

Influence of laser beam intensity profile on deep bone ablation in laser osteotomy

Received: 16 October 2025

Accepted: 19 January 2026

Published online: 03 February 2026

Cite this article as: Liu M., Hamidi A., Blaser D. *et al.* Influence of laser beam intensity profile on deep bone ablation in laser osteotomy. *Sci Rep* (2026). <https://doi.org/10.1038/s41598-026-37117-6>

Mingyi Liu, Arsham Hamidi, Dunia Blaser, Darren Wilson, Kenneth Garcia, Niklaus F. Friederich, Georg Rauter, Philippe C. Cattin & Ferda Canbaz

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

Influence of Laser Beam Intensity Profile on Deep Bone Ablation in Laser Osteotomy

³ Mingyi Liu^{1,*}, Arsham Hamidi¹, Dunia Blaser¹, Darren Wilson², Kenneth Garcia³, Niklaus F. Friederich⁴, Georg Rauter⁵, Philippe C. Cattin⁶, and Ferda Canbaz^{1,*}

⁵ ¹Center for Intelligent Optics (CIO), Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland

⁷ ²Smith and Nephew, Registered in England and Wales No.605496 with registered office at PO Box 81, 101 Hessle Road, Hull HU3 2BN

⁹ ³Smith and Nephew Schweiz AG, Theilerstrasse 1A, 6300 Zug, Switzerland

¹⁰ ⁴Center of Biomechanics and Biocalorimetry (COB), Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland

¹² ⁵Bio-Inspired RObots for MEDicine Laboratory (BIROMED-Lab), Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland

¹⁴ ⁶Center for medical Image Analysis & Navigation (CIAN), Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland

¹⁶ *mingyi.liu@unibas.ch

¹⁷ *ferda.canbaz@unibas.ch

ABSTRACT

Laser osteotomy offers high precision and contact-free bone cutting but remains limited by slower cutting speeds and shallower ablation depths compared to mechanical tools. In this study, we systematically investigated the influence of spatial beam intensity distribution on bone ablation performance by comparing Er:YAG laser with tophat and Gaussian intensity distribution under identical operating conditions. Using bovine femur cortical bone and optimized water-air cooling, the tophat intensity distribution achieved a maximum ablation depth of 44.51 mm and a maximum average material removal rate of 0.42 mm³/s, outperforming the Gaussian intensity distribution (26.51 mm, 0.24 mm³/s). In dry surface ablation, the tophat profile reached 1.58 mm³/s \pm 0.04 mm³/s, though with increased carbonization. Compared to previously reported Er:YAG outcomes under optimized ablation conditions, the cutting depth achieved in this work represents more than a twofold improvement, bringing performance close to the planar cut dimensions required during distal femur resurfacing of a total knee arthroplasty (TKA). Scanning electron microscopy and Raman analyzes confirmed minimal compositional change after laser ablation, indicating minimal thermal damage. A steady-state model was utilized to characterize the ablation process and determine the theoretical maximum ablation depth. These findings demonstrate clear ex vivo improvements by using a tophat profile in Er:YAG systems, which have the potential for clinical adoption.

Keywords: laser-tissue interactions, laser ablation, tophat intensity distribution, Gaussian intensity distribution

Introduction

Osteotomy (*oste*= bone, *tomy*= cut) has a rich history, evolving from early civilizations to the era of modern precision surgery. Despite significant advancements in medical technology, the fundamental principle of bone cutting has remained unchanged, such as applying mechanical pressure and friction. Conventional tools such as oscillating and reciprocating saws, rotary burrs and drills, and osteotomes are still routinely used in bone surgery due to their reliability and ease of use¹. However, these tools can introduce substantial mechanical and thermal stresses into the bone, often resulting in irreversible tissue damage. Due to these induced thermal and mechanical stresses, bone debris is smeared on bone surfaces and patient recovery times are prolonged^{2,3}. With an increasing demand for less invasive procedures and faster recovery, both patients and surgeons are seeking advanced surgical techniques that reduce trauma and accelerate recovery. Consequently, alternative methods have been actively explored to overcome the limitations of traditional mechanical osteotomy and improve clinical outcomes in orthopedic surgeries.

In recent years, a growing amount of research challenges conventional osteotomy methods by demonstrating that contact-free modalities can achieve comparable or superior precision while decreasing thermal and mechanical damage⁴. Emerging technologies such as piezoelectric systems⁵⁻⁷, water jet devices^{8,9}, and lasers^{3,10,11} have been developed to address the

35 limitations of mechanical tools in osteotomy. Among these technologies, the unique features of laser technology, though not
 36 recently introduced, continue to offer distinct advantages, including non-contact operation, high precision, reduced collateral
 37 damage, and the ability to create customized cutting geometries^{10,12,13}. Since its first application in bone cutting¹⁴, laser
 38 osteotomy has been subject to extensive research to adapt and optimize laser parameters for orthopedic surgeries. Furthermore,
 39 the light-based nature of laser facilitates integration with optical feedback systems, enhancing both safety and precision of laser
 40 procedures beyond those achievable with manual surgical techniques¹⁵⁻¹⁸.

41 Bone tissue consists of approximately 65–70 % hydroxyapatite, 20–25 % collagen, and 10–15 % water¹⁹, therefore, mid-
 42 infrared wavelengths are particularly effective for bone ablation, as both water and hydroxyapatite absorb strongly in this range¹⁰.
 43 When irradiated, once the laser energy density exceeds the laser ablation threshold, which is defined as the minimum laser
 44 energy density required to initiate material removal, melting, decomposition, spattering, or vaporization, initiate photothermal
 45 ablation that removes hard tissue. Several lasers have been evaluated for bone ablation, including CO₂, Er:YAG, and Ho:YAG
 46 lasers, each operating at wavelengths that target specific absorption bands of water and hydroxyapatite. Additionally, ultrashort-
 47 or nanosecond-pulsed lasers, such as Yb:glass (with a Yb:KYW disk amplifier system)²⁰, CO₂²¹, and Nd:YAG lasers²² have
 48 also been investigated for their ability to minimize thermal effects and reduce dependence on wavelength-specific absorption²³.
 49 In laser–tissue interactions, residual heat that remains in the tissue after removal of the material can cause thermal damage.
 50 Depending on temperature and duration, this damage can be reversible or irreversible. Reversible thermal effects involve
 51 temporary changes, such as tissue desiccation, while irreversible effects occur when the temperature is sufficiently high to
 52 cause permanent damage to the tissue²⁴. The thermal damage zone is defined as the region of irreversible thermal injury
 53 surrounding the ablation crater. This zone is associated with permanent tissue alterations, including cellular necrosis and cell
 54 death. Histological evaluation of bone tissue has shown that after irradiation with pulsed mid-infrared lasers, using microsecond
 55 or nanosecond pulse durations, viable osteocytes can still be observed in close proximity to the cutting edge^{12,21,25,26}. This
 56 indicates that the thermal damage zone is confined to a narrow region adjacent to the ablation area.

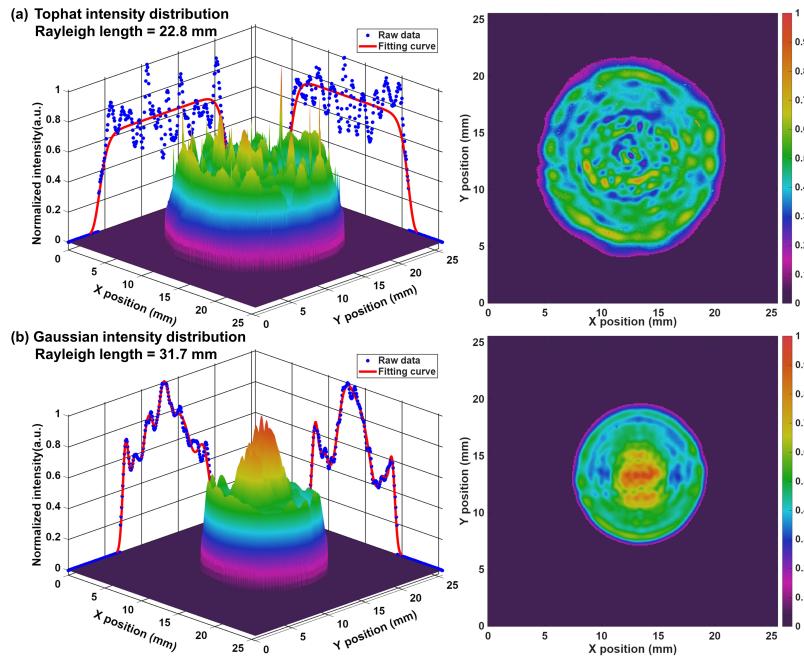
57 Despite advances in laser osteotomy, the prolonged procedure time and limited cutting depth compared to mechanical tools
 58 remain a major drawback of this technique¹⁰. Previous studies on TKA report that the bone preparation step using conventional
 59 tools such as the saw blade typically takes between 10 min to 17 min, and an average working time of 15 min. Based on current
 60 estimates of the amount of removed bone, the bone removal rate during TKA is approximately 11 mm³/s²⁷⁻³¹. The maximum
 61 cutting depth required for TKA is approximately 70 mm²⁸. However, the bone removal rate and depth achieved with laser
 62 osteotomy remains far below that of conventional tools. Ran, T. et al. demonstrated the application of CO₂ lasers in TKA,
 63 where simulated five-box cuts on distal ovine femurs were completed in approximately 1.5 h^{32,33} and the average removal rate is
 64 around 0.30 mm³/s. However, conventional mechanical tools complete the bone preparation part in about 15 min, highlighting
 65 that the cutting speed³⁴ is a major barrier to clinical adoption. The Ho:YAG laser, with an operating wavelength of around
 66 2.1 μm, shows promise due to the high absorption of water at this wavelength. A recent study reported that with optimized
 67 water cooling, the Ho:YAG laser can achieve a maximum ablation depth of 4 mm³⁵. Similarly, an ultrashort pulsed Yb-doped
 68 fiber laser has a pulse duration of 10 ps, and offers exceptional precision and minimal collateral damage, making it a strong
 69 candidate for high-precision bone surgeries; however, the ablation rate and ablation depth of ultrashort pulsed lasers have
 70 recently been reported to be 0.18 mm³/s and 2.8 mm, respectively³⁶. The ablation rate in another Yb:KGW ultrafast laser
 71 with a pulse duration of 250 fs reached 0.99 mm³/s without obvious thermal damage, which is about 19 times higher than the
 72 previously reported results³⁷. Representative parameters of different laser systems used for osteotomy, including wavelength,
 73 maximum ablation depth, pulse duration, and removal rate, are summarized in Table 1.

Laser type	Wavelength [μm]	Max depth [mm]	Pulse duration	Removal rate [mm ³ /s]
Er:YAG ³⁸	~2.94	≈21	350 μs	≈0.17
Er,Cr:YAG ³⁹	~2.78	≈8	140 μs	≈0.40
Ho:YAG ^{35,40}	~2.10	≈4	600 μs	≈0.94
Yb-doped fiber ³⁶	~1.064	≈2.8	10 ps	≈0.18
Yb:KGW ³⁷	~1.030	≈1.5	250 fs	≈0.99
CO ₂ ³²	~9.3	≈20	25 μs	≈0.50

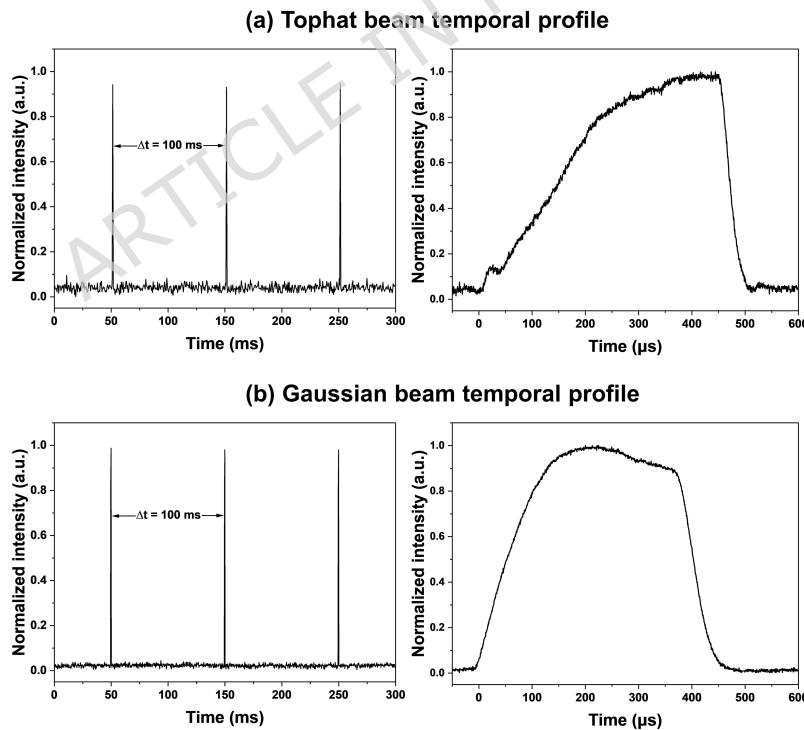
Table 1. Selected laser systems for laser osteotomy, focusing on maximum depth and ablation rate.

