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Abstract

The purpose of this study was to evaluate the predictive value of monocyte-to-lymphocyte ratio
(MLR) on the short-term (28 days) and long-term (365 days) mortality risk in patients with
acute pancreatitis (AP) using multiple statistical and machine learning (ML) models. Studies
selected 1,044 eligible AP patients from the MIMIC-IV database and divided them into four
groups based on their MLR values (MLR<<0.32; 0.32<MLR <<0.57; 0.57<MLR <1; MLR>1).
Findings revealed that MLR demonstrated a U-shaped relationship with patient mortality risk,
with the minimal mortality risk occurring at an MLR of approximately 0.57. Cox regression
model analysis showed that after adjusting for multiple parameters, MLR was still significantly
associated with the risk of death. Moreover, ML model analysis identified that MLR has
potential value in predicting AP patient outcomes. This study suggests that MLR can be used
as a potential indicator to assess prognostic risk in critically ill patients with AP to support
clinical decision-making.

Keywords: Acute pancreatitis, Monocyte-to-lymphocyte ratio, Machine learning, Predictive

models, MIMIC database



Introduction

Acute pancreatitis (AP), which is a common inflammatory disease of the exocrine pancreas,
causes severe abdominal pain and multiple organ dysfunction, which can result in pancreatic
necrosis, chronic organ failure, and mortality*l. Although the mortality rate for AP is only 1—
5%, the mortality rate for severe acute pancreatitis (SAP) is close to 20% -30%!?. The global
incidence of AP is increasing; specifically, it has a global incidence of 30-40 cases per 100,000
people per year and has been demonstrated to be more than twice this rate in some regions, thus
contributing to high costs for health care systems [l. Currently, there is no specific causal
treatment for APM, although some underlying causes such as hypertriglyceridemia and
gallstones can be managed.

Although the pathophysiological mechanisms of AP have become better understood in recent
years, its prognostic assessment remains challenging . The infiammatory response and
immune dysregulation are important causes of the onset and progression of AP [¢1. Consequently,
the search for biomarkers that reflect the inflammatory siatus and immune function of patients
is important for the early identification of high-risk patients and improvements in patient
prognosis.

ML techniques are becoming increasingly important in health care and have demonstrated
considerable potential for accurately predicting survival rates and disease progression in cancer
patients!”]. To clarify, while ML techniques are increasingly utilized to predict patient outcomes
in AP, there are significant deficiencies in the methodology of recently published ML based
prognostic models in AP patientsl®!, and few systems are specifically designed for routine
screening of AP-related risks in the ICU. Thus, this study, based on ML algorithms, aimed to
construct multiple prediction models and feature analysis methods for data analysis, identify
the primary clinical markers influencing AP patients' prognosis, and provide stronger support
for clinical decision-making.

The monocyte-to-lymphocyte ratio (MLR) integrates two key immune pathways: monocytes
represent systemic inflammation, while lymphocytes reflect immune competence. MLR has
rarely been researched in AP. Given the central role of inflammation and immune dysregulation
in AP pathogenesis, we hypothesized that MLR could serve as a novel prognostic biomarker in

critically ill AP patients.



We focused specifically on AP patients requiring ICU admission because this subgroup
experiences the highest morbidity and mortality, representing a critical population where early
and accurate prognostic assessment is most urgently needed to guide intensive care resource
allocation and therapeutic strategies.

Methods

Data source

This study utilized data from MIMIC-IV v3.0 (Medical Information Mart for Intensive Care),
which is a publicly available critical care database containing deidentified records of 94,458
intensive care unit admissions between 2008 and 2022 (Figure 1). MIMIC-1V is a publicly
available critical care database from the United States, containing data from Beth Israel
Deaconess Medical Center in Boston. The Institutional Review Board of the BIDMC approved
a waiver of the author's informed consent. The author (WW) was permitted to access the
database (certificate number 56452808).

Inclusion and exclusion criteria

Inclusion criteria: 1. patients aged over 18 years; and 2. patients diagnosed with AP based on
the International Classification of Diseases™.. Exclusion criteria: 1. patients who had an ICU
stay of fewer than twenty-four hours; 2. absent serum monocytes and lymphocytes in the initial
laboratory test; and 3. data only being included from a patient’s initial hospitalization in cases
where the patient experienced multiple ICU stays. Finally, 1044 individuals who met the criteria
were selected for inclusion (Figure 1).

Outcome

This study primarily focused on 28-day all-cause mortality as the main outcome, and 365-day
all-cause mortality was regarded as the secondary outcome.

Data extraction

We retrieved data from the MIMIC-IV, including demographic information, vital signs,
comorbidities, therapies, laboratory data, scoring systems, and prognostic data during follow-
up. All of the hematological parameters were assessed for the first time following patient
admission to the ICU. The following formula was used for determining the MLR: serum
monocytes (K/uL)/serum lymphocytes (K/uL).

Statistical analysis


https://pmc.ncbi.nlm.nih.gov/articles/PMC9926064/#cts13445-fig-0001

Patients were stratified into four groups based on quartiles of MLR values to explore potential
nonlinear associations and ensure balanced group sizes for comparative analysis. The normality
of distribution was assessed via Shapiro-Wilk tests supplemented by visual examination of the
Q-Q plots. Normally distributed continuous variables are presented as the means + standard
deviations, whereas nonnormally distributed variables are reported as medians (interquartile
ranges). Categorical variables are expressed as counts (percentages). Intergroup comparisons
were performed via Mann-Whitney U tests for nonparametric continuous data, chi-square tests
for categorical variables, or Fisher's exact tests (when appropriate). A two-tailed p value less
than 0.05 was considered to be statistically significant. R software was used for all of the
statistical analyses (version 4.4.1).

Kaplan-Meier survival analysis with log-rank tests was used to compare 28-day and 365-day
survival rates among the four groups.

To control for potential confounding factors in our survival analysis, we constructed
multivariate Cox proportional hazards regression modeis with progressive covariate
adjustments. Model I included only the MLR. Model Il was adjusted for age, sex, language,
marital status, and race. Subsequently, Modei 111 was adjusted for age, hypertension, myocardial
infarction, congestive heart failure, cerebrovascular disease, chronic pulmonary disease,
diabetes, renal disease, matignant cancer, liver disease, sepsis, sex, language, marital status, and
race.

To investigate potential variations in the associations between the MLR and outcomes across
different patient subgroups, as well as to examine possible interaction effects, we conducted
stratified analyses by using the following variables: (1) demographic characteristics including
sex and age (<60 vs. =60 years) and (2) comorbidities including hypertension and diabetes
mellitus (DM). The findings were graphically presented using forest plots. In addition,
restricted cubic spline (RCS) plots with four knots were used to identify potential inflection
points to assess the linear or nonlinear relationships between the clinical outcomes and the
levels of the MLR as continuous variables. The analysis was also adjusted for various
confounding factors, including age, hypertension, myocardial infarction, congestive heart
failure, cerebrovascular disease, chronic pulmonary disease, diabetes, renal disease, malignant

cancer, liver disease, sepsis, sex, language, marital status, and race. For all of the models, the



median values of the MLR were set as a reference.

