
Building new hydrography and virtual watersheds to conserve freshwater fisheries

Received: 19 May 2025

Accepted: 20 January 2026

Published online: 23 January 2026

Cite this article as: Benda L., Miller D., Leppi J.C. *et al.* Building new hydrography and virtual watersheds to conserve freshwater fisheries. *Sci Rep* (2026). <https://doi.org/10.1038/s41598-026-37143-4>

Lee Benda, Daniel Miller, Jason C. Leppi, Bernard Romey & Kevin Andras

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

BUILDING NEW HYDROGRAPHY AND VIRTUAL WATERSHEDS TO CONSERVE FRESHWATER FISHERIES

Lee Benda^{*1}, Daniel Miller¹, Jason C. Lepi², Bernard Romey³, Kevin Andras¹

¹ TerrainWorks, Mt. Shasta, California, USA

² The Wilderness Society, Anchorage, Alaska, USA

³ Romey Riverscape Science, Longview, Washington, USA

Corresponding author (leebenda@terrainworks.com)

ABSTRACT: The increasing availability of high-resolution digital elevation data is enhancing the mapping of hydrography across Earth's surface. As pressures on fluvial ecosystems grow, digital maps of river networks should include a data structure necessary to assess aquatic habitats and the environmental threats to them from resource development and climate change. Using examples from across Alaska, USA, we demonstrate how newly available radar and laser digital elevation products are being used to discover thousands of kilometers of previously unmapped channels, ranging from headwater to valley bottom streams. This comprehensive and attributed high-resolution hydrography that connects lentic, lotic, and terrestrial systems—a virtual watershed—has resulted in tens to hundreds of percent increases in potential salmonid habitats across landscapes ranging from the Arctic tundra to southeast rainforests. Our findings show how virtual watersheds enhance understanding of freshwater and diadromous fish habitats and serve as a model for supporting conservation efforts and environmental problem-solving in other regions globally.

1.0 Introduction

Freshwater biodiversity continues to decline across the planet due to anthropogenic impacts¹⁻³. Fish species in many regions face extinction and their loss will have far-reaching implications for human well-being⁴. Environmental impacts that include pollution, land uses, flow regulation, and climate change^{5,6}

accumulate within hierarchical river networks⁷⁻⁹. The resulting degraded and fragmented habitats¹⁰⁻¹² are causing declines in many freshwater and diadromous fish populations worldwide^{3,13,14}.

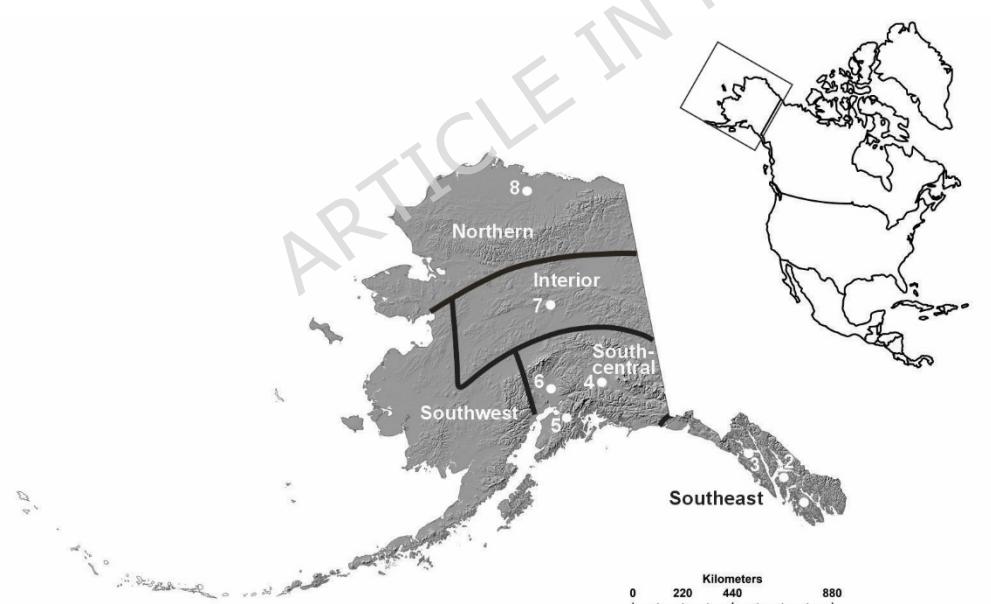
Addressing the challenges that fish species face within freshwater ecosystems in the 21st-century depends on knowing how physical and biological features in watersheds interact to create habitats in river networks and knowing where those habitats are located at the scale of entire basins to regions^{15,16}. Fish habitats are strongly influenced by the longitudinal sequence of channel morphologies¹⁷⁻¹⁹; channel interactions with floodplains, valley floors, and hillsides^{20,21}; and the density and characteristics of tributary confluences²²⁻²⁶. Food resources and thermal regulation mediated by riparian vegetation, lakes and wetlands, and groundwater and hyporheic processes also influence the spatial distribution and diversity of freshwater habitats²⁷⁻³⁰. Thus, features of freshwater ecosystems that influence fish habitats have been studied at varying levels of detail and scale over the last several decades³¹⁻³³.

At the most fundamental level of mapping, a geography of rivers and their tributaries is required to identify locations of aquatic habitats. Throughout the twentieth century, paper topographic maps depicted rivers, streams, and other water bodies using stereoscopy—a technique that combines overlapping pairs of aerial imagery to produce three-dimensional representations of topography, including streams and rivers. More recently, geographies of stream channels were computer-digitized into digital hydrography databases for use in geographic information system software (GIS). These cartographically derived stream layers commonly omit many kilometers of headwater and valley bottom streams and inaccurately locate streams, particularly in areas of dense vegetation cover and in subtle, low-relief topography³⁴⁻³⁷. Despite their incompleteness and marginal accuracy, these riverine spatial datasets remain authoritative hydrography for government agencies, universities, nongovernmental organizations, private sectors, and the public^{38,39}. In this paper, we refer to this era of river network mapping as “cartographic” to differentiate it from more recent computerized delineation of hydrography.

Increasing availability of high-resolution digital elevation models (DEM) is greatly improving the ability to more accurately delineate streams and rivers^{40,41}. Beginning in 2010, the U.S. Geological Survey's (USGS) 3D digital elevation program began acquiring 5 m DEMs statewide in Alaska using Interferometric Synthetic Aperture Radar (IFSAR). This elevation data are now being used to create more accurate and complete hydrography to update the National Map of river networks⁴²⁻⁴⁶. In certain areas in Alaska, Light Detection and Ranging (LiDAR) DEMs at one-meter resolutions are being used to delineate streams previously obscured under vegetative cover⁴⁷⁻⁴⁹. We refer to river networks that are extracted directly from digital elevation models as “algorithmic” to differentiate them from earlier cartographic-derived networks.

Accurate and more complete algorithmic hydrography can be used for generalized mapping of fish habitats by specifying threshold environmental attributes that govern the upstream extent of fish occupancy, like drainage area, flow, and gradient⁵⁰⁻⁵². More recently, analysis and modeling of fish habitats have focused on spatial variations in habitat quality, complexity and abundance, reflecting different life cycle requirements for spawning, rearing, foraging, and refugia. This more detailed analysis of fish habitats relies on longitudinal sequences of hydro-geomorphic features that include channel widths, depths, gradients (over varying length scales); streamflow; tributary confluence effects; topographic confinement; proximity and connectedness to floodplains, lakes and wetlands; turbidity; solar insolation; water temperature; sinuosity; and stream power; among others^{15,17-19,53-57}. But most algorithmic stream networks, including those being created using higher-resolution DEMs, typically lack many of those hydro-geomorphic attributes and connectivity among them^{35-36,41}. However, the increasing availability of numerical algorithms to generate these attributes, among others, is allowing practitioners to better delineate and characterize habitats for fish and other aquatic species^{58,59}.

Resource managers in Alaska are tasked with maintaining sustainable salmonid populations across thousands of miles of streams in remote and rugged landscapes. Accurate information about the extent and quality of habitat is essential for informing management decisions and for evaluating potential impacts of resource


development and climate change on wild salmonid abundance⁶⁰⁻⁶². Alaskan fisheries biologists from state and federal agencies, tribal entities, universities, NGOs, and private organizations have long worked to gather critical data on salmonid habitats, movement patterns, and occupancy across life stages. Programs like the Alaska Department of Fish and Game's (ADFG) Freshwater Fish Inventory have significantly expanded knowledge of anadromous and resident freshwater fish distribution⁶³. This vital field data cover only a fraction of species, is sparse in remote areas, and is limited spatially across a large state of more than one million square kilometers, limiting its utility for large-scale habitat assessments needed by land managers and conservation planners. Thus, improved methods for assessing salmon habitats are particularly important for conservation planning and restoration.

In this paper, we describe a methodology for delineating hydrography using recently available digital elevation models. Fortran computer programs were used in combination with high resolution IFSAR and LiDAR digital elevation models in four physiographic areas in Alaska. The newly created hydrography was compared and contrasted with older cartographic hydrography in the National Hydrography Dataset (NHD). A comparison of stream densities among the IfSAR, LiDAR, and NHD digital hydrography was used to evaluate the comprehensiveness of the modeled river networks. Using the new hydrography, we developed new fish habitat models to predict potential habitats for several species of salmon, ranging from the Arctic tundra to southeastern rainforests. Thus, our study describes an evolution in science and technology where low resolution, incomplete hydrography with limited attributes and analysis potential are being replaced by higher resolution, more comprehensive river networks. Additionally, highly-resolved hydrography can be used to connect lentic, lotic, and terrestrial systems—a virtual watershed—to inform conservation efforts^{39,64}. Addressing the geographical and analytical limitations of national-level hydrography presents a global challenge³⁵⁻³⁶. The approach developed in Alaska serves as a model for updating national-level hydrography with analytical capabilities for identifying critical aquatic habitats, supporting environmental problem solving, and enhancing conservation efforts worldwide.