74 The type of laser-tissue interaction between the laser and bone is also an important criterion for laser selection. Femtosecond
 75 and picosecond lasers mainly cause plasma-induced ablation with very low thermal damage, but their ablation efficiency is
 76 low for bone. Millisecond or continuous-wave lasers, including CO₂ lasers, induce thermal diffusion and making thermal
 77 damage difficult to control. Near-infrared lasers such as Yb:KGW show weak absorption in bone and tend to cause heating
 78 rather than efficient ablation. In contrast, microsecond-pulsed lasers lead to efficient ablation with a more controllable thermal

79 interaction²³. Based on these mechanisms, in laser osteotomy field, we prioritize lasers that can achieve deep ablation and
 80 high removal rates with controllable thermal damage. Therefore, compared to other laser types used for bone ablation, such
 81 as CO₂, Ho:YAG, and ultrafast lasers, the Er:YAG laser offers a favorable balance between tissue removal efficiency and
 82 thermal safety. Er:YAG lasers, operating at 2.94 μm, have been extensively validated for hard-tissue surgery due to their strong
 83 absorption in bone constituents and their ability to achieve high-precision ablation with minimal collateral damage. Microscopic
 84 evaluations have revealed that the zone of laser influence is extremely narrow, with adjacent bone tissue retaining normal
 85 microstructure and viable cells, confirming preservation of a healthy biological environment⁴¹. Early comparative studies
 86 showed that Er:YAG laser osteotomies produced cuts with mechanical integrity equivalent to bur-drilled sites, but with reduced
 87 microcracking and negligible carbonization at the interface⁴²⁻⁴⁴. Optimized cooling protocols have enabled ablation depths
 88 of up to 21 mm in bovine femur models³⁸. Furthermore, viable osteocytes have been observed near to the resection edge,
 89 indicating preservation of biological tissue and supporting improved healing dynamics⁴⁵. In vivo animal studies, particularly in
 90 leporine and ovine models, have demonstrated improved bone regeneration and osseointegration following Er:YAG osteotomy
 91 compared to conventional drilling³. These improvements are attributed to the non-contact, vibration-free nature of the laser and
 92 its precise energy confinement. The clinical translation of this technology has been exemplified by the development of the
 93 CARLO® (Cold Ablation Robot-guided Laser Osteotome) system by Advanced Osteotomy Tools (AOT, Basel, Switzerland).
 94 This robotic, image-guided platform integrated an Er:YAG laser mounted onto a seven-axis robotic arm end-effector to perform
 95 precise, contactless bone cuts. In a first-in-human clinical feasibility trial, CARLO® successfully completed 28 osteotomies in
 96 the midface and mandible without the need to revert to mechanical tools⁴⁶. The system achieved cutting accuracy within 1 mm
 97 root-mean-square deviation, without intraoperative complications and normal postoperative healing, validating the potential of
 98 robotic Er:YAG laser osteotomy in clinical practice⁴⁷.


99 Until today, mainly laser wavelength and irrigation conditions have been analyzed in order to increase ablation depth and
 100 material removal rate. Another method to increase ablation depth that has not yet been systematically analyzed is beam shaping.
 101 Although beam shaping is an established optical approach, its systematic application to deep bone ablation has been limited.
 102 This study provides a direct comparison of maximum ablation depth under otherwise identical conditions. In our experiments,
 103 the maximum ablation depths were 44.51 mm using the tophat and 26.51 mm using a Gaussian intensity distribution. The
 104 ablation process and theoretical maximum ablation depths were investigated using a steady-state model informed by empirical
 105 surface ablation rate measurements, enabling the determination of maximum depth under current experimental conditions.
 106 Furthermore, under identical conditions, the tophat intensity distribution achieved approximately 1.7 times the ablation depth
 107 and roughly twice the material removal rate in comparison with that of the Gaussian intensity distribution, whilst causing less
 108 thermal damage to surrounding tissue. To the best of our knowledge, these are among the deepest ex vivo ablation depths
 109 reported with Er:YAG lasers under water-assisted conditions. The tophat intensity distribution, when combined with water and
 110 air, achieved average and surface material removal rates of 0.42 mm³/s ± 0.01 mm³/s and 0.96 mm³/s ± 0.03 mm³/s, respectively.
 111 Although the maximum ablation rate is comparable to that in Ref.³⁷, the ablation depth is considerably higher, highlighting the
 112 clinical potential of the Er:YAG laser with a tophat intensity distribution.

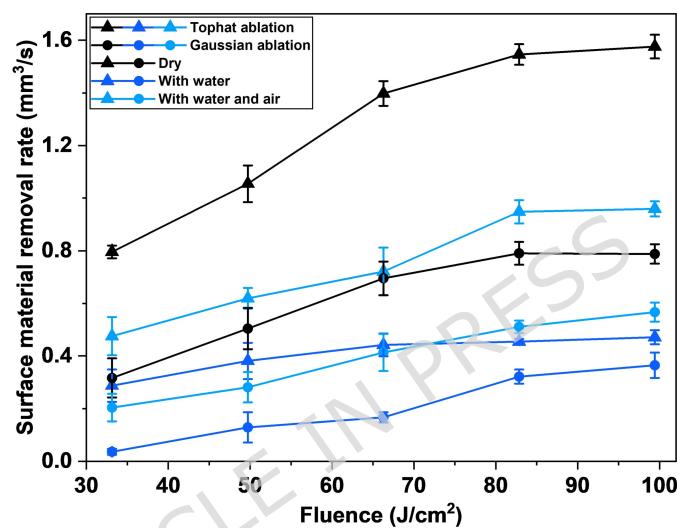
113 Results


114 Beam and temporal profile analysis

115 Figure 1 shows the 3D and top views of tophat and Gaussian intensity distributions. The beam profiles were collected at 600 mJ
 116 and 650 mJ output energy levels, and at 750 mm and 1250 mm distances from the lasers with the tophat and with Gaussian
 117 intensity distributions, respectively. The full-angle divergence was 12.8 mrad for the tophat and 7.7 mrad for the Gaussian
 118 beam. The measured tophat intensity distribution is almost uniform with small fluctuations (as can be seen in Figure 1a),
 119 whereas Figure 1b clearly delineates the sidelobes of the laser with Gaussian intensity distribution, corresponding to highly
 120 multimode laser output. These sidelobes usually do not contribute to the ablation process. However, the energy carried causes
 121 a temperature rise in the surrounding tissues, which can increase the risk of thermal necrosis. In this study, to simplify the
 122 description of Gaussian beams, we use the term 'Gaussian intensity distribution' to refer to 'multimode Gaussian intensity
 123 distribution'. In addition, the Rayleigh length after the second lens is 22.8 mm for the tophat intensity distribution and 31.7 mm
 124 for the Gaussian intensity distribution. The detailed description of the experimental setup can be found in the "Experimental
 125 setup" section in "Methods".

126 The temporal pulse profiles of the tophat and Gaussian intensity distribution were measured using a photo detector (PDA20H,
 127 Thorlabs). All measurements were performed under identical operating conditions, with a repetition rate of 10 Hz and a pulse
 128 energy of 600 mJ. As shown in Figure 2, both laser systems exhibit stable pulse trains with a pulse interval of 100 ms. The
 129 corresponding single-pulse temporal profiles reveal pulse durations of approximately 500 μs for both beams. Despite the similar
 130 operating parameters, slight differences in the temporal pulse shapes are observed between the tophat and Gaussian beams.
 131 These differences are likely attributable to variations in laser architecture.

Figure 1. Beam profile of (a) tophat intensity distribution and (b) Gaussian intensity distribution at 600 mJ and 650 mJ output power, respectively. The beam profiles were measured at 750 mm and 1250 mm distances from the respective laser; the beam was reflected to these positions by an optical window to reduce the laser fluence on the beam profiler. (Note: Due to the difference in beam divergence angle of two intensity distributions, different distances were used to completely separate the beam spots avoiding interference in the beam profile measurement.)


Figure 2. Pulse trains and temporal profiles of (a) tophat and (b) Gaussian intensity distribution.

132 Material removal rate evaluation

133 **Figure 3** shows the comparison of material removal rate under three conditions: (1) dry ablation, also known as direct ablation
 134 (without water irrigation and compressed air); (2) water irrigation only for cooling; and (3) a combination of water irrigation

135 and compressed air to remove both debris and excess water while supporting surface cooling. As can be seen in [Figure 3](#),
 136 under all the tested conditions, the material removal rate for both types of beam profiles exhibited a saturation trend as fluence
 137 increases. At approximately 100 J/cm^2 , corresponding to a laser pulse energy of around 1.2 J , the material removal rate
 138 gradually approached a constant value. This suggests that a further increase in output energy would not significantly enhance
 139 the removal rate. Therefore, 1.2 J/pulse was selected as a reasonable energy for further ablation experiments.

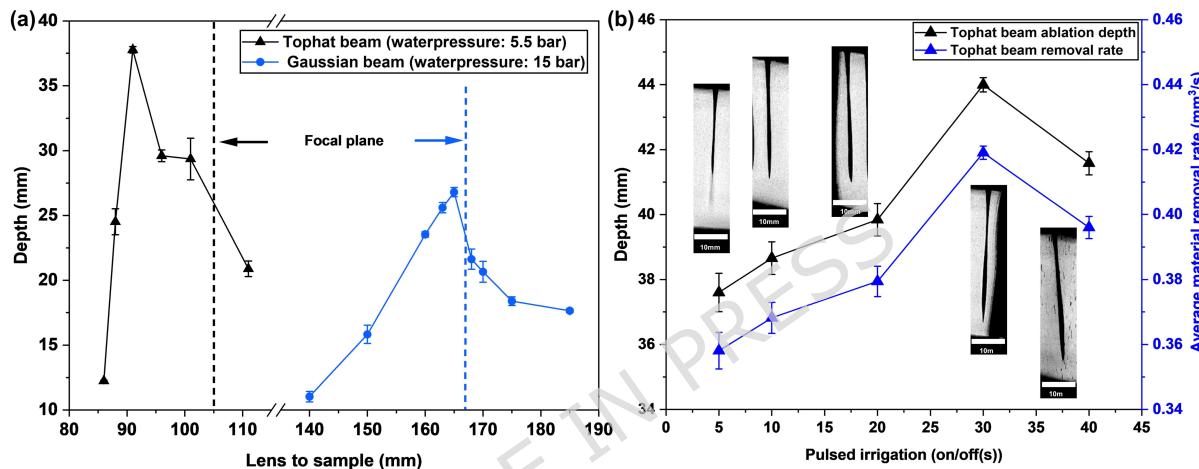
140 The maximum surface material removal rate for dry ablation using the laser with tophat intensity distribution reached
 141 $1.58 \text{ mm}^3/\text{s} \pm 0.04 \text{ mm}^3/\text{s}$. Under the same conditions, the laser with Gaussian intensity distribution achieved approximately
 142 half this rate around $0.78 \text{ mm}^3/\text{s} \pm 0.04 \text{ mm}^3/\text{s}$. In other tested conditions (water irrigation and water irrigation combined
 143 with pressurized air), the material removal rate of the laser with tophat intensity distribution was consistently about twice
 144 that of the Gaussian one. We performed the ablation rate experiments under the same experimental conditions to have a
 145 consistent comparison. Based on the material removal rate results, we can conclude that, at the same fluence, the tophat is more
 146 energy-efficient than the Gaussian and can remove material faster. This also supports the subsequent ablation results, where
 147 the tophat can achieve deeper ablation at the same fluence level. Experimental details can be found at "*Material removal rate*
 148 *evaluation*" section in "*Methods*")

Figure 3. Comparison of the surface material removal rates of lasers with tophat and Gaussian intensity distribution at three different ablation conditions: dry, with water, and with water and air. The error bars show the standard deviation. Each data point represents the mean value from six ablation lines (three samples, two lines per sample).

149 **Ablation parameter investigation**

150 In the ablation experiments, the focal length of the focusing lens and the sample position relative to the lens determine the
 151 initial laser fluence on the sample surface. A straightforward strategy is to position the sample at the focal plane to maximize
 152 fluence, or at a distance of $-Z_R$ (to efficiently use the entire depth of focus) from the focal plane to maintain a constant fluence
 153 over the full depth of focus.

