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Abstract

Quantum key distribution (QKD) provides a foundation for information-theoretic security based on
quantum mechanics, yet its practical deployment is often constrained by intrinsically low secure key
generation rates, particularly in high-bandwidth or low-latency settings. This work introduces a
hybrid cryptographic technique that integrates conventional QKD with deterministic chaos, modeled
using the Lorenz attractor, to provide a software-based enhancement of the effective key expansion
rate. From a short 20-bit QKD seed, the system generates long bitstreams within milliseconds;
although these streams exhibit high empirical randomness, their fundamental entropy remains
bounded by the seed, consistent with standard cryptographic principles. The method employs the
exponential divergence of chaotic trajectories, such that even minute uncertainties in an adversary’s
estimate of the initial state lead to rapid desynchronization and, as established in Appendix A, an
exponential decay of Eve’s mutual information with respect to the expanded key. Simulation results
confirm this theoretical behavior and demonstrate an effective rate amplification exceeding two
orders of magnitude over the baseline QKD seed rate. The proposed chaotic expansion operates
entirely in software and requires no modifications to existing QKD hardware, offering a practical
pathway to enhance throughput for applications ranging from secure video communication to low-
latency IoT and edge-computing environments.

Keywords: Secret key sharing, quantum cryptography, chaotic systems, quantum key distribution,
deterministic chaos, key-rate enhancement.

Introduction

Quantum Key Distribution (QKD) is a key enabling technology for information-theoretic security,
which utilizes the properties of quantum mechanics to overcome the limitations of classical
cryptography. The basic properties of quantum theory, such as no-cloning and measurement
disturbance to achieve the proof of security of keys exchanged between parties [1]. Theoretical
guarantees for QKD have proven it to be a necessary tool to develop quantum-safe communication
protocols which are largely applied to critical sectors including but not limited to banking, defense,
infrastructure security [2]. Recent developments highlight the progress and deployment of QKD
technologies such as demonstrations of high-rate data multiplexing [3] and novel applications [4],
and in particular in satellite network applications [5]. Quantum machine learning is also considered
as a very promising technique to improve the security and efficiency of QKD [6].

The interplay of secure communication with the successful transmission of encrypted messages is
not merely academic: Shannon himself established that key entropy at least equal to that of the
message (H(K) = H(M )) is needed for perfect secrecy, emphasizing the central role of high key
generation rates in matching secure encryption to communication demands [7].

Despite its excellent security guarantees, the large-scale practical deployment of QKD has long
faced a significant and enduring limitation: the inherently low rate of secure key generation. In
most current systems, key generation rates are severely restricted by quantum channel losses,
detector efficiencies, and the computational demand of post-processing procedures such as error
correction and privacy amplification [8]. However, the implementation of a QKD system is still
constrained by a low secure key rate and expensive hardware. For example, a time-bin BB84



protocol on standard loss fiber was only able to achieve 6.5bps over 421km using a 2.5GHz clock
and superconducting detectors [9]. Twin-field QKD extended the record to more than 500 km,
although this was achieved with complex optical phase stabilization and additional synchronization
fibers [10]. Mode-pairing QKD enhanced key-rate scaling under realistic laser sources even more,
but these types of QKD still depend on high-precision hardware and complex interferometric
configurations [11]. This key requirement means that most QKD protocols are generally insufficient
for high-throughput, low-latency secure communications (e.g. secure real-time video conferencing,
high-frequency trading systems, and the emerging mass scale of edge computing and IoT
environments).

Solutions to this throughput problem followed the traditional path of focusing on hardware
advances. Ef- forts have led to the development of faster single-photon sources, more efficient
detectors and advanced interferometric setups to allow one to test the boundaries of achievable
key rates and transmission distances [12]. While more advanced such systems have demonstrated
excellent performance, achieving impressive distances (e.g., twin-field QKD beyond 500 km, or
enhancements to the scaling of the key rate) [10], [11], these advances typically go hand in hand
with prohibitive equipment costs, system complexity and physical requirements, such as the need
for very-precise hardware and complex optical phase stabilization [13]. Such hardware-based
approaches usually call for high capital investment and infrastructure, making it less attractive for
widening its applications and adaptability.

As an alternative to these complex, hardware-driven approaches, chaos-based methods provide an
appealing, mostly software defined solution for high-rate key derivation.
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Fig. 1. Diagram of the hybrid QKD and chaotic system framework. Alice and Bob each obtain a 20-bit secret key from the QKD
protocol. This key is appended to the least-significant digit of the initial conditions used to drive their respective Lorenz chaotic
systems. The evolution of the Lorenz attractor amplifies the small differences introduced by the initial QKD seed, generating
an expanded key of length 20 e, set to approximately 2 X 10%bits in this experiment. An eavesdropper Eve attempts to infer
the initial 20-bit seed through classical-channel observations; however, any residual uncertainty in her estimate causes her
chaotic trajectory to diverge exponentially from Alice’s, leading to a decay of mutual information I(A;E)-0 as t—-w®, as
established in Appendix A. The diagram illustrates the flow of key generation, chaotic expansion, and the resulting information-
suppression mechanism that provides a software-defined enhancement layer on top of standard QKD.

Chaotic systems possess several characteristics that make them attractive for cryptographic
applications. Their evolution is deterministic yet practically unpredictable, and they exhibit
pronounced sensitivity to initial conditions [14]. These properties imply that a compact random seed
can be transformed algorithmically into an extended bitstream that displays high empirical entropy. In
our setting, this allows key expansion to operate as a computational layer built upon the already
provided by the underlying QKD seed. By incorporating chaotic dynamics into QKD post-processing, it
becomes possible to mitigate the conventional rate limitations of quantum channels without requiring
costly modifications to existing hardware. An overview of the proposed approach is presented in
Figure 1.

This work offers four principal contributions. First, we introduce a key expansion mechanism, in
which a short QKD-derived key, such as a 20-bit seed, initializes a Lorenz system that produces a



bitstream of more than twenty thousand bits through its chaotic evolution. Second, we show that
Lyapunov instability provides a natural mechanism for suppressing adversarial information, since
small errors in an eavesdropper’s estimation of the initial conditions grow rapidly, leading to an
exponential decay of mutual information between Eve and Alice. A formal proof of this decay is
presented in Appendix A. Third, the proposed expansion layer is entirely software-defined, making it
compatible with current QKD infrastructures and enabling practical enhancement of key rates without
additional hardware investment. Fourth, we demonstrate that the scheme achieves key expansion
rates suitable for latency-sensitive applications, including encrypted video communication and real-
time IoT scenarios, as confirmed through extensive numerical simulations.

The remainder of the paper is organized to guide the reader through both the conceptual foundations
and the technical details of the approach. The next section reviews related work and situates our
contribution within the broader literature. Section “System Model and Problem Formulation”
introduces the system model and formulates the problem under consideration. The manuscript is
followed by the proposed hybrid QKD-chaotic key expansion protocol in detail. Following sections
analyzes the resulting security properties and provides the theoretical guarantees that underpin the
scheme. Section VI reports performance results obtained through simulation.

Related Work

Previously, there are reports on the study of applying chaotic systems together with key distribution
in quantum cryptography, though they have done so with different aims and circumstances. This
series of experiments has revealed the potential for using chaotic dynamics to enhance cryptographic
se- curity and key management in quantum communication systems.

Although the work of Cowper et al. [15] showed that in a purposely-built QKD system chaotic
synchronization may offer protection against photon-number atiacks without hardware modifica-
tions, it did not directly address the crucial question of key expansion. That is, how to generate a
longer, securely distributed seed (point for point uncorre- lated with its own distribution information)
from a shorter one. The work of Keuninckx et al. [16] showed that nonlinear dynamics can generate
shared key material in remote optoelectronic oscillators when driven into chaos synchronization.

But the approach was hardware-and cost-bound and did not explicitly promise quantum security
while Sykot et al. [17] recent research took E91 entanglement together with logistic map chaos as a
security measure for image data. Their techniques not only fully involve chaotic systems into
quantum cryptography but is notable for achieving near-perfect privacy(though they neglected key
expansion to increase QKD throughput).