2.0 Methods

2.1 Study Areas and Data Sources

Alaska, the largest U.S. state (1,718,000 km²), extends from latitude 51°15' south to 71°23' north and encompasses a wide range of physiographic provinces from maritime conifer rainforests in the southeast Alexander Archipelago to the taiga forests of the Yukon-Tanana watersheds in the interior to the tundra of the Brooks Range and Arctic coastal plain (Figure 1). Climate ranges from humid temperate in the south to arid cold in the north. The state is home to all five species of North American Pacific salmon: Chinook (*Oncorhynchus tshawytscha*), sockeye (*O. nerka*), coho (*O. kisutch*), chum (*O. keta*), and pink (*O. gorbuscha*). Other freshwater and diadromous species include Steelhead trout (*O. mykiss*), Arctic Char (*Salvelinus alpinus*), Dolly Varden (*S. malma*), Grayling (*Thymallus arcticus*) and Whitefish (*Coregonus* spp.).

Figure 1. White circles show the locations of new algorithmic river networks and virtual watersheds within four physiographic regions in Alaska. 1-Prince of Wales Island; 2-Kupreanof/Kuiu Islands; 3-Chichagof Island; 4-Copper River; 5-Kenai Peninsula (Southcentral Region); 6-Matanuska-Susitna River; 7-Yukon River tributaries; 8-Colville River. Map was created using ESRI ArcMap 10.6 software using

publicly available data; USGS Alaska hillshade and Alaska Department of Natural Resources, Alaska Coastline data layers (<https://www.arcgis.com/sharing/rest/content/items/24bb1a5332894893bf9a305d9f6c6696/info/metadata/metadata.xml?format=default&output=html>).

For decades, topographic maps in Alaska were of low resolution because of the state's remoteness, size, lack of ground survey controls, and little cloud-free photogrammetry⁴³. Alaska quadrangle maps were produced at 1:63,360 (1 inch = 1 mile), compared to the rest of the U.S. that had maps of 1:24,000. Alaska quadrangles were also inaccurate, never achieving national map standards at any scale, where mountains could be offset by more than one mile, leading to numerous controlled flights into terrain (CFIT) aviation accidents⁴³.

The National Hydrography Dataset (NHD) in Alaska, a digital vector library of streams, rivers and other waterbodies within the National Map, was created cartographically using the 1950s era U.S.G.S. topographic maps (1:63,360 scale) and existing aerial photography. The NHD was completed in 2008.

The advent of computer technologies in the latter 20th century led to creation of digital elevation products. A bare earth DEM contains point elevations arranged at regularly spaced intervals across an x and y grid in units of feet or meters. Elevations in a DEM represent terrain heights relative to a vertical datum. The National Elevation Database DEMs for Alaska were initially created by digitizing 100-foot (30.48m) contours on the available 1:63,360-scale paper topographic maps that yielded DEM resolutions mostly in the range of 1 to 2 arc-seconds, or approximately a grid resolution of 30 to 60 meters.

In the early 2000s, the Space Shuttle Mapping Mission employed C and X band synthetic aperture radar to generate digital surface models (DSM) across Alaska at 1-arc-second (approximately 30 m) resolution (DSMs include buildings and vegetation). Beginning in 2010 and running through 2020, the USGS contracted with private vendors to collect IFSAR data using aircraft. These data were used to create a DSM and a DEM for Alaska at a resolution of approximately 5 m. In the last decade, one-meter LiDAR elevation data have been collected using aircraft in select

locations across Alaska by agencies including the USGS, U. S. Forest Service (USFS), and National Resources Conservation Service (NRCS).

Alaska uses the NHD cartographic streams as the base layer to maintain a catalogue of all channels across the state that are known to contain salmon, called the Anadromous Waters Catalog (AWC)⁶⁴. Based on the ADFG policy, the occupancy of salmon in any stream channel requires on-the-ground visual confirmation of at least two fish. The AWC underestimates salmon habitats across the state because of incomplete NHD hydrography and the field validation component^{17,56,65}. In addition, the AWC is also limited by non-detection bias, where lack of records does not accurately indicate absence of habitats and fish.

Beginning in 2016, the USGS initiated a program to update and improve the NHD using newly available IFSAR DEMs across the State of Alaska (3D Elevation Program or 3DEP). That effort to create more complete and accurate algorithmic networks is currently ongoing. The 3DEP and subsequent 3D Hydrography Programs (3DHP) that create new hydrography and subbasin boundaries have specific protocols for numerical precision, channel delineation, and waterbody classification^{45,66}.

2.2 Building Virtual Watersheds

A virtual watershed couples algorithmic hydrography, represented at the DEM-cell (node) scale, to other terrestrial and lentic landscape elements, including hillsides, valley floors, floodplains, riparian zones, wetlands, lakes, alluvial fans, and erosion sources, among others^{38,39,44,67,68}. The data structures, methods, and algorithms described below for creating virtual watersheds have grown out of studies that explored temporal and spatial patterns of landscape dynamics over the last couple decades⁶⁹⁻⁷², that included creating digital hydrography from DEMs^{67,73-77}.

The numerical analyses used to build algorithmic hydrography in Alaska are implemented in a set of Fortran programs^{44,78}. The programs have been incorporated into a user interface for ArcGIS and ArcPro called NetMap^{38,39,67}. Six steps are required. First, DEMs of the highest resolution are merged into a single, contiguous elevation model for entire catchments. DEMs from different data sources

are warped along edges to match the mean focal elevations, calculated over a radius of 50 m or more⁷⁹. The resulting contiguous DEM is resampled to the desired resolution. Second, a hydrologically conditioned surface is created using a combination of depression filling and carving⁸⁰ to ensure spatially continuous, single direction water flow across terrain. The DEM itself is not modified and is the base from which the channel network is extracted and other landforms delineated (floodplains, wetlands, riparian areas, and steep slope erosion areas) and connected to the network.

Delineating a channel network requires identifying the upstream extent of headwater channels—where channels begin. The third step defines channel initiation using: a) threshold for contributing area multiplied by gradient squared⁶⁶, which is representative of fluvial erosion potential⁸¹; b) threshold plan curvature measured over a length scale for resolving fluvial topography; and c) the hillslope length scale over which (a) and (b) are met. An appropriate length scale typically spans tens of meters and separate initiation values are specified for high and low gradient areas. The D-infinity algorithm⁸² is used to calculate flow accumulation and direction within contiguous watershed boundaries.

Once channels are initiated, the fourth step traces the down-gravity flow uses D-8 directions guided by terrain indicators of channel locations, including surface gradient, plan curvature, and fluvial geomorphic features^{83,84}. A path-based analysis is used to correct for the limited choice of eight flow directions⁸⁵. Fifth, drainage enforcement is used to guide flow directions and to specify channel locations. These include: a) polygons of open water digitized from imagery; b) reflected intensity from LiDAR and IFSAR data indicating open water; c) GIS vector line files of channel centerlines from accurate field surveys; d) line segments indicating culvert locations at road-stream crossings; and e) points of known channel initiation. Lastly, channel traces are smoothed to provide optimal channel centerlines to more accurately estimate channel lengths and gradients.

The resulting algorithmic network is represented digitally as a set of linked nodes, one node for each DEM cell. This data structure maintains information at the smallest spatial grain available from the elevation data. Channel attributes for each node, such as gradient and valley confinement, are calculated from the unmodified

DEM. A nodal data structure that represents channel gradient at any length scale is used to evaluate gradient-related thresholds to fish movement, including the occurrence of migration-blocking waterfalls. Flow routing and accumulation rasters are spatially registered to the fluvial nodes to couple the terrestrial and lentic landscape features to the lotic ecosystem. Various algorithms are used to delineate the other features of a virtual watershed including floodplains, wetlands, riparian processes, thermal refugia, and sediment and organic material sources to the network, including by mass wasting^{44,74,86-88}. See also citations in Discussion.

2.3 Delineating Fish Habitats

To address the limitations of field-based studies, GIS-based modeling of fish habitats within virtual watersheds has focused on immutable geophysical riverine features as reliable predictors of habitat suitability and spatial distribution^{15,18,19,54,56,57,73,89,90}. Such fish habitat models, called Intrinsic Potential (IP), a modified version of resource selection functions⁹¹, have used various combinations of channel gradient, valley confinement, and mean annual flow as predictors of habitat suitability for coho, steelhead, and Chinook salmon in Oregon¹⁶. In southcentral Alaska, Bidlack et al.¹⁵ used a combination of channel gradient, confinement, and spatial coverage of glaciers as a proxy for water turbidity to create an IP model for Chinook in the Copper River. On the eastern Kenai Peninsula, a sockeye salmon IP model used a combination of proximity to lakes, gravel availability below lakes, and channel confinement related to floodplains⁵⁷. In southeast Alaska, IP models for coho, chum, and pink salmon have used gradient, confinement, and flow⁵⁰. The southeast Alaska Chinook and coho salmon IP models link reach scale (100 m) habitat attributes to summer juvenile fish density^{15,50}. The chum and pink salmon models in southeast Alaska are based on redd density⁵⁶. A Broad Whitefish (*Coregonus nasus*) IP model was developed for the Colville River in Arctic Alaska using bankfull channel width, degree of channel braiding, and gravel sediment size¹⁵. All of the studies cited above used the algorithmic hydrography-virtual watershed data structure described in Section 2.2.

There is increasing interest in predicting the upstream extent of fish migration for resident and anadromous fish species, including in Alaska^{19,53,92-95}. While IP models

focus on spatial patterns of habitat quality, end of habitat models identify the upper boundaries of fish populations across riverscapes. LiDAR-derived virtual watersheds, in conjunction with fish occurrence data from tribal, state, and federal agencies, are being used to develop end-of-habitat models in southeast Alaska⁹⁶.

