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Abstract: Herpes simplex virus (HSV) is a widespread infection responsible for
painful blisters and ulcers. According to the World Health Organization,
approximately 519.5 million people aged 15-49 years (13.3%) worldwide are
infected with herpes simplex virus type II (HSV-II), the primary cause of genital
herpes. In this study, we develop a nonlinear stochastic fractional delay
differential equation (SFDDE) model to describe the transmission dynamics of

HSV-II in a human population. The population is divided into susceptible S(t),
exposed E(t), asymptomatic A(t), symptomatic I(t), HSV-infected H(t), and

recovered R(t)compartments. The model’s fundamental properties, including

existence, uniqueness, positivity, and boundedness of solutions, are established.
Local and global stability analyses are conducted around the HSV-free and HSV-
present equilibrium points, and the basic reproduction number is derived using
the next-generation matrix method along with sensitivity analysis. Numerical
simulations based on a stochastic nonstandard finite difference (NSFD) scheme
confirm the theoretical results and demonstrate the stability of the proposed
model. These findings highlight the importance of nonlinear fractional stochastic
modeling in understanding and controlling HSV-II transmission dynamics.

Keywords: Nonlinear model, dynamical analysis, stability and sensitivity
analysis, Numerical simulation, Results.
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1. Introduction

In [1], the authors provided the analysis for transmission of Herpes Simplex
Virus II with deterministic model of nonlinear differential equations.

In [2], the authors analyzed different types of viruses like HSV 1 and HSV 2 with
using the world health organization (WHO) reported cases. In [3], the authors
demonstrated the Aids and HSV-2 infection and also analyses the dynamics and
relation between co-infection. In [4], the authors stated different numerical
schemes for the control of HSV disease in human population and make more
realistic strategies for their dynamics. In [5], the authors exhibited the advanced
mathematical model construction for the Herpes disease which vastly spread in
humans. In [6], the authors addressed that from 2000 to 2020 five priority areas
from a WHO workshop were identified. Data on the author's country, gender,
authorship position, and funding source were gathered through manuscript
reviews and online searches. The data was analyzed using IBM SPSS V.26. In
[7], the authors analyzed HSV-1 and HSV-2 infections to find differences based
on gender at birth, age, and site of infection. Investigated the influence of
comorbidities and pregnancy on infection type. Performed detailed analysis of
data to reveal these differences. In [8], the authors provided a systematic search
of MEDLINE, CINAHL, Global Health, and Cochrane databases (2000-2020) was
conducted to identify the relevant English-language studies coming from LMICs.
Two researchers independently screened and extracted predefined variables,
organizing data into Excel. Analysis was carried out using IBM SPSS V.26. In
[9], The authors evaluated immunocompetent adults who were diagnosed with
meningitis at a tertiary care hospital in Korea. The study covered the period
between 2016 and 2018. Data analysis was done on clinical patterns and
outcomes. In [10], the authors carried out a retrospective analysis on 21,210,
49,494, and 32,457 outpatients and inpatients between 1 day to 17 years old.
Patients had been subjected to nucleic acid testing for HSV-2, EBV, and CMV.
Study duration from January 2018 to December 2023. In [11], the authors
assessed Cebus apella (C. apella), a New World primate, using a genital infection
model for HSV-2. All four animals' vaginal swabs were used to cultivate HSV-2
for nine to fourteen days after intravaginal inoculation. All the monkeys were
initially seronegative for HSV-2. In [12], the authors collected a total of 145
individuals with quantified genital herpes severity, and their HSV genital
shedding rate was measured. In [13], the authors examined the evidence of
disease transition within individuals and make control strategies for the HSV-II.
In [14], the authors provided the mathematical model with vaccinated parameter
for the control of HSV-II. In [15], the authors found HSV-2 UL24 is very potent
in suppressing the activation of the IFN-B promoter. It results in drastically
decreased levels of IFN-B at both mRNA and protein levels. Results demonstrate
the inhibitory function of UL24 in the IFN-B signaling pathway. In [16], the
authors founded Chemical and physical stress intermittently reactivate latent
viruses in the dorsal root ganglia (DRG). This results in recurrent viral shedding
in the genital mucosal epithelium. As a consequence, symptomatic patients



suffer episodes of genital herpes. In [17], the authors adapted a dynamic HIV
transmission model for South Africa, incorporating HSV-2 to model its
synergistic impact on HIV. Assessed the implications of (i) cohort vaccination of
9-year-olds with a prophylactic vaccine to reduce susceptibility to HSV-2, and
(ii) therapeutic vaccination of symptomatically HSV-2 infected subjects to reduce
HSV shedding. In [18], the authors addressed an optimal control problem
applied to a coinfection model of HIV and HSV-2. The model is set up by
formulating a system of ordinary differential equations. It delves into the
management and control dynamics of this coinfection. In [19], the authors
utilized probability trees to model the natural history of genital herpes (GH)
caused by HSV-1 and HSV-2 infections among those aged 18-49 years. Insights
into infection dynamics and disease outcomes were thereby offered. In [20], the
authors adhered to the systematic review of the Cochrane and PRISMA
guidelines, which considered all publications from both the Chinese and English
bibliographic systems. All sources that were considered were published up to
March 18th, 2023. In [24], the authors studied a mathematical model of tumor
development and therapy utilizing virotherapy. In [28-29], the authors
conducted numerical studies on a fractional-order nonlinear SIR-SI model for
dengue fever epidemics and a fuzzy fractional human liver model using a novel
double-parametric approach.

