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Accurate prediction of dissolved oxygen (DO) is essential for the sustainable operation of drinking 
water treatment plants. Conventional approaches often rely on a single feature selection method, 
which can result in biased or inconsistent identification of key predictors. This study proposes a 
sequential hybrid framework that integrates Mutual Information (MI), Mean Decrease in Impurity 
(MDI), Permutation Importance, and SHAP interpretability to achieve robust and transparent DO 
prediction. Filter-based (MI) and embedded (MDI) methods were first employed for initial relevance 
screening, followed by performance-based validation using Permutation Importance, while SHAP 
provided both global and local interpretability and reconciled ranking discrepancies. Seven influent 
water quality parameters were used to train Random Forest (RF) and XGBoost (XGB) models. Feature 
importance analysis consistently identified historical DO, water temperature, and turbidity as the 
dominant predictors, whereas pH and NO₂ had minimal influence. Dimensionality reduction preserved 
predictive accuracy while reducing model complexity by up to 70%, thereby enhancing computational 
efficiency. Both models demonstrated strong performance (R² = 0.928 for RF and 0.942 for XGB; 
RMSE < 0.27 mg/L) with narrow 95% confidence intervals. The proposed framework provides a reliable, 
interpretable, and cost-effective solution for real-time DO monitoring in drinking water treatment 
systems and offers a transferable methodology for other environmental modeling applications.
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 Clean water is an essential requirement for a thriving society, as domestic, industrial, and agricultural activities 
rely heavily on its availability, quality, and long-term sustainability1,2. DO is a critical parameter for evaluating 
water quality in drinking water treatment plants (DWTPs), although its operational significance varies 
considerably depending on raw water characteristics. DO becomes particularly vital in polluted, stagnant, 
or low-flow raw waters, where low oxygen levels foster anaerobic conditions. These conditions promote the 
release of undesirable constituents—such as iron, manganese, and ammonia—and stimulate the proliferation of 
pathogenic or nuisance microorganisms, thereby significantly complicating treatment processes3–5. In anaerobic 
groundwater sources, adequate DO is indispensable for biological filtration systems to effectively oxidize and 
remove iron, manganese, and ammonium, ensuring compliance with drinking water standards4,5. Likewise, in 
stratified or eutrophic reservoirs, hypoxic or anoxic conditions in hypolimnetic layers can trigger the release 
of metals and nutrients from sediments, severely impairing raw water quality6,7. DO is also crucial for aerobic 
biological processes, such as slow sand filtration, where insufficient oxygen or flow interruptions can induce 
anoxic zones, compromising filtration efficiency and overall treatment reliability8. Conversely, in clean, well-
oxygenated raw waters with minimal pollution loads, DO plays a less critical operational role, yet it remains a 
valuable indicator of overall water quality and system stability9,10. In predominantly physico-chemical treatment 
trains—such as coagulation–flocculation or advanced oxidation processes—DO has limited direct influence but 
can still affect secondary phenomena, including corrosion and redox-mediated reactions11. This highly context-
dependent role of DO underscores the need for robust predictive modeling approaches to enable optimized DO 
management across diverse raw water conditions—the central focus of the present study.

Recent advances in ML have provided powerful tools for modeling complex, nonlinear, and multivariate 
systems, offering superior alternatives to conventional statistical methods12–14. Numerous studies have shown 
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that ML algorithms—including artificial neural networks (ANNs), RF, support vector machines (SVMs), 
and hybrid ensembles—can accurately predict water quality parameters in treatment systems15–17. However, 
ML models applied to high-dimensional datasets are prone to overfitting, elevated computational demands, 
and reduced interpretability. The inclusion of redundant or irrelevant variables further compromises model 
robustness and predictive accuracy, highlighting the critical importance of effective feature selection18,19.

Most previous DO prediction studies have relied on a single feature selection technique or standalone ML 
models, often yielding inconsistent results or overlooking key predictors20,21. For instance, Chen et al. (2020) 
employed ensemble and traditional ML models (e.g., ANN, SVM) to predict DO in surface waters using 
parameters such as NH₃-N, COD, and pH; however, their approach remained heavily dependent on large 
datasets, sensitive to data quality, and did not incorporate multiple feature selection methods for enhanced 
robustness22. Similarly, Zhi et al. (2021) applied LSTM networks for continental-scale riverine DO forecasting, 
achieving moderate performance (Nash–Sutcliffe efficiency ≥ 0.4 at 74% of sites), yet the model struggled with 
sparse time-series data and lacked automated feature optimization, potentially missing important nonlinear 
interactions23. More recently, Sidek et al. (2024) used RF and gradient boosting algorithms for riverine water 
quality index prediction (incorporating DO and BOD), but emphasized persistent challenges in handling 
regional variability and achieving adequate model interpretability24. Different feature selection techniques 
operate on distinct principles—e.g., statistical dependency (mutual information), impurity-based ranking 
(mean decrease in impurity), or performance perturbation (permutation importance)—and can therefore 
produce inconsistent or even contradictory variable rankings. Relying on a single method risks introducing 
methodological bias, omitting influential predictors, or failing to capture complex nonlinear relationships25. 
Moreover, the vast majority of existing DO modeling studies have focused on natural water bodies (rivers, 
lakes, estuaries) or wastewater treatment plants, with relatively little attention devoted to DO dynamics within 
DWTPs. In DWTPs, operational processes such as coagulation, filtration, and disinfection introduce unique 
challenges that significantly alter oxygen behavior26–28. This research gap exacerbates problems of overfitting, 
computational inefficiency, and limited interpretability.

