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Abstract: Herpes simplex virus (HSV) is a widespread infection responsible for 
painful blisters and ulcers. According to the World Health Organization, 
approximately 519.5 million people aged 15-49 years (13.3%) worldwide are 
infected with herpes simplex virus type II (HSV-II), the primary cause of genital 
herpes. In this study, we develop a nonlinear stochastic fractional delay 
differential equation (SFDDE) model to describe the transmission dynamics of 

HSV-II in a human population. The population is divided into susceptible S(t), 

exposed E(t), asymptomatic A(t), symptomatic I(t), HSV-infected H(t), and 

recovered R(t)compartments. The model’s fundamental properties, including 

existence, uniqueness, positivity, and boundedness of solutions, are established. 
Local and global stability analyses are conducted around the HSV-free and HSV-
present equilibrium points, and the basic reproduction number is derived using 
the next-generation matrix method along with sensitivity analysis. Numerical 
simulations based on a stochastic nonstandard finite difference (NSFD) scheme 
confirm the theoretical results and demonstrate the stability of the proposed 
model. These findings highlight the importance of nonlinear fractional stochastic 
modeling in understanding and controlling HSV-II transmission dynamics.

Keywords: Nonlinear model, dynamical analysis, stability and sensitivity 
analysis, Numerical simulation, Results.
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1. Introduction
In [1], the authors provided the analysis for transmission of Herpes Simplex 
Virus II with deterministic model of nonlinear differential equations. 
In [2], the authors analyzed different types of viruses like HSV 1 and HSV 2 with 
using the world health organization (WHO) reported cases. In [3], the authors 
demonstrated the Aids and HSV-2 infection and also analyses the dynamics and 
relation between co-infection. In [4], the authors stated different numerical 
schemes for the control of HSV disease in human population and make more 
realistic strategies for their dynamics. In [5], the authors exhibited the advanced 
mathematical model construction for the Herpes disease which vastly spread in 
humans. In [6], the authors addressed that from 2000 to 2020 five priority areas 
from a WHO workshop were identified. Data on the author's country, gender, 
authorship position, and funding source were gathered through manuscript 
reviews and online searches. The data was analyzed using IBM SPSS V.26. In 
[7], the authors analyzed HSV-1 and HSV-2 infections to find differences based 
on gender at birth, age, and site of infection. Investigated the influence of 
comorbidities and pregnancy on infection type. Performed detailed analysis of 
data to reveal these differences. In [8], the authors provided a systematic search 
of MEDLINE, CINAHL, Global Health, and Cochrane databases (2000–2020) was 
conducted to identify the relevant English-language studies coming from LMICs. 
Two researchers independently screened and extracted predefined variables, 
organizing data into Excel. Analysis was carried out using IBM SPSS V.26. In 
[9], The authors evaluated immunocompetent adults who were diagnosed with 
meningitis at a tertiary care hospital in Korea. The study covered the period 
between 2016 and 2018. Data analysis was done on clinical patterns and 
outcomes. In [10], the authors carried out a retrospective analysis on 21,210, 
49,494, and 32,457 outpatients and inpatients between 1 day to 17 years old. 
Patients had been subjected to nucleic acid testing for HSV-2, EBV, and CMV. 
Study duration from January 2018 to December 2023. In [11], the authors 
assessed Cebus apella (C. apella), a New World primate, using a genital infection 
model for HSV-2. All four animals' vaginal swabs were used to cultivate HSV-2 
for nine to fourteen days after intravaginal inoculation. All the monkeys were 
initially seronegative for HSV-2. In [12], the authors collected a total of 145 
individuals with quantified genital herpes severity, and their HSV genital 
shedding rate was measured. In [13], the authors examined the evidence of 
disease transition within individuals and make control strategies for the HSV-II. 
In [14], the authors provided the mathematical model with vaccinated parameter 
for the control of HSV-II. In [15], the authors found HSV-2 UL24 is very potent 
in suppressing the activation of the IFN-β promoter. It results in drastically 
decreased levels of IFN-β at both mRNA and protein levels. Results demonstrate 
the inhibitory function of UL24 in the IFN-β signaling pathway. In [16], the 
authors founded Chemical and physical stress intermittently reactivate latent 
viruses in the dorsal root ganglia (DRG). This results in recurrent viral shedding 
in the genital mucosal epithelium. As a consequence, symptomatic patients 
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suffer episodes of genital herpes. In [17], the authors adapted a dynamic HIV 
transmission model for South Africa, incorporating HSV-2 to model its 
synergistic impact on HIV. Assessed the implications of (i) cohort vaccination of 
9-year-olds with a prophylactic vaccine to reduce susceptibility to HSV-2, and 
(ii) therapeutic vaccination of symptomatically HSV-2 infected subjects to reduce 
HSV shedding. In [18], the authors addressed an optimal control problem 
applied to a coinfection model of HIV and HSV-2. The model is set up by 
formulating a system of ordinary differential equations. It delves into the 
management and control dynamics of this coinfection. In [19], the authors 
utilized probability trees to model the natural history of genital herpes (GH) 
caused by HSV-1 and HSV-2 infections among those aged 18–49 years. Insights 
into infection dynamics and disease outcomes were thereby offered. In [20], the 
authors adhered to the systematic review of the Cochrane and PRISMA 
guidelines, which considered all publications from both the Chinese and English 
bibliographic systems. All sources that were considered were published up to 
March 18th, 2023. In [24], the authors studied a mathematical model of tumor 
development and therapy utilizing virotherapy. In [28-29], the authors 
conducted numerical studies on a fractional-order nonlinear SIR–SI model for 
dengue fever epidemics and a fuzzy fractional human liver model using a novel 
double-parametric approach.
The first-ever HSV-II model has been developed in this study which takes into 
account fractional memory effects, stochastic perturbations, and explicit time 
delays all at the same time. The model is the result of rigorous analytical results 
and a stochastic NSFD scheme that preserves the structure of the original model. 
The new insight provided by this integrated framework to long-term and 
uncertain HSV-II dynamics is more than that of the existing models. By 
integrating temporal delays, fractional calculus, and stochastic processes, the 
stochastic delayed methodology helps scientists create more accurate models of 
complicated systems. 

This paper is organized as follows. Section 1 presents a focused review of the 
literature on Herpes Simplex Virus–II, including its epidemiology and underlying 
biological mechanisms. Section 2 describes the formulation of the proposed 
model and provides analytical results, including existence, uniqueness, positivity, 
boundedness, the basic reproduction number, local and global stability, and 
sensitivity analysis. Section 3 introduces the stochastic nonstandard finite 
difference (NSFD) numerical scheme and discusses its qualitative properties. 
Section 4 presents graphical simulations illustrating the dynamical behavior of 
the model along with their biological interpretation and real-world significance. 
Finally, Section 5 summarizes the main findings, highlights the contributions of 
the study, and outlines potential directions for future research.
2 Model Formulation
This paper presents the dynamical system of ordinary differential equations in 
formulating the dynamics of the human population in the presence of Human 
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Immunodeficiency Virus (HIV) treatment. The present study considered a model 
that comprises six compartments of the human population like susceptible 

individuals S(t), exposed individuals E(t), asymptomatic individuals A(t), 

symptomatic Individuals I(t), Herpes Simplex Virus-II Individuals H(t) and 

recovered individuals R(t), respectively.