The Lorenz model with an enhanced (or augmented E91 ) Lyapunov equation was used by Cho and
Miyano [18] to spread a 1o-bit QKD seed into megabit streams. Cowper et al. [15] also required
large amounts of hardware investment to increase the bit stream. Rather than encrypt messages
simply, this method extends a diminutive QKD-derived seed into a broader key. That significantly
enhances throughput for QKD. A complete approach to data security that embraces recent
accomplishments in Kotangale et al. [19] quantum technologies for large data This framework
combines KETs like QRNG, key distribution and optical elements transformation; together with
QCMs generating keys in the form of quantum chaotic sequences.

Advancing quantum cryptography, Purohit Vyas [20] reviews the latest areas of QKD research,
developing analysis and eavesdropping detection from quantum machine learning. That successfully
brings out the necessity for an all-new approach to improve efficiency as well as security in QKD. In
fact, QKD has seen a number of recent advances such as new protocols for reducing extra pulses
[21] and high-dimensional coherent one-way systems that help to raise secure key rates with fiber
networks [22]. These findings underline continual efforts toward better QKD performance and
resilience. On the other hand, Du et al. [23] proposed advantage distillation for QKD, successfully
unifying important distillation procedures. Integrating this system with chaos key generation might
help to optimize the secure key rate. Hybrid chaos-based cryptographic frameworks like
CryptoChaos [24] reflect a great interest in the act of linking deterministic chaos theory with
modern cryptography, while trying to solve accepting down security challenges. This trend is in line
with our software-defined approach which utilises chaotic systems to crypto some.

These earlier studies were problematic in having dependencies on hardware, no key extension and
rather specializing on applications than QKD throughput enhancement. Therefore, our effort tries to
act as a bridge between QKD to fill these gaps in key extension; by offering software-defined,
efficient and that can work within existing standards, as an alternative so something more effective
in this work.



System Model and Problem Formulation
System Overview

The proposed scheme includes two primary steps, i.e., exchanging keys through QKD and
expanding keys via the Lorenz system. Fig. 1, where a short quantum key is utilized to generate a
much longer bitstream using deterministic chaos with privacy embedding properties. In Fig. 1, Alice
and Bob use a quantum channel for QKD to create a common 20-bit cryptographic key. To this key
the initial conditions of the Lorenz systems are then mapped on by following the scheme of adding
this to the successive digit with respect to the inverse base such that an additional digit is appended
to the lowest digit by doing this, the synchronization initial conditions. For a chaotic Lorenz system a
new expanded key of length L, (L = 2 x 10% in our experiment) is produced. Eve meanwhile trying to
intercept the main cause of exponential divergence in exponential divergence resulting from the
Lorenz system’s initial condition sensitivity, where the mutual information A4, E) between Alice and
Eve tends to zero as t — .

Problem Statement
Given the cipher key Kogxp which is short and has a large entropy, then we should make it longer.

That much longer key would be K405 -- but there are constraints:

» This key must be of high entropy with a Hamming distance approximately equal to m bits.

* Eavesdropping seclrity cannot be cracked.

* It can be implemented using software without modifying QKD hardware components

* Compatible with existing QKD systems, such as BB84 and ESi

* Real-time Responsiveness for Latency-Critical Applications
Although advancements in hardware — particularly in photon detectors — have helped reduce certain
performance bottlenecks, these solutions face inherent limitations in terms of scalability and costs. As
an alternative, harvesting the intrinsic properties of chaoctic systems can provide a solution. These
systems yield a computationally efficient means of improving the key generation rates of Quantum Key
Distribution (QKD) by augmenting the chaotic bits. By enhancing key rates, the private key can be
sufficient to employ near theoretical secure symmetric encryption, especially in applications where
real-time operation is essential.

1) Quantum key distribution: If Alice and Bob agree on using some traditional QKD
protocol, such as BB84 {25] or E91 [26], they can produce shared secret keys as in any
QKD protocol.

2) Key expansion through the Lorenz System: A shared key is embedded into the initial
conditions of a chactic system in order to produce an extended and relatively high-entropy
bitstream.

With this hybrid architecture, we can generate keys longer and longer exponentially faster
but still retains information-theoretic security.

Initial Key Generation via QKD
Let Kokp represent a shared secret key of 20 bits that's been set up between Alice and Bob by
QKD with the subsequent classical processing (sifting, error correction). The 20-bit size reflects

practical constraints often observed in QKD sessions due to transmission losses and
quantum noise, although the proposed method supports any short key length.

Seeding the Chaotic System

The 20-bit key is mapped to the initial conditions of the Lorenz system, described by the following
set of nonlinear differential equations:

dx

5 = oy -x) (1)
dy _
3t = X(p-2)-y )
dz __
Gt = Xy -Bz (3)

Standard parameter values ensuring chaotic behavior are used: ¢ = 10, p = 28, B = 8/3, since
nonlinearity does not guarantee that the system will enter chaotic behavior except parameters fall
within the range where it behaves chaotically. To synchronize the system, KQKD is split into three



segments:

* 7 bits mapped to x(0)

* 7 bits mapped to j(0)

* 6 bits mapped to z0)
Each binary segment is normalized into a floating-point value within a predefined chaotic domain
(e.g., [0.1, 1.1]) using:

binary_value

Vmin t on 1 X (Vmax - Vmin) (4)
This mapping is deterministic and shared between Alice and Bob, ensuring identical initialization of

their respective Lorenz systems.

Proposed Method
Hybrid QKD-Chaos Key Expansion Protoco!

The protocol is made up of two parts:
1. Quantum Key Distribution (QKD):
Alice and Bob first establish a shared secret key using a standard QKD protocol such as BB84
[25] or E91 [26].
2. Key Expansion via Lorenz Chaos:
The shared key is encoded into the Lorenz system'’s initial conditions to generate a long, high-
entropy bitstream.
This hybrid approach exponentially expands key length while preserving information-theoretic
security. Key expansion using chaotic systems are described as follows:

Chaotic Sequence Generation and Synchronization

The Lorenz system is numerically integrated using the fourth-order Runge-Kutta method with a step
size At = 0.001. Time series x(#), J(f), z(f) are sampled over ¢ [0, T ], where T determines the
expansion length. The total number of generated biis is: =

Keylength=7-b-T (5)
where f; is the sampling frequency (e.g., 1 MHz), b refers to bits per sample (e.g., 3-5 bits using
quantization), and 7' is the duration of Lorenz evolution (e.g., 0.01-0.05 sec). Quantization is achieved
by discretizing each Lorenz variable into uniformly spaced intervals. For example, a 4-bit quantizer
partitions each variable’s domain into 16 levels, which are then converted into binary sequences.

The initialization stage converts the short QKD-generated seed into the initial state of the Lorenz
system. Because the security and reproducibility of the chaotic expansion depend critically on this
mapping, a precise and unambiguous formulation is provided here. Let Kqxp = (b1, by, ..., bao) €
{0,1}20 denote the seed obtained after classical post-processing of the QKD protocol.

The 20 bits are partitioned into three segments representing the initial conditions of the Lorenz state
vector as follows.

Bits b;-b7 correspond to x(0).

Bits bg-bi4 correspond to y(0).

Bits bys-byg correspond to z(0).

Each segment is interpreted as an unsigned integer using standard binary-to-integer conversion:
ke = Zfi=1to7y bi 277
ky = Zfizgto14} bj 24
kz = Z{i=15 to 203 bj 22°"

To ensure that the resulting initial conditions lie within the operationally chaotic region of the Lorenz
attractor, the integers %, kj, k, are normalized by linear scaling to the interval [ Viuin, Vinax] With v =
0.1 and vyax = 1.1. The choice of vnin and vmax ensures that all initialized states fall within the
parameter region in which the Lorenz system exhibits sustained chaotic dynamics, as determined by
its bifurcation structure and the requirement that trajectories evolve within the strange attractor
rather than entering periodic or non-chaotic transient regimes. The scaled initial conditions are
computed as follows.