154 Our experiments indicated that sample placement strongly affects the achievable maximum ablation depth. Therefore, in
 155 the subsequent tests using the beam with the tophat intensity profile, we systematically positioned the sample at various points
 156 before and after the focal plane to identify the optimal configuration while maintaining a constant water pressure of 5.5 bar.
 157 Before optimizing the lens-to-sample distance, we first tested different lenses with different focal lengths for the second lens.
 158 These two lenses were selected because they result in almost identical beamwaist radius which is shown in [Table 2](#). The ablation
 159 results showed that a focal length of 100 mm provided the best depth performance for the tophat intensity distribution, while a
 160 focal length of 150 mm was optimal for the Gaussian intensity distribution. These lenses were selected as fixed conditions for
 161 the following optimization.


162 As shown in [Figure 4a](#), placing the sample about 91 mm from the second lens (focal length, $f = 100 \text{ mm}$) resulted in an
 163 ablation depth of $37.25 \text{ mm} \pm 0.25 \text{ mm}$, with an ablation time of approximately 11 min. At this position, the focal plane is
 164 $\sim 10 \text{ mm}$ below the surface, corresponding to 1/2 of the Rayleigh length that traverses the sample.

165 Initially, the water pressure was adjusted to a safe level at 5.5 bar considering the requirements in an operating room⁴⁸.
 166 However, all of the ablation experiments showed traces of carbonization at the deepest points, suggesting that the water jet was
 167 unable to reach the deepest point in the cut. After distance optimization experiments, we varied the water jet pressure from

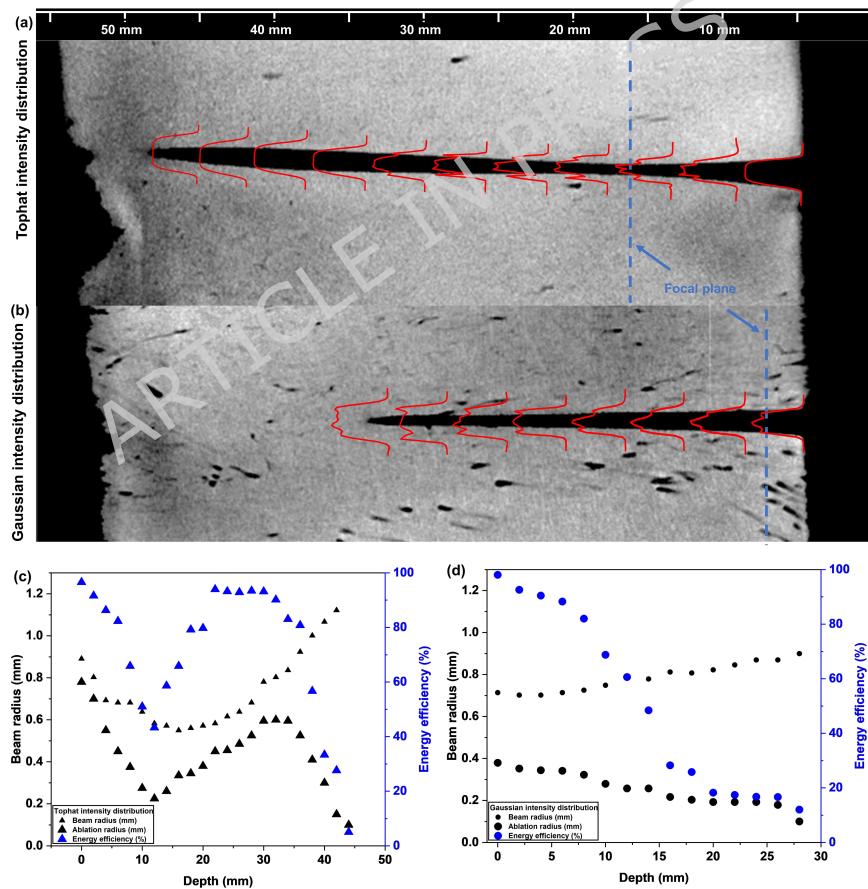
5.5 bar to 30 bar. At a water pressure of 15 bar, we achieved a maximum ablation depth of approximately $43.75 \text{ mm} \pm 0.51 \text{ mm}$ in 11 min. Based on the literature, the minimum water pressure for bone cutting using water is 50 MPa (500 bar)⁴⁹. We did not observe any damage due to the applied water pressure at 15 bar.

Based on the results with the tophat intensity distribution, we applied the same conditions for ablation to the laser with Gaussian intensity distribution, using a water pressure of 15 bar to investigate the relationship between sample distance and ablation depth. We changed the focusing lens in the laser with Gaussian intensity distribution ablation case to reach the same fluence level on the sample. As shown in Figure 4a, when the sample was placed at 165 mm distance from the second lens ($f = 150 \text{ mm}$), the depth obtained was $26.14 \text{ mm} \pm 0.36 \text{ mm}$ in 11 min.

In a separate experiment, we applied pulsed water irrigation to control the amount of water on the surface during ablation experiments. The on/off intervals were also determined based on the depth yield. Pulsed water with intervals of 5 s, 10 s, 20 s, 30 s, and 40 s was tested to cool the samples, and the total duration of the experiments was 10 min and 30 s. The corresponding micro-CT images are shown in Figure 4b. A pulsed water interval of 30 s yielded the ablation depth of $44.10 \text{ mm} \pm 0.27 \text{ mm}$, with the corresponding average material removal rate of $0.42 \text{ mm}^3/\text{s} \pm 0.002 \text{ mm}^3/\text{s}$. A 30 s water pulse interval also offered the highest ablation efficiency. Therefore, this condition was used in all subsequent experiments.

Figure 4. Ablation parameter investigation to optimize the ablation depth. (a) Maximum ablation depth as a function of the distance from the lens to the sample using tophat and Gaussian beams. (b) Testing various intervals for pulsed water irrigation (Laser: tophat intensity distribution, water pressure: 15 bar). The error bars show the standard deviation. Each data point represents the mean value from three ablation lines on one sample.

Beam profile along the depth of ablation


To investigate how the tophat and Gaussian intensity distributions affect the ablation depth using the same setup configuration (water irrigation interval and compressed air pressure), we conducted a comparative experiment (a detailed setup is shown in "Experimental setup" subsection in "Methods"). During ablation, all the optimized parameters based on results in the "Ablation parameter investigation" section were applied for both lasers. These ablation parameters were as follows: water with a water pressure of 15 bar at an interval of 30 s during the experiments.

To obtain accurate measurements, the samples were scanned using a Micro-CT system (GE nanotom m, Phoenix) with a resolution of $40 \mu\text{m}$ after ablation (Specifications can be found in the "Depth measurements and bone analysis" section in "Methods"). The results showed that the Gaussian intensity distribution achieved an ablation depth of approximately 27.3 mm, while the laser with the tophat intensity distribution reached 43.8 mm, which is ~ 1.6 times deeper. The CT images reveal a V-shaped ablation profile for the Gaussian beam, while the cross-section of the tophat ablation clearly shows the overlap with the propagation profile of the beam. As shown in Figure 5a, the laser with the tophat intensity distribution was focused until it reached the narrowest point near the focal plane. After reaching the narrowest point near the focal plane, it diverged again within the sample.

To further analyze these results, we acquired the beam profiles along the laser propagation path using the beam profiler (PY-IV-C-A-PRO, Ophiropt). This was achieved by systematically scanning the profiler, starting at a position of 10 mm before the focal plane, and obtaining the beam profile every 2 mm steps. The beam profiles of the tophat intensity distribution and the Gaussian intensity distribution were measured under 583 mJ and 572 mJ output power, respectively. In the experiments, we measured the focal plane distances from the lenses to be approximately 105 mm and 168 mm for the tophat and the Gaussian intensity distributions, respectively. The discrepancy between the focal lengths of the lenses and the measured focal distances is

possibly due to the difference between the design wavelength of the lenses (588 nm), the laser wavelength and the M^2 factors of the Er:YAG lasers. **Figure 5a** and **Figure 5b** show changes in the beam profiles as a function of the distance from the lens. The full-width at half-maximum (FWHM) and the corresponding ablation widths were calculated for both laser types along the propagation axis. As shown in **Figure 5c** and **Figure 5d**, for the tophat intensity distribution, the ratio between the ablation width and the beam FWHM continuously decreased before the focal plane and increased again after passing the focal plane. In contrast, for the Gaussian intensity distribution, this ratio continuously decreased during propagation.

At each position, the spatial beam profile was integrated to determine the energy delivered, from which the ablation energy efficiency was calculated, assuming that the beam profiles will remain similar at higher energy levels of both lasers and propagating within the walls of the cut. **Figure 5c** and **Figure 5d** show that the tophat intensity distribution achieved 98% energy efficiency on the sample surface, indicating that most of the energy contributed to ablation. The energy efficiency decreased with distance until near the focal plane, and then increased again to above 90%, indicating that the clipping losses were minimized. As the ablation distance is increased, the fluence is reduced due to the augmentation in beam size, eventually diminishing to approximately 10% efficiency. **Figure 5b** shows the V-shaped ablation crater. For the Gaussian beam, the initial energy efficiency was above 90%, then it decreased to as low as 10% at the bottom of the cut. In the case of the Gaussian beam, only a restricted portion of the beam contributed to ablation. As the ablation depth increased, the effective width of the cut decreased, which caused an aperture effect and wasted the laser energy, limiting the ablation depth. However, for the laser with tophat intensity distribution, although the energy efficiency decreases to the lowest level at the focal plane, it recovers after the focal plane, then starts decreasing only after the beam diameter is large in a deeper point of the cut, thus enabling deeper ablation. Overall, under identical laser parameters and cooling conditions, the tophat intensity distribution delivered higher energy to deeper points in the cut and overcame the aperture effect limitations seen with Gaussian beams.

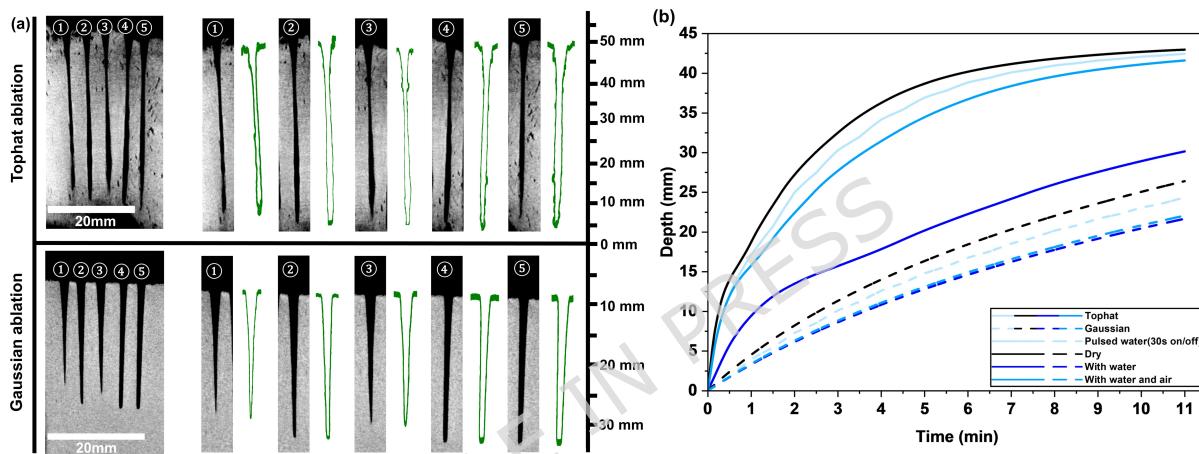


Figure 5. Ablation profile obtained using laser with (a) tophat and (b) Gaussian intensity distribution. The measured beam profiles of both lasers are also shown on the ablation profile with red curves. The scale of the CT scan and beam profile measurements are adjusted to be the same. Variation of beam size, crater size, and energy efficiency are shown in (c) tophat and (d) Gaussian intensity distribution.

