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Abstract

Speaking—whether overtly or covertly—requires a mapping between motor 
commands and their sensory consequences, a process of sensorimotor 
coordination. The timing of sensorimotor coordination during overt speech is 
relatively well established. Here we asked whether during imagined speech 
sensorimotor coordination can preserve this timing and remain grounded in 
the same biophysical constraints underlying vocal articulation. We instructed 
participants to imagine producing visually presented syllables (/pa/, /ta/, /ka/). 
Using magnetoencephalography (MEG), we investigated the spatiotemporal 
dynamics of mu rhythm (8–30 Hz) power suppression. Cluster-based 
permutation analysis reveals a segregation of alpha (8–12 Hz) and beta (15–
30 Hz) frequencies to auditory and motor areas, respectively. Latency 
analysis shows that beta suppression in motor areas precedes alpha 
suppression in auditory areas by ~120 ms. This delay closely matches 
sensorimotor coordination time windows previously reported for overt 
speech. While prior work provided only indirect evidence for the temporal 
equivalence between imagined and overt speech—by probing the system with 
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altered auditory feedback—our findings offer direct evidence by measuring 
strictly internal neural processes. Together, the results demonstrate the 
suitability of alpha–beta suppression as a neural marker that separately 
indexes motor and auditory processes associated with imagined speech 
production.

Keywords: Covert Speech, Sensorimotor Coordination, Efference, 
Magnetoencephalography, Event-Related Desynchronization
Introduction

Skilled motor control relies on the precise coordination of perception and 
action1. To achieve desired outcomes, an agent must understand how actions 
map onto their sensory consequences. In speech, two complementary 
mappings relate articulatory movements to different types of sensory 
feedback: auditory feedback (the sounds we produce) and somatosensory 
feedback (the tactile and proprioceptive sensations arising from movements 
of the vocal tract). For example, an opera singer continually calibrates 
diaphragm contraction, airflow, and vocal tract configuration against an 
expectation of the target sound. Yet perception and action rely on 
fundamentally different physical processes, biological systems, and neural 
representations: movements arise from muscle contractions, whereas sounds 
are perceived as vibrations transmitted through air. Linking these domains 
requires a mapping between motor-output and sensory-input coordinate 
systems. Such linking operations typically incur processing delays, reflecting 
the computational cost of translating between distinct representational 
formats2,3.

Here, we investigate the timing of sensorimotor coordination during speech 
imagery—a condition in which no movement is executed, and no sensory 
consequences are perceived4. Our aim is to test whether the timing of 
imagined speech matches that of overt speech, achieving temporal 
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equivalence. Temporal equivalence between imagery and overt speech may 
only emerge under certain conditions, namely when the mental simulation 
closely mirrors the physical act of speaking. In such cases, imagery can act 
as a faithful neural reenactment that preserves the temporal scaffolding of 
speaking5-6, rather than as a temporally compressed mental simulation that 
is unconstrained by the biomechanics of articulation7-8. To recreate these 
conditions, we designed our experiment around consonant–vowel syllables 
(/pa/, /ta/, /ka/), which emphasize low-level acoustic and articulatory features 
and minimize higher-order linguistic processing. This approach maximizes 
the likelihood of capturing timing patterns in imagery that reflect the same 
biophysical constraints governing overt speech.

To assess temporal equivalence, we need an estimate of the duration of 
sensorimotor coordination during overt speech that can serve as a reference 
to evaluate the timing of the corresponding processes during imagined 
speech. Previous estimates of this time window come from studies using 
auditory feedback perturbation paradigm9, in which the perceived auditory 
consequences of speech are artificially altered following articulation. 
Perturbations are often implemented as shifts in formant frequencies to 
selectively modify specific speech features. For instance, shifting the 
fundamental frequency (F0) can cause the speaker to perceive a different 
voice, while altering the first formant (F1) can lead to hearing a different 
phoneme (e.g., /a/ instead of /e/). These manipulations create mismatches 
between expected and perceived outcomes, measurable both behaviorally 
(e.g., compensatory responses) and neurally (e.g., mismatch responses). 
When perturbations are applied at different delays after speech onset, their 
effects disappear after roughly ~100 ms, suggesting that mismatches 
between motor and auditory consequences are normally integrated within 
this time frame10-11. 
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While some evidence suggests that the same temporal window for 
sensorimotor coordination may apply to imagined speech, prior studies have 
relied on external auditory probes, making their conclusions indirect12. Our 
goal here was to assess this timing more directly by focusing exclusively on 
neural activity generated by the imagery process itself, without any 
stimulation or feedback manipulation. This required a neural measure that 
could separately track motor and auditory components of speech imagery and 
do so with high temporal precision. Mu-rhythm power suppression—an 
oscillatory pattern which we here define as spanning the conventional alpha 
(8–12 Hz) and beta (15–30 Hz) bands—fits these requirements13-14. Previous 
work shows that beta suppression tends to localize to motor regions and 
alpha suppression to sensory regions15, and that mu suppression 
accompanies both overt and imagined movements across a variety of 
effectors16-17, including speech articulators18. Building on this, we adopted a 
two-step approach: first, identify whether motor-related beta and auditory-
related alpha power suppression can be dissociated during speech imagery; 
and second, use the timing difference between these components as a direct 
index of sensorimotor coordination.

We used magnetoencephalography (MEG) to measure the temporal delay 
between motor- and auditory-related mu power suppression during imagined 
speech, interpreting this delay as a proxy for sensorimotor coordination. 
Participants imagined speaking visually presented syllables (/pa/, /ta/, or 
/ka/). We investigated mu-rhythm power suppression in both the alpha and 
beta bands using a cluster-based permutation test which revealed two 
distinct time–frequency clusters. Beta power suppression occurred earlier in 
motor regions, followed by alpha power suppression in auditory regions. Peak 
latency analysis showed that beta suppression consistently preceded alpha 
suppression by ~120 ms. This delay closely matches the sensorimotor 
coordination window reported for overt speech, suggesting that imagined 
speech preserves the same temporal scaffolding as overt speech. To further 
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test this interpretation, we collected overt speech latencies in a behavioral 
pretest. Remarkably, the timing of both beta and alpha power suppression 
during imagery closely matched each participant’s own speech production 
latencies measured in this overt speech task, demonstrating that these neural 
signatures reflect the internally generated production of movement and 
sound. Together, these findings show that the temporal delay between motor 
beta and auditory alpha power suppression provides a direct, stimulation-
free, neural measure of sensorimotor coordination during imagined speech.

