrain

g , we get ĝ(x) and p̂(x).104

An example of the kernel density estimator for a multivariate density g(x), where x ∈ Rd , is given by:

ĝ(x) =
1

ntrain
g

ntrain
g

∑
i=1

|H|−1/2K
(

H−1/2(x−xi)
)
, (6)

where K(·) is the multivariate kernel function, chosen as a multivariate Gaussian kernel:

K(u) =
1

(2π)d/2 exp
(
−1

2
u⊤u

)
, (7)

and H ∈ Rd×d is the symmetric positive-definite bandwidth matrix that controls the smoothness of the estimate.105

We select the bandwidth matrix H using Scott’s rule20 :

H = Σ

(
ntrain

g

)− 2
d+4 (8)

where Σ is the sample covariance matrix of the data. We also considered using a fixed bandwidth. However, a constant value106

does not adapt to the specific properties of the data, such as its scale or sample size. Scott’s rule is a data-driven method that107

uses the sample covariance and size to determine the bandwidth. This adaptability generally leads to more reliable density108

estimates.109

Using this method, we estimate the density functions g(x) and p(x) from the data and apply them in the IW:

R̂IW (e, p̂, ĝ) =
1

ntest
g

ntest
g

∑
i=1

e(xi)
p̂(xi)

ĝ(xi)
, xi ∼ g(x). (9)

Challenges with High Weights for IW One key problem with IW is that when the density ratio p(x)/g(x) is large, specific110

samples receive excessively high weights, leading to high variance of the estimate. This occurs especially in regions where111

g(x) is significantly smaller than p(x), resulting in instability in the risk estimate and poor performance of the IW method112

compared to other methods, regardless of bandwidth selection. We applied LCF function analysis to the spatial features of113

datasets from our domain. The results reveal a stark contrast in their spatial structure. The source distribution exhibits a high114

degree of clustering, with data points concentrated in specific areas. In contrast, the target distribution is significantly less115

clustered, approaching a random spatial pattern. This structural mismatch means that the density ratio can become extremely116

large, particularly in regions where the source distribution is sparse but the target is not. This leads to high variance in the117

importance weights, destabilizing the IW estimator.118

2.1.3 Classifier Method119

This approach3, 4 utilizes a probabilistic classifier to directly estimate the density ratio p(x)/g(x) instead of independent120

estimates of p(x) and g(x). These ratio estimates would serve as importance weights for risk estimation. The fundamental idea121

is to train a classifier to discriminate between samples originating from the source distribution g(x) and those from the target122

distribution p(x).123

To begin, a dedicated training dataset is constructed for the auxiliary classifier using our training partitions. This dataset124

is formed by taking the features from the source training set Dtrain
g and the features from the target training set Dtrain

p . These125

combined samples are then assigned new binary labels: samples originating from Dtrain
g are labeled as class 0, and samples from126

Dtrain
p are labeled as class 1.127

/
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The number of samples in this new training set from the source and target distributions are ntrain
g and ntrain

p , respectively. The
empirical prior probabilities for an instance belonging to the source class or the target class are then:

π̂g−class =
ntrain

g

ntrain
g +ntrain

p
,

π̂p−class =
ntrain

p

ntrain
g +ntrain

p
.

A probabilistic classifier, such as Gradient Boosting, is trained on this aggregated and labeled dataset. Using the empirical128

priors π̂g−class and π̂p−class, the classifier learns to model the posterior probability via Bayes’ rule. Once trained, for any129

given input instance x, this classifier can provide an estimate of the probability that x belongs to the class associated with the130

target distribution p(x), denoted as P̂(p|x), and consequently, the probability it belongs to the class associated with the source131

distribution g(x), P̂(g|x) = 1− P̂(p|x).132

The crucial insight is that the density ratio p(x)/g(x) can be estimated using the outputs of this classifier. For a sample
xi drawn from the source distribution g(x), the estimated importance weight wi, which approximates the true density ratio
p(xi)/g(xi), is given by:

wi =
π̂g-class

π̂p-class

P̂(p|xi)

P̂(g|xi)
. (10)

Substituting the empirical priors and classifier probabilities, this expression becomes:

wi =
ntrain

g /(ntrain
g +ntrain

p )

ntrain
p /(ntrain

g +ntrain
p )

(
1− P̂(g|xi)

P̂(g|xi)

)
=

ntrain
g

ntrain
p

(
1

P̂(g|xi)
−1
)
. (11)

For practical stability, these estimated weights wi are often clipped to a predefined range to mitigate issues arising from133

extremely large or small weight values, which lead to high variance in the final risk estimate.134

Finally, the risk is estimated using these importance weights wi applied to the errors e(xi) computed on samples xi drawn
from the test part of the source distribution g(x). The risk estimate is formulated as a standard importance-weighted average:

R̂Classifier(e,w) =
1

ntest
g

ntest
g

∑
i=1

wie(xi), xi ∼ g(x), (12)

This method aims to provide an unbiased estimate of the risk under the target distribution p(x) by appropriately re-weighting135

observations from the source distribution g(x).136

This unbiased estimation property holds theoretically under certain conditions3. Notably if the support of the target137

distribution p(x) is contained within the support of the source distribution g(x). If g(x) is zero where p(x) is positive, the true138

density ratio is infinite, rendering the IW invalid for those regions.139

2.1.4 Kernel Mean Matching (KMM)140

We adopt the KMM formulation, following Huang et al.21, which involves solving a quadratic programming problem to estimate141

sample weights. We employ KMM, which is a method for bias correction that estimates the density ratio between the source142

distribution g(x) and the target distribution p(x) without directly computing the densities. It reweights the source data instances143

such that the weighted distribution resembles the target distribution, and, according to theory, it remains an unbiased estimate.144

KMM works by finding weights wi that minimize the difference between the means of the source g(x) and target p(x) data145

distributions in the feature space defined by a kernel function. The goal is to reweight the source data so that the weighted146

distribution matches the target distribution.147

Practical Implementation for Risk Estimation In the context of risk estimation, once the weights wi are computed using148

KMM, they can be incorporated into the risk estimate to adjust for the bias between the source and target distributions. The149

weighted risk estimate is similarly given by:150

R̂KMM(e,w) =
1

ntest
g

ntest
g

∑
i=1

wie(xi). (13)
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Objective Function The weights wi are computed by solving the following general optimization problem:151

min
w

∥∥∥∥∥∥ 1
ntest

p

ntest
p

∑
i=1

φ(xtarget
i )− 1

ntest
g

ntest
g

∑
j=1

w jφ(xsource
j )

∥∥∥∥∥∥
2

s.t.0 ≤ w j ≤ B,
ntest

g

∑
j=1

w j = ntest
g , (14)

where φ(x) represents the feature map induced by the chosen kernel (in our practical case, it will be a radial basis function), and152

B is a hyperparameter that controls the upper bound of the weights to avoid extreme values. In our study, we are not focused on153

clipping weights, so B is chosen to prevent this situation. To simplify the optimization, the objective function is expanded using154

the kernel trick. We define the necessary components using our test data partitions:155

• Let K ∈ Rntest
g ×ntest

g be the kernel matrix computed on the source test set, where each element Ki j = K(xi,x j) for156

xi,x j ∈ Dtest
g .157

• Let κ ∈ Rntest
g be a vector where each element κi represents the average kernel similarity between a source test point xi

and all target test points:

κi =
1

ntest
p

ntest
p

∑
j=1

K(xi,x′j), where xi ∈ Dtest
g and x′j ∈ Dtest

p .

With these definitions, the optimization problem to find the weights w = (w1, . . . ,wntest
g
)⊤ can be rewritten.

min
w

(
1

n2
target

w⊤Kw− 2
n2

target
κ
⊤w+ const

)
s.t.0 ≤ w j ≤ B,

ntest
g

∑
j=1

w j = ntest
g (15)

For a radial basis function (RBF) kernel, the kernel matrix K is defined as:

K(x,z) = exp
(
−∥x− z∥2

2σ2

)
, (16)

where σ is a bandwidth parameter. In practical implementations, σ is dynamically adjusted based on the median pairwise
distance between the data points:

σ
2 =

median
(
∥xi −x j∥2 | i, j ∈ 1, . . . ,ntest

g
)

logntest
g

. (17)

This ensures the kernel adapts to the scale of the data, making the matching more robust across varying datasets. We will158

use this kernel to practically realise KMM, with the usage of the L2 norm.159

2.1.5 Summary of methods160

We have explored several methods for estimating the target risk using samples from a source distribution, in the presence of a161

distribution shift p(x) ̸= g(x).162

• No Weighting (NW): This method computes the empirical average of the error directly on the source samples, yielding.163

It is the most straightforward approach, but it is inherently biased, as it does not account for the difference in distributions.164

• Importance Weighting (IW): Corrects the bias by reweighting source samples using the true density ratio p(x)/g(x),165

typically estimated via KDE. While theoretically unbiased, it suffers from high variance, especially in high dimensions166

where density estimation fails.167

• Classifier Method: Indirectly estimates the density ratio by training a probabilistic classifier to discriminate between168

source and target samples. It avoids explicit density estimation but relies on classifier calibration and can be unstable169

without weight clipping.170

• Kernel Mean Matching (KMM): Directly computes sample weights to minimize the discrepancy between the mean171

embeddings of the weighted source and target distributions in a RKHS. It bypasses explicit density or density ratio172

estimation, offering a more robust and stable solution, particularly in high-dimensional settings.173