The first-ever HSV-II model has been developed in this study which takes into
account fractional memory effects, stochastic perturbations, and explicit time
delays all at the same time. The model is thie result of rigorous analytical results
and a stochastic NSFD scheme that preserves the structure of the original model.
The new insight provided by this integrated framework to long-term and
uncertain HSV-II dynamics is more than that of the existing models. By
integrating temporal delays, fractional calculus, and stochastic processes, the
stochastic delayed methodology helps scientists create more accurate models of
complicated systems.

This paper is organized as follows. Section 1 presents a focused review of the
literature on Herpes Simplex Virus-II, including its epidemiology and underlying
biological mechanisms. Section 2 describes the formulation of the proposed
model and provides analytical results, including existence, uniqueness, positivity,
boundedness, the basic reproduction number, local and global stability, and
sensitivity analysis. Section 3 introduces the stochastic nonstandard finite
difference (NSFD) numerical scheme and discusses its qualitative properties.
Section 4 presents graphical simulations illustrating the dynamical behavior of
the model along with their biological interpretation and real-world significance.
Finally, Section 5 summarizes the main findings, highlights the contributions of
the study, and outlines potential directions for future research.

2 Model Formulation
This paper presents the dynamical system of ordinary differential equations in
formulating the dynamics of the human population in the presence of Human



Immunodeficiency Virus (HIV) treatment. The present study considered a model
that comprises six compartments of the human population like susceptible

individuals S(t), exposed individuals E(t), asymptomatic individuals A(t),
symptomatic Individuals I(t), Herpes Simplex Virus-II Individuals H(t) and
recovered individuals R(t), respectively.

N(t) = S(t) +E(t) +A(t) +I(t) +H(t) +R(t).

This recruit susceptible into the population at a rate A. Individuals in the

susceptible sub-compartment move to the exposed sub-compartment at a per

capita rate N of becoming infectious (we recall that 1/n is approximately the

length of the latent period). Exposed individuals progress to the symptomatic

sub-compartment with probability p, and to the asymptomatic sub-compartment
with probability (1 - p). Asymptomatic individuals are usually considered to be

infectious, though at a lower rate gA.

The susceptible individuals are acquiring HSV-II infection with the force of

infection B[l + qA] where, B is the contact rate and g is the transmission

coefficient for the asymptomatic individuals. Here, q denotes the relative

transmission rate of asymptomatic individuals compared to symptomatic
individuals, accounting for reduced or enhanced infectiousness of asymptomatic

cases. If g > 1 then, the asymptomatic infect susceptible is more likely than

infective. If q 1, then asymptomatic and infective have an equal chance to

infect the susceptible but if g < 1 then, the infective has a good chance to

infect the susceptible than the asymptomatic. Some of the asymptomatic and

symptomatic individuals progress to Herpes simplex virus-II at a rate @, ¢

respectively and others recover naturally through the body's immune system at

a rate V.0 respectively. These herpes simplex virus-II individuals get treated at

the rate of 6 and move to the subcompartment of recovery. Here also, the

recovered individuals might lose their immunity and recover to the susceptible



sub-compartment w rate. The individual will suffer from death because of
diseases when it attains the HSV-II stage at & rate. For all these sub

compartments the mortality rate of individuals is noted as M. All parameters and

the variables taken for this model are kept to be positive.
The system of nonlinear stochastic fractional delay differential equations is
described as follows:

SDY[S] = A% - BES(t - T)(I(t - T) + q%A(t - T))e™ T - u®S + W*R + 0,Sd(B).
(1)

SDAIE] = BES(t - T)(I(t - T) + q*A(t - T))e ™ T - (n® + u%)E + o,Ed(B).
(2)

oDfIA]l = (1 - p*)N“E - (9% + y¥ + u%)A + 03Ad(B).
(3)

oDEIIT = p¥N“E - (6% + 8% + u%)l + 04ld(B).
(4)

SDE[H] = %A + ¢%1- (8% + E* + u*)H + o5HA(B).
(5)

6DFIR] = Y*A + 8% + 6%H - (w® + p*)R + ogRA(B).
(6)

under the initials;

S(0) = 0,E(0) = 0,A(0) = 0, 1(0) 2 O,H(0) =0,R(0) =0, t=0, T <t
Where o;;(i = 1,2,3,4,5,6) fluctuation and B(t) is the Brownian motion with time

delay T.
Preliminaries: The basic definitions are as follows;

Definition 1: For a function g € C,,, the Caputo fractional derivative of order

a€ (n -1,n),n € N is;

CRQ _ 1 t g™(T)dT
oDe a(t) = F(n-u)fo (t-Tyo+in’

Definition 2: For the function q(t), the expression describes the equivalent

fractional integral with order a > O,



12q(t) = f(t T)*1q(T)dT.

F(cx)

Where "I is the gamma function displayed.
Definition 3: A function f(t, y) satisfies a Lipshitz condition in the variable y on
set D c R? if a constant L > 0 exists with

If(t, y1)- f(t, y2)I = Llly: - y2l.

whenever (t, y;). (t, yo)are in D, L is Lipshitz constant.