To overcome these limitations, the present study introduces an innovative hybrid framework that 
systematically integrates three complementary feature selection techniques—MDI, permutation importance, 
and MI—with SHAP (SHapley Additive exPlanations) for interpretability. This multifaceted, sequential pipeline 
leverages the strengths of filter-based, embedded, and model-agnostic methods while substantially reducing 
dimensionality and computational burden25. The principal contributions of this work are twofold: (1) the first 
systematic application of hybrid feature selection specifically for DO prediction in drinking water treatment 
plants, addressing a critical gap relative to the predominant focus on rivers and wastewater systems26–28; and 
(2) the development of a robust, decision-oriented sequential pipeline that integrates mutual information, MDI, 
permutation importance, and SHAP analysis to reliably identify key predictors, enhance model interpretability, 
and improve predictive accuracy.

The proposed framework is termed “hybrid” not simply because multiple techniques are employed, but 
because they are strategically integrated into a cohesive, sequential workflow: initial rankings from filter (MI) and 
embedded (MDI) methods are rigorously validated using a model-agnostic wrapper (permutation importance), 
while SHAP provides both global and local explanations to confirm the most robust predictors. This synergistic 
approach effectively mitigates the weaknesses of individual methods, resulting in a more reliable, transparent, 
and explainable modeling process for DO dynamics in DWTPs.

Materials and methods
Study area and data collection
This study was conducted using full-scale operational data from Ahvaz Water Treatment Plant, Khuzestan 
Province, Iran (31°19’N, 48°40’E). The plant supplies drinking water to approximately 450,000 inhabitants and 
has a nominal capacity of 150,000 m³/day, treating raw water sourced from the Karun River. The treatment train 
comprises coagulation–flocculation, sedimentation, rapid sand filtration, and chlorination. A comprehensive 
10-year dataset (April 2011–April 2021) was acquired from the plant’s quality control laboratory and 
Supervisory Control and Data Acquisition (SCADA) system. Ahvaz has a hot desert climate (Köppen BWh), 
with summer temperatures frequently exceeding 45 °C, mild winters (10–15 °C), and low annual precipitation 
(~ 230 mm, concentrated in winter). The Karun River, Iran’s longest river (950 km), has a mean annual discharge 
of approximately 575  m³/s but exhibits strong seasonal and interannual variability due to upstream dam 
operations, irrigation withdrawals, and occasional floods. These factors drive substantial fluctuations in key 
influent parameters, particularly turbidity and temperature. Seven inlet water quality parameters were selected 
as predictors: dissolved oxygen (DO), nitrite (NO₂⁻), chloride (Cl⁻), electrical conductivity (EC), turbidity, 
pH, and temperature. The outlet DO (measured at the clear water reservoir) served as the target variable. All 
measurements were taken daily at 8:00 AM to ensure consistency and minimize diurnal effects. Input parameters 
were sampled immediately after filtration (pre-chlorination), whereas output DO was measured at the clear 
water reservoir outlet.

The measurements were not performed by the authors; rather, the study relied on historical records routinely 
collected by the Khuzestan Water and Wastewater Company in strict accordance with national and international 
drinking water standards (Iranian National Standards and WHO guidelines). The laboratory-based monitoring 
protocol was retained because it provides the highest analytical accuracy for parameters requiring precise 
chemical or physicochemical determination—results upon which real-time operational decisions at the plant 
are based. The geographical location of the treatment plant and raw water intake is shown in Fig. 1.
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Data preprocessing and exploratory data analysis
Descriptive statistics, including the mean, median, standard deviation, minimum, and maximum values, were 
calculated for all variables. The normality of data distributions was assessed using the Shapiro–Wilk test (α = 
0.05), complemented by visual inspection of histograms29. Outliers were evaluated and either removed or retained 
based on their relevance to the experimental context to ensure robust preprocessing. Box-and-whisker plots 
were employed to visualize data distributions, identify outliers, and assess interquartile ranges. As the dataset 
was originally collected for experimental monitoring rather than predictive modeling, several preprocessing 
steps were required to adapt it for machine learning application30. Although the primary models used in this 
study (RF and XGB) are scale-invariant, standard normalization (z-score transformation) was applied to center 
the data around a mean of zero and a standard deviation of one. This step helps manage data variability, reduce 
the influence of extreme values, ensure consistency in exploratory analysis, and maintain compatibility with 
scale-sensitive algorithms such as artificial neural networks. Accordingly, all input features were transformed 
using the standard normalization equation. 

	
Z = (xi − µ)

(σ) � (1)

where Z is standardized value of initial variable xi, µ  is the mean, and σ is the standard deviation.
Additionally, to detect and address multicollinearity among the input features, Pearson correlation analysis 

was performed using Eq. (2), quantifying the linear relationships between each pair of variables31,32.