N(t) = S(t) +E(t) +A(t) +I(t) +H(t) +R(t).

This recruit susceptible into the population at a rate Λ. Individuals in the 

susceptible sub-compartment move to the exposed sub-compartment at a per 

capita rate η of becoming infectious (we recall that 1/η is approximately the 

length of the latent period). Exposed individuals progress to the symptomatic 

sub-compartment with probability ρ, and to the asymptomatic sub-compartment 

with probability (1 - ρ). Asymptomatic individuals are usually considered to be 

infectious, though at a lower rate qA.

The susceptible individuals are acquiring HSV-II infection with the force of 

infection β[I + qA] where, β is the contact rate and q is the transmission 

coefficient for the asymptomatic individuals. Here, q denotes the relative 
transmission rate of asymptomatic individuals compared to symptomatic 
individuals, accounting for reduced or enhanced infectiousness of asymptomatic 

cases. If q >  1 then, the asymptomatic infect susceptible is more likely than 

infective. If q =  1, then asymptomatic and infective have an equal chance to 

infect the susceptible but if q <  1 then, the infective has a good chance to 

infect the susceptible than the asymptomatic. Some of the asymptomatic and 

symptomatic individuals progress to Herpes simplex virus-II at a rate φ, ϕ 

respectively and others recover naturally through the body's immune system at 

a rate γ,θ respectively. These herpes simplex virus-II individuals get treated at 

the rate of δ and move to the subcompartment of recovery. Here also, the 

recovered individuals might lose their immunity and recover to the susceptible 
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sub-compartment ω rate. The individual will suffer from death because of 

diseases when it attains the HSV-II stage at ξ rate. For all these sub 

compartments the mortality rate of individuals is noted as μ. All parameters and 

the variables taken for this model are kept to be positive.
The system of nonlinear stochastic fractional delay differential equations is 
described as follows:
c
0Dα

t [S] = Λα - βαS(t - τ)(I(t - τ) + qαA(t - τ))e-ματ - μαS + ωαR + σ1Sd(B).
(1)

c
0Dα

t [E] = βαS(t - τ)(I(t - τ) + qαA(t - τ))e-ματ - (ηα + μα)E + σ2Ed(B).
(2)

c
0Dα

t [A] = (1 - ρα)ηαE - (φα + γα + μα)A + σ3Ad(B).
(3)

c
0Dα

t [I] = ραηαE - (ϕα + θα + μα)I + σ4Id(B).
(4)

c
0Dα

t [H] = φαA + ϕαI - (δα + ξα + μα)H + σ5Hd(B).
(5)

c
0Dα

t [R] = γαA + θαI + δαH - (ωα + μα)R + σ6Rd(B).
(6)

under the initials;

S(0) ≥ 0,E(0) ≥ 0,A(0) ≥ 0, I(0) ≥ 0,H(0) ≥ 0,R(0) ≥ 0, t ≥ 0, τ < t.

Where σi;(i = 1,2,3,4,5,6) fluctuation and B(t) is the Brownian motion with time 

delay τ.

Preliminaries: The basic definitions are as follows;

Definition 1: For a function q ∈ Cn, the Caputo fractional derivative of order 

α ∈  (n - 1, n), n ∈  N is;

c
0Dα

t q(t) = 1
Γ(n-α)∫

t
0

qn(T)dT
(t-T)α+1-n.

Definition 2: For the function q(t), the expression describes the equivalent 

fractional integral with order α >  0.
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Iαt q(t) = 1
Γ(α)∫

t
0 (t - T)α-1q(T)dT.

Where "Γ" is the gamma function displayed.

Definition 3: A function f(t, y) satisfies a Lipshitz condition in the variable y on 

set D ⊂ R2 if a constant L > 0 exists with

‖f(t, y1) - f(t, y2)‖ ≤ L‖y1 - y2‖,

whenever (t, y1), (t, y2)are in D, L is Lipshitz constant.

2.1 Existence and Uniqueness
In this part, the existence and uniqueness of the model (1-6) are established with 

σi = 0;i = 1,2,3,4,5,6. For this, 

S(t) = S0 + 1
Γ(α)∫

t
0 (t - s)α-1ℏ1(s, S)ds.

(7)

E(t) = E0 + 1
Γ(α)∫

t
0 (t - s)α-1ℏ2(s, E)ds.

(8)

A(t) = A0 + 1
Γ(α)∫

t
0 (t - s)α-1ℏ3(s, A)ds.

(9)

I(t) = I0 + 1
Γ(α)∫

t
0 (t - s)α-1ℏ4(s, I)ds. (10)

H(t) = H0 + 1
Γ(α)∫

t
0 (t - s)α-1ℏ5(s, H)ds.

(11)

R(t) = R0 + 1
Γ(α)∫

t
0 (t - s)α-1ℏ6(s, R)ds.

(12)
The functions listed in system (7–12) under the integral are

ℏ1(t, S) = Λα - βαS(I + qαA)e-ματ - μαS + ωαR. 

(13)

ℏ2(t, E) = βαS(I + qαA)e-ματ - (ηα + μα)E. (14)

ℏ3(t, A) = (1 - ρα)ηαE - (φα + γα + μα)A.
(15)

ℏ4(t, I) = ραηαE - (ϕα + θα + μα)I. (16)
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ℏ5(t, H) = φαA + ϕαI - (δα + ξα + μα)H. 
(17)

ℏ6(t, R) = γαA + θαI + δαH - (ωα + μα)R. 
(18)

Let X(t) = (S(t),E(t),A(t),I(t),H(t),R(t))and define the operator Ton the Banach 

space C([ - τ,T],R6) with the supremum norm ∥ X ∥ ∞ = sup⁡t∈[-τ,T] ∥ X(t) ∥  by

(TX)(t) = X(0) + 1
Γ(α) ∫t

0 (t - s )α-1h(s,X(s),X(s - τ)) ds,where h = (ℏ1,ℏ2,ℏ3,ℏ4,ℏ5,ℏ6

). Existence and uniqueness follow if his Lipschitz in X on a bounded region G 

and the contraction condition L Tα

Γ(α+1) < 1 holds for some T > 0, where L is the 

Lipschitz constant.

Furthermore, it is assumed that E1, ℇ2, ℇ3, ℇ4,ℇ5 and ℇ6 exist as positive 

constants and that S(t), E(t),A(t),I(t),H(t) and R(t) are non-negative limiting 

functions.
Such that 

‖S(t)‖ ≤ ℇ1, ‖E(t)‖ ≤ ℇ2,‖A(t)‖ ≤ ℇ3,‖I(t)‖ ≤ ℇ4,,‖H(t)‖ ≤ ℇ5 and ,‖R(t)‖ ≤ ℇ6.