2.1 Existence and Uniqueness
In this part, the existence and uniqueness of the model (1-6) are established with

o; = 0;i = 1,2,3,4,5,6. For this,

S(t) = Sg + r(a)f (t-s)*1h;(s, S)ds.
(7)

E(t) = Eq + r(a)f (t - s)*1A,(s, E)ds.
(8)

A(t) = r(a)f (t - s)%1hAs(s, A)ds.
(9)

I(t) = 1o + 5 )f (t - 5)*1fi (s, 1)ds. (10)

H(t) = Ho + = ft (£ -5)* Lhs(s, H)ds.
(11)

R(t) = Ro + 5 )f (t - s)*1hg(s, R)ds.
(12)

The functions listed in system (7-12) under the integral are
A1(t, S) = A% - BES(l + q®A)e™°T - u%S + w°R.
(13)
ho(t, E) = BYS(I + q*A)e™ T - (n® + u%)E. (14)

As(t, A) = (1 - p*)N*E - (% + y* + uMA.
(15)
Aa(t, 1) = p*N*E - (6% + 6% + p%)l. (16)



hs(t, H) = @“A + ¢ - (8% + E* + p%)H.
(17)
hg(t, R) = y*A + 8% + 8%H - (W* + u*)R.
(18)
Let X(t) = (S(t),E(t),A(t),I(t),H(t),R(t))and define the operator Ton the Banach

space C([ - T,T],R®) with the supremum norm | X | , = supier.c 77 | X(t) | by

1
(TX)(1) = X(0) + s 1t - $)°TN(s,X(5), X(5 - V) dS,where h = (y,f1z,h3,h4,hs.hg

). Existence and uniqueness follow if his Lipschitz in X on a bounded region G

04

LT
Mo+1)

and the contraction condition < 1 holds for some T > 0, where L is the
Lipschitz constant.

Furthermore, it is assumed that E;, €5, €3, €4,E5 and € exist as positive

constants and that S(t), E(t),A(t).I(t),H(t) and R(t) are non-negative limiting

functions.
Such that

ISOI = &1, [E@] = &, JAD] = &, [I(B)] = &4, Hb)| = & and ,[R(t)]| = E.
Theorem 1: Show that Lipschitz conditions fulfill by kernel h;;(i = 1,2,3,4,5,6)
for each model (1-6) with o;=0;i=123,456, when 0 = W =

max {1,2,3,4,5,6} < 1.

Proof: For a detailed proof, see Appendix A, where Equations (19)-(42) are
derived and used in the proof.

Theorem 2: Prove that: (i) The system of equations (25-30) has a definite

&1

uniform function. (ii) if there exists at least a t« > 1 such that f < 1. For the
model system with o; = 0;i = 1,2,3,4,5,6 there exists at least a solution if %

<1 fori=12,34,5,6.

Proof: For a detailed proof, see Appendix B, where Equations (43)-(64) are
derived and used in the proof.



Theorem 3: The system (1-6) demonstrates the uniqueness with o; = O;

_ - R30
(i=1234,56) if (1 : r(a)(t)) > 0.

Proof: For a detailed proof, see Appendix C, where Equations (65)-(72) are
derived and used in the proof.

2.2 Positivity and Boundedness
Theorem 4: Assume the initial history functions satisfy

(S(t),E(t),A(t),I(t),H(t),R(t)) = O,t €[ - 7,0], and all parameters are nonnegative.
For o; = 0, (i = 1,...,6), the solution of system (1-6) remains nonnegative for all

t > 0,ie., (S(t),E(t),A(t)I(t),H(t),R(t)) € RSVt > 0.

Proof. Using the Caputo fractional formulation, each state variable admits the
equivalent Volterra integral form. For example,

S(1) = S(0) + ey [t - 515 F( X(S)X(s - ) s,

and similarly, for E,AILH,R, where X =(S,EA,lLH,R)and F5 denotes the right-
hand side of (1). Now suppose (for contradiction) that some component becomes

negative. Let t* > 0 be the first time such that at least one component hits zero
and then attempts to cross into the negative region. At time t*, that component
equals zero, while all other components remain nonnegative by minimality of t~,

and the delayed terms X(t* -T) are also nonnegative because the history is

nonnegative.

On each boundary face, the corresponding right-hand side is nonnegative under
nonnegative states. In particular, evaluating the drift terms on the boundary
yields:

0 if S(t*) = 0, then Fg(t™) = A® + W*R(t") = 0;
0 if E(t*) = 0, then Fe(t™) = BS(H™ -T)(I(t" -T) + q®A(t" -T))e™’T = 0;
0 if A(t") = 0, then Fa(t") = (1 - p*)n“E(t") = 0;

o if I(t") = 0, then F,(t") = p*n*E(t") = 0;



0 if H(t") = 0, then Fu(t") = ¢*A(t™) + ¢°%I(t") = O;
o if R(t") = 0, then Fr(t") = y*A(t") + 6%I(t") + 6%H(t") = 0.

Therefore, at the first hitting time t”, the Caputo integral representation implies

the solution cannot decrease past zero (fractional comparison), which
contradicts the assumption that a component crosses into negative values.

Hence all components remain nonnegative for all t > 0.
Lemma 1: (Fractional Gronwall Inequality). Let u(t) be a nonnegative,
continuous function on [0,T]and assume that

ut) = a+ bgt(t -s)*lu(s)ds,0 < a =< 1,

where a,b = Oare constants. Then

u(t) = aEy (bt%),t € [0, T,
where E, denotes the Mittag-Leffler function.
Theorem 5: The system (1-6) under the nonnegative initial conditions is

bounded for all t = 0 when o; =0, i = 1,2,3,4,5,6, and the solution lies in the

feasible region

G = {(S, E,AILHR)ER'®0 < N sﬁ—:, Vt=0,t<t }

Proof. Let N(t) = S(t) + E(t) + A(t) + I(t) + H(t) + R(t). By summing equations

(1-6) and using the nonnegativity of all state variables and parameters, we obtain
DIN(t) = A® - u*N(t).
The associated comparison equation

Dey(t) = A% - u®y(t),y(0) = N(0),
(73)

has the explicit solution

Y(t) = 22 +(N(0) - T)Eq( - p%t®).

