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Abstract

Speaking—whether overtly or covertiy--requires a mapping between motor
commands and their sensory consequences, a process of sensorimotor
coordination. The timing of senisorimotor coordination during overt speech is
relatively well established. Here we asked whether during imagined speech
sensorimotor coordination can preserve this timing and remain grounded in
the same biophysical constraints underlying vocal articulation. We instructed
participants to imagine producing visually presented syllables (/pa/, /ta/, /ka/).
Using magnetoencephalography (MEG), we investigated the spatiotemporal
dynamics of mu rhythm (8-30 Hz) power suppression. Cluster-based
permutation analysis reveals a segregation of alpha (8-12 Hz) and beta (15-
30 Hz) frequencies to auditory and motor areas, respectively. Latency
analysis shows that beta suppression in motor areas precedes alpha
suppression in auditory areas by ~120 ms. This delay closely matches
sensorimotor coordination time windows previously reported for overt
speech. While prior work provided only indirect evidence for the temporal

equivalence between imagined and overt speech—by probing the system with
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altered auditory feedback—our findings offer direct evidence by measuring
strictly internal neural processes. Together, the results demonstrate the
suitability of alpha-beta suppression as a neural marker that separately
indexes motor and auditory processes associated with imagined speech

production.
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Introduction

Skilled motor control relies on the precise coordination of perception and
actionl!. To achieve desired outcomes, an agent must understand how actions
map onto their sensory consequences. In speech, two complementary
mappings relate articulatory movements fto different types of sensory
feedback: auditory feedback (the sounds we produce) and somatosensory
feedback (the tactile and proprioceptive sensations arising from movements
of the vocal tract). For example, an opera singer continually calibrates
diaphragm contraction, airflow, and vocal tract configuration against an
expectation of the target sound. Yet perception and action rely on
fundamentally different physical processes, biological systems, and neural
representations: movements arise from muscle contractions, whereas sounds
are perceived as vibrations transmitted through air. Linking these domains
requires a mapping between motor-output and sensory-input coordinate
systems. Such linking operations typically incur processing delays, reflecting
the computational cost of translating between distinct representational

formats?3.

Here, we investigate the timing of sensorimotor coordination during speech
imagery—a condition in which no movement is executed, and no sensory
consequences are perceived?. Our aim is to test whether the timing of

imagined speech matches that of overt speech, achieving temporal



equivalence. Temporal equivalence between imagery and overt speech may
only emerge under certain conditions, namely when the mental simulation
closely mirrors the physical act of speaking. In such cases, imagery can act
as a faithful neural reenactment that preserves the temporal scaffolding of
speaking®6, rather than as a temporally compressed mental simulation that
is unconstrained by the biomechanics of articulation’8. To recreate these
conditions, we designed our experiment around consonant-vowel syllables
(/pa/, /ta/, /ka/), which emphasize low-level acoustic and articulatory features
and minimize higher-order linguistic processing. This approach maximizes
the likelihood of capturing timing patterns in imagery that reflect the same

biophysical constraints governing overt speech.

To assess temporal equivalence, we need an estimaie of the duration of
sensorimotor coordination during overt speech that can serve as a reference
to evaluate the timing of the corresponding processes during imagined
speech. Previous estimates of this time window come from studies using
auditory feedback perturbation paradigm?, in which the perceived auditory
consequences of speech are artificially altered following articulation.
Perturbations are often implemented as shifts in formant frequencies to
selectively modify specific speech features. For instance, shifting the
fundamental frequency (F0) can cause the speaker to perceive a different
voice, while altering the first formant (F1) can lead to hearing a different
phoneme (e.g., /a/ instead of /e/). These manipulations create mismatches
between expected and perceived outcomes, measurable both behaviorally
(e.g., compensatory responses) and neurally (e.g., mismatch responses).
When perturbations are applied at different delays after speech onset, their
effects disappear after roughly ~100 ms, suggesting that mismatches
between motor and auditory consequences are normally integrated within

this time frame!0-11,



While some evidence suggests that the same temporal window for
sensorimotor coordination may apply to imagined speech, prior studies have
relied on external auditory probes, making their conclusions indirect!2. Our
goal here was to assess this timing more directly by focusing exclusively on
neural activity generated by the imagery process itself, without any
stimulation or feedback manipulation. This required a neural measure that
could separately track motor and auditory components of speech imagery and
do so with high temporal precision. Mu-rhythm power suppression—an
oscillatory pattern which we here define as spanning the conventional alpha
(8-12 Hz) and beta (15-30 Hz) bands—fits these requirements!3-14, Previous
work shows that beta suppression tends to localize to motor regions and
alpha suppression to sensory regions!®, and that mu suppression
accompanies both overt and imagined movements across a variety of
effectors16-17. including speech articulators!®. Building on this, we adopted a
two-step approach: first, identify whether motor-related beta and auditory-
related alpha power suppression can be dissociated during speech imagery;
and second, use the timing difference between these components as a direct

index of sensorimotor coordination.

We used magnetoencephalography (MEG) to measure the temporal delay
between motor- and auditory-related mu power suppression during imagined
speech, interpreting this delay as a proxy for sensorimotor coordination.
Participants imagined speaking visually presented syllables (/pa/, /ta/, or
/ka/). We investigated mu-rhythm power suppression in both the alpha and
beta bands using a cluster-based permutation test which revealed two
distinct time-frequency clusters. Beta power suppression occurred earlier in
motor regions, followed by alpha power suppression in auditory regions. Peak
latency analysis showed that beta suppression consistently preceded alpha
suppression by ~120 ms. This delay closely matches the sensorimotor
coordination window reported for overt speech, suggesting that imagined

speech preserves the same temporal scaffolding as overt speech. To further



test this interpretation, we collected overt speech latencies in a behavioral
pretest. Remarkably, the timing of both beta and alpha power suppression
during imagery closely matched each participant’s own speech production
latencies measured in this overt speech task, demonstrating that these neural
signatures reflect the internally generated production of movement and
sound. Together, these findings show that the temporal delay between motor
beta and auditory alpha power suppression provides a direct, stimulation-

free, neural measure of sensorimotor coordination during imagined speech.