221 **Ablation evolution**

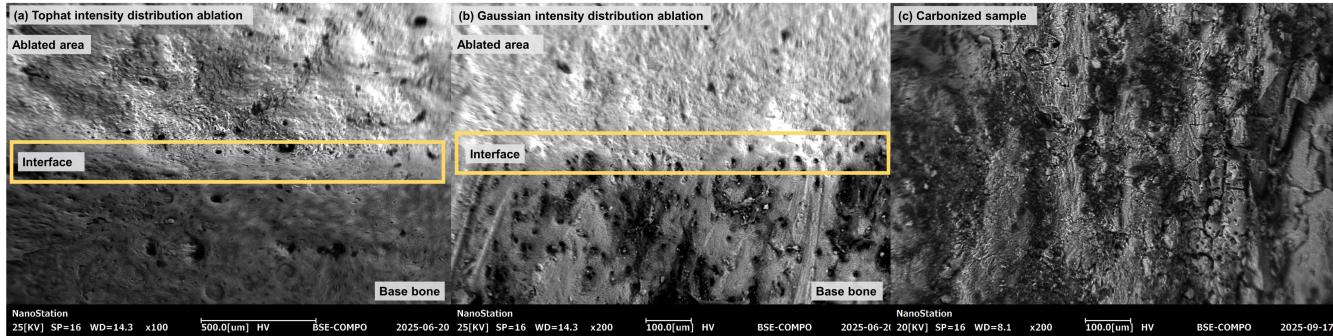
222 Achieving deep ablation with minimal carbonization remains a key challenge in bone ablation research. Improving both the
 223 removal rate and depth of ablation is always a central focus in the field. This study explored deep-ablation experimental
 224 parameters using two beam profiles. All parameters can be found in the "Ablation parameter investigation" section below. The
 225 experimental setup details are provided in "Experimental setup" section in "Methods".

226 We ablated five times on each sample using the same ablation parameters. To accurately measure the depth of ablation,
 227 Micro-CT scans were performed on the samples (Specifications can be found at "Depth measurements and bone analysis"
 228 section in "Methods"). The corresponding results are shown in Figure 6a. To better visualize the shape of the ablation crater
 229 cross-section, we used the open source OpenCV library in Python to extract the ablation profile, depicted with the green line
 230 next to each enlarged CT scan image in Figure 6a. The results showed that under identical conditions, the laser with the
 231 tophat intensity distribution achieved a maximum ablation depth of 44.51 mm and a maximum average material removal rate of
 232 0.42 mm³/s. The corresponding average values were 43.86 mm±0.65 mm for ablation depth and 0.40 mm³/s±0.006 mm³/s for
 233 material removal rate. In contrast, the Gaussian intensity distribution reached only 26.51 mm and 0.24 mm³/s, with averages of
 234 26.24 mm±0.27 mm and 0.24 mm³/s±0.004 mm³/s over a period of 11 min for both beam profiles. The profiles of the ablation
 craters are also shown in Figure 6a.

235 **Figure 6.** (a) CT scan images of both tophat and Gaussian ablation. The green line is the outline of each ablation crater (b)
 236 The expected ablation depths using lasers with tophat and Gaussian intensity distribution based on the measured ablation rates
 237 and ablation conditions.

238 To better understand the ablation process and the theoretical maximum ablation depth, we used the steady-state model²³.
 239 The depth variation data are extracted from the surface ablation rate measurements shown in Figure 3. The maximum ablation
 240 depth under the current conditions was obtained through this modeling approach (for detailed modeling theory, please refer to
 241 the "Theoretical modeling of the ablation process" section in Methods).

242 In the model, we included dry ablation, with water, and with water and air conditions, and also mimicked the real
 243 experimental condition of pulsed water irrigation, which was changed every 30 s in the model. The model alternated between
 244 dry ablation and water and air conditions by using the corresponding ablation rates accordingly after every 30 s. Since the
 245 experiments began with the condition, ablation with water and air, the model used the corresponding ablation depth for the
 246 initial pulse.


247 As shown in Figure 6b, lasers with tophat and Gaussian intensity distribution under ablation with pulsed water irrigation
 248 conditions, the expected maximum ablation depths are above 43.3 mm and 25.2 mm in 11 min, respectively. These values follow
 249 the experimental observations. However, the model uses simplified assumptions about the material and heat processes, and
 250 cannot fully represent the complex conditions of real life experiments. Hence, the simulated ablation results are slightly lower
 251 than the experimental results. In the future, a more accurate model can be developed by simulating more experimental processes,
 252 including debris interactions, which may lead to more precise model results and provide better guidance for optimizing real
 253 experiments.

254 **Scanning Electron Microscopy analysis**

255 The thermal effects of both beam profiles are also investigated in a separate bovine femur sample. Scanning Electron Microscopy
 256 (SEM) analysis (EM30AX, COXEM) was performed to analyze the microstructure of bone samples (for detailed specifications
 257 and sample preparation, please refer to the "Depth measurements and bone analysis" section in Methods).

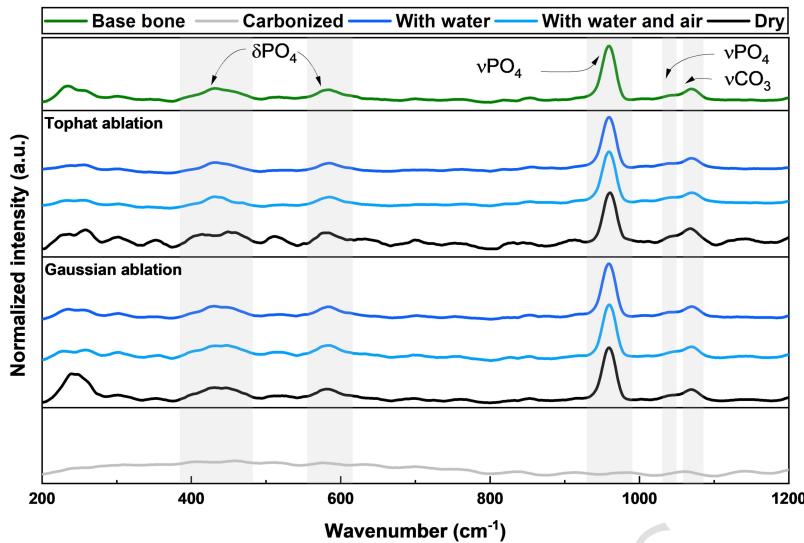
256 Within these analyzes, three different sections were studied. The laser beams (tophat and Gaussian) irradiated the samples
 257 under the same conditions (ablation with water and air, water pressure at 15 bar, and laser energy of 1.2 J on the sample) as in
 258 the deepest ablation experiments.

259 In [Figure 7a](#) and [Figure 7b](#), each SEM image was divided into three analysis regions: ablated area (irradiated by laser beam),
 260 healthy bone (base bone), and the interface between these two demarcated regions. As a reference and also for comparison with
 261 carbonized samples, we performed hole ablation on a bovine femur sample using the laser with tophat intensity distribution. To
 262 induce carbonization, no water cooling was applied during the ablation process. The laser energy on the sample was 1.2 J, with
 an ablation duration of 2 min. After the ablation process, the sample was dried for 72 h before SEM imaging.

Figure 7. Representative SEM images for Er:YAG lasers ablation with (a) tophat intensity distribution and (b) Gaussian intensity distribution. (c) an SEM image of a carbonized sample to visualize changes in surface structures.

263 Following laser irradiation, a comprehensive analysis was performed using SEM to evaluate the structural integrity of the
 264 bone tissue. A primary focus of this analysis was the preservation of osteocyte lacunae, which are the microscopic voids that
 265 house osteocytes. Because these specialized cells, derived from osteoblasts⁵⁰⁻⁵², form an intricate cellular network essential for
 266 the mechanotransduction and regulation of bone remodeling⁵³. The integrity of this lacunar-canalicular network is directly
 267 correlated with osteocyte viability; its disruption can lead to osteocyte apoptosis⁵¹, which subsequently compromises bone
 268 homeostasis and reparative processes. The successful preservation of these microstructures post-ablation is a critical metric for
 269 assessing the minimal thermal impact of the procedure, a condition we have designated as healthy ablation.

270 The SEM images, presented in [Figure 7a](#) and [Figure 7b](#), depict bone samples subjected to ablation by a tophat intensity
 271 distribution and a Gaussian intensity distribution, respectively. The images demonstrate the structural preservation of the
 272 osteocyte lacunae within the interface region, with no discernible signs of thermal damage. The SEM image of the carbonized
 273 sample, as shown in [Figure 7c](#), clearly reveals charcoal-like structures which indicate the complete loss of osteocyte lacunae.
 274 These observations serve as supportive evidence for the high quality and precision of the ablation process. These findings
 275 strongly indicate that water-assisted laser ablation can achieve precise, low-damage tissue removal, even at high power settings
 276 and rapid removal rates. This has significant implications for orthopedic surgery, particularly for procedures such as TKA,
 277 where maintaining the viability of surrounding bone tissue is paramount for implant integration and long-term clinical success.
 278 These SEM observations were qualitative; to measure the precise thermal damage zone in micrometers, future studies with
 279 histology and viability staining are required to quantify cell preservation.


281 Raman Spectroscopy

282 Raman spectroscopy is a powerful technique that analyzes the vibrational modes of molecules, providing information about
 283 the chemical composition and structural changes within bone. Changes in the Raman spectra of ablated bone samples can
 284 indicate potential structural damage, such as protein denaturation or carbonization. For bone tissue, hydroxyapatite and organic
 285 components are the primary constituents.

286 In Raman spectral analysis, the main characteristic peaks of healthy (base, native) bone include phosphate bending vibration
 287 (δPO_4 , 427 cm^{-1} and 585 cm^{-1}), phosphate stretching vibration (νPO_4 , 959 cm^{-1}), and carbonate stretching vibration (νCO_3 ,
 288 1070 cm^{-1})⁵⁴. Therefore, Raman spectroscopy was conducted on both native bone samples (fresh mature bovine femur samples,
 289 base bone) and ablated areas of the bone samples (Detailed parameters and testing process are shown in "Depth measurements
 290 and bone analysis" section in "Methods". To compare the effects under different ablation conditions, we tested three ablation
 291 conditions: dry ablation, ablation with water, and ablation with both water and compressed air. Raman spectra were also
 292 collected from carbonized bone and fresh bone samples as reference measurements.

293 The results are shown in [Figure 8](#). When comparing the spectra under all ablation conditions with those of the native or base
 294 bone, all the fingerprint vibrational modes mentioned above were still present. Due to long data collection and laser exposure

295 times, the water band around 1640 cm^{-1} ¹⁵⁵ was weak. Although the intensity of the νPO_4 peak showed a slight decrease after
 296 ablation, the characteristic peaks remained intact. In contrast, in the carbonized bone samples, the primary characteristic peaks
 297 were absent; only elevated background noise remained. This indicates that no fundamental structural damage occurred in the
 298 bone samples following either of the two laser ablation methods as was previously reported⁵⁴.

Figure 8. Raman spectra of native (base), carbonized, and ablated bone samples using lasers with tophat and with Gaussian intensity distributions. We introduced an offset to the normalized Raman spectra to increase the visibility of each vibration band. The three ablation conditions were applied to the bone surface to identify the effects of both lasers.

298

299 Discussion

300 This study investigates the effect of the spatial intensity distribution of Er:YAG laser beams on ablation speed and depth.
 301 Although our comparison may be limited by using two different beam profiles, the observed performance differences are
 302 consistent with theoretical predictions for lasers with tophat and Gaussian intensity distributions. Er:YAG lasers are favorable
 303 for bulk ablation, as the literature has repeatedly demonstrated. However, beam shaping in this spectral range remains
 304 largely unexplored, likely due to the limited availability of suitable diffractive elements. Traditional Er:YAG lasers typically
 305 produce a multimode output closely resembling a Gaussian intensity distribution, characterized by a high central intensity and
 306 accompanying sidelobes. This generally results in a conical-shaped ablation profile in bone, caused by spatial filtering of the
 307 cut walls as the depth increases. This behavior is clearly visible in Figure 5. In a Gaussian beam, only portion of the beam
 308 exceeding the ablation threshold contributes to material removal. Lower intensity peripheral regions are blocked after only a
 309 few pulses, leading to a steady decrease in effective fluence with successive pulses. Ablation depth can only increase as long as
 310 the central portion maintains sufficient fluence to ablate the bone.

311 In contrast, a uniform intensity or tophat intensity distribution delivers ablation-capable fluence across its entire cross-section.
 312 Especially if the edges of the beam are steep, the resulting ablation profile is expected to have a flat bottom, following the beam
 313 profile. The process begins with an average fluence just above the ablation threshold, focuses within the bone, and continues
 314 until the average fluence drops below the threshold. Although such a beam might be expected to produce a roughly symmetric
 315 depth profile, our experiments showed that the maximum depth is achieved when the focal plane is positioned $\sim 10\text{ mm}$ below
 316 the bone surface. When the sample was placed far before the focal plane, the enlarged spot reduced fluence and efficiency with
 317 increasing depth, preventing maximum penetration.