Theorem 1: Show that Lipschitz conditions fulfill by kernel ℏi;(i = 1,2,3,4,5,6) 

for each model (1-6) with σi = 0;i = 1,2,3,4,5,6, when 0 ≤  W =  

max {1,2,3,4,5,6} <  1.

Proof: For a detailed proof, see Appendix A, where Equations (19)-(42) are 
derived and used in the proof.

Theorem 2: Prove that: (i) The system of equations (25-30) has a definite 

uniform function. (ii) if there exists at least a t* > 1 such that ξ1
Γ(α) < 1. For the 

model system with σi = 0;i = 1,2,3,4,5,6 there exists at least a solution if ξ1
Γ(α)

< 1 for i = 1,2,3,4,5,6.

Proof: For a detailed proof, see Appendix B, where Equations (43)-(64) are 
derived and used in the proof.
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Theorem 3: The system (1-6) demonstrates the uniqueness with σi = 0;

(i = 1,2,3,4,5,6) if (1 - ξ1
Γ(α) (t)) > 0.

Proof: For a detailed proof, see Appendix C, where Equations (65)-(72) are 
derived and used in the proof.

2.2 Positivity and Boundedness
Theorem 4: Assume the initial history functions satisfy 

(S(t),E(t),A(t),I(t),H(t),R(t)) ≥ 0,t ∈ [ - τ,0], and all parameters are nonnegative. 

For σi = 0, (i = 1,…,6), the solution of system (1-6) remains nonnegative for all 

t > 0, i.e., (S(t),E(t),A(t),I(t),H(t),R(t)) ∈ R6
+,∀t > 0.

Proof. Using the Caputo fractional formulation, each state variable admits the 
equivalent Volterra integral form. For example,

S(t) = S(0) + 1
Γ(α) ∫t

0 (t - s )α-1 FS(s,X(s),X(s - τ)) ds,

and similarly, for E,A,I,H,R, where X = (S,E,A,I,H,R)and FS denotes the right-

hand side of (1). Now suppose (for contradiction) that some component becomes 

negative. Let t* > 0 be the first time such that at least one component hits zero 

and then attempts to cross into the negative region. At time t*, that component 

equals zero, while all other components remain nonnegative by minimality of t*, 

and the delayed terms X(t* -τ) are also nonnegative because the history is 

nonnegative.
On each boundary face, the corresponding right-hand side is nonnegative under 
nonnegative states. In particular, evaluating the drift terms on the boundary 
yields:

 if S(t*) = 0, then FS(t*) = Λα + ωαR(t*) ≥ 0;

 if E(t*) = 0, then FE(t*) = βαS(t* -τ)(I(t* -τ) + qαA(t* -τ))e-ματ ≥ 0;

 if A(t*) = 0, then FA(t*) = (1 - ρα)ηαE(t*) ≥ 0;

 if I(t*) = 0, then FI(t*) = ραηαE(t*) ≥ 0;
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 if H(t*) = 0, then FH(t*) = ϕαA(t*) + φαI(t*) ≥ 0;

 if R(t*) = 0, then FR(t*) = γαA(t*) + θαI(t*) + δαH(t*) ≥ 0.

Therefore, at the first hitting time t*, the Caputo integral representation implies 

the solution cannot decrease past zero (fractional comparison), which 
contradicts the assumption that a component crosses into negative values. 

Hence all components remain nonnegative for all t > 0.

Lemma 1: (Fractional Grönwall Inequality). Let u(t) be a nonnegative, 

continuous function on [0,T]and assume that

u(t) ≤ a + b ∫t
0 (t - s )α-1u(s) ds,0 < α ≤ 1,

where a,b ≥ 0are constants. Then

u(t) ≤ a Eα (b tα),t ∈ [0,T],
where Eα denotes the Mittag-Leffler function.
Theorem 5: The system (1-6) under the nonnegative initial conditions is 

bounded for all t ≥ 0 when σi = 0, i = 1,2,3,4,5,6, and the solution lies in the 

feasible region

 G = {(S, E,A,I,H,R) ∈ R+6;0 < N ≤ Λα

μα , ∀t ≥ 0, τ < t }.

Proof. Let N(t) = S(t) + E(t) + A(t) + I(t) + H(t) + R(t). By summing equations 

(1-6) and using the nonnegativity of all state variables and parameters, we obtain
Dα

t N(t) ≤ Λα - μαN(t).
The associated comparison equation

Dα
t y(t) = Λα - μαy(t),y(0) = N(0),

(73)
has the explicit solution

y(t) = Λα

μα +(N(0) - Λα

μα)Eα( - μαtα).
(74)

By the fractional comparison principle and Lemma 1, it follows that
N(t) ≤ y(t),∀ t ≥ 0.

Since Eα( - μαtα)→0 as t→∞, we conclude that

lim sup⁡
t→∞

N(t) ≤ Λα

μα. (75)
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Therefore, all solutions of system (1-6) remain bounded and lie in the feasible 

region G.

2.3. Model Equilibria and Reproduction Number
This part will provide the model equilibria for system (1-6). Therefore,

HSV-Free Equilibrium  = HSVFE = C0 = (S0,E0,A0,I0,H0,R0) = (Λα

μα ,0,0,0,0,0). 
(76)

HSV-Present Equilibrium = HSVPE = C* = (S*,E*,A*,I*,H*,R*).
(77)

S* = Λα +ωαR*

βα(I* +qαA*)e-ματ +μα, E* = βαS*(I* +qαA*)e-ματ

(ηα +μα) , A* = (1-ρα)ηαE*

(φα +γα +μα),

I* = ραηαE*

(ϕα +θα +μα), H* = φαA* +ϕαI*
(δα +ξα +μα), R* = γαA* +θαI* +δαH*

(ωα +μα) .

By using Next generation method to get reproduction number for system (1-6) 
is as follows: 

 R0 = βαΛαηα[qα(1-ρα)(ϕα +θα +μα) +ρα(φα +γα +μα)]e-ματ

μα(ηα +μα)(φα +γα +μα)(ϕα +θα +μα) .

(78)
The basic reproduction number R0 plays a threshold role in determining the 

existence and stability of the equilibrium points. When R0 < 1, the HSV-free 

equilibrium is locally (and globally) asymptotically stable, indicating that HSV-II 

cannot invade the population and the infection dies out. When R0 > 1, the HSV-

free equilibrium becomes unstable and a unique HSV-present equilibrium 
emerges, corresponding to persistent disease transmission. Thus, R0 governs 
the qualitative transition between disease extinction and persistence in the 
proposed model.
2.4 Local Stability
The local stability analysis is carried out within the framework of Caputo 
fractional-order systems. For fractional differential equations of order 

0 < α ≤ 1, an equilibrium point is locally asymptotically stable if all eigenvalues 

λi of the corresponding Jacobian matrix satisfy ∣arg⁡(λi)∣ > απ
2 . This criterion 

generalizes the classical ODE stability condition and accounts for the memory 
effects inherent in fractional-order models. Using this fractional stability 
criterion, we analyze the HSV-free and HSV-present equilibrium points of system 
(1-6).