(74)
By the fractional comparison principle and Lemma 1, it follows that
N(t) = y(t),vt = 0.

Since Eq4( - u®t%)—0 as t—, we conclude that

lim supN(t) = ﬁ—a

t— o

(75)



Therefore, all solutions of system (1-6) remain bounded and lie in the feasible
region G.

2.3. Model Equilibria and Reproduction Number
This part will provide the model equilibria for system (1-6). Therefore,

HSV-Free Equilibrium = HSVFE = C° = (Sy,Eq,Aq.l0,Ho.Rg) = S—Z,0,0,0,0,0).

(76)
HSV-Present Equilibrium = HSVPE = C* = (S",E*,A",I",H",R").
(77)
* _ A +w*R* £ = BES"(I"+g%A")e ™ T % _  (1-p%)n%E"
BX(I" +g%AT)e T 4o’ (N*+u®) ’ (@ +Y* +u®)’
I* = Pp*n%E”" * _ Q%A +0%I" * _ Y*AT+0%1" +6%H”
(¢a +e(l +HQ)’ (6& +ECX +uoz)l (wfl +uoz)

By using Next generation method to get reproduction number for system (1-6)
is as follows:

R — B(XAanCX[qa(l_pa)(q)cx +e(1 +ud)+pcx((pa +ch +ua)]e‘HaT
0 AN+ (@F +Y® +U) (% +0% +1%) .
(78)
The basic reproduction number Ry plays a threshold role in determining the

existence and stability of the equilibrium points. When Ry < 1, the HSV-free
equilibrium is locally (and globally) asymptotically stable, indicating that HSV-II

cannot invade the population and the infection dies out. When Ry > 1, the HSV-

free equilibrium becomes unstable and a unique HSV-present equilibrium
emerges, correspoiiding to persistent disease transmission. Thus, Ry governs
the qualitative transition between disease extinction and persistence in the
proposed model.

2.4 Local Stability

The local stability analysis is carried out within the framework of Caputo
fractional-order systems. For fractional differential equations of order

0 < a = 1, an equilibrium point is locally asymptotically stable if all eigenvalues

A; of the corresponding Jacobian matrix satisfy |arg(A,)| > % This criterion

generalizes the classical ODE stability condition and accounts for the memory
effects inherent in fractional-order models. Using this fractional stability

criterion, we analyze the HSV-free and HSV-present equilibrium points of system
(1-6).

Theorem 6: For the Caputo fractional-order system (1-6) with 0 < o = land o;

= 0(i = 1,2,3,4,5,6), the HSV-free equilibrium CPis locally asymptotically stable



if Ry < 1. Conversely, C°becomes unstable when Ry > 1.
Proof: Linearizing system (1-6) around the HSV-free equilibrium C°yields the
corresponding Jacobian matrix J(C®). For a Caputo fractional-order system of

order 0 < a =1, an equilibrium point is locally asymptotically stable if all

eigenvalues Ajof the Jacobian matrix satisfy the fractional-order stability
condition

ot
larg(A;)| > R

Applying this criterion to J(C°), it follows that all eigenvalues satisfy the above
condition when the basic reproduction number Ry <1, ensuring local

asymptotic stability of the HSV-free equilibrium. Conversely, when Ry > 1, at

least one eigenvalue violates the fractional stability condition, and the HSV-free
equilibrium becomes unstable. Hence, under the iractional-order framework, the

stability of C%s completely governed by the threshold parameter Ry.
Theorem 7: For the Caputo fractional-order system (1-6) with 0 < o = land o;

= 0(i = 1,2,3,4,5,6), the HSV-present equilibrium C*exists when Ry > land is
locally asymptotically stable provided that all eigenvalues Ajof the Jacobian

matrix evaluated at C'satisfy

ot
larg(A;)| > R

Proof: After linearizing Jacobian matrix of the system (1-6), the 6 order
polynomial follows as

A8 + A5)\5 + A4)\4 + A3)\3 + Az)\z + Al)\ + Ag = 0.

Here.
As = (a7 + ag) + (as + a1p) + (a1 + a11)

A, = agay + asajg + (as + ajp)lag + ay) - axay - azae - asag + (a; + a)
[(a7 + ag)(as + a10)] + ajas;.
A3 = (ayag)(as + ayp) + (a7 + ag)(asaip) - (ag + ajpl)(azae) - (a7 + ajp)(azag) +

(a1 + a11)[agay + asap +(as + aig)lag + ay)-azay - aag - asagl + ajas



[(a7 + ag) +(as + a10) + (a1 + a11)] - az(azae + asag).