318 The tophat beam yielded its maximum ablation depth of 44.51 mm , at a position of 10 mm before the focal plane. The
 319 progression of ablation was initially sustained despite an in-depth decrease in energy efficiency, which corresponded to a
 320 reduction in effective fluence. The efficiency subsequently recovered once the beam had passed the focal plane, continuing
 321 until the inherent beam expansion limited further cutting capability. The average material removal rate was approximately
 322 $0.45\text{ mm}^3/\text{s}$ in the upper 22 mm , and $0.40\text{ mm}^3/\text{s}$ in the lower 22 mm , different for the two halves. In particular, after reaching
 323 the focal plane, the tophat intensity distribution continued to increase depth by an additional $\sim 34\text{ mm}$, albeit at a slower rate.
 324 A possible contributing factor could be mild heat accumulation at the bottom of the cut, allowing localized continuation of
 325 ablation even when the surface fluence is low. In the Gaussian case, energy efficiency declined steadily with depth, as sidelobes

326 consistently remained below the ablation threshold and were therefore inactive for cutting. Further depth increase was not
 327 achievable.

328 In addition to these optical and geometric limitations, dynamic interactions between the laser, water, and ablation debris
 329 introduce further shielding effects. Shielding effects are also a crucial phenomenon in pulsed laser bone ablation, particularly
 330 with microsecond lasers like the Er:YAG, that reduce the effective fluence reaching the tissue and limit the maximum ablation
 331 depth⁵⁶. Shielding occurs when ablated material interferes with the incoming laser beam. It is primarily driven by two
 332 components: vapor plume/plasma formation and particulate/debris ejection. The rapid absorption of laser energy by water in
 333 the tissue causes explosive vaporization, leading to the formation of a high-pressure, high-temperature vapor plume above the
 334 target^{23,56}. At high laser intensities, this plume can be ionized into a plasma⁵⁷. This plume or plasma strongly absorbs, scatters,
 335 or refracts the latter parts of the incident laser pulse, decreasing the energy deposited onto the bone surface. Additionally,
 336 the thermo-mechanical ablation process ejects solid bone microparticles, fragments, and water droplets into the beam path.
 337 These particles scatter laser light, contributing to the overall loss of effective fluence. The main consequence of shielding is a
 338 significant reduction in ablation efficiency, which can be modeled when determining clinical laser dosage⁵⁶. In experiments,
 339 the energy deposited into the sample can be reduced by 25% to 50% due to shielding from the ejected material⁵⁶. Mitigation
 340 strategies often focus on pulse control and clearing the ablation zone. Using ultrashort-pulsed (ps or fs) lasers can minimize the
 341 time for the plume or plasma to form and interfere with the pulse, effectively reducing this shielding mechanism⁵⁸. Employing
 342 effective water irrigation or microjet systems also helps mechanically to clear the plume and debris, maximizing the energy
 343 delivery of subsequent pulses and improving ablation rates^{56,59}. Additionally, liquid layers can enhance ablation by confining
 344 the laser-generated plasma, leading to photomechanical effects, although shielding can still cause efficiency saturation at high
 345 radiant exposures⁵⁷.

346 Although the tophat intensity profile utilized a shorter focal length lens, resulting in a higher divergence angle than the
 347 Gaussian beam, its depth-dependent cut profile varied more slowly. This characteristic effectively avoided the severe efficiency
 348 loss observed with the Gaussian intensity distribution. This difference is apparent in CT images **Figure 5a** and **Figure 5b** for
 349 tophat and Gaussian ablation profiles, respectively.

350 Under identical parameters (ablation with water and air), when the samples were positioned at the focal plane of both
 351 intensity profiles ("Material removal rate evaluation" section in "Results"), the laser with tophat intensity distribution achieved
 352 a maximum surface material removal rate of $0.96 \text{ mm}^3/\text{s} \pm 0.03 \text{ mm}^3/\text{s}$, about 1.7 times higher than the Gaussian intensity
 353 distribution. SEM and Raman spectroscopy analyses indicated that the bone structure remained undamaged after laser ablation.
 354 The Raman spectra showed intact phosphate and carbonate peaks, indicating low observable damage under ex vivo conditions.
 355 While these techniques are effective in identifying gross thermal or chemical damage, they are inherently qualitative in nature.
 356 Therefore, SEM was used to perform a qualitative analysis of osteocyte lacuna–canalicular network preservation to assess
 357 thermal damage. Although this approach clearly reveals differences in thermal effects, a quantitative analysis would provide
 358 a more objective and detailed evaluation. However, it is difficult to define reliable metrics because natural bone samples do
 359 not have a uniform microstructure. Despite this limitation, the performance advantage of the tophat intensity distribution is
 360 clearly reflected in the achieved ablation depth. The laser with a tophat intensity distribution achieved a maximum depth of
 361 44.51 mm in approximately 11 min, whereas the laser with a Gaussian intensity distribution reached only 26.51 mm. Compared
 362 to previously reported Er:YAG results in cortical bone (maximum depths 21 mm³⁸ under comparable cooling and scanning
 363 conditions), the depth achieved here represents approximately a twofold improvement, approaching the 70 mm ablation depths
 364 required by orthopedic applications²⁸. This was achieved without increasing pulse fluence, repetition rate, or other ablation
 365 parameters, isolating the beam profile as the primary variable.

366 To further elucidate the physical mechanisms underlying the ablating performance observed in this study, the ablation
 367 process and theoretical maximum ablation depth were investigated using a steady-state model informed by empirical surface
 368 ablation rate measurements, enabling to determine the maximum depth under current experimental conditions. This theoretical
 369 framework provides a link between microscopic optical interactions and macroscopic ablation results. The optical penetration
 370 depth (δ) of the Er:YAG laser is calculated at approximately 7.7 μm based on the Beer-Lambert Law and the static absorption
 371 coefficient of water ($\mu_a = 13000 \text{ cm}^{-1}$)⁶⁰, the steady-state analysis suggests that beam geometry is the critical factor in reaching
 372 depths exceeding 40 mm. But with respect to multiple pulses and the spatial distribution of laser intensity, the present model is
 373 limited to describing single-pulse ablation under the experimental conditions of this study. The effect of multiple pulses is not
 374 explicitly included in the model, and the reported ablation depth is obtained by applying the single-pulse ablation result to the
 375 experimental conditions. The spatial laser intensity distribution is assumed to be fixed and reproducible. A model explicitly
 376 accounting for pulse-to-pulse effects and spatial intensity variations will be addressed in future studies.

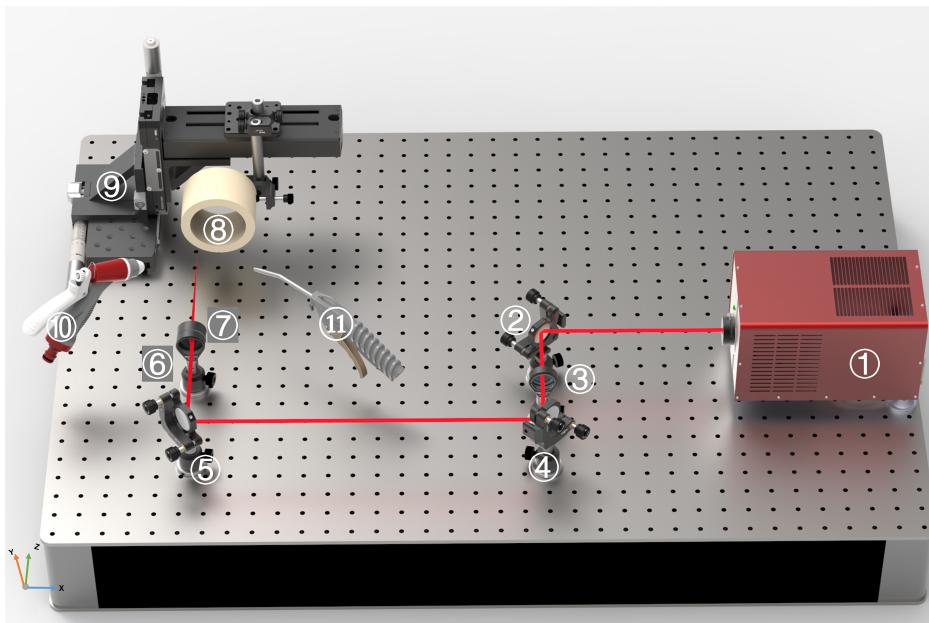
377 These findings represent the promising performance of deep bone laser ablation, narrowing the gap in cutting efficiency
 378 with standard mechanical osteotomy tools. With further improvements and integration into robotic delivery systems, Er:YAG
 379 lasers with tophat profile have the potential to meet both the speed and depth requirements for orthopedic mainstream surgery.

380 The following are potential limitations of this study. First, bovine femur samples were obtained from commercial sources

of unknown freshness and subjected to freeze–thaw storage, which can alter hydration and microstructure. therefore, absolute ablation values may differ from those of fresh living bone. Second, the comparison relied on two distinct commercial Er:YAG systems, so residual differences in optical design beyond the beam profile may have contributed to the observed effects. Finally, all experiments were conducted *ex vivo* under controlled irrigation, which does not replicate the physiological environment of perfused, vascularized bone. Patient-related complications such as infection or embolism do not occur in the current experimental setting. These risks are relevant for potential future clinical translation of water-jet and compressed air assisted techniques. Recommended preventive and management measures include sterile closed-loop fluid delivery, pressure and flow control, avoidance of open vessels, effective suction and drainage, and routine monitoring during surgery. Once this laser ablation approach is translated into clinical application, the prevention, monitoring, and management of these potential complications will constitute key safety considerations^{61–64}. Future work will therefore focus on fresh, perfused models, quantitative histological and spectroscopic analyzes, and integration with robotic delivery to better assess translational potential.

Methods

Experimental setup


In the ablation experiments, we used two Er:YAG lasers with different intensity distributions: tophat (2940-1500-25, 3 micron Laser Technology) and Gaussian (R7X111C2-ERY, Megawatt tech). Both intensity distributions were validated using a beam profiler (PY-IV-C-A-PRO, Ophiropt). Although the measured profile of the Gaussian laser is multimode (Figure 1), laser with the Gaussian profile refers to this profile throughout the manuscript. An uncoated wedged sapphire window was used to deliver partial energy to the beam profiler, preventing damage from excessive peak power. An energy meter (PE50-DIF-C, Ophiropt) was placed on the beam path after the sapphire window to monitor the incident power in real time, while the reflected beam was measured with the beam profiler.

The experimental setup is demonstrated in Figure 9, where (1) represents both Er:YAG lasers used for bone ablation (laser with tophat intensity distribution: 2940-1500-25, 3 micron Laser Technology, laser with Gaussian intensity distribution: R7X111C2-ERY, Megawatt tech). Three mirrors (2, 4 and 5)(PF10-03-G01, Thorlabs) were placed to redirect the beam. Both lasers have a highly divergent beam (tophat: 12.8 mrad and Gaussian: 7.7 mrad). We used a plano-convex lens (3) with a focal length of 500 mm (LA5464, Thorlabs) for collimation in both experimental setups. The beam was then focused onto the sample by a second plano-convex lens (6). To ensure a consistent beam size at the focal plane for both lasers, two different lenses were selected: 100 mm (LA5817, Thorlabs) for the tophat intensity distribution and 150 mm (LA5012, Thorlabs) for the Gaussian intensity distribution. A coated sapphire window (7) (WG31050-D, Thorlabs) was placed between the sample and the lens to protect against the generated debris and water droplets. The sample (8) is fixed on an XYZ-axis platform (9)(X:KBD101 and DDS050, Thorlabs, Y and Z: 443 and SM50, Newport). The motorized platform was used to move the sample in $\pm X$ direction at a constant speed of 8 mm/s, while the Y and Z-axes were manually adjusted and kept fixed during the experiments.

Laser intensity distribution	Pulse width [μs]	Repetition rate [Hz]	Energy on sample [J]	Beam diameter [mm]	Average fluence [J/cm ²]
tophat	500	10	1.20	1.22	102.7
Gaussian	500	10	1.23	1.25	100.2

Table 2. Parameters comparison of tophat and Gaussian intensity profiles of Er:YAG laser.

In photothermal ablation, irrigation is crucial in obtaining efficient material removal. External irrigation reduces the temperature of the sample and rehydrates bone tissue during the ablation process^{38,65}. We used a nozzle (10) (Synova Laser MicroJet Technology) as an irrigation system. The nozzle was placed at an angle of approximately 45° to the sample surface. It generates a 50 μm diameter water jet, which was necessary considering the narrow and deep cut, operating at pressures ranging from 10 bar to 800 bar, and a laminar flow length of >150 mm. Although water cooling helps during the ablation process, debris removal is also very important to keep ablation stable. If irrigation is used and water is not removed well, a liquid layer will form and absorb laser energy, reducing ablation efficiency. Therefore, irrigation should be combined with compressed air or suction, which balances cooling and ablation performance^{10,41}. So, a pump system (MP030066, Maximator Schweiz AG), delivering pressurized water through a nozzle, was used. This pump provides a continuous supply of pressurized distilled water with a maximum pressure of 690 bar. At 30 bar, the water flow rate was 4.8 mL/min. In the experiments, we used a Python code to deliver an on-and-off sequence of water flow. The water irrigation nozzle was placed about 100 mm from the sample surface. During deep ablation experiments, to ensure the delivery of water to the deepest point in the cut, we moved the irrigation nozzle about 20 mm forward after the ablation depth reached around 30 mm. The angle between the water and the sample remained unchanged at 45° throughout the movement process. In the meantime, compressed air with a pressure of 15 bar (11) was also used to remove ablation debris and water droplets from the sample surface, with air directed at an angle of approximately 45° to the sample surface, at an angle of approximately 90° to the water jet.

