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Abstract 

The purpose of this study was to evaluate the predictive value of monocyte-to-lymphocyte ratio 

(MLR) on the short-term (28 days) and long-term (365 days) mortality risk in patients with 

acute pancreatitis (AP) using multiple statistical and machine learning (ML) models. Studies 

selected 1,044 eligible AP patients from the MIMIC-IV database and divided them into four 

groups based on their MLR values (MLR＜0.32; 0.32≤MLR＜0.57; 0.57≤MLR＜1; MLR≥1). 

Findings revealed that MLR demonstrated a U-shaped relationship with patient mortality risk, 

with the minimal mortality risk occurring at an MLR of approximately 0.57. Cox regression 

model analysis showed that after adjusting for multiple parameters, MLR was still significantly 

associated with the risk of death. Moreover, ML model analysis identified that MLR has 

potential value in predicting AP patient outcomes. This study suggests that MLR can be used 

as a potential indicator to assess prognostic risk in critically ill patients with AP to support 

clinical decision-making. 

Keywords: Acute pancreatitis, Monocyte-to-lymphocyte ratio, Machine learning, Predictive 

models, MIMIC database 
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Introduction 

Acute pancreatitis (AP), which is a common inflammatory disease of the exocrine pancreas, 

causes severe abdominal pain and multiple organ dysfunction, which can result in pancreatic 

necrosis, chronic organ failure, and mortality[1]. Although the mortality rate for AP is only 1–

5%, the mortality rate for severe acute pancreatitis (SAP) is close to 20% -30%[2]. The global 

incidence of AP is increasing; specifically, it has a global incidence of 30-40 cases per 100,000 

people per year and has been demonstrated to be more than twice this rate in some regions, thus 

contributing to high costs for health care systems [3]. Currently, there is no specific causal 

treatment for AP[4], although some underlying causes such as hypertriglyceridemia and 

gallstones can be managed. 

Although the pathophysiological mechanisms of AP have become better understood in recent 

years, its prognostic assessment remains challenging [5]. The inflammatory response and 

immune dysregulation are important causes of the onset and progression of AP [6]. Consequently, 

the search for biomarkers that reflect the inflammatory status and immune function of patients 

is important for the early identification of high-risk patients and improvements in patient 

prognosis. 

ML techniques are becoming increasingly important in health care and have demonstrated 

considerable potential for accurately predicting survival rates and disease progression in cancer 

patients[7]. To clarify, while ML techniques are increasingly utilized to predict patient outcomes 

in AP, there are significant deficiencies in the methodology of recently published ML based 

prognostic models in AP patients[8], and few systems are specifically designed for routine 

screening of AP-related risks in the ICU. Thus, this study, based on ML algorithms, aimed to 

construct multiple prediction models and feature analysis methods for data analysis, identify 

the primary clinical markers influencing AP patients' prognosis, and provide stronger support 

for clinical decision-making. 

The monocyte-to-lymphocyte ratio (MLR) integrates two key immune pathways: monocytes 

represent systemic inflammation, while lymphocytes reflect immune competence. MLR has 

rarely been researched in AP. Given the central role of inflammation and immune dysregulation 

in AP pathogenesis, we hypothesized that MLR could serve as a novel prognostic biomarker in 

critically ill AP patients.  
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We focused specifically on AP patients requiring ICU admission because this subgroup 

experiences the highest morbidity and mortality, representing a critical population where early 

and accurate prognostic assessment is most urgently needed to guide intensive care resource 

allocation and therapeutic strategies. 

Methods  

Data source  

This study utilized data from MIMIC-IV v3.0 (Medical Information Mart for Intensive Care), 

which is a publicly available critical care database containing deidentified records of 94,458 

intensive care unit admissions between 2008 and 2022 (Figure 1). MIMIC-IV is a publicly 

available critical care database from the United States, containing data from Beth Israel 

Deaconess Medical Center in Boston. The Institutional Review Board of the BIDMC approved 

a waiver of the author's informed consent. The author (WW) was permitted to access the 

database (certificate number 56452808). 

Inclusion and exclusion criteria 

Inclusion criteria: 1. patients aged over 18 years; and 2. patients diagnosed with AP based on 

the International Classification of Diseases[9]. Exclusion criteria: 1. patients who had an ICU 

stay of fewer than twenty-four hours; 2. absent serum monocytes and lymphocytes in the initial 

laboratory test; and 3. data only being included from a patient’s initial hospitalization in cases 

where the patient experienced multiple ICU stays. Finally, 1044 individuals who met the criteria 

were selected for inclusion (Figure 1). 