Results

Speech onset distribution in the overt speech behavioral pretest

Imagined speech lacks behavioral output that could serve as a reference for 
interpreting its underlying neural dynamics. Because no such measure can 
be obtained directly for imagined speech, we conducted an overt speech 
behavioral pretest to collect individual participant estimates of speech 
production latency. The distribution of speech sound onsets is shown in Fig. 
1. Across participants, the median onset following visual stimulus 
presentation was 412 ms, representing the typical time required to initiate 
speech. Here, we define the speech sound onset as the release burst 
associated with the consonant vocalization. Because the target syllables (/pa/, 
/ta/, /ka/) begin with unvoiced stop consonants, the articulators start moving 
slightly before this acoustic event without producing any audible sound. Thus, 
the median onset provides a temporal anchor: just before this point, motor 
activity related to articulation should already be present, and just after this 
point, auditory activity should emerge in response to the produced sound. A 
Gaussian fit to the group-level onset distribution showed that latencies 
clustered tightly around the median, with a 25–75% interquartile range of 74 
ms capturing variability across participants. Fitting each participant’s 
distribution individually revealed within-subject interquartile ranges from 54 
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ms to 157 ms, indicating that some speakers were more temporally consistent 
than others. Overall, the relatively narrow spread confirms that, as 
instructed, participants maintained consistent speech production latencies 
across trials. These overt speech onset measures—at both the individual and 
group level—will be used as temporal references for the following neural 
analyses.

Figure 1. Speech sound onsets measured in the overt speech behavioral pre-
test. Gaussian fits of the speech sound onset distribution across trials for each 
participant (colored lines) and a histogram of speech sound onsets across 
participants are represented. The dashed vertical line marks the median 
speech sound onset across participants.  

Comparison of MEG/EMG recordings during imagined and overt speech

In this study, participants were instructed to imagine articulating syllables 
(/pa/, /ta/, /ka/) presented visually in orthographic form (Fig. 2a). Task-elicited 
evoked responses showed a posterior to anterior progression across sensors, 
plausibly reflecting the sequential recruitment of visual, motor, and auditory 
areas (Fig. S1). One practical advantage of imagined speech is that it engages 
strictly internal neural processes: there is no overt movement execution, no 
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self-produced sound, and no electromagnetic artifacts generated by 
speaking. As a proof of concept, we directly compared overt and imagined 
versions of the task for one representative participant. The results illustrate 
that overt articulation produces artifacts in the broadband signal (Fig. S2e) 
and pronounced distortions in the time–frequency representations (Fig. S2g), 
particularly in the lower and frontal MEG sensors closest to the participant’s 
mouth (Fig. S2h). In contrast, performing the same task covertly produces no 
observable artifacts. To ensure that participants were not moving during 
imagined speech, we recorded electromyography (EMG) from jaw and lip 
electrodes. In both overt and imagined speech, we observed EMG deflections 
of different magnitudes (Fig. S2b,f). Specifically, the EMG signal during overt 
speech was roughly ten times greater than during imagined speech. In line 
with previous studies, we interpret these small residual deflections in the 
imagined speech condition as micromovements19—minor, involuntary muscle 
activations that arise from incomplete inhibition of the motor command. 
Because overt speech neural recordings are heavily contaminated by artifacts 
and confounded by external sensory and motor aspects, we do not use them 
as a direct comparison in this study. Instead, we use overt speech production 
latencies from the behavioral pretest to guide interpretation of the imagined 
speech neural responses. The earliest prominent deflection in the grand-
average EMG evoked response—corresponding to micromovement onset—
occurred at approximately 250 ms, providing an additional temporal anchor 
for the neural responses (Fig. S3). Although single-trial and single-participant 
EMG signals were too unreliable and micromovements could only be 
characterized in aggregate format, this timing is still informative because it 
closely matches the articulatory-to-acoustic onset interval reported in 
previous overt speech studies20.

Distinguishing induced vs. evoked frequency modulations 
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Next, we investigated the frequency modulations associated with imagined 
speech. In this study, the instruction to imagine speech was necessarily 
delivered via a visual cue, which inevitably triggers stimulus-driven neural 
responses. However, our interest is not in these externally evoked processes 
but in the internally generated processes associated with imagined speech in 
the absence of overt articulation. Therefore, the first step was to establish 
that the signals we are analyzing reflect self-generated rather than stimulus-
driven activity. To do so, we ran a time–frequency analysis in sensor space 
and measured relative power change with respect to a pre-stimulus baseline 
(–0.5–0 s). The resulting time–frequency representations revealed a classic 
power decrease (event-related de-synchronization, ERD) in the mu-rhythm 
(8–30 Hz) centered around the median speech onset latency measured in the 
overt-speech behavioral pretest, suggesting that the suppression is linked to 
the imagined speech rather than being a simple response to the visual cue. 
To further test this interpretation, we conducted an analysis to assess the 
phase-locking of time-frequency responses across trials (Fig. S4a-b). This 
showed that mu-band frequency components persisted after subtraction of 
the evoked response, confirming that they are non-phase-locked, internally 
driven oscillations—unlike lower frequency components, which were phase-
locked, stimulus driven oscillations.

Spatial segregation of alpha-beta power suppression

Then, we asked whether the alpha (8–12 Hz) and beta (15–30 Hz) frequencies 
within the mu band serve different functional roles. To address this, we first 
ran a two-dimensional cluster-based permutation test (one-tailed, one-
sample) on the time–frequency representations to identify spectrotemporal 
patterns showing significant power decrease relative to baseline across 
participants. Two distinct clusters emerged (Fig. 2b): a beta cluster (15–30 
Hz) spanning ~0.25–0.55 s (p < 0.001) and an alpha cluster (8–12 Hz) 
spanning ~0.40–0.80 s (p < 0.001), already suggesting functional 
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differentiation. Then, we examined their spatial localization. For each cluster, 
we projected absolute power during its time window and during the baseline 
into source space, we computed the relative power change, and we ran a 
cluster-based permutation test over cortical vertices to identify brain regions 
showing a power decrease relative to baseline across participants. The beta 
suppression localized to frontal motor regions (p < 0.005) and was absent in 
temporal areas (Fig. 2c), whereas the alpha suppression localized to temporal 
auditory regions (p < 0.01) and was absent in frontal motor areas (Fig. 2d). 
Together, these results reveal a frequency-specific, spatially segregated 
organization within the mu rhythm, indicating distinct functional roles for 
motor beta and auditory alpha.

