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Abstract 

This study investigates the warm straight-groove incremental sheet 
forming (ISF) behavior of AZ31 magnesium alloy using an integrated 
experimental, statistical, and machine learning approach. To test the effect 
of forming temperature, step-down, spindle speed and feed rate, a Taguchi 
L27 design was used to study the effect of above variables on forming time 
and forming force. TOPSIS multi-response optimization was used to find 
the most balanced parameter combination to result in low force and high 
process efficiency. The statistical result showed that temperature and 
step-down were the most prevailing factors that controlled the 
deformation behaviour at warm forming conditions. A Random Forest 
regression model was constructed in order to increase the predictive 
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ability, and it was able to successfully recreate the trends in the forming 
time, forming force, and performance index. The fractographic analysis of 
the fractured wall of the groove proved the presence of a ductile failure 
mechanism in which voids and localisation of shear dominate. The 
combined DOE-TOPSIS-ML-SEM analysis offers a very powerful procedure 
of comprehending and optimizing the warm incremental sheet forming of 
lightweight AZ31 magnesium alloy.

Keywords: Incremental sheet forming; AZ31 magnesium alloy; Warm 
forming; TOPSIS; Taguchi method; Multi-response optimization; Random 
Forest; forming force; Machine learning.

1. Introduction

Incremental sheet forming (ISF) has proven to be a flexible and dieless 
forming technology, whereby it is possible to manufacture customised, 
low-volume sheet parts by localised plastic deformation under the 
influence of a stylus-like tool designed and controlled by a CNC machine 
[1,2]. ISF has proven to be more appealing in aerospace, biomedical, and 
automotive sectors in comparison to traditional stamping, offering greater 
geometric flexibility, lower tooling costs, and shorter development cycles. 
However, conventional cold ISF exhibits inherent limitations that hinder 
its widespread industrial adoption, particularly for lightweight materials. 
The process is characterized by low productivity due to the incremental 
nature of deformation and suffers from significant geometric inaccuracies 
caused by elastic springback. Furthermore, materials with hexagonal 
close-packed (HCP) crystal structures, such as the AZ31 magnesium alloy, 
possess limited slip systems at room temperature. Consequently, 
subjecting AZ31 to conventional cold ISF results in early fracture and poor 
surface quality, necessitating the use of heat-assisted (warm) strategies to 
enhance formability.

In recent reviews, ISF has been identified as a key enabling technology in 
agile manufacturing, with significant advances made in understanding 
deformation mechanics, formability limits, and process variants that 
integrate robotic systems and local heating [3-7,40]. Magnesium alloys, 
particularly AZ31, are becoming of interest due to their high specific 
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strength and lightweight characteristics; however, the room temperature 
formability of the HCP crystal structure is inherently low. Warm ISF has 
hence been widely explored to activate additional slip systems and 
enhance ductility. A number of studies on warm ISF and straight-groove 
incremental forming of AZ31 have shown that forming temperature, step-
down, and tool kinematics have a strong effect on formability and force 
requirements, with optimum temperatures in the range of 200 °C to 300 
°C [8-10]. According to Zhang et al., warm continuous-groove forming 
shows particularly strong improvements in formability and introduces 
severe changes in the microstructure of AZ31B sheets [11], while robot-
assisted hot forming has demonstrated better fracture depth and strain 
distribution [12]. Despite these developments, systematic design-of-
experiments (DOE) based studies of straight-groove warm ISF with multi-
response optimisation remain rare. Tribology and surface integrity are also 
critical to ISF performance [42]; Trzepiecinski et al. underlined that 
lubrication and contact conditions significantly influence the surface finish 
in ISF of Magnesium and Aluminium alloys [13]. Similarly, Deokar et al. 
showed that process parameters affect local stress state, thickness 
gradient, and geometry of non-axisymmetric components [14]. Detailed 
surveys continue to identify warm ISF of lightweight alloys as a research 
priority, particularly the need to better understand process response 
interactions and optimization schemes [3–7,40].

Taguchi DOE, response surface modeling (RSM), and multi-criteria 
decision-making (MCDM) approaches are extensively used to optimize ISF 
processes. Magdum and Chinnaiyan applied a hybrid grey–fuzzy Taguchi 
approach to warm ISF of AZ31 to optimize formability and surface quality 
[15]. The Technique for Order Preference by Similarity to Ideal Solution 
(TOPSIS), an effective MCDM technique, has been widely used in 
machining and forming processes to convert multiple responses into a 
single closeness coefficient (CC) for ranking parameter combinations [16-
20]. Recent studies have applied hybrid Taguchi–TOPSIS schemes to 
ultrasonic-assisted ISF, demonstrating its value in multi-objective 
optimization [21]. While statistical approaches like Taguchi-based Grey 
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Relational Analysis have effectively optimized parameters such as tool 
diameter and rotational speed [22, 23], recent trends favor advanced 
hybrid modeling. Frameworks combining RSM with algorithms like Back-
Propagation Neural Networks (BPNN) and Genetic Algorithms (GA) offer 
robust solutions for predicting critical outcomes like wall angle and 
surface roughness [24,37]. Furthermore, integrating physical insights 
such as the impact of ultrasonic vibration on plasticity [25] and the role of 
thermal history in grain refinement [26, 38, 41,43] into these data-driven 
models has become essential for mastering the process-structure-property 
relationships in AZ31 forming. However, TOPSIS has not yet been 
extensively applied to straight-groove warm ISF of AZ31 to optimize 
forming time and forming force simultaneously.