Outcome  

This study primarily focused on 28-day all-cause mortality as the main outcome, and 365-day 

all-cause mortality was regarded as the secondary outcome. 

Data extraction 

We retrieved data from the MIMIC-IV, including demographic information, vital signs, 

comorbidities, therapies, laboratory data, scoring systems, and prognostic data during follow-

up. All of the hematological parameters were assessed for the first time following patient 

admission to the ICU. The following formula was used for determining the MLR: serum 

monocytes (K/µL)/serum lymphocytes (K/µL). 

Statistical analysis 
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Patients were stratified into four groups based on quartiles of MLR values to explore potential 

nonlinear associations and ensure balanced group sizes for comparative analysis. The normality 

of distribution was assessed via Shapiro-Wilk tests supplemented by visual examination of the 

Q-Q plots. Normally distributed continuous variables are presented as the means ± standard 

deviations, whereas nonnormally distributed variables are reported as medians (interquartile 

ranges). Categorical variables are expressed as counts (percentages). Intergroup comparisons 

were performed via Mann-Whitney U tests for nonparametric continuous data, chi-square tests 

for categorical variables, or Fisher's exact tests (when appropriate). A two-tailed p value less 

than 0.05 was considered to be statistically significant. R software was used for all of the 

statistical analyses (version 4.4.1). 

Kaplan-Meier survival analysis with log-rank tests was used to compare 28-day and 365-day 

survival rates among the four groups. 

To control for potential confounding factors in our survival analysis, we constructed 

multivariate Cox proportional hazards regression models with progressive covariate 

adjustments. Model I included only the MLR. Model II was adjusted for age, sex, language, 

marital status, and race. Subsequently, Model III was adjusted for age, hypertension, myocardial 

infarction, congestive heart failure, cerebrovascular disease, chronic pulmonary disease, 

diabetes, renal disease, malignant cancer, liver disease, sepsis, sex, language, marital status, and 

race. 

To investigate potential variations in the associations between the MLR and outcomes across 

different patient subgroups, as well as to examine possible interaction effects, we conducted 

stratified analyses by using the following variables: (1) demographic characteristics including 

sex and age (<60 vs. ≥60 years) and (2) comorbidities including hypertension and diabetes 

mellitus (DM). The findings were graphically presented using forest plots. In addition, 

restricted cubic spline (RCS) plots with four knots were used to identify potential inflection 

points to assess the linear or nonlinear relationships between the clinical outcomes and the 

levels of the MLR as continuous variables. The analysis was also adjusted for various 

confounding factors, including age, hypertension, myocardial infarction, congestive heart 

failure, cerebrovascular disease, chronic pulmonary disease, diabetes, renal disease, malignant 

cancer, liver disease, sepsis, sex, language, marital status, and race. For all of the models, the 
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median values of the MLR were set as a reference. 

Model development 

We conducted a LASSO regression cross-validation analysis to select variables. In the 

development of the machine learning (ML) algorithm, acceptable variables were carefully 

selected and integrated into the algorithm. The dataset was subsequently partitioned into 

training and validation subsets at a 7:3 ratio. All ML analyses were conducted using R software 

(version 4.4.1) within the mlr3 ecosystem (version 0.20.2). The modeling workflow was 

constructed using the mlr3pipelines package. The Cox proportional hazards survival learner 

(Coxph), conditional inference tree (ctree), gradient boosting machine (GBM), neural network 

(NN), survival random forest SRC learner (rsf), and extreme gradient boosting survival learner 

(xgboost) algorithms. For algorithms requiring hyperparameter tuning (ctree, rsf, xgboost, 

GBM, NN), we performed a 5-fold cross-validated grid search using the mlr3 tuning package. 