We developed virtual watersheds, inclusive of algorithmic networks, in eight study areas in Alaska, including four in southeast, two in southcentral, one in the interior, and one in the Arctic (Figure 1). The study area watersheds were selected based on the needs of funding organizations, including North Chichagof Island (NRCS), full Chichagof Island (USFS), Kupreanof/Kuiu Islands (NRCS), Prince of Wales Island (USFS), Copper River (Ecotrust), Kenai Peninsula (USFS), Matanuska/Susitna (The Nature Conservancy), Yukon-Chena/Tanana/Chathanika/Goodpaster/Salcha Rivers (University of Alaska), and Colville River (The Wilderness Society). The upstream extents of the digital networks and network density (km per km²) were based on the method of channel delineation described in Section 2.2 and on conferring with local agency and NGO personnel. IfSAR and LiDAR DEMs were used as available across study areas, except in the Copper River watershed in the southcentral region where only 20 and 30 m DEMs existed.

In the eight study areas, we compared the cumulative lengths of channels in the algorithmic networks to the cartographic NHD channel lengths and compared the predicted IP-modeled fish habitat lengths to the lengths of anadromous fish habitats in the AWC in each of the watersheds and islands (Table 1). We applied fish habitat models for coho, Chinook, sockeye, and Broad Whitefish within seven of the watersheds. Salmon IP models that were applied to the algorithmic river networks included coho⁵⁶ in southeast Alaska (study sites 1-3), Chinook¹⁷ in the Copper River in southcentral (site 4), sockeye⁵⁷ in the Kenai Peninsula in southcentral (site 5), coho⁵⁶ and Chinook¹⁷ in the Matanuska-Susitna River in southcentral (site 6), and Broad Whitefish¹⁵ in the Colville River (site 8) in the Arctic. In the Yukon area watersheds (site 7), a generic end-of-fish channel gradient threshold of 10% was applied, above which salmon were assumed to be absent or in minimal numbers⁴⁹.

3.0 Results

Lengths of IFSAR and LiDAR derived algorithmic river networks always exceeded the cartographic NHD lengths by tens to hundreds of percent (Table 1). The increase in IFSAR derived networks ranged from 2% to 53% and average 28%. The 2% increase occurred in the Colville River watershed in the Arctic. The increase in LiDAR derived algorithmic network lengths ranged from 84% to 203% and averaged 144%. The Copper River algorithmic network was derived from 20 m and 30 m DEMs and the total channel length was 23% less than the NHD length. The largest increases in LiDAR derived channel length occurred in the forested areas of southeast Alaska (84% to 146%) where it has been difficult to detect channels cartographically using imagery alone. In three watersheds that had both IFSAR and LiDAR DEMs, they were merged and combined, as described in Section 2.2. The increase in LiDAR/IFSAR combined algorithmic network lengths, over the cartographic NHD, ranged from 19% to 124% and averaged 67%. The higher resolution DEMs (LiDAR, IFSAR/LiDAR combinations) had the greatest increase in channel lengths, particularly in the heavily forested southeast region (Table 1). Proportional increases in channel length led to very large increases in net length of channels in any watershed or island. For example, in the Matanuska Susitna watershed in southcentral Alaska with a drainage area of 64,806 km², the net increase in algorithmic channel length over that of the NHD is 50,292 km. In the 5,657 km² Prince of Wales Island in southeast Alaska, the net increase in delineated channels is 8,910 km.

Table 1. NHD cartographic stream lengths are compared to the lengths of algorithmic networks extracted from digital elevation models (DEMs). Cumulative lengths of predicted fish habitats by individual species are compared to the lengths of fish occupied channels in the Anadromous Waters Catalog (AWC). DEM types and resolutions are indicated.

Location	Area (km ²)	DEM Type/ Resolution	NHD Length (km) [km km ⁻²] ¹	Algorithmic channel length (km) in virtual watersheds	AWC ³ (km)	Model Habitat Length (km) (% increase ⁴)
----------	-------------------------	----------------------	---	---	-----------------------	--

				(% increase ²) [km km ⁻²] ¹		
North Chichagof Island ⁵ (Portion of) (Southeast)	1,074	IFSAR LiDAR	1,244 [1.1] 1,244	1,899 (53%) [1.8] 3,055 (146%) [2.8]	189 (coho) 189 (coho)	402 ⁶ (115%) 930 ⁶ (392%)
Full Chichagof Island ⁵ (Southeast)	5,273	LiDAR/ IFSAR combo	10,620 [2.0]	16,884 (59%) [3.2]	938 (coho)	1,275 ⁶ (36%)
Kupreanof/Kuiu Islands ⁵ (Portions of) (Southeast)	744	LiDAR	1,936 [2.6]	5,866 (203%) [7.8]	166 (coho)	1,343 ⁶ (708%)
Prince of Wales Island ⁵ (Southeast)	5,657	LiDAR	10,619 [1.9]	19,529 (84%) [3.5]	1,523 (coho)	4,838 ⁶ (218%)
Copper River ⁷ (Southcentral)	20,275	20 m/30 m ⁸	72,869 [3.6]	56,111 (-23%) [2.8]	3,553 (Chinook)	12,500 ⁹ (252%)
Kenai Peninsula ⁸ (Portion of) (Southcentral)	10,310	IFSAR/ LiDAR combo	9,902 [1.0]	11,763 (19%) [1.1]	352 (sockeye)	1,477 ¹⁰ (311%)
Matanuska-Susitna ⁷ (Southcentral)	64,806	LiDAR/ IFSAR combo	40,635 [0.6]	90,927 (124%) [1.4]	4,988 (Chinook) 6,356 (coho)	18,507 ⁹ (270%) 25,910 ⁵ (308%)
Yukon-Chena/Tanana/Chathanika/Goodpaster/ Salcha Rivers ¹¹ (Portions of) (Interior)	19,669	IFSAR	15,092 [0.8]	19,536 (29%) [1.0]	1,262 (generic salmon)	11,411 ¹² (804%)
Colville River ¹³ (Arctic)	60,255	IFSAR	74,489 [1.2]	75,834 (2%) [1.3]	470 (Broad Whitefish)	1,548 ¹⁴ (229%)