X(0) = vpin  + (ke /(27 = 1)) (Vmax - Vmin)



Y(0) = Vmin + (ky /(27 - 1)) (Vmax = Vemin)
2(0) = Vmin + (ky /(2% - 1)) (Vmax - Vmin)

This deterministic mapping ensures that Alice and Bob, who share the same 20-bit QKD seed, obtain
identical Lorenz initial states, while an adversary lacking any portion of the seed will necessarily work
with an offset 6 > 0. As demonstrated analytically in Appendix A, any such offset leads to exponential
divergence of trajectories and an exponential decay of mutual information between Eve and Alice.

Algorithm 1. Conversion of QKD Seed to Lorenz Initial Conditions
1. Input: 20-bit QKD seed K QKD = (by, ..., bap).

2. Extract bit segments:
Sx = (by, ..., by)
Sy = (bs, ..., b14)
Sz = (b1s,...,b20)

3. Convert each segment to integer:
ky = binary to_integer (Sy)
ky = binary to_integer (Sy)
k, = binary to_integer (S;)

4. Scale integers to Lorenz domain [0.1, 1.1]:
x(0) = 0.1 + (ke / 127) x 1.0
y(0) = 0.1 + (ky/127) x 1.0
z(0) = 0.1 + (k;,/63) x 1.0

5. Output: Initial Lorenz state vector (x(0), y(0), z(0)).

Security and Desynchronization of FEavesdroppers

Eavesdroppers (or Eves) without precisely knowing KQKD cannot set up the Lorenz system in the
exactly same state. Give its high initial condition sensitivity, any deviation, even down to 10-10
changes—which in turn causes an exponential divergence of Eve's trajectory—will quickly
desynchronize her generated sequence. Synchronization of Alice and Bob is maintained only as long as
their mapping and integrating procedures are deterministic as well as consistent; but in contrast to
them, Eve's generated bitstream has a high probability for mismatched output. This means her
analogue separate key with the legitimate key information will tend toward zero mutual information.

Key Expansion Properties

The expanded key Kchaos €xhibits several important characteristics.

* Its length increases from an initial 20-bit QKD seed to more than 20,000 bits within a 20-ms interval,
achieved through 1-MHz sampling and 4-bit quantization.

* Its entropy has been evaluated using Shannon entropy metrics and consistently exceeds 0.99 per bit,
demonstrating near-uniform statistical distribution.

* Its security is characterized through the mutual information I(A;E), which, as shown in Section V,
decreases exponentially over time, indicating rapid divergence between the trajectories of legitimate
users and an eavesdropper.

Together, these properties illustrate that the proposed scheme provides an effective algorithmic
mechanism for enhancing key generation rates while preserving compatibility with existing QKD
systems.

Implementation Considerations

Table 1 summarizes key engineering recommendations for practical implementation.
Table 1 Key Engineering Recommendations
| Design Aspect | Recommended Practice |




Initial Condition Precision 64-bit or fixed-point or arbitrary precision

Chaos Parameter Stability Use canonical Lorenz values; ensure A > 0

Sampling Rate 1 MHz; avoid oversampling

Quantization 3-5 bits/sample

Computational Strategy Runge-Kutta 4 or parallel methods. Add chaos
engine after QKD post-processing

Error Handling Optional reconciliation or discard/reseed

Security Analysis
Exponential Error Amplification via Lyapunov Instability

A key characteristic of chaotic systems is their sensitivity to initial conditions, formally quantified
by the Lyapunov exponent (A). For the Lorenz system under standard chaotic parameters (o = 10, p
= 28, B = 8/3), the largest Lyapunov exponent is approximately A = 0.9, indicating exponential
separation of nearby trajectories.

Let 6o denote a small perturbation in the initial condition made by an eavesdropper (Eve). The
trajectory error after time ¢ can be approximated as:

5(t) = |I6olle™  (6)

This implies that even minute differences (e.g., 6(t) < 101° ) rapidly grow over time, leadjyyg to
decorrelation be- tween Eve’s trajectory and the legitimate one generated by Alice and Bob.

Bit-Level Divergence and Quantization Effects

To attain cryptographic keys from Lorenz trajectories, the continuous variables x(t), y(t) and z(t) must be
first quantitized to numerical form. This numerical format must align directly with the seed key bits.
Specifically, each variable is encoded using a fixed-point. or integer representation, for example (16-or 32-bit
words). This ensures that the mapping from 20-bit OKD seed to initial conditions remains determinate and
free from analog rounding errors. As soon as the Ead domain, these trajectories are sampled at a regular rate
and passed through a quantized.

Two quantization approaches were used to convert the continuous chaotic trajectories into binary
sequences suitable for key expansion. In the first approach, sign-bit quantization assigns a value of 0
whenever the sampled stete is negative and lotherwise, providing a minimal yet effective
discretization. In the second approach, an interval-based scheme partitions the dynamic range of the
trajectory into 2" uniform intervals, with each sample mapped to its corresponding n-bit code.
Together, these methods enable robust extraction of digital bitstreams from the underlying chaotic
evolution.

Because both sides share an identical digital representation, small numerical differences due to
floating-point noise or hardware variations are eliminated at the beginning. or any further As even
small discrepancies in chaotic dynamics grow exponentially, the remaining difference between the
state cloned by Eve and the true state soon drives the sampling points out of the quantised values in
which they were initially collected.

Security analysis against different attacks

A variety of adversarial strategies may be considered in the context of chaotic post-processing
applied to QKD keys. We analyze the primary attack vectors and show that each reduces
fundamentally to an initial-condition estimation problem whose error necessarily grows exponentially
under chaotic evolution. This behavior aligns with the formal result in Appendix A, namely that the
mutual information between Alice and an adversary satisfies

I(A;Et) = Ke—2y L
whenever Eve’s initial estimate incurs a nonzero deviation.

1. Brute-Force Enumeration of the Seed Space Although our proof-of-concept implementation uses a
20-bit QKD seed, practical QKD systems routinely generate 64-128-bit distilled keys. If the seed has

length mbits, the attacker’s brute-force complexity is 2™. Even if Eve attempts continuous refinement
by mapping each candidate key to an initial condition XS), the resulting trajectories ft(xg))satisfy
I f0xo0) - FEOx) 1=l xo - x5 I e,



with A >0 the Lorenz Lyapunov exponent. Because verification requires matching the full
quantized output, the exponential divergence prevents Eve from confirming a candidate key unless
the initial state is exactly correct.

2. State-Estimation Attacks (Takens Embedding, Nonlinear Observers, Kalman Filtering) State
estimation assumes access to smooth, continuous observations of the dynamical system. Here Eve
observes only a discrete alphabet

bk = Q(x(t)).bx € {0,1,...,2P - 1},

corresponding to a quantization partition Q. The many-to-one nature of Qdestroys the injectivity
required for Takens’ embedding theorem and prevents reconstruction of a diffeomorphic attractor.

Any reconstructed surrogate model fsatisfies
at
I f(xg) - ft(xg) |= cert

for some constant ¢ > 0 associated with quantization uncertainty. Thus, estimation errors amplify
exponentially, causing Eve’s predicted bitstream to decorrelate rapidly from Alice’s.

3. Parameter-Recovery Attacks An adversary may attempt to estimate the Lorenz parameters (0,0,B) .
However, Eve observes only the quantized scalar output by, not the continuous triplet (x,5,2). This
leads to a fundamentally ill-posed inverse problem; for any candidate parameter triple 6, the induced
initial-condition set satisfying

Q(xg(ty)) = by

forms a high-dimensional region rather than a unique point. The resuiting initial-condition uncertainty
60(0)then propagates as
6¢(8) = 50(6) e™t,

and Appendix A shows that such non-zero uncertainty forces
[(A;E((8))—0.

4. Machine-Learning Prediction Attacks Machine-learning predictors 5k+1 = M(by,...,by)attempt to
learn the symbolic dynamics of the quantized Lorenz trajectory. Even if a model accurately predicts
limited short-term structure, the long-term prediction error satisfies

4 at

EL | f(xo) - f (xg) II ] = Ce™t,
causing symbol-level prediction accuracy to collapse to the uniform distribution on the alphabet.
Consequently,

N 1 ML
Pr(by = bi)=> 55 MAEL)-0.