In essence, NW is a simple but biased baseline, IW and Classifier methods attempt bias correction via explicit or implicit density174

ratio estimation but face practical issues with high variance and support assumptions, while KMM tackles bias correction by175

matching distributions in a kernel space through weight optimization.176
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2.2 Data processing177

The data used in this study come from two distinct sources: artificially generated datasets and real-world observations. The178

artificial data allow for controlled experiments with known properties, such as specific degrees of spatial clustering, which are179

essential for systematically testing the limits of risk estimation methods. The real-world data, comprising ecological species180

occurrences and spatial layouts of immune cells from tumor microenvironments, provide critical validation in complex, practical181

scenarios characterized by inherent spatial biases and distribution shifts. The following subsections detail their generation and182

processing.183

2.2.1 Artificial Data184

To systematically evaluate the proposed estimator, we generated synthetic datasets designed to mimic complex spatial structures185

and covariate shifts.186

All artificial datasets were generated within a square domain X = [0,100]d , where d represents the dimensionality, ranging187

from 2 to 4 in our experiments. For each experiment, we sampled N = 10,000 data points for both the source g(x) and target188

p(x) distributions. This process was repeated independently 100 times for each parameter configuration to ensure statistical189

stability of the error metrics.190

The core of our generation process relies on Gaussian Mixture Models (GMM). To simulate complex environmental191

heterogeneity, we employed GMMs with 30 randomly centered components. This number was selected empirically to cover192

the domain space stably without creating anomalies in specific sample generations. The spread of clusters is controlled by a193

maximum covariance parameter (Σmax). A low Σmax (e.g., 30−50) results in highly clustered, distinct populations, whereas a194

high Σmax (e.g., 400) or the use of a Uniform distribution results in a spread-out, diffuse structure. Figure 2 visually compares195

the generated GMM patterns under these different covariance constraints.196

Figure 2. Visualizing GMM patterns with increasing maximum covariance values, transitioning from distinct clusters to a
diffuse distribution.

2.2.2 Robustness Analysis Scenarios197

While varying the degree of clustering provides a baseline for performance, real-world spatial data often exhibits more specific198

structural biases. To rigorously stress-test the KMM approach, we designed a comprehensive suite of ten synthetic scenarios,199

grouped into five distinct categories below. These configurations align with formal categorizations of dataset shift22 and are200

specifically tailored to reflect challenges in ecological and biological surveys, such as sampling bias, environmental dependency201

shifts, and scale mismatches. An overview of these patterns is visualized in Figure 3.202

The following categories summarize the key types of domain shifts modeled in our experimental framework.203

• Domain Truncation (Cropped vs. Full):204

This category examines the impact of geometric restrictions on the domain, simulating partial observability.205

– The first scenario restricts the source distribution, generated as a high-clustered GMM (Σmax = 50), to the lower206

half of the domain (x2 < 50). In contrast, the target covers the full domain with lower clustering (Σmax = 400).207

This mimics selection bias caused by accessible terrain or political borders, where the model is trained on a208

geographically limited subset but must generalize to the entire region.209

– The second scenario reverses this configuration: the source is generated as a low-clustering GMM (Σmax = 400)210

covering the full domain, while the target is restricted to the lower half (x2 < 50) with high clustering (Σmax = 50).211

This simulates a downscaling task where a model trained on regional data is applied to a specific local area,212

requiring the estimator to filter out irrelevant global information.213
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Figure 3. Overview of the synthetic scenarios used for robustness testing. Blue points represent the source distribution (g(x)),
and orange points represent the target distribution (p(x)). These plots illustrate five representative configurations. Our
experiments also include the inverse directional shifts for these categories, totaling ten scenarios.

• Mode Complexity Mismatch (Expansion vs. Contraction):214

This category evaluates the estimator’s behavior when the population diversity changes between domains.215

– The mode expansion scenario involves a source consisting of a single centered cluster (µ = 50) with a maximum216

covariance of 50, while the target is a multimodal GMM comprising disjoint clusters with a tighter spread217

(Σmax = 10). This tests the model’s ability to generalize from a homogeneous training set to a diverse landscape218

containing multiple distinct subpopulations.219

– The mode contraction scenario reverses this: the source comprises multiple scattered clusters (Σmax = 10), whereas220

the target is a single centered mode (µ = 50,Σmax = 50). This evaluates how well a model trained on global221

statistics adapts to a specific local area without underperforming due to the noise present in the global dataset.222

• Correlation Structure Shift (Shift vs. Restoration):223

Here, we manipulate the covariance matrices to be either axis-aligned (diagonal) or rotated (non-diagonal) to simulate224

changing feature interactions.225

– The correlation shift scenario starts with a source generated as a single centered component (µ = 50,Σmax = 150)226

constrained to a diagonal covariance matrix. The target consists of the same centered component but with a227

non-diagonal (rotated) covariance matrix. This tests robustness against changing environmental dependencies,228

such as a shift in the relationship between temperature and elevation.229

– The correlation restoration scenario moves from a rotated source (non-diagonal covariance) to an axis-aligned230

target (diagonal covariance), with both distributions maintaining Σmax = 150. This tests the method’s adaptability231

when complex dependencies or entangled features present in the training phase disappear or become independent232

in the target environment.233

• Variance Scaling (Focusing vs. Extrapolation):234

We examine shifts in the spatial spread of the data to test robustness against scale differences.235

– The first case transitions from a widely dispersed source (Σmax = 400) to a tightly clustered target (Σmax = 50).236

This represents a focusing task, where a broad-scale survey is used to predict a localized phenomenon.237

– The second case transitions from a tightly clustered source (Σmax = 50) to a dispersed target (Σmax = 400). This238

represents an extrapolation challenge, where the model must predict in valid regions of the domain that were239

sparsely sampled or entirely unseen during the training phase.240

• Support Mismatch (Structured vs. Unstructured):241

This represents an extreme covariate shift involving a Uniform distribution to test performance under severe information242

imbalance.243
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– The first scenario uses a source drawn from a uniform distribution covering the entire domain, while the target is a244

high-clustered GMM with Σmax = 50. This requires the estimator to identify and upweight relevant signals hidden245

within uninformative, unstructured noise.246

– The second scenario uses a high-clustered GMM source (Σmax = 50) and a uniform target. This simulates the247

difficulty of applying a model trained on highly specific, structured data to a completely random or unexplored248

environment where the training structure may not apply.249

These bidirectional scenarios ensure that our evaluation covers not only the magnitude of the shift but also its directionality,250

distinguishing between problems of interpolation, extrapolation, and structural adaptation.251

Model Configuration The true function f (x) was modelled as a mixture of GMM kernels (referred to as "GMM"). For252

the estimation of f̂ (x), we employed the model Gradient Boosting Regression trained on 70% of the available samples. The253

choice of these seemingly unconventional models was intentional, as the specific accuracy of the models is not the primary254

concern in this study. Instead, our focus lies on estimating the risk associated with a model error when applied to the target255

distribution. Squared error e(x) =
(

f (x)− f̂ (x)
)2

served as the error metric. To evaluate the classifier-based method, we256

trained a Gradient Boosting Classifier using the default parameters. To ensure that the classifier was sufficiently trained, we257

calculated the ROC-AUC on the test set. The results are presented in Table S2 in the Supplementary Material. We prevent258

clipping of the weights in KMM by setting B = 1000, which is sufficient according to the experiments shown in Figure S5 of259

the Supplementary Material.260

2.2.3 Real data261

Species data262

Study area The study area focuses on Finland, encompassing latitudinal and longitudinal extents that capture the primary263

habitats of the selected plant species. This region is characterized by boreal to subarctic climatic conditions, with a transition264

toward more temperate environments in southern Finland and along the coast. Prominent geographic features include numerous265

lakes, extensive forested zones, and coastlines along the Baltic Sea.266

Plant occurrence We collected occurrence data from 2000 to 2024 for several herbaceous and woody plant species native267

to Finland: Tussilago farfara L.23, Anemone nemorosa L.24, Caltha palustris L.25
268

These data were primarily obtained from the Global Biodiversity Information Facility (GBIF), which leveraged contributions269

from citizen science projects. We selected these species because they exhibit distinct phenological and ecological traits pertinent270

to boreal and subarctic ecosystems and because sufficient presence and absence records were available for the specified period271

(2000–2024).272

Environmental predictors We used 19 bioclimatic variables to model species distributions. These predictors encompass273

average and extreme temperature and precipitation patterns, as well as measures of climatic variability relevant to plant274

physiology.275

To prepare the environmental data, we employed several R packages, including raster, rgdal, terra, and sf26–29.276

We standardized all spatial layers with the WGS84 coordinate reference system and then masked and cropped them to the study277

region, specifically Finland and relevant parts of Sweden. The final dataset was stacked into a single multi-layer raster stack for278

subsequent modeling.279

Cell data The first dataset comprises tumor biopsy images depicting various immune cell types, including conventional280

dendritic cells type 2 (cDC2), plasmacytoid dendritic cells (pDCs), myeloid cells, and B cells30. Analyzing the spatial281

distribution of these cells is crucial for understanding their interactions, which could lead to the identification of biomarkers for282

therapy response31. Following manual quality control, ensuring that at least half of the tissue remained intact, 78 images were283

selected for analysis.284

Positions and types of immune cells were identified using the ImmuNet pipeline30, 32. The tissue boundaries were detected285

through a segmentation algorithm implemented in the "inForm" software (v2.4.8, PerkinElmer).286