Results

Speech onset distribution in the overt speech behavioral pretest

Imagined speech lacks behavioral output that could serve as a reference for
interpreting its underlying neural dynamics. Because no such measure can
be obtained directly for imagined speech, we conducted an overt speech
behavioral pretest to collect individual participant estimates of speech
production latency. The distribution of speech sound onsets is shown in Fig.
1. Across participants, the median onset following visual stimulus
presentation was 412 ms, representing the typical time required to initiate
speech. Here, we define the speech sound onset as the release burst
associated with the consonant vocalization. Because the target syllables (/pa/,
/ta/, /ka/) begin with unvoiced stop consonants, the articulators start moving
slightly before this acoustic event without producing any audible sound. Thus,
the median onset provides a temporal anchor: just before this point, motor
activity related to articulation should already be present, and just after this
point, auditory activity should emerge in response to the produced sound. A
Gaussian fit to the group-level onset distribution showed that latencies
clustered tightly around the median, with a 25-75% interquartile range of 74
ms capturing variability across participants. Fitting each participant’s

distribution individually revealed within-subject interquartile ranges from 54



ms to 157 ms, indicating that some speakers were more temporally consistent
than others. Overall, the relatively narrow spread confirms that, as
instructed, participants maintained consistent speech production latencies
across trials. These overt speech onset measures—at both the individual and
group level—will be used as temporal references for the following neural

analyses.
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Figure 1. Speech sound onsets measured in the overt speech behavioral pre-
test. Gaussian fits of the speech sound onset distribution across trials for each
participant (coloread lines) and a histogram of speech sound onsets across
participants are represented. The dashed vertical line marks the median

speech sound onset across participants.

Comparison of MEG/EMG recordings during imagined and overt speech

In this study, participants were instructed to imagine articulating syllables
(/pal/, /ta/, /ka/) presented visually in orthographic form (Fig. 2a). Task-elicited
evoked responses showed a posterior to anterior progression across sensors,
plausibly reflecting the sequential recruitment of visual, motor, and auditory
areas (Fig. S1). One practical advantage of imagined speech is that it engages

strictly internal neural processes: there is no overt movement execution, no



self-produced sound, and no electromagnetic artifacts generated by
speaking. As a proof of concept, we directly compared overt and imagined
versions of the task for one representative participant. The results illustrate
that overt articulation produces artifacts in the broadband signal (Fig. S2e)
and pronounced distortions in the time-frequency representations (Fig. S2g),
particularly in the lower and frontal MEG sensors closest to the participant’s
mouth (Fig. S2h). In contrast, performing the same task covertly produces no
observable artifacts. To ensure that participants were not moving during
imagined speech, we recorded electromyography (EMG) from jaw and lip
electrodes. In both overt and imagined speech, we observed EMG deflections
of different magnitudes (Fig. S2b,f). Specifically, the EMG signal during overt
speech was roughly ten times greater than during imagined speech. In line
with previous studies, we interpret these small residual deflections in the
imagined speech condition as micromovements'?—mniinor, involuntary muscle
activations that arise from incomplete inhibition of the motor command.
Because overt speech neural recordings are heavily contaminated by artifacts
and confounded by external sensory and motor aspects, we do not use them
as a direct comparison in this study. Instead, we use overt speech production
latencies from the behavioral pretest to guide interpretation of the imagined
speech neural responses. The earliest prominent deflection in the grand-
average EMG evoked response—corresponding to micromovement onset—
occurred at approximately 250 ms, providing an additional temporal anchor
for the neural responses (Fig. S3). Although single-trial and single-participant
EMG signals were too unreliable and micromovements could only be
characterized in aggregate format, this timing is still informative because it
closely matches the articulatory-to-acoustic onset interval reported in

previous overt speech studies?0,

Distinguishing induced vs. evoked frequency modulations



Next, we investigated the frequency modulations associated with imagined
speech. In this study, the instruction to imagine speech was necessarily
delivered via a visual cue, which inevitably triggers stimulus-driven neural
responses. However, our interest is not in these externally evoked processes
but in the internally generated processes associated with imagined speech in
the absence of overt articulation. Therefore, the first step was to establish
that the signals we are analyzing reflect self-generated rather than stimulus-
driven activity. To do so, we ran a time-frequency analysis in sensor space
and measured relative power change with respect to a pre-stimulus baseline
(-0.5-0 s). The resulting time-frequency representations revealed a classic
power decrease (event-related de-synchronization, ERD) in the mu-rhythm
(8-30 Hz) centered around the median speech onset latency measured in the
overt-speech behavioral pretest, suggesting that the suppression is linked to
the imagined speech rather than being a simple response to the visual cue.
To further test this interpretation, we conducted an analysis to assess the
phase-locking of time-frequency responses across trials (Fig. S4a-b). This
showed that mu-band frequency components persisted after subtraction of
the evoked response, confirming that they are non-phase-locked, internally
driven oscillations—unlike lower frequency components, which were phase-

locked, stimulus driven oscillations.

Spatial segregation of alpha-beta power suppression

Then, we asked whether the alpha (8-12 Hz) and beta (15-30 Hz) frequencies
within the mu band serve different functional roles. To address this, we first
ran a two-dimensional cluster-based permutation test (one-tailed, one-
sample) on the time-frequency representations to identify spectrotemporal
patterns showing significant power decrease relative to baseline across
participants. Two distinct clusters emerged (Fig. 2b): a beta cluster (15-30
Hz) spanning ~0.25-0.55 s (p < 0.001) and an alpha cluster (8-12 Hz)
spanning ~0.40-0.80 s (p < 0.001), already suggesting functional



differentiation. Then, we examined their spatial localization. For each cluster,
we projected absolute power during its time window and during the baseline
into source space, we computed the relative power change, and we ran a
cluster-based permutation test over cortical vertices to identify brain regions
showing a power decrease relative to baseline across participants. The beta
suppression localized to frontal motor regions (p < 0.005) and was absent in
temporal areas (Fig. 2c), whereas the alpha suppression localized to temporal
auditory regions (p < 0.01) and was absent in frontal motor areas (Fig. 2d).
Together, these results reveal a frequency-specific, spatially segregated
organization within the mu rhythm, indicating distinct functional roles for

motor beta and auditory alpha.
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Figure 2. Alpha and beta spectrotemporal clusters and their corresponding
source localizations. (a) A schematic representation of the experimental
paradigm. (b) Sensor space time-frequency representation of non-phase-
locked spectrotemporal modulations. Red and blue colors represent
percentage increase and decrease in power with respect to the baseline

period. The black contours represent the time-frequency regions that are



consistent across participants as obtained from the cluster-based
permutation test. Source localization of the beta (c¢) and alpha (d) power
decrease clusters. The black contours represent the cortical vertices that are
consistent across participants as obtained from the cluster-based

permutation test.