To address these process complexities, recent research has increasingly 
turned to Machine Learning (ML) techniques to capture non-linear process 
behaviors that analytical models often miss. For instance, Ostasevicius et 
al. [27] utilized ML methods for real-time process monitoring to detect 
defects, while Sevšek et al. [39] applied soft computing to correlate 
process parameters with forming outcomes. Harfoush et al. [28] explored 
artificial intelligence frameworks to optimize toolpath strategies. More 
recently, Möllensiep et al. [29] developed Artificial Neural Network (ANN) 
models to predict geometric accuracy, and Wang et al. [30] implemented 
learning-based model predictive control to enhance trajectory tracking. 
Recent literature has focused on integrating intelligence into the ISF 
workflow; Kurra et al. [31] employed machine learning to predict surface 
roughness, while Mittal et al. [32] utilized data-driven models to estimate 
formability limits in anisotropic sheets. In the context of warm forming, 
Liu et al. [33] demonstrated the efficacy of adaptive control algorithms for 
temperature regulation, while Li et al. [34] applied ML to optimize cooling 
strategies for induction-assisted processes. Furthermore, studies by Li et 
al. [35] and Do et al. [36] have successfully applied predictive modelling to 
fracture mechanics. While ML-based monitoring has shown promise [27], 
the prediction of combined responses forming time, forming force, and the 
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TOPSIS-based closeness coefficient (CC) for warm ISF of AZ31 has not yet 
been comprehensively investigated. 

Previous work by the present authors focused on warm ISF of AZ31 under 
varying wall angles and hybrid GRA–fuzzy optimization [15]. However, 
straight-groove forming behavior, multi-response TOPSIS optimization, 
and ML predictive modeling remain unexplored. Therefore, the objectives 
of this study are to: (1) investigate straight-groove warm ISF of 1-mm AZ31 
sheets using an L27 Taguchi design with four key parameters 
(temperature, step-down, spindle speed, feed rate); (2) perform multi-
response optimization using TOPSIS to determine the optimal forming 
conditions and validate them experimentally; and (3) develop a Random 
Forest Regressor model to predict forming time, forming force, and CC, 
followed by feature importance analysis. This integrated DOE–TOPSIS–ML 
methodology contributes to developing an efficient, predictive framework 
for warm ISF of AZ31 magnesium alloy.

2. Materials and Methods

2.1 Experimental Preparation

Experimental studies utilized commercially rolled AZ31 magnesium alloy 
sheets of same thickness 1mm. AZ31 was used because it has low density, 
high specific strength and better ductile properties when forming in warm 
conditions. Chemical composition was in accordance with the ASTM B90 
specifications, which includes some 3% wt of Al, 1 %wt of Zn, and some 
traces of Mn to enhance corrosion resistance. The rectangular blanks of 
145 mm x 145 mm were made ready to be straight groove formed. Before 
forming, the sheet faces were first wiped down using acetone to remove 
any contamination as well as ensuring uniform frictional behaviour. Every 
blank was studied in the rolling direction to reduce the effects of 
anisotropy. 

A 10 mm diameter hemispherical component made out of hardened steel 
and polished to reduce friction was placed on a 3 axis CNC vertical 
machining centre that could afford tool movement accuracy at every ISF 
process. Warm forming conditions were generated using a custom-
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designed localized electric heating chamber positioned beneath the sheet. 
Warm ISF is essential for AZ31 magnesium alloy, as its hexagonal close-
packed (HCP) crystal structure exhibits limited formability at room 
temperature. Heating the sheet to 200–250 °C activates additional non-
basal slip systems (prismatic and pyramidal), reduces flow stress, and 
delays fracture onset during incremental deformation.

To ensure accurate force measurements, the experimental setup was 
designed to thermally isolate the Kistler piezoelectric dynamometer from 
the heating chamber. A thermal insulating layer was placed between the 
chamber and the dynamometer, effectively preventing heat transfer and 
allowing the dynamometer to operate within its temperature specification. 
No thermal drift or signal deviation was observed during warm forming, 
confirming that force measurements remained unaffected by the heating 
system. Although this precision introduces a minor measurement 
tolerance, the selected experimental levels are separated by a 25 °C 
interval. This spacing ensures that the thermal regimes remain statistically 
distinct and non-overlapping, minimizing the impact of measurement error 
on the comparative analysis of material softening behaviour. The 
experimental set-up is illustrated in Figure 1.
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Figure 1. Experimental setup for straight-groove warm ISF. 

Figure 2. Straight groove test schematic

Straight-groove incremental forming was chosen as the test geometry 
because it provides controlled deformation and facilitates evaluation of 
forming force, strain localization, groove depth, and forming time. The 
programmed groove length was 45 mm, while the groove depth increased 
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until fracture occurred as shown in Figure 2. Two process responses were 
measured for each experiment forming time (s) is obtained directly from 
the CNC controller based on toolpath execution until fracture and Forming 
Force (N) is measured using a table-mounted piezoelectric dynamometer. 
These responses are critical for assessing both process productivity and 
tool–sheet interaction forces.

2.2 Design of Experiments (Taguchi L27 Orthogonal Array)

A Taguchi L27 (3⁴) orthogonal array was employed to investigate the 
influence of four forming parameters at three levels each. The selected 
control factors were forming temperature, step-down, spindle speed, and 
feed rate, as summarized in Table 1.

Table 1. Control factors and levels.

Factor Description Levels

A Forming Temperature 
(°C)

200, 225, 250

B Step-Down (mm) 0.2, 0.4, 0.6

C Spindle Speed (rpm) 250, 500, 750

D Feed Rate (mm/min) 500, 750, 1000

A total of 27 experiments were carried out in a randomized order to 
minimize systematic bias. The complete design matrix is presented in 
Table 2, where each trial corresponds to a unique parameter combination. 
Both forming force and forming time were recorded for subsequent multi-
response optimization.

Table 2. L27 experimental design matrix.

