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Abstract

Background: Structural variations (SVs) play a key role in many human diseases and are major 

causative factors of malignant tumors. High-throughput chromatin conformation capture (Hi-C) 

technology captures spatial interactions between genomic fragments, thereby enhancing SV 

identification and localization and compensating for the limitations of sequencing-based approaches in 

detecting complex variants. However, existing methods based on Hi-C data still suffer from low accuracy, 

limited applicability, and difficulties in handling multiple types of SVs simultaneously.

Results: In this study, we propose VarHiCNet, a novel method for detecting structural variations from 

Hi-C data. Contact matrices are preprocessed and converted into image-like representations. These 

representations are then input into an improved RT-DETR network to identify candidate SV regions. 

Subsequently, a filtering and classification network is applied for precise breakpoint detection. Evaluated 

on six cancer cell lines, VarHiCNet demonstrates high accuracy and stability in SV identification, with 

overall performance surpassing that of existing methods. The source code is available at 

https://github.com/000425/VarHiCNet.

Conclusions: Experimental results indicate that VarHiCNet achieves superior performance in detecting 

structural variations compared to other methods, offering a robust and accurate tool for genomic studies.

Keywords: structural variation; Hi-C; target detection; deep learning; RT-DETR

Background

Structural variations (SVs) refer to changes in DNA sequence longer than 50 base pairs (bp) within the 

genome. SVs can be classified into deletions, duplications/tandem repeats, inversions, translocations, 

and more complex combinations[1]. With the continuous advancement of high-throughput sequencing 

technology, researchers have discovered that structural variations exhibit significant enrichment 

patterns in disease states. During the occurrence and development of tumors, SVs can induce 

carcinogenic effects through various molecular mechanisms, as follows: (I) Deletions can directly lead 

to heterozygous loss (LOH) or homozygous loss of tumor suppressor genes[2]; (II) Duplications can 

increase the copy number of proto-oncogenes (e.g., EGFR amplification) [3]; (III) Inversions can cause 
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abnormalities in the three-dimensional chromatin structure of gene regulatory regions [4]; (IV) Balanced 

translocations can generate oncogenic fusion genes (e.g., EML4-ALK) [5]. As such, accurately detecting 

structural variations in the genome, particularly in highly complex samples such as cancer cell lines, is 

of great significance for understanding disease mechanisms and advancing precision medicine.

Although whole genome sequencing (WGS) has become the primary method for detecting structural 

variations [6], WGS methods based on short reads still have limitations in many respects. On one hand, 

the mapping quality of short-read sequencing is suboptimal, particularly in highly repetitive regions, 

making it challenging to identify many breakpoints [7] accurately. On the other hand, in the detection 

of complex SVs (such as multi-breakpoint rearrangements) and copy number neutral events (such as 

balanced translocations and inversions), WGS often lacks sufficient resolution and contextual 

information to make comprehensive judgments[8]. While long-read technologies (such as PacBio and 

Nanopore) have partially addressed the mapping issues associated with short reads, their high costs 

and high error rates limit their application in large-scale sample studies[9]. Furthermore, existing WGS 

methods primarily focus on the precise localization of variant breakpoints and fail to fully leverage the 

three-dimensional structural features of the genome for global analysis. This detection method, based 

on local information, may overlook important structural variation features.

High-throughput Chromosome Conformation Capture (Hi-C) technology can capture three-dimensional 

spatial contact information of DNA sequence across the entire genome, forming a high-dimensional 

contact matrix that reflects spatial interactions between different genomic locations[10]. Hi-C provides 

a genomic structural perspective for structural variation detection by capturing physical interaction 

information of chromatin in three-dimensional space. Several attempts have been made to detect 

structural variations based on Hi-C data. Early methods, such as HiC_breakfinder [11], are based on 

statistical modeling of interaction frequencies, aiming to identify breakpoints from regions with 

abnormally high interaction frequencies. HiNT-TL[12] analyzes the distribution of outliers and potential 

features in the Hi-C matrix to detect copy number variations (CNVs) and interchromosomal 

translocations. HiSVision[13] introduced deep learning strategies to improve identification accuracy and 

adaptability to some extent. The HiSV method[14] was the first to propose the use of a significance 

segmentation mechanism to divide potential SV regions from the perspective of pixel similarity in the 

overall image, achieving good generalization results. However, these methods still have room for 

improvement in terms of the accuracy of candidate variation localization, the ability to distinguish 

between variation types, and the accuracy of identifying complex variations.

In this study, we developed a deep learning framework that transforms the task of detecting structural 

variations based on Hi-C data into a classic target detection problem in the field of image processing. In 

the field of SV detection using deep learning methods, there have been a number of innovative studies 

that have yielded important results[15][16]. 

Our core idea is that structural variations in the Hi-C contact matrix form unique spatial feature 

patterns, which are highly similar to object detection tasks. Hence, we transform the SV detection 
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problem into an object detection problem in images. First, the raw Hi-C contact matrices were 

preprocessed to correct for distance-dependent biases. Second, the preprocessed matrices were 

converted into image representations. Using a sliding-window strategy, the entire chromosome was 

systematically scanned, and each raw submatrix (160×160 for intra-chromosomal regions, 200×200 for 

inter-chromosomal regions) was resized into an 800×800 image for model input. These images were 

then processed by an improved RT-DETR network[17] to detect candidate SV regions. The precise 

breakpoint positions were subsequently determined using principal component analysis (PCA), and a 

Transformer model[18] was employed to capture the dynamic changes in contact frequency around the 

breakpoints, thereby further enhancing the ability to accurately identify and distinguish different types 

of SVs.
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Fig 1. This figure illustrates the complete workflow of the proposed VarHiCNet model for 

structural variation (SV) detection from Hi-C data: (a) Generating contact matrix images: 

The preprocessed Hi-C contact matrix is cropped using sliding windows (with an overlap rate 

of 0.2) to generate 200×200 (for inter-chromosomal regions) or 160×160 (for intra-

chromosomal regions) sub-matrix images, which serve as inputs for subsequent detection. 