Our LCF analysis, following the methodology of Martynova et al.19, reveals different spatial patterns among cell types:287

B cells exhibit high LCF values, indicating noticeable clustering, while myeloid cells show a minimal deviation from zero,288

reflecting a scattered distribution. A marked peak in the LCF for cDC2s suggests potential interactions at short distances.289
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Models configuration For both datasets, we used Gradient Boosting33, Logistic Regression, Random Forest Classifier and290

MLP Classifier as our binary classification black box models. They are trained on 70% of the vailable samples. Moreover, we291

prevent clipping of the weights in KMM by setting B = 1000, which is sufficient according to the experiments shown in Figure292

S5 of the Supplementary Material. It is essential to perform data splitting and hyperparameter tuning to prevent overfitting on293

both the source and target datasets. Since our task is formulated as a black-box risk estimation problem, we are not concerned294

with model configuration or weight optimization, and therefore we do not perform hyperparameter tuning — we rely solely295

on the model’s output. It is critical to distinguish this from the random hyperparameter sampling used in our model selection296

experiment (Section 2.2.4); unlike tuning, which seeks an optimal model, sampling aims to generate a diverse portfolio of297

model behaviors to rigorously stress-test the risk estimation methods under a wide range of conditions. However, overfitted298

models tend to perform poorly on real-world data and introduce challenges in reliable risk estimation. We selected source-target299

dataset pairs to ensure meaningful transfer learning scenarios based on their inherent clustering structure. Specifically, the300

source dataset was chosen to exhibit a clustered structure, while the target dataset was selected to be less clustered. The degree301

of clustering was quantified using the area under the LCF curve. Following the recommendations of the original study, we302

individually selected the maximum radius values for AUC LCF for each data dimensionality and data type to obtain informative303

and meaningful results. Only pairs with Area under the Receiver Operating Characteristic Curve (AUC-ROC) scores exceeding304

0.7 were retained, ensuring robust classification performance while avoiding overfitting.305

Classification performance was evaluated using the log-loss function e(x) for each data point x:306

e(x) =−
(

f (x) log f̂ (x)+
(
1− f (x)

)
log
(
1− f̂ (x)

))
(18)

where f (x) ∈ {0,1} is the true label and f̂ (x) is the predicted probability.307

Data Preprocessing All features were standardized to a zero mean and unit variance. We applied Principal Component308

Analysis (PCA) to align the feature space with our synthetic data experiments. The number of principal components was selected309

to preserve the intrinsic structure of the data: for clustered source datasets, components were retained to maintain separation310

between clusters, while for less-clustered target datasets, components were chosen to reduce redundancy without enforcing311

artificial structure. This approach ensured comparability with synthetic experiments while mitigating complexity. Figures S1-S2312

(Supplementary material) illustrate the resulting 2D PCA projections for representative species and cell datasets, respectively,313

highlighting the different structures of the source (more clustered) and target (less clustered) data after dimensionality reduction.314

2.2.4 Evaluation procedure315

Comparison of methods To evaluate the IW, we trained KDE models on train samples to approximate density ratios on test316

samples, ensuring theoretically grounded risk estimation. To evaluate the classifier-based method, we trained the same Gradient317

Boosting Classifier using the default parameters as described in Artificial data.318

The performance of risk estimation was evaluated using three metrics: MAPE, Root Mean Square Error (RMSE), and Root319

Mean Square Percentage Error (RMSPE) across all n source and target pairs. These metrics allow us to assess the accuracy of320

risk estimation between the actual risk RGT and the estimated risk Rmethod . The subscript ‘method‘ indicates the estimation321

approach, which can be NW, IW, KMM, or a Classifier-based method, evaluated across various datasets and scenarios.322

The three metrics are defined as follows:

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣R
(i)
GT −R(i)

method

R(i)
GT

∣∣∣∣∣ , (19)

RMSE =

√
1
n

n

∑
i=1

(
R(i)

GT −R(i)
method

)2
, (20)

RMSPE =

√√√√1
n

n

∑
i=1

(
R(i)

GT −R(i)
method

R(i)
GT

)2

. (21)

The MAPE measure (Eq. 19) clearly explains the performance of the estimation by quantifying the average percentage deviation323

from a true risk. The RMSE captures the square root of the average squared differences between the estimated and true risks,324

focusing more on the more significant deviations. Lastly, RMSPE measures the percentage error similarly to RMSE but325

normalizes each difference by the true risk, allowing it to account for relative scale differences between datasets.326

To better understand how the experiments were conducted across different dataset types and domain pairs, we provide a327

general workflow diagram. This workflow outlines the pipeline used for data generation and preprocessing, as well as the328
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procedures for model training, validation, and risk estimation. It includes both artificial and real-world datasets (such as329

biological cells and species data) and demonstrates how we consistently applied the same evaluation logic across all settings.330

The general workflow of our experiments is divided into two parts (See Figures 4 and 5). Figure 4 (Part A) illustrates how331

we construct both artificial and real datasets (cells and species data), define source and target domains, and preprocess the data332

including normalization, dimensionality reduction, and LCF-based splitting. Subsequently, Figure 5 (Part B) demonstrates the333

validation pipeline used across all dataset types: we first train a model on the source data, then a domain classifier, and finally334

evaluate the performance on target data using risks estimated by methods such as R̂NW , R̂IW , R̂Classifier, R̂KMM, and comparing335

them to RGT .336

A

TARget: 

species 

OCCURRENCE

Environmental 
data

Species data �� Optionally APPLY PC�

�� standardize�

�� COUNT AUC LCF

PREPROCESS 
DATASETS

TARget: 

CELL TYPE

BIOLOGICAL 
data

CELLS DATA

TARget: 

RANDOM LINEAR FUNCTION

GENERATING SPATIAL 
POINT PATTERNS

ARTIFICIAL DATA

HIGH-CLUSTERED GMM

SOURCE

low-CLUSTERED GMM UNIFORM

TARGET

SPLIT ARTIFICIAL data
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SOURCE
LOW AUC LCF

TARGET

SPLIT CELLS data

EARLY YEARS 
HIGH AUC LCF

TARGET
LATE YEARS 

LOW AUC LCF

SOURCE

SPLIT Species data

Figure 4. Workflow for data construction and preprocessing.
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b 

COUNT METRICS

Train Model

Train 
classifier

TRAININGGet source data

ESTIMATE RISKS

VALIDATION

ON source data

ON TARGET DATA

Get target data

Figure 5. Workflow for model validation and risk estimation.

Practical Demonstration of Risk Estimation for Model Selection To demonstrate the practical significance of risk estimation,337

we conducted an experiment that simulates model selection under distribution shift, using previously described species and338

cell datasets. In real-world deployment scenarios, the true performance of a model on the target distribution is unknown. Risk339

estimation methods aim to provide a reliable proxy for this true risk, guiding the selection of models that are likely to perform340

well in the target environment. For this experiment, using species and cell datasets, we generated a pool of 200 classification341

models (100 Gradient Boosting, 100 Random Forest) trained on source data, with hyperparameters randomly sampled from342

predefined ranges (e.g. ‘n_estimators‘ [5, 20], ‘max_depth‘ [1, 4], ‘learning_rate‘ [0.01, 0.3], etc.). We filtered these models,343

retaining only those with a ROC AUC > 0.7 on the target test set to ensure a basic level of predictive applicability. For each344

retained model mi, we calculated its true risk R(i)
GT and its estimated risk R(i)

method using each of the evaluated methods (NW,345

IW, KMM, Classifier) based on the source data. The objective was to assess how well each estimation method identifies346

models with low true risk using only its estimated risk R(i)
method . We varied the number of selected models (K) to observe its347

impact on performance, focusing on K = 5 for our primary analysis. Our extended results show that selecting very few models348

(K = 3) introduces significant noise, reflected in high standard deviations. In contrast, selecting more models (K = 10) leads to349

stabilization, with reduced variance and closer convergence between methods. The detailed results for K = 3 and K = 10 are350

provided in Supplementary Tables S3 and S4, and a comprehensive visualization of these trends is presented in Supplementary351

Figure S6. We applied the following model selection algorithm for each risk estimation method:352

1. For each model mi, determine the true risk R(i)
GT (for evaluation purposes) and the estimated risk R(i)

method using a specific353

risk estimation method (NW, IW, KMM, or Classifier).354

2. Select the K = 5 models with the lowest estimated risk R(i)
method according to the method. Let A be the set of indices of355

these models.356

3. Compute the average true risk for the selected models and method: Rmethod =
1
K ∑i∈A R(i)

GT . This value represents the357

actual performance of the models chosen based on the estimation method’s output.358

3 Results359

In this section, we compare the performance of the NW, IW, and KMM methods in synthetic and real-world datasets. We take360

advantage of the insights and techniques derived from the analysis of synthetic data to ensure consistency and relevance in361
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our experimental setup. A critical aspect of these experiments is the proper definition of the source and target distributions,362

along with a thorough clustering analysis and evaluation using appropriate metrics. Our primary focus is on scenarios involving363

high-clustered source data and low-clustered target data, characterized by significant distributional shifts between them.364