Experiment 
number Temperature Step 

Down
Spindle 
speed

Feed 
rate

1 200 0.2 250 500
2 200 0.2 500 750
3 200 0.2 750 1000
4 200 0.4 250 750
5 200 0.4 500 1000
6 200 0.4 750 500
7 200 0.6 250 1000
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8 200 0.6 500 500
9 200 0.6 750 750

10 225 0.2 250 500
11 225 0.2 500 750
12 225 0.2 750 1000
13 225 0.4 250 750
14 225 0.4 500 1000
15 225 0.4 750 500
16 225 0.6 250 1000
17 225 0.6 500 500
18 225 0.6 750 750
19 250 0.2 250 500
20 250 0.2 500 750
21 250 0.2 750 1000
22 250 0.4 250 750
23 250 0.4 500 1000
24 250 0.4 750 500
25 250 0.6 250 1000
26 250 0.6 500 500
27 250 0.6 750 750

2.3 Multi-Response Optimization Using TOPSIS

The TOPSIS was used to simultaneously minimize forming time and 
forming force. TOPSIS ranks alternatives based on their relative closeness 
to an ideal best solution (minimum force and minimum time) and farthest 
distance from an ideal worst solution.

The following steps were used:

(1) Normalization

For each response:

rij =
xij

∑n
k=1    x2

kj

Where:
i = experiment number, j = response (forming time or forming force), k = 
all experiments (1 to 27)

(2) Weighted Normalized Matrix: The weighted normalized decision matrix 
is calculated by multiplying the normalized scores by their associated 
weights (wj). In this study, equal weightages (w1 = 0.5, w2 = 0.5) were 
assigned to forming time and forming force, respectively. This weighting 
assumption was selected to assign equal importance to process efficiency 
(time) and mechanical load (force). This assumption is based on the 
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premise that both responses contribute simultaneously to the warm ISF 
process performance: forming time reflects process productivity, whereas 
forming force reflects process mechanics and energy demand. By using 
equal weights, the optimization objective is to identify a balanced 
parameter set that minimizes cycle time without allowing excessive 
forming forces, thereby ensuring a trade-off that favors both productivity 
and tool/machine safety. 

vij = wjrij 

(3) Ideal Best and Ideal Worst

For lower-the-better responses:

A∗
j = min(vij),

A−
j = max(vij)

(4) Separation Measures

Distance from ideal best:

S+
i  =

m
∑

j=1
   (vij−A∗

j )2
Distance from ideal worst:

S−
i =

m
∑

j=1
   (vij−A−

j )2

(5) Closeness Coefficient (CC)

CCi = S−
i

S−
i + S+

i

2.4 Predictive Modelling Using Random Forest Regressor

In order to supplement the experimental analysis, as well as in order to 
allow predictive understanding of the behaviour of warm ISF, a Random 
Forest Regressor (RFR) model was created. Figure 3 shows the machine-
learning workflow.
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Figure 3. Machine Learning Workflow for ISF response prediction.

A supervised regression model using the Random Forest Regressor (RFR) 
was developed. RFR is an ensemble learning method that operates by 
constructing a multitude of decision trees during training. It employs 
'bagging' (bootstrap aggregation), where multiple subsets of the original 
data are created with replacement. For each subset, a decision tree is 
grown, and the final prediction is obtained by averaging the output of all 
individual trees. This ensemble approach reduces the risk of overfitting 
associated with single decision trees and improves prediction accuracy on 
non-linear datasets like ISF process windows. The L27 dataset was split 
into an 80:20 training–testing ratio. Hyperparameter tuning was 
performed using a grid-search approach combined with 5-fold cross-
validation to avoid overfitting and to ensure model generalization. The 
tuning search space included number of estimators are around 50–300, 
maximum tree depth: 5–12, minimum samples per split: 1–6, minimum 
samples per leaf: 1–4.  The optimal hyperparameters were identified as: 
200 estimators, a maximum depth of 10, min_samples_split of 2, and 
min_samples_leaf of 1.
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Cross-validation was performed on the training set, and final performance 
was evaluated on the test set using R2, mean absolute error (MAE), and 
root mean square error (RMSE). This ensured that model selection was 
based on generalization ability rather than training accuracy alone. The 
model forecasted forming time (s), forming force (N) and the proximity 
coefficient obtained using TOPSIS. The values of feature-importance 
obtained by the model provided a strong emphasis on the forming 
temperature and step-down as the most important predictors of all the 
responses, which is in agreement with the trends that were generated by 
ANOVA. 

3. Results and Discussion 

3.1 TOPSIS Multi-Response Optimization

The warm ISF process performance was evaluated using two major 
response variables which included forming time and forming force 
measured in all 27 experiments in the L27 orthogonal array. Forming time 
is used to indicate the productivity of the process and forming force is used 
to indicate the resistance to deformation, the tool-sheet interaction and 
the thermal softening behaviour of AZ31 at higher temperature. 

The Technique of Order Preference by Similarity to Ideal Solution 
(TOPSIS) was used to obtain one multi-response performance measure. 
The experiments were ordered in terms of their closeness to the ideal best 
(minimum time and minimum force) and how far they were to the ideal 
worst (maximum time and maximum force). Table 3 tabulates the 
normalised values, weighted normalised matrix, the separation distances, 
the final rankings and the closeness coefficients (CC).

Table 3. TOPSIS optimization results ranking the experimental trials.