(b) Finding candidate SV regions: Multi-scale features are extracted via a ResNet50 

backbone; these features are then integrated (shallow/deep information) by a Feature 
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Fusion Module, followed by spatially adaptive feature sampling via the GSPP module. Finally, 

a Transformer encoder-decoder and prediction heads output the coordinates and confidence 

scores of candidate SV regions. (c) Determining breakpoints and filtering SV: Features of 

candidate regions are dimensionally reduced using PCA, then fed into the 

TransformerSVClassifier to achieve precise breakpoint localization and final classification of 

SV types (e.g., deletions, inversions, translocations).

Methods

This study transforms SV detection from “genomic coordinate alignment” to “image object detection”. 

The representation of structural variation in Hi-C maps is shown in Figure 2. The input is a Hi-C contact 

matrix, and the output is breakpoint coordinates and category labels. The overall approach can be 

divided into four steps:(I) Contact matrix preprocessing. Perform preprocessing operations such as 

distance-dependent bias correction on the original Hi-C contact matrix; (II) Generate sub-matrix. Convert 

the preprocessed contact matrix into an image format; (III) Searching for candidate SV regions. Use an 

improved RT-DETR network to perform object detection on the image, identifying candidate regions 

where SVs may exist; (IV) Filtering candidate SV regions. Establish a mapping relationship between the 

candidate regions and genomic coordinates using the final filter, precisely locate the candidate regions, 

and classify structural variations based on local features in the breakpoint regions.

     

           

Fig 2. Distinct patterns of intra-chromosomal and inter-chromosomal SV on Hi-C map. 

Subfigure a (Deletion): Its core feature is a continuous blank band of contact signals at the 

diagonal of the Hi-C matrix, reflecting the interruption of interaction signals caused by 

genomic fragment deletion; Subfigure b (Forward Tandem Duplication): A symmetric signal-

enhanced region is formed adjacent to the diagonal, and the extension direction of the 
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enhanced region is consistent with the original sequence direction of the genome; 

Subfigures c and d (Backward Tandem Duplication): Although local signal enhancement also 

exists, the spatial direction of the enhanced region is opposite to that of the original 

sequence, showing the signal feature of reverse distribution on both sides of the diagonal 

in the matrix; Subfigure e (Inversion): It is characterized by the reversal of the interaction 

direction of contact signals in the diagonal region, where the signal pattern originally 

extending orderly along the diagonal shows an obvious turning block—this is a direct 

manifestation of chromatin spatial conformation changes caused by inversion.

2.1 Contact matrix preprocessing

To enhance the detectability of structural variations (SVs) within Hi-C contact matrices, we applied a 

two-step preprocessing procedure to the raw matrices prior to candidate region detection. This process 

consisted of (i) Observed/Expected (OE) normalization for banded regions near the main diagonal and 

(ii) Z-score standardization for regions distal to the diagonal [19]. All Hi-C data used in this study were 

preprocessed into contact matrices with a 50kb resolution. While 25kb resolution retains more local 

details, it also amplifies noise in Hi-C contact signals (e.g., random sequencing errors), leading to a 

decrease in recall; 100kb resolution smooths noise but compresses the feature signals of small-scale 

SVs (e.g., 500kb inversions), also reducing recall. In contrast, 50kb resolution avoids noise interference 

from overly fine resolution while preserving the core interaction patterns of most SVs, making it the 

optimal choice for "noise-signal balance" in current experiments.

(1) OE transformation for near-diagonal regions

Because Hi-C contact frequency naturally decays with increasing genomic distance (bin separation) 

[20], we performed OE normalization within a fixed-width band surrounding the main diagonal. M is the 

Hi-C contact matrix. Mij is the element in the i-th row and j-th column of M. E|i-j| represents the expected 

contact value for all positions with a distance of |i - j|. For each entry (i,j) in this region, the OE value was 

calculated as follows:

Ed = 1
|{(i,j)∣|i - j| = d,Mi,j > 0}| ∑

|i-j|=d,Mi,j>0
  Mi,j(1)

OEi,j = {log⁡ (1 +
Mi,j
E|i-j|) ,     ifE|i-j| > 0

0,     ifE|i-j| = 0 or undefined    
(2)

(2) Z-score standardization for distal regions

In contrast, regions far from the diagonal (∣i - j∣>b) are typically sparse and noisy. To harmonize signal 

distributions across different genomic distances and to improve comparability of long-range weak 

signals, we applied distance-specific Z-score normalization to the O/E contact matrix M. For each 

genomic distance d, with Nd denoting the number of elements along the corresponding offset diagonal, 

we computed the mean and standard deviation as:
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μd = 1
Nd

∑
|i-j|=d

  Mi,j,σd = 1
Nd

∑
|i-j|=d

  (Mi,j - μd)2(3)