3.1 Artificial Data365

Initial experiments with synthetic data revealed critical insights into the limitations of IW and NW under distribution shift. We366

observed that lower maximum covariance values in the generation of the source GMM distribution produced stronger clustering367

(Figure 2), resulting in a significant distribution shift relative to the low-clustered target GMM distribution. Quantitative analysis368

via LCF curves (Figure 6) confirmed this behaviour, showing distinct clustering patterns as described in Section 2 (Methods).369

A comprehensive comparison of the risk estimation methods across the proposed scenarios is presented in Table 1. The370

central and most consistent finding across all experimental configurations is the superior performance of the KMM method.371

KMM achieves the lowest error metrics in the vast majority of cases, demonstrating remarkable stability not only under varying372

degrees of clustering but also under geometric transformations and support mismatches.373

Specifically, in scenarios involving Correlation Shift (Diagonal → Non-Diagonal) and Correlation Restoration, KMM374

effectively handles the rotation of the feature space, maintaining a MAPE significantly lower than NW and IW, which struggle375

to adapt to the changed feature dependencies. Furthermore, in the challenging Variance Scaling: Extrapolation scenario (Low376

Variance → High Variance), where the model must generalize to a broader domain than it was trained on, KMM outperforms377

density-ratio based approaches, which often exhibit unstable weights in low-density regions. Similarly, in cases of Support378

Mismatch (e.g., Uniform → GMM), KMM correctly identifies relevant signal within unstructured data, whereas IW frequently379

produces exploded error rates due to denominator instability in the density ratio estimation.380
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Table 1. Robustness evaluation of risk estimation methods under distinct structural biases and distribution shifts. The table
compares performance metrics (MAPE, RMSE, RMSPE) across 2D, 3D, and 4D dimensions for different synthetic scenarios
designed to stress-test estimator stability (e.g., domain truncation, correlation shifts, and mode mismatches). The
best-performing method per block (lowest MAPE) is in bold.

Method 2D 3D 4D
MAPE RMSE RMSPE MAPE RMSE RMSPE MAPE RMSE RMSPE

Domain Truncation: Cropped → Full

NW 83.9±1.2 1.91±0.15 84.1±1.3 80.6±1.2 4.6±0.20 80.7±1.2 79.6±1.1 8.9±0.4 79.7±1.1
IW 92.8±1.5 2.05±0.18 92.8±1.4 96.2±1.5 5.5±0.30 96.2±1.6 98.6±1.6 10.9±0.4 98.6±1.7
KMM 80.0±1.0 1.84±0.09 80.4±1.0 74.2±1.1 4.26±0.15 74.3±1.0 75.0±0.9 8.4±0.3 75.1±0.9
Classifier 89.9±1.3 2.00±0.16 90.0±1.4 90.6±1.4 5.2±0.20 90.7±1.4 93.9±1.4 10.4±0.4 93.9±1.4

Domain Truncation: Full → Cropped

NW 72.0±2.0 1.07±0.15 72.1±2.0 92.0±1.5 5.6±0.30 92.0±2.5 94.5±1.2 10.0±0.8 94.5±1.5
IW 69.9±2.2 1.04±0.18 70.1±2.2 75.1±0.5 4.7±0.15 75.1±0.7 70.7±3.0 7.8±1.0 70.9±3.0
KMM 59.5±3.0 0.92±0.20 60.2±3.0 72.9±3.5 4.5±0.11 73.2±3.5 66.5±1.5 7.1±0.6 66.9±1.8
Classifier 66.4±2.5 1.01±0.22 66.9±2.5 85.8±2.0 5.2±0.40 85.8±2.5 82.3±1.3 8.8±0.7 82.6±1.8

Mode Complexity: Expansion (Single → Clusters)

NW 93.1±1.3 1.41±0.09 93.1±1.3 90.9±1.3 5.0±0.20 90.9±1.3 91.0±1.4 12.3±0.5 91.1±1.4
IW 97.4±1.4 1.47±0.11 97.4±1.4 99.3±1.6 5.4±0.30 99.3±1.5 99.9±1.6 13.4±0.5 99.9±1.6
KMM 90.1±0.9 1.37±0.06 90.1±0.9 85.7±1.0 4.77±0.14 85.8±1.0 87.5±0.8 11.9±0.3 87.6±0.8
Classifier 94.6±1.3 1.43±0.10 94.6±1.3 92.5±1.4 4.9±0.20 93.0±1.5 98.7±1.5 13.2±0.5 98.7±1.5

Mode Complexity: Contraction (Clusters → Single)

NW 57.7±2.0 0.58±0.05 59.8±2.0 59.4±1.9 2.46±0.12 61.5±2.0 54.7±1.8 4.13±0.15 57.5±2.0
IW 58.3±2.0 0.60±0.05 63.8±2.0 92.6±1.6 3.1±0.20 93.1±1.7 90.9±1.4 5.8±0.20 91.7±1.5
KMM 39.1±1.5 0.43±0.03 43.9±1.7 43.2±1.4 2.06±0.08 47.8±1.6 41.3±1.2 3.37±0.11 44.8±1.3
Classifier 54.2±2.0 0.54±0.04 58.2±2.0 91.4±1.6 3.13±0.18 91.8±1.6 91.7±1.5 5.6±0.20 92.2±1.5

Correlation Shift: Diagonal → Non-Diagonal

NW 17.5±0.90 0.073±0.008 19.6±1.0 21.4±0.9 0.22±0.020 22.8±0.9 27.5±1.1 0.50±0.030 30.2±1.2
IW 3.2±0.30 0.021±0.004 3.9±0.3 5.3±0.4 0.069±0.008 6.1±0.4 7.6±0.5 0.153±0.012 8.9±0.5
KMM 2.53±0.15 0.012±0.002 3.2±0.2 3.9±0.2 0.041±0.005 4.5±0.3 3.4±0.2 0.072±0.006 4.1±0.3
Classifier 3.3±0.20 0.018±0.003 3.7±0.3 4.1±0.3 0.047±0.006 4.6±0.3 7.6±0.4 0.219±0.015 9.7±0.5

Correlation Shift: Restoration (Non-Diagonal → Diagonal)

NW 18.6±0.9 0.123±0.012 24.9±1.1 46.2±1.3 0.95±0.05 46.2±1.3 71.5±1.6 3.8±0.20 71.5±1.6
IW 16.5±0.9 0.115±0.010 23.4±1.1 46.4±1.3 0.97±0.05 46.5±1.3 84.6±1.7 4.6±0.20 84.7±1.7
KMM 13.1±0.7 0.081±0.006 15.9±0.7 28.8±0.9 0.60±0.03 28.8±0.9 59.5±1.1 3.26±0.12 59.6±1.1
Classifier 19.9±1.0 0.131±0.014 20.2±1.0 31.5±1.0 0.68±0.04 32.0±1.0 67.1±1.4 3.7±0.20 67.2±1.4

Support Mismatch: GMM → Uniform

NW 23.2±2.3 0.160±0.018 26.1±1.7 41.3±1.1 0.94±0.23 41.8±1.0 51.0±1.1 2.8±0.12 39.8±3.0
IW 21.5±2.2 0.146±0.021 23.9±1.8 63.4±0.8 1.43±0.35 63.6±1.1 86.6±1.5 4.7±0.18 86.6±1.7
KMM 3.5±2.0 0.029±0.014 4.8±1.1 12.2±2.0 0.35±0.10 15.3±0.9 30.3±0.9 1.7±0.08 31.1±1.1
Classifier 19.7±2.2 0.147±0.018 23.0±1.6 33.2±1.2 0.77±0.28 34.0±1.3 42.4±1.0 2.3±0.11 42.7±1.2

Support Mismatch: Uniform → GMM

NW 19.6±0.9 0.143±0.012 20.9±1.0 7.6±0.5 0.32±0.020 10.0±0.6 10.4±0.5 0.88±0.05 12.4±0.6
IW 22.2±1.1 0.162±0.015 23.7±1.1 13.7±0.7 0.50±0.040 16.5±0.8 12.4±0.7 1.09±0.06 16.6±0.8
KMM 16.9±0.8 0.128±0.010 18.8±0.8 7.2±0.3 0.262±0.015 9.0±0.5 4.2±0.3 0.40±0.03 6.2±0.4
Classifier 26.0±1.2 0.180±0.016 27.0±1.3 31.1±1.2 0.97±0.050 32.1±1.2 35.1±1.3 2.50±0.11 37.5±1.3

Variance Scaling: Focusing (High Variance → Low Variance)

NW 66.1±1.5 0.76±0.14 66.7±2.0 63.2±1.1 2.30±0.09 63.5±1.4 62.8±1.0 4.9±0.03 63.1±1.3
IW 69.3±1.2 0.80±0.14 69.9±1.8 81.6±0.7 2.90±0.13 81.7±1.2 92.5±0.3 7.0±0.05 92.5±0.5
KMM 48.1±2.1 0.61±0.09 50.5±2.0 42.2±2.1 1.64±0.08 43.5±2.0 50.9±0.8 4.0±0.04 51.4±1.9
Classifier 60.8±1.7 0.71±0.13 61.9±2.2 52.8±1.4 1.96±0.12 54.1±1.8 51.7±0.5 4.1±0.04 52.4±1.4