Az = (a1 +a11)
[(a7ag)(a5 + a]_o) + (a7 + ag)(a5alo)-(ag + alo)(azaﬁ)-(a7 + alo)(a3ag) + (al + a]_]_)]

+ aj;aj1[lagay + asag +(as + a1p)(ag + a7)-azay - aag - aszagl - as
(asagag + aszagay) - ag(aip + a11)(azag + asag).
A; = agazasaip - A2@6A9a10 - @3dga1pdz t (a1 +a11)
[agazasaip - a2@sa9a10 - @3@gaipaz] + aian;
[(a7ag)(as + a1g) + (a7 + ag)(asaipg)-(ag + a1g)(azag) - (a7 + a1g)(azag)l - as
(@10 + a11)(azaeag + azagay) - azajpaiil(azaeag + azagay).
Ao = ajajilagazasaip - a2@sa9d10 - 232ga10a71
a; = BOS™(I" + q¥AM)e M T + p?, a, = RS T, a3 = BiSTe™’T, a, = B
(I" + g®A")e ™ T, as = (n® + u%),ag = (1 -0%)N%, a7 = (¢* + y* + %), ag = p®
n% ag = (¢* + 6% + pu%), @10 = (B* +E* + %), a;1 = (W* + u%).
Since the 6th order polynomial with As,A4,As, Ay, Ajand Ay are positive
coefficient with AsAs > Az, (AsAg - A3)(AsA; - AsAy) > A1AS, AsA; > AsAy. So,

by the Routh-Hurwitz Criterion satisfies when Ry > 1. Hence C* of the given

system (1-6) is LAS.

2.5 Global Stability

In this part, we analyzed the stability of the model (1-6) at both equilibrium
points like HSV-Free Equilibrium and HSV-Present Equilibrium point in the
sense of global.

Theorem 8: The system (1-6) is GAS at C° whenRy <1 with ¢, =0;
(i=1,2,3,4,5,6).

Proof: Define the Lyapunov function L:G-R,

L(t) = [S-So-Sologe| +E + A+ 1+ H+R.



SpaL(t) = [5'550]ng5 + SDYE + SDYA + SDZI + SDYH + SDOR.

SDEL(D) = [222|(A% - BoS(1 + q%A)eH"™ - TS + wOR) +
(BES(1 + q®A)e™ T - (n® + p®)E) + ((1 - p*IN*E - (@% + y* + u*)A) +
(P*N%E - (¢% + 8% + p)I) + (%A + d%*1 - (6% + EX + u)H) +
(V*A + 8% + 8%H - (w* + u¥)R).
SDEL(Y) = - (A% + wR)SZL - o B8] ap(y _Psarer ™) pa oy
(W* + uMR.
This implies that §DZL(t) = Owhen Ry <1, and §D{L(t) = Oonly at CPO.
Therefore, by the fractional-order extension of LaSalle’s invariance principle (for

Caputo systems), the HSV-free equilibrium CPis globally asymptotically stable

for Ry < 1when g; = 0.

Theorem 9: The system (1-6) is GAS at C° when Rp>1 with o

= 0;i = 1,2,3,4,5,6,
Proof: Let the Lyapunov function Z:G-R,
* * S * * E * * A
Z = kl(S -S -S Iog(;)) + kz(E -E"-E Iog(;)) + kB(A -A"-A Iog(;)) + Ky

(l 1F- I*Iog(ll*)) + k5(H “H- H*log(%)) + kG(R “R*- R*log(i*)).
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If we choose k; = 1 where (i = 1,2,3,4,5,6)
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Therefore, since D¥Z < Oand DZZ = Oif and only if S = S*,E = E*,A

I",H = H",R = R, it follows from the fractional LaSalle invariance principle for

Caputo fractional systems that the HSV-present equilibrium C%is globally

asymptotically stable for Ry > 1lwhen o; = O.
2.6. Sensitivity Analysis

This part will cover the sensitivity of model parameter of Ry. We will identify the

sensitive parameter indices in terms of space with respect to the reproduction
number Rg.

[0 4
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Fig. 1: Sensitivity indices of reproduction number (Rg).
Table 1: Values and signs of parameter’s sensitivity:

Parameters Signs Values
N Positive 1
B* Positive 1
n® Positive 0.357
g Positive 0.4125
p Positive 0.5442
o Negative -0.0378
Che Negative -0.842
u® Negative -0.789
0° Negative -0.0023
v¢ Negative -0.82

To discuss the graphs for the Herpes simplex virus, which is in the middle of
understanding HSV transmission dynamics. Fig. 1 shows the sensitivity indices
of the reproduction number (Rgy) concerning different model parameters.
Positive sensitivity indices for the parameters mean that they are directly related
to Rg, and an increase in these parameters increases the reproduction number
and enhances the spread of the disease. On the other hand, negative sensitivity
indices for the parameters indicate an inverse relationship, where an increase
in these parameters decreases Ry and reduces the transmission of the disease.
Table 1 confirms these dynamics to be biologically relevant because the
positively sensitive parameters likely would reflect factors like transmission
rates or population interactions, while negative ones might reflect intervention-
related factors such as recovery rate or vaccine effects. Understanding those
relationships enables targeted control strategies since focus could be placed on
the reduction of positively sensitive parameters along with enhancing the
negatively sensitive ones that could help manage the HSV-II spread effectively.
3. Numerical Methods

We propose a generalized stochastic fractional technique for the solution of the



stochastic fractional-order system (1-6) like a NSFD scheme (see [21]). In all

cases, t denotes the temporal step size.