Theorem 6: For the Caputo fractional-order system (1–6) with 0 < α ≤ 1and σi

= 0(i = 1,2,3,4,5,6), the HSV-free equilibrium C0is locally asymptotically stable 
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if R0 < 1. Conversely, C0becomes unstable when R0 > 1.

Proof: Linearizing system (1–6) around the HSV-free equilibrium C0yields the 

corresponding Jacobian matrix J(C0). For a Caputo fractional-order system of 

order 0 < α ≤ 1, an equilibrium point is locally asymptotically stable if all 

eigenvalues λiof the Jacobian matrix satisfy the fractional-order stability 
condition

∣arg⁡(λi)∣ > απ
2 .

Applying this criterion to J(C0), it follows that all eigenvalues satisfy the above 

condition when the basic reproduction number R0 < 1, ensuring local 

asymptotic stability of the HSV-free equilibrium. Conversely, when R0 > 1, at 

least one eigenvalue violates the fractional stability condition, and the HSV-free 
equilibrium becomes unstable. Hence, under the fractional-order framework, the 

stability of C0is completely governed by the threshold parameter R0.

Theorem 7: For the Caputo fractional-order system (1–6) with 0 < α ≤ 1and σi

= 0(i = 1,2,3,4,5,6), the HSV-present equilibrium C*exists when R0 > 1and is 

locally asymptotically stable provided that all eigenvalues λiof the Jacobian 

matrix evaluated at C*satisfy

∣arg⁡(λi)∣ > απ
2 .

Proof: After linearizing Jacobian matrix of the system (1-6), the 6th order 
polynomial follows as

λ6 + A5λ5 + A4λ4 + A3λ3 + A2λ2 + A1λ + A0 = 0.

Here.
A5 = (a7 + a9) + (a5 + a10) + (a1 + a11)

A4 = a9a7 + a5a10 + (a5 + a10)(a9 + a7) - a2a7 - a2a6 - a3a8 + (a1 + a11)

[(a7 + a9)(a5 + a10)] + a1a11.

A3 = (a7a9)(a5 + a10) + (a7 + a9)(a5a10) - (a9 + a10)(a2a6) - (a7 + a10)(a3a8) +

(a1 + a11)[a9a7 + a5a10 +(a5 + a10)(a9 + a7) - a2a7 - a2a6 - a3a8] + a1a11
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[(a7 + a9) + (a5 + a10) + (a1 + a11)] - a4(a2a6 + a3a8).

A2 = (a1 + a11)
[(a7a9)(a5 + a10) + (a7 + a9)(a5a10) - (a9 + a10)(a2a6) - (a7 + a10)(a3a8) + (a1 + a11)]

+ a1a11[a9a7 + a5a10 +(a5 + a10)(a9 + a7) - a2a7 - a2a6 - a3a8] - a4

(a2a6a9 + a3a8a7) - a4(a10 + a11)(a2a6 + a3a8).

A1 = a9a7a5a10 - a2a6a9a10 - a3a8a10a7 + (a1 + a11)

[a9a7a5a10 - a2a6a9a10 - a3a8a10a7] + a1a11

[(a7a9)(a5 + a10) + (a7 + a9)(a5a10) - (a9 + a10)(a2a6) - (a7 + a10)(a3a8)] - a4

(a10 + a11)(a2a6a9 + a3a8a7) - a4a10a11(a2a6a9 + a3a8a7).

A0 = a1a11[a9a7a5a10 - a2a6a9a10 - a3a8a10a7].

a1 = βαS*(I* + qαA*)e-ματ + μα, a2 = βαS*qαe-ματ, a3 = βαS*e-ματ, a4 = βα

(I* + qαA*)e-ματ, a5 = (ηα + μα),a6 = (1 - ρα)ηα, a7 = (φα + γα + μα), a8 = ρα

ηα, a9 = (ϕα + θα + μα), a10 = (δα + ξα + μα), a11 = (ωα + μα).

Since the 6th order polynomial with  A5,A4,A3, A2, A1and A0 are positive 

coefficient  with A5A4 > A3, (A5A4 - A3)(A5A2 - A3A4) > A1A2
5, A5A2 > A3A4. So, 

by the Routh-Hurwitz Criterion satisfies when R0 > 1. Hence C* of the given 

system (1-6) is LAS.
2.5 Global Stability
In this part, we analyzed the stability of the model (1-6) at both equilibrium 
points like HSV-Free Equilibrium and HSV-Present Equilibrium point in the 
sense of global.

Theorem 8: The system (1-6) is GAS at C0 when R0 < 1 with σi = 0;
(i = 1,2,3,4,5,6).
Proof: Define the Lyapunov function L:G→R,

L(t) = [S - S0 - S0log S
S0] +E + A + I + H + R.
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c
0Dα

t L(t) = [S-S0
S ]c

0Dα
t S + c

0Dα
t E + c

0Dα
t A + c

0Dα
t I + c

0Dα
t H + c

0Dα
t R.

c
0Dα

t L(t) = [S-S0
S ](Λα - βαS(I + qαA)e-ματ - μαS + ωαR) +

(βαS(I + qαA)e-ματ - (ηα + μα)E) + ((1 - ρα)ηαE - (φα + γα + μα)A) +

(ραηαE - (ϕα + θα + μα)I) + (φαA + ϕαI - (δα + ξα + μα)H) +
(γαA + θαI + δαH - (ωα + μα)R).

c
0Dα

t L(t) ≤ - (Λα + ωαR)(S-S0)2
SS0

- μαI(1 - βαSe-ματ

μα ) - μαA(1 - βαSqαe-ματ

μα ) - (ξα + μα)H -

(ωα + μα)R.

This implies that c
0Dα

t L(t) ≤ 0when R0 < 1, and c
0Dα

t L(t) = 0only at C0. 

Therefore, by the fractional-order extension of LaSalle’s invariance principle (for 

Caputo systems), the HSV-free equilibrium C0is globally asymptotically stable 

for R0 < 1when σi = 0.