	

rxy =
∑ n

i=1(xi−
−
x)

∑ n

i=1(yi−
−
y)√∑ n

i=1(xi−
−
x)

2
√∑ n

i=1(yi−
−
y)

2 � (2)

where rxy  is correlation coefficient between two variables (x and y), 
−
x and 

−
y  are average of xi and yi, respectively.

2.3. Machine learning Estimation models
The dataset was randomly divided into two subsets: a training set (80%) and a testing set (20%). Previous studies 
have shown that allocating only 60% of the data for training may be insufficient to adequately represent the 
overall dataset and capture its underlying patterns33. Two machine learning models were employed to estimate 
DO concentrations using other water quality parameters as predictor variables. RF is an ensemble learning 
method for regression and classification that constructs multiple decision trees using bootstrapped subsets of 
the data and aggregates their outputs to produce a robust and generalized prediction. XGBoost is a supervised 
machine learning algorithm applicable to regression, classification, and ranking tasks. It represents an optimized 
implementation of the gradient boosting framework, specifically designed to improve both computational 

Fig. 1.  Geographical location of Ahvaz water treatment plant and the Karun River raw water intake, Khuzestan 
province, Iran.
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efficiency and predictive performance34. To ensure optimal model performance and reproducibility, 
hyperparameters for both RF and XGBoost models were optimized using a grid search strategy combined with 
5-fold cross-validation applied to the training dataset. The hyperparameter search spaces are summarized in 
Table 1. The optimal set of hyperparameters was selected based on the highest coefficient of determination (R²) 
achieved during cross-validation.

Feature selection and interpretability
One of the major challenges in environmental modeling, particularly in predictive applications, is the high 
dimensionality of input variables. Incorporating a large number of predictors can increase the risk of overfitting, 
raise computational complexity, and reduce model interpretability35. Consequently, identifying the most 
influential variables through systematic feature selection and importance analysis is a critical step toward 
improving model performance, enhancing transparency, and extracting meaningful environmental insights36. 
To address these challenges, this study adopts a comprehensive, multi-perspective feature selection framework 
that integrates filter-based, embedded, wrapper-based, and explainable artificial intelligence (XAI) approaches. 
These methods are combined within a sequential pipeline designed to leverage their complementary strengths 
while mitigating individual limitations. The framework begins with filter-based MI and MDI methods for efficient 
initial screening of relevant predictors. This is followed by permutation importance to validate feature relevance 
through unbiased, perturbation-based assessment, and finally by SHAP (SHapley Additive exPlanations) for 
interpretable refinement of feature contributions at both global and local levels. By integrating these techniques, 
the proposed framework mitigates methodological biases—for example, the tendency of MDI to overestimate 
the importance of correlated features through validation via permutation importance—while capturing diverse 
aspects of feature relevance, including nonlinear dependencies (MI), model-specific importance (MDI), and 
prediction sensitivity to feature perturbation (permutation). The use of SHAP further ensures transparent 
and robust interpretation of feature effects. Overall, this consensus-driven strategy reduces the likelihood of 
overlooking critical predictors, such as historical DO levels or water temperature, and enhances the reliability 
and interpretability of the predictive models.

Mean decrease in impurity (MDI)
Mean Decrease in Impurity (MDI) was employed as an embedded feature importance measure inherent to tree-
based learning algorithms, including RF and XGBoost. MDI quantifies the contribution of each feature during 
model training by measuring the reduction in node impurity attributable to splits based on that feature. This 
approach is computationally efficient and directly aligned with the internal learning mechanism of tree-based 
models.

Specifically, MDI estimates feature importance by averaging the impurity reduction contributed by a 
given feature across all trees in the ensemble. Despite these advantages, MDI is known to exhibit bias toward 
continuous variables or features with high cardinality, as such features are more likely to be selected for node 
splitting, potentially leading to an overestimation of their importance. For a feature Xj, the MDI is calculated as:

	
MDI = (Xj) = 1

T

∑ T

t=1

∑
n∈ Nt ∆ i(n, Xj)� (3)

Where:
T: Number of trees in the ensemble (e.g., Random Forest).

Nt  Set of nodes in tree t where feature Xj  is used for splitting.

∆ i(n, Xj)  Reduction in impurity at node n due to splitting on feature Xj , calculated as.

	
∆ i(n, Xj) = i (n) − ( |Nn,left|

|Nn| i (nleft) + |Nn,right|
|Nn| i (nright))� (4)

i (n)  Impurity at node n (e.g., Gini impurity or entropy).

Model Parameter Searched Values

Random Forest n_estimators [50, 100, 200]

max_depth [None, 10, 20]

min_samples_split [2, 5, 10]​

max_features [‘sqrt’, ‘log2’]

XGBoost learning_rate [0.01, 0.1, 0.3]

max_depth [3, 6, 10]

n_estimators [50, 100, 200]​

subsample [0.6, 0.8, 1.0]

Table 1.  Hyperparameter grids explored during grid search with 5-fold cross-validation. Optimal parameters 
were selected based on the highest R² score on the validation folds.
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|Nn|  Number of samples at node n.

|Nn,left|, |Nn,right|: Number of samples in the left and right child nodes after the split.
Gini impurity for a node:
i (n) = 1 −

∑ K

k−1p2
k , where pkis the proportion of class k at node n.