Figure 9. The experimental setup. The system is designed for bone ablation using Er:YAG lasers (1). A plano-convex lens (3) is used for collimation, and mirrors (2, 4, and 5) are placed to redirect the beam to the sample. A plano-convex lens (6) is positioned to focus the beam onto the sample (8). A coated sapphire window (7) protects the optical components from the back. The sample is fixed on an XYZ-axis platform (9). During the ablation experiments, a water jet (10) for cooling and compressed air (11) for debris removal are positioned on either side of the sample. The sample is fixed on an XYZ-axis platform (9) during the experiments.

428 To isolate the effect of beam shape, all experimental parameters were kept constant, including a shared pulse duration of
 429 500 μ s and a repetition rate of 10 Hz. The resultant beam properties on the sample surface were then measured. The tophat
 430 distribution had an average energy of 1.20 J and a beam diameter of 1.22 mm, while the Gaussian distribution measured 1.23 J
 431 and 1.25 mm, respectively. These settings resulted in an average fluence of 102.7 J/cm² and 100.2 J/cm², respectively. [Table 2](#)
 432 summarizes these parameters.

433 **Material removal rate evaluation**

434 The presence of water molecules, which are the main absorbers of the Er:YAG wavelength, is crucial for initiating micro-
 435 explosions and enabling tissue removal. Irrigation systems are commonly used with the Er:YAG laser to both rehydrate the
 436 tissue and reduce its temperature. In addition, compressed air is combined with the irrigation system to remove excess water
 437 from the tissue, which could otherwise act as a protective layer and absorb the laser energy before it reaches the bone. To
 438 investigate the performance of the tophat and Gaussian beams under different experimental conditions, laser ablation was
 439 performed on bone samples prepared in varying states. For each energy level (0.4 J to 1.2 J), ablation was performed under
 440 three different conditions: (1) dry ablation, also known as direct ablation (without water irrigation and compressed air); (2)
 441 water irrigation only for cooling; and (3) a combination of water irrigation and compressed air to remove both debris and excess
 442 water while supporting surface cooling. These three conditions were selected based on previously reported studies^{38,65}.

443 During each test, the sample was moved horizontally back-and-forth on a motorized stage (KBD101 and DDS050, Thorlabs,
 444 with a resolution of $\pm 6.5 \mu$ m) and positioned at the focal plane. Each ablation line was approximately 16 mm long, and the
 445 sample was moved at a speed of 8 mm/s in a loop motion. Each experiment lasted for 1 min, which was ensured using an optical
 446 beam shutter (SH1, Thorlabs). Each set of experiments was repeatedly performed to minimize the impact of experimental and
 447 sample deviations. The six ablation lines were performed on three different samples, each with two ablation lines.

448 After ablation, all lines were scanned using optical coherence tomography (OCT), which measured the material removal
 449 rate by providing high-resolution, non-destructive depth measurements. To obtain the ablation depth, a complete OCT scan was
 450 performed along the entire ablation region. B-scan images were analyzed with ImageJ (LOCI, University of Wisconsin), and
 451 the average depth across the entire scan was defined as the ablation depth.

452 **Depth measurements and bone analysis**453 **Micro-CT scanning**

454 Bone samples were scanned using a Micro-CT system (GE nanotom m, Phoenix) with a resolution of 40 μm and a measurement
 455 time of approximately 4 h. The data were then processed using 3D reconstruction software (Datasix, Phoenix) to obtain a
 456 visualized model of the samples.

457 **OCT imaging**

458 To determine the surface removal rate, cross-sectional images were acquired using an OCT system. The OCT system was
 459 equipped with an Axsun swept-source laser operating at a central wavelength of 1060 nm, a spectral bandwidth $\Delta\lambda = 100\text{ nm}$,
 460 and a sweep rate of 100 kHz. The acquired volumetric dataset covered a physical size of 7 x 7 x 3.56 mm, with a volume
 461 acquisition rate of 0.37 s^{-1} . The axial and lateral resolutions of the OCT system were 11 μm and 40 μm , respectively. B-scan
 462 images were obtained with a lateral field of view of 7 mm and an imaging depth of 3.56 mm in air. For quantitative analysis,
 463 the ablation depth and width were extracted through manual segmentation using ImageJ.

464 **SEM**

465 SEM analysis (EM30AX, COXEM) was used to analyze the microstructure of bone samples with a resolution of 5 nm. Since
 466 SEM measurements require a low moisture content, the samples were dried in a vacuum desiccator for more than 72 h before
 467 testing. Due to the limited working distance and depth of field in SEM, surface ablation was performed for a duration of 10 s on
 468 small bone pieces. The samples were then mounted onto the sample stage and secured using conductive tape.

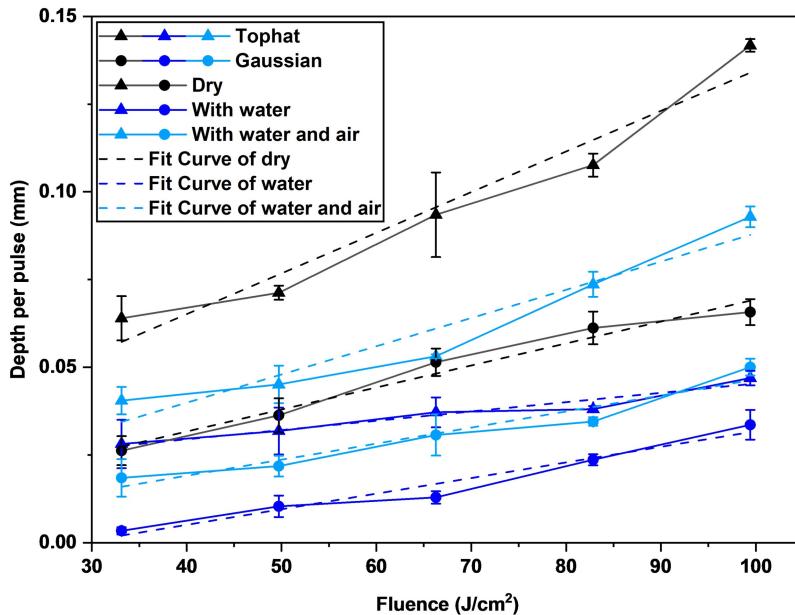
469 **Raman spectroscopy**

470 For Raman spectroscopy testing, bone samples were placed on a Raman spectrometer stage (AIRsight, Shimadzu) and carefully
 471 focused under a microscope using a 50 x objective lens. The Raman spectroscopy parameters were as follows: laser wavelength:
 472 785 nm, laser power: 250 mW, exposure time: 10 s, 150 spectra/point, and 3 points for each laser ablation condition. After
 473 starting the test, the device recorded Raman spectra acquired from bone samples, which were then used for analysis and
 474 comparison.

475 **Theoretical modeling of the ablation process**

476 The Er:YAG laser, operating at 2.94 μm and microsecond pulse width, performs highly efficient photothermal ablation⁶⁶ in
 477 bone tissue. This mechanism relies on the strong absorption of energy by water and hydroxyapatite, which generates rapid heat
 478 and extremely high pressure. The resulting explosive vaporization ejects the tissue. Due to the limited optical penetration depth
 479 in bone tissue, the thermal effect is minimal during the ablation process⁶⁷, making Er:YAG ablation effectively a 'cold ablation'
 480 technique for clinical applications⁶⁸.

481 There are two fundamental models for tissue ablation: the blow-off model⁶⁹ and the steady-state model²³. In both models,
 482 ablation occurs only when the energy fluence (energy per unit area) reaches the ablation threshold Φ_{th} . The ablation threshold is
 483 defined as the minimum power density required for the removal of the material²³. Since the Er:YAG laser has a pulse duration
 484 in the microsecond range, we focused on the steady-state model.


485 In the investigated fluence range, the measured single-pulse ablation depth, which is based on the surface material removal
 486 rate data (see Figure 3), increases almost linearly with the laser fluence. This shows that the ablation process is in a high-fluence
 487 regime, where the ablation efficiency is nearly constant. Therefore, a linear relationship between ablation depth and fluence was
 488 used to describe the experimental results. Note that, this linear relationship is inapplicable to low fluence levels.

489 Based on this linear behavior, the ablation depth l of two intensity distributions under different conditions (dry ablation,
 490 with water, and with water and air) was linearly fitted to the incident average fluence using the following equation:

$$491 l = \frac{dl}{d\Phi_0} \Phi_0 + c, \quad (1)$$

492 where Φ_0 is the incident average fluence and c is the intercept on the vertical axis.

493 As shown in Figure 10, the ablation depth of both lasers exhibits a linear relationship under all tested conditions, indicating
 494 that the ablation efficiency remains in a steady-state model. Figure 10 is derived from the same ablation experiments as
 495 Figure 3 and represents a different evaluation of the same data set. Specifically, Figure 3 shows the material removal rate,
 496 which includes both depth and lateral expansion effects, whereas Figure 10 isolates the ablation depth at the crater center. This
 497 distinction explains why the removal rate saturates at high fluence, while the ablation depth continues to increase. Since current
 498 measurements were performed with relatively high fluence using single-pulse ablation, the evolution of ablation depth under
 499 multiple pulses can be predicted using the steady-state model²³. Table 3 lists the linear fitting parameters for different beam
 500 profiles under dry, with water, and with water and air conditions.

Figure 10. Variation of depth values as a function of incident average fluence in one-pulse ablation under different conditions.

Laser beam	Condition	$dl/d\Phi_0$ [mm ³ /J]	c [mm]	R^2
tophat	Dry	0.1160	0.0188	0.9715
	With water	0.0265	0.0189	0.9606
	With water and air	0.0804	0.0090	0.9336
Gaussian	Dry	0.0628	0.0007	0.9514
	With water	0.0444	-0.0127	0.9440
	With water and air	0.0458	0.0008	0.9302

Table 3. Linear fitting parameters (slope ($dl/d\Phi_0$), intercept (c), and coefficient of determination R^2 as shown in Figure 10) of depth per pulse versus fluence for tophat and Gaussian beams under three conditions (dry, with water, and with water and air).

The Gaussian intensity distribution calculations followed the same steps as in Ref.³⁸. The fluence Φ_0 is calculated from the incident pulse energy E and the beamwaist w_0 at the focal position. For a Gaussian beam, the fluence at focus was estimated by

$$\Phi_0 = \frac{E}{\pi w_0^2}. \quad (2)$$

To describe the propagation of the focused beam along the optical axis, where λ is the laser wavelength, the evolution of the beam radius $w(z)$ along the propagation direction z can be determined as follows:

$$w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_R}\right)^2}, \quad (3)$$

here, z_R is the Rayleigh range, and w_0 is the beamwaist spotsize of the laser. The Rayleigh range z_R is defined as

$$z_R = \frac{\pi w_0^2}{M^2 \lambda}, \quad (4)$$

the axial variation of the beam radius $w(z)$ is then used to calculate the fluence distribution inside the material. For a Gaussian beam, the fluence distribution is given by

$$\Phi(r, z) = \Phi_0 \left(\frac{w_0}{w(z)} \right)^2 \exp \left(-\frac{2r^2}{w^2(z)} \right), \quad (5)$$

498 where r is the radial coordinate. Based on parameters which were used in ablation experiments, shown in Table 2, the beam
 499 radius at the focal plane w_0 was set to 0.61 mm for the laser with tophat intensity distribution and 0.62 mm for the laser with
 500 Gaussian intensity distribution. The operation wavelengths of both lasers were centered at 2.94 μ m.

For comparison, a tophat intensity distribution is also considered. In this case, the fluence distribution of the tophat intensity distribution $\Phi(r, z)$ was modified as follows

$$\Phi(r, z) = \begin{cases} \frac{E}{\pi w(z)^2}, & 0 \leq r \leq w(z), \\ 0, & r > w(z). \end{cases} \quad (6)$$

here, r is the radial position along the laser beam, E is the laser energy.