3.1 Non-Standard Finite Difference (NSFD) Scheme
Consider the stochastic fractional delayed system (1-6) with Caputo derivative

of order 0 < a = 1. Using the integral representation of the Caputo derivative,

a general equation of the form
DEX(t) = F(X(t)) - L(X(t)) + oX(t) dB(t) can be written in a time-stepping form

At®
Ma+1)°
nonstandard finite difference (NSFD) rules of Mickens, we discretize the gain
terms explicitly and treat the loss terms implicitly through a denominator in
order to preserve positivity and boundedness for any step size. For the stochastic
part, we apply the Euler-Maruyama approximation by replacing the Brownian

where the deterministic increment is scaled by Following the

increment with AB; = Bi(t,41) - Bi(t,) ~ N(0,At), which yields multiplicative
noise terms of the form o;X"AB;. Implementing these principles componentwise

for S,E,ALH,R, and evaluating the delayed mortality survival factor e™T

consistently, leads to the stochastic fractional NSFD scheme given by Eqgs. (79)-
(84).

n At a Al N A
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(79)
o
En+l = E" + oy (BES" (I +q®A™e ™ T +0,E"AB, )
- o
1+r(?xt+1)(na+“a)
(80)
n at® Ay O =N n
AN+l = A +r(a+1)((i'p )N"E" +03A"AB3)
1+%(¢°‘+v°‘ +u%)
(81)
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1+ o (0% +6% +1u%)
(82)
A(x
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n at* apn apn apn n
RN+1 = R" + 25 (YA" +0°%1" +5°H" +06R"ABg)

1+

a
F(on+1)(w +H )

(84)

Here At > 0 is the time step and AB,; are independent Brownian increments

with mean zero and variance At. Furthermore, we investigate the properties of

fractional NSFD of model (79-84).

Theorem 10: (Positivity). The system (79-84) satisfies the positivity under the
initial conditions.

Proof: The model (79-84) is free from negative term. Thus, the initial condition
also positive, as desired.

Theorem 11: (Boundedness). The system (79-84) satisfies the boundedness

under the initial conditions for K(n,a) = 0, such that S",E™,A",I",H",R" €

[0,K(n,a)],for each n € N,

Proof: The sum of model (79-84) for the bondedness is as follows;

(X

I'(cx+1)(p' )

(X

(1 + Sn+1 + (1 + u ))En+l + (1 + (ua))An+1 +

F(cx+1) F(cx+1)

At® ay |jn+1 AtY  ra o +1 At% o +1
F(cx+1)(|J' ))In + (1 + I'(Ot+1)(E T M ))Hn + (1 + F(cx+1)(p‘ ))Rn =
n n n n n n a At®
S"+E"+A"+ 1"+ H"+R") + o +1)(/\ ) + e+ D)

(OlSnABl + OzEnABz + 0'3AnAB3 + O'4|nAB4 + 05HnAB5 + OGRnAB6).

(1+

The proof relies on mathematical induction, with K(n + 1,a) serving as the end

point of sequence of identities and inequalities.

4 Graphical Simulation

In this part, we use graphical simulations for fractional model (1-6). To that end,
the model parameters are fixed as given in Table 2 (see [1]). Moreover, in all

simulations, AB; ~ N(0,At) are taken as independent Wiener increments, and

the noise intensities were fixed at g; = 0.3. To investigate the combined effect

of memory and delay, simulations for different fractional orders were conducted.

a while changing the delay parameter T over various representative values.

This allows comparison of disease dynamics under interchangeable enumerate

all (a,T) combinations and point out how explicit delays change the persistence

effects induced by fractional memory. The numerical findings confirm that

increasing T generally delays peaks and prolongs persistence while decreasing



a enhances long-term memory effects.

Table: 2 Values of parameters.

Parameters Values Source [1]
A 0.0015 Assumed
! 0.002 Assumed
B 10.68 Estimated
[ 0.004 [1]

(0] 0.003 [1]
\ 0.058 [1]
0 0.089 [1]
w 0.09 [1]
S 0.001 [1]
n 0.9 Estimated
q 0.4 Fitted
o) 0.078 [1]
0 0.048 [1]
Y O=si=<1 Fitted
03 GI‘.-NSFVD Me’:hod '
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4.1 Discussion

The graphical discussion for Herpes Simplex-II Virus (HSV-II) addresses the
dynamics of how disease relates to various fractional order values, affecting the
different compartments in the model with time delay. Fig. 2 represents the time
profile of the susceptible population, as it is affected by changes in fractional
orders. A decrease in fractional order implies a significant memory effect on the
system that gradually reduces the rate of decline in the susceptible population,
reflecting persistence over time for those at risk due to fractional time delay
effects. In Fig. 3, the fractional order heavily affects the rate at which exposed
individuals transition to the asymptomatic or symptomatic phases. As the
fractional order increases, the exposed population drops more sharply, implying
more rapid disease progression. The graph for asymptomatic individuals (Fig. 4)
exhibits the variability of the peak and persistence of this compartment with
fractional order. The lower fractional orders lead to prolonged peaks that
suggest a delay in the recovery or progression due to the time-delay effect in the
system. In Fig. 5 symptomatic individuals show more significant sensitivity to
changes in fractional orders. The delay parameter increases the oscillatory
behavior and seems to indicate fluctuations of disease prevalence over time
when memory effects and delays interact. Fig. 6 for the viral load shows how
fractional dynamics affect the prevalence of the virus. Lower fractional orders
lead to sustained viral activity, which reflects the combined effects of delayed
immune response and the persistence mechanisms inherent in the disease.
Finally, Fig. 7 illustrates the recovery dynamics and how fractional orders make
the return to the recovered state delayed. Lower orders elongate the recovery
period due to strong memory and time-delay effects, while higher orders exhibit
recovery rates. This means that by changing the fractional order, one can
simulate the different behaviors of diseases such as prolonged exposure phases,
oscillatory symptomatic peaks, and delayed recovery. Such insights are crucial
for long-term disease control and the planning of effective interventions. By



adjusting the fractional order, one can simulate varying disease behaviors, such
as prolonged exposure phases, oscillatory symptomatic peaks, and delayed
recovery. These insights are important for understanding long-term disease
control and planning effective interventions. In the context of HSV-II, fractional-
order memory reflects the cumulative influence of past infection history,
including immune persistence, latency, and recurrent reactivation, on current

transmission dynamics. Lower values of the fractional order aindicate stronger

dependence on historical states, resulting in slower progression and prolonged

persistence. This effect differs from the discrete delay T, which represents a

specific biological waiting time, such as incubation or delayed response.