Temporal segregation between alpha and beta suppression

We next investigated whether there is a temporal segregation between beta
and alpha suppression. Because both signals have a transient, burst-like
profile—short-lived rather than sustained decreases in power—we focused on
the ERD onset as the latency measure. Onset is preferable to peak here
because it is less sensitive to variability in imagined-speech initiation and
duration across participants. In a control analysis, we also estimated sensor
latencies using ERD peaks instead of cnsets, which resulted in greater
between-subject variability (Fig. S5). Accordingly, we band-pass filtered the
MEG signal, applied a Hilbert transform to extract the analytic-signal
amplitude, and computed power change relative to the —0.5-0 s baseline.
Onset latencies were defined using a slope-based criterion on the baseline-
normalized envelope (see Methods). The grand-average Hilbert-envelope
time courses across all sensors (Fig. 3a-c) showed that beta suppression
began earlier than alpha suppression at the group level. Because group
averaging can spuriously exaggerate or diminish temporal separation, we
next estimated each participant’s beta and alpha onset latencies and
computed a within-subject temporal delay At = B onset = @ onset (N€gative when
beta precedes alpha). This produced a distribution of delays shifted below
zero, with a median delay of ~130 ms (Fig. 3d-e). A one-tailed one-sample t-
test on At confirmed that beta suppression systematically preceded alpha
suppression (t(39) = —8.85, p < 0.001). In summary, beta ERD onset
consistently preceded alpha ERD onset, with a median delay of ~130 ms

across participants.
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Figure 3. Sensor space power decrease tinie course in the beta and alpha
frequency bands. Grand average Hilbert transformed band-filtered power
decrease with respect to the baseline in the alpha (a) and beta (b) frequency
bands. The lines represent the 157 axial gradiometers. MEG sensors are
color-coded according to their spatial location on the scalp that is shown in
the topography in the upper left. The topographies of most salient events in
the time course are shown on top together with their timing. (c) The average
across sensors of the baseline normalized envelope in the beta (red) and
alpha (blue) frequency band is represented. The solid lines represent the
mean and the shaded area surrounding the solid lines represent the standard
error of the mean. The vertical dashed black line represents the expected
speech onset measured in the behavioral pretest. The colored stars and
vertical dashed lines represent the group-level beta (red) and alpha (blue)
ERD onsets. (d) The distribution of individual subjects’ beta and alpha ERD
onsets are represented in the red and blue histograms, respectively. The
colored vertical dashed lines represent the median beta and alpha ERD

onsets across participants. (e) The distribution of individual subjects’



temporal difference between beta and alpha ERD onsets is represented in the
grey histogram. The black vertical dashed line represents no temporal
difference; the grey vertical dashed line represents the median temporal
difference between beta and alpha ERD onsets. A negative value indicates
that the beta onset precedes the alpha onset, a positive value indicates that

the beta onset follows the alpha onset.

Temporal segregation between auditory-alpha and motor-beta suppression

To link sensor-space spectrotemporal dynamics to specific cortical
generators, we repeated the ERD onset-latency analysis in source space,
extracting beta- and alpha-band baseline normalized envelopes from
functionally relevant motor and auditory regions, respectively (Fig. 4a-b).
This analysis integrates the spatial information from Fig. 2 with the temporal
information from Fig. 3, allowing us to test whether the observed delay
reflects a motor-to-auditory sequence. We band-pass filtered the MEG signal,
applied a Hilbert transform to obtain the analytic signal, projected it into
source space, and computed its amplitude and power change relative to the
—0.5-0 s baseline. From these source estimates, we extracted beta activity
from the motor cluster and alpha activity from the auditory cluster identified
in the spatial analysis. The averaged time courses across cortical vertices in
these regions (Fig. 4c) showed that motor beta suppression began earlier
than auditory alpha suppression at the group level. We then estimated ERD
onset latencies for each participant’s motor beta and auditory alpha
suppression; onsets were defined using a slope-based criterion on the
baseline-normalized envelope (see Methods). Participants who did not show
a detectable beta or alpha ERD onset were excluded from this analysis (n =
3). In the remaining dataset, the median delay between motor beta ERD onset
and auditory alpha ERD onset was approximately 120 ms (Fig. 4d-€). A one-
tailed one-sample t-test confirmed that motor beta suppression systematically

preceded auditory alpha suppression (t(36) = —5.17, p < 0.001). In a control



analysis, we measured ERD peak latencies in the motor and auditory clusters,
which yielded greater between-subject variability (Fig. S6). In a second
control analysis, we repeated the procedure using motor and auditory ROIs
defined from a brain-atlas parcellation rather than from the data-driven
spatial clusters and obtained similar results (Fig. S7). Together, these
findings closely mirror the sensor-space analysis and demonstrate that the
temporal delay between beta and alpha power suppression localizes to motor

and auditory cortical regions.
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Figure 4. Source space power decrease time course in beta-band frontal
regions and alpha-band temporal regions. (a) The red colored area delimited
by black contours represents frontal regions which most prominently show
the beta power decrease across participants. (b) The blue colored area
delimited by black contours represents temporal regions which most
prominently show the alpha power decrease across participants. (c) The
average across source space vertices of the baseline normalized envelopes
extracted from the frontal beta (red) and temporal alpha (blue) clusters are