Zi,j = {Mi,j - μ|i-j|
σ|i-j|

,     ifσ|i-j| > 0
0,     otherwise    

(4)
In Equations (3) and (4), the parameter d represents the absolute difference |i-j| between row index i 

and column index j in the Hi-C contact matrix (unit: bin), whose values cover all possible |i-j| in the matrix 

and correspond to different genomic distances (under the 50kb resolution of this study, d=1 represents 

a genomic distance of 50kb). Here, we define the band-width threshold b=50 (optimized via performance 

validation in Tables S16-S17): elements satisfying d ≤ b belong to the band region (processed by OE 

normalization in Equations (1)-(2)), while elements with d > b are assigned to the non-band region 

(processed by the Z-score standardization in Equations (3)-(4)). During calculation, the mean and 

standard deviation of elements on the corresponding offset diagonal are calculated separately for each 

d to achieve distance-specific Z-score standardization, eliminating the bias of Hi-C signals decaying with 

genomic distance. This differential preprocessing strategy preserved the original information for inter-

chromosomal interactions while simultaneously enhancing both local and long-range intra-chromosomal 

features. As a result, the processed matrices provide more robust inputs for downstream SV detection.

2.2 Generate sub-matrix

This study designed an image transformation strategy based on sliding windows to address the 

characteristics of Hi-C contact matrices. During data processing, we first divide the contact matrix into 

two types based on chromatin spatial interaction features: intra-chromosomal and inter-chromosomal. 

Then we use dynamic window scanning technology to systematically traverse the entire contact matrix 

with predefined detection window sizes. Inter-chromosomal regions default to a window size of 200×200, 

while intra-chromosomal regions are set to 160×160. We adopted a 20% window overlap to ensure that 

key structural variation signals are not lost due to boundary effects. In the specific implementation, 

starting from the top-left corner of the matrix, submatrices are sequentially extracted in a sliding manner 

to divide the matrix into multiple subregions. In the formulas (5)–(8), w denotes the size of the sliding 

window (unit: bin), with a value of 200 for inter-chromosomal contact matrices (corresponding to a 

200×200 window) and 160 for intra-chromosomal contact matrices (corresponding to a 160×160 

window), which is set based on the spatial interaction characteristics of different matrix types, m 

represents the submatrices obtained after partitioning, and M refers to the entire matrix being 

partitioned.The following formula can express the submatrix m in the i-th row and j-th column of M:

ctopl = (w × 0.8) × (i - 1)(5)

ctopr = ctopl + w(6)

cbottoml = (w × 0.8) × (j - 1)(7)
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cbottomr = cbottoml + w(8)

m = M[ctopl:ctopr,cbottoml:cbottomr](9)
The corresponding region is defined by four boundary coordinates: Ctop_l, Ctop_r, Cbottom_l, and 

Cbottom_r. Ultimately, each submatrix is converted into an 800×800-pixel RGB image. The 800×800 

dimension represents the unified image resolution for model input, derived from resizing 160×160 

(intra-chromosomal) or 200×200 (inter-chromosomal) raw sub-matrices via bilinear interpolation. 

Instead of using a single-channel grayscale representation, we chose to convert the submatrices into 

RGB format, which leverages the intrinsic characteristics of Hi-C signals and better aligns with the 

downstream model. Hi-C data encode contact-frequency distributions between genomic bins, and 

structural variations (SVs) introduce characteristic local abnormalities such as signal interruptions or 

abnormal intensification. Mapping these signals into a single grayscale channel compresses their 

dynamic range, making subtle SV-related deviations more susceptible to being masked by background 

noise. In contrast, RGB images provide three complementary intensity channels, enabling a more 

expressive representation of high, medium, and low contact-frequency patterns, thereby enhancing the 

separability between SV-affected and normal regions. Furthermore, RGB representation ensures 

compatibility with the ImageNet-pretrained ResNet-50 backbone used in this study, whose pretrained 

filters are optimized for multi-channel inputs and are effective in capturing diverse spatial features such 

as edges and textures. Consequently, converting the Hi-C submatrices into RGB format not only 

improves feature expressiveness but also enables efficient utilization of pretrained weights.

This design leverages the intrinsic characteristics of Hi-C signals and better fits the downstream 

model.This processing method not only preserves the spatial interaction features in the original data 

but also converts complex genomic interaction information into an image format suitable for deep 

learning models, laying an important foundation for subsequent variant detection.

2.3 Searching for candidate SV regions

We introduced feature fusion and spatial adaptive fusion mechanisms based on the original RT-DETR 

model and applied the improved architecture to detect structural variation (SV) regions. The overall 

framework is illustrated in Figure 1(b). The model mainly comprises five modules: the Backbone, Feature 

Fusion Module, GSPP Module, Transformer Encoder [21], and Prediction Heads.

Originally proposed by Zhou et al., RT-DETR (Real-Time DETR) is a Transformer-based end-to-end 

object detector that eliminates the anchor-dependent design of traditional detectors. It offers two 

notable advantages: (1) real-time inference (≥30 FPS on GPUs) through a “query-attention mechanism” 

that directly matches object queries to feature maps, avoiding complex anchor generation; and (2) the 

ability of the Transformer encoder–decoder to capture long-range dependencies, enabling robust 

modeling of global spatial patterns. However, when applied directly to Hi-C–based SV detection, RT-

DETR exhibits fundamental limitations. It relies solely on top-layer backbone features (e.g., ResNet50 

Layer 4) for single-scale extraction, making it difficult to simultaneously capture “local breakpoint details” 
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(e.g., subtle signals from small deletions) and “global SV patterns” (e.g., symmetric interaction 

signatures of large inversions). High-resolution lower-layer features retain local details but lack global 

context, whereas low-resolution deeper features capture global structure but lose fine-grained 

information. Moreover, its fixed convolutional receptive fields cannot adapt to core characteristics of Hi-

C data—namely, heterogeneous SV spans (50–200+ bins) and distance-dependent contact decay—

leading to missed detection of large translocations with small receptive fields and blurred small SV 

signals with excessively large receptive fields.