Entropy:

	
i (n) = −

∑ K

k−1
pklog (pk) .

MDI averages the impurity reduction across all nodes and trees where the feature is used.

Permutation importance
Permutation Importance was used as a model-agnostic, wrapper-based technique to overcome potential biases 
associated with embedded methods. This approach evaluates feature relevance by randomly shuffling the 
values of a given feature and measuring the resulting degradation in model performance. For a feature Xj , the 
importance of permutation is:

	 P I (Xj) = Scoreoriginal − Scorepermuted� (5)

Where:

Scoreoriginal  model performance metric (here, negative MAE on the validation fold) obtained using the 
original data.

Scorepermuted : Corresponding score after randomly shuffling the values of feature Xj while keeping all other 
features unchanged.

A large positive PI value indicates that the model relies heavily on Xj , confirming its true predictive 
importance. By averaging over multiple random permutations, the effect of random noise is minimized, yielding 
stable and reliable importance rankings.

This step served as the final, model-agnostic validation layer in our sequential hybrid framework, ensuring 
that only predictors consistently ranked as critical across all three complementary methods (MI, MDI, and 
permutation importance) were retained for the final modeling phase.

Mutual information (MI)
Mutual Information (MI) was incorporated as a filter-based method to capture nonlinear dependencies between 
individual features and the target variable (DO) without assuming any specific predictive model. MI quantifies 
the amount of information gained about the target variable Y by knowing feature Xj .

For discrete variables:

	
MI(Xj , Y ) =

∑
x∈ Xj

∑
y∈ Y p (x, y) log

(
p(x, y)

p (x) p (y)

)
� (6)

Where:

p(x, y)  Joint probability distribution of Xjand Y.

p(x), p(y): Marginal probability distributions of Xjand Y.
For continuous variables, the integral form is used:

	
MI(Xj , Y ) =

¨
p (x, y) log

(
p(x, y)

p (x) p (y)

)
� (7)

In practice, MI is often estimated using methods like k-nearest neighbors or kernel density estimation due to the 
difficulty of estimating continuous distributions.

SHAP (SHapley additive exPlanations)
SHAP were employed to enhance model interpretability using a game-theoretic framework. SHAP values assign 
each feature a contribution to the model’s prediction for a specific instance by averaging its marginal contribution 
across all possible feature subsets. For a feature Xj , the SHAP value for an instance x is:

	
∅j (x) =

∑
S∈ N{j}

|S|!(|N | − |S| − 1)!
|N |! � (8)

Where:
N: Set of all features.
S: Subset of features excluding Xj .

Scientific Reports |         (2026) 16:6912 5| https://doi.org/10.1038/s41598-026-37276-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


fx (S): Model prediction for instance x using only the features in S.
∣S∣,∣N∣: Number of features in subset S and total features, respectively.
fx (S ∪ {j} − fx (S)): Marginal contribution of feature Xj  when added to subset S.
The SHAP value ∅ j (x) represents the contribution of feature Xj  to the difference between the model’s 

prediction and the expected (average) prediction.
For tree-based models, SHAP uses an efficient algorithm (TreeSHAP) to compute these values without 

explicitly evaluating all coalitions.

Hybrid sequential feature selection framework
The three complementary feature importance techniques were combined into a robust, sequential, and synergistic 
pipeline (Fig. 2):

	1.	 Mutual information (filter method) and mean decrease in impurity (embedded method within Random 
Forest) were first applied in parallel for rapid, computationally efficient preliminary screening of the seven 
candidate predictors.

	2.	 Permutation importance (model-agnostic wrapper) was then employed on the highest-ranked features to 
correct known biases of tree-based embedded methods, particularly the overestimation of continuous or 
high-cardinality variables.

	3.	 Finally, SHAP (SHapley Additive exPlanations) analysis was performed on the refined subset to provide both 
global and local interpretability, quantifying the magnitude, direction (positive or negative), and potential 
nonlinear interaction effects of each predictor on outlet dissolved oxygen concentration.

This hybrid, consensus-driven framework effectively mitigates the inherent limitations and biases of individual 
techniques, leverages their complementary strengths, and yields a highly reliable and transparent feature 
ranking. By requiring consistent high importance across all three methodologically distinct approaches, the 
pipeline substantially reduces the risk of omitting truly influential predictors—ultimately identifying inlet DO 
and water temperature as the dominant drivers of outlet DO in the studied full-scale drinking water treatment 
plant.