Normalized value
Weighted 
normalized 

value
Separation 

measuresSr. 
No. Forming 

time
Formin

g 
Force

Formin
g time

Formin
g 

Force
S_plu

s
S_minu

s

CC Rank

1 0.2700 0.1616 0.1350 0.0808 0.038
4 0.0389 0.503

8 8
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2 0.2607 0.1731 0.1304 0.0865 0.037
2 0.0335 0.473

8 12
3 0.2468 0.1818 0.1234 0.0909 0.034

9 0.0311 0.471
5 13

4 0.2491 0.2077 0.1245 0.1039 0.046
0 0.0190 0.292

5 26
5 0.2468 0.2048 0.1234 0.1024 0.044

1 0.0209 0.320
9 25

6 0.2421 0.2193 0.1211 0.1096 0.049
4 0.0172 0.258

7 27
7 0.2142 0.2308 0.1071 0.1154 0.051

0 0.0283 0.356
8 23

8 0.2142 0.2395 0.1071 0.1197 0.055
3 0.0279 0.335

8 24
9 0.2095 0.2366 0.1048 0.1183 0.053

6 0.0303 0.361
2 22

10 0.2607 0.1500 0.1304 0.0750 0.031
9 0.0450 0.584

9 5
11 0.2421 0.1558 0.1211 0.0779 0.024

6
0.044

1
0.641

5 1
12 0.2491 0.1760 0.1245 0.0880 0.033

6 0.0334 0.498
5 9

13 0.2374 0.1818 0.1187 0.0909 0.032
0 0.0331 0.509

1 7
14 0.2351 0.1933 0.1176 0.0966 0.036

2 0.0289 0.444
1 20

15 0.2165 0.2048 0.1082 0.1024 0.038
4 0.0319 0.453

7 18
16 0.2212 0.2193 0.1106 0.1096 0.045

9 0.0264 0.365
4 21

17 0.2118 0.2077 0.1059 0.1039 0.039
4 0.0331 0.457

0 17
18 0.2002 0.2019 0.1001 0.1010 0.036

1 0.0396 0.523
6 6

19 0.2700 0.1298 0.1350 0.0649 0.034
9 0.0548 0.610

9 2
20 0.2607 0.1442 0.1304 0.0721 0.031

1 0.0478 0.605
9 3

21 0.2468 0.1587 0.1234 0.0793 0.027
4 0.0420 0.605

5 4
22 0.2491 0.1818 0.1245 0.0909 0.035

7 0.0307 0.462
6 16

23 0.2468 0.1789 0.1234 0.0894 0.033
8 0.0325 0.489

7 10
24 0.2421 0.1846 0.1211 0.0923 0.034

5 0.0308 0.471
4 14

25 0.2142 0.2019 0.1071 0.1010 0.036
7 0.0336 0.478

1 11
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26 0.2142 0.2048 0.1071 0.1024 0.038
1 0.0329 0.462

8 15
27 0.2095 0.2106 0.1048 0.1053 0.040

7 0.0335 0.451
9 19

The range of values of the CC, across the 27 trials, was 0.2587 to 0.6415, 
which showed a great amount of variance in multi-response performance. 
Experiment 11 (225 °C, 0.2 mm step-down, 500 rpm, 750 mm/min) 
achieved the highest CC value of 0.6415. This signifies that among the 27 
discrete trials, this parameter combination had the shortest Euclidean 
distance to the ideal best solution (minimum time and minimum force) and 
the farthest distance from the ideal worst. While 250 °C typically yields 
the lowest forming force due to maximum thermal softening, Experiment 
11 (at 225 °C) provided a superior aggregate score by balancing the trade-
off between force reduction and process time more effectively than the 
specific 250 °C combinations present in the L27 array. This was the best 
mix of low forming time, and low forming force between the experimental 
conditions. Though 250 °C is the temperature typically linked with 
increased ductility, the combination of step-down and spindle rate in the 
Trial 11 created a more productive inflow of material and a decreased 
force, which allowed it to overtake all other experiments involving L27.

3.2 Taguchi Response Table for CC

The values of mean Closeness Coefficient (CC) at every level of factors 
were calculated through the Taguchi L27 orthogonal array to determine 
the best values of the ISF parameters. Table 4 shows the Taguchi response 
table, the mean CC values of which are the combined performance of 
forming time and forming force following TOPSIS normalisation. As can be 
seen in the analysis, the most significant attributes are Step-down and 
Forming Temperature the highest Delta values (0.1438 and 0.1404, 
respectively). On the other hand, Spindle speed and feed rate have 
relatively smaller Delta values, which suggests that they have a relative 
insignificance on the overall process performance. 

Table 4. Response table
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Factor Level 
1

Level 
2

Level 
3

Delt
a

Ran
k

Temperature 
(°C)

0.375
0

0.497
5

0.51
54

0.14
04

2

Step-Down 
(mm)

0.55
52

0.411
4

0.421
4

0.14
38

1

Spindle Speed 
(rpm)

0.462
7

0.47
02

0.455
1

0.01
51

4

Feed Rate 
(mm/min)

0.459
9

0.48
02

0.447
8

0.03
24

3

Predicted CC = 0.6330
This analysis demonstrates the value of the hybrid Taguchi–TOPSIS 
framework: while Experiment 11 was the best observed trial in the initial 
L27 ranking, the Taguchi response analysis allows us to predict a superior 
global optimum that lies outside the discrete experimental matrix. 
According to the higher-the-better-parameter level criterion of CC, the 
best parameter levels are considered to be: 250 °C forming temperature 
(Level 3), 0.2 mm step-down (Level 1), 500 rpm of spindle (Level 2) and 
750 mm/min feed rate (Level 2). All these levels optimise the CC and give 
the most optimal balance between low forming force and low forming time. 
Although this specific combination was not present in the L27 orthogonal 
array, the Taguchi additive model allows for the prediction of its 
performance. The predicted Closeness Coefficient (CCpred) was calculated 
using the additive equation:

CCpred = T + ∑  (Aopt−T)
where T is the overall mean CC and Aopt represents the mean CC at the 

optimal level for each factor. This calculation yielded a predicted CC of 
0.6330, indicating a superior theoretical performance compared to the 
average experimental results.