To address the “single-scale feature deficiency” in the original RT-DETR, we designed a Feature Fusion 

Module tailored to the properties of Hi-C matrices, with the goal of integrating multi-level features to 

preserve both local and global SV information. The module first extracts feature maps from three key 

layers of the ResNet50 backbone (Layer 2, Layer 3, Layer 4): Layer 2 (resolution 1/8, 512 channels) 

provides high-resolution features for precise breakpoint localization; Layer 3 (resolution 1/16, 1024 

channels) offers a balance between local and regional patterns; and Layer 4 (resolution 1/32, 2048 

channels) captures global SV interaction structures. Feature alignment is then performed by applying 

1×1 convolutions to unify all feature channels to 256 (reducing computational cost and preventing 

channel imbalance), followed by bilinear interpolation to upsample Layer 3 and Layer 4 to the spatial 

resolution of Layer 2, ensuring that all feature maps are spatially consistent. A lightweight attention 

network (two 1×1 convolutions and a Sigmoid activation) is then applied to learn pixel-wise fusion 

weights. For regions containing small-scale SVs (<100 bins), the network assigns higher weights to Layer 

2 features to highlight fine breakpoint details; for regions containing large-scale inter-chromosomal 

translocations, it increases the weight of Layer 4 features to enhance global pattern representation. The 

final fused feature map is obtained by weighted summation, effectively combining low-level detailed 

cues with high-level semantic information.

To overcome the “fixed receptive field mismatch” in the original RT-DETR and mitigate spatial 

distortion caused by distance-dependent contact decay in Hi-C data, we propose the GSPP (Genomic 

Spatial Pyramid Pooling) Module. Its design is specifically tailored for SV detection in genomic contact 

matrices. The module achieves accurate multi-scale SV representation through multi-branch feature 

extraction and fusion. It first includes a 1×1 convolution branch that compresses channel dimensions 

while retaining essential signals, avoiding unnecessary computation. Three parallel atrous convolution 

branches with dilation rates of 6, 12, and 18 are then incorporated. These heterogeneous dilation rates 

expand the receptive field flexibly, enabling targeted extraction of small-scale (e.g., deletions), medium-

scale (e.g., intra-chromosomal inversions), and large-scale (e.g., translocations) SV features. Padding 

and dilation are carefully designed to maintain consistent output sizes across scales. Additionally, a 

global average pooling branch compresses the input feature map into a 1×1 representation to capture 

global SV interaction patterns, adjusts the channels via a 1×1 convolution, and upsamples the output 

back to the original spatial size using bilinear interpolation, ensuring complementarity between local 

and global information. After concatenating all branch outputs along the channel dimension, the 
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combined features pass through a fusion block consisting of a 1×1 convolution, batch normalization, 

ReLU activation, and a Dropout layer. This not only integrates multi-branch information but also 

mitigates overfitting through regularization, producing a unified, highly discriminative feature map. To 

further mitigate overfitting in the deep architecture, multiple regularization strategies were incorporated 

into VarHiCNet. Dropout layers (rate = 0.3) were inserted into the fusion blocks of the GSPP module to 

reduce neuron co-adaptation, and L2 weight decay (5×10⁻⁵) was applied to all fully connected layers in 

the Transformer encoder to constrain parameter magnitudes. In addition, batch normalization was 

added after all convolutional layers to stabilize intermediate feature distributions and enhance 

generalization. Together, these measures effectively prevent the model from overfitting to redundant 

local patterns in the training data.Compared with traditional feature extraction modules, this design 

covers the typical SV span range in Hi-C data without requiring additional complex structures and 

enhances the separability between SV signals and background noise through multi-branch cooperation, 

making it highly suitable for the spatial heterogeneity of genomic interaction data.

In the final stage of the model architecture, multi-scale features that have been deeply integrated are 

input into a Transformer-based decision module. This module utilizes self-attention mechanisms to 

model long-range dependencies between features, enabling it to capture cross-regional interaction 

patterns in Hi-C matrices. Through feature transformations performed by a multi-layer encoder, the 

system ultimately outputs detection results that include predicted box spatial coordinates and reliability 

assessments. During application, we set a confidence threshold of 0.8 to filter out high-confidence 

candidate regions. These regions are marked as potential genomic structural variation sites and proceed 

to subsequent detailed analysis. This design ensures the reliability of detection results while providing 

high-quality candidate targets for downstream analysis. Experiments demonstrate that this threshold 

setting can effectively cover over 90% of true variation regions while maintaining high accuracy. 

Each 800×800 RGB image corresponds to a Hi-C submatrix obtained via sliding window scanning 

(Section 2.2). If an image is generated from a window with the starting genomic bin Sstart (calculated 

using Equations 5–9 in Section 2.2), the genomic bin corresponding to pixel (x, y) in the image is 

S_start+(x×W)/800 (for the x-axis) and  S_start+(y×W)/800 (for the y-axis), where W represents the 

window size (160 for intra-chromosomal regions and 200 for inter-chromosomal regions).