1 Drainage density (total channel length/watershed area)

2 ((algorithmic - NHD)/NHD) * 100

3 Alaska Anadromous Waters Catalog (AWC)⁶⁴

4 ((Predicted - AWC)/AWC) * 100

5 Southeast Alaska, Alexander Archipelago region

6 Coho IP⁵⁶

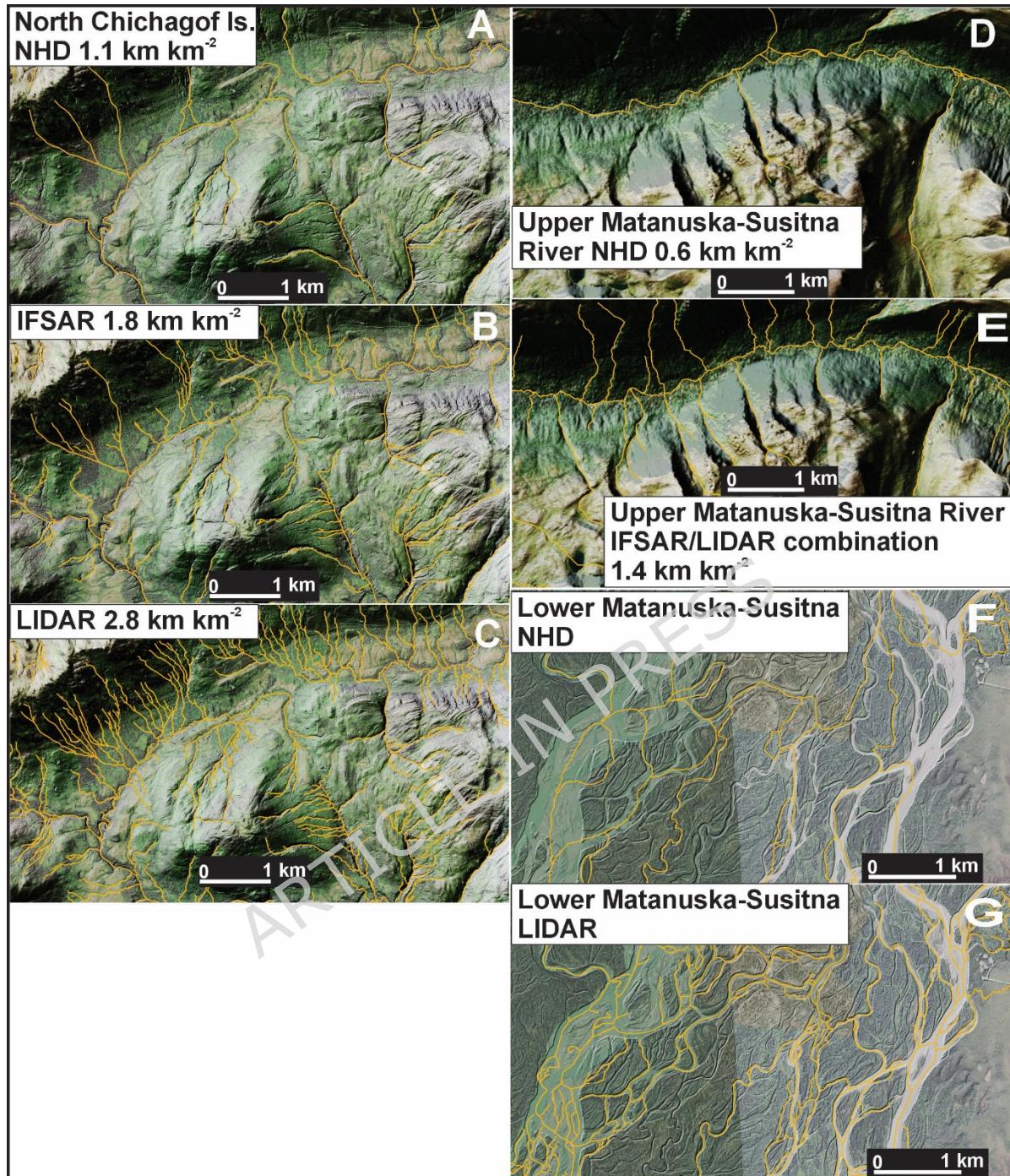
7 Southcentral Alaska

8 ASTER and SPOT satellite data (Geographic Information Network of Alaska (GINA; www.gina.alaska.edu/)

9 Chinook IP¹⁷

10 Sockeye IP⁵⁷

11 Interior Alaska


12 Generic gradient barrier, salmon 10%⁵²

13 Arctic Alaska

14 Broad Whitefish IP¹⁵

The lengths of additional anadromous fish habitats predicted in all algorithmic networks over those contained within the AWC ranged from 36% to 804% and averaged 332% (Table 1). The increase in predicted habitat length in the IFSAR derived networks ranged from 115% to 804% and averaged 383%. The increase in predicted fish habitat lengths in the LiDAR derived networks ranged from 218% to 708% and averaged 439%. The increase in predicted fish habitat lengths in the IFSAR/LiDAR combination ranged from 36% to 311% and averaged 230%. The largest predicted increases in lengths of salmonid habitats (392%, 708%, Table 1) occurred within the forested southeast region. Similar to the increase in total channel lengths, the model predicted increases in salmonid habitat lengths resulted in very large increases in net habitats. For example, in watersheds of the North Chichagof Island in southeast Alaska (1,074 km²), we predicted 930 km of coho habitats using LiDAR-derived river networks compared to the AWC habitat length of 189 km, for an increase of 741 km of coho salmon habitat. In the 64,806 km² Matanuska Susitna watershed the model predicted 18,507 km of chinook habitat using LiDAR river networks compared to the AWC length of 4,988 km, for an increase of 13,519 km. In the same watershed, we predicted 25,910 km of coho habitat compared to the AWC coho habitat length of 6,356 km, for an increase of 19,554 km. Large increases in projected fish habitats over the AWC is expected because the AWC requires field validation of fish occupancy in remote river systems and is subject to nondetection bias.

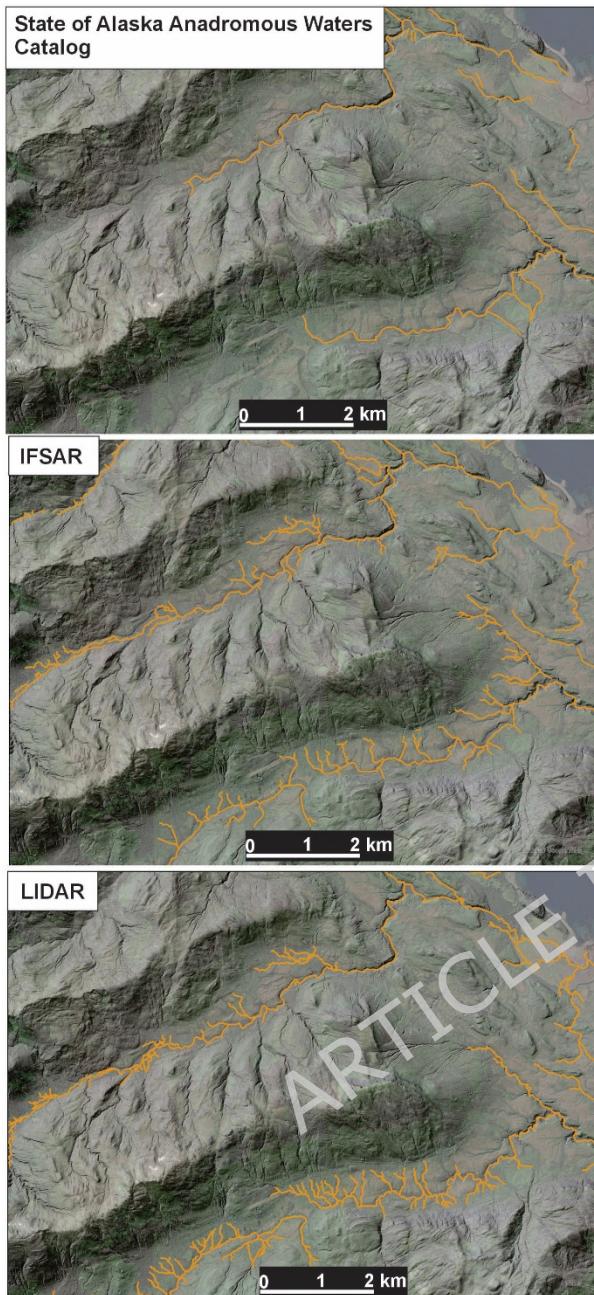

A visual comparison among the NHD cartographic and the IFSAR and LiDAR algorithmic networks reveals an increasing length of channels within virtual watersheds that is concentrated in the headwaters and that extend down to wider valley floors (Figure 2). Increasing channel length also occurs within the wider valley floors in braided channel networks, as illustrated in the Matanuska-Susitna River watershed (Figure 2).

Figure 2. (Left panel) The density of channel networks in northern Chichagof Island in southeast Alaska increases from the cartographic NHD to the algorithmic networks delineated from IFSAR and LiDAR DEMs (A-C, using LiDAR shaded relief). (Right panel) The increase in river network density is illustrated in the Matanuska-Susitna River watershed (D-E, using IFSAR shaded relief). The network delineated from the IFSAR/LiDAR combination occurs in both the upper valleys as headwater

tributaries and along the wider valley floors with braided channels (F-G, using LIDAR shaded relief). Software: ArcGIS Pro 3.5. Data Source: ArcGIS Map Service; Server: https://services.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer

The modeled increases in coho habitats in the North Chichagof Island in southeast Alaska are predicted to occur along the wider valley floors where newly delineated headwater tributaries join with the mainstem (Figure 3). Predicted increases in coho salmon channel length also occurs as upriver extensions of networks (Figure 3).

Figure 3. Predicted coho salmon habitat⁵⁶ in the North Chichagof Island increased in the more densified channel networks that were delineated in IFSAR and LiDAR networks, compared to Alaska's anadromous watershed catalog that is based on the cartographic NHD. The predicted increase in fish habitat occurs mainly in low gradient channels within wider valley floors that are extensions of newly delineated headwater tributaries (Figure 2). Predicted increases in modeled fish habitats also occurs as upriver extensions higher in the watershed. Map data source is same as Figure 2.

4.0 Discussion

There is a general pattern of higher drainage densities of the algorithmic networks compared to the cartographic NHD (Table 1). In the North Chichagof Island, Yukon tributaries, and the Colville River watershed the NHD densities (km km^{-2}) ranged from 0.8 to 1.2 (average 1.0) compared to the IFSAR network densities of 1.0 to 1.8 (average 1.4). In the North Chichagof, Kupreanof/Kuiu, and Prince of Wales Islands, NHD densities ranged from 1.1 to 2.6 (average 1.9) compared to the LIDAR network densities of 2.8 to 7.8 (average 4.7). The network densities in the IFSAR-LIDAR combinations in the full Chichagof Island, Kenai Peninsula, and the Matanuska-Susitna watershed ranged from 1.1 to 3.2 (average 1.9) compared to the NHD densities of 0.6 to 2.0 (average 1.2). Algorithmic channel networks created using LIDAR had the highest average density (4.7), followed by IFSAR-LIDAR combinations (1.9), with IFSAR networks having the lowest density (1.4).

The relative change in channel density and in the absolute increase in new channel length are sensitive to the channel initiation thresholds as described in Section 2.2. Threshold criteria include a minimum drainage area (multiplied by gradient squared), plan curvature, and the length scales associated with these. Fluvial erosion features, as reflected in the channel threshold criteria, that are detectable on DEMs particularly using LIDAR, can extend high on hillslopes (Figure 4). The inclusion of these features depends on the objectives of natural resource applications, including physical and biological functions. High densities of headwater channels that encompass ephemeral hydrography may be of interest to hydrologists as sources of flow to larger, fish-bearing channels. Additionally, the merger of small ephemeral channels downslope creates larger tributaries that traverse valley floors that are predicted salmon habitats (Figure 3). Small ephemeral channels on steep terrain are also sources of landslide and debris flow potential⁸⁶ and are of interest to geologists for hazard mitigation.

Algorithmic hydrography could overpredict or underpredict the density of channel networks, depending on the channel initiation criteria that is used. One issue in underpredicting or overprediction is the definition of a channel. Are declivities that only run water for a few days a year, during high precipitation events or during

snowmelt runoff, a channel? Or, must a channel have flowing water year-round? As discussed above, ephemeral channels that have flow only during big storms can be corridors of channelized debris flows. If characterizing debris flow potential is important, then small declivities should be included that would increase stream density (Figure 4). If ephemeral channels are excluded, channel densities would be lower. But the confluencing of several ephemeral channels can lead to larger channels downstream and the potential for fish habitats. We used channel initiation thresholds necessary to capture most headwater channels that appear to be eroded by fluvial or debris flow processes. Initiation criteria vary based on the resolution of the DEM and the objectives of the modeler.