Fig. 2.  Feature Selection Workflow in Environmental Modeling Using MDI, Permutation Importance, MI, and 
SHAP.
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Evaluation of metrics of models
In the present study, the performance of the models was rigorously evaluated using validated statistical metrics 
to ensure their accuracy and generalizability. This study employed several evaluation criteria, including Mean 
Squared Error (MSE), Mean Absolute Error (MAE), Coefficient of Determination (R²), Root Mean Squared 
Error (RMSE), and Explained Variance Score (EVS) to comprehensively analyze and compare the predictive 
performance and validity of the machine learning models. These metrics collectively offer a robust understanding 
of the models’ reliability, error magnitude, and explanatory power37–39. The equations for these measures are 
given below:

	
MSE = 1

n

∑
n
i=1(Y exp

i − Y pred
i )2� (9)

	
MAE =

∑
n
i=1

∣∣Y exp
i − Y pred

i

∣∣
n

� (10)

	
R2 = 1 −

∑
n
i=1

(
Y exp

i − Y pred
i

)2

∑
n
i=1(Y exp

I − Y exp
ave )2

� (11)

	
RMSE =

√∑
n
i=1

(
Y exp

i − Y pred
i

)2

n
� (12)

	
EV S = 1 − V ar (Y exp

i − Y pred
i )

V ar Y exp
i

� (13)

Here, Y pred
i  and Y exp

i  denote the ith anticipated and experimental values, respectively. Y exp
ave  is the meaning 

of the experimental values, and n is the quantity of experimental values. In an ideal model, the values of RMSE, 
R², MAE, and MSE would be 0, 1, 0, 0, and 1, respectively40.

Results and discussion
Descriptive statistics and data distribution
Descriptive statistics of the water quality parameters used as input variables for dissolved oxygen (DO) 
prediction are summarized in Table 2. The mean DO concentration at the plant outlet was 6.92 mg/L, while the 
influent water exhibited a slightly higher mean value of 7.08 mg/L, indicating moderate oxygen depletion during 
the treatment process. The relatively low standard deviation of DO (approximately 0.98 mg/L) suggests limited 
temporal variability, which is indicative of stable operational conditions at the treatment plant.

The input water quality parameters, including NO₂, Cl, EC, turbidity, pH, and T, exhibited considerable 
variability. NO₂ concentrations were generally low, with a mean value of 0.01  mg/L, indicating minimal 
nitrogen-related contamination. In contrast, chloride concentrations showed substantial fluctuations 
(mean = 311.28 mg/L; SD = 121.56 mg/L), likely reflecting variations in disinfection practices or source water 
characteristics. EC and turbidity also displayed wide ranges (EC: 1033–3310 µS/cm; turbidity: 1.61–11,000 
NTU), which may be attributed to seasonal effects, hydrological variability, or changes in raw water sources. 
The pH values remained within a neutral to slightly alkaline range (7.41–8.41), while water temperature varied 
from 10.21 to 31.41 °C, capturing both cold and warm operational periods. Collectively, the observed variability 
across these parameters underscores the necessity of incorporating multiple input variables to achieve accurate 
and robust DO prediction in the modeling framework.

The histograms of the water treatment plant dataset (Fig. 3) provide valuable insight into the distributional 
characteristics of the variables relevant to DO prediction. The DO concentration at the plant outlet exhibits an 
approximately normal distribution, reflecting well-controlled treatment conditions and indicating suitability 
for regression-based modeling approaches. In contrast, the influent DO shows a right-skewed distribution, 
highlighting variability in raw water quality that may be attributed to seasonal dynamics and fluctuations in 
organic loading.

Among the input variables, NO₂ demonstrates a pronounced right-skewed distribution, suggesting sporadic 
nitrogen inputs into the system. Cl and EC display approximately symmetric distributions, indicative of relatively 
stable ionic conditions within the treatment process. Turbidity exhibits strong right skewness, likely resulting 
from episodic sediment influxes or short-term disturbances in source water quality. The pH distribution reveals 

Parameter DO-output DO-input NO2-input Cl-input EC-input Turbidity-input pH-input T-input

Unit (mg/L) (mg/L) (mg/L) (mg/L) (µS/cm) (NTU) (-) (°C)

mean 6.92 7.08 0.01 311.28 1877.81 135.38 7.93 22.75

std 0.98 0.99 0.03 121.56 423.42 558.48 0.12 3.81

min 4.2 0.01 0.00 33.01 1033.01 1.61 7.41 10.21

max 10.3 10.40 0.50 734.01 3310.01 11000.01 8.41 31.41

Table 2.  Descriptive statistics (mean, standard deviation, minimum, and maximum) of water quality 
parameters measured at input and output parameters.
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a bimodal pattern, which may be associated with diurnal buffering effects or variations in chemical dosing 
practices. T also follows a right-skewed distribution, capturing seasonal thermal variability and its potential 
influence on biological treatment processes.

Overall, these distributional characteristics emphasize the heterogeneous nature of the input variables and 
underscore the importance of robust machine learning models capable of capturing nonlinearity and variability 
in DO prediction.

Box plot analysis (Fig. 4) revealed distinct distributional patterns among the input variables. Both DO output 
and its corresponding input values exhibited relatively symmetrical distributions around the median, with a 
moderate number of outliers. NO₂ showed limited variability, indicating a narrow observation range. EC and 
Cl presented wider distributions with several outliers, while turbidity demonstrated the greatest variability, with 
extreme values far exceeding the upper quartile. pH and temperature showed moderate spreads, with temperature 
exhibiting fewer extreme outliers compared to pH. The observed variability among input parameters highlights 
their differing influence on DO prediction. The narrow range of NO₂ suggests limited predictive power, whereas 
the wide distributions and extreme outliers in turbidity and EC indicate that these variables could introduce 
substantial variability into the modeling process. The relatively balanced distribution of DO input further 
supports its role as a strong predictor of DO dynamics.