A predefined parameter space was established for each learner, and the optimal hyperparameter 

set was selected based on maximizing Harrell's C-index. The final model for each algorithm 

was then refitted on the entire training set using its respective optimal configuration. The key 

hyperparameters for the final models were as follows: Ctree: alpha = 0.1, minbucket = 25, Rsf: 

ntree = 200, mtry = 3, nodesize = 21, Xgboost: eta = 0.08917, max_depth = 1, nrounds = 269, 

GBM: n.trees = 100, interaction.depth = 1, n.minobsinnode = 5, shrinkage = 0.1, NN: 

num_nodes = c (5, 5, 5), dropout = 0.2631, weight_decay = 0.1331, learning_rate = 0.07773, 

batch_size = 32. We optimized hyperparameters using grid search and assessed model 

robustness via five-fold cross-validation. The ROC curve and its corresponding area under the 

curve (AUC) were used to determine model performance. Clinical effectiveness was evaluated 

using decision curve analysis (DCA), and the model's accuracy in forecasting absolute risk was 

assessed using calibration curves. The Shapley additive explanations (SHAP) method was used 

to explain the optimal model to understand the impact of individual features on the model 

predictions (Figure 1). 

Results 

Baseline characteristics 

Data were available from 1044 patients. Table 1 displays the baseline characteristics of the 

study participants. There were 433 (41.48%) females and 611 (58.52%) males, as well as 665 
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(63.70%) patients with hypertension, 118 (11.30%) patients with myocardial infarctions, 229 

(21.93%) patients with congestive heart failure, 71 (6.8%) patients with peripheral vascular 

disease, 69 (6.61%) patients with cerebrovascular disease, 227 (21.74%) patients with chronic 

pulmonary disease, 395 (37.84%) patients with diabetes, 243 (23.28%) patients with renal 

disease, 79 (7.57%) patients with malignant cancer, 368 (35.25%) patients with liver disease, 

12 (1.15%) patients with AIDS, and 606 (58.05%) patients with sepsis. 

Patients were divided into the following four groups: Group 1 (MLR<0.32), which consisted of 

255 individuals; Group 2 (0.32≤MLR<0.57), which consisted of 261 individuals; Group 3 

(0.57≤MLR<1), which consisted of 243 individuals; and Group 4 (MLR≥1), which consisted 

of 285 individuals. 

Significant variations were observed across MLR groups in multiple clinical parameters (Table 

1). The overall patterns suggested that Group 1 tended to have higher values for mean arterial 

pressure, oxygen saturation, hematocrit, hemoglobin, albumin, calcium, sodium and initial 

absolute lymphocyte count, while generally showing lower values for prothrombin time, partial 

thromboplastin time, international normalized ratio, blood cell count, and initial absolute 

monocyte count. Additionally, the patterns indicated that Group 2 tended to have a greater 

bicarbonate level and a lower creatinine level. Group 3 was generally associated with a greater 

platelet count (max) and potassium level (max), alongside a lower anion gap (max), alkaline 

phosphatase level, and aspartate aminotransferase level (max). Moreover, Group 4 presented 

the most pronounced pattern, tending to have a greater respiratory rate; greater white blood cell 

count, anion gap, BUN, creatinine, glucose, prothrombin time, partial thromboplastin time, 

alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bilirubin, 

initial absolute monocyte count, Oxford acute severity of illness score, simplified acute 

physiology score II and acute physiology score III values; and lower mean arterial pressure, 

temperature, oxygen saturation, hematocrit, albumin, bicarbonate, calcium, chloride, sodium, 

and initial absolute lymphocyte count values. 

Clinical outcomes 

Statistically significant differences in survival distribution among the different MLR groups 

were observed over time (Table 2). The overall patterns indicated that the highest ICU mortality 

(10.88%) and hospital mortality (20.70%) were numerically observed in Group 4 (the highest 
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MLR group), while the lowest rates (3.45% and 4.21%, respectively) were noted in Group 2. 

Regarding length of stay, Group 4 was associated with the longest median ICU stay (2.88 days) 

and hospital stay (16.04 days), whereas the shortest median durations were observed in Group 

1 (1.95 days and 8.19 days, respectively). Mortality rates across various time points (28-day to 

365-day) also showed a consistent pattern, with Group 4 demonstrating numerically higher rates 

and Group 2 showing numerically lower rates compared to other groups. 

Kaplan-Meier (K-M) curves demonstrated a significant overall difference in survival 

probability among the groups at 28 days (log-rank p < 0.001, Figure 2). Visual inspection of the 

curves suggested that patients in the fourth quartile had the poorest estimated survival. In 

contrast, no significant overall difference was observed in the 365-day survival rates across the 

groups (Supplementary Figure 1). 

In the RCS analysis, both 28-day all-cause mortality (Figure 3A) and 365-day all-cause 

mortality (Figure 3B) exhibited a U-shaped relationship between the MLR and mortality risk. 

This pattern persisted irrespective of whether the covariates were adjusted (Supplementary 

Figure 2). 