To optimize bounding-box regression and confidence estimation in the improved RT-DETR network, a 

combined loss function was employed for the candidate SV region detection stage.First, the regression 

branch adopts the GIoU loss, which alleviates the misalignment between predicted boxes B and ground-

truth boxes Bgt. The GIoU loss is defined as follows:

LGIoU = 1 - (IoU -
|C - (B ∪ Bgt)|

|C| )(10)

Here,C denotes the smallest enclosing box of B and Bgt . For the confidence classification branch, Focal 

Loss was used to address class imbalance. Its formulation is:

                                     LFocal = - αt(1 - pt)γlog(pt)                                      

(11)
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Where 𝛼 =0.25，γ= 2，and pt represents the predicted confidence for the target class. The total 

detection loss is expressed as:

LDetection = 0.5 × LGIoU + 0.5 × LFocal(12)

This balanced combination ensures stable regression performance and enhanced robustness against 

hard negative samples.

2.4 Filtering candidate SV regions

By analyzing changes in the topological structure of contact matrices near breakpoints, the system 

distinguishes between different types of genomic rearrangement events. As shown in Figure 3, for 

structural variations occurring within a single chromosome, we observed that deletion events form 

characteristic interaction signal interruption patterns (category a). At the same time, repetitions with 

different orientations exhibit specific interaction enhancement features (categories b–d correspond to 

forward, reverse, and tandem repetitions, respectively). Balanced translocations (Category e) and 

inversion events (Category f) exhibit unique spatial configuration changes in the Hi-C matrix, while small-

scale structural variations (Categories g–h) show subtle alterations in local patterns. When variations 

involve two different chromosomes, unbalanced translocations can be classified into four typical 

patterns (Categories a–d) based on spatial configuration differences, while balanced translocations are 

further divided into two types (Categories e–f) based on distinct characteristics. This classification 

scheme comprehensively considers multidimensional information, such as the length characteristics and 

spatial orientation of the variation fragments.

As shown in Figure 2 c), after initially screening out regions that may contain structural variations, we 

cropped the corresponding submatrices from the original Hi-C contact matrix. We performed principal 

component analysis (PCA) on their row vectors and column vectors [24]. By analyzing the sign change 

positions of the first principal component, we identified the points with the most significant mutation 

signals as SV breakpoints. We expanded each candidate SV region by 10 bins in each of the four 

directions around the breakpoint, encoding each region as a 20×20 contact frequency matrix. These 

matrices contain classifiable feature information near the breakpoint. Each row is treated as a token, 

which is mapped to a high-dimensional representation via a linear embedding layer and then input into 

the Transformer encoder. the decision head is implemented as a standalone TransformerSVClassifier, 

tailored for the 9-class SV prediction task (eight SV subtypes plus background). It first linearly embeds 

each 20×20 local feature vector into a 64-dimensional space, followed by a two-layer Transformer 

encoder (four attention heads, feed-forward dimension of 128) that integrates both local and global 

contextual information. A sequence-averaged aggregation layer is then applied, and a linear 

classification head generates log-softmax-normalized class logits.

For the Transformer-based SV classification stage, weighted cross-entropy loss was used to mitigate 

the imbalance across the eight SV subtypes.The class weights were computed according to:

wc = Ntotal
Nc × C(13)
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Where Ntotal  is the total number of training samples,Nc denotes the sample count of class c, and 𝐶=9 is 

the total number of SV categories. The weighted cross-entropy loss is defined as:

LClassification = -
9
∑

c=1
  wc ⋅ yc ⋅ log(pc)(14)

In this equation,yc  is the one-hot encoded label of class c, and pc is the softmax probability for that 

class. This design encourages the model to place greater emphasis on rare SV types while maintaining 

strong performance on common categories.

Fig 3. Schematic diagram of breakpoints in different types of structural variations. Figure a) 

represents deletion events, Figures b–d) represent duplication events in different 

orientations, e) is a balanced translocation, f) represents inversion events, and g) and h) are 

small-scale structural variations.

2.5  Statistics and Reproducibility

Our dataset was constructed using seven representative cancer cell lines: K562, T47D, SK-N-MC, Caki2, 

LNCaP, NCI-H460, and HelaS3. Based on the high-confidence structural variation (SV) list provided in 

Reference[25], we rigorously screened the data to identify SV sites with typical characteristics. To ensure 

the deep learning model receives sufficient training data, we designed a data augmentation scheme. 

First, centred on each SV breakpoint, we expanded 100 bins in each of the four directions (up, down, 

left, and right), extracting a 200×200 submatrix as the base sample. Subsequently, we further expanded 

the samples by translating the breakpoint positions to different locations within the submatrix. This 

200×200 submatrix is specifically prepared for constructing the training set with over 27,000 annotated 

images, which differs from the 200×200 window used in the sliding window scanning step for converting 

preprocessed Hi-C contact matrices into image representations (Section 2.2).

Additionally, we rotated each image by 90°, 180°, and 270° to enhance the model's robustness to 

directional changes. Using this strategy, each original variation site generated approximately 100 

derived samples, ultimately constructing a high-quality training set containing over 27,000 annotated 

images. To optimize model performance, pre-trained ResNet50 network parameters were introduced 

into the network backbone, and fine-tuning training was conducted over 30 epochs to achieve rapid 

a

)

）

b) c

)

d

)

e) f) g

)

h

)
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convergence. In the design of the feature filtering module, a 20×20 local contact matrix near the 

breakpoint was selected as the positive sample, At the same time, the misjudgment areas in the model 

prediction process were collected as negative samples. By performing mirror flipping and other 

operations on the positive samples, data diversity was further enhanced, effectively improving the 

model's ability to recognize complex variant features.