Model development

We conducted a LASSO regression cross-validation analysis to select variables. In the
development of the machine learning (ML) algorithm, acceptable variables were carefully
selected and integrated into the algorithm. The dataset was subsequently partitioned into
training and validation subsets at a 7:3 ratio. All ML analyses were conducted using R software
(version 4.4.1) within the mlr3 ecosystem (version 0.20.2). The modeling workflow was
constructed using the mlr3pipelines package. The Cox proportional hazards survival learner
(Coxph), conditional inference tree (ctree), gradient boosting machine (GBM), neural network
(NN), survival random forest SRC learner (rsf), and extreme gradient boosting survival learner
(xgboost) algorithms. For algorithms requiring hyperparameter tuning (ctree, rsf, xgboost,
GBM, NN), we performed a 5-fold cross-validated grid search using the mlr3 tuning package.
A predefined parameter space was established for each learner, and the optimal hyperparameter
set was selected based on maximizing Harrell's C-index. The final model for each algorithm
was then refitted on the entire training set using its respective optimal configuration. The key
hyperparameters for the final models were as foliows: Ctree: alpha = 0.1, minbucket = 25, Rsf:
ntree = 200, mtry = 3, nodesize = 21, Xgboost: eta = 0.08917, max_depth = 1, nrounds = 269,
GBM: n.trees = 100, interaction.depth = 1, n.minobsinnode = 5, shrinkage = 0.1, NN:
num_nodes = ¢ (5, 5, 5), dropout = 0.2631, weight_decay = 0.1331, learning_rate = 0.07773,
batch_size = 32. We optimized hyperparameters using grid search and assessed model
robustness via five-fold cross-validation. The ROC curve and its corresponding area under the
curve (AUC) were used to determine model performance. Clinical effectiveness was evaluated
using decision curve analysis (DCA), and the model's accuracy in forecasting absolute risk was
assessed using calibration curves. The Shapley additive explanations (SHAP) method was used
to explain the optimal model to understand the impact of individual features on the model
predictions (Figure 1).

Results

Baseline characteristics

Data were available from 1044 patients. Table 1 displays the baseline characteristics of the

study participants. There were 433 (41.48%) females and 611 (58.52%) males, as well as 665



(63.70%) patients with hypertension, 118 (11.30%) patients with myocardial infarctions, 229
(21.93%) patients with congestive heart failure, 71 (6.8%) patients with peripheral vascular
disease, 69 (6.61%) patients with cerebrovascular disease, 227 (21.74%) patients with chronic
pulmonary disease, 395 (37.84%) patients with diabetes, 243 (23.28%) patients with renal
disease, 79 (7.57%) patients with malignant cancer, 368 (35.25%) patients with liver disease,
12 (1.15%) patients with AIDS, and 606 (58.05%) patients with sepsis.

Patients were divided into the following four groups: Group 1 (MLR<0.32), which consisted of
255 individuals; Group 2 (0.32<MLR<0.57), which consisted of 261 individuals; Group 3
(0.57<MLR<1), which consisted of 243 individuals; and Group 4 (MLR =1), which consisted
of 285 individuals.

Significant variations were observed across MLR groups in multiple clinical parameters (Table
1). The overall patterns suggested that Group 1 tended to have higher values for mean arterial
pressure, oxygen saturation, hematocrit, hemoglobin, albumin, caicium, sodium and initial
absolute lymphocyte count, while generally showing lower vaiues for prothrombin time, partial
thromboplastin time, international normalized ratio, blood cell count, and initial absolute
monocyte count. Additionally, the patterns indicated that Group 2 tended to have a greater
bicarbonate level and a lower creatinine ievel. Group 3 was generally associated with a greater
platelet count (max) and potassium level (max), alongside a lower anion gap (max), alkaline
phosphatase level, and aspartate aminotransferase level (max). Moreover, Group 4 presented
the most pronounced pattern, tending to have a greater respiratory rate; greater white blood cell
count, anion gap, BUN, creatinine, glucose, prothrombin time, partial thromboplastin time,
alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bilirubin,
initial absolute monocyte count, Oxford acute severity of illness score, simplified acute
physiology score Il and acute physiology score Il values; and lower mean arterial pressure,
temperature, oxygen saturation, hematocrit, albumin, bicarbonate, calcium, chloride, sodium,
and initial absolute lymphocyte count values.

Clinical outcomes

Statistically significant differences in survival distribution among the different MLR groups
were observed over time (Table 2). The overall patterns indicated that the highest ICU mortality

(10.88%) and hospital mortality (20.70%) were numerically observed in Group 4 (the highest



MLR group), while the lowest rates (3.45% and 4.21%, respectively) were noted in Group 2.
Regarding length of stay, Group 4 was associated with the longest median ICU stay (2.88 days)
and hospital stay (16.04 days), whereas the shortest median durations were observed in Group
1 (1.95 days and 8.19 days, respectively). Mortality rates across various time points (28-day to
365-day) also showed a consistent pattern, with Group 4 demonstrating numerically higher rates
and Group 2 showing numerically lower rates compared to other groups.

Kaplan-Meier (K-M) curves demonstrated a significant overall difference in survival
probability among the groups at 28 days (log-rank p < 0.001, Figure 2). Visual inspection of the
curves suggested that patients in the fourth quartile had the poorest estimated survival. In
contrast, no significant overall difference was observed in the 365-day survival rates across the
groups (Supplementary Figure 1).

In the RCS analysis, both 28-day all-cause mortality (Figure 3A) and 365-day all-cause
mortality (Figure 3B) exhibited a U-shaped relationship between the MLR and mortality risk.
This pattern persisted irrespective of whether the covariates were adjusted (Supplementary
Figure 2).

Cox regression model

The results of the Cox regression analyses for 28-day all-cause mortality are presented in Table
3. Using Q2 as the reference, the mortality risks in Q1 and Q3 were not significantly different
across all models (all p > 0.05). In contrast, Q4 was associated with a significantly elevated risk
compared to Q2 in the crude model (Model 1, HR: 3.63, 95% CI: 2.01-6.54), and this
association remained robust after sequential adjustments for demographic factors (Model 2, HR:
3.03, 95% CI: 1.66-5.52) and comprehensive clinical comorbidities (Model 3, HR: 2.91, 95%
Cl: 1.59-5.32). Furthermore, a significant positive trend was observed across the quartiles (P
for trend < 0.001 in all models), indicating a graded relationship between higher MLR levels
and increased 28-day mortality risk.

The associations between MLR quartiles and 365-day all-cause mortality are shown in Table 4.
In the fully adjusted model (Model 3), both Q1 (HR: 1.63, 95% CI: 1.04-2.56) and Q3 (HR:
1.63, 95% ClI: 1.06-2.52) showed a significantly increased mortality risk compared to Q2. The
risk was most pronounced in Q4 (HR: 2.81, 95% CI: 1.89-4.17). This pattern was consistent

across all models, with significant positive trends (all p for trend < 0.001), reinforcing a strong,



independent association between elevated MLR and long-term mortality. Notably, the
emergence of a significant risk in Q1 at 365 days, which was not observed at 28 days, suggests
that the predictive power of MLR may extend to long-term outcomes across a broader range of
values.