Figure 2. Alpha and beta spectrotemporal clusters and their corresponding 
source localizations. (a) A schematic representation of the experimental 
paradigm. (b) Sensor space time-frequency representation of non-phase-
locked spectrotemporal modulations. Red and blue colors represent 
percentage increase and decrease in power with respect to the baseline 
period. The black contours represent the time-frequency regions that are 

ACCEPTED MANUSCRIPTARTICLE IN PRESS

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



consistent across participants as obtained from the cluster-based 
permutation test. Source localization of the beta (c) and alpha (d) power 
decrease clusters. The black contours represent the cortical vertices that are 
consistent across participants as obtained from the cluster-based 
permutation test. 
 
Temporal segregation between alpha and beta suppression

We next investigated whether there is a temporal segregation between beta 
and alpha suppression. Because both signals have a transient, burst-like 
profile—short-lived rather than sustained decreases in power—we focused on 
the ERD onset as the latency measure. Onset is preferable to peak here 
because it is less sensitive to variability in imagined-speech initiation and 
duration across participants. In a control analysis, we also estimated sensor 
latencies using ERD peaks instead of onsets, which resulted in greater 
between-subject variability (Fig. S5). Accordingly, we band-pass filtered the 
MEG signal, applied a Hilbert transform to extract the analytic-signal 
amplitude, and computed power change relative to the −0.5–0 s baseline. 
Onset latencies were defined using a slope-based criterion on the baseline-
normalized envelope (see Methods). The grand-average Hilbert-envelope 
time courses across all sensors (Fig. 3a–c) showed that beta suppression 
began earlier than alpha suppression at the group level. Because group 
averaging can spuriously exaggerate or diminish temporal separation, we 
next estimated each participant’s beta and alpha onset latencies and 
computed a within-subject temporal delay Δt = β onset – α onset (negative when 
beta precedes alpha). This produced a distribution of delays shifted below 
zero, with a median delay of ~130 ms (Fig. 3d–e). A one-tailed one-sample t-
test on Δt confirmed that beta suppression systematically preceded alpha 
suppression (t(39) = −8.85, p < 0.001). In summary, beta ERD onset 
consistently preceded alpha ERD onset, with a median delay of ~130 ms 
across participants.
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Figure 3. Sensor space power decrease time course in the beta and alpha 
frequency bands. Grand average Hilbert transformed band-filtered power 
decrease with respect to the baseline in the alpha (a) and beta (b) frequency 
bands. The lines represent the 157 axial gradiometers. MEG sensors are 
color-coded according to their spatial location on the scalp that is shown in 
the topography in the upper left. The topographies of most salient events in 
the time course are shown on top together with their timing. (c) The average 
across sensors of the baseline normalized envelope in the beta (red) and 
alpha (blue) frequency band is represented. The solid lines represent the 
mean and the shaded area surrounding the solid lines represent the standard 
error of the mean. The vertical dashed black line represents the expected 
speech onset measured in the behavioral pretest. The colored stars and 
vertical dashed lines represent the group-level beta (red) and alpha (blue) 
ERD onsets. (d) The distribution of individual subjects’ beta and alpha ERD 
onsets are represented in the red and blue histograms, respectively. The 
colored vertical dashed lines represent the median beta and alpha ERD 
onsets across participants. (e) The distribution of individual subjects’ 
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temporal difference between beta and alpha ERD onsets is represented in the 
grey histogram. The black vertical dashed line represents no temporal 
difference; the grey vertical dashed line represents the median temporal 
difference between beta and alpha ERD onsets. A negative value indicates 
that the beta onset precedes the alpha onset, a positive value indicates that 
the beta onset follows the alpha onset.

Temporal segregation between auditory-alpha and motor-beta suppression

To link sensor-space spectrotemporal dynamics to specific cortical 
generators, we repeated the ERD onset-latency analysis in source space, 
extracting beta- and alpha-band baseline normalized envelopes from 
functionally relevant motor and auditory regions, respectively (Fig. 4a–b). 
This analysis integrates the spatial information from Fig. 2 with the temporal 
information from Fig. 3, allowing us to test whether the observed delay 
reflects a motor-to-auditory sequence. We band-pass filtered the MEG signal, 
applied a Hilbert transform to obtain the analytic signal, projected it into 
source space, and computed its amplitude and power change relative to the 
−0.5–0 s baseline. From these source estimates, we extracted beta activity 
from the motor cluster and alpha activity from the auditory cluster identified 
in the spatial analysis. The averaged time courses across cortical vertices in 
these regions (Fig. 4c) showed that motor beta suppression began earlier 
than auditory alpha suppression at the group level. We then estimated ERD 
onset latencies for each participant’s motor beta and auditory alpha 
suppression; onsets were defined using a slope-based criterion on the 
baseline-normalized envelope (see Methods). Participants who did not show 
a detectable beta or alpha ERD onset were excluded from this analysis (n = 
3). In the remaining dataset, the median delay between motor beta ERD onset 
and auditory alpha ERD onset was approximately 120 ms (Fig. 4d–e). A one-
tailed one-sample t-test confirmed that motor beta suppression systematically 
preceded auditory alpha suppression (t(36) = −5.17, p < 0.001). In a control 
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analysis, we measured ERD peak latencies in the motor and auditory clusters, 
which yielded greater between-subject variability (Fig. S6). In a second 
control analysis, we repeated the procedure using motor and auditory ROIs 
defined from a brain-atlas parcellation rather than from the data-driven 
spatial clusters and obtained similar results (Fig. S7). Together, these 
findings closely mirror the sensor-space analysis and demonstrate that the 
temporal delay between beta and alpha power suppression localizes to motor 
and auditory cortical regions.