Theorem 9: The system (1-6) is GAS at C* when  R0 > 1 with σi

= 0;i = 1,2,3,4,5,6,

Proof: Let the Lyapunov function Z:G→R,

Z = k1(S - S* - S*log( S
S*)) + k2(E - E* - E*log( E

E*)) + k3(A - A* - A*log( A
A*)) + k4

(I - I* - I*log( I
I*)) + k5(H - H* - H*log( H

H*)) + k6(R - R* - R*log( R
R*)).

c
0Dα

t Z = k1(S-S*

SS* )c
0Dα

t S +  k2(E-E*

EE* )c
0Dα

t E + k3(A-A*

AA* )c
0Dα

t A + k4(I-I*II* )c
0Dα

t I + k5(H-H*

HH* )c
0Dα

t

H +  k6(R-R*

RR* )c
0Dα

t R.

c
0Dα

t Z = - k1(Λα + ωαR)(S-S*)2
SS* -  k2(βαS(I + qαA)e-ματ)(E-E*)2

EE* - k3((1 - ρα)ηαE)(A-A*)2
AA*

- k4(ραηαE)(I-I*)2II*
- k5(φαA + ϕαI)(H-H*)2

HH* - k6(γαA + θαI + δαH)(R-R*)2
RR* .

If we choose ki = 1 where (i = 1,2,3,4,5,6)
c
0Dα

t Z = - (Λα + ωαR)(S-S*)2
SS* - (βαS(I + qαA)e-ματ)(E-E*)2

EE* - ((1 - ρα)ηαE)(A-A*)2
AA* -

(ραηαE)(I-I*)2II*
- (φαA + ϕαI)(H-H*)2

HH* - (γαA + θαI + δαH)(R-R*)2
RR* .
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Therefore, since c
0Dα

t Z ≤ 0and c
0Dα

t Z = 0if and only if S = S*,E = E*,A = A*,I =

I*,H = H*,R = R*, it follows from the fractional LaSalle invariance principle for 

Caputo fractional systems that the HSV-present equilibrium C*is globally 

asymptotically stable for R0 > 1when σi = 0.

2.6. Sensitivity Analysis
This part will cover the sensitivity of model parameter of R0. We will identify the 
sensitive parameter indices in terms of space with respect to the reproduction 
number R0.

VΛα = Λα

R0
× ∂R0

∂Λα = 1 > 0, Vβα = βα

R0
× ∂R0

∂βα = 1 > 0,  Vηα = ηα

R0
× ∂R0

∂ηα = μα

μα +ηα > 0,

Vqα = qα

R0
× ∂R0

∂qα = qα[(1-ρα)(ϕα +θα +μα) +ρα(φα +γα +μα)]
qα(1-ρα)(ϕα +θα +μα) +ρα(φα +γα +μα) > 0, 

Vρα = ρα

R0
× ∂R0

∂ρα = ρα[-qα(1-ρα)(ϕα +θα +μα) +ρα(φα +γα +μα)]
qα(1-ρα)(ϕα +θα +μα) +ρα(φα +γα +μα) > 0,

Vγα = γα

R0
× ∂R0

∂γα = -qαγα(1-ρα)(ϕα +θα +μα)
(φα +γα +μα)[qα(1-ρα)(ϕα +θα +μα) +ρα(φα +γα +μα)] < 0,

Vφα = φα

R0
× ∂R0

∂φα = - qαφα(1-ρα)(ϕα +θα +μα)
(φα +γα +μα)[qα(1-ρα)(ϕα +θα +μα) +ρα(φα +γα +μα)] < 0 ,

Vθα = θα

R0
× ∂R0

∂θα = - θαρα(φα +γα +μα)
(ϕα +θα +μα)[qα(1-ρα)(ϕα +θα +μα) +ρα(φα +γα +μα)] < 0,

 Vϕα = ϕα

R0
× ∂R0

∂ϕα = - θαρα(φα +γα +μα)
(ϕα +θα +μα)[qα(1-ρα)(ϕα +θα +μα) +ρα(φα +γα +μα)] < 0 ,

Vμα = μα

R0
× ∂R0

∂μα = -
(μα)2[qα(1-ρα)(ϕα +θα +μα)2[3(μα)2 +2(φα +γα +ηα)μα] +ρα[3(μα)2 +2(ϕα +θα +ηα)μα +ηα(φα +γα)](φα +γα +μα)2]

[qα(1-ρα)(ϕα +θα +μα) +ρα(φα +γα +μα)]

< 0 ,

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



Fig. 1: Sensitivity indices of reproduction number (R0).
Table 1: Values and signs of parameter’s sensitivity:

Parameters Signs Values
Λα Positive 1
βα Positive 1
ηα Positive 0.357
qα Positive 0.4125
ρα Positive 0.5442
ϕα Negative -0.0378
θα Negative -0.842
μα Negative -0.789
φα Negative -0.0023
γα Negative -0.82

To discuss the graphs for the Herpes simplex virus, which is in the middle of 
understanding HSV transmission dynamics. Fig. 1 shows the sensitivity indices 
of the reproduction number (R0) concerning different model parameters. 
Positive sensitivity indices for the parameters mean that they are directly related 
to R0, and an increase in these parameters increases the reproduction number 
and enhances the spread of the disease. On the other hand, negative sensitivity 
indices for the parameters indicate an inverse relationship, where an increase 
in these parameters decreases R0 and reduces the transmission of the disease. 
Table 1 confirms these dynamics to be biologically relevant because the 
positively sensitive parameters likely would reflect factors like transmission 
rates or population interactions, while negative ones might reflect intervention-
related factors such as recovery rate or vaccine effects. Understanding those 
relationships enables targeted control strategies since focus could be placed on 
the reduction of positively sensitive parameters along with enhancing the 
negatively sensitive ones that could help manage the HSV-II spread effectively.
3. Numerical Methods
We propose a generalized stochastic fractional technique for the solution of the 

q
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-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Ba
sic

 P
ar

am
et

er
s

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



stochastic fractional-order system (1-6) like a NSFD scheme (see [21]). In all 

cases, t denotes the temporal step size.

3.1 Non-Standard Finite Difference (NSFD) Scheme
Consider the stochastic fractional delayed system (1-6) with Caputo derivative 

of order 0 < α ≤ 1. Using the integral representation of the Caputo derivative, 

a general equation of the form

Dα
t X(t) = F(X(t)) - L(X(t)) + σX(t) dB(t) can be written in a time-stepping form 

where the deterministic increment is scaled by Δtα

Γ(α+1). Following the 

nonstandard finite difference (NSFD) rules of Mickens, we discretize the gain 
terms explicitly and treat the loss terms implicitly through a denominator in 
order to preserve positivity and boundedness for any step size. For the stochastic 
part, we apply the Euler-Maruyama approximation by replacing the Brownian 

increment with ΔBi = Bi(tn+1) - Bi(tn) ∼ N(0,Δt), which yields multiplicative 

noise terms of the form σiXnΔBi. Implementing these principles componentwise 

for S,E,A,I,H,R, and evaluating the delayed mortality survival factor e-ματ 

consistently, leads to the stochastic fractional NSFD scheme given by Eqs. (79)-
(84).