Subgroup analysis

To evaluate the consistency of the association between MLR and mortality across different
patient populations, we conducted subgroup analyses for both 28-day (Figure 4A) and 365-day
(Figure 4B) all-cause mortality. The analyses stratified patients by sex (male/female), age (=
60/<60 years), and key comorbidities (hypertension, diabetes, myocardial infarction). The
increased mortality risk associated with MLR was consistently observed in all subgroups at
both time points (all P<0.05). Importantly, no significant interaction effects were detected (P
for interaction >0.05 for all variables), demonstrating that the association remained robust
regardless of these baseline characteristics.

Feature selection

Feature selection was performed using LASSO (i east Absolute Shrinkage and Selection
Operator) regression with 28-day all-cause mortality as the outcome variable. LASSO
regression was used to screen the relevant features of the training set, and the characteristics of
the variable coefficients are shown in Figure 5A. The iterative analysis was performed using a
ten fold cross-validation method. The 10 variables that were determined to be closely associated
with AP included age, temperature_mean, Spo2_min, hemoglobin_max, partial thromboplastin
time (PTT_min), bilirubin_total_min, APSIII, heart_failure, cancer, and MLR (Figure 5B).
Model performance comparisons

A K-M survival curve was constructed after splitting, which compared the survival probabilities
of the validation set and the derivation set (Supplementary Figure 3). The derivation set and the
validation set did not significantly differ in terms of survival probability, thus indicating that
the split was reasonable.

To determine the risk of AP patients in the ICU, we built six machine learning models. In the
derivation group (Figure 6A), the AUC of the xgboost model was 0.9151, and that of the rsf
model was 0.9381, both of which indicated high prediction accuracy. In the validation group

(Figure 6B), the Coxph model demonstrated the highest AUC of 0.8908, whereas the xgboost



model had an AUC of 0.8677, and the rsf model had an AUC of 0.8771, both of which were

slightly lower than those of the derived populations; however, they still exhibited good
predictive performance. Depending on the AUC values in the derivation groups, the Coxph and

rsf models may be optimal, especially in applications that require high prediction accuracy.
Model calibration curves were also constructed, which corresponded to the model's
performance in the derivation and validation groups (Figure 7). In both groups, the calibration
curves for most of the models were close to the reference line, thus suggesting that the models
performed well in predicting risk and that the predicted values were in good agreement with the
actual values. In the derived group (Figure 7A), the calibration curves for all of the models were
relatively close to the reference line, especially in regions with low prediction risk. This result
demonstrated that the model was reliable regarding the training data. In the validation group
(Figure 7B), the calibration curve of the model was also close tc tiie reference line, thereby
suggesting that the model also demonstrated good generalizability for unseen data. Compared
with those of the other models, the calibration curves ot the Coxph model in the derived groups
and the ctree and Coxph models in the validaied groups were closer to the reference line in
high-risk regions, thus indicating that the predictions in these regions were more accurate.

The DCA curves of the six ML algorithms on two sets of data (the derivation group and the
validation group) are presenited in Figure 8. Every model (with the exception of GBM)
demonstrated a strong net benefit in terms of clinical application over a broad range of threshold
probabilities; additionally, the models exhibiting the largest net benefits were the rsf and
xgboost models (Figure 8A), as well as the Coxph and xgboost models (Figure 8B). Therefore,
based on the DCA curve, the model with the highest net return within a specific threshold range
can be selected.

Figure 9 presents the SHAP summary plots for all models, from which two key observations
emerge. First, MLR's importance is not an artifact of a single model but is a robust finding
across multiple, independent algorithms. Furthermore, the high importance assigned to MLR
by non-linear models like RSF, XGBoos and GBM aligns perfectly with our previous finding
of a significant non-linear relationship via RCS plots. It confirms that these models effectively

capture the complex, U-shaped association between MLR and mortality that a linear Cox model



may partially mask in its feature importance breakdown. Therefore, the combination of the Cox
model's superior overall AUC and the cross-model validated importance of MLR via SHAP,
provides a more comprehensive and compelling argument for MLR's role as a key prognostic
factor. Finally, based on the results, the optimal model was determined to be Coxph. To facilitate
clinical application, a nomogram was developed and is presented in supplementary figure 4.
Discussion

Our research identified significant associations between the MLR and increased 28-day, 365-
day, and in-hospital mortality in SAP patients. These associations remained significant across
different age groups, sexes, and subgroups (type 2 diabetes, hypertension, myocardial infarction)
after adjusting for covariates. This is the first study to investigate the link between prognosis
and the MLR in SAP patients.

Among the clinical outcomes, the K-M survival curve revealed that the MLR>1 group exhibited
the highest mortality. Moreover, the RCS analysis revealed a tj-shaped association between the
MLR and 28-day mortality in AP patients; additionally, the Cox regression model revealed that
a substantially greater risk of death was associated with an MLR > 1. The correlation between
the MLR and mortality risk persisted even after controlling for several variables. In addition,
the MLR demonstrated a similar irend in the prediction of 365-day mortality, thus suggesting
that it has some potential predictive value for long-term prognosis. ML algorithms revealed that
the Coxph and rsf modeis exhibited the highest AUC values in the validation set. Compared
with those of the other models, the ctree and Coxph models in the validated groups were closer
to the reference line in high-risk regions, thereby indicating that the predictions in these regions
were more accurate. Moreover, the DCA curve revealed that the Coxph and xgboost models
demonstrated the greatest net benefits in the validation set. The SHAP method was used to
visually interpret the Coxph model, and the APS I11 score and age were determined to be the
most important predictive features; additionally, the MLR also had an impact on the model
prediction.

Monocytes and lymphocytes are commonly used indicators of disease inflammation and
immune status. Monocyte was significantly higher in survivors in sepsisi®® And low
lymphocyte count serves as an independent marker of progressive inflammation™!. However,

the prediction performance of monocyte or lymphocyte alone is poor.



Monocyte-lymphocyte ratio (MLR) has shown excellent predictive performance in many
diseases. A previous study demonstrated that MLR can provide critical insights into the overall
physiological conditions of patients with traumatic brain injury (TBI)[*2. One study revealed
that both the identification of those patients with incident symptomatic TB disease and the
prediction of subsequent TB infections may benefit from the utilization of the MLRI™3], The
MLR has also been assessed as a predictor of survival in patients with various malignant
diseasest**51. Due to the fact that the MLR has rarely been researched in AP, we investigated
the relationship between the MLR and mortality in ICU patients with AP to determine the
usefulness of the MLR in predicting ICU AP prognosis.

The MLR is a novel inflammatory biomarker that integrates the effects of both inflammatory
markers (monocytes and lymphocytes)*®l. The MLR has exhibited high predictive and
prognostic values in a variety of cancers, including endometrial cancer”l renal cell
carcinomal®®l, and breast cancer™®. High expression of MLR was detected in inflammatory
diseases. High MLR expression was associated with mortaiity in acute respiratory distress
syndromel*®. In addition, the MLR is often used to evaluate the prognosis of pulmonary TB!2%,
The MLR is a convenient and noninvasive inflammatory biomarker[?! that provides a more
complete representation of the balance between inflammation and immune function. However,
few studies have investigaied the role of the MLR in predicting the prognosis of AP patients.
Therefore, more detailed experiments are needed to investigate the association between the
MLR and AP.