represented. The solid lines represent the mean and the shaded area



surrounding the solid lines represent the standard error of the mean. The
vertical dashed black line represents the expected speech onset measured in
the behavioral pretest. The colored stars and vertical dashed lines represent
the smallest frontal beta (red) and temporal alpha (blue) ERD onsets. (d) The
distribution of individual subjects’ frontal beta and temporal alpha ERD
onsets are represented in the red and blue histograms, respectively. The
colored vertical dashed lines represent the median frontal beta and temporal
alpha ERD onsets across participants. (e) The distribution of individual
subjects’ temporal difference between frontal beta and temporal alpha ERD
onsets is represented in the grey histogram. The black vertical dashed line
represents no temporal difference; the grey vertical dashed line represents
the median temporal difference between frontal beta and temporal alpha ERD
onsets. A negative value indicates that the frontal beta onset precedes the
temporal alpha onset, a positive value indicates that the frontal beta onset

follows the temporal alpha onset.

Correlation of alpha-beta peak /atency during imagined speech with latency

during overt speech

In the previous sections, we used ERD onset as a latency measure to reduce
variability related to imagery initiation and duration across participants. At
the group level, the timing of mu-rhythm power suppression during imagery
shows a clear correspondence with overt speech production latency, both in
sensor space (Fig. 3c) and source space (Fig. 4c). Specifically, the median
beta ERD onset aligns with the micromovement onset, suggesting that beta
suppression indexes the initiation of imagined articulation. By contrast, the
median alpha ERD onset aligns with the speech-sound onset measured in the
behavioral pre-test, suggesting that alpha suppression indexes imagined
sound generation. Building on this observation, we asked whether these
neural markers also track articulation timing at the individual level. Here,

however, our goal was to assess whether alpha and beta power suppression



timing tracks individual differences in articulation speed, so we used ERD
peak latency, which preserves this between-subject variability. Each
participant has a characteristic speed for initiating speech movements, and
if power suppression reflects sensorimotor coordination, then its latency
should align with that participant’s speech production latency. Because
articulation timing cannot be measured directly during imagined speech, we
used individual speech sound onsets from the overt-speech behavioral pretest
as a proxy, under the assumption that imagined and overt speech share a
similar temporal structure. We then tested whether participants with faster
or slower articulation also showed correspondingly earlier or later alpha and
beta suppression by correlating median speech sound onsets with ERD peak
latencies in the motor beta and auditory alpha clusters identified from the
spatial analysis, assessing significance with a permutation test (Fig. 5a-b).
The results revealed significant correlations for both motor beta (r(36) =
0.30, p < 0.05) and auditory alpha (r(36) = 0.51, p < 0.05). Importantly, these
correlations were not significant whern peaks were estimated from all sensors,
indicating that spatial localization to motor and auditory regions is critical.
Together with the onset-based analyses reported above, these findings
suggest that the timing of alpha and beta suppression is closely linked to
articulation speed: beta dynamics align with the initiation of covert

articulation, and alpha dynamics align with the timing of imagined sound.
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the correlation across participants.

Discussion

We investigated whether the timing of sensorimotor coordination during
imagined speech preserves the temporal structure observed in overt speech.
Using magnetoencephalography, we identified a spatiotemporal sequence of
neural events associated with imagined speech: a suppression of beta-band
power in motor regions, followed by a suppression of alpha-band power in
auditory regions. This sequence was consistent across participants, with
motor beta suppression consistently preceding auditory alpha suppression by
a delay of approximately ~120 ms. This time window is remarkably consistent

with the sensorimotor coordination time window previously reported in overt



speech studies that used auditory perturbation. This delay likely reflects a
sequence of operations required to align motor and auditory information
across distinct representational formats. This finding suggests that, under
certain conditions, imagined speech is not temporally compressed but rather
a faithful neural reenactment of the temporal scaffolding of speaking, with

the key difference being the inhibition of muscle activity?21.

The role of stimulus complexity in temporal equivalence

We deliberately chose consonant-vowel syllabic stimuli (/pa/, /ta/, /ka/) that
primarily engage low-level articulatory and auditory representations. This
design allowed us to isolate and compare motor and auditory components of
imagined speech more directly, thereby maximizing the chances of observing
temporal equivalence with overt speech. Consistent with this approach,
earlier studies investigating the rate of imagined speech using simple stimuli
such as number sets or the alphabet have also reported close correspondence
between overt and imagined production rates?2. By contrast, studies using
more complex stimuli such as words or sentences—which additionally recruit
abstract lexical-semantic and syntactic representations—have reported
temporal compression effects?3, where imagined speech unfolds faster than
its overt counterpart. Far from being contradictory, these findings are
complementary: motoric and abstract linguistic representations likely co-
exist during natural connected speech, with their relative dominance shaped
by factors such as task demands and stimulus complexity. Our results show
that, under conditions emphasizing low-level sensorimotor aspects, the

timing of imagined speech closely mirrors that of overt speech.

Beta-alpha frequency modulations as a neural marker of sensorimotor

coordination



The alternation of frequency modulations that we observed align with a well-
established literature on mu-rhythm event-related desynchronization (ERD).
Beta suppression in motor cortex is a marker of both overt and covert
movement execution?42526 while alpha suppression in auditory cortex is
typically linked to increased excitability and enhanced processing of auditory
input27.28.29, When these frequency modulations occur together in a
consistent temporal sequence, they form a plausible neural signature of
sensorimotor coordination. This interpretation is strengthened by the fact
that the peak latencies of both beta and alpha suppression correlated with
each participant’s overt speech production latencies estimated from the
behavioral pre-test. The alignment with individual speech onsets suggests
that both oscillatory patterns are tied to the internally simulated act of
speaking, rather than reflecting unrelated processes. This is important
because alpha suppression can also arise fironi unspecific processes,
irrelevant to the task, such as attentional control39. If attention was the
primary source of the alpha suppression, then its timing would not be
expected to track participant’s speech production latency—yet our results
show exactly such a correspondence. This finding makes a strong case that
the observed beta-alpha suppression sequence indeed reflects sensorimotor

coordination associated with imagined speech.