Variance Scaling: Extrapolation (Low Variance → High Variance)

NW 20.1±1.0 0.165±0.015 22.8±1.1 11.1±0.6 0.47±0.030 14.4±0.7 15.9±0.8 1.86±0.09 19.9±0.9
IW 6.8±0.5 0.067±0.008 8.5±0.5 11.2±0.6 0.45±0.030 13.1±0.7 21.5±1.0 2.47±0.11 25.5±1.1
KMM 3.3±0.3 0.036±0.004 5.2±0.4 7.8±0.4 0.332±0.018 9.6±0.5 10.9±0.6 1.31±0.07 14.2±0.7
Classifier 6.0±0.4 0.060±0.006 7.2±0.4 20.0±0.9 0.90±0.050 23.0±1.0 40.0±1.3 3.79±0.15 41.9±1.4
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To provide a more granular analysis of this behavior, we systematically evaluated risk estimation performance across a381

range of maximum covariance limits for GMM source distribution, which directly control the intensity of the covariate shift.382

The results of these experiments are presented for dimensions 2D, 3D, and 4D. Figure S3 details the performance metrics for383

the uniform target distribution, while Figure S4 shows the corresponding results for the GMM target distribution.384
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Figure 6. LCF analysis of clustering intensity for different covariance limits across dimensions (2D, 3D, and 4D) and target
distributions (low-clustered GMM and Uniform). The single figure consolidates the six scenarios, with rows indicating the
target distribution and columns representing the data dimensionality.

3.2 Real Data385

We present experiments conducted on real-world datasets, which are critical for understanding the challenges and effectiveness386

of risk estimation in spatial modeling. Real data often exhibit greater complexity and variability than synthetic datasets,387

enabling us to evaluate our models in realistic scenarios.388

A comprehensive comparison of the risk estimation methods on these real datasets (reduced to 2D, 3D, and 4D via PCA) is389

presented in Table 2. Consistent with our findings from the artificial scenarios, the KMM method achieves the lowest error390

metrics in the vast majority of cases. For instance, in the 4D Immune cells data, KMM maintains a manageable MAPE ranging391

from 54.3% to 93.4% depending on the predictive model. In contrast, IW fails to produce stable estimates, yielding significantly392

higher MAPE values ranging from 101.9% to 544.6%. This demonstrates that KMM is the most robust and reliable method for393

risk estimation under spatial distribution shift, effectively overcoming the limitations of density-ratio-based approaches.394
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Table 2. Performance comparison of NW, IW, KMM, and Classifier-based risk estimation methods across PCA dimensions
(2D, 3D, 4D) for real data. KMM method consistently outperforms all other approaches across the majority of datasets and
dimensionalities. The best-performing method per block (lowest MAPE) is in bold.

Method 2D 3D 4D
MAPE RMSE RMSPE MAPE RMSE RMSPE MAPE RMSE RMSPE

Species Gradient Boosting Model

NW 67.5±3.0 0.98±0.07 70.0±3.0 53.1±2.0 0.91±0.05 60.2±2.5 47.5±2.0 0.72±0.05 54.2±2.5
IW 88.6±4.0 1.16±0.08 89.0±4.0 91.3±4.0 1.13±0.08 91.5±4.0 95.1±4.0 1.00±0.08 95.3±4.0
KMM 44.6±2.0 0.78±0.02 50.9±2.0 39.8±1.0 0.801±0.003 49.7±2.0 33.5±1.5 0.61±0.01 43.5±2.0
Classifier 52.6±2.5 0.83±0.02 57.5±2.5 51.1±1.3 0.811±0.005 56.9±1.5 44.4±1.8 0.63±0.01 52.2±2.5

Species Logistic Regression Model

NW 60.1±3.0 1.03±0.08 63.4±3.0 62.1±3.0 1.01±0.08 65.0±3.0 44.8±2.0 0.41±0.03 42.9±2.0
IW 88.5±4.0 1.28±0.10 89.1±4.0 92.2±4.0 1.30±0.10 92.5±4.0 89.9±4.0 0.79±0.06 90.0±4.0
KMM 36.9±1.8 0.78±0.01 45.2±1.0 37.8±2.0 0.75±0.02 45.2±2.0 34.3±1.5 0.33±0.01 41.2±0.3
Classifier 41.3±2.0 0.82±0.02 48.0±1.2 46.9±2.5 0.81±0.03 52.8±2.5 39.2±1.8 0.41±0.03 41.8±0.3

Species Random Forest Model

NW 83.8±4.0 3.85±0.03 86.4±4.0 67.6±3.0 1.63±0.02 74.2±3.5 63.1±3.0 1.99±0.02 69.8±3.5
IW 92.6±4.5 3.90±0.05 93.1±4.5 92.1±4.5 1.72±0.06 92.5±4.5 96.4±4.5 2.07±0.06 96.5±4.5
KMM 70.7±1.5 3.775±0.004 79.6±0.5 52.1±2.5 1.59±0.01 66.3±2.0 49.5±2.0 1.944±0.003 61.6±1.5
Classifier 74.7±1.8 3.782±0.004 80.8±0.5 61.5±3.0 1.61±0.01 70.9±2.5 56.8±2.5 1.949±0.003 65.3±2.0

Species Neural Network Model

NW 40.1±2.0 0.60±0.04 48.5±2.5 45.5±2.0 0.81±0.06 52.3±2.5 42.3±2.0 0.50±0.03 46.8±2.0
IW 85.2±4.0 1.01±0.08 88.2±4.0 90.3±4.5 1.21±0.09 92.6±4.5 95.2±4.5 0.91±0.07 95.8±4.5
KMM 30.6±1.5 0.45±0.03 38.3±2.0 33.1±1.5 0.66±0.05 41.5±2.0 32.9±1.5 0.35±0.04 36.9±1.8
Classifier 35.3±1.8 0.51±0.03 42.5±2.0 38.4±1.8 0.76±0.05 45.9±2.2 37.5±1.8 0.43±0.04 40.8±2.0

Immune cells Gradient Boosting Model

NW 47.2±2.5 0.89±0.03 54.5±2.0 91.2±4.0 16.1±0.8 97.5±4.5 84.5±2.0 16.2±0.3 88.9±1.5
IW 55.2±3.0 0.93±0.05 60.8±2.5 242.0±10.0 151.0±10.0 1229.0±50.0 101.9±5.0 36.5±1.5 257.8±10.0
KMM 40.8±2.0 0.83±0.01 50.3±1.5 81.3±3.5 15.2±0.5 88.6±4.0 79.9±1.5 15.5±0.19 85.6±1.0
Classifier 46.9±2.5 0.85±0.01 53.6±1.8 91.1±4.0 15.9±0.2 95.7±4.3 84.4±2.0 16.1±0.3 88.3±1.2

Immune cells Logistic Regression Model

NW 53.0±2.5 2.27±0.04 64.7±3.0 88.4±2.5 1.01±0.02 88.6±2.5 90.9±3.0 1.13±0.02 91.0±3.0
IW 57.2±3.0 2.27±0.04 65.2±3.0 653.2±25.0 1.61±0.30 203.4±10.0 135.0±5.0 2.11±0.50 364.0±15.0
KMM 42.9±2.0 2.18±0.03 58.0±2.5 83.2±0.3 0.963±0.005 83.5±0.5 84.6±0.3 1.075±0.004 84.9±0.3
Classifier 52.7±2.5 2.29±0.05 63.9±3.0 84.6±0.6 0.977±0.006 84.8±0.6 85.3±0.3 1.087±0.006 85.5±0.3

Immune cells Random Forest Model

NW 46.2±2.0 1.11±0.03 53.8±2.5 52.3±2.5 2.45±0.05 57.3±3.0 70.4±3.0 4.76±0.06 72.6±3.5
IW 52.3±2.5 1.13±0.03 57.4±3.0 64.3±3.0 3.41±0.50 197.1±10.0 149.3±8.0 14.9±1.0 375.6±15.0
KMM 35.5±1.5 1.02±0.03 46.7±2.0 28.3±1.0 2.34±0.01 38.9±1.5 54.3±2.5 4.63±0.02 59.5±3.0
Classifier 44.4±2.0 1.08±0.03 52.1±2.5 34.1±1.5 2.37±0.01 42.4±2.0 59.6±2.5 4.66±0.02 63.0±3.0

Immune cells Neural Network Model

NW 35.3±1.8 0.50±0.01 43.2±2.0 98.9±0.2 12.55±0.05 99.0±0.1 97.6±1.0 17.97±0.35 97.7±1.0
IW 41.5±2.0 0.52±0.01 48.0±2.5 327.1±15.0 43.2±2.0 926.1±40.0 544.6±25.0 167.3±10.0 202.5±10.0
KMM 23.6±1.2 0.39±0.05 32.1±1.5 97.1±0.5 12.488±0.005 97.3±0.2 93.4±0.8 17.23±0.15 93.5±0.8
Classifier 31.4±1.5 0.49±0.01 41.5±2.0 98.5±0.1 12.504±0.005 98.7±0.1 95.1±0.8 17.59±0.16 95.43±0.8