Cox regression model 

The results of the Cox regression analyses for 28-day all-cause mortality are presented in Table 

3. Using Q2 as the reference, the mortality risks in Q1 and Q3 were not significantly different 

across all models (all p > 0.05). In contrast, Q4 was associated with a significantly elevated risk 

compared to Q2 in the crude model (Model 1, HR: 3.63, 95% CI: 2.01-6.54), and this 

association remained robust after sequential adjustments for demographic factors (Model 2, HR: 

3.03, 95% CI: 1.66-5.52) and comprehensive clinical comorbidities (Model 3, HR: 2.91, 95% 

CI: 1.59-5.32). Furthermore, a significant positive trend was observed across the quartiles (P 

for trend < 0.001 in all models), indicating a graded relationship between higher MLR levels 

and increased 28-day mortality risk. 

The associations between MLR quartiles and 365-day all-cause mortality are shown in Table 4. 

In the fully adjusted model (Model 3), both Q1 (HR: 1.63, 95% CI: 1.04-2.56) and Q3 (HR: 

1.63, 95% CI: 1.06-2.52) showed a significantly increased mortality risk compared to Q2. The 

risk was most pronounced in Q4 (HR: 2.81, 95% CI: 1.89-4.17). This pattern was consistent 

across all models, with significant positive trends (all p for trend < 0.001), reinforcing a strong, 
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independent association between elevated MLR and long-term mortality. Notably, the 

emergence of a significant risk in Q1 at 365 days, which was not observed at 28 days, suggests 

that the predictive power of MLR may extend to long-term outcomes across a broader range of 

values. 

Subgroup analysis  

To evaluate the consistency of the association between MLR and mortality across different 

patient populations, we conducted subgroup analyses for both 28-day (Figure 4A) and 365-day 

(Figure 4B) all-cause mortality. The analyses stratified patients by sex (male/female), age (≥

60/<60 years), and key comorbidities (hypertension, diabetes, myocardial infarction). The 

increased mortality risk associated with MLR was consistently observed in all subgroups at 

both time points (all P<0.05). Importantly, no significant interaction effects were detected (P 

for interaction >0.05 for all variables), demonstrating that the association remained robust 

regardless of these baseline characteristics. 

Feature selection 

Feature selection was performed using LASSO (Least Absolute Shrinkage and Selection 

Operator) regression with 28-day all-cause mortality as the outcome variable. LASSO 

regression was used to screen the relevant features of the training set, and the characteristics of 

the variable coefficients are shown in Figure 5A. The iterative analysis was performed using a 

ten fold cross-validation method. The 10 variables that were determined to be closely associated 

with AP included age, temperature_mean, Spo2_min, hemoglobin_max, partial thromboplastin 

time (PTT_min), bilirubin_total_min, APSIII, heart_failure, cancer, and MLR (Figure 5B). 

Model performance comparisons 

A K-M survival curve was constructed after splitting, which compared the survival probabilities 

of the validation set and the derivation set (Supplementary Figure 3). The derivation set and the 

validation set did not significantly differ in terms of survival probability, thus indicating that 

the split was reasonable. 

To determine the risk of AP patients in the ICU, we built six machine learning models. In the 

derivation group (Figure 6A), the AUC of the xgboost model was 0.9151, and that of the rsf 

model was 0.9381, both of which indicated high prediction accuracy. In the validation group 

(Figure 6B), the Coxph model demonstrated the highest AUC of 0.8908, whereas the xgboost 
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model had an AUC of 0.8677, and the rsf model had an AUC of 0.8771, both of which were 

slightly lower than those of the derived populations; however, they still exhibited good 

predictive performance. Depending on the AUC values in the derivation groups, the Coxph and 

rsf models may be optimal, especially in applications that require high prediction accuracy. 

Model calibration curves were also constructed, which corresponded to the model's 

performance in the derivation and validation groups (Figure 7). In both groups, the calibration 

curves for most of the models were close to the reference line, thus suggesting that the models 

performed well in predicting risk and that the predicted values were in good agreement with the 

actual values. In the derived group (Figure 7A), the calibration curves for all of the models were 

relatively close to the reference line, especially in regions with low prediction risk. This result 

demonstrated that the model was reliable regarding the training data. In the validation group 

(Figure 7B), the calibration curve of the model was also close to the reference line, thereby 

suggesting that the model also demonstrated good generalizability for unseen data. Compared 

with those of the other models, the calibration curves of the Coxph model in the derived groups 

and the ctree and Coxph models in the validated groups were closer to the reference line in 

high-risk regions, thus indicating that the predictions in these regions were more accurate. 