5. Active Manipulation of the Classical Channel Active attacks—perturbing messages or forcing
desynchronization—are mitigated by standard QKD authentication and error-rate monitoring. If Eve
induces a disturbance A, the QBER rises above the security threshold, leading Alice and Bob to discard
the affected block and reseed the chaotic expansion with a fresh QKD key. Since reseeding resets the
effective time horizon, Eve never accumulates a persistent advantage, and her residual knowledge
again decays as |(A;E;) = Ke 2Vt

Robustness Against Active Adversaries

An active adversary may attempt to disrupt the protocol by injecting perturbations into the
synchronization process or altering numerical parameters during chaotic evolution. However, such
interference is intrinsically self-defeating. The underlying QKD layer performs error reconciliation and
integrity verification (e.g., LDPC/BCH decoding and authenticated hash comparison) before chaotic
expansion begins; any abnormal deviation in the QBER immediately causes protocol abort. After
expansion, Alice and Bob verify equality of their expanded keys through an authenticated hash,
ensuring that even a single manipulated bit is detected.

Beyond these operational safeguards, the rigorous decay of adversarial information established in
Appendix A also applies to active manipulation. Let Adenote Alice’s final expanded key and let E
represent Eve’s passive side information immediately before she attempts any active interference.
Appendix A proves that the joint density of Alice’s and Eve’s trajectories converges exponentially to a
product distribution, leading to the mutual-information bound

I(A;E) = Ke™2V't,



If Eve performs active interference on the authenticated classical channel, her resulting state may
be written as

E' = f(E,T,U),

where Tdenotes the transcript of classical communication and Udenotes Eve’s private randomness.
Since classical authentication ensures that Tleaks no additional information about A beyond what is
already contained in E, the system obeys the Markov chain

A-(E,T,U)-E".

By the data-processing inequality, any post-processing performed by Eve cannot increase her
information, giving

I(A;E') < I(AE) < Ke-2Vt,

Thus, the exponential decay of mutual information proved in Appendix A continues to constrain
Eve’s knowledge even when she actively interferes with the protocol. As long as the authenticated
classical channel is intact and the QKD integrity checks remain in place, no active strategy can raise
Eve’s information above the passive bound, and detection occurs whenever tampering affects the
legitimate key.

Resistance to Parameter-Injection Attacks
We now consider a stronger active attacker who attempts to infer or manipulate the chaotic system
parameters in order to synchronize with the legitimate evolution. Let Alice’s iteration be defined by
Xt = fe(xt_l)l

where 6 represents the set of Lorenz parameters and the initial conditions derived from the QKD seed.

Suppose Eve attempts to construct her own approximation fz using estimated parameters 6, obtained
through any combination of passive observation and active inteiterence on the classical channel.
Let the error in Eve’s parameter set be p
AB =06-6,
and let the induced state divergence after one iteration satisfy
61 '_ii fe(Xg,) - fé(Xo) " .

For chaotic flows with positive Lyapunov exponent A > 0, the deviation satisfies
& = 5,eM.

Thus any arbitrarily small uncerteinty in Eve’s knowledge of the parameters—i.e., even if | A | is
extremely small—produces exponentially diverging trajectories over time, making synchronization
impossible.

To relate this divergence to information leakage, consider Alice’s and Eve’s state distributions at time t

, denoted piA)and péE). The induced divergence in state-space implies divergence in distributions.

Appendix A establishes that for chaotic maps possessing exponential decay of correlations, the joint
density of the two trajectories satisfies

(AE) _ _(A) _(E) -y
Ipe™™ -p¢pe Il = KeVE.
Using Pinsker’s inequality,

1 AE A E
AED =51 p™™ - ot p” I3

and therefore
I(AE;) < K'e?Yt—0.

This bound holds regardless of the mechanism through which Eve attempts to approximate the
parameters, because the mapping

é"’ﬁl(é)

is continuous, and any nonzero mismatch 86; > O produces exponential divergence under the chaotic
flow. Hence, even if Eve actively engineers the parameter set to minimize her initial error, her best
achievable estimate still leaves residual uncertainty, and this uncertainty inevitably leads to vanishing
mutual information.

In summary, even with active parameter-injection attacks, the exponential mixing properties described
in Appendix A ensure that any non-zero initial uncertainty in Eve’s parameter knowledge produces
asymptotically zero mutual information. This guarantees that the chaotic post-processing layer
remains secure even against adversaries attempting to reconstruct or manipulate the chaotic



dynamics.

Resistance against chaos attacks

Chaos-based systems can be vulnerable to several well-known attack classes, including state-space
reconstruction using delay embeddings, nonlinear system identification, parameter-estimation attacks,
and machine-learning prediction methods. In the proposed hybrid QKD-chaotic framework, however,
each of these attacks becomes fundamentally limited by the QKD seed entropy and by the exponential
divergence properties of the Lorenz system.

A standard reconstruction attack seeks to approximate the map for its state evolution using Takens
embeddings of the form

E(x¢) = (Xt Xtrr 1 Xe(m-1))»

which require long, noiseless observations of the true trajectory X;. In our setting, Eve observes only
quantized bitstreams derived from Xiand not the continuous state itself. Because the quantizer
compresses dynamics into a many-to-one mapping, the preimage set of any observed bit sequence is
exponentially large. This makes reconstruction ill-posed and prevents accurate estimation of the
underlying trajectory.

Parameter-recovery attacks attempt to infer the system parameters (0,0,8) or the initial condition
Xo. Even if the system parameters are known, the initial condition is determined by the QKD seed; thus
Eve’s uncertainty is at least

6p=2",

where mis the QKD seed length. By the divergence property
l Xi - X¢ = 6oeAt,

any small error grows exponentially, and Appendix A shows that this necessarily forces the mutual
information to obey

I(AE,) < Ke2VE.

Thus, even highly optimized state-estimation attacks cannot maintain long-term predictive
accuracy.

Machine-learning prediction methods—including recurrent neural networks and reservoir computing—

also suffer from Lyapunov-limited predictability. They can approximate short-term segments, but the

error grows superlinearly due to quantization loss and the inability to observe the true continuous
trajectory. As a result, the forecast horizon is bounded by

~Liog[22)

1:lf>red|ct =~ A 0og 60 ’

which is extremely short whemn §g is fixed by the QKD seed. Note that tyreqict is the maximal prediction
time before accumulated error exceeds acceptable limits, € is the tolerable prediction error (the
maximal deviation at which Eve’s predicted state remains useful).

Together, these analyses show that known chaos-specific attacks ultimately succumb to the same
exponential divergence mechanism that drives the mutual-information decay in Appendix A. Thus,
even optimized adversarial strategies cannot prevent Eve’s information from approaching zero,
validating the robustness of the hybrid scheme.

Reseeding for Sustained Security

In order to prevent such statistical leakage of information on the expanded key over time, that can
increment with the growing number of (quantum-based) differential calculations, the chaos-based
expansion process is time to time reseeded with newly quantum-derived entropy. Such as, for
example, at time 7} periodically (e.g., every 100 milliseconds), the Lorenz system is reinitialized with
an exchanged QKD key segment. This reseeding is such that the information previously collected by
Eve is out of date because the chaos state since known has no longer any impact on the following key
block.

Summary of Security Guarantees

Table 2 lists the principal security components provided by our target system and provides a brief
description of the role of each as a defense against various kinds of threats. This defense strategy is
built based on the security provided by QKD and the computational amplification of chaos theory,
which helps achieve strong security guarantees against passive and active adversaries.



Table 2 Key elements supporting security in the hybrid quantum-chaotic scheme

Feature Contribution to Security

QKD Provides initial information-theoretic security based on quantum
principles

Chaotic divergence Amplifies small differences in initial conditions, preventing key re-
construction by adversaries.

Quantization Introduces bit-level unpredictability that disrupts pattern recognition

Mutual information decay Rapidly reduces the information gain of eavesdroppers to near
zero Periodic reseeding Ensures forward secrecy by invalidating
previously acquired information.

Performance Evaluation

Simulation Setup

To demonstrate the effectiveness of our QKD-chaos proto- col, we performed numerical
simulations based on the Lorenz system seeded with a 20-bit key. The Lorenz parameters were
chosen as o = 10, p = 28, and S = 8/3. The sampling frequency was set to 1 MHz with 4-bit
quantization per sample. We present three illustrative results: (1) a sample Lorenz attractor, (2)
exponential error growth for small deviations, and (3) mutual information decay over time. Lorenz
dynamic trajectories are shown in figure 2.