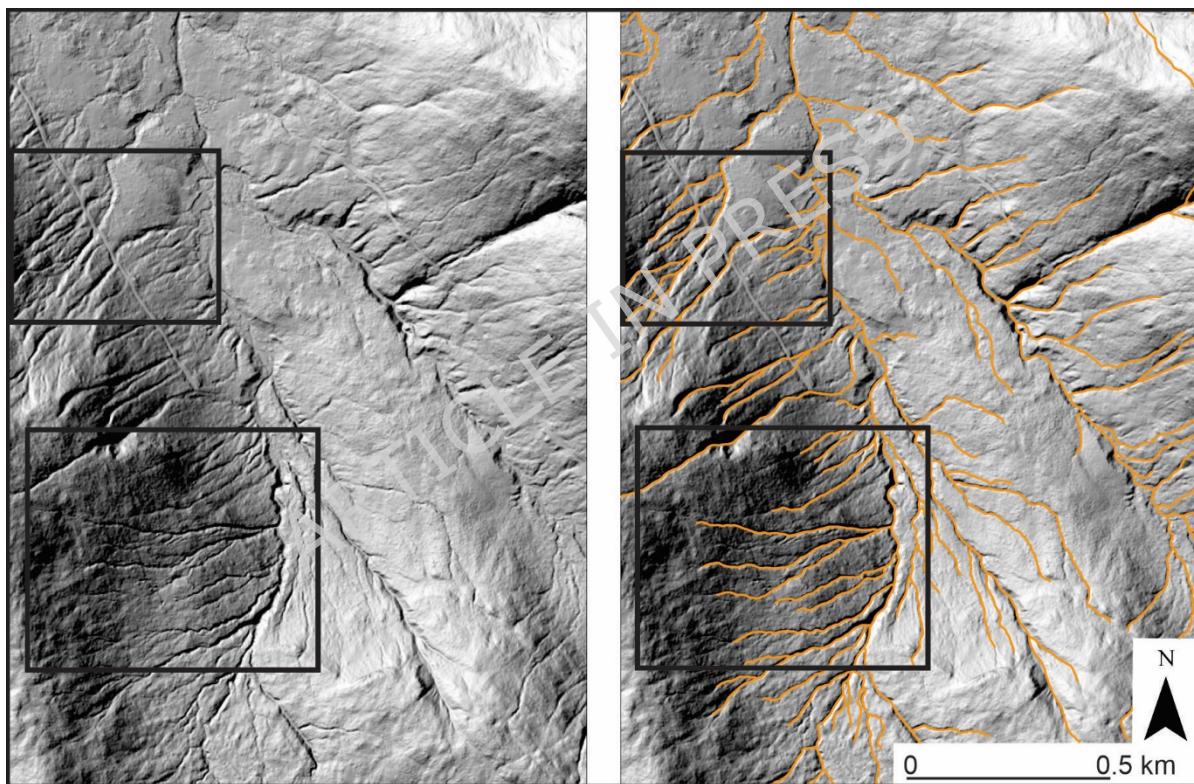


Figure 4. (Left panel) One meter LiDAR DEM (resampled to two meters) reveals the high density of ephemeral channels in a watershed on Kupreanof Island in southeast Alaska. (Right panel) Channel network initiation criteria were defined to capture the high density of ephemeral channels that are prone to landslides and debris flows and to identify the small valley floor streams that are formed from them that are predicted salmon habitats (e.g., Figure 3). Hence, target channel densities are

defined by hydrogeomorphic and biological functions. Map data source is same as Figure 2.

An important control on variation in delineated channel densities is the difference between IFSAR and LIDAR technologies. IFSAR is a radar product, and it characterizes the ground elevation surface that includes variation in vegetation height. Variations in vegetation height, whether natural (muskeg versus dense conifer forests) or human modified (forest versus clearcut), are reflected in the ground surface, complicating detection of channel features. Thus, poor resolution of topography using IFSAR DEMs can lead to incomplete channel delineation, particularly in forests of southeast and southcentral Alaska (Figure 2). Network completeness using IFSAR is greater in areas of low relief vegetation (shrubs and grasses), such as in the Colville River in the Arctic region where the NHD density of 1.2 is similar to the new IFSAR-based channel density of 1.3 (Table 1). In contrast, LIDAR penetrates vegetation depending on plant basal area and laser point density and thereby allows for greater accuracy of bare ground surface elevations and hence the detection of subtle fluvial erosion features.

Even in watersheds with similar cartographic and algorithmic river densities, hydrography delineated from digital elevation data is spatially more accurate. For example, in Arctic regions like the Colville River, IFSAR-based algorithmic river networks provide higher resolved hydrography in braided parts of networks compared to cartographic-based hydrography, similar to the lower Matanuska-Susitna River (e.g., Figure 2F-G). In addition, headwater first-order streams in the Arctic often appear more abundant and extend further upslope in the NHD than they exist on the ground. Our field observations of the upward extent of headwater streams in that landscape are consistent with the IFSAR river networks. It appears that cartographers, using aerial imagery, can mischaracterize linear wetland and muskeg features as channels, whereas algorithmic delineation of channels using digital elevation data requires detection of fluvial erosion in the form of declivities, however subtle.

Multiple geology, vegetation, modeling, and human factors also influence the detection of hydrographic features. For the cartographic NHD, the degree of

conspicuous fluvial erosion, density of obscuring vegetation, and objective and skill of the cartographer will influence the completeness of the mapped networks.

Channel density using LIDAR DEMs can vary significantly based on the threshold channel initiation criteria that are selected based on natural science objectives (encompassing ephemeral channels, identifying fish habitats, predicting landslide potential etc.) and the natural density of fluvial erosion features. For example, a high drainage density of 7.8 km km^{-2} in the LIDAR-based Kupreanof/Kuiu Island networks in southeast Alaska (Figure 4) resulted from a high density (closely spaced) of headwater ephemeral channels and the objectives of defining landslide and debris flow potential and of delineating valley bottom tributaries that are salmon habitats. Further determining the role of lithology, geological structure, glacial history, and erosion mechanisms on the variations in natural drainage density across Alaska would require additional modeling over larger areas to encompass greater variation in physiographic conditions.

The additional length of previously unidentified channels on valley floors as extensions of ephemeral headwaters and of additional braids and secondary channels of mainstem rivers (Figures 2 and 3), greatly increase abundance of predicted anadromous fish habitats (Table 1). The proportional increases in fish habitat length over the lengths of salmon habitats documented within the Anadromous Waters Catalog are substantial and average hundreds of percent. Presumably, Intrinsic Potential salmon models if applied to the NHD networks would also reveal increased lengths of predictive habitats, although not to the extent revealed by IFSAR and LIDAR networks. But the NHD data structure (channel lengths of kilometers and lack of channel gradients and drainage area attributes) limits direct applications of existing salmon models in the NHD. Predictions of new fish habitats could be used by federal and state agencies, and NGOs, to guide new field surveys to verify accessible fish habitats and fish occupancy across the state of Alaska. However, if the AWC continues to require on-the-ground confirmation of fish biomass in streams (field documentation of at least two fish), then the utility of model-predicted mapping of salmon habitats to guide resource management, in the absence of field validation, will be limited.

Creating an accurate and complete algorithmic stream network for Alaska will be key to protecting diadromous fish and freshwater biodiversity. Fish move across riverscapes in response to shifting conditions and select a variety of habitats over their lives to maximize fitness and survival. Salmonid species use a suite of permanent and temporary aquatic habitats⁹⁷ that is influenced by landscape complementation⁹⁸ and neighborhood effects. For example, coho salmon often spawn in small headwater streams in southeast Alaska and juveniles often move into wetland complexes, small lakes, or first- order tributaries to rear prior to heading to sea^{99,100}. Many of these productive rearing habitats (and connectivity corridors between habitats) may not currently be mapped and therefore they are at risk from development activities such as logging and mining.

Higher resolution and more comprehensive stream networks are valuable on their own. But more spatially extensive and accurate stream networks that are embedded within a virtual watershed data structure can be used to evaluate the full range of hydro-geomorphic processes in river ecosystems and the effects of human activities on them^{35,36,41}. Such virtual watersheds have five analytical features as outlined in Section 2.2: 1) channel delineation using a node-based data structure that supports variable channel length scales; 2) lotic-lentic-terrestrial connectivity and landscape discretization using flow directions and accumulation; 3) channel nodes or channel reaches attributed with watershed and channel information; 4) landform characterization, including floodplains, wetlands, and erosion sources, among others; and 5) downstream-upstream routing and data aggregation. This data structure supports a suite of analyses including characterizing and identifying critical habitats and supporting conservation and restoration problem solving^{38,39}. For example, the Keex' Kwáan Community Forest Partnership used virtual watersheds in portions of Kupreanof/Kuiu Island to conduct an analysis of effects of forest roads on salmon habitat¹⁰¹. LiDAR-based algorithmic networks within virtual watersheds allowed ranking of all road-stream crossings by the length of habitats that could be restored by upgrading the crossings.

In practice, virtual watersheds have been used to characterize geomorphic attributes of channel networks in Oregon^{74,75}, Washington¹⁰², Alaska^{17,56}, Spain^{36,103,104}, and Uruguay¹⁰⁵; identify fish habitats and floodplains in the Pacific

Northwest^{15,17,53,56,106,107}; quantify ecological effects of tributary confluence in the western U.S.^{68,108-110}; forecast post-wildfire impacts on fisheries in Washington¹¹¹; predict shade and wood recruitment to streams in Spain^{112,113}; create channel classification models in Alberta^{114,115}; predict forest road erosion in China¹¹⁶; evaluate effects of climate change on fish habitat in Alaska¹¹⁷; evaluate potential for landslides and debris flows in Oregon^{86,87,110}; and create ecosystem evaluation models on the Iberian Peninsula³⁸.

The virtual watersheds and their algorithmic networks described in this paper in the four Alaska physiographic regions are distinct from the USGS 3DHP program that is being used to update the National Map of waterbodies in Alaska. The USGS 3DHP program uses IFSAR and to a lesser extent LIDAR DEMs to create more spatially accurate digital hydrography. 3DHP hydrography doesn't include the physical attributes necessary to readily predict salmon habitats or to support other natural resource applications of virtual watersheds. However, virtual watersheds in Alaska could contribute to the 3DHP program by providing value-added features¹¹⁸, including watershed and channel attributes. Conversely, updated hydrography created by the 3DHP program could be used as the network template to create virtual watersheds, thus promoting spatial consistency across the National Map and virtual watersheds at regional scales.

The analytical limitations of existing digital hydrography in Alaska described here is a problem that exists worldwide. In 2015, network completeness and analytical capabilities of official country-wide digital hydrography were evaluated in five countries—Canada, China, Russia, Spain, and the U. S.³⁹ All national-level hydrography lacked in network completeness and analytical capabilities (to conduct the types of studies cited above). The incidence of low resolution and incomplete hydrography with few channel and watershed attributes and with limited analysis potential is thus common globally. The Alaska project that describes the evolution of channel network and watershed geospatial capabilities through the incorporation of algorithmic networks within virtual watersheds offers a guide to other countries, provinces, states, and regions for updating their own geospatial resources to advance environmental problem solving, including the conservation of aquatic habitats^{38,39}.