The ablation depth of the first pulse was kept in memory, and then we calculated the ablation depth for the second pulse and added to the first ablation depth. Repeating this process for the following pulses allows us to derive the relationship between the number of pulses and the cumulative ablation depth. In our experiments (Figure 5), we obtained the change in the energy efficiency of different lasers as a function of the ablation depth. Therefore, depth-dependent energy efficiency is used in the modeling to make the results more realistic. Finally, based on the laser repetition rate (10 Hz), the relationship between ablation depth and time was obtained.

Sample preparation

The diaphyseal sections of the mature skeletal bovine femurs were harvested, which were purchased from local suppliers. The samples were taken from the middle part of the femur, which consists exclusively of cortical bone and does not include cancellous bone. All samples were ex vivo and used without additional surface treatment. Although the freshness of the samples was unknown, they were stored at -18°C immediately after purchase. The bone samples were then thawed from a frozen state at room temperature at least 30 min before testing. This thawing process was necessary to ensure that the samples were in a state conducive to accurate and reliable testing. To further ensure accurate and reliable results, each ablation test was repeated at least three times per specimen.

When multiple ablations were performed on the same sample, we immersed the sample in distilled water at room temperature between each ablation to prevent dehydration. This was performed to reduce the effect of the hydration level of the samples on the experimental results.

Ethics declarations

All experimental samples were obtained from a local supplier. The materials consisted solely of ex vivo animal skeletal tissues, and no live animals or human participants were involved. Therefore, no ethical approval or informed consent was required.

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

- Chen, Z., Wang, C., Jiang, W., Tang, N. & Chen, B. A review on surgical instruments of knee arthroscopic debridement and total hip arthroplasty. *Procedia Cirp* **65**, 291–298, DOI: [10.1016/j.procir.2017.05.001](https://doi.org/10.1016/j.procir.2017.05.001) (2017).
- Blagova, B., Krastev, D., Krastev, N. & Malinova, L. Tissue changes and tissue reactivity following osteotomy by a conventional rotary device, an ultrasonic unit, and an er:yag laser – a comparative study in humans. *J. Stomatol. Oral Maxillofac. Surg.* **125**, 101750, DOI: [10.1016/j.jormas.2023.101750](https://doi.org/10.1016/j.jormas.2023.101750) (2024).
- Baek, K. *et al.* A comparative investigation of bone surface after cutting with mechanical tools and er:yag laser. *Lasers Surg. Medicine* **47**, 426–432, DOI: [10.1002/lsm.22352](https://doi.org/10.1002/lsm.22352) (2015).
- Smith, J. O., Wilson, A. J. & Thomas, N. P. Osteotomy around the knee: evolution, principles and results. *Knee Surg Sports Traumatol Arthrosc* **21**, 3–22, DOI: [10.1007/s00167-012-1976-8](https://doi.org/10.1007/s00167-012-1976-8) (2013).
- Labanca, M., Azzola, F., Vinci, R. & Rodella, L. F. Piezoelectric surgery: Twenty years of use. *Br. J. Oral Maxillofac. Surg.* **46**, 265–269, DOI: [10.1016/j.bjoms.2007.12.007](https://doi.org/10.1016/j.bjoms.2007.12.007) (2008).
- Gleizal, A., Bera, J.-C., Lavandier, B. & Beziat, J.-L. Piezoelectric osteotomy: a new technique for bone surgery—advantages in craniofacial surgery. *Child's Nerv. Syst.* **23**, 509–513, DOI: [10.1007/s00381-006-0250-0](https://doi.org/10.1007/s00381-006-0250-0) (2007).
- Aly, L. A. A. Piezoelectric surgery: Applications in oral & maxillofacial surgery. *Futur. Dental J.* **4**, 105–111, DOI: [10.1016/j.fdj.2018.09.002](https://doi.org/10.1016/j.fdj.2018.09.002) (2018).
- den Dunnen, S. & Tuijthof, G. J. M. The influence of water jet diameter and bone structural properties on the efficiency of pure water jet drilling in porcine bone. *Mech. Sci.* **5**, 53–58, DOI: [10.5194/ms-5-53-2014](https://doi.org/10.5194/ms-5-53-2014) (2014).

543 9. den Dunnen, S., Dankelman, J., Kerkhoffs, G. M. & Tuijthof, G. Colliding jets provide depth control for water jetting in
544 bone tissue. *J. Mech. Behav. Biomed. Mater.* **72**, 219–228, DOI: [10.1016/j.jmbbm.2017.05.009](https://doi.org/10.1016/j.jmbbm.2017.05.009) (2017).

545 10. Stübinger, S. Advances in bone surgery: the er:yag laser in oral surgery and implant dentistry. *Clin. Cosmet. Investig. Dent.*
546 **2**, 47–62, DOI: [10.2147/CCIDE.S8352](https://doi.org/10.2147/CCIDE.S8352) (2010).

547 11. Quest, D., Gayer, C. & Hering, P. Depth measurements of drilled holes in bone by laser triangulation for the field of oral
548 implantology. *J. Appl. Phys.* **111**, 013106, DOI: [10.1063/1.3670000](https://doi.org/10.1063/1.3670000) (2012).

549 12. Eyrich, G. K. H. Laser-osteotomy induced changes in bone. *Med. Laser Appl.* **20**, 25–36, DOI: [10.1016/j.mla.2005.02.003](https://doi.org/10.1016/j.mla.2005.02.003)
550 (2005).

551 13. Troedhan, A., Mahmoud, Z., Wainwright, M. & Khamis, M. Cutting bone with drills, burs, lasers and piezotomes: A
552 comprehensive systematic review and recommendations for the clinician. *Int. J. Oral Craniofacial Sci.* **3**, 020–033, DOI:
553 [10.17352/2455-4634.000028](https://doi.org/10.17352/2455-4634.000028) (2017).

554 14. Tillotson, C. L., Rosenberg, A. E. & Rosenthal, D. I. Controlled thermal injury of bone: Report of a percutaneous technique
555 using radiofrequency electrode and generator. *Investig. Radiol.* **24**, 888, DOI: [10.1097/00004424-198911000-00009](https://doi.org/10.1097/00004424-198911000-00009)
556 (1989).

557 15. Hamidi, A. *et al.* Multimodal feedback systems for smart laser osteotomy: Depth control and tissue differentiation. *Lasers
558 Surg. Medicine* **55**, 900–911, DOI: [10.1002/lsm.23732](https://doi.org/10.1002/lsm.23732) (2023).

559 16. Gunaratne, R. *et al.* Wavelength weightings in machine learning for ovine joint tissue differentiation using diffuse
560 reflectance spectroscopy (drs). *Biomed. Opt. Express* **11**, 5122–5138, DOI: [10.1364/BOE.397593](https://doi.org/10.1364/BOE.397593) (2020).

561 17. Hamidi, A. *et al.* Long-range optical coherence tomography with extended depth-of-focus: a visual feedback system for
562 smart laser osteotomy. *Biomed. Opt. Express* **12**, 2118–2133, DOI: [10.1364/BOE.414300](https://doi.org/10.1364/BOE.414300) (2021).

563 18. Ashok, P. C., Giardini, M. E., Dholakia, K. & Sibbett, W. A raman spectroscopy bio-sensor for tissue discrimination in
564 surgical robotics. *J. Biophotonics* **7**, 103–109, DOI: [10.1002/jbio.201300034](https://doi.org/10.1002/jbio.201300034) (2014).

565 19. Weiner, S. & Wagner, H. D. The material bone: Structure-mechanical function relations. *Annu. Rev. Mater. Sci.* **28**,
566 271–298, DOI: [10.1146/annurev.matsci.28.1.271](https://doi.org/10.1146/annurev.matsci.28.1.271) (1998).

567 20. Liu, Y. & Niemz, M. Ablation of femoral bone with femtosecond laser pulses—a feasibility study. *Lasers Med. Sci.* **22**,
568 171–174, DOI: [10.1007/s10103-006-0424-8](https://doi.org/10.1007/s10103-006-0424-8) (2007).

569 21. Ivanenko, M., Werner, M., Afilal, S., Klasing, M. & Hering, P. Ablation of hard bone tissue with pulsed CO₂ lasers. *Med.
570 Laser Appl.* **20**, 13–23, DOI: [10.1016/j.mla.2005.02.007](https://doi.org/10.1016/j.mla.2005.02.007) (2005).

571 22. Kim, K., Kim, I. S., Cho, T. H., Seo, Y.-K. & Hwang, S. J. High-intensity nd:yag laser accelerates bone regeneration in
572 calvarial defect models. *J. Tissue Eng. Regen. Medicine* **9**, 943–951, DOI: [10.1002/term.1845](https://doi.org/10.1002/term.1845) (2015).

573 23. Vogel, A. & Venugopalan, V. Mechanisms of pulsed laser ablation of biological tissues. *Chem. Rev.* **103**, 577–644, DOI:
574 [10.1021/cr010379n](https://doi.org/10.1021/cr010379n) (2003).

575 24. Beltran Bernal, L. M. *Laser and wave-guides system for endoscopic/fiberscopic laser surgery*. Ph.d. thesis, University of
576 Basel, Basel, Switzerland (2021).

577 25. Liaw, L. Mid-infrared erbium:yag laser ablation of bone: The effect of laser osteotomy on bone healing. *Lasers Surg.
578 Medicine* **9**, 409–417, DOI: [10.1002/lsm.1900090409](https://doi.org/10.1002/lsm.1900090409) (1989).

579 26. Yoshino, T. *et al.* Long-term histologic analysis of bone tissue alteration and healing following er:yag laser irradiation
580 compared to electrosurgery. *J. Periodontol.* **80**, 82–92, DOI: [10.1902/jop.2009.080097](https://doi.org/10.1902/jop.2009.080097) (2009).

581 27. Deep, K. & Picard, F. A detailed analysis of time taken in robotic surgery for total knee replacement arthroplasty and
582 comparison with computer assisted navigation in total knee replacement arthroplasty. In *EPiC Series in Health Sciences,
583 Volume 4: Proceedings of CAOS 2020*, 56–58, DOI: [10.29007/65qr](https://doi.org/10.29007/65qr) (2020).

584 28. Hafez, M. A., Chelule, K. L., Seedhom, B. B. & Sherman, K. P. Computer-assisted total knee arthroplasty using
585 patient-specific templating. *Clin. Orthop. Relat. Res.* **444**, 184–192, DOI: [10.1097/01.blo.0000201148.06454.ef](https://doi.org/10.1097/01.blo.0000201148.06454.ef) (2006).

586 29. Graceffa, A., Indelli, P. F., Basnett, K. & Marcucci, M. Analysis of differences in bone removal during femoral box
587 osteotomy for primary total knee arthroplasty. *Joints* **2**, 76–80, DOI: [10.11138/jts/2014.2.2.076](https://doi.org/10.11138/jts/2014.2.2.076) (2014).

588 30. Hampp, E. L. *et al.* Robotic-arm assisted total knee arthroplasty demonstrated greater accuracy and precision to plan
589 compared with manual techniques. *J. Knee Surg.* **32**, 239–250, DOI: [10.1055/s-0038-1641729](https://doi.org/10.1055/s-0038-1641729) (2019).

590 31. Schnurr, C., Csécsei, G., Nessler, J., Eysel, P. & König, D. P. How much tibial resection is required in total knee
591 arthroplasty? *Int. Orthop.* **35**, 989–994, DOI: [10.1007/s00264-010-1025-5](https://doi.org/10.1007/s00264-010-1025-5) (2011).

592 32. Ran, T. *et al.* Ultra-pulsed CO₂ laser osteotomy: A new method for the bone preparation of total knee arthroplasty. *Front. Bioeng. Biotechnol.* **10**, DOI: [10.3389/fbioe.2022.858862](https://doi.org/10.3389/fbioe.2022.858862) (2022).

593 33. Ran, T. Basic research on application of ultra-pulsed co₂ laser osteotomy in total knee arthroplasty. *Thesis* (2022).

594 34. Howell, S. M., Nedopil, A. J. & Hull, M. L. Negligible effect of surgeon experience on the accuracy and time to perform
595 unrestricted caliper verified kinematically aligned tka with manual instruments. *Knee Surgery, Sports Traumatol. Arthrosc.*
596 **30**, 2966–2974, DOI: [10.1007/s00167-022-06939-y](https://doi.org/10.1007/s00167-022-06939-y) (2022).

597 35. Cetin, C. *et al.* Bone ablation performance of a ho:yag laser. In *Optical Interactions with Tissue and Cells XXXIV*, vol.
598 12377, 46–48, DOI: [10.1117/12.2647703](https://doi.org/10.1117/12.2647703) (SPIE, 2023).

599 36. Mishra, B. *et al.* Ultrafast laser bone ablation towards high surgical speeds and clinically relevant operation times for spine
600 surgeries. *Biomed. Opt. Express* **16**, 1871–1886, DOI: [10.1364/BOE.555846](https://doi.org/10.1364/BOE.555846) (2025).