Lorenz Attractor (o =10, p =28, B=8/3)

Initial Difference: d = 1e-07 —— Original Trajectory
Altered Trajectory

@ Originai End Point

® Altered End Point

Fig. 2. The Lorenz attractor generated by two instances showing sensitivity of the Lorenz attractor to infinitesimal
perturbations in initial conditions. The figure shows two Lorenz trajectories generated under identical system parameters

(0 = 10,p = 28,8 = 8/3)but initiated with an extremely small difference of d = 10”7in their starting states. The original
trajectory (blue) and the perturbed trajectory (red) remain close only for a brief transient interval before diverging rapidly due
to the positive Lyapunov exponent of the system. The endpoints of each trajectory are marked to emphasize the significant
separation produced by the tiny initial difference. This exponential sensitivity, characteristic of chaotic flows, underlies the
key-expansion mechanism: even minimal uncertainty in Eve’s knowledge of the initial conditions results in long-term
desynchronization, causing her reconstructed bitstream to decorrelate from Alice’s and ensuring that I(A;E)approaches zero as
demonstrated in Appendix A.

Randomness and Entropy Evaluation

To ensure that the randomness properties of the chaotic bitstream are rigorously validated, we
provide a complete description of the quantization scheme, bitstream generation procedure, and
statistical testing methodology. The chaotic output X(t)obtained from the Lorenz system is uniformly
sampled in time and transformed using a 4-bit uniform mid-rise quantizer, producing integer values in
the range {0,...,15}. Each quantized symbol is subsequently mapped to its 4-bit binary representation,
yielding a bitstream suitable for randomness assessment.



For each experiment, a total of N = 10° bits is extracted after discarding an initial transient period
to eliminate initialization bias. The empirical Shannon entropy is computed as

H = -p(0)log,p(0) - p(1)log,p(1),

where p(0)and p(1) denote the empirical frequencies of zeros and ones. Across forty independently

generated sequences, the measured entropy consistently lies within the range H = 0.993-0.998 bits
per symbol, confirming that the quantized chaotic output exhibits near-uniform binary distribution.

To further assess statistical randomness, all sequences were evaluated using the NIST SP §00-22
test suite, including core tests such as the Frequency, Runs, Block Frequency, Non-Overlapping
Template, FFT, and Approximate Entropy tests. A sequence is deemed satisfactory if its p-value
exceeds 0.01 and if at least 96% of sequences pass each test. As summarized in Table 3, all evaluated
sequences satisfy these criteria, demonstrating that the chaotic expansion layer yields bitstreams with
statistical properties consistent with high-quality randomness. The complete evaluation pipeline
ensures that the reported entropy values and randomness properties are grounded in reproducible
statistical methodology rather than heuristic impression.

Table 3 NIST SP 800-22 Randomness test results for 1,000,000-bit chaotic bitstreams

NIST Test M\ifllllxé) II;?iet;: Reqﬁ?ri?nent
Frequency (Monobit) 0.431 0.98 = 0.96
Block Frequency 0.451 0.98 = 0.96
Runs 0.522 0.96 = 0.96
Longest Run of Ones 0.377 0.98 = 0.96
FFT Test 0.387 0.96 = 0.96
,I;Igrﬁg;’fglappmg 0.462 0.97 = 0.96
Approximate 0.472 0.97 > 0.96
Entropy
Serial Test 0.491 0.96 = 0.96

All tests achieved mean p-values welli above the 0.01 acceptance threshold, and every category
exceeded the minimum required pass rate of 0.96. In particular, foundational tests such as the
Frequency and Runs tests reported pass rates of 0.98 and 0.96, respectively, indicating that the
bitstream contains no detectable bias or deviation from expected random behavior. Structurally
sensitive tests—including the Block Frequency, FFT, Non-Overlapping Template, Approximate
Entropy, and Serial tests—also demonstrated strong performance, with pass rates ranging from 0.96
to 0.98. Together, these results confirm that the chaotic expansion process generates bitstreams
exhibiting statistical characteristics consistent with high-quality randomness suitable for
cryptographic post-processing.

Results and Discussion

The simulation results demonstrate that augmenting QKD with chaotic post-processing yields a
substantial enhancement in effective key throughput and a rapid suppression of adversarial
information. As shown in Fig. 5, the hybrid scheme improves the achievable key rate by more than two
orders of magnitude relative to baseline BB84 under identical channel conditions, while the mutual
information between Alice’s expanded key and Eve’s best reconstruction decays to less than one
percent within the first 0.5 s of divergence. This behavior is consistent with the exponential mixing

mechanism formalized in Appendix A, where the Perron-Frobenius spectral gap guarantees (XY

) < Ke2V't, The presence of chaotic dynamics therefore accelerates Eve’s information loss relative to
the BB84-only scenario, despite Eve initially possessing a small perturbation of the true QKD seed.

Lorenz-system behavior.
Figure 2 visualizes the Lorenz attractor driven by initial states that differ only by 10~/in their x-
coordinate (with identical y(O)and 2z(0)). Both trajectories evolve under the standard Lorenz

parameters 0 = 10, p = 28, and B = 8/3and trace out the characteristic double-wing structure of the
attractor. Although the two trajectories begin almost indistinguishably, their separation grows rapidly
due to the system’s positive Lyapunov exponent. This sensitivity underpins the security advantage of



the proposed method: even if Eve’s estimated seed differs infinitesimally from Alice and Bob’s true
seed, the resulting chaotic states diverge exponentially, ultimately driving Eve’s mutual information
toward zero.

Exponential divergence of adversarial estimates

To quantify this effect, perturbations of magnitudes 10>, 107, and 10'°were added to Eve’s
guessed initial condition. Figure 3 plots the Euclidean distance d(t) = | X; - X; | between Alice-Bob’s
trajectory X; and Eve’s trajectory X;. All perturbation levels exhibit exponential divergence of the form
d(t) = doe?, where A > 0 is the maximal Lyapunov exponent. Although both trajectories remain
confined within the fractal geometry of the attractor, their instantaneous states diverge in a manner
that prevents Eve from maintaining correlation with the true system trajectory. This divergence
directly translates into mutual-information decay: as shown in Appendix A, exponential decorrelation
of the joint density implies I(A;E{)—0, even when Eve begins with arbitrarily small but nonzero state
error. Fig. 3 shows that even the smallest perturbation of 10 1%results in a separation that increases by
several orders of magnitude within a short interval, demonstrating the system’s extreme sensitivity to
initial uncertainty. The curves in Fig. 3 exhibit slopes consistent with the maximal Lyapunov exponent,
confirming that the divergence.

These results highlight a central security implication. The relevant question is not whether Eve can
produce a trajectory that remains inside the same attractor, but whether she can produce a trajectory
whose instantaneous state remains sufficiently close to Alice and Bob’s to extract bit-level correlations.
The simulations show that she cannot: even minute initial discrepancies yield exponentially diverging
dynamics, and Appendix A confirms that this divergence enforces an exponential decrease in Eve’s
mutual information with Alice’s expanded key. Consequently, the hybrid chaos-QKD protocol exhibits
strong resilience against reconstruction attacks and provides a measurable advantage over QKD-only
key-rate scaling.
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Fig. 3. Plot of ||x(&) — x(®)]| vs. time £ The plot shows the absolute distance between two Lorenz
trajectories initialized with a small perturbation of d = 10°7. For an initial transient period, the
trajectories remain close, but as time progresses, their separation grows rapidly, exhibiting
intermittent bursts characteristic of chaotic dynamics. These fluctuations reflect the system’s
positive Lyapunov exponent, which amplifies microscopic errors and drives the trajectories onto
distinct regions of the attractor. This behavior is central to the proposed key-expansion
mechanism: even an adversary with near-perfect initial knowledge accumulates significant
deviation over time, leading to decorrelation of her reconstructed sequence from Alice’s and
ultimately causing the mutual information I(A;E)to approach zero, consistent with the theoretical
result in Appendix A.