5.0 Conclusions

We present a new approach for delineating hydrography using newly available IFSAR and LiDAR digital elevation models in four physiographic regions of Alaska. A comparison of stream densities among the newly developed algorithmic hydrography and the older cartographically derived hydrography in the National Hydrography Dataset revealed that the State of Alaska has had incompletely mapped river networks. Our analysis illustrates that many headwater and valley streams are missing from existing federal and state maps of Alaskan hydrography. Application of computer-based algorithms using IFSAR and LiDAR DEMs led to detection of thousands of kilometers of newly identified channels, ranging from headwaters to valley bottom streams. These newly delineated streams on maps represent hundreds of percent increases in cumulative channel lengths across multiple watersheds and islands.

The existing incomplete cartographic hydrography of the original NHD provides the base layer for Alaska's Anadromous Waters Catalog which consequently underestimates the spatial extent of salmon habitats. Application of salmon models using attributed algorithmic hydrography in virtual watersheds has led to hundreds of percent increases in predicted habitats across the four physiographic regions. Existing state hydrography also lacks the data structure for evaluating resource development and conservation activities, including identifying the extent of fish habitats and potential impacts from mining, logging, urban development, and hydropower. The new science and technology of virtual watersheds described here has the potential to increase the state of Alaska's ability to identify and protect salmon habitats.

Newly available statewide IFSAR digital elevation data are supporting the creation of more complete and higher resolution digital hydrography by the USGS. Being a radar product, the use of IFSAR for network extraction is most appropriate in areas of limited vegetation cover (north of southcentral Alaska). LiDAR DEMs are coming online in southcentral and southeast Alaska in areas of dense vegetation cover. The

USGS 3DEP and 3DHP programs in Alaska that are being used to update the National Map of streams and other waterbodies lack the numerical data structure necessary to build virtual watersheds. However, the 3DEP and 3DHP networks can be integrated within virtual watersheds, including the node-based and attributed networks, to create value-added geospatial products¹¹⁹.

Incomplete hydrography and its limitations in analytical capabilities extend beyond Alaska to other regions, provinces, states, and countries. The Alaska project described here presents a model on how national hydrography can be updated and given analytical capabilities to enhance understanding of freshwater and diadromous fish habitats. Virtual watersheds can be used to plan strategic conservation to combat freshwater fish biodiversity loss and address 21st century challenges in other areas globally¹¹⁹.

Data and Program Availability

The datasets and the Fortran code that were used during this study are available on request from the authors.

Acknowledgments

This work was generously supported by funding made available to the authors in the design, development, and application of virtual watersheds in Alaska, including the U.S. Forest Service, U.S. Resource Conservation Service, Ecotrust, The Nature Conservancy, U.S. Geological Survey, University of Alaska, and The Wilderness Society. We thank the four anonymous reviewers for the valuable feedback and helpful suggestions that improved the manuscript.

References

- 1 Albert, J. S. *et al.* Scientists' warning to humanity on the freshwater biodiversity crisis. *Ambio* **50**, 85-94 (2021). <https://doi.org:10.1007/s13280-020-01318-8>
- 2 Collen, B. *et al.* Global patterns of freshwater species diversity, threat and endemism. *Glob. Ecol. Biogeogr.* **23**, 40-51 (2014). <https://doi.org:10.1111/geb.12096>
- 3 Su, G. *et al.* Human impacts on global freshwater fish biodiversity. *Science* **371**, 835-838 (2021). <https://doi.org:10.1126/science.abd3369>

4 Lynch, A. J. *et al.* People need freshwater biodiversity. *WIREs Water* **10** (2023). <https://doi.org/10.1002/wat2.1633>

5 Dudgeon, D. Multiple threats imperil freshwater biodiversity in the Anthropocene. *Curr. Biol.* **29**, R960-R967 (2019). <https://doi.org/10.1016/j.cub.2019.08.002>

6 Dudgeon, D. *et al.* Freshwater biodiversity: importance, threats, status and conservation challenges. *Biol. Rev. Camb. Philos. Soc.* **81**, 163-182 (2006). <https://doi.org/10.1017/S1464793105006950>

7 Comte, L., Olden, J. D., Tedesco, P. A., Ruhi, A. & Giam, X. Climate and land-use changes interact to drive long-term reorganization of riverine fish communities globally. *Proc. Natl. Acad. Sci. U. S. A.* **118** (2021). <https://doi.org/10.1073/pnas.2011639118>

8 Schindler, D. W. & Smol, J. P. Cumulative effects of climate warming and other human activities on freshwaters of Arctic and subarctic North America. *Ambio* **35**, 160-168 (2006). [https://doi.org/10.1579/0044-7447\(2006\)35\[160:ceocwa\]2.0.co;2](https://doi.org/10.1579/0044-7447(2006)35[160:ceocwa]2.0.co;2)

9 Trombulak, S. C. & Frissell, C. A. Review of ecological effects of roads on terrestrial and aquatic communities. *Conserv. Biol.* **14**, 18-30 (2000). <https://doi.org/10.1046/j.1523-1739.2000.99084.x>

10 Barbarossa, V. *et al.* Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. *Proc. Natl. Acad. Sci. U. S. A.* **117**, 3648-3655 (2020). <https://doi.org/10.1073/pnas.1912776117>

11 Fuller, M. R., Doyle, M. W. & Strayer, D. L. Causes and consequences of habitat fragmentation in river networks. *Ann. N. Y. Acad. Sci.* **1355**, 31-51 (2015). <https://doi.org/10.1111/nyas.12853>

12 Grill, G. *et al.* Mapping the world's free-flowing rivers. *Nature* **569**, 215-221 (2019). <https://doi.org/10.1038/s41586-019-1111-9>

13 Schoen, E. R., Wipfli, M. S., Trammell, E. J., Rinella, D. J. & others. Future of Pacific salmon in the face of environmental change: Lessons from one of the world's remaining productive salmon regions. *Fisheries* (2017).

14 Waldman, J. R. & Quinn, T. P. North American diadromous fishes: Drivers of decline and potential for recovery in the Anthropocene. *Sci Adv* **8**, eabl5486 (2022). <https://doi.org/10.1126/sciadv.abl5486>

15 Leppi, J. C. *et al.* Landscape geomorphology and local-riverine features influence Broad Whitefish (*Coregonus nasus*) spawning habitat suitability in Arctic Alaska. *Ecology of Freshwater Fish* **31**, 622-639 (2022).

16 Mathis, L. M., Pella, H. & Thibault, D. Inconsistent Regulatory Mapping Quietly Threatens Rivers and Streams. *Environmental Science & Technology* **58**, 17201-17214

17 Bidlack, A. L., Benda, L. E., Miewald, T., Reeves, G. H. & McMahan, G. Identifying suitable habitat for Chinook salmon across a large, glaciated watershed. *Transaction of the American Fisheries Society* **143**, 689-699 (2014). <https://doi.org/10.1080/00028487.2014.880739>

18 Burnett, K. M. *et al.* Distribution of salmon-habitat potential relative to landscape characteristics and implications for conservation. *Ecological Applications* **17**, 66-80 (2007).

19 Penaluna, B. E. *et al.* UPRLIMET: UPstream Regional LiDAR Model for Extent of Trout in stream networks. *Sci Rep* **12**, 20266 (2022). <https://doi.org/10.1038/s41598-022-23754-0>

20 Benda, L. E., Veldhuisen, C. & Black, J. Debris flows as agents of morphological heterogeneity at low-order confluences, Olympic Mountains, Washington. *Geological Society of America Bulletin* **115**, 1110-1121 (2003).

21 Reeves, G. H., Benda, L. E., Burnett, K. M., Bisson, P. A. & Sedell, J. R. in *Evolution and the Aquatic Ecosystem: Defining Unique Units in Population Conservation, American Fisheries Society Symposium 17* (eds J. L. Nielson & D. A. Powers) 334-349 (American Fisheries Society, 1995).

22 Ebersole, J. L., Wigington, P. J., Leibowitz, S. G., Comeleo, R. L. & Van Sickle, J. Predicting the occurrence of cold-water patches at intermittent and ephemeral tributary confluences with warm rivers. *Freshwater Science* **34**, 111-124 (2015). <https://doi.org:DOI>: 10.1086/678127

23 Karki, S. *et al.* Does the topology of the river network influence the delivery of riverine ecosystem services? *River Research and Applications* **37**, 256-269 (2020).

24 Rice, S. P., Greenwood, M. T. & Joyce, C. B. Tributaries, sediment sources, and the longitudinal organisation of macroinvertebrate fauna along river systems. *Canadian Journal of Fisheries and Aquatic Sciences* **58**, 824-840 (2001). <https://doi.org:DOI>: 10.1139/cjfas-58-4-824

25 Benda, L. *et al.* The Network Dynamics Hypothesis: How Channel Networks Structure Riverine Habitats. *Bioscience* **54**, 413-427 (2004). [https://doi.org:10.1641/0006-3568\(2004\)054\[0413:TNDHHC\]2.0.CO;2](https://doi.org:10.1641/0006-3568(2004)054[0413:TNDHHC]2.0.CO;2)

26 Mauger, S., Shaftel, R., Leppi, J. C. & Rinella, D. J. Summer temperature regimes in southcentral Alaska streams: watershed drivers of variation and potential implications for Pacific salmon. *Canadian Journal of Fisheries and Aquatic Sciences* **74**, 702-715 (2017).

27 Power, M. E., Parker, M. S. & Dietrich, W. E. Seasonal reassembly of river food webs under a Mediterranean hydrologic regime: floods, droughts, and impacts on fish. *Ecological Monographs* **78**, 263-282 (2008).

28 Rossi, G. *et al.* Foodscapes for Salmon and Other Mobile Consumers in River Networks. *BioScience* **0**, 1-15 (2024).