3.3 Confirmation Experiment

To validate the optimal parameter combination obtained from the Taguchi–
TOPSIS approach, a confirmation experiment was performed at the 
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predicted optimal levels: 250 °C forming temperature, 0.2 mm step-down, 
500 rpm spindle speed, and 750 mm/min feed rate. Using the Taguchi 
additive prediction model, the expected forming responses at these 
settings were: Predicted forming time 55.44 s, Predicted forming force: 
0.493 kN and Predicted closeness coefficient (CC): 0.6330. The 
confirmation test was conducted under identical conditions, and the 
experimentally measured responses were forming time is 53 s, forming 
force: 0.483 kN and closeness coefficient (CC): 0.6435. The comparison 
between predicted and experimental results is presented in Table 5. The 
consistently negative deviations (−4.40% for time and −2.03% for force) 
indicate that the Taguchi additive model slightly overestimates the 
required process inputs. This is attributed to synergistic parameter 
interactions at optimal settings which facilitate material flow more 
effectively than the linear model predicts. Practically, this overestimation 
serves as a conservative safety margin, ensuring that actual process loads 
and cycle times remain below the predicted planning limits.

Table 5. Confirmation Experiment Results

Response Predicted 
Value

Experimental 
Value

Deviation 
(%)

Forming Time (s) 55.44 53 −4.40%

Forming Force 
(kN) 0.493 0.483 −2.03%

CC 0.6330 0.6435 +1.66%

The error ranges of predicted and experimental responses were less than 
and not exceeding 5 percent, verifying the usefulness of Taguchi-TOPSIS 
framework. Crucially, this confirmation value (0.6435) also exceeds the 
highest CC observed in the initial L27 array (Experiment 11, CC = 0.6415). 
This demonstrates the primary role of the confirmation experiment: it 
validates that the hybrid Taguchi–TOPSIS optimization framework 
successfully identified a 'global' parameter combination superior to any of 
the discrete experimental trials conducted in the initial design matrix. The 
synergy of these parameters is the reason why the optimised combination 
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of parameters performs better. The interpretation of the detailed effects 
of individual parameters on the forming time and force is carried out in 
the following sections.

3.4 Effect on Forming Time

The effect that each process parameter had on the forming time was 
studied through the main-effects plot in Figure 4. The forming time is 
based on the total amount of time spent in the profile of the straight-groove 
form, which is controlled by thermal softening, cumulative deformation 
mechanics and interaction between the tool and the sheet. The steep 
positive slope for Forming Temperature (Figure 4) indicates that thermal 
activation is the most effective driver for process improvement. As 
temperature rises to 250°C, the substantial reduction in flow stress (due 
to dislocation unpinning and slip system activation) improves the Force 
sub-score significantly, while the Time sub-score remains unaffected. This 
'pure gain' allows the CC to reach its peak.

Effect of Forming Temperature

The forming time in the range of 200 °C to 250 °C decreases monotonically 
with the rise in temperatures. It is possible to attribute this tendency to 
inherent deformation processes of AZ31 magnesium alloy. At relatively low 
temperatures the alloy is relatively strong in yield as only basal slip 
systems are open. With the increase in temperature, prismatic and 
pyramidal systems of slips are triggered, thus decreasing the flow stress 
and making plastic deformation easier. Greater grain boundary mobility 
and thermal softening reduce the resistance to tool move which 
consequently hastens tool-path movement. Groove formation therefore 
goes faster and shortening the total forming time.

Effect of Step-Down

Step down in a very important parameter influencing the forming time 
more. A decrease in step-down 0.6 mm to 0.2 mm significantly decreases 
the forming time. Smoother incremental progression, lower instantaneous 
load, and reduced elastic recovery are obtained with smaller step-downs. 
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Larger step-downs, in its turn, cause greater local deformation resistance 
and dwell time due to a more intense tool penetration per step, slowing 
down the process and increasing the cycle.

Effect of Spindle Speed

There is insignificant impact on the forming time by the spindle speed. 
Since warm ISF uses a significant amount of external heat as opposed to 
frictional heating, tool rotation contributes little to the thermal output. As 
a result, the change in rpm has no significant impact on the flow stress of 
the material or the capability of the tool to stay in its programmed path 
and the forming time varies almost identically between all levels. 

Effect of Feed Rate

Feed rate has a rather small decreasing effect on forming time because 
the larger the feed values, the faster is the speed of the tool. However, this 
effect is not significant as compared to temperature and step-down. The 
feed rate was not shown to cause instability, chattering, or loss of 
reliability to the process within the tested range (500-1000 mm/min), 
hence its impact is not as high as the effect of thermally driven softening 
or incremental deformation depth.
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Figure 4. Main effects plot showing the dominant influence of 
temperature on Forming Time

3.5 Effect on Forming Force

The tendencies in the development of force will be critical towards the 
understanding of the resistance to deformation, localisation of stresses, 
and flow of material when warm straight-groove ISF is underway. The 
main-effects plot that is shown in Figure 5 outlines the comparative impact 
of the four process parameters on forming force at the peak. The Step-
down parameter (Figure 5) reveals a critical trade-off threshold. Although 
increasing the step-down technically reduces the forming time (a positive 
input for TOPSIS), the plot shows a sharp decline in CC. This indicates that 
the 'penalty' incurred from the drastic rise in forming force outweighs the 
'reward' gained from shorter cycle times. The steepness of this trend 
confirms that under the current equal-weighting scheme, the process is 
mechanically limited; the degradation of tool-sheet interface conditions at 
higher step-downs negatively impacts the overall closeness to the ideal 
solution more than the speed gain benefits it.

Effect of Forming Temperature

The rise in temperature results in a strong decrease in forming force. This 
can be expected because of softening of the thermal effect, decrease in 
flow stress, activation of more slip systems with high temperatures, a 
decreased yield point, and increased ductility. There is also a lesser 
interfacial friction between the hardened surface layers that decrease the 
resistance to the advancing tool. Together, these decrease the resistance 
to the progression of the tools, which leads to a significant decrease in the 
required force.