Sn+1 = Sn + ∆tα
Γ(α+1)(Λ

α +ωαRn +σ1Sn∆B1)
1+ ∆tα

Γ(α+1)(βα(In +qαAn)e-ματ +μα) 

(79)

En+1 = En + ∆tα
Γ(α+1)(βαSn(In +qαAn)e-ματ +σ2En∆B2)

1+ ∆tα
Γ(α+1)(η

α +μα)
 

(80)

An+1 = An + ∆tα
Γ(α+1)((1-ρα)ηαEn +σ3An∆B3)
1+ ∆tα

Γ(α+1)(φ
α +γα +μα)

 

(81)

In+1 = In + ∆tα
Γ(α+1)(ρ

αηαEn +σ4In∆B4)
1+ ∆tα

Γ(α+1)(ϕ
α +θα +μα)

 

(82)

Hn+1 = Hn + ∆tα
Γ(α+1)(φ

αAn +ϕαIn +σ5Hn∆B5)
1+ ∆tα

Γ(α+1)(δ
α +ξα +μα)

 

(83)
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Rn+1 = Rn + ∆tα
Γ(α+1)(γ

αAn +θαIn +δαHn +σ6Rn∆B6)
1+ ∆tα

Γ(α+1)(ω
α +μα)

 

(84)

Here Δt > 0 is the time step and ΔBi are independent Brownian increments 

with mean zero and variance Δt. Furthermore, we investigate the properties of 

fractional NSFD of model (79-84).
Theorem 10: (Positivity). The system (79-84) satisfies the positivity under the 
initial conditions.
Proof: The model (79-84) is free from negative term. Thus, the initial condition 
also positive, as desired.
Theorem 11: (Boundedness). The system (79-84) satisfies the boundedness 

under the initial conditions for K(n,α) ≥ 0, such that Sn,En,An,In,Hn,Rn ∈

[0,K(n,α)],for each n ∈  N.

Proof: The sum of model (79-84) for the bondedness is as follows;

(1 + ∆tα

Γ(α+1)(μ
α))Sn+1 + (1 + ∆tα

Γ(α+1)(μ
α))En+1 + (1 + ∆tα

Γ(α+1)(μ
α))An+1 +

(1 + ∆tα

Γ(α+1)(μ
α))In+1 + (1 + ∆tα

Γ(α+1)(ξ
α + μα))Hn+1 + (1 + ∆tα

Γ(α+1)(μ
α))Rn+1 ≤

(Sn + En + An + In + Hn + Rn) + ∆tα

Γ(α+1)(Λ
α) + ∆tα

Γ(α+1)
(σ1Sn∆B1 + σ2En∆B2 + σ3An∆B3 + σ4In∆B4 + σ5Hn∆B5 + σ6Rn∆B6).

The proof relies on mathematical induction, with K(n + 1,α) serving as the end 

point of sequence of identities and inequalities.
4 Graphical Simulation
In this part, we use graphical simulations for fractional model (1-6). To that end, 
the model parameters are fixed as given in Table 2 (see [1]). Moreover, in all 

simulations, ΔBi ∼ N(0,Δt) are taken as independent Wiener increments, and 

the noise intensities were fixed at σi = 0.3. To investigate the combined effect 

of memory and delay, simulations for different fractional orders were conducted. 

α while changing the delay parameter τ over various representative values. 

This allows comparison of disease dynamics under interchangeable enumerate 

all (α,τ) combinations and point out how explicit delays change the persistence 

effects induced by fractional memory. The numerical findings confirm that 

increasing τ generally delays peaks and prolongs persistence while decreasing 
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α enhances long-term memory effects.

Table: 2 Values of parameters.
Parameters Values Source [1]

Λ 0.0015 Assumed
μ 0.002 Assumed
β 10.68 Estimated
ϕ 0.004 [1]
φ 0.003 [1]
γ 0.058 [1]
θ 0.089 [1]
ω 0.09 [1]
ξ 0.001 [1]
η 0.9 Estimated
q 0.4 Fitted
δ 0.078 [1]
ρ 0.048 [1]
σi 0 ≤ i ≤ 1 Fitted

Fig. 2: Impact of "α" on S(t) at τ = 0.1.

0 50 100 150 200 250 300 350 400 450 500
t, =0.1 (Months)

0.05

0.1

0.15

0.2

0.25

0.3

S(
t)=

Su
sc

ep
tib

le
 In

di
vi

du
al

s

GL-NSFD Method

=0.9
=0.8
=0.7
=0.6

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



Fig. 3: Impact of "α" on E(t) at τ = 0.1.

Fig. 4: Impact of "α" on A(t) at τ = 0.1.
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Fig. 5: Impact of "α" on I(t) at τ = 0.1.

Fig. 6: Impact of "α" on H(t) at τ = 0.1.
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Fig. 7: Impact of "α" on R(t) at τ = 0.1.

4.1 Discussion
The graphical discussion for Herpes Simplex-II Virus (HSV-II) addresses the 
dynamics of how disease relates to various fractional order values, affecting the 
different compartments in the model with time delay. Fig. 2 represents the time 
profile of the susceptible population, as it is affected by changes in fractional 
orders. A decrease in fractional order implies a significant memory effect on the 
system that gradually reduces the rate of decline in the susceptible population, 
reflecting persistence over time for those at risk due to fractional time delay 
effects. In Fig. 3, the fractional order heavily affects the rate at which exposed 
individuals transition to the asymptomatic or symptomatic phases. As the 
fractional order increases, the exposed population drops more sharply, implying 
more rapid disease progression. The graph for asymptomatic individuals (Fig. 4) 
exhibits the variability of the peak and persistence of this compartment with 
fractional order. The lower fractional orders lead to prolonged peaks that 
suggest a delay in the recovery or progression due to the time-delay effect in the 
system. In Fig. 5 symptomatic individuals show more significant sensitivity to 
changes in fractional orders. The delay parameter increases the oscillatory 
behavior and seems to indicate fluctuations of disease prevalence over time 
when memory effects and delays interact. Fig. 6 for the viral load shows how 
fractional dynamics affect the prevalence of the virus. Lower fractional orders 
lead to sustained viral activity, which reflects the combined effects of delayed 
immune response and the persistence mechanisms inherent in the disease. 
Finally, Fig. 7 illustrates the recovery dynamics and how fractional orders make 
the return to the recovered state delayed. Lower orders elongate the recovery 
period due to strong memory and time-delay effects, while higher orders exhibit 
recovery rates. This means that by changing the fractional order, one can 
simulate the different behaviors of diseases such as prolonged exposure phases, 
oscillatory symptomatic peaks, and delayed recovery. Such insights are crucial 
for long-term disease control and the planning of effective interventions. By 
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adjusting the fractional order, one can simulate varying disease behaviors, such 
as prolonged exposure phases, oscillatory symptomatic peaks, and delayed 
recovery. These insights are important for understanding long-term disease 
control and planning effective interventions. In the context of HSV-II, fractional-
order memory reflects the cumulative influence of past infection history, 
including immune persistence, latency, and recurrent reactivation, on current 