Figure 4. Source space power decrease time course in beta-band frontal 
regions and alpha-band temporal regions. (a) The red colored area delimited 
by black contours represents frontal regions which most prominently show 
the beta power decrease across participants. (b)  The blue colored area 
delimited by black contours represents temporal regions which most 
prominently show the alpha power decrease across participants. (c) The 
average across source space vertices of the baseline normalized envelopes 
extracted from the frontal beta (red) and temporal alpha (blue) clusters are 
represented. The solid lines represent the mean and the shaded area 
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surrounding the solid lines represent the standard error of the mean. The 
vertical dashed black line represents the expected speech onset measured in 
the behavioral pretest. The colored stars and vertical dashed lines represent 
the smallest frontal beta (red) and temporal alpha (blue) ERD onsets. (d) The 
distribution of individual subjects’ frontal beta and temporal alpha ERD 
onsets are represented in the red and blue histograms, respectively. The 
colored vertical dashed lines represent the median frontal beta and temporal 
alpha ERD onsets across participants. (e) The distribution of individual 
subjects’ temporal difference between frontal beta and temporal alpha ERD 
onsets is represented in the grey histogram. The black vertical dashed line 
represents no temporal difference; the grey vertical dashed line represents 
the median temporal difference between frontal beta and temporal alpha ERD 
onsets. A negative value indicates that the frontal beta onset precedes the 
temporal alpha onset, a positive value indicates that the frontal beta onset 
follows the temporal alpha onset.

Correlation of alpha–beta peak latency during imagined speech with latency 
during overt speech

In the previous sections, we used ERD onset as a latency measure to reduce 
variability related to imagery initiation and duration across participants. At 
the group level, the timing of mu-rhythm power suppression during imagery 
shows a clear correspondence with overt speech production latency, both in 
sensor space (Fig. 3c) and source space (Fig. 4c). Specifically, the median 
beta ERD onset aligns with the micromovement onset, suggesting that beta 
suppression indexes the initiation of imagined articulation. By contrast, the 
median alpha ERD onset aligns with the speech-sound onset measured in the 
behavioral pre-test, suggesting that alpha suppression indexes imagined 
sound generation. Building on this observation, we asked whether these 
neural markers also track articulation timing at the individual level. Here, 
however, our goal was to assess whether alpha and beta power suppression 
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timing tracks individual differences in articulation speed, so we used ERD 
peak latency, which preserves this between-subject variability.  Each 
participant has a characteristic speed for initiating speech movements, and 
if power suppression reflects sensorimotor coordination, then its latency 
should align with that participant’s speech production latency. Because 
articulation timing cannot be measured directly during imagined speech, we 
used individual speech sound onsets from the overt-speech behavioral pretest 
as a proxy, under the assumption that imagined and overt speech share a 
similar temporal structure. We then tested whether participants with faster 
or slower articulation also showed correspondingly earlier or later alpha and 
beta suppression by correlating median speech sound onsets with ERD peak 
latencies in the motor beta and auditory alpha clusters identified from the 
spatial analysis, assessing significance with a permutation test (Fig. 5a–b). 
The results revealed significant correlations for both motor beta (r(36) = 
0.30, p < 0.05) and auditory alpha (r(36) = 0.31, p < 0.05). Importantly, these 
correlations were not significant when peaks were estimated from all sensors, 
indicating that spatial localization to motor and auditory regions is critical. 
Together with the onset-based analyses reported above, these findings 
suggest that the timing of alpha and beta suppression is closely linked to 
articulation speed: beta dynamics align with the initiation of covert 
articulation, and alpha dynamics align with the timing of imagined sound.

ACCEPTED MANUSCRIPTARTICLE IN PRESS

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



Figure 5. Correlation between covert speech neural responses and overt 
speech behavioral responses. A correlation between (a) beta (red) and (b) 
alpha (blue) power decrease peak latencies and speech production latencies 
as measured in the behavioral pretest is represented. Each circle represents 
one participant. A green regression line is shown in each panel to visualize 
the correlation across participants.

Discussion

We investigated whether the timing of sensorimotor coordination during 
imagined speech preserves the temporal structure observed in overt speech. 
Using magnetoencephalography, we identified a spatiotemporal sequence of 
neural events associated with imagined speech: a suppression of beta-band 
power in motor regions, followed by a suppression of alpha-band power in 
auditory regions. This sequence was consistent across participants, with 
motor beta suppression consistently preceding auditory alpha suppression by 
a delay of approximately ~120 ms. This time window is remarkably consistent 
with the sensorimotor coordination time window previously reported in overt 

ACCEPTED MANUSCRIPTARTICLE IN PRESS

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



speech studies that used auditory perturbation. This delay likely reflects a 
sequence of operations required to align motor and auditory information 
across distinct representational formats. This finding suggests that, under 
certain conditions, imagined speech is not temporally compressed but rather 
a faithful neural reenactment of the temporal scaffolding of speaking, with 
the key difference being the inhibition of muscle activity21.

The role of stimulus complexity in temporal equivalence

We deliberately chose consonant–vowel syllabic stimuli (/pa/, /ta/, /ka/) that 
primarily engage low-level articulatory and auditory representations. This 
design allowed us to isolate and compare motor and auditory components of 
imagined speech more directly, thereby maximizing the chances of observing 
temporal equivalence with overt speech. Consistent with this approach, 
earlier studies investigating the rate of imagined speech using simple stimuli 
such as number sets or the alphabet have also reported close correspondence 
between overt and imagined production rates22. By contrast, studies using 
more complex stimuli such as words or sentences—which additionally recruit 
abstract lexical–semantic and syntactic representations—have reported 
temporal compression effects23, where imagined speech unfolds faster than 
its overt counterpart. Far from being contradictory, these findings are 
complementary: motoric and abstract linguistic representations likely co-
exist during natural connected speech, with their relative dominance shaped 
by factors such as task demands and stimulus complexity. Our results show 
that, under conditions emphasizing low-level sensorimotor aspects, the 
timing of imagined speech closely mirrors that of overt speech.

Beta–alpha frequency modulations as a neural marker of sensorimotor 
coordination
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The alternation of frequency modulations that we observed align with a well-
established literature on mu-rhythm event-related desynchronization (ERD). 
Beta suppression in motor cortex is a marker of both overt and covert 
movement execution24,25,26, while alpha suppression in auditory cortex is 
typically linked to increased excitability and enhanced processing of auditory 
input27,28,29. When these frequency modulations occur together in a 
consistent temporal sequence, they form a plausible neural signature of 
sensorimotor coordination. This interpretation is strengthened by the fact 
that the peak latencies of both beta and alpha suppression correlated with 
each participant’s overt speech production latencies estimated from the 
behavioral pre-test. The alignment with individual speech onsets suggests 
that both oscillatory patterns are tied to the internally simulated act of 
speaking, rather than reflecting unrelated processes. This is important 
because alpha suppression can also arise from unspecific processes, 
irrelevant to the task, such as attentional control30. If attention was the 
primary source of the alpha suppression, then its timing would not be 
expected to track participant’s speech production latency—yet our results 
show exactly such a correspondence. This finding makes a strong case that 
the observed beta–alpha suppression sequence indeed reflects sensorimotor 
coordination associated with imagined speech.