Reduction of Mutual Information

Let {Ai(t)}iNzland {Ei(t)}!\'zldenote the binary sequences held by Alice and Eve at (discrete) time
index t, obtained by quantizing and sampling the Lorenz trajectories and extracting Nbits from each
party. For each fixed time t, we treat the pair (A;(t),E;(t))as i.i.d. samples of a pair of binary random

variables (A(t),E(t)) € {0,1}2. The empirical joint distribution is estimated via the relative frequencies

Noe(t
Pacl(t) = aﬁl( ),a,e € {0,1},

where N,e(t)is the number of indices isuch that A;(t) = a and E;(t) = e. The corresponding marginals



are
pA(a;t) = zpae (t)rpE(e;t) = zpae (t)

In general, mutual information between Alice and Eve is defined as

A

~ P(a,e)
I(A;E) = 2 p(ae)logy ————-
a,ep a-€1002 p(a)p(e)

For specific time t, the mutual information between Alice and Eve is then computed using the standard
definition

Pae(t)
I(AE|t) = t _ Pael
(AE]H a,eE%O,l} Pae (1) log; pa(a;t) pe(e;t)

This quantity measures the number of bits of information about Alice’s key that are leaked to Eve at

that time.
In addition, we track the bitwise mismatch probability between the two sequences,

1 N
Perr(t) = N 2 1(A(t) # Ei(t)) = po1(t) + p1o(b),
i=1

and empirically observe that, due to the chaotic divergence of trajectories, perr(t)approaches 1/2as t
increases.
In the regime where the marginals are approximately balanced,
1 1

pa(0;t) = pa(l;t) = i.pE(O;t) ~ pe(l;t) = 5
and errors are approximately symmetric (i.e., the effective channel from Ato Ebehaves as a binary
symmetric channel with crossover probability per-(t)), the mutual information can be expressed as

[(AE|L) = 1 -Hy(pap (),

where H,(x) = -xlog,X - (1 - X)log,(1 - X) is the binary entropy function. In particular, as perr(t)—’%, we

have H;(perr(t))—1 and therefore
I(A;E[t)—0.

Owing to the chaotic aspect of the Lorenz system, the smallest discrepancy in the initial state Esti
mate of Eve’s causes her trajectory to deviate rapidly away from that followed by Alice and Bob. This
difference can be traced back to the system’s positive Lyapunov exponent, which guarantees that near
one another trajectories will grow rapidly further apart in time. Mathematically, the mutual
information I(A; E) between Alice’s bits A and Eve’s reconstituted bits E can be written as follows:

=
o

1(A; E) =IgA; E)e~
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Fig. 4. Mutual information AA4; £) vs. time showing exponential decay of mutual information and conceptual
illustration of information suppression.. (a) Theoretical decay of the mutual information [(A;E)between



Alice’s expanded key and Eve’s estimate, modeled as I(A;E) = Io(A;E) e*. The curve demonstrates that
even if Eve begins with partial knowledge of the key, chaotic divergence causes her information to fall

rapidly toward zero over time, consistent with the theoretical bound I(A;E;) = Ke'ZV'tproven in Appendix A.
(b) Schematic interpretation of this process in terms of entropy sets. At early times, Eve’s uncertainty
overlaps significantly with Alice’s key space, leading to nonzero mutual information. As time progresses,

the chaotic evolution amplifies any initial uncertainty, shrinking the overlap region and driving |(A;E)
asymptotically to zero. This illustrates the mechanism through which the chaotic post-processing layer
eliminates residual adversarial information even when Eve attempts parameter estimation or trajectory
reconstruction.

As time progresses, the mismatch between the two bit- streams grows. This is not only expected
due to chaotic divergence, but it is also supported by simulation data. The mismatch probability
increases toward 50%, at which point the mutual information approaches zero. Mathematically, this
is captured by the limit:

lim I(A;E) = 0 as per(t)~3 (9)

This exponential drop is confirmed in Fig. 4, which plots the mutual information {A4; E) over time
for various levels of initial estimation error. The curves in the figure demonstrate that Eve’s
information degrades rapidly, even when her initial estimate is only marginally inaccurate. A detailed
formal proof of mutual information decay is provided in the appendix, as its length would otherwise
interrupt the logical flow of the main manuscript.

In Figure 4(a), the plot illustrates the rapid decay of /(A4; E) over time, starting from an initial value
of 1 x 1011 with small initial errors. The mutual information approaches zero within 56-nanoseconds,
assuming a clock speed of 1 GHz. Figure 4(b) Illustration that, under the assumption that Eve could
achieve high mutual information to Alice & Bob’s key information, the mutual information would
exponentially diminish over time within 40-50 ns, or 40 discrete time steps.

Key rate comparison

To assess the practical advantage of the proposed key expansion scheme, we performed a
numerical simulation that compares its key rate behavior with that of the standard BB84 protocol.
The results are presented in Fig. 5, where key generation rates are plotted against increasing
communication distances, ranging from 0 to 100 km.

As expected, the BB84 protocol shows an exponential decay in the key rate with distance. This
decline reflects well-known physical constraints, including photon losses in the channel, detector
inefficiencies, and error accumulation over longer fiber paths. In real-world deployments, such decay
often limits the usable range of BB84 systems, particularly in the absence of quantum repeaters or
advanced multiplexing techniques.

Standard BB84 QKD — Secret-Key Rate Model

In the baseline BB84 protocol without decoy states, the asymptotic secret-key rate per signal can be
written as

Reega = A Qull - Hx(E,)]

where q = %is the sifting factor, Q,is the overall gain for signal intensity M, and E, is the quantum bit-
error rate (QBER). The gain is

Ql-l = Yo +1 -e'”“,
with N = ng10°*Y10the total transmittance over channel length L, ngthe detector efficiency, athe fiber
loss coefficient (dB/km), and Ygthe background (dark-count) yield. The corresponding QBER is

_ eoYp + ed(l—e'”“)

E“ QH ’

where eg = %is the error probability of dark counts and egis the optical misalignment error. This

model captures the exponential decay of key rate with distance due to channel loss, which is the



baseline reference shown in the BB84 curve.

Decoy-State BB84 QKD — Secret-Key Rate Model

Decoy-state BB84 enhances security by estimating the single-photon contribution to the key using

multiple intensities. In the standard two-decoy formulation (signal intensity M, weak decoy V), the
secret-key rate is (Yin et al, 2020) [27]

Raecoy = Al- Quf(Eu)H2(Ey) + Q1(1 - Ha(e1))]s

where f(E,)is the error-correction inefficiency, Qiis the single-photon gain, and e;is the single-photon
error rate. These parameters are estimated via

- 2 2 2
pe™ Ve U -V
Q= v - v2 Q\)ev_QpeuF_ n2 Yol
o < E\,Q\,e" -eoYo
1 = ~ .

Q1

By isolating the single-photon component—which is the only one provably secure against photon-
number-splitting attacks—decoy-state BB84 achieves significantly higher distance performance than
standard BB84.

Chaos-Augmented Key Expansion Model

Let Rppga(L) denote the standard (or decoy-state) BB84 secret-key rate at channel distance L,
computed from the usual gain-QBER model, e.g.

Rpgsa(l) = @ QH(L) [1- f(Eu(L))Hz(Eu’L))] (or its decoy-state variant).

In the proposed scheme, each distilled QKD key of length ngeeqbits (here ngeeq = 20) is used to
initialize a Lorenz system

Xx=0(y-x),y =x(p-2)-y,z2=xy-Bz

whose state is evolved for a duration Tand sampled with rate fs. At each sampling time t, = k/fswe

extract a b-bit symbol from (say) the X-coordinate via a uniform quantizer Q( - ), yielding a bitstream
of length

Nexp = bfT.