3.2.1 Species Data395

The first dataset contained information on various plant species, with features including longitude, latitude, and climate factors.396

The target variable for our prediction task was the presence or absence of a given species.397

For the source-target separation, we focused on temporal modeling. Specifically, our goal was to assess the risk in a less398

clustered distribution of data while anticipating that future data will be more spatially dispersed. To achieve this, we divide the399

data based on early and late years, enabling us to estimate the risk in the target distribution for the binary classification task.400

We validated our framework on the clustered source and less-clustered target datasets, preprocessed and dimensionally401

reduced as described in the Section 2. The degree of clustering, measured through the area of the LCF curve, confirmed402

the structural distinction between the source and target datasets. For this classification, we have chosen Tussilago farfara L.,403
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Caltha palustris L., and Anemone nemorosa L. due to the appropriate LCF for source and target splitting and the presence of404

both classes. Critically, when IW performed poorly relative to NW, we observed a replication of the synthetic data problem405

- highlighting sensitivity to distributional mismatch. Quantitative results (Table 2) demonstrate the consistency of our risk406

estimation metrics (MAPE, RMSE, RMSPE) across domain shifts, reinforcing the robustness of the KMM approach for exact407

dimensions as in artificial data.408

In addition to the dimension reduction via PCA, we applied the proposed risk estimators (NW, IW, KMM, Classifier)409

directly to the original high-dimensional feature space. These results are presented in Table 3.410

3.2.2 Immune Cell Data411

The second dataset originates from a study on immune cells. This dataset comprises the positional and biological features of412

four distinct types of immune cells. For our task, we split the dataset to conduct a binary classification of the cell types. We413

have chosen B-cells and myeoild cells for this classification due to an appropriate LCF for source and target splitting. Similarly,414

after using the same preprocessing, we selected less clustered data for the target distribution and more clustered data for the415

source distribution. The example was demonstrated in Figure S2.416

We evaluated the performance of the binary classification task for different dimensions, analogous to our experiments on417

plant species data. The results, provided in Table 2, generally mirror the species data findings. Extreme mismatches in higher418

dimensions (4D) caused significant instability in IW-based estimation, further validating KMM’s superior constraint handling.419

As with the species data, we also evaluated performance on the full, non-reduced feature set; these results are detailed in Table420

3, showing even more pronounced differences between KMM and density-ratio methods in the original high-dimensional space.421

Table 3. Performance comparison of NW, IW, KMM, and Classifier-based risk estimation methods across original datasets (all
features) for different data types.

Species Dataset Immune Cells Dataset

Model Type NW IW KMM Classifier NW IW KMM Classifier

Gradient Boosting

MAPE 71.9±3.5 174.6±8.0 39.5±2.0 49.2±2.5 102.5±5.0 6686±300 66.4±3.0 79.4±3.5
RMSE 0.90±0.04 3.00±0.15 0.53±0.01 0.76±0.02 18.24±0.90 716±35 12.27±0.15 12.65±0.18
RMSPE 74.1±3.5 282.1±12.0 46.9±2.2 57.0±2.8 116.0±5.5 4912±250 76.7±3.5 87.5±4.0

Logistic Regression

MAPE 192.0±9.0 543.4±25.0 38.41±0.15 38.71±0.18 91.8±4.5 1611±80 60.3±1.0 63.0±1.2
RMSE 2.96±0.15 10.00±0.50 0.31±0.02 0.36±0.02 0.64±0.03 70.6±3.5 0.527±0.006 0.543±0.007
RMSPE 355.0±18.0 1372.6±70.0 42.20±0.03 42.28±0.04 131.9±6.0 1923±95 65.0±0.6 66.8±0.7

Random Forest

MAPE 82.0±4.0 261.5±13.0 62.3±0.5 64.1±0.6 129.8±6.0 661.8±30.0 85.8±0.2 86.5±0.3
RMSE 1.08±0.05 5.69±0.25 0.87±0.03 1.02±0.04 14.32±0.70 412.2±20.0 14.284±0.007 14.301±0.008
RMSPE 83.4±4.0 547.0±25.0 67.8±1.0 70.8±1.2 241.3±12.0 1412±70 91.5±1.2 94.8±1.5

Neural Network

MAPE 80.1±4.0 251.8±12.0 34.6±0.8 36.7±0.9 122.7±6.0 6618±300 71.3±1.5 75.3±1.8
RMSE 1.03±0.05 5.12±0.25 0.281±0.015 0.321±0.015 14.53±0.70 540.8±25.0 13.00±0.07 13.17±0.08
RMSPE 85.5±4.0 504.0±25.0 37.9±0.5 39.3±0.6 186.3±9.0 8321±400 79.38±0.15 79.76±0.18

3.3 Practical demonstration of risk estimation for model selection422

The values of Rselected for each method, dataset, and dimensionality are presented in Table 4. As shown in the table, the KMM423

method consistently selected model sets with the lowest average true risk across various data configurations and tasks (species424

and cells). This demonstrates its effectiveness in the practical task of identifying models likely to perform best when deployed425

in a target domain with distribution shift, highlighting the value of accurate risk estimation.426
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Table 4. Average true risk (Rselected) for sets of K = 5 models (values multiplied by 1000).

Data Type Dimensionality NW IW KMM Classifier

Species

2D 2.335±0.18 2.663±0.20 1.549±0.12 2.232±0.17
3D 4.539±0.29 6.023±0.35 1.848±0.14 4.204±0.26
4D 5.896±0.34 7.499±0.41 2.892±0.21 4.806±0.28
ALL 11.594±0.52 12.381±0.58 8.220±0.36 10.044±0.44

Immune cells

2D 2.478±0.16 4.182±0.27 2.233±0.14 2.376±0.15
3D 4.346±0.24 5.011±0.29 3.591±0.19 4.190±0.23
4D 4.952±0.28 5.406±0.30 3.980±0.22 5.160±0.25
ALL 6.848±0.37 9.418±0.49 5.258±0.28 6.189±0.33

3.4 Comparison and Analysis427

We show that KMM outperforms traditional methods and effectively addresses the issues caused by poor IW with KDE. This428

improvement is particularly evident in the analysis of both artificial and real datasets. KMM’s superior performance is most429

noticeable in situations where KDE struggles to estimate weights accurately, leading to biased results. KMM successfully430

mitigates these problems by adjusting sample weights more effectively, leading to better risk estimation and overall model431

performance. To ensure that our comparison of risk estimators is meaningful, we first validated the performance of these432

models. Table S1 summarizes the ROC AUC scores for the four different predictive models used in our experiments. We433

exclusively utilized models achieving an ROC AUC score greater than 0.7.434

Table 1 and Table 2 present a comprehensive comparison of four risk estimation methods: NW, IW, KMM, and Classifier.435

Performance is evaluated using three metrics: MAPE, RMSE, and RMSPE. The results cover distinct experimental scenarios:436

nine synthetic scenarios designed to stress-test estimator stability (Table 1) and real-world datasets (Species and Immune cells)437

with varying PCA dimensionality (Table 2).438

In the artificial data experiments, particularly in scenarios involving Support Mismatch (e.g., Uniform vs. GMM) and439

Variance Scaling, KMM consistently demonstrates superior performance across all dimensions and metrics. For instance, in the440

Extrapolation scenario (Low Variance → High Variance), KMM achieves an MAPE substantially lower than both NW and IW.441

This pattern persists in geometric shifts such as Domain Truncation, although the absolute error values naturally vary with the442

complexity of the shift. Notably, while NW and IW show substantial degradation in high-variance or unstructured settings,443

KMM maintains relatively better performance, indicating its greater robustness to structural distribution mismatches.444

Similar patterns emerge in the Mode Complexity and Correlation Shift scenarios, where KMM consistently outperforms445

alternative methods. This demonstrates KMM’s effectiveness in handling more complex, multi-modal, and rotated target446

distributions where density estimation becomes unstable.447

As illustrated in Figure S3 and Figure S4, KMM consistently outperforms NW, IW, and the classifier-based approach across448

all metrics, regardless of the severity of the shift controlled by the maximum covariance parameter. These figures also highlight449

a critical weakness in the IW method. As the source data become more strongly clustered (lower covariance), the magnitude of450

the covariate shift increases. Consequently, the performance of IW deteriorates sharply, whereas KMM maintains robust and451

superior performance, demonstrating its effectiveness in scenarios where traditional methods fail.452

To further illustrate this phenomenon, Figure S5 in the Supplementary Material shows the distribution of IW weights for453

both real and artificial data compared to KMM. This figure confirms that IW weights are frequently much larger than those of454

KMM, as described in the Methods section, providing direct evidence of the “exploding” weights effect.455

The experiments with real-world datasets (Table 2) further validate KMM’s superiority. In the species data, KMM reduces456

the MAPE significantly compared to NW and by an even larger margin compared to IW across all dimensionalities. The457