We used LASSO regression for feature selection and constructed six models, including Coxph,
ctree, GBM, NN, rsf, and xgboost. The SHAP approach was subsequently utilized to evaluate
the best model (Coxph) and examine how each feature affected the model predictions. SHAP
is a method that is used for interpreting ML model predictions; moreover, it quantifies the
contribution of each feature to the model predictions??, and we utilized this method to
determine the ten most crucial feature variables pertaining to AP mortality. Recently, research
based on ML and SHAP has shown that the six most important characteristic variables are
important for the short-term assessment of API?l, By using a greater number of biochemical
indicators, our study further investigated the important predictors and prediction models for 28-

day and 365-day all-cause mortality in AP patients. The results demonstrated that the 10



characteristic variables (apslll, age, hemoglobin_max, heart_failure, cancer, temperature_mean,
PTT_min, SpO2_min, MLR, and bilirubin_total_min) involved in the model that was proposed
in this study are equally important for predicting the poor prognosis of AP patients.

Research has indicated that in AP patients, a lower SpO2 is associated with a greater mortality
ratel?!l, Moreover, AP may be the first manifestation of pancreatic cancer, and patients with
malignant tumors such as pancreatic cancer are more likely to have a poor prognosis(?l.
Additionally, several studies have also suggested that elderly patients with AP are likely to have
atypical clinical presentations and poor prognoses, which are mainly due to existing
comorbiditiest?®27, In rats with AP, hypothermia can decrease pancreatic inflammation and
increase survivall®l. In addition, the death rate of SAP patients has been shown to be closely
associated with PTT!?°l, These results indicate that the previously mentioned variables are
trustworthy predictors of AP mortality rates.

In our research, the U-shaped association that was observed between the MLR and mortality
may be closely related to the body's inflammatcry response and immunomodulatory
mechanisms. Monocytes are a vital part of the innate immune system. And lymphocytes possess
strong effector mechanisms[®l. Inflammation is associated with a low lymphocyte count and
function®?. A higher MLR indicates a high monocyte count, which aggravates local and
systemic inflammatory responses, thereby leading to tissue damage®], And the elevated MLR
may caused by the decrease in the lymphocyte count, making it difficult to effectively eliminate
inflammatory factors, thus leading to worsening of the diseasel?®l.

Unlike previous studies, this study not only focused on 28-day mortality but also explored the
predictive value of the MLR for long-term prognosis by using 365-day follow-up data, which
further expands the potential application of the MLR in the field of AP. In addition, this study
used various ML models to analyze the data. These models outperformed traditional statistical
methods in accurately identifying key mortality factors and provided robust support for clinical
decision-making. Clinically, the MLR (which is a readily accessible biomarker obtained from
routine blood tests) demonstrates high utility for early risk stratification, thereby enabling the
rapid identification of high-risk AP patients upon admission. Methodologically, the integration
of ML algorithms (such as xbgoost, rsf, and NN) can facilitate the development of robust

prognostic models and feature analysis frameworks, thus advancing predictive analytics in AP



research. These models underscore the role of the MLR in AP.

Despite the use of rigorous methodologies, several limitations existed in this study. First, the
data (which were solely derived from the MIMIC-1V database) may have introduced selection
bias, thereby limiting generalizability. Second, we were unable to account for certain
confounding factors that are potentially result-altering, such as concurrent infections (beyond
the diagnosis of sepsis), disease-specific severity scores (e.g., BISAP, Revised Atlanta Criteria),
and detailed medication records (e.g., steroids or immunomodulators), which could influence
both patient outcomes and MLR values. Future studies should aim to incorporate these critical
variables to enhance the robustness and clinical applicability of the prognostic models. Third,
when considering model-specific constraints, the Coxph model assumes that the risk ratio is
constant over time, which may not be true in some cases, whereas xgboost has high predictive
performance but poor model interpretation. Future studies may consider expanding the data
sources, optimizing model construction methods, performing in-depth explorations on the
interactions between various characteristics, and validaiing the findings in more health care
institutions and patient groups, in order to improve the reliability and usefulness of the results
of this study.

Conclusion

This study demonstrated thai the likelihoods of short-term and long-term death in AP patients
are substantially connected with the MLR, and this association was observed to be U shaped.
A comparison of multiple ML models revealed that the Coxph and rsf models performed well
in predicting patient prognosis. Via multidimensional data analysis, the MLR was observed to
be strongly correlated with AP severity, especially in the prediction of long-term survival.
Therefore, the MLR can be used as a potential indicator to assess the prognostic risk of

patients with AP in the ICU.



Table 1 Patient demographics and baseline characteristics.

) Total (n=
Variables 1044) G1 (n=255) G2 (n=261) G3 (n=243) G4 (n =285) P
Demographics
57.00 (46.00,

Age, M (Q1, Q3) 68.00) 53.00 (44.00,64.50) 57.00 (44.00,68.00) 57.00 (45.50,67.00)  60.00 (49.00,73.00) <.001
Gender, n(%) 0.039

Male 611 (58.52) 130 (50.98) 158 (60.54) 145 (59.67) 178 (62.46)

Female 433 (41.48) 125 (49.02) 103 (39.46) 98 (40.33) 107 (37.54)

Language, n(%) 0.107
English 955 (91.48) 225 (88.24) 244 (93.49) 227 (93.42) 259 (90.88)

Other 89 (8.52) 30 (11.76) 17 (6.51) 16 (6.58) 26 (9.12)

Marital Status, n(%) 0.024
Single 449 (43.01) 107 (41.96) 98 (37.55) 98 (40.33) 146 (51.23)

Married 102 (9.77) 30 (11.76) 29 (11.11) 25 (10.29) 18 (6.32)
Widowed 428 (41.00) 105 (41.18) 115 (44.06) 109 (44.86) 99 (34.74)
Divorced 65 (6.23) 13 (5.10) 19 (7.28) 11 (4.53) 22 (7.72)

Race, n(%) <.001
White 647 (61.97) 134 (52.55) 175 (67.05) 156 (64.20) 182 (63.86)
Black/Africa American 168 (16.09) 62 (24.31) 44 (16.86) 35 (14.40) 27 (9.47)

Other 229 (21.93) 59 (23.14) 42 (16.09) 52 (21.40) 76 (26.67)
Vital signs

81.00 (73.00,

MAP Mean, M (Qi, Q3) 91.00) 84.00 (75.00,92.50) 82.00 (72.00,92.00) 80.00 (73.50,88.50)  79.00 (71.00,89.00)  0.003
) 13.00 (10.00,

RR Min, M (Q1, Q3) 15.00) 12.00 (10.00,15.00) 12.00 (10.00,15.00) 13.00 (10.00,16.00)  13.00 (11.00,16.00) 0.015
28.00 (25.00,

RR Max, M (Q1, Q3) 33.00) 28.00 (24.00,32.00) 28.00 (24.00,34.00) 28.00 (25.00,33.00)  28.00 (24.00,34.00) 0.737
19.00 (17.00,

RR Mean, M (Q1, Q3) 23.00) 19.00 (17.00,23.00) 19.00 (17.00,22.00) 19.00 (17.00,22.50)  20.00 (17.00,23.00) 0.198
. 36.60 (36.40,

Temperature Min, M (Q1, Qs) 36.80) 36.60 (36.30,36.80) 36.60 (36.40,36.80) 36.60 (36.40,36.80)  36.50 (36.30,36.70)  0.010

Temperature Max, M (Q1, 37.30 (37.00,

Q) 37.80) 37.20 (36.90,37.90) 37.30 (37.10,37.90) 37.30(37.00,37.80)  37.20(37.00,37.70) 0.173
3 .