transmission dynamics. Lower values of the fractional order αindicate stronger 

dependence on historical states, resulting in slower progression and prolonged 

persistence. This effect differs from the discrete delay τ, which represents a 

specific biological waiting time, such as incubation or delayed response.
In this model, explicit delay would mainly reflect biological delays of waiting 
processes, such as incubation and host response delays. Stochastic 
perturbations capture random variability in transmission and immune dynamics. 
These components introduce uncertainty and heterogeneity that cannot be 
modeled by a deterministic model in isolation.
5 Conclusion
In this study, the dynamics of Herpes Simplex Virus–II (HSV-II) were 
investigated through a stochastic fractional delay differential model 
incorporating essential epidemiological factors. The model guarantees the 
existence, uniqueness, positivity, and boundedness of solutions. Two equilibrium 
states were identified: HSV-Free Equilibrium (HSV-FE) and HSV-Present 
Equilibrium (HSV-PE), with the basic reproduction number calculated via the 
Next-Generation Matrix method. Both local and global stability analyses were 
performed, along with a sensitivity analysis to examine the influence of key 
parameters on disease transmission. Numerical simulations based on the 
Stochastic Non-Standard Finite Difference (NSFD) scheme were conducted for 

various fractional orders α, demonstrating improved positivity, boundedness, 

and stability compared to standard fractional-order modeling methods. The 
theoretical findings were further validated through graphical simulations, 
providing deeper insights into HSV-II dynamics and supporting informed public 
health decision-making. Overall, the combination of advanced mathematical 
modeling and robust computational simulations provides a valuable framework 
for understanding complex biological systems and predicting disease dynamics. 
The suggested framework might be expanded in future work by availing 
probabilistic safety and control-theoretic concepts, e.g., risk-aware analysis and 
adaptive control strategies, which have been proven to work well in complicated 
engineered systems ]25-27]. These types of methods could even further improve 
the robustness and real-time usability of HSV-II modeling when the uncertainty 
is present.
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Appendix A:
Proof: First, we analyze the Lipschitz’s condition for the function ℏ1(t, S). For 

this, we take help with the following S and S1:

‖ℏ1(t, S) - ℏ1(t, S1)‖ =

‖(Λα - βαS(I + qαA)e-ματ - μαS + ωαR) - (Λα - βαS1(I + qαA)e-ματ - μαS1 + ωαR)‖.

‖ℏ1(t, S) - ℏ1(t, S1)‖ = ‖(βα(S - S1)(I + qαA)e-ματ + μα(S - S1))‖.
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‖ℏ1(t, S) - ℏ1(t, S1)‖ ≤ ‖βα(S - S1)(I + qαA)e-ματ‖ + ‖μα(S - S1)‖.

‖ℏ1(t, S) - ℏ1(t, S1)‖ ≤ (βαe-ματ‖I + qαA‖+ μα)‖S - S1‖.

‖ℏ1(t, S) - ℏ1(t, S1)‖ ≤ (βαe-ματ(ℇ4 + qαℇ3) + μα)‖S - S1‖.

‖ℏ1(t, S) - ℏ1(t, S1)‖ ≤ ξ1‖S - S1‖.

Since, ξ1 = (βαe-ματ(ℇ4 + qαℇ3) + μα). Lipschitz's condition is satisfied. Next, for  

ℏ2(t, E) consider E and E1.

‖ℏ2(t, E) - ℏ2(t, E1)‖ =

‖(βαS(I + qαA)e-ματ - (ηα + μα)E) - (βαS(I + qαA)e-ματ - (ηα + μα)E1)‖. 

‖ℏ2(t, E) - ℏ2(t, E1)‖ = ‖((ηα + μα)(E - E1))‖.

‖ℏ2(t, E) - ℏ2(t, E1)‖ ≤ (ηα + μα)‖E - E1‖.

‖ℏ2(t, E) - ℏ2(t, E1)‖ ≤ ξ2‖E - E1‖.

For, ξ2 = (ηα + μα). Lipschitz condition is satisfied. 

Next, for  ℏ3(t, A) analyzing for A and A1.

‖ℏ3(t, A) - ℏ3(t, A1)‖ =
‖((1 - ρα)ηαE - (φα + γα + μα)A) - ((1 - ρα)ηαE - (φα + γα + μα)A1)‖.

‖ℏ3(t, A) - ℏ3(t, A1)‖ = ‖(φα + γα + μα)(A - A1)‖.

‖ℏ3(t, A) - ℏ3(t, A1)‖ ≤ (φα + γα + μα)‖A - A1‖.

‖ℏ3(t, A) - ℏ3(t, A1)‖ ≤ ξ3‖A - A1‖.

For, ξ3 = (φα + γα + μα). Lipschitz condition is satisfied. 

Next, for  ℏ4(t, I) analyzing for I and I1.

‖ℏ4(t, I) - ℏ4(t, I1)‖ = ‖(ραηαE - (ϕα + θα + μα)I) - (ραηαE - (ϕα + θα + μα)I1)‖.

‖ℏ4(t, I) - ℏ4(t, I1)‖ = ‖(ϕα + θα + μα)(I - I1)‖.

‖ℏ4(t, I) - ℏ4(t, I1)‖ ≤ (ϕα + θα + μα)‖I - I1‖.
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‖ℏ4(t, I) - ℏ4(t, I1)‖ ≤ (ϕα + θα + μα)‖I - I1‖.

For, ξ4 = (ϕα + θα + μα). Lipschitz condition is satisfied. 

Next, for  ℏ5(t, H) analyzing for H and H1.

‖ℏ5(t, H) - ℏ5(t, H1)‖ =
‖(φαA + ϕαI - (δα + ξα + μα)H) - (φαA + ϕαI - (δα + ξα + μα)H1)‖.

‖ℏ5(t, H) - ℏ5(t, H1)‖ = ‖((δα + ξα + μα)(H - H1))‖.

‖ℏ5(t, H) - ℏ5(t, H1)‖ ≤ (δα + ξα + μα)‖H - H1‖.

For, ξ5 = (δα + ξα + μα). Lipschitz condition is satisfied. 

Next, for  ℏ6(t, R) analyzing for R and R1.

‖ℏ6(t, R) - ℏ6(t, R1)‖ =
‖(γαA + θαI + δαH - (ωα + μα)R) - (γαA + θαI + δαH - (ωα + μα)R1)‖.

‖ℏ6(t, R) - ℏ6(t, R1)‖ = ‖((ωα + μα)(R - R1))‖.

‖ℏ6(t, R) - ℏ6(t, R1)‖ ≤ (ωα + μα)‖R - R1‖.

‖ℏ6(t, R) - ℏ6(t, R1)‖ ≤ ξ6‖R - R1‖.

For, ξ6 = (ωα + μα). Lipschitz condition is satisfied.  

Next, there is constant in (13–18).