Imagined speech as a tool for isolating internal motor–to-auditory 
progression

Across different motor control domains, overt movement execution reflects a 
mixture of top-down and bottom-up mechanisms. Top-down signals include 
motor commands and associated sensory predictions, whereas bottom-up 
signals arise from the physical consequences of movement, such as 
proprioceptive, tactile, and auditory feedback. During overt actions, these 
components are tightly intertwined, making it difficult to isolate the internal 
motor-to-sensory progression. In contrast, movements are suppressed and 

ACCEPTED MANUSCRIPTARTICLE IN PRESS

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



external sensory consequences are absent during imagery, allowing us to 
probe top-down mechanisms more directly. In line with this, a clear alpha–
beta dissociation within the mu rhythm has been observed during the mental 
simulation of goal-directed grasping movements31. When signal processing 
methods are applied to separate movement-related artifacts from neural 
signals—such as EMG informed artifact correction—alpha- and beta-band 
power suppression can be disentangled even during overt speech32. When 
alpha- and beta-band suppression measured during overt and covert speech 
are compared, suppression is consistently larger during overt speech 
production33,34, likely because concurrent articulation and sensory feedback 
introduce bottom-up signals that mix with top-down signals and obscure their 
distinct contributions. Our results show that imagined speech naturally yields 
a robust spatiotemporal alpha–beta dissociation that is not confounded by 
external sensory input and does not require artifact correction. This clear 
separation demonstrates that speech imagery is a powerful experimental tool 
for isolating sensorimotor coordination from the influence of peripheral 
feedback.

Competing mechanistic accounts: direct vs. indirect mapping

The neural mechanisms underlying sensorimotor coordination remain a 
matter of debate. One influential proposal is that motor and auditory systems 
share a “common coding” scheme35—a ready-made, bidirectional mapping 
that directly translates movements into sounds and vice versa. In this direct 
mapping view, the link is so well entrenched that it could operate almost 
instantaneously. Early theoretical formulations, such as the motor theory of 
speech perception36, proposed that speech perception engages concurrent 
motor representations associated with (intended) speech production. 
Although this theory received only limited empirical support, it regained 
attention when neuroimaging studies reported activation of motor regions 
during speech perception37, consistent with interdependent sensorimotor 
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representations38. If this account were correct, the timing of motor–auditory 
crosstalk should roughly correspond to a single synaptic transfer—on the 
order of 5–20 ms for cortical communication, depending on distance39. In 
contrast, an indirect mapping view proposes that sensorimotor coordination 
is mediated by an intermediate hub that transforms motor into sensory codes 
and vice versa. Within the framework of dual-stream models of language 
processing40, a strong candidate for this role is the Sylvian–parietal–temporal 
area (Spt), which is active during both speech perception and production41. 
This account predicts a longer temporal delay, reflecting at least two synaptic 
steps. In overt speech, such comparisons are confounded by the additional 
delay introduced by information traveling from brain to periphery. Instead, 
in imagined speech sensorimotor coordination occurs entirely within the 
brain, allowing a more direct assessment of the relevant time window. Time-
resolved functional connectivity studies investigating coupling between 
motor and auditory areas during imagined speech42, together with our 
present findings, point to delay substantially exceeding that expected from a 
single synaptic transfer (i.e., ~120 ms) consistent with the involvement of an 
intermediate hub.

Imagined speech as a window into the intrinsic timing of sensorimotor 
coordination

By combining MEG with a speech imagery paradigm emphasizing low-level 
acoustic and motor aspects, we uncovered an orderly spatiotemporal 
sequence: motor beta suppression followed by auditory alpha suppression. 
These frequency modulations were separated by a temporal delay closely 
matching the time window for sensorimotor coordination in overt speech. 
Crucially, imagined speech enables measurement of this temporal delay in 
isolation—unaffected by the byproducts of articulation. In this way, our 
results reveal the intrinsic duration of the sensorimotor coordination, 
unfolding with the same temporal scaffolding as articulation but without the 
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confounds of overt movement execution and external feedback. The 
spatiotemporal dissociation between motor and auditory frequency 
modulations thus offers both a methodological tool and a theoretical lens for 
probing the time window in which the brain integrates action and perception 
during speech, whether imagined or spoken.

Methods

Participants

40 right-handed participants (mean age 27.18, range 20-47, 12 male) took 
part in this experiment. All participants reported no history of psychiatric, 
neurological, or language disorders. Moreover, participants reported normal 
hearing, and normal or corrected-to-normal vision. Participants’ hand 
preference was assessed using the Edinburgh Handedness Inventory43. 
Informed written consent was obtained from each participant in accordance 
with the Declaration of Helsinki. Ethical approval to conduct the study was 
provided by New York University Institutional Review Board (IRB).

Stimuli

We used a set of three consonant-vowel (CV) syllables: /pa/, /ta/ and /ka/. For 
each syllable, we varied the consonant while we kept the vowel constant. The 
syllables were similar in duration and overall acoustics but distinct in motor 
space. Following the international phonetic alphabet (IPA) classification, the 
starting phonemes are unvoiced stop consonants which have different places 
of articulation. /p/, /t/, and /k/ are bilabial, alveolar, and velar consonants that 
recruit articulators in the front, mid, and back of the upper vocal tract, 
respectively.

Experimental design
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We tested participants in a behavioral and a neuroimaging task. The 
behavioral task took place right before the neuroimaging task, such that 
participants’ performance in the two tasks was as similar as possible. In fact, 
the behavioral task was designed to acquire temporal landmarks that were 
subsequently used as a reference to interpret neuroimaging data. This task 
was also aimed to establish an exclusion criterion for the neuroimaging task. 
This preselection was necessary to reduce the temporal variability in speech 
production latency across participants that is detrimental for neural data 
analyses.