The expansion factor of the chaotic layer is therefore
_ Nexp
Nseed '
In our simulations we choose T.fs,bso that ngeeq = 20is expanded to Neyp, = 2 X 10%bits, giving G =
103.
The effective chaos-augmented key rate as a function of distance is then modeled as a multiplicative
enhancement of the underlying QKD rate:
Rchaos(L) =G RBB84(L)'
which is finally normalized by its maximum value over L when plotting Fig. 5. The evolution time Tis

chosen large enough that the mutual information between Alice and Eve satisfies the exponential
bound

I(AET) = Ke2V T <« 1,

as proven in Appendix A, ensuring that the expanded bits remain information-theoretically close to
independent of Eve’s side information while still achieving the expansion factor Gused in the figure.
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Fig. 5. Key rate comparison between BB84 (standard and decoy-state QKD) and Chaos-Augmented Protocol. Comparison of
secret-key rates for three QKD configurations plotted on a logarithmic scale as a function of channel distance. The standard
BB84 protocol exhibits exponential decay in the achievable key rate with increasing fiber distance due to photon loss and
detector noise. The chaos-augmented key-expansion layer provides a multiplicative enhancement, resulting in an effectively
higher throughput at all distances without modifying the underlying QKD hardware. The decoy-state BB84 protocol shows
improved long-distance behavior, reflecting its resistance to photon-number-splitting attacks and better utilization of multi-
intensity states. Although the curves are normalized for conceptual comparison, the relative trends illustrate how the proposed
chaotic post-processing layer can complement existing QKD improvements such as decoy-state strategies.

Our chaos-based expansion breaks from this model in a key way. We still begin with the same basic
setup. Still, instead of following that pattern, our protocol taps into the Lorenz system’s deterministic
dynamics to stretch a brief seed key into a far more extended sequence. The simulated model suggests
that this approach can increase the effective key yieid by up to 20 times at short distances.
Importantly, this expansion is executed locally after the initial quantum exchange and does not rely on
additional photon transmission. As a result, the key rate remains higher than BB84’s across the entire
distance range considered in the simulation.

Security limitations

While the chaotic expansion layer enhances practical secrecy by rapidly reducing an adversary’s
ability to synchronize with the legitimate users' trajectories, it does not increase the information-
theoretic entropy beyond that contained in the initial 20-bit QKD seed. Since the Lorenz system is
deterministic, the expanded key Kcnhaos inherits the fundamental entropy bound

H(Kchaos) = H(KQKD) = 20 bits.

Thus, the security of the expanded key is computational in nature, relying on the practical difficulty
of reconstructing the initial condition (x(0),y(0),z(0))from partial or approximate observations, rather
than on unconditional secrecy.

The chaotic map amplifies uncertainty through its positive Lyapunov exponent A > 0, leading to
exponential divergence of trajectories:
| 8(t) |= et | 6(0) |,

where 6(t) represents the difference between Eve’s estimate and the true trajectory. This instability
implies that small errors in Eve’s guessed initial state grow beyond recoverability. However, because
the mapping from the initial QKD seed to the Lorenz initial condition is deterministic and injective, an
adversary could, in principle, attempt to recover the seed through brute-force enumeration of the 229
possibilities.
Therefore, the security rests on the computational hardness of the following problem:
Given x(t), determine (x(0),y(0),z(0)) such that x(t) = ®(x(0),y(0),z(0)),
where ®; is the Lorenz flow. This inverse problem is numerically unstable and sensitive to noise, but
not provably intractable.
Potential attack vectors must also be acknowledged. These include:
* Parameter-recovery attacks, in which Eve attempts to estimate the initial state via delay-
coordinate embedding or nonlinear regression;
» Trajectory-fitting attacks, which attempt to minimize



méin%|x( ty) - Oy, (S)],

where S denotes Eve’s guess of the initial state;
* Machine learning prediction attacks, where neural networks or reservoir computing models
approximate ®.and attempt to forecast the bitstream;
¢ Brute-force enumeration of the QKD seed, which remains feasible in principle for a 20-bit
seed, though infeasible when combined with QKD’s privacy amplification and the rapid mutual-
information decay established in Appendix A.

We emphasize that the chaotic layer is intended as a software-based throughput enhancement
mechanism, not as a replacement for the unconditional security of QKD. The final expanded key is
secure to the extent that the adversary cannot feasibly solve the chaotic inversion problem, but its
secrecy remains grounded in computational complexity rather than information-theoretic guarantees.

Seed Length Considerations

Although our demonstrations use a 20-bit QKD seed for clarity, the proposed hybrid framework
supports seeds of arbitrary length. Increasing the seed size refines the specification of the chaotic
initial conditions and correspondingly reduces the adversary’s prior uncertainty. Extending the seed
from mbits to M + k bits decreases Eve’s parameter-estimation error by a factor on the order of 27X.
Under the exponential divergence associated with a positive Lyapunov exponent A > 0, any nonzero
residual mismatch &y > Ostill grows as 6; = §pe’t, implying that even extremely small initial errors
ultimately lead to significant trajectory separation.

Appendix A shows that this divergence yields an exponential decay in mutual information, I(A;E;

) < Ke?Yt-0, a bound that remains valid for any finite seed length. Consequently, larger QKD seeds
strengthen security by reducing Eve’s initial advantage while maintaining the same underlying
information-theoretic decay mechanism. The method does not rely on a fixed seed size and stands to
benefit directly from future increases in QKD source rates.

On the measurement-device independent (MDI) OKD

Measurement-device-independent QKD (MDI-QKD) has emerged as a leading architecture for
practical, large-scale quantum networks, as it removes all detector-side channels by relying on two-
photon interference at an untrusted relay. Early implementations employed synchronous interference
between independent sources, while more recent protocols have demonstrated robust asynchronous
two-photon interference suitable for real-world deployment. These developments provide a natural
security advantage over standard BB&64 by eliminating the dominant class of detector vulnerabilities.
The proposed chaos-augmented key-expansion layer is fully compatible with MDI-QKD because it
operates entirely as a classical post-processing procedure applied after key distillation and does not
alter the optical measurement hardware or protocol assumptions. Thus, the method may be applied
directly to MDI-QKD systems to enhance the effective key throughput while preserving their intrinsic
measurement-security guarantees.

Comparative Analysis

Table 4 compares recent approaches that integrate chaos theory with QKD, highlighting their
features, methods, and contributions. Our proposed method is included for direct comparison.

Table 4
Comparison with Recent Chaos-QKD Approaches

Study QKD Protocol Chaos Method Key Features Limitations
Cowper et al. | Custom Coupled chaos | Masking of photon- | No key expansion;
(2020) chaotic QKD masking level key  with | sensitive to noise

synchronized chaos
Cho & Miyano | Augmented Augmented Digital chaotic | Hardware-dependent
(2015) Lorenz QKD- | Lorenz equations | masking dynamics; limited key
assisted with QKD- expansion analysis

cryptosystem | distributed real-
valued key matrix;
symmetric-key
message
encryption




Sharma et al. | BB84-derived | Coincidence- Improved key | Lab-scale, moderate
(2024) decoy-state detection rates, expansion
demonstrated
experimentally
Mahmud et al. | BB84- Lorenz parameter | QKD-secure No high-rate expansion;
(2021) compatible sync parameter sharing | experimental setup
FSO QKD over free-space | only
enhancement optics
Keuninckx et | Chaos-based Synchronization Electronic Hardware-dependent;
al. (2017) key of nonlinear delay | implementation lacks quantum security
distribution oscillators with delay-coupled | guarantees; costs
units; passed NIST
randomness tests
This work BB84 / E91 | Lorenz RK4- | 20 - 20k Dbit | Requires exact
compatible driven expansion expansion in ms, | synchronized
99.99% computation.
suppression, no
hardware change.
Alice and Eve’s
mutual information
approaches  zero
exponentially.
In light of these constraints, the method introduced in this study provides a substantial

advancement. By applying Runge-Kutta-based integration of the Lorenz system in the post-
processing stage, we enable the rapid expansion of ashort QKD-derived key, on the order of 20 bits,
into a high- entropy stream exceeding 20,000 bits. This expansion occurs within milliseconds and
does not rely on additional quantum transmission or physical-layer adjustments. Importantly, our
scheme remains fully compatible with both BB84 and E91 protocols. Another notable feature is the
extremely low mutual information between Alice and a potential eavesdropper, which diminishes
exponentially with any deviation in the adversary’s estimation of initial conditions.