601 37. Zhang, J., Guan, K., Zhang, Z. & Guan, Y. In vitro evaluation of ultrafast laser drilling large-size holes on sheepshank
602 bone. *Opt. Express* **28**, 25528–25544, DOI: [10.1364/OE.396727](https://doi.org/10.1364/OE.396727) (2020).

603 38. Bernal, L. M. B. *et al.* Optimizing deep bone ablation by means of a microsecond er:yag laser and a novel water microjet
604 irrigation system. *Biomed. Opt. Express* **11**, 7253–7272, DOI: [10.1364/BOE.408914](https://doi.org/10.1364/BOE.408914) (2020).

605 39. Seymen, G., Turgut, Z., Berk, G. & Bodur, A. Implant bed preparation with an er,cr:ysgg laser using stereolithographic
606 surgical guide. *J. Lasers Med. Sci.* **4**, 25–32, DOI: [10.3923/jlms.2013.25.32](https://doi.org/10.3923/jlms.2013.25.32) (2013).

607 40. Ji, L. *et al.* Laser rapid drilling of bone tissue in minimizing thermal injury and debris towards orthopedic surgery. *Mater.*
608 & *Des.* **220**, 110895, DOI: [10.1016/j.matdes.2022.110895](https://doi.org/10.1016/j.matdes.2022.110895) (2022).

609 41. Stübinger, S., Ghanaati, S., Saldamli, B., Kirkpatrick, C. J. & Sader, R. Er:yag laser osteotomy: Preliminary clinical and
610 histological results of a new technique for contact-free bone surgery. *Eur. Surg. Res.* **42**, 150–156, DOI: [10.1159/000197216](https://doi.org/10.1159/000197216)
611 (2009).

612 42. Pandurić, D. G. *et al.* Comparison of er:yag laser and surgical drill for osteotomy in oral surgery: An experimental study. *J.*
613 *Oral Maxillofac. Surg.* **70**, 2515–2521, DOI: [10.1016/j.joms.2012.06.192](https://doi.org/10.1016/j.joms.2012.06.192) (2012).

614 43. de Mello, E. D. A. *et al.* Comparative histological analysis of bone healing of standardized bone defects performed with
615 the er:yag laser and steel burs. *Lasers Med. Sci.* **23**, 253–260, DOI: [10.1007/s10103-007-0475-5](https://doi.org/10.1007/s10103-007-0475-5) (2008).

616 44. Stock, K., Diebolder, R., Hausladen, F. & Hibst, R. Efficient bone cutting with the novel diode pumped er:yag laser system:
617 in vitro investigation and optimization of the treatment parameters. In *Photonic Therapeutics and Diagnostics X*, vol. 8926,
618 452–461, DOI: [10.1117/12.2039648](https://doi.org/10.1117/12.2039648) (SPIE, 2014).

619 45. Pourzarandian, A. *et al.* Histological and tem examination of early stages of bone healing after er:yag laser irradiation.
620 *Photomed. Laser Surg.* **22**, 342–350, DOI: [10.1089/pho.2004.22.342](https://doi.org/10.1089/pho.2004.22.342) (2004).

621 46. Köhnke, R. *et al.* Performance and safety evaluation of a cold ablation robot-guided laser osteotome (carlo) in 28 midface
622 osteotomies. *Sci. Reports* **14**, 27160, DOI: [10.1038/s41598-024-68557-7](https://doi.org/10.1038/s41598-024-68557-7) (2024).

623 47. Holzinger, D. *et al.* First-in-man application of a cold ablation robot guided laser osteotome in midface osteotomies. *J.*
624 *Cranio-Maxillofacial Surg.* **49**, 531–537, DOI: [10.1016/j.jcms.2021.01.007](https://doi.org/10.1016/j.jcms.2021.01.007) (2021).

625 48. Shekarriz, H. *et al.* Hydro-jet-assisted laparoscopic cholecystectomy: a prospective randomized clinical study. *Surgery*
626 **133**, 635–640, DOI: [10.1067/msy.2003.155](https://doi.org/10.1067/msy.2003.155) (2003).

627 49. den Dunnen, S., Dankelman, J., Kerkhoffs, G. M. M. J. & Tuijthof, G. J. M. How do jet time, pressure and bone volume
628 fraction influence the drilling depth when waterjet drilling in porcine bone? *J. Mech. Behav. Biomed. Mater.* **62**, 495–503,
629 DOI: [10.1016/j.jmbbm.2016.05.026](https://doi.org/10.1016/j.jmbbm.2016.05.026) (2016).

630 50. Absolonová, K., Dobíšková, M., Beran, M., Zocová, J. & Velemínský, P. The temperature of cremation and its effect on
631 the microstructure of the human rib compact bone. *Anthropol. Anzeiger* **69**, 439–460, DOI: [10.1127/0003-5548/2012/0213](https://doi.org/10.1127/0003-5548/2012/0213)
632 (2012).

633 51. Gross, K. A. & Berndt, C. C. Thermal processing of hydroxyapatite for coating production. *J. Biomed. Mater. Res.* **39**,
634 580–587, DOI: [10.1002/\(SICI\)1097-4636\(19980315\)39:4<580::AID\protect\unhbox\voidb@x\hbox{-}JBM12>3.0.CO;2\protect\unhbox\voidb@x\hbox{-}B](https://doi.org/10.1002/(SICI)1097-4636(19980315)39:4<580::AID\protect\unhbox\voidb@x\hbox{-}JBM12>3.0.CO;2\protect\unhbox\voidb@x\hbox{-}B) (1998).

635 52. Pantawane, M. V. *et al.* Thermal assessment of ex vivo laser ablation of cortical bone. *ACS Biomater. Sci. & Eng.* **6**,
636 2415–2426, DOI: [10.1021/acsbiomaterials.9b01559](https://doi.org/10.1021/acsbiomaterials.9b01559) (2020).

637 53. Ben-Nissan, B. *Advances in Calcium Phosphate Biomaterials*, vol. 2 (Springer Berlin Heidelberg, Berlin, Heidelberg,
638 2014).

639 640

641 54. Rapp, L. *et al.* Investigation of laser wavelength effect on the ablation of enamel and dentin using femtosecond laser pulses. *Sci. Reports* **13**, 20156, DOI: [10.1038/s41598-023-47551-5](https://doi.org/10.1038/s41598-023-47551-5) (2023).

642 55. Geraldes, C. F. G. C. Introduction to infrared and raman-based biomedical molecular imaging and comparison with other
643 modalities. *Molecules* **25**, 5547, DOI: [10.3390/molecules25235547](https://doi.org/10.3390/molecules25235547) (2020).

644 56. Nahen, K. & Vogel, A. Plume dynamics and shielding by the ablation plume during er:yag laser ablation. *J. Biomed. Opt.*
645 **7**, 165 (2002).

646 57. Kang, H. W., Lee, H., Chen, S. & Welch, A. J. Enhancement of bovine bone ablation assisted by a transparent liquid layer
647 on a target surface. *IEEE J. Quantum Electron.* **42**, 633–642 (2006).

648 58. McCaughey, R. G., Sun, H., Rothholtz, V. S., Juhasz, T. & Wong, B. J. F. Femtosecond laser ablation of the stapes. *J.*
649 *Biomed. Opt.* **14**, 024040 (2009).

650 59. Nguendon Kenhagho, H. *et al.* Characterization of ablated bone and muscle for long-pulsed laser ablation in dry and wet
651 conditions. *Mater. (Basel)* **12**, 1338 (2019).

652 60. Stock, K., Hibst, R. & Keller, U. Comparison of er:yag and er:ysgg laser ablation of dental hard tissues. *Proc. SPIE* **3192**,
653 88–95, DOI: [10.1117/12.297864](https://doi.org/10.1117/12.297864) (1997).

654 61. Mirski, M. A., Lele, A. V., Fitzsimmons, L. & Toung, T. J. K. Diagnosis and treatment of vascular air embolism. *New*
655 *Engl. J. Medicine* **356**, 789–799, DOI: [10.1056/NEJMra070569](https://doi.org/10.1056/NEJMra070569) (2007).

656 62. Svenarud, P., Persson, M. & van der Linden, J. Effect of carbon dioxide insufflation on the number and behavior of gas
657 emboli. *Circulation* **109**, 834–839, DOI: [10.1161/01.CIR.0000118501.44474.83](https://doi.org/10.1161/01.CIR.0000118501.44474.83) (2004).

658 63. Granick, M. S., Boykin, J. V., Gamelli, R. L., Schultz, G. S. & Tenenhaus, M. Versajet hydrosurgery system: a new tool for
659 wound debridement. *Plast. Reconstr. Surg.* **117**, 2195–2200, DOI: [10.1097/01.prs.0000209963.52367.5f](https://doi.org/10.1097/01.prs.0000209963.52367.5f) (2006).

660 64. Manner, M., Aydin, A., Schmidt, M. *et al.* Air entrainment during laparoscopy using a valveless trocar system. *Surg.*
661 *Endosc.* **29**, 2311–2318, DOI: [10.1007/s00464-014-3914-4](https://doi.org/10.1007/s00464-014-3914-4) (2015).

662 65. Bernal, L. M. B. *et al.* Performance of er:yag laser ablation of hard bone under different irrigation water cooling conditions.
663 In *Optical Interactions with Tissue and Cells XXIX*, vol. 10492, 43–49, DOI: [10.1117/12.2290929](https://doi.org/10.1117/12.2290929) (SPIE, 2018).

664 66. Noginov, M. A., Sarkisyan, G. K., Smirnov, V. A., Umyakov, A. F. & Shcherbakov, I. A. Experimental observation
665 of the nonadditivity of various mechanisms of population inversion of the $^4i_{11/2} \rightarrow ^4i_{13/2}$ transition of the Er³⁺ ion in a
666 YSGG:Cr³⁺:Er³⁺ crystal. *Sov. J. Quantum Electron.* **20**, 638, DOI: [10.1070/QE1990v020n06ABEH006666](https://doi.org/10.1070/QE1990v020n06ABEH006666) (1990).

667 67. Aoki, A. *et al.* Current status of er:yag laser in periodontal surgery. *Jpn. Dental Sci. Rev.* **60**, 1–14, DOI: [10.1016/j.jdsr.2023.11.002](https://doi.org/10.1016/j.jdsr.2023.11.002) (2024).

668 68. Honigmann, P. *et al.* Cold ablation robot-guided laser osteotomy in hand, wrist and forearm surgery—a feasibility study.
669 *The Int. J. Med. Robotics Comput. Assist. Surg.* **18**, e2438, DOI: [10.1002/rcs.2438](https://doi.org/10.1002/rcs.2438) (2022).

670 69. Welch, A. J. *Optical-Thermal Response of Laser-Irradiated Tissue* (Springer Netherlands, Dordrecht, 2011).

673 Funding

674 This project was co-funded by the Werner Siemens Foundation as part of the MIRACLE project and Innosuisse – Swiss
675 Innovation Agency under project number 112.465 IP-LS, titled LASER-Blade.

676 Author Contributions

677 Mr. Mingyi Liu performed the experimental study, performed the analyzes throughout the study, and prepared the manuscript.
678 Dr. Arsham Hamidi supported and advised on data analysis and manuscript organization and particularly contributed to the
679 ablation profile investigation approach.

680 Dr. Dunia Blaser participated in the supervision of the study and the revision of the manuscript.

681 Dr. Darren Wilson supervised the project timeline and provided significant input on the experimental methods.

682 Dr. Kenneth Garcia contributed to the conceptual study and provided input in the study planning.

683 Prof. Dr. Niklaus F. Friederich provided insight on the medical expectations and contributed to the conceptualization.

684 Prof. Dr. Georg Rauter supported the data analysis and revised the paper.

685 Prof. Dr. Philippe C. Cattin contributed to the conceptualization of the study, reviewed the data analysis, and contributed to the
686 organization of the manuscript.

687 Dr. Ferda Canbaz conceptualized the research project and provided guidance on the methodology and overall research direction.

688 She has contributed to data analysis, manuscript organization, and preparation.
689 All authors reviewed and approved the final manuscript.
690 The authors declare no conflict of interest.

691 **Acknowledgments**

692 The authors acknowledge the contributions of Dr. Georg Schulz for CT measurements, training, and analysis.
693 Prof. Dr. Bert Müller and Dr. Iwan Jerjen for SEM imaging, sample preparation, measurement training, and data analysis.
694 Special thanks to Prof. Elia Marin from Kyoto Institute of Technology for his feedback regarding the Raman spectra.
695 Thanks to Leya Pauly and Vinamrata Bhardwaj for their careful proofreading of the sentences.
696 The manuscript was revised using AI tools such as Grammarly for grammar correction.

ARTICLE IN PRESS