29 Swanson, F. J., Kratz, T. K., Caine, N. & Woodmansee, R. G. Landform effects on ecosystem patterns and processes. *BioScience* **38**, 92-98 (1988).

30 Wondzell, S. M. The role of hyporheic zone across stream networks. *Hydrological Processes* **25**, 3525-3532 (2011).

31 Dakin Kuiper, S. *et al.* Characterizing stream morphological features important for fish habitat using airborne laser scanning data. *Remote Sensing of Environment* **272** (2022). <https://doi.org:10.1016/j.rse.2022.112948>

32 Hauer, C., Unfer, G., Tritthart, M. & Habersack, H. Effects of stream channel morphology, transport processes and effective discharge on salmonid spawning habitats. *Earth Surface Processes and Landforms* **36**, 672-685 (2011). <https://doi.org:10.1002/esp.2087>

33 Tompalski, P., Coops, N. C., White, J. C., Wulder, M. A. & Yuill, A. Characterizing streams and riparian areas with airborne laser scanning data. *Remote Sensing of Environment* **192**, 73-86 (2017). <https://doi.org:10.1016/j.rse.2017.01.038>

34 McCleary, R. J. *Landscape Organization Based on Application of the Process Domain Concept for a Glaciated Foothills Region* Doctor of Philosophy thesis, The University of British Columbia, (2011).

35 Clarke, S. & Burnett, K. Comparison of Digital Elevation Models for Aquatic Data Development. *Photogrammetric Engineering & Remote Sensing* **69**, 1367-1375 (2003). <https://doi.org/10.14358/PERS.69.12.1367>

36 Peñas, F. J., Fernández, F., Calvo, M., Barquín, J. & Pedraz, L. Influence of data sources and processing methods on theoretical river network quality. *Limnetica* **30**, 197-216 (2011). <https://doi.org/10.23818/lmn.30.16>

37 Zhang, W. & Montgomery, D. R. Digital elevation model grid size, landscape representation, and hydrologic simulations. *Water Resources Research* **30**, 1019-1028 (1994).

38 Barquín, J. *et al.* Coupling virtual watersheds with ecosystem services assessment: a 21st century platform to support river research and management. *WIREs Water* **2**, 609-621 (2015). <https://doi.org/10.1002/wat2.1106>

39 Benda, L. *et al.* Building virtual watersheds: a global opportunity to strengthen resource management and conservation. *Environmental Management* **57**, 722-739 (2016). <https://doi.org/10.1007/s00267-015-0634-6>

40 Maxwell, A. E. & Shobe, C. M. Land-surface parameters for spatial predictive mapping and modeling. *Earth-Science Reviews* **226** (2022). <https://doi.org/10.1016/j.earscirev.2022.103944>

41 Pirotti, F. & Tarolli, P. Suitability of LiDAR point density and derived landform curvature maps for channel network extraction. *Hydrological Processes* **24**, 1187-1197 (2010). <https://doi.org/10.1002/hyp.7582>

42 Craun, K. J. Mapping benefits from updated Ifsar data in Alaska—Improved source data enables better maps. 2p (2015).

43 Maune, D. F. in *American Society of Photogrammetry and Remote Sensing (ASPRS) Annual Conference*. 967 (Curran Associates, Inc.).

44 Miller, D., Benda, L., DePasquale, J. & Albert, D. Creation of a digital flowline network from IfSAR 5-m DEMs for the Matanuska-Susitna Basins: a resource for update of the National Hydrographic Dataset in Alaska. (2015).

45 U.S.G.S. Elevation-Derived hydrography Data Aquisition Specifications 2024. rev. A. 164 pp. (2024).

46 Archuleta, C. M. & Terziotti, S. Elevation-Derived Hydrography - Representation, Extraction, Attribution, and Delineation Rules. 60 pp. (U.S. Geological Survey, 2023).

47 Dietterick, B. C., White, R. & Hilburn, R. in *Proceedings of coast redwood forests in a changing California: A symposium for scientists and managers. Gen. Tech. Rep. PSW-GTR-238* (eds Richard B. Standiford, Theodore J. Weller, Douglas D. Piirto, & John D. Stuart) 639-648 (Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, 2012).

48 James, L. A., Watson, D. G. & Hansen, W. F. Using LiDAR data to map gullies and headwater streams under forest canopy: South Carolina, USA. *Catena* **71**, 132-144 (2007). <https://doi.org/10.1016/j.catena.2006.10.010>

49 Metes, M. J. *et al.* Ephemeral Stream Network Extraction from Lidar-Derived Elevation and Topographic Attributes in Urban and Forested Landscapes. *JAWRA Journal of the American Water Resources Association* **58**, 547-565 (2022). <https://doi.org/10.1111/1752-1688.13012>

50 Range, B. C. M. o. F. a. in *2nd edition, version 2.1. ISBN 07726-3664-8*. (1998).

51 Forest practices board manual, s. Washington Forest Practices Board. (Olympia, Washington, 2002).

52 Service, U. S. F. Vol. Chapter 20-Fish and Aquatic Stream Habitat Survey 55
(U. S. Forest Service, 2001).

53 Romey, B. T. & Martin, D. Landscape-level model for predicting juvenile coho salmon rearing habitat in southeast Alaska. (2018).

54 McCleary, R. J. & Hassan, M. A. Predictive modeling and spatial mapping of fish distributions in small streams of the Canadian Rocky Mountain foothills. *Canadian Journal of Fisheries and Aquatic Science* **65**, 319-333 (2008).
<https://doi.org:10.1139/F07-161>

55 Pess, G. R. *et al.* Historic and current factors that limit Coho salmon (*Oncorhynchus kisutch*) production in the Stillaguamish River basin, Washington State: implications for salmonid habitat protection and restoration., (Prepared for Snohomish County Department of Public Works and The Stillaguamish Tribe of Indians, 1999).

56 Romey, B. T. *Modeling spawning habitat potential for chum (*Oncorhynchus keta*) and pink salmon (*O. gorbuscha*) in relation to landscape characteristics in coastal Southeast Alaska* Master of Science thesis, Portland State University, (2018).

57 Sockeye Salmon Intrinsic Potential Model (Terrainworks, Mt. Shasta, California, 2016).

58 Dittbrenner, B. J. *et al.* Modeling intrinsic potential for beaver (*Castor canadensis*) habitat to inform restoration and climate change adaptation. *PLoS ONE* **13**, e0192538 (2018).

59 Pollock, M. M., Pess, G., Beechie, T. J. & Montgomery, D. R. The importance of beaver ponds to coho salmon production in the Stillaguamish River basin, Washington, USA. *North American Journal of Fisheries Management* **24**, 749-760 (2004).

60 Ruggerone, G. T., Agler, B. A. & Nielsen, J. L. Evidence for competition at sea between Norton Sound chum salmon and Asian hatchery chum salmon. *Environmental Biology of Fishes* **94**, 149-163 (2012).

61 Heinl, S. C. *et al.* Vol. Fishery manuscript series 17-11. (ed Alaska Department of Fish and Game) 105pp. (2017).

62 Murphy, M. L. (ed NOAA Coastal Ocean Program Decision Analysis Series No. 7) 156 pp. (NOAA Coastal Ocean Office, Silver Spring, MD, 1995).

63 Cathcart, C. N. Flying the Frontier: Perspectives from the Great Alaska Freshwater Fish Inventory. *Fisheries* **44**, 398-402 (2019).

64 Geifer, J. & Graziano, S. Vol. Special Publications No. 24-01 to 24-06. (ed Alaska Department of Fish and Game) (2024).

65 Burnett, K. M. *et al.* 2011 Arctic-Yukon-Kuskokwim Sustainable Salmon Initiative, Landscape Predictors of Coho Salmon. 79 (2013).

66 Terziotti, S. & Archuleta, C. M. Elevation-Derived Hydrography Acquisition Specifications. (U.S. Geological Survey, 2020).

67 Benda, L. *et al.* NetMap: A new tool in support of watershed science and resource management. *Forest Science* **53**, 206-219 (2007).

68 Benda, L. E., Miller, D. J. & Barquin, J. Creating a catchment scale perspective for river restoration. *Hydrology and Earth System Science* **15**, 2995-3015 (2011). <https://doi.org:10.5194/hess-15-2995-2011>

69 Benda, L. E. & Dunne, T. Stochastic forcing of sediment supply to channel networks from landsliding and debris flow. *Water Resources Research* **33**, 2849-2863 (1997).

70 Benda, L. E. & Dunne, T. Stochastic forcing of sediment routing and storage in channel networks. *Water Resources Research* **33**, 2865-2880 (1997).

71 Benda, L. E., Miller, D. J., Dunne, T., Reeves, G. H. & Agee, J. K. in *River Ecology and Management* (eds Robert J. Naiman & Robert E. Bilby) 261-288 (Springer-Verlag, 1998).

72 Miller, D., Benda, L., Furniss, M. & Penney, M. in *General Technical Report RMRS-GTR-101-CD* (US Forest Service, 2002).

73 Agrawal, A. *et al.* Predicting the potential for historical coho, chinook and steelhead habitat in northern California, NOAA Technical Memorandum NMFS. 25 (National Oceanic and Atmospheric Administration, 2005).

74 Clarke, S. E., Burnett, K. M. & Miller, D. J. Modeling streams and hydrogeomorphic attributes in Oregon from digital and field data. *Journal of the American Water Resources Association* **44**, 459-477 (2008). <https://doi.org:DOI: 10.1111/j.1752-1688.2008.00175.x>

75 Sheer, M. B. & Steel, E. A. Lost watersheds: barriers, aquatic habitat connectivity, and salmon persistence in the Willamette and Lower Columbia river basins. *Transactions of the American Fisheries Society* **135**, 1645-1669 (2006). <https://doi.org:doi: 10.1577/T05-221.1>

76 Steel, E. A. *et al.* Landscape models to understand steelhead (*Oncorhynchusmykiss*) distribution and help prioritize barrier removals in the Willamette basin, Oregon, USA. *Canadian Journal of Fisheries and Aquatic Science* **61**, 999-1011 (2004). <https://doi.org:doi: 10.1139/F04-042>

77 Steel, E. A. *et al.* A spatially explicit decision support system for watershed-scale management of salmon. *Ecology and Society* **13**, 50 (2008).