In this model, explicit delay would mainly reflect biological delays of waiting
processes, such as incubation and host response delays. Stochastic
perturbations capture random variability in transmission and immune dynamics.
These components introduce uncertainty and heterogeneity that cannot be
modeled by a deterministic model in isolation.

5 Conclusion

In this study, the dynamics of Herpes Simplex Virus-II (HSV-II) were
investigated through a stochastic fractional delay differential model
incorporating essential epidemiological factors. The model guarantees the
existence, uniqueness, positivity, and boundedness of solutions. Two equilibrium
states were identified: HSV-Free FEquilibrium (HSV-FE) and HSV-Present
Equilibrium (HSV-PE), with the basic reproduction number calculated via the
Next-Generation Matrix method. Both local and global stability analyses were
performed, along with a sensitivity analysis to examine the influence of key
parameters on disease transmission. Numerical simulations based on the
Stochastic Non-Standard Finite Difference (NSFD) scheme were conducted for

various fractional orders Q, demonstrating improved positivity, boundedness,

and stability compared to standard fractional-order modeling methods. The
theoretical findings were further validated through graphical simulations,
providing deeper insights into HSV-II dynamics and supporting informed public
health decision-making. Overall, the combination of advanced mathematical
modeling and robust computational simulations provides a valuable framework
for understanding complex biological systems and predicting disease dynamics.
The suggested framework might be expanded in future work by availing
probabilistic safety and control-theoretic concepts, e.g., risk-aware analysis and
adaptive control strategies, which have been proven to work well in complicated
engineered systems ]25-27]. These types of methods could even further improve
the robustness and real-time usability of HSV-II modeling when the uncertainty
is present.
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Appendix A:
Proof: First, we analyze the Lipschitz’s condition for the function h;(t, S). For

this, we take help with the following S and Si:
[h1(t, S)-ha(t, S| =
(A - 2SI + g%A)e™™°T - u®S + w*R)- (A% - B2S, (I + q%A)e T - u%S; + w*R)].

Ih1(t, S)- A1t S = [(BE(S - S1)(1 + q%A)e T + p*(S - Sq)).



Ih1(t, S)-ha(t, SN =< [B(S - S1)(1 + q*A)e ™| + Ju*(S - S)I.
Ih1(t, S)-hat, S < (B%e™ T + q®All + pe)|S - Sall.

171t S)-ha(t, S = (B%e™ ™ (E4 + q%€3) + no)IS - Sl

[h1(t, S)- h1(t, S| = &1(IS - Sal-

Since, &; = (Bo‘e'“aT(E4 + q%€&3) + u“). Lipschitz's condition is satisfied. Next, for
h»(t, E) consider E and E;.

[h2(t, E)- ha(t, E1)|| =

[(Bs(1 + q*A)e ™ - (n® + u™E) - (B2S(I + q®A)e™ ™™ - (n* + u*)E, ).
[1h2(t, E)- ha(t, Ex)|| = [((n® + u¥)E - E)).

Ih2(t, E) - Ax(t, E1)|| = (n® + u®)|IE - Eq]l.

Ih2(t, E) - ha(t, E1)|| = &2||E - Eq |l

For, & = (n® + u%). Lipschitz condition is satisfied.

Next, for hs(t, A) analyzing for A and A;.

|hs(t, A)-hs(t, Ayl =
[((1-p*)IN%E - (% +y* + UMA)-((1 - p*INYE - (% + Y* + u*AL)].
IAs(t, A)- As(t, Al = l(@% + y* + u®)(A-Ay)].

IAs(t, A)- As(t, Al = (@% +y* + u*)||A - Aq].

Ihs(t, A)-hs(t, Al = &s[|A - Aq].

For, &5 = (% + y* + p®). Lipschitz condition is satisfied.

Next, for h4(t, 1) analyzing for | and I;.

[1ha(t, 1)-hat, 1) = [(PNYE - (% + 6% + u®)D) - (p*N%E - (6% + 8% + p*))|.
[Aa(t, D - halt, 11 = (6% + 6% + p*)(1 - 11)].

[Aat, 1)-Aalt, 1)) = (6% + 0% + p%)|I - 11].



Ihalt, - Agt, 1] < (% + 6% + u®)|I - 11].
For, £, = (6% + 8% + pu®). Lipschitz condition is satisfied.
Next, for hs(t, H) analyzing for H and Hj.

Ihs(t, H) - As(t, H1)|| =
[(@%A + ¢%1 - (8% + §* + p*)H) - (@*A + ¢%1 - (8% + E* + u*)Hy)|.
s (t, H) - As(t, H)l = (6% + §* + u¥)(H - H))J.

Ihs(t, H) - As(t, H)l| = (6% + &% + u®)[H - Hy||.
For, £&5 = (6% + £* + u®). Lipschitz condition is satisfied.
Next, for hg(t, R) analyzing for R and R;.