.
These findings highlight the importance of applying feature engineering and normalization techniques to 

handle skewed distributions and outliers, thereby improving the robustness and accuracy of predictive models. 
The observed patterns are consistent with previous studies. Xie, et al. , reported substantial variations in input 
parameters, indicating significant fluctuations in water quality entering treatment plants. Similarly, Li, et al.  
found that electrical conductivity, flow velocity, and both influent and effluent turbidity were highly skewed, 
reflecting pronounced variability in raw water quality. Furthermore, Ahmed and Lin29 evaluated the normality 
of predictor variables using the Kolmogorov–Smirnov test and confirmed that the data for DO prediction 
were non-normally distributed. Overall, these results demonstrate that the dataset adequately represents plant 
dynamics and provides a solid foundation for accurate modeling of DO.

Fig. 3.  Histograms of normalized input (DO-input, NO2-input, Cl-input, EC-input, Turbidity-input, pH-
input, T-input) and output (DO-output) variables.
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Model performance
The results of DO prediction using RF and XGBoost models are summarized in Table 3, with their comparative 
performance illustrated in Fig. 5. Hyperparameter optimization via Grid Search enhanced model robustness, 
particularly for XGBoost, while maintaining high accuracy suitable for real-time DO monitoring. Both models 
demonstrated strong predictive performance, with R² values of 0.928 for RF and 0.942 for XGBoost, explaining 
over 93% of the variance in DO. RF slightly outperformed XGBoost across most evaluation metrics (MSE: 0.073 

Fig. 5.  Scatter plots of predicted versus observed DO concentrations (in mg/L) for (a) XGBoost and (b) 
Random Forest models. The solid line represents the ideal 1:1 relationship (y = x). The shaded area denotes the 
95% confidence interval of the predictions.

 

Evaluation Metric R² MSE MAE RMSE EVS

Unit - (mg/L)2 (mg/L) (mg/L) -

RF 0.928 0.073 0.194 0.271 0.928

XGBoost 0.942 0.059 0.172 0. 244 0.942

Table 3.  Summarizes the performance of the machine learning models—RF and XGBoost —in predicting DO 
using all input parameters.

 

Fig. 4.  Box plots of normalized input (DO, NO2, Cl, EC, Turbidity, pH, T) and output variables, showing data 
distribution and outliers.

 

Scientific Reports |         (2026) 16:6912 9| https://doi.org/10.1038/s41598-026-37276-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


vs. 0.059; MAE: 0.194 vs. 0.172; RMSE: 0.271 vs. 0.244), while XGBoost achieved marginally higher explained 
variance (EVS: 0.942 vs. 0.928). The superior robustness of XGBoost is likely attributed to its ensemble averaging, 
which effectively captures nonlinear relationships among input variables.

The high performance of both models underscores the strong dependency of DO on key water quality 
parameters, including NO₂, Cl, EC, turbidity, pH, and temperature. These results confirm that machine learning 
approaches can reliably predict DO, thereby supporting real-time monitoring and optimization of water 
treatment processes.

The scatter plots for the XGBoost model show a strong agreement between predicted and observed DO values, 
with most points tightly clustered around the ideal y = xline across the full range of measured concentrations. 
The 95% confidence interval (CI), defined by residual bounds of − 0.4609 to 0.4919 mg/L, encompasses most 
predictions, reflecting stable and reliable model performance. Additionally, the low RMSE of 0.244  mg/L 
confirms the high prediction accuracy of XGBoost. These results demonstrate the model’s ability to capture 
complex nonlinear relationships governing DO dynamics in the treatment process, influenced by interacting 
physicochemical factors such as temperature, turbidity, and historical DO conditions.

Similarly, the RF model exhibits strong predictive capability, with predicted values closely aligned with 
the ideal line and minimal systematic bias. RF shows a slightly wider 95% CI (− 0.5149 to 0.5452 mg/L) and 
a higher RMSE (0.271 mg/L) compared to XGBoost, indicating marginally lower precision. Nevertheless, its 
ensemble-based structure enables robust generalization by reducing variance and effectively handling nonlinear 
relationships among input variables. Overall, both models demonstrate reliable performance with minimal 
deviation from the y = xline, confirming the effectiveness of the applied preprocessing and feature selection 
strategies in mitigating the influence of skewed variables such as turbidity and NO₂. The consistently lower 
error metrics and higher explained variance achieved by XGBoost highlight its slightly superior predictive 
performance. These findings align with previous studies, including Garabaghi, et al. 21, who reported strong 
performance of RF models for DO prediction, while other investigations on aeration process optimization 
have shown that gradient boosting approaches can achieve enhanced accuracy under complex operational 
conditions27.

Feature importance and ranking stability across multiple techniques
Feature importance and ranking stability across multiple techniques are summarized in Fig. 6.