Temperature Mean, M (Q:,  36.90 (36.70,

Q) 37.20) 36.90 (36.70,37.25) 36.90 (36.70,37.20) 36.90 (36.70,37.30)  36.90 (36.70,37.10)  0.040
3 .

. 92.00 (90.00,

Spo2 Min, M (Q1, Q3) 94.00) 93.00 (90.00,95.00) 92.00 (90.00,94.00) 92.00 (90.00,95.00)  91.00 (89.00,94.00) 0.016

100.00(99.00,

Spo2 Max, M (Q1, Qs) 100.00) 100.00 (99.00,100.00) 100.00 (99.00,100.00) 100.00 (99.00,100.00) 100.00(99.00,100.00) 0.047

97.00 (95.00,
Spo2 Mean, M (Q1, Qs) 98.00) 97.00 (96.00,98.00) 96.00 (95.00,98.00) 97.00 (95.00,98.00)  96.00 (95.00,98.00) <.001
Laboratory data

29.70 (24.70,
HCT Min, M (Q1, Q3) 30.40 (25.20,35.60) 29.50 (25.20,34.50) 29.40 (24.25,34.40)  29.40 (23.40,34.70)  0.135

34.80)



Total (n=

Variables 1044) G1 (n=255) G2 (n=261) G3 (n=243) G4 (n =285) P
33.90 (29.00,
HCT Max, M (Q1, Qs) 38.90) 35.20 (29.90,39.65) 33.30 (29.20,38.10) 34.00 (28.80,38.95)  33.00 (28.00,38.60) 0.028
. 9.70 (7.90,
Hb Min, M (Q1, Q3) 1150) 10.00 (8.30,11.90) 9.70 (8.10,11.50) 9.40 (7.75,11.25) 9.60 (7.70,11.20)  0.048
11.00 (9.30,
Hb Max, M (Q1, Q3) 12.80) 11.50 (9.50,13.30) 10.90 (9.40,12.70) 11.10 (9.30,12.80) 10.70 (9.00,12.50)  0.027
163.50(106.7 162.00 160.00 166.00 164.00
Platelets Min, M (Q1, Qs) 0.508
5, 244.00) (100.00,235.00) (106.00,243.00) (114.00,259.00) (110.00,235.00)
205.00(141.0 202.00 203.00 215.00 206.00
Platelets Max, M (Q1, Qs) 0.462
0, 301.25) (134.00,287.00) (139.00,299.00) (142.00,319.00) (149.00,282.00)
. 10.20 (6.60,
Wbe Min, M (Q1, Qs) 14.72) 8.70 (5.95,13.15) 8.90 (5.80,12.20) 10.30 (6.70,14.85) 12.00(8.50,17.40)  <.001
13.65 (9.70,
Wbe Max, M (Q1, Q3) 19.62) 11.80 (8.20,18.10) 12.20 (8.60,16.80) 13.70 (9.85,19.65) 15.80(11.80,22.30) <.001
R 3.00 (2.60,
Albumin Min, M (Q1, Qs) 3.42) 3.10 (2.60,3.70) 3.00 (2.70,3.50) 2.90 (2.50,3.40) 2.80 (2.60,3.20) <.001
. 3.20 (2.80,
Albumin Max, M (Qi, Qs) 2.60) 3.30 (2.90,3.80) 3.20 (2.80,3.60) 3.10 (2.70,3.60) 3.00 (2.70,3.50) <.001
17.00 (14.00, - )
AG Max, M (Q1, Q3) 21.00) 17.00 (14.00,22.00) 17.00 (14.00,20.00) 16.00 (14.00,20.00) 18.00 (14.00,22.00) 0.118
) 13.00 (11.00,
AG Min, M (Q1, Qs) 15.00) 13.00 (11.00,15.00) 13.00 (10.00,15.00) 13.00 (10.00,15.00) 13.00 (11.00,16.00)  0.043
Bicarbonate Min, M (Qi, Qs), 20.00 (16.00,
20.00 (16.00,23.00) 21.00 (17.00,23.00) 20.00 (17.00,23.00) 19.00 (16.00,23.00) 0.102
mmol/L 23.00)
Bicarbonate Max, M (Q1, 23.00 (20.00, )
23.00 (20.00,26.00) 23.00 (21.00,26.00) 23.00 (21.00,25.50)  23.00 (19.00,25.00) 0.115
Qs), mmol/L 26.00)
) 16.00 (9.00
Bun Min, M (Q1, Qs), mg/dL 28.00) 14.00 (8.00,23.00) 14.00 (9.00,21.00) 16.00 (9.00,32.00) 20.00 (12.00,36.00) <.001
20.00
Bun Max, M (Q1, Qs), mg/dL (12.00, 37.00) 18.00 (12.00,32.50) 18.00 (12.00,28.00) 21.00 (11.50,42.00)  25.00 (15.00,46.00) <.001
Calcium Min, M (Q1, Qs), 7.90 8.00 7.90 8.00 7.80 0,059
mg/dL (7.30, 8.40) (7.40,8.40) (7.30,8.40) (7.40,8.50) (7.20,8.30) '
Calcium Max, M (Q1, Qs), 8.40 8.60 8.40 8.50 8.30 <001
mg/dL (7.90, 8.90) (8.15,9.00) (8.00,8.90) (7.95,9.00) (7.70,8.80) '
Chloride Min, M (Q1, Qs), 100.00(96.00,
100.00 (95.00,104.00) 101.00 (97.00,105.00) 100.00 (96.00,105.00) 99.00 (94.00,104.00) 0.120
mEg/L, 104.00)
Chloride Max, M (Q1,Qs), ~ 105.00(100.7 105.00 105.00 104.00
103.00 (99.00,108.00) <.001
mEg/L, 5, 109.00) (102.00,110.00) (101.00,109.00) (100.00,109.00)
Creatinine Min, M (Q1, Qs), 0.90 (0.60,
0.80 (0.60,1.40) 0.80 (0.60,1.30) 0.90 (0.60,1.70) 1.00 (0.70,2.20) <.001
mg/dL 1.50)
Creatinine Max, M (Q:, Qs),  1.10 (0.80,
1.10 (0.80,1.85) 1.00 (0.70,1.80) 1.10 (0.80,2.15) 1.40 (0.80,2.80) <.001
mg/dL 2.12)
Glucose Min, M (Q1, Qs), 111.00(91.00,
108.00 (88.50,136.50) 110.00 (89.00,134.00) 112.00 (91.00,139.00) 113.00(94.00,138.00) 0.577
g/dL 137.00)
Glucose Max, M (Q1, Qs), 157.00(121.0 163.00
152.00 (121.00,212.00) 156.00(119.50,212.50) 155.00(125.00,208.00) 0.229
g/dL 0, 225.25) (121.50,263.50)