"ﬁ6(tr R)_ ﬁ6(tr Rl)" =
I(yEA + 0% + 8%H - (W* + u¥)R) - (Y A + 0% + 6%H - (™ + u*)R7)].
Ifs(t, R) - hg(t, R1)|| = [((w™ + u*)(R - Ry))].

Ife(t, R) - Ag(t, R = (0 + p*)[R - Ry .
Ihe(t, R)- he(t, R1)| = &6lIR - Ry |

For, £ = (W* + p®). Lipschitz condition is satisfied.

Next, there is constant in (13-18).

Sn(t) = mfs (- 5)* Ay (s, Spoa)ds. (19)
En(t) = sl (£ - )% (s, Eng)ds. (20)
An(t) = mf (t - 5)%h3(s, Anq)ds. (21)
In(t) = =l (£ - )2 y(s, In.1)ds. (22)
H(t) = r(a)j (t - )% hs(s, H.1)ds. (23)
Rn(t) = == (t - )% Ag(s, Rn.q)ds. (24)

I'( )°0
Remaining variation is as follows:

Wn-1(t) = (Sn(t)- Sna(t)) = r(a)f (h1(s, Sn-1)- Na(s, Sn-2))ds. (25)



On-1(t) = (En(t)- En-a(D) = 75 f(hals, Ena)-hals, En))ds.

On-1(t) = (An(t)- A1 (D) = 5slo(h3(s, An1) - Pia(s, An2))ds.

@n-1(8) = (In(t) - In-1(8) = 2= (Aa(S, In) - Pa(s, In.2))ds.

1
o)

I5(Ps(s, Rn-1) - Pig(s, Rp-2))ds.

LIJn—1(t) = (Hn(t)' Hn-l(t)) =

1

Cn-1(t) = (Rn(t)-Rpalt)) = 5

Therefore, we have

Sn(t) = ito wi(t).

En(t) = Zito ¢i(t).

In(t) = Jito 9i(t).

An(t) = ZiLowi(t).
(34)

Ha(t) = Zilo Wi(b).
(35)

Rn(t) = S0 Gi(t).

Let,

"Lpn(t)" = "Sn(t)' Sn l(f)i!

l9n(® = 755/ (P1(S, Sn1)- Pa(s, Sn.2))ds.

lwn (O = 725/ 1Sn(6) - Sna (D) ds.

lwn(®) = 75y Wna (Dds.
Similarly,

lon(®)l = 7i5/; @n-1(D)ds.

19 (D = 72545 81 (t)ds.

I (O] = 2 @ (t)ds.

[Wa (O = 7350 Wna (0.

180 (O] = 2550 Tna (D)ds.

[s(s(s, Hn-1) - hs(s, Hi2))ds.

(26)
(27)
(28)
(29)

(30)

(31)
(32)

(33)

(36)

(37)

(38)
(39)
(40)
(41)

(42)



As required.

Appendix B.
Proof: Consider the S(t), E(t),A(t),l(t),H(t) and R(t) are bounded. Then

a1 = Isto 22 w] (43)
I8a0l = JE©)1 |25 00)] (44)
ol = 1A o] (45)
w0l = o5 (46)
a1 = HOE o (47)
ool = RO |25 00] (48)

Since, S(t), E(t),A(t).I(t),H(t) and R(t) will converge because the system (31-36)
exists and consistent. For this, consider n changes as A,(t), B,(t), C,(t), Dn(t),

Xn(t) and Y,(t). Thus,

S(t) -5(0) = Sy (t) - An(h). (49)
E(t) -E(0) = En(t) - Bn(t). (50)
A(t) -A(0) = An(t) - Ch(b). (51)
I(t) -1(0) = I5(t) - D (t). (52)
H(t) -H(0) = Hn(t) - Xn(t). (53)
R(t) -R(0) = Ry (t) - Yn(t). (54)

The result of Lipschitz condition for (§;) and the triangle inequality, and h, for
i =1,2,3,4,5,6, fulfills the Lipschitz condition.

1
o)

AR (O] < Z51Sn(0)- Spa (D] (55)

IARD] = Sl (Ai(s, Sna) - ha(s, Sn2))ds.




with repetition of (55),

£ n+1
IAL(D)] = r((lx) (t) €. (56)
Next, at t«, one acquires

£ n+1
1A = |55t € (57)

Assuming N = « as the limit.

n+1

€. (58)

€1
= (t«)

lim]|A,(t)] = lim

n—o n—o

By applying the hypothesis —(t«) < 1, we get

Ma)
limjAn(0)] = 0. (59)
Similarly,
1B (t)[~0. (60)
ICn ()] 0. (61)
IDn (1) 0. (62)
IXn (1)]~0. (63)
IYn (t)[| 0. (64)
As desired.
Appendix C

Proof: Examine how the sets S;,E;,A;,1;,H;, and R; represent the solutions to
(1-6).
1S(D)- 101l = rglo(ha(s, S)-hals, S1))ds.

IS(t)- S1(0)] = Z51S(D - S1(D]. (65)
After simplifying,

(1 - rf;)(t))usm- S = 0. (66)
By applying the hypothesis (1 - %(t)) > 0, we have from (66) yield.

IS(t)- S1(1)]| = 0. (67)

It follows from this because S(t) = Sq(t).



Similarly,

E(t) = Eq(t).

A(t) = Aq(b).

I(t) = I4.(t).
(70)

H(t) = Hq(t).

R(t) = Rq(t).

Hence proved.

(68)

(69)

(71)

(72)