Figure 6. (Left) Radar chart illustrating normalized importance scores (scaled 0–1) for DO-input, T-input, 
turbidity-input, Cl-input, EC-input, pH-input, and NO₂-input, as determined by four feature selection and 
interpretability techniques: MDI, Permutation Importance, MI, and SHAP. A larger radar area indicates higher 
importance and stronger consensus among the methods. (Right) Stacked bar chart showing the frequency 
with which each variable achieved a specific rank (1–7) across the four techniques. Higher bars at upper ranks 
(Rank 1–2) indicate consistent identification as important, while taller bars at lower ranks (Rank 6–7) indicate 
consistently low importance. Variables are ordered by average rank from top to bottom, allowing independent 
interpretation. For instance, DO-input achieved Rank 1 in all four methods, confirming it as the most consistently 
important predictor. T-input ranked second across all methods, whereas NO₂-input was frequently assigned the 
lowest rank (Rank 7 in three out of four methods), indicating weak and inconsistent contribution. Overall, the 
stacked bar chart facilitates identification of robust predictors for effluent DO.

Fig. 6.  (Left) Radar plot of normalized feature importance scores for DO-input, T-input, turbidity-input, Cl-
input, EC-input, pH-input, and NO₂-input obtained from the four methods (MDI, permutation importance, 
mutual information, and SHAP). (Right) Stacked bar chart showing how many times each input variable was 
assigned to a given rank (Rank 1 to Rank 7) across the four-feature selection and interpretability techniques. 
Higher bars in the upper ranks (e.g., Rank 1–2) indicate more consistent identification of a variable as 
important, whereas taller bars in lower ranks (e.g., Rank 6–7) reflect consistently low importance.
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Interpretation of feature ranking stability
The distribution of ranks (1–7, lower ranks indicate higher importance) assigned to each input across the four 
evaluation techniques is summarized as follows:

•	 DO-input: Rank 1 in all methods (average = 1.0).
•	 T-input: Rank 2 in all methods (average = 2.0).
•	 Turbidity-input: Rank 3 in three methods, Rank 5 in one method (average = 3.5).
•	 Cl-input: Rank 3 in one method, Rank 4 in two methods, Rank 5 in one method (average = 4.0).
•	 EC-input: Rank 4 in two methods, Rank 5 in one method, Rank 7 in one method (average = 5.0).
•	 pH-input: Rank 6 in all methods (average = 6.0).
•	 NO₂-input: Rank 5 in one method, Rank 7 in three methods (average = 6.5).

These rankings reveal a clear hierarchy among input variables, with DO-input and T-input consistently dominant, 
while pH-input and NO₂-input exhibit the lowest importance.

Physical and process-based interpretation of feature importance
DO-input consistently ranks first (average = 1.0), reflecting strong autocorrelation in DO dynamics. In aquatic 
and treatment systems, DO concentrations evolve gradually, so recent historical measurements capture essential 
temporal dependencies not fully represented by other physicochemical parameters. T-input ranks second 
(average = 2.0) due to its direct influence on oxygen solubility and biological activity. Higher temperatures reduce 
oxygen solubility and alter microbial metabolism and BOD, making temperature a key driver of DO variability, 
consistent with findings by Yaseen et al. 42. Turbidity-input (average rank = 3.5) ranks third. Elevated turbidity, 
often associated with phytoplankton blooms, may enhance DO through photosynthesis, whereas low turbidity 
conditions introduce more complex interactions between biological and environmental processes42,43. Cl-input 
(average rank = 4.0) exerts moderate influence. While chloride does not directly control oxygen levels, elevated 
concentrations may indicate contamination sources or ionic changes affecting microbial activity and oxidative 
processes. EC-input (average rank = 5.0) reflects overall ionic strength. High EC values indicate dissolved salts 
or nutrients that indirectly influence DO through microbial activity, osmotic stress, or chemical equilibria, 
providing supplementary predictive information.

pH-input and NO₂-input exhibit the lowest importance (average ranks = 6.0 and 6.5). Although pH affects 
chemical equilibria and microbial processes44, its variability within normal operational ranges is insufficient 
to strongly impact DO. Similarly, NO₂ influences oxygen consumption via nitrification but is secondary to the 
dominant effects of DO history, temperature, and turbidity.

Advantages of the multi-technique (Hybrid) framework
The proposed multi-technique framework mitigates bias associated with relying on a single feature selection 
method. For example, using only MDI would correctly identify DO and temperature as key predictors but 
might underestimate the consistent role of turbidity, which is highlighted by Permutation Importance and 
SHAP. Conversely, MI overestimates Cl-input (ranked third), while model-based methods consistently place 
it lower (average rank = 4.0), suggesting its statistical association with DO is not fully actionable for predictive 
performance.

The framework applies convergent validity: features consistently ranked highly across multiple methods 
are considered core predictors. Conflicting signals are resolved by giving greater weight to performance-based 
techniques (particularly Permutation Importance), while SHAP provides contextual explanations by revealing 
interaction effects. This yields a balanced, interpretable, and defensible feature set superior to any single 
technique. Comparative analysis shows that single-technique approaches can lead to inconsistent rankings (e.g., 
MI overestimating Cl-input, reducing R² by 1–3%) and suboptimal performance (e.g., MDI bias increasing 
RMSE by ~ 5%). The hybrid approach achieves consensus, effective dimensionality reduction (excluding low-
importance features like pH and NO₂), and superior metrics (RMSE reduced to 0.244 mg/L), demonstrating 
enhanced robustness and efficiency.