The experimental procedure was structured as follows. There was a variable 
baseline period in which a fixation cross was displayed on the screen for 1-
1.5 s. Then, participants were visually presented with one consonant-vowel 
syllable (/pa/, /ta/ or /ka/) for 1 s and instructed to imagine producing them 
as quickly as possible without generating overt movement or sound. After 
that, there was a 2.5 s inter trial interval in which a fixation cross was 
displayed on the screen. Participants were instructed to keep their eyes open 
and to maintain eye fixation during visual cue presentation. We deliberately 
used the visual modality, rather than auditory presentation, so that the 
internally generated speech representations could be isolated from stimulus-
driven auditory responses. This choice forces participants to map the 
orthographic input onto corresponding motor and auditory output, while 
avoiding the stimulus–response overlap that would occur with auditory 
presentation as well as potential working memory confounds. To maintain 
consistent initiation timing across trials, syllable presentation order was 
pseudorandomized: the three syllables appeared in varying orders across 
trials but always in balanced triplets, preventing participants from 
anticipating or pre-activating upcoming items.
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The difference between the behavioral and the neuroimaging task was that 
participants were instructed to speak overtly and covertly, respectively. In 
the behavioral task, participants spoke the syllable aloud. Participants 
completed one block, that is 120 trials in total. In the neuroimaging task, 
participants imagined speaking the syllable, without moving and without 
producing sounds. Imagined speech was described to participants as the 
internal simulation of the movements and sounds associated with speech 
production. Participants completed 4 blocks. Each block consisted of 120 
trials; therefore, participants performed 480 trials in total. In both the 
behavioral and the neuroimaging task we used PsychoPy toolbox44 version 2, 
Python release 3.8.3, for stimulus delivery.

Behavioral data acquisition and analysis

Participants were seated in front of a computer screen in a soundproof booth. 
We used a 16-channel, 8-preamp, 24-bit/96kHz, MOTU system for audio 
input/output. Participants’ utterances were recorded using a microphone. We 
estimated the speech sound onsets for each participant and for each trial. As 
a first screening, we used a custom MATLAB script to compute the envelope 
of the speech sound waveform and for each trial we automatically extracted 
the most prominent rising of the peak that was estimated as an abrupt change 
in the derivative of the speech sound waveform envelope. These automatically 
extracted speech sound onsets measures were used to obtain an approximate 
estimate of participants’ temporal precision in the task. We instructed 
participants to be as consistent as possible across trials in terms of speech 
production timing. If participants’ speech onsets distribution was too broad 
and/or the median of the distribution was skewed towards the beginning or 
the end of the trial, we asked them to practice more until they improved their 
temporal precision. Participants who were still unable to meet the minimum 
requisites were excluded and did not take part in the MEG study. Specifically, 
we excluded participants who did not meet the following criteria: a median 
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speech onset between 200-600 ms and an interquartile range smaller than 
400 ms. Thirteen participants were excluded based on their performance in 
the behavioral pre-test and therefore were not included among the 40 MEG 
datasets analyzed in this study. 

The speech sounds collected during the behavioral pre-test were 
subsequently used to annotate speech onsets for each participant and for 
each trial. To do that, we used the Praat software45. Speech sound onsets 
were determined by visual inspection of the spectrogram based on the 
characteristic signatures of unvoiced stop consonants. Unvoiced stop 
consonants are associated with occlusions in the vocal tract which result in 
specific acoustic signatures corresponding to a silent period (closure) and a 
noise burst (release). In particular, /p/, /t/, and /k/ show clear differences in 
the shape of the noise burst: /p/ shows a short-lived wide range burst across 
all the spectrogram that has lower intensity; /t/ shows a more prolonged burst 
in the upper part of the spectrogram that has higher intensity; /k/ shows an 
even longer burst in the lower part of the spectrogram that also has higher 
intensity46.

EMG data acquisition and pre-processing

Participants were instructed to avoid jaw and lips movements during covert 
speech. Articulatory movements were continuously monitored using 
electromyography (EMG). We recorded the EMG signal from four electrodes: 
one reference electrode placed on the right mastoid, one ground electrode 
placed on the right wrist, one electrode placed below the cheekbone to record 
jaw movements and one electrode placed between the lower lip and the chin 
to record lips movements. Previous studies have shown that muscle 
movements measured from jaw and lip are sufficient to distinguish unvoiced 
stop consonants47. Electrode impedance was kept below 25 kΩ.
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EMG electrodes were connected to an MEG-compatible BrainAmp DC 
amplifier (Brain Products GmbH, Gilching, Germany). The EMG was recorded 
at a sample rate of 500 Hz. A 60 Hz notch filter was applied to remove power 
line noise. Data was referenced online to the right mastoid. Data was re-
referenced offline using bipolar derivations (jaw minus mastoid electrode; lip 
minus mastoid electrode) to enhance local muscle activity. A zero-phase, two-
pass Butterworth bandpass filter with a 1 Hz high-pass frequency cut-off and 
a 50 Hz lowpass frequency cut-off was applied. We segmented the raw signal 
into epochs between -1 s before 1 s after the visual presentation of the 
syllable. Time series were down-sampled to 250 Hz and the EMG signal was 
zero-meaned and detrended. A baseline correction was applied by computing 
the mean of the 1s baseline period preceding syllable cue onset and 
subtracting this mean from the entire trial epoch. We used an auto-reject 
algorithm for automatic artifact rejection. This algorithm defines a threshold 
for artifact rejection that is specific for each participant based on a cross-
validation procedure. This individualized rejection threshold was motivated 
by the high variability across subjects in the signal-to-noise ratio of EMG 
recordings caused by individual differences in skin conductance, magnitude 
of muscle artifacts, and heartbeat artifacts.

MEG data acquisition

Individual head shapes and fiducial landmarks (nasion, right and left pre-
auricular points), were digitized using a 3D laser scan hardware (Polhemus, 
FastSCAN COBRA 3D) and a 3D digitizer software (Source Signal Imaging, 
Inc.). Five Head Position Indicator (HPI) coils were placed on participant’s 
mastoid bones and forehead to keep track of participant’s head position 
inside the dewar through electromagnetic induction. We measured head 
position before and after each recording block. When the maximum 
difference between head positions before and after each block was above 1 
cm, data was excluded from further analysis. Prior to data acquisition, all 
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metal and other potential sources of electromagnetic interference were 
removed. Prior to running the experiment, we recorded 3 minutes of MEG 
data without participant in the scanner (empty room recording). 