Immune cells data presents the most challenging scenario, with high baseline errors for all methods. Here, KMM’s advantage is458

particularly striking, dramatically reducing MAPE compared to both NW and IW, especially in the 4D case, where IW fails459

with an extremely high error rate.460

Table 3 extends our analysis to the full-dimensional feature space without dimensionality reduction through PCA. This461

table compares the same methods on the two real-world datasets using the same three performance metrics. The results further462

emphasize KMM’s robustness and effectiveness in high-dimensional spaces.463

In the Species dataset with all features, KMM achieves a MAPE significantly lower than both NW and IW. The improvement464

is even more dramatic for RMSE, where KMM shows a substantial reduction compared to NW and an even larger reduction465

compared to IW. This pattern is consistent across all metrics. The Immune Cells dataset presents an even more challenging466

scenario across the entire feature space, with NW and IW methods exhibiting extremely high error rates. In stark contrast,467

KMM maintains remarkable stability.468
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These results collectively demonstrate that KMM consistently provides more accurate risk estimation across various datasets,469

dimensionalities, and structural shifts. Its superior performance is particularly evident in challenging scenarios involving470

high dimensionality or complex geometric mismatches, where traditional methods, such as IW with KDE, frequently fail471

catastrophically. The robustness of KMM to the curse of dimensionality and its ability to handle complex, real-world data472

distributions make it a preferable choice for covariate shift adaptation in practical applications.473

4 Discussion474

Although sample reweighting is asymptotically unbiased, it often proves inaccurate for finite sample datasets, particularly475

when sample selection bias is substantial, as demonstrated in the classifier analysis by Liu et al.34. For example, as shown in476

Table 1 under the Support Mismatch scenario (GMM → Uniform) in 4D, IW yields an MAPE of 86.6% compared to KMM’s477

30.3%. This performance gap stems from IW’s reliance on KDE. As dimensionality increases, KDE requires exponentially478

more samples to maintain accuracy, which directly impacts IW’s weight estimates. KMM avoids this issue by reweighting479

samples to minimize the MMD between distributions in an RKHS. Critically, MMD can be estimated with O(1/
√

n) error480

without explicit density estimation. This explains KMM’s robustness in high dimensions, while IW fails catastrophically (for481

instance, Immune Cells 4D MAPE > 500% in Table 2).482

The practical implication is clear: for spatial modeling tasks where environmental covariates naturally create high-483

dimensional feature spaces, KMM provides the only reliable risk estimates among the methods tested. This explains its strong484

performance on the Species dataset (Table 3), where incorporating multiple climate variables would typically exacerbate IW’s485

instability.486

Both IW and classifier-based methods share a critical vulnerability: they depend on estimating the density ratio p(x)/g(x),487

albeit through different approaches. IW fails when the source distribution g(x) is underestimated in sparse regions, for example,488

as it was shown in our case (Figure S1). Although classifier-based methods outperform IW in our experiments (for example,489

reducing Species Logistic Regression MAPE from 543.37% to 38.71%), they suffer from inherent limitations. As Bickel490

et al. (2009) 3 demonstrate, these methods prioritize discriminative accuracy over density ratio estimation, often producing491

miscalibrated probabilities when classifiers overfit to dataset-specific artifacts. In the 4D immune cells setting in Table 2),492

classifier-based risk estimates consistently trail KMM, with gaps ranging from 0.7 to 5.3 MAPE across all models, averaging493

about 3.1 MAPE. This gap occurs because classifiers optimize for discriminative accuracy3 rather than density ratio calibration.494

When classifiers overfit to biased or non-generalizable patterns in the training data (for instance, spurious spatial correlations495

caused by sampling imbalances), their probability estimates become poorly calibrated — a flaw KMM circumvents by directly496

matching distributions in kernel space.497

This suggests that while classifier-based approaches are a useful heuristic, they cannot match KMM’s theoretical guarantees.498

The latter’s direct minimization of MMD provides a principled alternative that aligns with recent work on robust predictive499

inference35, although we focus on risk estimation rather than their conformal prediction framework.500

While KMM demonstrated superior performance in our study, several limitations should be acknowledged. An important501

implication of our decision not to perform hyperparameter tuning on predictive models is that it strengthens the robustness of our502

comparative findings. Since all risk estimation methods (NW, IW, KMM, Classifier) were evaluated on the same set of untuned503

models, the consistent outperformance of KMM across this diverse range of model behaviors underscores its superiority as a504

risk estimation technique, independent of model optimization. Although tuning would likely improve the absolute predictive505

performance of the models, we expect the relative ranking of the risk estimation methods to remain unchanged. This concern506

is mitigated by our model selection experiment (Section 2.2.4), which demonstrated that KMM’s superiority was consistent507

across a wide pool of 200 models with varying performance, confirming the robustness of our comparative findings.508

The effectiveness of KMM, like all kernel-based methods, is highly dependent on the choice of the kernel function and509

its hyperparameters. An inadequately chosen kernel may fail to capture the complex relationships within the data, leading to510

suboptimal weight estimation and less accurate risk assessments. Our analysis relied on a standard kernel with a common511

heuristic for parameter selection, but a more exhaustive search or adaptive selection process could potentially yield further512

improvements, representing an avenue for future work.513

Moreover, KMM faces computational challenges with very large datasets. The core of the method involves the computation514

of a Gram matrix, which scales quadratically with the number of samples. While techniques like random Fourier features or515

divide-and-conquer approaches can improve scalability, these were not employed in our study. As a result, applying KMM516

to massive spatial datasets may require these more advanced computational strategies. We have shown these tendencies in517

Supplementary Figure S7, which illustrates the computational cost of this method as a function of sample size. The plot clearly518

shows the super-linear, polynomial growth in KMM’s evaluation time on Species data.519

Finally, our study focuses on methods that correct for distribution shift primarily through sample reweighting. However, a520

separate class of "doubly robust" estimators exists that combines IW with a regression-based component (a control functional)521

to simultaneously correct for sampling bias and reduce variance. As demonstrated by36, such doubly robust estimators can522
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achieve superior performance, especially in complex settings where samples are biased and affected by noise, conditions523

often encountered in real-world spatial analysis. By focusing only on reweighting techniques, our study may overlook these524

potentially more powerful and stable estimators, marking a clear direction for future comparative studies.525

Spatial data amplifies conventional distribution shift problems through two mechanisms: (1) inherent clustering due526

to environmental gradients (evidenced by LCF curves in Figure 6), and (2) sampling biases where certain regions are527

overrepresented in source data. Traditional methods fail spectacularly here. For instance, IW’s weights can explode when528

source clusters fail to cover target areas — reaching 6618% MAPE on Immune cells with a neural network (Table 3). NW also529

consistently underestimates risks, with errors ranging from 71.9–192% across datasets. KMM succeeds by explicitly matching530

the spatial structure of distributions through their kernel embeddings. For ecological or medical applications, this means that531

KMM can correct biases where traditional sampling underrepresented critical spatial regions, enabling more reliable risk532

estimates in underrepresented areas. For example, this study37 demonstrated that pneumonia screening models fail significantly533

when overrepresentation of certain demographics creates spurious correlations, mirroring our findings with IW’s MAPE >534

6000% under spatial changes. KMM’s kernel-based matching avoids such pitfalls by explicitly aligning distributions without535

relying on biased density estimates, enabling reliable risk predictions even in underrepresented regions.536

These findings underscore that distribution shifts in spatial data, whether due to sampling bias, environmental gradients, or537

inherent biological or spatial structure, can severely distort standard risk estimation, particularly for methods like IW that rely538

on direct density ratio estimation. The Classifier-based approach offers a more robust alternative to NW and IW, but can still be539

less accurate than KMM. The ability of KMM to correct for such shifts by matching distributions in a kernel feature space,540

without requiring explicit density estimation or labeled target data for error calculation, makes it particularly well-suited for541

spatial modeling in fields such as ecology, environmental science, and medical imaging, where model reliability under changing542

conditions is crucial.543

5 Conclusions544

We addressed the challenge of risk estimation under spatial covariate shift by formulating it as a sample-reweighting problem.545

Our systematic evaluation reveals that KMM consistently outperforms traditional methods across both synthetic and real-world546

spatial datasets. While standard estimations become significantly biased under distribution shifts, KMM provides a reliable547

solution.548

Our analysis shows that KMM overcomes the fundamental limitations of density ratio approaches, such as NW, IW and549

classifier-based methods. Unlike these estimations, KMM employs a direct distribution matching paradigm. By avoiding explicit550

density ratio estimation, it ensures stability even under complex structural shifts like Variance Scaling or in high-dimensional551

settings. For instance, where traditional density estimation fails, leading to IW errors exceeding 6000% in 4D immune cell data,552

KMM remains robust.553

Quantitatively, KMM reduces estimation errors by 12.3% to 86.5% compared to alternative methods. It consistently554

outperforms classifier-based reweighting, highlighting that high discriminative accuracy alone is insufficient for proper555

distribution alignment. To assist in diagnosing these shifts, we integrated the LCF into our framework. Our results confirm556

that LCF is an effective, interpretable measure of spatial clustering that indicates the magnitude of a shift and signals when557

reweighting is necessary.558

Our findings have immediate relevance for multiple domains. In ecological modeling, KMM can compensate for sampling559

biases in species distribution data. In biomedical applications, particularly spatial omics, it addresses significant variations in560

cell-type representation. Finally , this approach offers a robust solution for any field dealing with spatially heterogeneous data.561