Total (n=

Variables 1044) G1 (n=255) G2 (n=261) G3 (n=243) G4 (n =285) P
Sodium Min, M (Q1, Qs3), 136.00(132.0 136.00 136.00 136.00 135.00 0,065
mEg/L, 0, 138.00) (132.00,139.00) (133.00,139.00) (132.00,138.00) (131.00,138.00) '
Sodium Max, M (Q1, Qs), 139.00(136.0 140.00 139.00 139.00 138.00 0,002
mEg/L, 0, 142.00) (137.00,143.00) (137.00,142.00) (136.00,142.00) (135.00,141.00) '
Potassium Min, M (Q1, Q3), 3.80 (3.40,
3.70 (3.40,4.10) 3.80 (3.50,4.10) 3.80 (3.40,4.10) 3.80 (3.40,4.20) 0.574
mEg/L 4.10)
Potassium Max, M (Q1, Qs),  4.40 (4.00,
4.40 (4.00,5.10) 4.40 (4.10,4.90) 4.50 (4.10,5.10) 4.40 (4.00,5.20) 0.603
mEg/L, 5.10)
. 1.30 (1.10,
Inr Min, M (Q1, Qs) 1.50) 1.20 (1.10,1.40) 1.30(1.10,1.50) 1.30(1.10,1.50) 1.30 (1.20,1.70) <.001
1.40 (1.20,
Inr Max, M (Q1, Q3) 1.70) 1.30 (1.20,1.60) 1.40 (1.20,1.70) 1.40 (1.20,1.70) 1.40 (1.20,1.90) 0.015
14.10 (12.40,
Pt Min, M (Q1, Qs), S 16.40) 13.30 (12.10,15.55) 14.00 (12.50,16.10) 14.20 (12.35,16.25)  14.60(12.80,18.10) <.001
15.10 (13.10,
Pt Max, M (Qi, Q3), S 19.00) 14.80 (12.70,17.90) 15.00 (13.10,18.50) 15.20 (13.15,18.60)  15.60 (13.60,21.30) 0.013
. 30.20 (26.70,
Ptt Min, M (Q1, Q3), s 34.30) 29.80 (26.60,33.75) 30.00 (26.80,34.20) 29.80 (26.70,33.65)  30.90 (26.80,36.30) 0.117
33.80 (28.60, . -
Ptt Max, M (Q1, Q3), S 42.90) 32.50 (28.35,44.75) 32.80 (28.50,40.70) 33.70 (28.45,42.85)  34.90 (29.50,44.50) 0.122
. 41.00 (20.00,
Alt Min, M (Q1, Qs), U/L 109.25) 41.00 (19.50,105.00)  42.00 (19.00,126.00)  31.00 (17.50,77.50)  51.00 (25.00,127.00) 0.001
48.50 (23.00,
Alt Max, M (Qi, Qs),U/L, 147.25) 48.00 (24.50,140.00)  49.00 (22.00,183.00)  36.00 (20.00,98.00)  60.00 (29.00,167.00) 0.001
112.00(72.00,
Alp Min, M (Q1, Q3), U/L 188.00) 114.00 (74.00,188.00) 112.00 (70.00,175.00) 101.00 (69.00,177.00) 119.00 (74.00,205.00) 0.176
127.00(80.00,
Alp Max, M (Q1, Qs), U/L 219.25) 136.00 (86.00,215.50) 124.00 (78.00,216.00) 111.00 (77.50,203.50) 136.00 (81.00,238.00) 0.114
61.00 (28.00,
Ast Min, M (Q1, Qs),U/L, 142.00) 65.00 (27.50,156.00)  50.00 (27.00,140.00)  50.00 (23.00,102.00)  84.00 (35.00,159.00) <.001
80.00 (34.00,
Ast Max, M (Qi, Qs), U/L 203.25) 81.00 (35.00,205.00)  72.00 (32.00,216.00)  59.00 (29.50,149.50) 108.00 (42.00,234.00) <.001
Bilirubin Total Min, M (Q, 1.00 (0.50,
0.80 (0.40,2.00) 0.90 (0.50,2.30) 0.80 (0.40,2.30) 1.60 (0.60,4.10) <.001
Qs) 2.50)
Bilirubin Total Max, M (Q:,  1.20 (0.60,
1.00 (0.50,2.70) 1.20 (0.50,3.10) 1.00 (0.50,3.25) 2.00 (0.80,5.20) <.001
Q) 3.40)
First Monocytes Abs, M (Qi,  0.69 (0.45,
0.43 (0.25,0.60) 0.59 (0.42,0.80) 0.84 (0.58,1.18) 1.08 (0.78,1.49) <.001
Qs), K/uL 1.07)
First Lymphocytes Abs, M 1.19 (0.71,
1.93 (1.16,2.84) 1.40 (0.99,1.97) 1.16 (0.80,1.60) 0.67 (0.47,0.98) <.001
(Q1, Q3), K/pL 1.86)
Scoring system
5.00 (3.00,
CCILLM (Q1, Q3) 7.00) 4.00 (2.00,6.00) 4.00 (3.00,6.00) 5.00 (3.00,7.00) 5.00 (3.00,7.00) <.001
48.00 (36.00,
Apsiii, M (Q1, Q) 68.00) 45.00 (34.00,68.00) 43.00 (33.00,61.00) 49.00 (37.00,64.50)  55.00 (40.00,78.00) <.001
B 32.00 (23.00,
Sapsii, M (Q1, Q3) 29.00 (20.00,41.50) 29.00 (21.00,41.00) 34.00 (24.00,44.00)  37.00 (28.00,49.00) <.001

44.00)



Total (n=

Variables 1044) G1 (n=255) G2 (n=261) G3 (n=243) G4 (n =285) P

Oasis, M (Q1, Q3) 31'032 (02;'00’ 29.00 (23.00,39.00)  30.00 (24.00,38.00)  32.00 (25.50,38.00)  34.00 (28.00,40.00) <.001

Comorbidities,n(%)

Hypertension, n(%) 0.039
survival 379 (36.30) 93 (36.47) 113 (43.30) 79 (32.51) 94 (32.98)
death 665 (63.70) 162 (63.53) 148 (56.70) 164 (67.49) 191 (67.02)

Myocardial Infarct, n(%) 0.335
survival 926 (88.70) 223 (87.45) 239 (91.57) 211 (86.83) 253 (88.77)
death 118 (11.30) 32 (12.55) 22 (8.43) 32 (13.17) 32 (11.23)

Congestive Heart Failure,

n(%) 0.114
survival 815 (78.07) 213 (83.53) 200 (76.63) 186 (76.54) 216 (75.79)
death 229 (21.93) 42 (16.47) 61 (23.37) 57 (23.46) 69 (24.21)

Peripheral Vascular Disease,

n(%) 0.384
survival 973 (93.20) 241 (94.51) 247 (94.64) 223 (91.77) 262 (91.93)
death 71 (6.80) 14 (5.49) 14 (5.36) 20(8.23) 23 (8.07)

Cerebrovascular Disease,

n(%) 0.197
survival 975 (93.39) 234 (91.76) 251 (96.17) 225 (92.59) 265 (92.98)
death 69 (6.61) 21 (8.24) 10 (3.83) 18 (7.41) 20 (7.02)

Chronic Pulmonary Disease,

(%) 0.263
survival 817 (78.26) 198 (77.65) 194 (74.33) 195 (80.25) 230 (80.70)
death 227 (21.74) 57 (22.35) 67 (25.67) 48 (19.75) 55 (19.30)