To optimize the training process and ensure model convergence and generalization, the following key 

training parameters were adopted: the optimizer used was AdamW with a learning rate of 1×10⁻⁴, 

weight decay of 5×10⁻⁵, and momentum parameters betas=(0.9, 0.999); the total number of training 

epochs was set to 100, including a 3-epoch warm-up phase where the learning rate linearly increased 

from 1×10⁻⁶ to 1×10⁻⁴, followed by a linear decay of the learning rate to 1×10⁻⁵ in epochs 4–30; and 

the batch size was configured as 4 to balance training efficiency and GPU memory constraints.

Results

We selected four existing methods (HiC_breakfinder, HiNT-TL, HiSVision, HiSV) and compared their 

performance across six cancer cell lines (K562, T47D, Caki2, NCI-H460, SK-N-MC, LNCaP). The gold 

standard dataset in this study was obtained by screening a set of high-confidence SV sites, which were 

derived from [26] and validated by at least two platforms (whole-genome sequencing, optical mapping, 

and Hi-C sequencing). Translocations with a variation length greater than 1 Mb (including both intra-

chromosomal and inter-chromosomal variations) were retained from the high-confidence structural 

variation sites as our gold standard set. The evaluation framework for performance comparison is as 

follows: recall, precision, and F1-score are used as evaluation metrics for each method. After detecting 

the final structural variation, if the coordinates of the variation breakpoint differ by less than 2 bins from 

the corresponding accurate variation breakpoint coordinates, it is deemed a correct prediction.

To systematically evaluate the performance and generalization ability of the proposed method in the 

task of structural variation detection, we designed two sets of cross-experimental scenarios to analyze 

the model's transferability across different cell line combinations, based on seven cancer cell lines 

(HelaS3, K562, T47D, SK-N-MC, Caki2, LNCaP, NCI-H460). In each experiment, three cell lines were used, 

with HelaS3 serving as a supplementary dataset for training, while the model's performance was 

evaluated across the remaining three cell lines. When evaluating the performance of different methods 

in structural variation detection tasks, some methods have limitations in parameter settings and 

applicable scenarios. The HiSV method typically requires manual parameter adjustment across different 

cell lines to adapt to sample characteristics, such as significance thresholds and regularization 

coefficients. Therefore, when assessing HiSV's performance, this study ran HiSV with different 

parameters for different cell line datasets and retained the best performance as the final result. Second, 

the HiNT-TL method is inherently only applicable to detecting interchromosomal translocations (inter 

SV). It identifies translocation events based on the non-uniformity of interaction frequencies between 
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chromosome pairs. Therefore, HiNT-TL was excluded when evaluating the performance of 

intrachromosomal variation detection.

3.1 Benchmarking in Caki2, LNCaP, and NCI-H460 cell lines

In the first set of experiments, we selected K562 (leukemia), T47D (breast cancer), and SK-N-MC 

(neuroblastoma) as training samples. Then we tested the model on three cell lines—Caki2, LNCaP, and 

NCI-H460—derived from the urinary and pulmonary systems, respectively, to evaluate the model's 

generalization ability across cancer types and different tissue backgrounds. The results showed that our 

proposed method demonstrated good stability and high F1 scores in detecting both interchromosomal 

and intrachromosomal structural variations. Especially in complex samples like NCI-H460, the accuracy 

of identifying balanced translocations and inversions was significantly higher than that of other methods. 

This is mainly because the model has the ability to perform dual reconstruction modeling of variation 

image patterns and local principal component trends.

Among the methods used for comparison, HiC_breakfinder relies on global statistical modeling and 

maintains a high recall rate, but it often produces a large number of false positives and has low accuracy, 

especially in the Caki2 sample, where the accuracy drops significantly; HiNT-TL is suitable for detecting 

large-scale interchromosomal SVs, but its performance is not satisfactory when dealing with 

intrachromosomal SVs and complex inversions; HiSV achieves moderate performance under 

unsupervised conditions, with strong recall capability but unclear classification, leading to false positives; 

HiSVision, leveraging its DETR+LSTM architecture, performs exceptionally well in interchromosomal SV 

detection, particularly demonstrating high precision in detecting specific balanced translocations, 

though it remains limited in intrachromosomal SV detection and boundary determination. As shown in 

Table 1, VarHiCNet achieves competitive performance in inter-chromosomal SV detection across Caki2, 

LNCaP, and NCI-H460 cell lines. Specifically, it matches HiSVision’s F1-score (0.4570) in Caki2 and 

(0.7272) in NCI-H460, while outperforming HiSV, HiNT-TL, and HiC_breakfinder in LNCaP with an F1-score 

of 0.6666 by balancing recall and precision effectively. For intra-chromosomal SV detection (Table 2), 

VarHiCNet demonstrates superior overall performance: it achieves the highest F1-score (0.7500) in 

Caki2 by maintaining both high recall (0.8181) and precision (0.6923), and shows stable performance in 

LNCaP (F1=0.6897) and NCI-H460 (F1=0.6666), outperforming comparative methods in balancing 

detection accuracy and reliability.Overall, our method achieves superior F1 scores compared to 

HiSVision and HiC_breakfinder in both intra-chromosomal and inter-chromosomal scenarios, 

demonstrating its excellent structural adaptability and category discrimination capabilities.