Effect of Step-Down

Step-down exhibited the most significant direct correlation with forming 
force. Step-down of 0.2 mm was raised to 0.6 mm and the force demand 
was significantly augmented. Increasing step-down steps will require more 
material to be moved per pass, which produces larger localized stresses 
and increases strain gradient. This results in higher loading of the tools 
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and more extreme instantaneous deformation making the forming force to 
shoot up. Larger step-downs increase strain localisation may increase 
localisation of strain, thinning, and pre-mature fracture, highlighting its 
importance as an essential process parameter in warm ISF.

Figure 5. Main effects plot highlighting the steep increase in Forming 
Force with Step-down

Effect of Spindle Speed 

The speed of spindle does not influence forming force significantly. The 
fact that external heating is predominant makes the contribution of friction 
small and as a result changes in the rotational velocity of the tool have no 
significant impact on thermal or mechanical conditions of the deformation 
zone. Thus, the values of the forces are similar in all levels of spindle speed. 

Effect of Feed Rate 

Feed rate also produces an insignificant influence on forming force. 
Although feed determines tool motion kinematics, material flow stress and 
incremental depth are the main factors of deformation behaviour in warm 
ISF. Feed rate has no significant influence on stress distribution or on the 
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mode of material flow within the range of test conditions and results in 
practically identical values of forming forces.

3.6 Analysis of Parameter Interactions and Process Trade-offs

To gain a deeper understanding of the warm ISF mechanics, the influence 
of experimental parameters on geometric accuracy, productivity, and 
forming loads was analyzed collectively. This multi-objective perspective 
highlights the critical trade-offs inherent in the process.

First, the interaction effect on geometric accuracy was investigated. As 
illustrated in Figure 6, the non-parallel lines indicate a significant 
interaction between forming temperature and step-down size. At lower 
temperatures (200°C), increasing the step-down size results in a sharp 
decline in the Closeness Coefficient (CC), indicating poor geometric 
fidelity due to increased springback and flow stress. However, at elevated 
temperatures (250 °C), the slope flattens significantly. This confirms that 
the thermal softening effect at 250 °C effectively compensates for the 
mechanical severity of larger step-downs, allowing the process to maintain 
high geometric accuracy even at aggressive forming rates.
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Figure 6. Interaction plot for Closeness Coefficient (CC), showing that 
higher temperatures (250°C) mitigate the accuracy loss typically caused 

by large step-downs.

Figure 7 illustrates the distribution of Closeness Coefficient (CC) values 
across the investigated temperatures. A clear positive trend is observed: 
at 200°C, the process yields the lowest CC scores with high consistency, 
whereas 250°C provides the highest median CC value. This indicates that 
while higher temperatures (225∘C and 250°C) increase variability 
compared to the 200°C baseline, they are essential for achieving the 
optimal multi-response balance of forming time and force, with 250°C 
emerging as the superior thermal condition for the TOPSIS optimization.

Figure 7. Distribution of Closeness Coefficient (CC) values across different 
forming temperatures.

To further analyse the interplay between processing parameters, a 
heatmap of forming temperature versus step-down was generated (Figure 
8). The visualization confirms that forming time is highly sensitive to the 
combination of these two factors. The minimum forming time is achieved 
at 200°C with a 0.6 mm step-down, represented by the darker region of 
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the map. Conversely, the maximum processing duration is observed at the 
250°C and 0.2 mm step-down condition. This heatmap provides a clear 
operational map for the AZ31 magnesium alloy, suggesting that while 
higher temperatures are preferred for multi-response optimization (as 
shown in the CC analysis), they must be balanced with higher step-down 
values to maintain temporal efficiency.

Figure 8. Heatmap illustrating the interaction effect between forming 
temperature and step-down on the total forming time.

3.7 Fractography Analysis of the Fractured Groove Wall

In order to further explain the mechanism of failure during the process of 
warm ISF, a scanning electron microscopy (SEM) approach was used to 
scan the fractured surface of one of the specimens which were developed 
under the optimal parameter set (250 °C, 0.2 mm step-down, 500 rpm 
spindle speed, 750 mm/min feed rate). A review of the annotated SEM 
micrograph in Figure 9 identifies a ductile fracture mode as the dominant 
mode of fracture, which is said to manifest many deep dimples, tear ridges, 
and micro-void coalescence. 
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The big, equiaxed dimples are evidence of high levels of plastic 
deformation, which proves that the high temperature stimulated the action 
of more slip systems in AZ31, thus lowering the stress of flow and 
increasing ductility. There are a number of long tear ridges observed 
which are in line with the direction of the tool travel that signifies that 
shearing is localized at each step-down by incremental penetration. This 
localized shearing is most critical at the maximum fracture depth. As the 
tool progresses deeper, the wall thickness reduces continuously (cosine 
law), leading to severe strain accumulation at the groove wall. The SEM 
analysis confirms that the fracture at this limiting depth is not due to 
brittle cracking, but rather due to the exhaustion of ductility where the 
material can no longer sustain the thinning. This behaviour is consistent 
with the deformation of straight-groove ISF, where the strain is 
concentrated along the wall of the groove. 

Isolated hard particles and oxide inclusions also can be seen, and 
often serve as nucleation points of micro-void formation, which then 
increases and unites to large dimples, and the ductile fracture process is 
then complete. The fact that there is no cleavage facet or brittle plane is 
supporting that failure is not brittle mode, and it is again supporting the 
fact that temperature and step-down is the major variable that controls 
material softening and resistance to deformation. The SEM provides 
microstructural evidence that is consistent with the previous 
experimental, TOPSIS, ANOVA, and machine-learned conclusions, which 
indicates that warm ISF of AZ31 fractures largely by void growth, 
coalescence, and shear-based ductile fracture.
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Figure 9. SEM micrograph of the fractured surface of AZ31 Mg alloy 
formed at the optimal parameters

3.8 ANOVA for Closeness Coefficient

Analysis of Variance (ANOVA) was done to measure the statistical 
significance of each parameter to the measure of closeness coefficient 
(CC), which is a composite performance measurement based on TOPSIS. 
The summarised results presented in Table 6 shows that the major 
parameters that have an impact on multi-response performance are 
forming temperature and step-down.