Model performance in context of existing literature
The high predictive accuracy achieved by both RF and XGBoost models (R² > 0.93, RMSE < 0.26  mg/L) is 
comparable to, and in some cases exceeds, recent reports for DO prediction in water systems. For example, 
Garabaghi et al. (2023) 21 reported R² = 0.91 using Random Forest for wastewater treatment. Liu et al. (2024) 20, 
employing a hybrid ML approach, achieved RMSE ≈ 0.30 mg/L. In the context of drinking water treatment—an 
area with comparatively less attention—our models demonstrate competitive and reliable accuracy, validating 
the effectiveness of the proposed hybrid feature selection framework. The narrow confidence intervals (Fig. 3) 
further confirm robustness and reliability, highlighting the potential of this approach for real-time monitoring 
and operational decision-making.

Results of DO prediction using feature-engineered inputs
To assess the robustness and generalizability of machine learning models in predicting DO with feature-
engineered inputs under dimensionality reduction, a Taylor diagram (Fig. 7) was employed.

The diagram simultaneously visualizes correlation, RMSE, and standard deviation across different reduced 
input sets. For XGBoost, variations in input combinations caused only minor changes in prediction accuracy, 
indicating robustness to dimensionality reduction. Similarly, RF consistently achieved high accuracy across 
all reduced input scenarios. Notably, RF slightly outperformed XGBoost in RMSE, particularly under reduced 
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dimensionality, highlighting its ability to capture nonlinear dependencies and variable interactions even with 
fewer predictors.

The most effective feature combinations included T, turbidity, and Cl, alongside DO input, reflecting their 
direct influence on DO dynamics. This aligns with environmental understanding: DO indicates biological 
activity, turbidity reflects suspended particulate matter, and temperature governs physicochemical processes, 
collectively explaining the majority of variance in DO. Overall, targeted feature selection can reduce input 
dimensionality by up to 70% while maintaining predictive accuracy, supporting cost-effective and efficient 
environmental monitoring strategies.

Generalized guidance for framework application
The proposed hybrid framework can be generalized for various environmental modeling applications:

Data Preparation  Implement preprocessing steps such as normalization and outlier handling to account for 
domain-specific variability, including seasonal hydrological patterns or sensor noise in air quality data.

Technique integration  Begin with filter-based methods (e.g., MI) for rapid screening of high-dimensional da-
tasets, followed by embedded (MDI) and wrapper (Permutation) approaches for validation, and apply SHAP for 
interpretability. Adjust method selection according to model type (e.g., tree-based models for efficiency, neural 
networks for complex interactions).

Handling divergences  Use convergent validity to prioritize features consistently ranked highly across multiple 
methods, giving greater weight to performance-based techniques (e.g., Permutation Importance) in cases of 
conflicting signals, as demonstrated in the DO prediction case.

Customization and evaluation  Tune hyperparameters via cross-validation and assess models using do-
main-relevant metrics (e.g., RMSE for continuous predictions, precision for classification). Evaluate generaliza-
bility on hold-out datasets.

Applications beyond DO  The framework can be extended to predicting pollutant concentrations in wastewa-
ter, air quality indices using meteorological data, or ecosystem health indicators integrating biological variables, 
emphasizing reduced dimensionality for real-time, computationally efficient monitoring.

Conclusions
This study demonstrates that machine learning models—particularly Random Forest (RF) and XGBoost—
can reliably predict DO concentrations in drinking water treatment plants. The integration of multiple feature 
selection and interpretability techniques enhanced predictive performance and enabled robust identification 

Fig. 7.  Taylor diagram comparing the performance of RF and XGBoost models under different feature 
elimination scenarios. Correlation coefficients (R), RMSE, and standard deviations of predicted versus 
observed values are illustrated relative to the observed data (black star).
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of the most influential variables. Historical DO, water temperature, and turbidity consistently emerged as the 
dominant predictors, reflecting the combined effects of temporal continuity and physicochemical processes 
on oxygen dynamics. Dimensionality reduction decreased computational complexity by up to 70% without 
compromising model accuracy, highlighting the efficiency and practicality of the proposed framework for real-
time water quality monitoring. By focusing on treated drinking water, this study addresses a gap in existing 
literature and provides actionable insights for optimizing aeration strategies, energy consumption, and overall 
process efficiency.

.
Despite the high predictive accuracy, several limitations should be noted. The analysis is based on a 10-year 

dataset from a single location (Ahvaz, Iran), and feature importance may differ under other climatic conditions 
or treatment configurations. Moreover, biological indicators such as Biochemical BOD and COD were not 
included due to data availability, and the use of daily averaged data may obscure short-term DO fluctuations. 
Future studies should incorporate high-frequency sensor data, a broader range of biological and operational 
variables, and extend the framework to inverse modeling for optimized aeration control.

Compared to single-technique approaches, which may introduce methodological biases and overlook 
key interactions, the hybrid framework offers superior robustness. It improves model accuracy, enhances 
interpretability through consensus validation, and maintains computational efficiency, making it particularly 
valuable for complex environmental systems such as DWTPs.

Beyond DO prediction, the proposed multi-technique framework provides a generalizable workflow for 
environmental modeling tasks involving high-dimensional and correlated data, offering improved transparency, 
robustness, and interpretability across a wide range of applications.

Data availability
The data used during the current study is available from the corresponding author on reasonable requests.
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