MEG recordings were obtained in a magnetically shielded room (Vacuum 
Schmelze, Hanau, Germany) using a 157-channel whole-head axial 
gradiometer system (KIT, Kanazawa Institute of Technology, Japan) and 3 
orthogonally oriented reference magnetometers. Participants performed the 
task in a supine position. When positioning participants in the MEG scanner, 
we ensured tight contact with the dewar. Participants were instructed to 
avoid head, body, and limb movements during the recording. The MEG signal 
was sampled at 1 kHz. Two filters were applied during data acquisition: a 
zero-phase two-pass Butterworth band-pass filter 1-200 Hz and a notch filter 
at 60 Hz. Visual stimuli were presented using a CP-X8150 LCD projector 
(Hitachi America LTD). Images were projected on a first-surface mirror 
(Edmund Scientific, Barrington, NJ) suspended from the ceiling and fixed at 
a 45° angle; the incoming image hit the mirror and was reflected 90° straight 
down. A Cedrus StimTracker was used to keep track of trigger delivery with 
high temporal precision.

MEG preprocessing

MEG pre-processing was applied using MNE-Python48 (v0.20.7), Python 
release 3.8.3, combined with custom routines. First, we removed external and 
internal sources of noise from the recorded MEG signal. External noise (e.g., 
stationary noise, environmental noise) was removed offline from the MEG 
recordings using two denoising algorithms run in sequence. First, we used a 
Continuously Adjusted Least-Squares Method (CALM)49 using the noise 
recorded during the empty room. This method consists in estimating 
regression coefficients from reference magnetometers recorded during the 
empty room to regress out environmental noise from axial gradiometers 
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recorded during the experiment. Then, we used a time shifted PCA50 to 
remove the remaining environmental noise measured by reference 
magnetometers during the experiment. Reference noise magnetic fields are 
filtered and subtracted from axial gradiometers. The filters (one per 
reference magnetometer/axial gradiometer pair) are obtained by delaying the 
reference signals, orthogonalizing them to obtain a basis, projecting the brain 
sensors onto the noise-derived basis, and removing the projections to obtain 
clean data. Internal noise (e.g., heartbeat, muscular activity, eye blinks) was 
reduced using Independent Component Analysis (ICA)51. We used a fixed-
point algorithm to estimate 30 independent components on epoched data. Up 
to 10 components were excluded based on visual inspection of spatial 
topographies and latent sources (e.g., sharp, transient deflections, slow 
drifts, and rhythmic fluctuations).  

MEG source reconstruction

T1-weighted anatomical scans were acquired for 14 participants. When the 
anatomical scans were not available, we used a template average brain to 
perform source reconstruction52. The original shape of the template average 
brain was adjusted - either increased or decreased along x, y, z coordinates - 
to match participants’ head shape that was measured using the 3D laser 
scanner. To perform group-level analyses in a common reference frame, we 
computed a linear interpolation (i.e., morphing) between the decimated 
individual source model and a template average brain. The anatomical scans 
were 3D reconstructed using the Freesurfer software53,54. A Boundary 
Element Model (BEM) was estimated using the watershed algorithm. MRI 
and MEG coordinate systems were co-registered by matching digitized 
anatomical fiducial landmarks to participant’s T1 anatomical scan. The 
resulting whole brain 3D mesh (5124 vertices; 6.2 mm average source 
spacing), the BEM model and the aligned coordinate frames were used to 
compute the forward model for source reconstruction. The forward model 
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predicts the spatiotemporal characteristics of the MEG signals given a 
certain distribution of neural activity, considering both the conductivity 
properties of the head tissues and the geometry of the MEG sensor array.

The inverse problem consists in finding the optimal mapping from a low 
dimensional sensor space (157 axial gradiometers) to a high dimensional 
source space (5124 vertices). The inverse model predicts the most likely 
source space configuration that would produce the observed magnetic fields. 
The inverse solution consists in finding a set of sensor weights for each 
source. Weights are estimated as a combination of the forward model and 
inverse model. The combined forward and inverse models are optimized 
iteratively to minimize the mismatch between the predicted and observed 
MEG signals. Weights are based on the sensor locations with respect to the 
brain. Thus, weights are fixed and do not change over time or over frequency. 
We used the dSPM (distributed Source Probability Model) method for source 
reconstruction. The projection in source space was obtained by multiplying 
the data matrix with the weighting matrix. We implemented source 
reconstruction using MNE-Python48 (v0.20.7), Python release 3.8.3.

ROI definition and extraction

We a priori selected motor and auditory regions of interest (ROIs) in the peri-
Sylvian language network. We used a cortical parcellation scheme obtained 
using a brain atlas. The FreeSurfer software can be used to label the cortical 
surface into anatomical regions55. This procedure consists in automatically 
assigning a neuroanatomical label to each location on a cortical surface based 
on probabilistic information estimated from a manually labeled dataset. The 
result is a labeling of cortical sulci and gyri. We selected 2 ROIs: one motor 
ROI including cortical vertices anterior to the precentral gyrus, and one 
auditory ROI including cortical vertices located in Heschl’s gyrus, superior 
temporal gyrus and superior temporal sulcus regions. 
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For each ROI, we extracted a time course that summarizes the activity of 
underlying vertices. MEG measurements are insensitive to the direction of 
the current flow along the source. Thus, the estimated orientation of the 
sources is ambiguous. Source reconstruction techniques (e.g., MNE, dSPM) 
yield two possible orientations for each reconstructed source, corresponding 
to two opposite directions. We used the mean flip method for ROI extraction 
which ensures that the average orientation of the reconstructed sources 
aligns with the expected orientation based on anatomical or functional 
considerations. This is typically achieved by flipping the orientation of 
individual sources if necessary, so that their combined effect results in a 
consistent and interpretable orientation pattern.

Time-frequency analysis

By definition, time-frequency decomposition methods cannot provide precise 
time and frequency estimates at the same time. Higher temporal resolution 
can only be obtained at the expense of lower frequency resolution, and vice 
versa. Here, we wanted to investigate both temporal and frequency aspects 
in detail. Therefore, we used two different time-frequency decomposition 
methods that are designed to optimally capture frequency and temporal 
aspects, respectively.