Table 6. ANOVA for Closeness Coefficient, identifying significant factors 
affecting accuracy.

Factor Adj SS Adj MS F-
Value

P-
Value

% 
Contribution

Forming 
Temperature 0.088707 0.088707 22.17 0.000 34.36%

Step Down 0.080503 0.080503 20.12 0.000 31.18%

Spindle Speed 0.000256 0.000256 0.06 0.802 0.10%

Feed Rate 0.000654 0.000654 0.16 0.690 0.25%

Error 0.088045 0.004002 — —
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Total 0.258166 — — —

Forming temperature (F = 22.17, p < 0.001) and step-down (F = 20.12, 
p < 0.001) are strongly statistically significant, which proves their primary 
role in the control of deformation behaviour at warm ISF conditions. Their 
total sum is more than 65% which means that both forming time and 
forming force are controlled by thermal softening and incremental depth. 
Conversely, the results shows that spindle speed (p=0.802) and feed rate 
(p=0.690) produce an insignificant effect, which agrees with the previous 
main-effects analysis. 

The contribution of the error term is attributed to two primary factors. 
First, it includes the effects of higher-order parameter interactions that 
are not explicitly separated in the standard orthogonal array design. 
Second, it reflects the inherent variability in the processes that lead to 
localized deformation which is typical of warm ISF, such as thermal 
gradients, frictional variability, and machine compliance. Altogether, the 
findings of ANOVA confirm that the forming temperature and step-down 
are the two most important control variables of warm ISF performance, 
and the spindle speed and feed rate have an insignificant effect within the 
operating range used. Despite the relatively high error contribution, the 
F-ratios for temperature and step-down remain statistically significant (p 
< 0.05). This confirms that their identification as the dominant process 
drivers is reliable and distinct from the experimental noise, even if the 
precise ranking distinction between the two is marginal.

3.9 Machine Learning–Based Prediction and Validation

A supervised machine learning model was built to complement the results 
of the experiment and enhance the prediction ability of the key process 
responses in warm ISF. RFR was selected over simpler linear regression 
models because the Warm ISF process involves complex, non-linear 
physical phenomena—such as thermal softening thresholds and strain 
hardening rates—that linear models fail to capture. While simpler models 
might yield a smaller train-test gap, they would likely underfit the data. 
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RFR provides a robust balance, using ensemble averaging to mitigate 
overfitting while retaining the flexibility to model non-linear process 
interactions. A Random Forest Regressor (RFR) was modeled using the 
entire L27 dataset to forecast the forming time, forming force, and the 
TOPSIS closeness coefficient (CC) with respect to forming temperature in 
relation to step-down, spindle speed and feed rate. The ML analysis 
objectives were to (i) confirm that the effects of dominant factors hold, (ii) 
test the ability to generalise with unseen data and (iii) support the choice 
of the optimised combination of parameters. 

The selection of the Random Forest Regressor (RFR) was driven by a 
comparative assessment of various machine learning algorithms suitable 
for the limited dataset (L27) and non-linear process dynamics. Traditional 
Linear Regression was deemed unsuitable as it fails to capture complex 
non-linear interactions, such as the threshold-dependent thermal 
softening of AZ31. Conversely, while Artificial Neural Networks (ANN) are 
powerful non-linear approximators, they typically require extensive 
datasets to avoid overfitting and local minima convergence, making them 
ill-suited for the 27-point experimental design. A Single Decision Tree 
offers interpretability but suffers from high variance (instability). The 
Random Forest algorithm overcomes these limitations by employing an 
ensemble of decision trees (bagging). This approach reduces variance by 
averaging multiple predictions, allowing it to model complex non-linear 
boundaries robustly even with a smaller sample size. The model has been 
trained on an 80:20 train test split, where 200 estimators were used and 
the maximum depth of a tree was 10. All the response variables have been 
modelled separately. None of the data transformations were made in such 
a way that the physical meaning of the measured responses would be 
retained. 

A grid-search algorithm with cross-validation with five folds was used to 
make sure that the model was stable and was not overfitted during 
hyperparameter tuning. The search space consisted of 50-300 trees, depth 
to a maximum of 5-12, and a split/leaf value of 1 to 6 (minimum). The best 
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set of parameters was 200 trees, maximum depth=10, and 
min_samples_split=2, which gave the most effective trade off between 
prediction accuracy and generalisation with the small experimental data. 
Adding trees beyond 200 did not improve performance meaningfully. 
Overfitting and worse performance on the test-set occurred with deeper 
trees (depth greater than 12), but there was no significant improvement in 
the size of the tree. The chosen 80:20 division was the most predictive and 
provided enough training. For CC prediction, the Random Forest model 
achieved a train R2 = 0.5174 and a test R2 = 0.4116, corresponding to a 
train–test gap of approximately 10.6%. This moderate gap indicates that 
the model is not overfitting and maintains reasonable generalization 
performance, despite the compounded nature of the CC metric. The 
reduced fit relative to time and force is expected due to the variance 
compression associated with TOPSIS normalization and distance-based 
aggregation. In general, the last Random Forest model proved to be 
consistent, robust, and adapted to predictive modelling in warm ISF.