Imagined speech as a tool for isolating internal motor-to-auditory

progression

Across different motor control domains, overt movement execution reflects a
mixture of top-down and bottom-up mechanisms. Top-down signals include
motor commands and associated sensory predictions, whereas bottom-up
signals arise from the physical consequences of movement, such as
proprioceptive, tactile, and auditory feedback. During overt actions, these
components are tightly intertwined, making it difficult to isolate the internal

motor-to-sensory progression. In contrast, movements are suppressed and



external sensory consequences are absent during imagery, allowing us to
probe top-down mechanisms more directly. In line with this, a clear alpha-
beta dissociation within the mu rhythm has been observed during the mental
simulation of goal-directed grasping movements3!. When signal processing
methods are applied to separate movement-related artifacts from neural
signals—such as EMG informed artifact correction—alpha- and beta-band
power suppression can be disentangled even during overt speech32, When
alpha- and beta-band suppression measured during overt and covert speech
are compared, suppression is consistently larger during overt speech
production33.34, likely because concurrent articulation and sensory feedback
introduce bottom-up signals that mix with top-down signals and obscure their
distinct contributions. Our results show that imagined speech naturally yields
a robust spatiotemporal alpha-beta dissociation that is not confounded by
external sensory input and does not require artifact correction. This clear
separation demonstrates that speech imagery is a powerful experimental tool
for isolating sensorimotor coordinaticn from the influence of peripheral
feedback.

Competing mechanistic accounts: direct vs. indirect mapping

The neural mechanisms underlying sensorimotor coordination remain a
matter of debate. One influential proposal is that motor and auditory systems
share a “common coding” scheme3>—a ready-made, bidirectional mapping
that directly translates movements into sounds and vice versa. In this direct
mapping view, the link is so well entrenched that it could operate almost
instantaneously. Early theoretical formulations, such as the motor theory of
speech perception36, proposed that speech perception engages concurrent
motor representations associated with (intended) speech production.
Although this theory received only limited empirical support, it regained
attention when neuroimaging studies reported activation of motor regions

during speech perception3’, consistent with interdependent sensorimotor



representations38. If this account were correct, the timing of motor-auditory
crosstalk should roughly correspond to a single synaptic transfer—on the
order of 5-20 ms for cortical communication, depending on distance3. In
contrast, an indirect mapping view proposes that sensorimotor coordination
is mediated by an intermediate hub that transforms motor into sensory codes
and vice versa. Within the framework of dual-stream models of language
processing?9, a strong candidate for this role is the Sylvian-parietal-temporal
area (Spt), which is active during both speech perception and production4!.
This account predicts a longer temporal delay, reflecting at least two synaptic
steps. In overt speech, such comparisons are confounded by the additional
delay introduced by information traveling from brain to periphery. Instead,
in imagined speech sensorimotor coordination occurs entirely within the
brain, allowing a more direct assessment of the relevaiit time window. Time-
resolved functional connectivity studies investigating coupling between
motor and auditory areas during imagined speech??, together with our
present findings, point to delay substentially exceeding that expected from a
single synaptic transfer (i.e., ~120 ms) consistent with the involvement of an

intermediate hub.

Imagined speech as a window into the intrinsic timing of sensorimotor

coordination

By combining MEG with a speech imagery paradigm emphasizing low-level
acoustic and motor aspects, we uncovered an orderly spatiotemporal
sequence: motor beta suppression followed by auditory alpha suppression.
These frequency modulations were separated by a temporal delay closely
matching the time window for sensorimotor coordination in overt speech.
Crucially, imagined speech enables measurement of this temporal delay in
isolation—unaffected by the byproducts of articulation. In this way, our
results reveal the intrinsic duration of the sensorimotor coordination,

unfolding with the same temporal scaffolding as articulation but without the



confounds of overt movement execution and external feedback. The
spatiotemporal dissociation between motor and auditory frequency
modulations thus offers both a methodological tool and a theoretical lens for
probing the time window in which the brain integrates action and perception

during speech, whether imagined or spoken.

Methods

Participants

40 right-handed participants (mean age 27.18, range 20-47, 12 male) took
part in this experiment. All participants reported no history of psychiatric,
neurological, or language disorders. Moreover, participants reported normal
hearing, and normal or corrected-to-normal vision. Participants’ hand
preference was assessed using the Edinburgh Handedness Inventory43.
Informed written consent was obtained from each participant in accordance
with the Declaration of Helsinki. Ethical approval to conduct the study was

provided by New York University Institutional Review Board (IRB).

Stimuli

We used a set of three consonant-vowel (CV) syllables: /pa/, /ta/ and /ka/. For
each syllable, we varied the consonant while we kept the vowel constant. The
syllables were similar in duration and overall acoustics but distinct in motor
space. Following the international phonetic alphabet (IPA) classification, the
starting phonemes are unvoiced stop consonants which have different places
of articulation. /p/, /t/, and /k/ are bilabial, alveolar, and velar consonants that
recruit articulators in the front, mid, and back of the upper vocal tract,

respectively.

Experimental design



We tested participants in a behavioral and a neuroimaging task. The
behavioral task took place right before the neuroimaging task, such that
participants’ performance in the two tasks was as similar as possible. In fact,
the behavioral task was designed to acquire temporal landmarks that were
subsequently used as a reference to interpret neuroimaging data. This task
was also aimed to establish an exclusion criterion for the neuroimaging task.
This preselection was necessary to reduce the temporal variability in speech
production latency across participants that is detrimental for neural data

analyses.

The experimental procedure was structured as follows. There was a variable
baseline period in which a fixation cross was displayed on the screen for 1-
1.5 s. Then, participants were visually presented with one consonant-vowel
syllable (/pa/, /ta/ or /ka/) for 1 s and instructed to imagine producing them
as quickly as possible without generating overt movement or sound. After
that, there was a 2.5 s inter trial interval in which a fixation cross was
displayed on the screen. Participants were instructed to keep their eyes open
and to maintain eye fixation during visual cue presentation. We deliberately
used the visual modality, rather than auditory presentation, so that the
internally generated speech representations could be isolated from stimulus-
driven auditory responses. This choice forces participants to map the
orthographic input onto corresponding motor and auditory output, while
avoiding the stimulus-response overlap that would occur with auditory
presentation as well as potential working memory confounds. To maintain
consistent initiation timing across trials, syllable presentation order was
pseudorandomized: the three syllables appeared in varying orders across
trials but always in balanced triplets, preventing participants from

anticipating or pre-activating upcoming items.