Diabetes, n(%) 0.052
survival 649 (62.16) 140 (54.90) 168 (64.37) 159 (65.43) 182 (63.86)
death 395 (37.84) 115 (45.10) 93 (35.63) 84 (34.57) 103 (36.14)

Renal Disease, n(%) 0.002
survival 801 (76.72) 212 (83.14) 208 (79.69) 182 (74.90) 199 (69.82)
death 243 (23.28) 43 (16.86) 53 (20.31) 61 (25.10) 86 (30.18)

Malignant Cancer, n(%) 0.508
survival 965 (92.43) 237 (92.94) 246 (94.25) 222 (91.36) 260 (91.23)
death 79 (7.57) 18 (7.06) 15 (5.75) 21 (8.64) 25 (8.77)

Liver Disease, n(%) 0.342
survival 676 (64.75) 171 (67.06) 174 (66.67) 146 (60.08) 185 (64.91)
death 368 (35.25) 84 (32.94) 87 (33.33) 97 (39.92) 100 (35.09)

Aids, n(%) 0.475
survival 1032 (98.85) 250 (98.04) 258 (98.85) 242 (99.59) 282 (98.95)
death 12 (1.15) 5 (1.96) 3 (1.15) 1(0.41) 3(1.05)

Sepsis, n(%) <.001
survival 438 (41.95) 143 (56.08) 110 (42.15) 93 (38.27) 92 (32.28)
death 606 (58.05) 112 (43.92) 151 (57.85) 150 (61.73) 193 (67.72)

Therapies, n (%)



Total (n=

Variables 1044) G1 (n=255) G2 (n=261) G3 (n=243) G4 (n =285) P
CRRT, n(%) 0.009
No 928 (88.89) 232 (90.98) 237 (90.80) 221 (90.95) 238 (83.51)
Yes 116 (11.11) 23(9.02) 24 (9.20) 22 (9.05) 47 (16.49)
Norepinephrine, n(%) 0.007
No 786 (75.29) 202 (79.22) 208 (79.69) 181 (74.49) 195 (68.42)
Yes 258 (24.71) 53 (20.78) 53 (20.31) 62 (25.51) 90 (31.58)
Dobutamine, n(%) 0.105
No 1031 (98.75) 251 (98.43) 260 (99.62) 242 (99.59) 278 (97.54)
Yes 13 (1.25) 4 (1.57) 1(0.38) 1(0.41) 7 (2.46)
Dopamine, n(%) 0.383
No 1026 (98.28) 253 (99.22) 254 (97.32) 238 (97.94) 281 (98.60)
Yes 18 (1.72) 2(0.78) 7(2.68) 5 (2.06) 4 (1.40)
Vasopressin, n(%) 0.010
No 921 (88.22) 228 (89.41) 237 (90.80) 220 (90.53) 236 (82.81)
Yes 123 (11.78) 27 (10.59) 24 (9.20) 23 (9.47) 49 (17.19)
Epinephrine, n(%) 0.030
No 1010 (96.74) 242 (94.90) 256 (98.08) 240 (98.77) 272 (95.44)
Yes 34 (3.26) 13 (5.10) 5 (1.92) 3(1.23) 13 (4.56)

M: Median, Q:: 1st Quartile, Qs: 3st Quartile

Group 1: MLR<C0.32; Group 2: 0.32<MLR <<0.57; Group 3: 0.57<MLR <"1; Group 4: MLR>1

MAP, mean arterial pressure ; RR, respiratory rate ; SPO2, oxygen saturation ; Hct,Hematocrit ; Hb,Hemoglobin ;

WBC, White Blood Cell ; AG, Anion gap ; PT, prothrombin time ; PTT, partial thromboplastin time ;

INR, international normalized ratio ; ALT, alanine aminotransferase ; AST, aspartate aminotransferase ;

ALP, alkaline phosphatase; CRRT, Contiriuous Renal Replacement Therapy; Los, Length of Stay; Abs, Absolute;

MLR, monocyte to lymphocyte retio ; CCI, Charlson Comorbidity Index ; OASISO, Oxford acute severity of illness score ;

SAPS |1, Simplified Acute Physiology Score 11 ; APS 111, Acute physiology score Il1.



Table 2. Clinical outcomes

Variables Total (n = 1044) G1 (n=255) G2 (n=261) G3 (n=243) G4 (n =285) P
Status 28, n(%) <.001
survival 936 (89.66) 234 (91.76) 247 (94.64) 222 (91.36) 233(81.75)
death 108 (10.34) 21 (8.24) 14 (5.36) 21 (8.64) 52 (18.25)
Status 60, n(%) <.001
survival 893 (85.54) 227 (89.02) 243 (93.10) 206 (84.77) 217 (76.14)
death 151 (14.46) 28 (10.98) 18 (6.90) 37 (15.23) 68 (23.86)
Status 90, n(%) <.001
survival 868 (83.14) 222 (87.06) 238 (91.19) 202 (83.13) 206 (72.28)
death 176 (16.86) 33 (12.94) 23 (8.81) 41 (16.87) 79 (27.72)
Status 180, n(%) <.001
survival 841 (80.56) 220 (86.27) 236 (90.42) 194 (79.84) 191 (67.02)
death 203 (19.44) 35(13.73) 25 (9.58) 49 (20.16) 94 (32.98)
Status 365, n(%) <.001
survival 803 (76.92) 208 (81.57) 227 (86.97) 188 (77.37) 180 (63.16)
death 241 (23.08) 47 (18.43) 34 (13.03) 55 (22.63) 105 (36.84)
Icu Death, n(%) <.001
survival 982 (94.06) 241 (94.51) 252 (96.55) 235(96.71) 254 (89.12)
death 62 (5.94) 14 (5.49) 9 (3.45) 8(3.29) 31(10.88)
Hospital Expire Flag, n(%) <.001
survival 933 (89.37) 237 (92.94) 250 (95.79) 220 (90.53) 226 (79.30)
death 111 (10.63) 18 (7.06) 11 (4.21) 23 (9.47) 59 (20.70)
Los Icu, M (Q1, Q3) 2.33(1.27, 5.67) 1.95 (1.16,4.39) 2.23(1.26,5.17) 2.54 (1.29,5.67) 2.88 (1.39,6.96) 0.010
Los Hospital, M (Qi, Q) 11.85 (5.86,22.56)  8.19 (4.78,19.45) 8.97 (4.85,19.68) 12.52 (6.52,26.01) 16.04 (8.37,28.79) <.001

Group 1: MLR<<0.32; Group 2: 0.32<MLR <<0.57; Group 3: 0.57<MLR <1; Group 4: MLR>1

M: Median, Q:: 1st Quartile, Qs: 3st Quartile.