Sn(t) = 1
Γ(α)∫

t
0 (t - s)α-1ℏ1(s, Sn-1)ds. (19)

En(t) = 1
Γ(α)∫

t
0 (t - s)α-1ℏ2(s, En-1)ds. (20)

An(t) = 1
Γ(α)∫

t
0 (t - s)α-1ℏ3(s, An-1)ds. (21)

In(t) = 1
Γ(α)∫

t
0 (t - s)α-1ℏ4(s, In-1)ds. (22)

Hn(t) = 1
Γ(α)∫

t
0 (t - s)α-1ℏ5(s, Hn-1)ds. (23)

Rn(t) = 1
Γ(α)∫

t
0 (t - s)α-1ℏ6(s, Rn-1)ds. (24)

Remaining variation is as follows:

ψn-1(t) = (Sn(t) - Sn-1(t)) = 1
Γ(α)∫

t
0(ℏ1(s, Sn-1) - ℏ1(s, Sn-2))ds. (25)
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φn-1(t) = (En(t) - En-1(t)) = 1
Γ(α)∫

t
0(ℏ2(s, En-1) - ℏ2(s, En-2))ds. (26)

ϑn-1(t) = (An(t) - An-1(t)) = 1
Γ(α)∫

t
0(ℏ3(s, An-1) - ℏ3(s, An-2))ds. (27)

ϖn-1(t) = (In(t) - In-1(t)) = 1
Γ(α)∫

t
0(ℏ4(s, In-1) - ℏ4(s, In-2))ds. (28)

Ψn-1(t) = (Hn(t) - Hn-1(t)) = 1
Γ(α)∫

t
0(ℏ5(s, Hn-1) - ℏ5(s, Hn-2))ds. (29)

ζn-1(t) = (Rn(t) - Rn-1(t)) = 1
Γ(α)∫

t
0(ℏ6(s, Rn-1) - ℏ6(s, Rn-2))ds. (30)

Therefore, we have 

Sn(t) = ∑n
i=0 ψi(t). (31)

En(t) = ∑n
i=0 φi(t). (32)

In(t) = ∑n
i=0 ϑi(t). (33)

An(t) = ∑n
i=0 ϖi(t).

(34)

Hn(t) = ∑n
i=0 Ψi(t).

(35)

Rn(t) = ∑n
i=0 ζi(t). (36)

Let, 

‖ψn(t)‖ = ‖Sn(t) - Sn-1(t)‖.

‖ψn(t)‖ = 1
Γ(α)∫

t
0(ℏ1(s, Sn-1) - ℏ1(s, Sn-2))ds.

‖ψn(t)‖ = ξ1
Γ(α)∫

t
0‖Sn(t) - Sn-1(t)‖ds.

‖ψn(t)‖ = ξ1
Γ(α)∫

t
0 ψn-1(t)ds. (37)

Similarly,

‖φn(t)‖ = ξ2
Γ(α)∫

t
0 φn-1(t)ds. (38)

‖ϑn(t)‖ = ξ3
Γ(α)∫

t
0 ϑn-1(t)ds. (39)

‖ϖn(t)‖ = ξ4
Γ(α)∫

t
0 ϖn-1(t)ds. (40)

‖Ψn(t)‖ = ξ5
Γ(α)∫

t
0 Ψn-1(t)ds. (41)

‖ζn(t)‖ = ξ6
Γ(α)∫

t
0 ζn-1(t)ds. (42)
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As required.

Appendix B.

Proof: Consider the S(t), E(t),A(t),I(t),H(t) and R(t) are bounded. Then 

‖ψn(t)‖ ≤ ‖S(0)‖‖ ξ1
Γ(α) (t)‖n

. (43)

‖ϑn(t)‖ ≤ ‖E(0)‖‖ ξ2
Γ(α) (t)‖n

. (44)

‖ψn(t)‖ ≤ ‖A(0)‖‖ ξ3
Γ(α) (t)‖n

. (45)

‖ϖn(t)‖ ≤ ‖I(0)‖‖ ξ4
Γ(α) (t)‖n

. (46)

‖Ψn(t)‖ ≤ ‖H(0)‖‖ ξ5
Γ(α) (t)‖n

. (47)

‖ζn(t)‖ ≤ ‖R(0)‖‖ ξ6
Γ(α) (t)‖n

. (48)

Since, S(t), E(t),A(t),I(t),H(t) and R(t) will converge because the system (31-36) 

exists and consistent. For this, consider n changes as An(t), Bn(t), Cn(t), Dn(t), 

Xn(t) and Yn(t). Thus,

S(t) -S(0) = Sn(t) - An(t). (49)

E(t) -E(0) = En(t) - Bn(t). (50)

A(t) -A(0) = An(t) - Cn(t). (51)

I(t) -I(0) = In(t) - Dn(t). (52)

H(t) -H(0) = Hn(t) - Xn(t). (53)

R(t) -R(0) = Rn(t) - Yn(t). (54)

The result of Lipschitz condition for (ξ1) and the triangle inequality, and ℏ1 for 

i = 1,2,3,4,5,6, fulfills the Lipschitz condition.

‖An(t)‖ = 1
Γ(α)∫

t
0(ℏ1(s, Sn-1) - ℏ1(s, Sn-2))ds. 

‖An(t)‖ ≤ ξ1
Γ(α)‖Sn(t) - Sn-1(t)‖. (55)
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with repetition of (55), 

‖An(t)‖ ≤ ‖ ξ1
Γ(α) (t)‖n+1

ℇ1. (56)
Next, at t*, one acquires 

‖An(t)‖ ≤ ‖ ξ1
Γ(α) (t*)‖n+1

ℇ1. (57)

Assuming n → ∞ as the limit. 

lim
n→∞

‖An(t)‖ ≤ lim
n→∞ ‖ ξ1

Γ(α) (t*)‖n+1
ℇ1. (58)

By applying the hypothesis ξ1
Γ(α)(t*) < 1, we get

lim
n→∞

‖An(t)‖ = 0. (59)

Similarly,

‖Bn(t)‖→0. (60)

‖Cn(t)‖→0. (61)

‖Dn(t)‖→0. (62)

‖Xn(t)‖→0. (63)

‖Yn(t)‖→0. (64)

As desired.

Appendix C

Proof: Examine how the sets S1,E1,A1,I1,H1, and R1 represent the solutions to 

(1-6). 

‖S(t) - S1(t)‖ = 1
Γ(α)∫

t
0(ℏ1(s, S) - ℏ1(s, S1))ds. 

‖S(t) - S1(t)‖ ≤ ξ1
Γ(α)‖S(t) - S1(t)‖. (65)

After simplifying,

(1 - ξ1
Γ(α) (t))‖S(t) - S1(t)‖ ≤ 0. (66)

By applying the hypothesis (1 - ξ1
Γ(α) (t)) > 0, we have from (66) yield.

‖S(t) - S1(t)‖ = 0. (67)

It follows from this because S(t) = S1(t). 
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Similarly,

E(t) = E1(t). (68)

A(t) = A1(t). (69)

I(t) = I1(t).
(70)

H(t) = H1(t). (71)

R(t) = R1(t). (72)

Hence proved.
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