The difference between the behavioral and the neuroimaging task was that
participants were instructed to speak overtly and covertly, respectively. In
the behavioral task, participants spoke the syllable aloud. Participants
completed one block, that is 120 trials in total. In the neuroimaging task,
participants imagined speaking the syllable, without moving and without
producing sounds. Imagined speech was described to participants as the
internal simulation of the movements and sounds associated with speech
production. Participants completed 4 blocks. Each block consisted of 120
trials; therefore, participants performed 480 trials in total. In both the
behavioral and the neuroimaging task we used PsychoPy toolbox*? version 2,

Python release 3.8.3, for stimulus delivery.

Behavioral data acquisition and analysis

Participants were seated in front of a computer screen in a soundproof booth.
We used a 16-channel, 8-preamp, 24-bit/96kHz, MOTU system for audio
input/output. Participants’ utterances were recorded using a microphone. We
estimated the speech sound onsets for each participant and for each trial. As
a first screening, we used a custom MATLAB script to compute the envelope
of the speech sound waveform and for each trial we automatically extracted
the most prominent rising of the peak that was estimated as an abrupt change
in the derivative of the speech sound waveform envelope. These automatically
extracted speech sound onsets measures were used to obtain an approximate
estimate of participants’ temporal precision in the task. We instructed
participants to be as consistent as possible across trials in terms of speech
production timing. If participants’ speech onsets distribution was too broad
and/or the median of the distribution was skewed towards the beginning or
the end of the trial, we asked them to practice more until they improved their
temporal precision. Participants who were still unable to meet the minimum
requisites were excluded and did not take part in the MEG study. Specifically,

we excluded participants who did not meet the following criteria: a median



speech onset between 200-600 ms and an interquartile range smaller than
400 ms. Thirteen participants were excluded based on their performance in
the behavioral pre-test and therefore were not included among the 40 MEG

datasets analyzed in this study.

The speech sounds collected during the behavioral pre-test were
subsequently used to annotate speech onsets for each participant and for
each trial. To do that, we used the Praat software*®. Speech sound onsets
were determined by visual inspection of the spectrogram based on the
characteristic signatures of unvoiced stop consonants. Unvoiced stop
consonants are associated with occlusions in the vocal tract which result in
specific acoustic signatures corresponding to a silent period (closure) and a
noise burst (release). In particular, /p/, /t/, and /k/ show clear differences in
the shape of the noise burst: /p/ shows a short-lived wide range burst across
all the spectrogram that has lower intensity; /t/ shows a more prolonged burst
in the upper part of the spectrogram that has higher intensity; /k/ shows an
even longer burst in the lower part of the spectrogram that also has higher

intensity*6.

EMG data acquisiiion and pre-processing

Participants were instructed to avoid jaw and lips movements during covert
speech. Articulatory movements were continuously monitored using
electromyography (EMG). We recorded the EMG signal from four electrodes:
one reference electrode placed on the right mastoid, one ground electrode
placed on the right wrist, one electrode placed below the cheekbone to record
jaw movements and one electrode placed between the lower lip and the chin
to record lips movements. Previous studies have shown that muscle
movements measured from jaw and lip are sufficient to distinguish unvoiced

stop consonants?’. Electrode impedance was kept below 25 kQ.



EMG electrodes were connected to an MEG-compatible BrainAmp DC
amplifier (Brain Products GmbH, Gilching, Germany). The EMG was recorded
at a sample rate of 500 Hz. A 60 Hz notch filter was applied to remove power
line noise. Data was referenced online to the right mastoid. Data was re-
referenced offline using bipolar derivations (jaw minus mastoid electrode; lip
minus mastoid electrode) to enhance local muscle activity. A zero-phase, two-
pass Butterworth bandpass filter with a 1 Hz high-pass frequency cut-off and
a 50 Hz lowpass frequency cut-off was applied. We segmented the raw signal
into epochs between -1 s before 1 s after the visual presentation of the
syllable. Time series were down-sampled to 250 Hz and the EMG signal was
zero-meaned and detrended. A baseline correction was applied by computing
the mean of the 1s baseline period preceding syllable cue onset and
subtracting this mean from the entire trial epoch. We used an auto-reject
algorithm for automatic artifact rejection. This algorithm defines a threshold
for artifact rejection that is specific for each participant based on a cross-
validation procedure. This individualized rejection threshold was motivated
by the high variability across subjects in the signal-to-noise ratio of EMG
recordings caused by individue! differences in skin conductance, magnitude

of muscle artifacts, and heartbeat artifacts.

MEG data acquisition

Individual head shapes and fiducial landmarks (nasion, right and left pre-
auricular points), were digitized using a 3D laser scan hardware (Polhemus,
FastSCAN COBRA 3D) and a 3D digitizer software (Source Signal Imaging,
Inc.). Five Head Position Indicator (HPI) coils were placed on participant’s
mastoid bones and forehead to keep track of participant’s head position
inside the dewar through electromagnetic induction. We measured head
position before and after each recording block. When the maximum
difference between head positions before and after each block was above 1

cm, data was excluded from further analysis. Prior to data acquisition, all



metal and other potential sources of electromagnetic interference were
removed. Prior to running the experiment, we recorded 3 minutes of MEG

data without participant in the scanner (empty room recording).