First, we used the Stockwell (S-) transform56 that is designed to balance 
temporal and spectral resolution by adjusting one single parameter. This 
method uses a windowed Fourier transform with a Gaussian window whose 
width varies with frequency. We can control the tradeoff between spectral 
and temporal resolution by specifying different widths of the Gaussian 
window. This allows for variable time-frequency resolution. Given a time-
domain signal x(t), the Stockwell (S-) transform X(t, f) is calculated as follows: 
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                                               X(t, f) =  ∫∞
-∞ x(τ) ∙ g(t - τ) ∙  e-2πifτ dτ                                    

(1)
     
where g(t) is a Gaussian window function centered at t. In the MNE-Python41 
implementation the width parameter can be set to be <1 or >1. Where <1 
means higher temporal resolution, and >1 means higher frequency 
resolution. In this study, we set the Gaussian window width parameter to 1.2 
to have higher precision in the frequency domain.

Next, we used the Hilbert transform57 to capture time-varying oscillatory 
dynamics. The Hilbert transform can be used to estimate how power and 
phase change over time in a specific frequency band. Before applying the 
Hilbert transform, the signal was bandpass filtered. We filtered the 
broadband signal in the alpha (8-12 Hz) and the beta (15-30 Hz) frequency 
bands and repeated the following steps for each frequency. A Fourier 
transform of the bandpass filtered signal was computed. The phase 
quadrature component (i.e., one-quarter-cycle, 90 or /2) is created and 
added to the real-valued signal. This operation is done by rotating the 
complex Fourier spectrum of a real-valued signal. This is equivalent to 
estimating instantaneous phase over time. Then, the inverse Fourier 
transform is computed. The combination of the original signal and its Hilbert 
transform is known as the "analytic signal". The analytic signal is a complex 
spectrotemporal representation of the original signal which specifies its 
amplitude and phase as a function of time and frequency. The envelope of the 
analytic signal is obtained by taking its absolute value. The Hilbert transform 
was implemented using MNE Python48.

Source power estimation

The trade-off between time and frequency resolution requires different 
approaches for estimating the power of the signal used as input for source 
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reconstruction. To address this, we employed two complementary methods: 
one optimized for frequency resolution and the other for temporal resolution.

First, to enhance frequency resolution (at the expense of temporal 
resolution), we estimated Power Spectral Density (PSD). For each epoch and 
sensor, we measured absolute power in specific time–frequency windows 
determined from the group-level statistical test on the time–frequency 
representation (S-transform). In the trial period, PSD was computed in the 
following two windows: (1) 0.25–0.55 s, 15–30 Hz; and (2) 0.35–0.8 s, 8–12 
Hz. For the baseline period, the corresponding windows were: (1) –0.5–0 s, 
15–30 Hz; and (2) –0.5–0 s, 8–12 Hz. PSD was estimated using a multitaper 
method with Discrete Prolate Spheroidal Sequence (DPSS) windows58. 
Multiple orthogonal tapers were applied to each MEG time series, and the 
resulting spectra were averaged across tapers. The multitaper bandwidth 
was set to 4 Hz. After PSD estimation, we applied the inverse solution by 
multiplying the data matrix with the weight matrix, and then computed the 
percentage change in power during the trial period relative to the baseline 
period. This yielded relative power for each epoch and vertex, which was then 
averaged across epochs.

Second, to enhance temporal resolution (at the expense of frequency 
resolution), we estimated time-varying, frequency-specific power. The signal 
was band-pass filtered in the alpha (8–12 Hz) and beta (15–30 Hz) ranges, 
and the analytic signal was obtained as the combination of the filtered signal 
and its Hilbert transform for each epoch and sensor. We then applied the 
inverse solution by multiplying the data matrix with the weight matrix. 
Because both band-pass filtering and the inverse solution are linear 
operations, they can be safely combined without overlap. In contrast, the 
envelope of the analytic signal, obtained by taking the absolute value, is a 
nonlinear transformation. Therefore, we estimated the envelope in source 
space for each epoch and vertex. Finally, we computed the percentage 
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change in the trial period (0–1 s) relative to the baseline (–0.5–0 s), yielding 
relative power for each epoch and vertex, which was then averaged across 
epochs.

ERD Latency estimation

Peak latency was defined as the time of the most prominent ERD minimum 
within the tial window. Local minima in the baseline normalized power 
envelope were identified as candidate ERD events, and candidates were 
evaluated based on their prominence relative to the surrounding signal (i.e., 
depth with respect to adjacent local maxima) and their separation from 
neighboring minima to avoid selecting minor fluctuations. The most 
prominent minimum was selected as the ERD peak latency for that band 
and/or cortical region.

Onset latency was operationalized using a slope-based criterion to 
accommodate between-participant differences in ERD magnitude and 
baseline variability. Specifically, we computed the first temporal derivative 
of the baseline-normalized envelope and defined onset as the earliest time 
point at which the derivative became reliably negative relative to baseline. 
To ensure that this change reflected a genuine ERD rather than transient 
fluctuations, candidate onsets were additionally required to exceed a minimal 
decrease in power relative to baseline (typically ~10–20% below baseline).

Statistical analysis

To investigate the consistency of time-frequency patterns and their source 
localization across participants, we ran a cluster-based permutation one 
sample test (CBPT)59. CBPT is a nonparametric statistical test consisting in 
two different stages: a cluster formation stage and an inferential stage. In the 
cluster formation stage, the unit-level statistic is computed for each sensor 
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or source. We used a t-test unit-level statistic. We computed the unit-level 
test statistic 1000 times. For each iteration, the data points in the time-
frequency matrix or the spatiotemporal matrix were shuffled. Then, the 
original t values were compared to permuted t values yielding uncorrected p-
values. Spatial adjacency matrices were used to define time-frequency and 
sources proximity. Time-frequency or sources were selected according to an 
a priori defined alpha criterion (i.e., p < 0.05) and adjacent time-frequency 
or sources not exceeding this value were grouped together into clusters. 
Finally, we summed all the t values within each cluster. Minimum cluster size 
was set to 10 time-frequency and 100 vertices. In the inferential stage, the 
summed unit-level permutation values within each cluster were used to 
compute the cluster-level statistical distribution under the null hypothesis of 
exchangeability. We calculated the percentage of clusters for which the un-
permuted cluster-level statistic was larger than the permuted cluster-level 
statistic. If the cluster p-value was smaller than p < 0.05 then we assumed 
that the data in the two experimental conditions were significantly different. 
Crucially, we do not make inferences about the population based on the time-
frequency and sources based on the cluster-based permutation test60. We 
only use this test as a data driven approach to detect time-frequency a source 
patterns consistent across subjects that are subsequently used as a starting 
point for more focused spatial and temporal analyses.

Data availability

The datasets analyzed during the current study are available from the 
corresponding author on reasonable request.
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