3.9.1 Model Performance

Table 7 summarizes the predictive performance of the Random Forest 
Regressor on the three response variables. The model demonstrated 
excellent accuracy for the direct physical responses, achieving coefficients 
of determination (R2) of 0.9502 for forming force and 0.8675 for forming 
time. Assessment of overfitting showed that training R2 and testing R2 
values between forming time (3.4 %) and forming force (2.4 %) showed 
minimal differences, which translates to excellent generalisation. In 
contrast, the prediction accuracy for the Closeness Coefficient (CC) was 
moderate, with an R2 value of 0.4116. This lower accuracy arises because 
CC is a compounded metric, unlike force and time which are directly 
measured physical responses. CC is calculated as a derived index from 
normalized response matrices and Euclidean separation distances within 
the TOPSIS framework. This mathematical aggregation introduces 
nonlinear interactions and compresses the response into a bounded 
interval [0,1], which inherently reduces variance and makes direct 
regression more challenging. Nevertheless, the predicted-versus-actual 
plot in Figure 10(c) shows that the model preserves the relative ranking 
and trend of the experimental trials, confirming its practical utility for 
identifying optimal process windows in warm ISF.

Table 7. Random Forest Regression Performance on Test Dataset
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Response R² MAE RMSE

Forming Time (s) 0.8675 1.6304 2.0359

Forming Force (kN) 0.9502 0.0174 0.0214

Closeness Coefficient (CC) 0.4116 0.0409 0.0519

Forming time and forming force have a strong concordance between the 
predicted and experimental values, as shown in Figure 10(a) and Figure 
10 (b). The same can be stated about the predicted-versus-actual plot of 
CC (Figure 10(c), which is also within the right direction and proves that 
the multi-response performance ranking is adequately explained by the 
ML model. The RMSE for forming time (2.0359) is small relative to the 
variation observed across all trials, and falls within the inherent 
experimental variability of the process. This demonstrates that the model 
captures the dominant trends with sufficient precision for practical cycle-
time estimation and process planning.

     
(a)                                          (b)

(c)
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Figure 10. Performance evaluation of the Random Forest Regression 
model: Comparison of predicted vs. experimental values for (a) Forming 
Time, (b) Forming Force, and (c) Closeness Coefficient (CC).

3.9.2 Feature Importance Analysis

The feature importance values were computed using the Gini Impurity 
(Mean Decrease in Impurity) method. This metric calculates the average 
reduction in variance brought about by a feature across all 200 trees in 
the forest. A higher value indicates that the feature is more effective at 
reducing prediction error at the split nodes, thus serving as a stronger 
predictor of the process response. The values of the feature-importance 
obtained with the RFR models are another element of data on the effect of 
parameters on the data as compared to the standard ANOVA. To establish 
time, temperature and step-down were the most significant factors, as 
discussed in Section 3.5 as represented in Figure 11(a). 

On the same note, step-down was mainly used in the prediction of forces, 
with a total contribution of more than 73% of the overall importance 
(Figure 11(b)). This is consistent with the physical fact that the bigger the 
incremental depths the more the localised deformation resistance. The 
second factor was temperature, which supports the importance of 
temperature in the reduction of the stress of flow in warm forming. In the 
case of CC prediction, temperature (0.4810) and step-down (0.4488) had 
almost the same effect, which indicates that they acted jointly and 
contributed to the multi-response prediction. The effect on Spindle speed 
and feed rate was again minimal (Figure 11(c)).

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



(a)                                      (b)

(c)
Figure 11. Feature importance analysis derived from the Random Forest 
Regressor (RFR) illustrating the relative influence of process parameters 
on: (a) Forming Time, (b) Forming Force, and (c) Closeness Coefficient 

(CC).

 3.9.3 Discussion and Integration with Experimental Results

The trends in forming time, forming force, and CC of the experiment are 
also confirmed by the ML analysis: temperature and step-down are always 
the two dominating parameters in forming. Though the accuracy of CC is 
moderate, the ML model is able to maintain the overall ranking pattern of 
experimental trials and proves the validity of the TOPSIS-based multi-
response evaluation. The ML findings confirm the fact that the best 
combination revealed by Taguchi-TOPSIS-250 °C, 0.2 mm step-down, 500 
rpm spindle speed, and 750 mm/min feed rate is statistically and 
computationally justified. The combination of the experimental and 
machine-learning model forms a strong hybrid predictive-optimiser model 
to determine the performance of ISF of lightweight AZ31 magnesium alloy 
sheets.

4. Conclusions

This paper introduced hybrid study, which incorporates experimental 
design, multi-response optimisation, statistical analysis, machine learning, 
and fracture-surface testing to examine straight-groove warm ISF of AZ31 
magnesium alloy. The main conclusions are as follows: Forming 
temperature and step-down were found to be the most significant 

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



parameters, indicating 34.35 and 31.18% respectively. Spindle speed and 
feed rate showed insignificant effect. TOPSIS optimisation was used to 
identify the most effective combination as Trial 11 and the Taguchi 
response table suggested the global optimum as 250 °C, 0.2 mm, 500 rpm, 
750 mm/min and the predicted CC was 0.6330. These trends were 
confirmed by a confirmation experiment and gave a forming time = 53 s, 
a force = 0.483 kN, and a CC = 0.6435 with less than a +5% deviation. 

Machine learning with a Random Forest Regressor showed a good 
predictive power with the results of R² of 0.8675 to forming time and 
0.9502 to forming force. The statistical findings were validated by feature-
importance analysis, in which temperature and step-down were the two 
most important predictors of the performance of ISF. 

SEM fractography showed a complete ductile fracture mechanism, 
with deep dimples, tear ridges, and void nucleation with the help of 
inclusions. The microstructural observations are related to the 
experimental results directly through demonstrating that high 
temperature favours extensive plasticity, and step-down controls the shear 
localisation and thinning at the groove wall. 
The proposed DOE–TOPSIS–ML–SEM framework offers a scalable and 
data-efficient methodology for process planning and optimization in warm 
ISF. From an industrial perspective, the integration of predictive modeling 
and multi-response optimization can facilitate the adoption of incremental 
forming in low-volume, customized aerospace, biomedical, and automotive 
applications. This integrated approach may also be adapted for other 
lightweight alloys and complex geometries, providing a foundation for 
smart manufacturing, digital process design, and cyber–physical forming 
systems.
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