Table 1 Performance comparison of SV callers (inter-chromosomal SVs) on Caki2,LNCaP 

and NCI-H460

Caki2 LNCaP NCI-H460

Recall Precisio

n

F1-

Score

Recall Precisio

n

F1-

Score

Recall Precisio

n

F1- 

Score
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HISV
0.363

6

0.4000 0.380

9

0.444

4

0.2500 0.319

9

0.571

4

0.8000 0.6666

HINT-

TL

0.454

5

0.2941 0.357

1

0.333

3

0.2000 0.249

9

0.285

7

0.1052 0.1537

HiSVisi

on

0.363

6

0.6153 0.457

0

0.666

6

0.8571 0.749

9

0.571

4

1 0.7272

Hic_brea
k

finder

0.636

3

0.3414 0.444

3

0.888

8

0.6153 0.727

1

1 0.5384 0.6999

VarHiCN

et

0.363

6

0.6153 0.457

0

0.555

5

0.8333 0.666

6

0.571

4

1 0.7272

Table 2 Performance comparison of SV callers (intra-chromosomal SVs) on Caki2,LNCaP and 

NCI-H460

Caki2 LNCaP NCI-H460

Recall Precisio

n

F1-

Score

Recall Precisio

n

F1-

Score

Recall Precisio

n

F1- 

Score

HISV
0.454

5

0.2777 0.344

7

0.571

4

0.8000 0.666

6

0.333

3

0.5000 0.3999

HINT-

TL

/ / / / / / / / /

HiSVisi

on

0.545

4

0.6000 0.571

4

0.571

4

0.8000 0.666

7

0.333

3

0.5000 0.3999

Hic_brea
k

finder

0.818

1

0.3913 0.529

3

1 0.4375 0.608

6

1 0.7500 0.8571

VarHiCN

et

0.818

1

0.6923 0.750

0

0.714

2

0.6667 0.689

7

0.666

6

0.6666 0.6666
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Fig.4 Recall-precision comparison scatter plot of structural variation detection tools in Caki2, 

LNCaP, and NCI-H460 cell lines. Figure a) shows the results between chromosomes, while 

Figure b) shows the results within chromosomes.

3.2 Benchmarking in K562, T47D, and SK-N-MC cell lines

In the second set of experiments, we reversed the training and testing sets, selecting Caki2, LNCaP, and 

NCI-H460 as the training set and evaluating the model's cross-organization generalization ability in K562, 

T47D, and SK-N-MC. This set of experiments further validated the robustness of our method: in T47D 

and SK-N-MC samples, our method demonstrated high recall and precision in the detection of intra-

chromosomal SVs, with F1 scores significantly leading the pack. Particularly in the SK-N-MC sample, our 

model demonstrates outstanding recognition capabilities for complex inversions and long-segment 

balanced translocations, which is closely related to the detection model's advantage in capturing 

symmetrical morphological patterns.

When comparing multiple methods, HiSVision maintains a leading position in inter-chromosomal SV 

detection, with high precision in multiple samples; however, its recall rate for small-scale 

intrachromosomal SVs is relatively low, resulting in detection omissions. HiC_breakfinder consistently 

achieves a high overall recall rate, but its precision drops sharply in K562 samples with high background 

noise. HiNT-TL demonstrates limited overall performance except for specific significant inter-

chromosomal SV detections; HiSV tends to misjudge in images with blurred boundaries or non-typical 

variations, resulting in consistently low accuracy rates. In this task set, our proposed method achieves 

overall leading F1 scores across three test samples, particularly excelling in maintaining both high recall 

rates and low false positive rates compared to other methods.

Table 3 Performance comparison of SV callers (inter-chromosomal SVs) on K562,T47D and 

SK-N-MC

K562 T47D SK-N-MC

Recall Precisio

n

F1-

Score

Recall Precisio

n

F1-

Score

Recall Precisio

n

F1- 

Score

HISV
0.181

8

0.3333 0.235

2

0.413

7

0.9230 0.571

3

0.888

8

0.421 0.5713

HINT-

TL

0.272

7

0.2195 0.243

2

0.275

8

0.1702 0.210

4

0.222

2

0.6666 0.3333

HiSVisi

on

0.333

3

0.6111 0.431

4

0.586

2

0.8947 0.708

3

1 1 1

Hic_brea
k

finder

0.424

0

0.3589 0.388

0

0.620

0

0.5800 0.599

0

1 0.9 0.9473

VarHiCN

et

0.393

9

0.6500 0.488

9

0.551

7

0.7619 0.642

9

1 1 1

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



Table 4 Performance comparison of SV callers (intra-chromosomal SVs) on K562,T47D and 

SK-N-MC

K562 T47D SK-N-MC

Recall Precisio

n

F1-

Score

Recall Precisio

n

F1-

Score

Recall Precisio

n

F1- 

Score

HISV
0.500

0

0.3750 0.428

5

0.434

7

0.7142 0.540

4

0.888

8

0.421 0.5713

HINT-

TL

/ / / / / / / / /

HiSVisi

on

0.250

0

0.4000 0.307

6

0.363

6

0.6428 0.486

4

0.625

0

0.8333 0.7142

Hic_brea
k

finder

0.458

3

0.4780 0.467

9

0.545

4

0.7058 0.649

9

0.625 0.8333 0.7142

VarHiCN

et

0.458

3

0.5882 0.515

2

0.500

0

0.8462 0.628

4

0.625

0

0.8333 0.7142

Fig.5 Recall-precision comparison scatter plot of structural variation detection tools in K562, 

T47D, and SK-N-MC cell lines. Figure a) shows the results between chromosomes, while 

Figure b) shows the results within chromosomes.