MEG recordings were obtained in a magnetically shielded room (Vacuum
Schmelze, Hanau, Germany) using a 157-channel whole-head axial
gradiometer system (KIT, Kanazawa Institute of Technology, Japan) and 3
orthogonally oriented reference magnetometers. Participants performed the
task in a supine position. When positioning participants in the MEG scanner,
we ensured tight contact with the dewar. Participants were instructed to
avoid head, body, and limb movements during the recording. The MEG signal
was sampled at 1 kHz. Two filters were applied during data acquisition: a
zero-phase two-pass Butterworth band-pass filter 1-200 Hz and a notch filter
at 60 Hz. Visual stimuli were presented using a CP-X8150 LCD projector
(Hitachi America LTD). Images were piojected on a first-surface mirror
(Edmund Scientific, Barrington, NJ) suspended from the ceiling and fixed at
a 45° angle; the incoming image hit the mirror and was reflected 90° straight
down. A Cedrus StimTracker was used to keep track of trigger delivery with

high temporal precision

MEG preprocessing

MEG pre-processing was applied using MNE-Python*® (v0.20.7), Python
release 3.8.3, combined with custom routines. First, we removed external and
internal sources of noise from the recorded MEG signal. External noise (e.g.,
stationary noise, environmental noise) was removed offline from the MEG
recordings using two denoising algorithms run in sequence. First, we used a
Continuously Adjusted Least-Squares Method (CALM)%° using the noise
recorded during the empty room. This method consists in estimating
regression coefficients from reference magnetometers recorded during the

empty room to regress out environmental noise from axial gradiometers



recorded during the experiment. Then, we used a time shifted PCA> to
remove the remaining environmental noise measured by reference
magnetometers during the experiment. Reference noise magnetic fields are
filtered and subtracted from axial gradiometers. The filters (one per
reference magnetometer/axial gradiometer pair) are obtained by delaying the
reference signals, orthogonalizing them to obtain a basis, projecting the brain
sensors onto the noise-derived basis, and removing the projections to obtain
clean data. Internal noise (e.g., heartbeat, muscular activity, eye blinks) was
reduced using Independent Component Analysis (ICA)>l. We used a fixed-
point algorithm to estimate 30 independent components on epoched data. Up
to 10 components were excluded based on visual inspection of spatial
topographies and latent sources (e.g., sharp, transient deflections, slow

drifts, and rhythmic fluctuations).

MEG source reconstruction

T1-weighted anatomical scans were acquired for 14 participants. When the
anatomical scans were not available, we used a template average brain to
perform source reconstruction®2. The original shape of the template average
brain was adjusted - either increased or decreased along x, y, z coordinates -
to match participants’ head shape that was measured using the 3D laser
scanner. To perform group-level analyses in a common reference frame, we
computed a linear interpolation (i.e., morphing) between the decimated
individual source model and a template average brain. The anatomical scans
were 3D reconstructed using the Freesurfer software®3.54, A Boundary
Element Model (BEM) was estimated using the watershed algorithm. MRI
and MEG coordinate systems were co-registered by matching digitized
anatomical fiducial landmarks to participant’s T1 anatomical scan. The
resulting whole brain 3D mesh (5124 vertices; 6.2 mm average source
spacing), the BEM model and the aligned coordinate frames were used to

compute the forward model for source reconstruction. The forward model



predicts the spatiotemporal characteristics of the MEG signals given a
certain distribution of neural activity, considering both the conductivity

properties of the head tissues and the geometry of the MEG sensor array.

The inverse problem consists in finding the optimal mapping from a low
dimensional sensor space (157 axial gradiometers) to a high dimensional
source space (5124 vertices). The inverse model predicts the most likely
source space configuration that would produce the observed magnetic fields.
The inverse solution consists in finding a set of sensor weights for each
source. Weights are estimated as a combination of the forward model and
inverse model. The combined forward and inverse models are optimized
iteratively to minimize the mismatch between the predicted and observed
MEG signals. Weights are based on the sensor locations with respect to the
brain. Thus, weights are fixed and do not change over time or over frequency.
We used the dSPM (distributed Source Probability Model) method for source
reconstruction. The projection in source space was obtained by multiplying
the data matrix with the weighting matrix. We implemented source

reconstruction using MNE-Python48 (v0.20.7), Python release 3.8.3.

ROI definition and extraction

We a priori selected motor and auditory regions of interest (ROIs) in the peri-
Sylvian language network. We used a cortical parcellation scheme obtained
using a brain atlas. The FreeSurfer software can be used to label the cortical
surface into anatomical regions®>. This procedure consists in automatically
assigning a neuroanatomical label to each location on a cortical surface based
on probabilistic information estimated from a manually labeled dataset. The
result is a labeling of cortical sulci and gyri. We selected 2 ROIs: one motor
ROI including cortical vertices anterior to the precentral gyrus, and one
auditory ROI including cortical vertices located in Heschl’s gyrus, superior

temporal gyrus and superior temporal sulcus regions.



For each ROI, we extracted a time course that summarizes the activity of
underlying vertices. MEG measurements are insensitive to the direction of
the current flow along the source. Thus, the estimated orientation of the
sources is ambiguous. Source reconstruction techniques (e.g., MNE, dSPM)
yield two possible orientations for each reconstructed source, corresponding
to two opposite directions. We used the mean flip method for ROI extraction
which ensures that the average orientation of the reconstructed sources
aligns with the expected orientation based on anatomical or functional
considerations. This is typically achieved by flipping the orientation of
individual sources if necessary, so that their combined effect results in a

consistent and interpretable orientation pattern.

Time-frequency analysis

By definition, time-frequency decomposition methods cannot provide precise
time and frequency estimates at the same time. Higher temporal resolution
can only be obtained at the expense of lower frequency resolution, and vice
versa. Here, we wanted to investigate both temporal and frequency aspects
in detail. Therefore, we used two different time-frequency decomposition
methods that are designed to optimally capture frequency and temporal

aspects, respectively.

First, we used the Stockwell (S-) transform®® that is designed to balance
temporal and spectral resolution by adjusting one single parameter. This
method uses a windowed Fourier transform with a Gaussian window whose
width varies with frequency. We can control the tradeoff between spectral
and temporal resolution by specifying different widths of the Gaussian
window. This allows for variable time-frequency resolution. Given a time-

domain signal x(t), the Stockwell (S-) transform X(t, f) is calculated as follows:



X(t,f) = [T x(t) *g(t-1) e?"Tdr
(1)

where g(t) is a Gaussian window function centered at t. In the MNE-Python4!
implementation the width parameter can be set to be <1 or >1. Where <1
means higher temporal resolution, and >1 means higher frequency
resolution. In this study, we set the Gaussian window width parameter to 1.2

to have higher precision in the frequency domain.