/

ACCEPTED MANUSCRIPTARTICLE IN PRESS

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



References562

1. Shimodaira, H. Improving predictive inference under covariate shift by weighting the log-likelihood function. J. statistical563

planning inference 90, 227–244 (2000).564

2. James, F. Monte carlo theory and practice. Reports on progress Phys. 43, 1145 (1980).565

3. Bickel, S., Brückner, M. & Scheffer, T. Discriminative learning under covariate shift. J. Mach. Learn. Res. 10, 2137–2155566

(2009).567

4. Zadrozny, B. Learning and evaluating classifiers under sample selection bias. In Proceedings of the 21st International568

Conference on Machine Learning, 114, DOI: 10.1145/1015330.1015425 (ACM, Banff, Alberta, Canada, 2004).569

5. Tokdar, S. T. & Kass, R. E. Importance sampling: a review. Wiley Interdiscip. Rev. Comput. Stat. 2, 54–60 (2010).570

6. Wills, R. C., Dong, Y., Proistosecu, C., Armour, K. C. & Battisti, D. S. Systematic climate model biases in the large-scale571

patterns of recent sea-surface temperature and sea-level pressure change. Geophys. Res. Lett. 49, e2022GL100011 (2022).572

7. Denissen, J. M. et al. Widespread shift from ecosystem energy to water limitation with climate change. Nat. Clim. Chang.573

12, 677–684 (2022).574

8. Ben-Said, M. Spatial point-pattern analysis as a powerful tool in identifying pattern-process relationships in plant ecology:575

an updated review. Ecol. Process. 10, 1–23 (2021).576

9. Gatrell, A. C., Bailey, T. C., Diggle, P. J. & Rowlingson, B. S. Spatial point pattern analysis and its application in577

geographical epidemiology. Transactions Inst. Br. geographers 256–274 (1996).578

10. Vokinger, K. N., Feuerriegel, S. & Kesselheim, A. S. Mitigating bias in machine learning for medicine. Commun. medicine579

1, 25 (2021).580

11. Zhao, Z. et al. Identification of lung cancer gene markers through kernel maximum mean discrepancy and information581

entropy. BMC medical genomics 12, 1–10 (2019).582

12. Vegas, E., Oller, J. M. & Reverter, F. Inferring differentially expressed pathways using kernel maximum mean discrepancy-583

based test. BMC bioinformatics 17, 399–405 (2016).584

13. Maley, C. C., Koelble, K., Natrajan, R., Aktipis, A. & Yuan, Y. An ecological measure of immune-cancer colocalization as585

a prognostic factor for breast cancer. Breast Cancer Res. 17, 1–13 (2015).586

14. Roberts, D. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure.587

Ecography 40, DOI: 10.1111/ecog.02881 (2016).588

15. Meyer, H. & Pebesma, E. Predicting into unknown space? estimating the area of applicability of spatial prediction models.589

Methods Ecol. Evol. 12, 1620–1633, DOI: 10.1111/2041-210x.13650 (2021).590

16. Tuia, D., Persello, C. & Bruzzone, L. Domain adaptation for the classification of remote sensing data: An overview of591

recent advances. IEEE Geosci. Remote. Sens. Mag. 4, 41–57, DOI: 10.1109/MGRS.2016.2548504 (2016).592

17. Wilson, G. & Cook, D. J. A survey of unsupervised deep domain adaptation. ACM Transactions on Intell. Syst. Technol.593

(TIST) 11, 1–46 (2020).594

18. Gretton, A. et al. Covariate shift by kernel mean matching. Dataset shift machine learning 3, 5 (2009).595

19. Martynova, E. & Textor, J. A uniformly bounded correlation function for spatial point patterns. In Proceedings of the 30th596

ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2177–2188 (2024).597

20. Scott, D. W. On optimal and data-based histograms. Biometrika 66, 605–610, DOI: 10.1093/biomet/66.3.605 (1979).598

21. Huang, J., Gretton, A., Borgwardt, K., Schölkopf, B. & Smola, A. Correcting sample selection bias by unlabeled data. Adv.599

neural information processing systems 19 (2006).600

22. Quionero-Candela, J., Sugiyama, M., Schwaighofer, A. & Lawrence, N. D. Dataset Shift in Machine Learning (The MIT601

Press, 2009).602

23. GBIF.org. Occurrence download: Tussilago farfara l. https://www.gbif.org/occurrence/download/603

0031125-240626123714530 (2024). Accessed: 20 July 2024.604

24. GBIF.org. Occurrence download: Anemone nemorosa l. https://www.gbif.org/occurrence/download/605

0031144-240626123714530 (2024). Accessed: 20 July 2024.606

25. GBIF.org. Occurrence download: Caltha palustris l. https://www.gbif.org/occurrence/download/607

0031146-240626123714530 (2024). Accessed: 20 July 2024.608

/

ACCEPTED MANUSCRIPTARTICLE IN PRESS

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS

10.1145/1015330.1015425
10.1111/ecog.02881
10.1111/2041-210x.13650
10.1109/MGRS.2016.2548504
10.1093/biomet/66.3.605
https://www.gbif.org/occurrence/download/0031125-240626123714530
https://www.gbif.org/occurrence/download/0031125-240626123714530
https://www.gbif.org/occurrence/download/0031125-240626123714530
https://www.gbif.org/occurrence/download/0031144-240626123714530
https://www.gbif.org/occurrence/download/0031144-240626123714530
https://www.gbif.org/occurrence/download/0031144-240626123714530
https://www.gbif.org/occurrence/download/0031146-240626123714530
https://www.gbif.org/occurrence/download/0031146-240626123714530
https://www.gbif.org/occurrence/download/0031146-240626123714530


26. Hijmans, R. J. et al. Package ‘raster’. R package 734, 473 (2015).609

27. Bivand, R. et al. Package ‘rgdal’. Bind. for Geospatial Data Abstr. Libr. Available online: https://cran. r-project.610

org/web/packages/rgdal/index. html (accessed on 15 Oct. 2017) 172 (2015).611

28. Pebesma, E. J. et al. Simple features for r: standardized support for spatial vector data. R J. 10, 439 (2018).612

29. Hijmans, R. J. et al. Package ‘terra’. Maintainer: Vienna, Austria (2022).613

30. van der Hoorn, I. A. et al. Detection of dendritic cell subsets in the tumor microenvironment by multiplex immunohisto-614

chemistry. Eur. J. Immunol. 54, 2350616 (2024).615

31. van der Woude, L. L., Gorris, M. A., Halilovic, A., Figdor, C. G. & de Vries, I. J. M. Migrating into the tumor: a roadmap616

for t cells. Trends cancer 3, 797–808 (2017).617

32. Sultan, S. et al. A segmentation-free machine learning architecture for immune land-scape phenotyping in solid tumors by618

multichannel imaging. BioRxiv 2021–10 (2021).619

33. Friedman, J. H. Greedy function approximation: a gradient boosting machine. Annals statistics 1189–1232 (2001).620

34. Liu, A. & Ziebart, B. D. Robust classification under sample selection bias. In Ghahramani, Z., Welling, M., Cortes, C.,621

Lawrence, N. & Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 27 (Curran Associates,622

Inc., 2014).623

35. Cauchois, M., Gupta, S., Ali, A. & Duchi, J. C. Robust validation: Confident predictions even when distributions shift. J.624

Am. Stat. Assoc. 119, 3033–3044 (2024).625

36. Lam, H. & Zhang, H. Doubly robust stein-kernelized monte carlo estimator: Simultaneous bias-variance reduction and626

supercanonical convergence (2023). 2110.12131.627

37. Zech, J. R. et al. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a628

cross-sectional study. PLoS medicine 15, e1002683 (2018).629

6 Code availability630

For the data, preprocessing and modeling details to reproduce the calculations, we refer the reader to the repository of the631

project https://github.com/awesomeslayer/Importance-reweighting.632

7 Author contributions statement633

Conceptualization: A.Z., E.S. and D.K.; methodology: E.S., A.Z., D.K.; software: E.S.; validation: E.S., A.Z.; formal analysis:634

E.S., D.K.; investigation: A.Z., E.S.; data curation: D.K., E.S.; writing—original draft preparation: E.S., D.K.; writing—review635

and editing: D.K., E.S. and A.Z.; visualization: E.S., D.K.; supervision: A.Z.; project administration: A.Z., D.K. All authors636

have read and agreed to the published version of the manuscript.637

8 Fundings638

The work was supported by the grant for research centers in the field of AI provided by the Ministry of Economic Development639

of the Russian Federation in accordance with the agreement 000000C313925P4F0002 and the agreement with Skoltech640

№139-10-2025-033641

9 Competing interests642

The authors declare no conflicts of interest.643

/

ACCEPTED MANUSCRIPTARTICLE IN PRESS

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS

2110.12131
https://github.com/awesomeslayer/Importance-reweighting

	Introduction
	Methods
	Risk Estimation Task
	No weighting (NW)
	Importance Weighting (IW)
	Classifier Method
	Kernel Mean Matching (KMM)
	Summary of methods

	Data processing
	Artificial Data
	Robustness Analysis Scenarios
	Real data
	Evaluation procedure


	Results
	Artificial Data
	Real Data
	Species Data
	Immune Cell Data

	Practical demonstration of risk estimation for model selection
	Comparison and Analysis

	Discussion
	Conclusions
	References
	Code availability
	Author contributions statement
	Fundings
	Competing interests