In PacBio sequencing, GCphase was compared with WhatsHap, HapCUT2, and LongPhase by using the 

whole-genome sequencing data of the human HG002 sample provided by GIAB (PacBio CCS 15 kb_20 

kb chemistry2) at coverage depths of 20x, 30x, and 50x. Similar to the Nanopore experiments, the 

evaluation was conducted by using the "compare" method of WhatsHap. The VCF files containing 

phasing information obtained from GCphase and the other three methods were compared against the 

standard set of the human HG002 sample provided by GIAB. This comparison resulted in the final 

evaluation results (Tables 3/4). In terms of the number of phased SNPs, there was still no significant 

difference among the four methods. In the number of blocks, there is little difference among the four 

methods, but GCphase has the smallest number of blocks among the three depths (50x, 30x, 20x). In 

terms of the Hamming distance, no significant difference is observed among the four methods. However, 
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GCphase consistently outperforms the other methods in two coverage depths (30x, 20x) and ranks in 

the second position in the 50x coverage depth. In terms of accuracy, due to the higher accuracy of 

PacBio sequencing data compared to that of the Nanopore sequencing data, the switch error 

performance of each program is better in PacBio sequencing data than that in Nanopore sequencing 

data. However, similar to the Nanopore sequencing data, GCphase still outperforms the other methods 

in all three coverage depths, with switch error rates of approximately 0.15%.

Since EagleC’s training set includes the 6 cell lines in our test set, direct comparison on these real 

datasets would risk data leakage, so it was not included in the original real-dataset baseline comparison.

3.3 Supplementary Experiments

We conducted an extended set of supplementary experiments, with detailed results reported in 

Supplementary Tables S1–S17. These experiments systematically examine the effects of image 

resolution and Hi-C bin size on both inter- and intra-chromosomal SV detection, validate the selection of 

sliding-window configurations, and analyze the sensitivity of model performance to different confidence 

thresholds. In addition, extensive ablation studies are performed across multiple cell lines to quantify 

the individual contributions of the Feature Fusion and GSPP modules. We further evaluate the 

generalization capability of VarHiCNet through leave-one-out experiments on six cancer cell lines and 

benchmark its performance against existing methods on simulated datasets. Collectively, these 

supplementary analyses provide strong empirical support for the design choices adopted in this study 

and demonstrate the robustness and generalizability of VarHiCNet across diverse experimental settings.

Discussion

The VarHiCNet method proposed in this study transforms the detection of structural variations in Hi-C 

data into an object detection problem in images. By integrating an improved RT-DETR network, a feature 

fusion mechanism, and a Transformer encoder, it achieves precise identification of multiple types of 

structural variations. Experimental results demonstrate that VarHiCNet exhibits high stability and 

accuracy across six cancer cell lines, particularly outperforming existing methods in identifying balanced 

translocations and inversions within complex samples such as NCI-H460 and SK-N-MC.

However, we also observed several limitations of VarHiCNet. A statistical analysis of misdetection 

cases across the six cell lines indicates that the model errors are mainly concentrated in two types of 

structural variations. The first is small-scale inversions (500 kb–1 Mb), which exhibit weak signal patterns 

in Hi-C contact matrices and are therefore easily confounded with local interaction fluctuations arising 

from normal chromatin folding; this issue is particularly pronounced in the NCI-H460 and SK-N-MC cell 

lines, whose genomes contain abundant short-segment repetitive regions. The second involves complex 

backward tandem duplications (e.g., nested duplications), whose overlapping interaction patterns are 

difficult to effectively capture using the current approach.
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These findings indicate that deep learning models are capable of capturing complex spatial 

conformation features within Hi-C matrices, thereby effectively compensating for the limitations of 

traditional sequencing and statistical methods in detecting multi-breakpoint rearrangements and 

complex structural variations. Comparative experiments with other methods further underscore the 

advantages of this approach.While HiC_breakfinder demonstrates good recall, its high false positive rate 

compromises reliability; HiNT-TL is applicable to large-scale interchromosomal translocation detection 

but struggles with intrachromosomal variations and complex events; HiSV and HiSVision, though 

incorporating deep learning frameworks to enhance cross-sample applicability, remain limited in 

boundary precision and small-scale variation detection. In contrast, VarHiCNet significantly strengthens 

feature representation through multi-scale feature fusion and a spatially adaptive fusion mechanism. 

Leveraging the long-range dependency modeling capabilities of Transformers, it simultaneously 

captures both global signals and local mutation features, thereby demonstrating superior generalization 

across diverse variation types.

Nevertheless, several limitations remain. First, VarHiCNet training relies heavily on large volumes of 

high-quality annotated data. Although data augmentation partially alleviates sample scarcity, its 

performance still requires further validation on larger single-cell Hi-C datasets or cross-species datasets. 

Second, the current classification module primarily depends on 20×20 matrix features from local 

breakpoint regions. Future work could explore incorporating broader contextual information, which may 

further improve the recognition of complex variation patterns.

Conclusion

VarHiCNet innovatively transforms structural variation detection in Hi-C data into an image object 

detection problem, establishing an end-to-end detection and classification framework. Through an 

improved RT-DETR network, a multi-scale feature fusion mechanism, and a Transformer encoder, 

VarHiCNet achieves high-precision and stable structural variation identification across multiple cancer 

cell lines. Experimental results demonstrate that the method excels in detecting balanced translocations, 

inversions, and complex structural variations, and overall outperforms existing mainstream tools. This 

study provides a novel technical pathway for structural variation detection using Hi-C data and offers 

important insights into the role of three-dimensional genomic architecture in tumorigenesis and 

progression.
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