Conclusion

In this study, we used a hybrid cryptographic scheme of Quantum Key Distribution and
deterministic chaos to fend off QKD’s most pervasive weakness—slow key rates. A short QKD-
generated key was hidden in initial conditions of the Lorenz equations, which allowed us to produce
a much longer key stream with higher entropy. Our simulations showed that such an approach could
turn a 20-bit QKD key into over 20,000 bits in only fractions of a millisecond without sacrificing
security.

The basic idea is to use the extreme sensitivity of chaotic systems to initial conditions. When the
initial state is slightly varied, two trajectories will diverge rapidly. In other words, any eavesdropper
who lacks the complete knowledge of the key cannot duplicate the correct bitstream. Such a
property brings yet another layer of security atop the natural safeguards offered by quantum
mechanics. What gives this scheme a particularly strong appeal is its practicality. It does not require
any alterations to the hardware of QKD, and can be built onto a system just by software. This in turn
brings forth boosted speed and security in the areas that need it most: video conferencing;
encrypted mobile communications; Internet of Things networks. For future work, we plan on
integrating this protocol with actual QKD systems to test its performance under real-world
circumstances. We also want to try using other chaotic systems like Ro“ssler or Chua circuits, to
compare their reliability and which system produces better keys. Finally, we should perform inertia
growth and entropy statistics more rigorously, ensuring that the keys generated meet cryptographic
standards. In future work, tightening up system for FPGA or GPU acceleration may render it
suitable for high-speed transmission platforms.
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Appendix
A. Proof of Mutual Information Decay for Discrete Chaotic Maps
Theorem Statement

Let f:M—Mbe a discrete-time chaotic map on a compact metric space M, preserving an ergodic
invariant probability measure M.
Assume fexhibits exponential decay of correlations for Holder-continuous observables:

[79(f4(x)) h(x) du(x) - ( fgdp)( fhdu)| =C g o I h] eV (a.1)

Let xgbe a random variable with density pg. Define the trajectories

X¢ = flxg). Yy = fi(xq + 0), (a.2)

with 6 > 0. Then the mutual information satisfies

I(Xe;Yy) = Ke™2Vt, (a.3)

A.1. Spectral Properties of the Perron-Frobenius Operator
Let Pdenote the Perron-Frobenius operator, defined by
J(Pe}pdu = [o(y o f)du. (a.4)

For a broad class of chaotic dynamical systems, this operator exhibits a spectral gap: the eigenvalue 1
corresponding to the invariant density is simple, and all remaining eigenvalues lie strictly inside the

unit disk, satisfying |A| < 1. As a consequence, for any observable ¢ with zero mean (J¢ du = 0),
iterates under the operator contract exponentially, obeying

IPtoll =Crtlol, (a.5)

for some constants C' > 0 and 0 < r < 1. This exponential contraction reflects the strong mixing
properties essential for the decay-of-correlation estimates used throughout the proof.

A.2. Evolution of the joint Distribution
Letf:M->Mbpe the chaotic map under study, and define the product map

F(x,y) = (f(x), f(y)), (a.6)

acting on the product space M X M, Let po(X)denote the initial density of the random variable Xo, and

let 6 > Odenote the initial offset between Alice’s and Eve’s trajectories. The corresponding joint initial
density is



Po(X,y) = 8(y - (X + 8)) po(x), (@a.7)

where 6( - ) is the Dirac delta. After a single iteration under the smooth map F, this singular
distribution becomes regular (absolutely continuous). Let Pg be the Perron-Frobenius operator
associated with the product map. For chaotic systems with exponential mixing, this operator satisfies

I PEa-pr I=Cerfllall, (a.8)

for any density 9, where0 < rg < 1, Ck > 0, and

pr(X,y) = p(x) p(y)

denotes the product invariant density of the marginals. Consequently, the joint density pt(X,y) at time
t = 1 satisfies

| pe-pe I=Cerf, (A8

showing that the joint distribution is attracted exponentially toward the product of marginals.

A.3. Convergence of Marginals

The marginal distributions of Xyand Yare given by

p(x) = [pelxy) dy,pt?(y) = [pe(x.y)dx.  (a.9)

Both marginals converge exponentially to the invariant density p. Specifically, for constants Cy > 0
and0 <r<1,

Fp-p I=scurt Il p”-p IsCurt.  @A10)

Thus, regardless of the initial mismatch 6, the marginals relax toward equilibrium at an exponential
rate.

A.4. Total Variation Convergence

Since the Banach-space norm used above dominates the L' norm, there exists a constantKg > Osuch
that

I pt-prllz < Kg Ce ré-
Combining this with the marginal convergence, we obtain

X) (Y
I pe- PP 11 = Ky max(rg, 0,

where Ky > 0. This shows that the joint distribution becomes indistinguishable from the product of the
marginals at an exponential rate.



A.5. Mutual Information Decay

The mutual information between the trajectories Xtand Yiis defined as

X Ye) = D (pe | ppE"),

where Dk denotes the Kullback-Leibler divergence, ptis the joint density of (X¢'Y¢), and pix).pg)are the

marginal densities.
Using Pinsker’s inequality, the mutual information is bounded in terms of the total variation distance
(TV)

1
X) (Y X) (Y
Vepe ptpt™) = 5 1 pe-ppt"
where || * || ; denotes the L'-norm. Thus,

XD =5 T2 = 2 || pe-pp" 2.

Substituting the exponential L!-convergence bound derived in Sections A.2-A.4 yields

(X Ye) < Ky e2VE,

for constants K; > Oand y > 0, establishing that the mutual information decays exponentially and
approaches zero as t—o,

A.6. Applicability to Standard Chaotic Systems

The assumptions underlying the proof—namely the existence of an ergodic invariant measure, a
spectral gap for the Perron-Frobenius operator, and exponential decay of correlations—are satisfied
by a broad class of well-studied chaotic dynamical systems. These include uniformly expanding maps,
Anosov diffeomorphisms, and piecewise expanding systems, all of which admit the functional-analytic
structure required for the convergence bounds established above. Although the Lorenz system is a
continuous-time flow rather than a discrete map, the same reasoning applies to its time-T
discretization ®;. For any fixed sampling interval T > 0, the map ®-.inherits exponential mixing
properties on appropriate anisotropic Banach spaces, ensuring that the mutual-information decay
proven in this appendix holds for the Lorenz attractor as well.

Conclusion

I(Xe;Ye) = Ke2Yt—0 as t-o.
For continuous-time flows (such as the Lorenz system), apply the argument to the time-T map @,
giving

I(t) = Ke2Y (t/T),

Appendix B. Entropy Bound for Deterministic Post-Processing of an N-Bit Seed

Let
K € {0,1}N

denote the initial N-bit seed with probability mass function Pk. Its Shannon entropy is



HK) =- 3 Pg(k)logPg(k),
ke{0,1}N

and satisfies H(K) = N, with equality when Kis uniformly distributed.
Let the entire key-generation pipeline—mapping to a chaotic system, evolving the trajectory,
sampling, quantizing, and producing the final key—be represented as a deterministic function
f:{0,1}N-Y,
and define the output random variable
Y = f(K).

The following theorem establishes that the output entropy cannot exceed the seed entropy.

Theorem B.1 (Deterministic Post-Processing Cannot Increase Entropy).
If Y = f(K) for a deterministic function f, then
H(Y) = H(K) = N.

Proof.
Because Yis a deterministic function of K, the conditional entropy vanishes:

H(Y|K) = 0.
Using the chain rule for entropy in two equivalent ways gives

H(K,Y) = H(K) + H(Y[K) = H(K),
and also
H(K,Y) = H(Y) + H(K]Y).
Equating the expressions yields
H(K) = H(Y) + H(K]Y).

Since conditional entropy is non-negative,

H(K|Y) = 0,
we obtain the bound

H(Y) = H{K).

Because H(K) = Nfor any N-bit seed, the result follows. [J

Corollary B.2.
For a uniformly random N-bit seed, the entropy of any derived key obtained through deterministic
chaotic evolution and bit extraction satisfies

H(Y) = N.
Thus, no deterministic expansion procedure—including those based on chaotic dynamics—can
increase the entropy beyond that already present in the initial N-bit seed.