Next, we used the Hilbert transform>’ to capture time-varying oscillatory
dynamics. The Hilbert transform can be used to estimate how power and
phase change over time in a specific frequency band. Before applying the
Hilbert transform, the signal was bandpass iiltered. We filtered the
broadband signal in the alpha (8-12 Hz) and the beta (15-30 Hz) frequency
bands and repeated the following steps for each frequency. A Fourier
transform of the bandpass filtered signal was computed. The phase
quadrature component (i.e., one-quarter-cycle, 90[] or [J/2) is created and
added to the real-valued signal. This operation is done by rotating the
complex Fourier spectrumn of a real-valued signal. This is equivalent to
estimating instantaneous phase over time. Then, the inverse Fourier
transform is computed. The combination of the original signal and its Hilbert
transform is known as the "analytic signal". The analytic signal is a complex
spectrotemporal representation of the original signal which specifies its
amplitude and phase as a function of time and frequency. The envelope of the
analytic signal is obtained by taking its absolute value. The Hilbert transform

was implemented using MNE Python?#8.
Source power estimation

The trade-off between time and frequency resolution requires different

approaches for estimating the power of the signal used as input for source



reconstruction. To address this, we employed two complementary methods:

one optimized for frequency resolution and the other for temporal resolution.

First, to enhance frequency resolution (at the expense of temporal
resolution), we estimated Power Spectral Density (PSD). For each epoch and
sensor, we measured absolute power in specific time-frequency windows
determined from the group-level statistical test on the time-frequency
representation (S-transform). In the trial period, PSD was computed in the
following two windows: (1) 0.25-0.55 s, 15-30 Hz; and (2) 0.35-0.8 s, 8-12
Hz. For the baseline period, the corresponding windows were: (1) -0.5-0 s,
15-30 Hz; and (2) -0.5-0 s, 8-12 Hz. PSD was estimated using a multitaper
method with Discrete Prolate Spheroidal Sequence (DPSS) windows?S,
Multiple orthogonal tapers were applied to each MEG time series, and the
resulting spectra were averaged across tapers. The multitaper bandwidth
was set to 4 Hz. After PSD estimation, we applied the inverse solution by
multiplying the data matrix with the weight matrix, and then computed the
percentage change in power during the trial period relative to the baseline
period. This yielded relative power for each epoch and vertex, which was then

averaged across epochs

Second, to enhance temporal resolution (at the expense of frequency
resolution), we estimated time-varying, frequency-specific power. The signal
was band-pass filtered in the alpha (8-12 Hz) and beta (15-30 Hz) ranges,
and the analytic signal was obtained as the combination of the filtered signal
and its Hilbert transform for each epoch and sensor. We then applied the
inverse solution by multiplying the data matrix with the weight matrix.
Because both band-pass filtering and the inverse solution are linear
operations, they can be safely combined without overlap. In contrast, the
envelope of the analytic signal, obtained by taking the absolute value, is a
nonlinear transformation. Therefore, we estimated the envelope in source

space for each epoch and vertex. Finally, we computed the percentage



change in the trial period (0-1 s) relative to the baseline (-0.5-0 s), yielding
relative power for each epoch and vertex, which was then averaged across

epochs.

ERD Latency estimation

Peak latency was defined as the time of the most prominent ERD minimum
within the tial window. Local minima in the baseline normalized power
envelope were identified as candidate ERD events, and candidates were
evaluated based on their prominence relative to the surrounding signal (i.e.,
depth with respect to adjacent local maxima) and their separation from
neighboring minima to avoid selecting minor fluctuations. The most
prominent minimum was selected as the ERD peak latency for that band

and/or cortical region.

Onset latency was operationalized wusing a slope-based criterion to
accommodate between-participant differences in ERD magnitude and
baseline variability. Specifically, we computed the first temporal derivative
of the baseline-normaiized envelope and defined onset as the earliest time
point at which the derivative became reliably negative relative to baseline.
To ensure that this change reflected a genuine ERD rather than transient
fluctuations, candidate onsets were additionally required to exceed a minimal

decrease in power relative to baseline (typically ~10-20% below baseline).

Statistical analysis

To investigate the consistency of time-frequency patterns and their source
localization across participants, we ran a cluster-based permutation one
sample test (CBPT)%9. CBPT is a nonparametric statistical test consisting in
two different stages: a cluster formation stage and an inferential stage. In the

cluster formation stage, the unit-level statistic is computed for each sensor



or source. We used a t-test unit-level statistic. We computed the unit-level
test statistic 1000 times. For each iteration, the data points in the time-
frequency matrix or the spatiotemporal matrix were shuffled. Then, the
original t values were compared to permuted t values yielding uncorrected p-
values. Spatial adjacency matrices were used to define time-frequency and
sources proximity. Time-frequency or sources were selected according to an
a priori defined alpha criterion (i.e., p < 0.05) and adjacent time-frequency
or sources not exceeding this value were grouped together into clusters.
Finally, we summed all the t values within each cluster. Minimum cluster size
was set to 10 time-frequency and 100 vertices. In the inferential stage, the
summed unit-level permutation values within each cluster were used to
compute the cluster-level statistical distribution under the null hypothesis of
exchangeability. We calculated the percentage of clusiers for which the un-
permuted cluster-level statistic was larger than the permuted cluster-level
statistic. If the cluster p-value was smaller than p < 0.05 then we assumed
that the data in the two experimental conditions were significantly different.
Crucially, we do not make inferences about the population based on the time-
frequency and sources based on the cluster-based permutation testf0. We
only use this test as a data driven approach to detect time-frequency a source
patterns consistent across subjects that are subsequently used as a starting

point for more focused spatial and temporal analyses.

Data availability

The datasets analyzed during the current study are available from the

corresponding author on reasonable request.
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