78 Miller, D. J. in *Landscape Dynamics and Forest Management, General Technical Report RMRS-GTR-101CD* (USDA Forest Service, Rocky Mountain Research Station, 2003).

79 Cucchiaro, S. *et al.* How does co-registration affect geomorphic change estimates in multi-temporal surveys? *Geoscience & Remote Sensing* **57**, 611-632 (2020). <https://doi.org:10.1080/15481603.2020.1763048>

80 Soille, P., Vogt, J. & Colombo, R. Carving and adaptive drainage enforcement of grid digital elevation models. *Water Resources Research* **39** (2003). <https://doi.org:doi:10.1029/2002WR001879>

81 Montgomery, D. R. & Foufoula-Georgiou, E. Channel network source representation using digital elevation models. *Water Resources Research* **29**, 3925-3934 (1993).

82 Tarboton, D. G. A new method for the determination of flow directions and upslope areas in grid digital elevation models. *Water Resources Research* **33**, 309-319 (1997).

83 Jasiewicz, J. & Stepinski, T. F. Geomorphons - a pattern recognition approach to classification and mapping of landforms. *Geomorphology* **182**, 147-156 (2013). <https://doi.org:10.1016/j.geomorph.2012.11.005>

84 Newman, D. R., Lindsay, J. B. & Cockburn, J. M. H. Evaluating metrics of local topographic position for multiscale geomorphometric analysis. *Geomorphology* **312**, 40-50 (2018). <https://doi.org:10.1016/j.geomorph.2018.04.003>

85 Orlandini, S., Moretti, G., Franchini, M., Aldighieri, B. & Testa, B. Path-based methods for the determination of nondispersive drainage directions in grid-based digital elevation models. *Water Resources Research* **39** (2003). <https://doi.org:10.1029/2002WR001639>

86 Miller, D. J. & Burnett, K. M. Effects of forest cover, topography, and sampling extent on the measured density of shallow, translational landslides. *Water Resources Research* **43**, 23 (2007). <https://doi.org:10.1029/2005WR004807>

87 Miller, D. J. & Burnett, K. M. A probabilistic model of debris-flow delivery to stream channels, demonstrated for the Coast Range of Oregon, USA. *Geomorphology* **94**, 184-205 (2008).

88 Halabisky, M. *et al.* The Wetland Intrinsic Potential tool: Mapping wetland intrinsic potential through machine learning of multi-scale remote sensing proxies of wetland indicators. *Hydrology and Earth System Science* **27** (2022). <https://doi.org:https://doi.org/10.5194/hess-27-3687-2022>

89 Busch, D. S., Sheer, M., Burnett, K., McElhany, P. & Cooney, T. Landscape-level model to predict spawning habitat for Lower Columbia River Fall Chinook Salmon (*Oncorhynchus tshawytscha*). *River Research and Applications* (2011). <https://doi.org:10.1002/rra.1597>

90 Flitcroft, R., Burnett, K., Snyder, J., Reeves, G. & Ganio, L. Riverscape patterns among years of juvenile coho salmon in midcoastal Oregon: implications for conservation. *Transaction of the American Fisheries Society* **143**, 26-38 (2014).

91 Manly, B. F. J., McDonald, L. L., Thomas, D. L. & Erickson, W. P. *Resource selection by animals: Statistical design and analysis for field studies*. (Springer, 2002).

92 Fransen, B. R., Duke, S. D., McWethy, L. G., Walter, J. K. & Bilby, R. E. A logistic regression model for predicting the upstream extent of fish occurrence based on geographical information systems data. *North American Journal of Fisheries Management* **26**, 960-975 (2006). <https://doi.org:doi:10.1577/M04-187.1>

93 Mochnacz, N. J., MacKenzie, D. I., Koper, N., Docker, M. F. & Isaak, D. J. Fringe effects: detecting bull trout (*Salvelinus confluentus*) at distributional boundaries in a montane watershed. *Canadian Journal of Fisheries and Aquatic Sciences:1-15.* **78**, 1030-1044 (2021).

94 Walther, E. J., Zimmerman, M. S. & Westley, P. A. H. Landscape attributes explain salmonid ecological neighbourhoods across a complex river network. *Freshwater Biology* **66**, 1930-1948 (2021).

95 Schwartz, J. S. *Influence of geomorphology and land use on distribution and abundance of salmonids in a coastal Oregon basin* Master of Science thesis, Oregon State University, Corvallis, OR., (1990).

96 Romey, B. & Martin, D. Landscape-Level Extent of Resident Fish Occupancy in the Alexander Archipelago Predicting resident salmonid population boundaries with variable-length reach habitat attributes derived from high-resolution LiDAR. (Washington State, 2023).

97 Heim, K. C., McMahon, T. E., Calle, L., Wipfli, M. S. & Falke, J. A. A general model of temporary aquatic habitat use: Water phenology as a life history filter. *Fish Fish* (2019). <https://doi.org:10.1111/faf.12386>

98 White, S. M. & Rahel, F. J. Complementation of Habitats for Bonneville Cutthroat Trout in Watersheds Influenced by Beavers, Livestock, and Drought. *Transactions of the American Fisheries Society* **137**, 881-894 (2008).

99 Addicott, J. F. *et al.* Ecological Neighborhoods: Scaling Environmental Patterns. *Oikos* **49**, 340-346 (1987). <https://doi.org:10.2307/3565770>

100 Falke, J. A., Dunham, J. B., Jordan, C. E., McNyset, K. M. & Reeves, G. H. Spatial ecological processes and local factors predict the distribution and abundance of spawning by Steelhead (*Oncorhynchus mykiss*) across a complex riverscape. *PLoS One* **8** (2013).

101 Christensen, R. Keex' Kwáan Community Forest Partnership Landscape Assessment. 22 (Keex' Kwáan Community, 2024).

102 Cram, J. M. *et al.* Spatial Variability of Chinook Salmon Spawning Distribution and Habitat Preferences. *Transaction of the American Fisheries Society* **146**, 206-221 (2017).

103 González-Ferreras, A. M. & Barquín, J. Mapping the temporary and perennial character of whole river networks. *Water Resources Research* (2017). <https://doi.org/10.1002/2017wr020390>

104 Alvarez-Cabria, M., Gonzalez-Ferreras, A. M., Penas, F. J. & Barquin, J. Modelling macroinvertebrate and fish biotic indices: From reaches to entire river networks. *Sci Total Environ* **577**, 308-318 (2017). <https://doi.org/10.1016/j.scitotenv.2016.10.186>

105 Mazzeo, N. *et al.* Inter and transdisciplinarity strategies for evaluating and improving water quality monitoring systems: Uruguay as a study case. *Environmental Science & Policy* **154** (2024).

106 Fraley, K. M., Falke, J. A., Yanusz, R. & Ivey, S. Seasonal movements and habitat use ofSeasonal movements and habitat use of potamodromous Rainbow Trout across a complex Alaska riverscape. *Transactions of the American Fisheries Society* **145**, 1077-1092 (2016).

107 Huntsman, B. M. & Falke, J. A. Main stem and off-channel habitat use by juvenile Chinook salmon in a sub-Arctic riverscape. *Freshwater Biology* **64**, 433-446 (2019).

108 Benda, L. E. *et al.* The network dynamics hypothesis: how channel networks structure riverine habitats. *BioScience* **54**, 413-427 (2004).

109 Benda, L. E., Andras, K., Miller, D. J. & Bigelow, P. Confluence effects in rivers: Interactions of basin scale, network geometry, and disturbance regimes. *Water Resources Research* **40**, W05402 (2004). <https://doi.org/10.1029/2003WR002583>

110 Bigelow, P. E., Benda, L. E., Miller, D. J. & Burnett, K. M. On debris flows, river networks, and the spatial structure of channel morphology. *Forest Science* **53**, 220-238 (2007).

111 Flitcroft, R. L. *et al.* Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA. *Forest Ecology and Management* **359**, 126-140 (2016).

112 Atha, J. B. *Fluvial wood presence and dynamics over a thirty year interval in forested watersheds* PhD thesis, University of Oregon, (2013).

113 Fernández, D., Barquín, J., Álvarez-Cabria, M. & Peñas, F. J. Delineating riparian zones for entire river networks using geomorphological criteria. *Hydrology and Earth System Sciences* **9**, 4045-4071 (2012).

114 McCleary, R. J., Hassan, M. A., Miller, D. & Moore, R. D. Spatial organization of process domains in headwater drainage basins of a glaciated foothills region with complex longitudinal profiles. *Water Resources Research* **47** (2011). <https://doi.org/10.1029/2010WR009800>

115 Peñas, F. J., Barquín, J., Snelder, T. H., Booker, D. J. & Álvarez, C. The influence of methodological procedures on hydrological classification

performance. *Hydrol. Earth Syst. Sci.* **18**, 3393-3409 (2014).
<https://doi.org/10.5194/hess-18-3393-2014>

116 Ji, Y., Tijui, C. & Cunyoug, J. An introduction to NetMap: a new technology of
management and assessment of forest watershed ecosystem. *Forest
Engineering* **29**, 44-48 (2013).

117 Sloat, M. R., Reeves, G. H. & Christiansen, K. R. Stream network
geomorphology mediates predicted vulnerability of anadromous fish habitat
to hydrologic change in southeast Alaska. *Glob Chang Biol* **23**, 604-620
(2017). <https://doi.org/10.1111/gcb.13466>

118 Jones, J. & Benda, L. in *Alaska Geosummit 2025*. (Alaska Geospatial Council).

119 Benda, L. & Jones, J. in *Alaska Geosummit 2025*. (Alaska Geospatial Council).