Table 3 Cox regression model (28-day all-cause mortality)

Modell Model2 Model3
Variables
HR (95%Cl) P HR (95%Cl) P HR (95%Cl) P

MLR 4 group

Quartile 1 1.57 (0.80 ~ 3.08) 0.194 1.58 (0.80 ~ 3.14) 0.189 1.79 (0.90 ~ 3.56) 0.095

Quartile 2 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Quartile 3 1.64 (0.83 ~3.22) 0.154 1.54 (0.78 ~ 3.04) 0.210 1.39 (0.70 ~ 2.76) 0.346

Quartile 4 3.63 (2.01 ~ 6.54) <.001 3.03 (1.66 ~ 5.52) <.001 2.91 (1.59 ~5.32) <.001
HR for trend 2.53 (1.72 ~ 3.70) 2.15 (1.44 ~ 3.19) 2.00 (1.34 ~ 2.99)
P for trend <.001 <.001 <.001

Quartile 1 ( MLR < 0.32) ; Quartile 2: 0.32<MLR < 0.57; Quartile 3: 0.57<MLR < 1; Quartile 4: MLR>1

HR: Hazard Ratio, Cl: Confidence Interval

Model 1: Crude

Model 2: Adjust: age, gender, language, marital status, race

Model 3: Adjust: age, hypertension, myocardial infarct, congestive heart failure, cerebrovascular disease, chronic pulmonary

disease, diabetes, renal disease, malignant cancer, liver disease, sepsis, gender, language, inarital status, race



Table 4. Cox regression model (365-day all-cause mortality)

Modell Model2 Model3
Variables
HR (95%Cl) P HR (95%Cl) P HR (95%Cl) P

MLR 4 group

Quartile 1 1.46 (0.94 ~ 2.28) 0.090 1.55 (0.99 ~ 2.42) 0.055 1.63 (1.04 ~ 2.56) 0.032

Quartile 2 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Quartile 3 1.84 (1.20 ~ 2.83) 0.005 1.82 (1.18 ~2.79) 0.006 1.63 (1.06 ~ 2.52) 0.027

Quartile 4 3.33 (2.26 ~ 4.90) <.001 2.90 (1.96 ~ 4.29) <.001 2.81 (1.89 ~4.17) <.001
HR for trend 2.36 (1.83 ~ 3.05) 2.03 (1.56 ~ 2.65) 1.96 (1.50 ~ 2.58)
P for trend <.001 <.001 <.001

Quartile 1 ( MLR < 0.32) ; Quartile 2: 0.32<MLR < 0.57; Quartile 3: 0.57<MLR < 1; Quartile 4: MLR>1

HR: Hazard Ratio, Cl: Confidence Interval
Modell: Crude

Model2: Adjust: age, gender, language, marital status, race

Model3: Adjust: age, hypertension, myocardial infarct, congestive heart failure, cerebrovascular disease, chronic pulmonary

disease, diabetes, renal disease, malignant cancer, liver disease, sepsis, gender, language, inarital status, race

Figl.Screening process for AP patients in ICU and the research process.
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Fig 2.28-day KM survival curve.KM curves showing the survival rates at 28 days for
each quartile. MLR: Quartile 1 (<0.32), Quartile 2 (0.32<MLR<0.57), Quartile 3 (0.57
<MLR<1), and Quartile 4 (MLR=1).
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Fig 3. RCS analysis of 28-day (A) and 365-day (B) all-cause mortality after adjusting the
covariates. Adjusted covariates: age, hypertension, myocardial infarct,congestive heart failure,
cerebrovascular disease, chronic pulmonary disease, diabetes,renal disease, malignant cancer,
liver disease, sepsis, gender, language, marital status,race
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Fig 4. (A) Subgroup forest plot for 28-day all-cause mortality. (B) Subgroup forest plot

for 365-day all-cause mortality.

A Variable Count Percent (%) HR (95% CI) P value P for interaction
Gender i 0.743
Male 611 58.5 i = 1.02(1.01101.03) <0.001
Female 433 415 | = 1.02(1.01101.03) 0.002
Age 0575
260 456 437 | e 1.02(1.01101.03) <0.001
<60 588  56.3 ———e—  1.02(1.00t0 1.03) 0.031
Diabetes 1 0.938
No 649  62.2 | e 1.02(1.01101.03) <0.001
Yes 395 378 | 1.02(1.01101.03) 0.001
Hypertension i 0.851
No 379 36.3 | = 1.02(1.01t01.03) <0.001
Yes 665 637 | e 1.02(1.01101.03) <0.001
Myocardial infarct 0.375
No 926  88.7 —a—i  1.02 (1.01t0 1.03) <0.001
Yes 118 113 | +————1.03(1.01t01.05) 0.002
Overall 1044 100 | 1.02(1.01101.03) <0.001
098 1 102 1.04
B Protective factor Risk factor
Variable Count Percent (%) HR (95% C!) P value P for interaction
Gender i 0.756
Male 611 58.5 | e 1.02(1.01101.03) <0.001
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No 649 622 | e 1.02(1.01101.03) <0.001
Yes 395 378 b 1.02 (1.01 t0 1.02) 0.001
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Yes 665 637 | e 1.02(1.01101.03) <0.001
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Yes 118 113 | ———  1.02(1.01101.03) 0.005
Overall 1044 100 = 1.02 (1.01 10 1.02) <0.001
098 1 102 1.04
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Fig 5. Demographic and clinical feature selection using the least absolute shrinkage and

selection operator (LASSO) binary logistic regression model. (A)LASSO coefficient

profiles of the 68 texture features; (B) Tuning parameter ( A ) selection using LASSO

penalized logistic regression with 10-fold cross validation.
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Fig 6. ROC curves of the machine learning algorithms. (A) derivation groups;

(B)validation groups.
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Fig 7. The calibration curve of each model. (A) derivation groups; (B) validation groups.
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Fig 9. The SHAP summary plots for all models. (A)coxph shap (B)gbm shap (C)xgboost
shap (D)nn shap (E)rsf shap (F)ctree shap

(¢}
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Legends

Fig 1. Screening process for AP patients in ICU and the research process.

Fig 2.28-day KM survival curve. KM curves showing the survival rates at 28 days for each
quartile.MLR: Quartile 1 (<0.32), Quartile 2 (0.32<MLR <<0.57), Quartile 3 (0.57<MLR <1),
and Quartile 4 (MLR>1).

Fig 3. RCS analysis of 28-day (A) and 365-day (B) all-cause mortality after adjusting the
covariates. Adjusted covariates: age, hypertension, myocardial infarct,congestive heart failure,

cerebrovascular disease, chronic pulmonary disease, diabetes,renal disease, malignant cancer,



liver disease, sepsis, gender, language, marital status,race

Fig 4. (A) Subgroup forest plot for 28-day all-cause mortality. (B) Subgroup forest plot for 365-
day all-cause mortality.

Fig 5. Demographic and clinical feature selection using the least absolute shrinkage and
selection operator (LASSO) binary logistic regression model. (A)LASSO coefficient profiles
of the 68 texture features; (B) Tuning parameter (1) selection using LASSO penalized logistic
regression with 10-fold cross validation.

Fig 6. ROC curves of the machine learning algorithms. (A) derivation groups; (B)validation
groups. Coxph, Cox proportional hazards survival learner; GBM, gradient boosting machines;
ctree, conditional inference tree; NN, neural network; rsf,Survival Random Forest SRC Learner;
xgboost, extreme gradient boosting survival learner; T days; AUC area under the curve.

Fig 7. The calibration curve of each model. (A) derivation groups; (3) validation groups.

Fig 8. DCA curves of the machine learning algorithms. (A) derivation groups; (B)validation
groups.

Fig 9. The SHAP summary plots for all models.