The DCA curves of the six ML algorithms on two sets of data (the derivation group and the 

validation group) are presented in Figure 8. Every model (with the exception of GBM) 

demonstrated a strong net benefit in terms of clinical application over a broad range of threshold 

probabilities; additionally, the models exhibiting the largest net benefits were the rsf and 

xgboost models (Figure 8A), as well as the Coxph and xgboost models (Figure 8B). Therefore, 

based on the DCA curve, the model with the highest net return within a specific threshold range 

can be selected. 

Figure 9 presents the SHAP summary plots for all models, from which two key observations 

emerge. First, MLR's importance is not an artifact of a single model but is a robust finding 

across multiple, independent algorithms. Furthermore, the high importance assigned to MLR 

by non-linear models like RSF, XGBoos and GBM aligns perfectly with our previous finding 

of a significant non-linear relationship via RCS plots. It confirms that these models effectively 

capture the complex, U-shaped association between MLR and mortality that a linear Cox model 
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may partially mask in its feature importance breakdown. Therefore, the combination of the Cox 

model's superior overall AUC and the cross-model validated importance of MLR via SHAP, 

provides a more comprehensive and compelling argument for MLR's role as a key prognostic 

factor. Finally, based on the results, the optimal model was determined to be Coxph. To facilitate 

clinical application, a nomogram was developed and is presented in supplementary figure 4. 

Discussion 

Our research identified significant associations between the MLR and increased 28-day, 365-

day, and in-hospital mortality in SAP patients. These associations remained significant across 

different age groups, sexes, and subgroups (type 2 diabetes, hypertension, myocardial infarction) 

after adjusting for covariates. This is the first study to investigate the link between prognosis 

and the MLR in SAP patients. 

Among the clinical outcomes, the K-M survival curve revealed that the MLR≥1 group exhibited 

the highest mortality. Moreover, the RCS analysis revealed a U-shaped association between the 

MLR and 28-day mortality in AP patients; additionally, the Cox regression model revealed that 

a substantially greater risk of death was associated with an MLR ≥ 1. The correlation between 

the MLR and mortality risk persisted even after controlling for several variables. In addition, 

the MLR demonstrated a similar trend in the prediction of 365-day mortality, thus suggesting 

that it has some potential predictive value for long-term prognosis. ML algorithms revealed that 

the Coxph and rsf models exhibited the highest AUC values in the validation set. Compared 

with those of the other models, the ctree and Coxph models in the validated groups were closer 

to the reference line in high-risk regions, thereby indicating that the predictions in these regions 

were more accurate. Moreover, the DCA curve revealed that the Coxph and xgboost models 

demonstrated the greatest net benefits in the validation set. The SHAP method was used to 

visually interpret the Coxph model, and the APS III score and age were determined to be the 

most important predictive features; additionally, the MLR also had an impact on the model 

prediction. 

Monocytes and lymphocytes are commonly used indicators of disease inflammation and 

immune status. Monocyte was significantly higher in survivors in sepsis[10], And low 

lymphocyte count serves as an independent marker of progressive inflammation[11]. However, 

the prediction performance of monocyte or lymphocyte alone is poor. 
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Monocyte-lymphocyte ratio (MLR) has shown excellent predictive performance in many 

diseases. A previous study demonstrated that MLR can provide critical insights into the overall 

physiological conditions of patients with traumatic brain injury (TBI)[12]. One study revealed 

that both the identification of those patients with incident symptomatic TB disease and the 

prediction of subsequent TB infections may benefit from the utilization of the MLR[13]. The 

MLR has also been assessed as a predictor of survival in patients with various malignant 

diseases[14,15]. Due to the fact that the MLR has rarely been researched in AP, we investigated 

the relationship between the MLR and mortality in ICU patients with AP to determine the 

usefulness of the MLR in predicting ICU AP prognosis. 

The MLR is a novel inflammatory biomarker that integrates the effects of both inflammatory 

markers (monocytes and lymphocytes)[16]. The MLR has exhibited high predictive and 

prognostic values in a variety of cancers, including endometrial cancer[17], renal cell 

carcinoma[16], and breast cancer[18]. High expression of MLR was detected in inflammatory 

diseases. High MLR expression was associated with mortality in acute respiratory distress 

syndrome[19]. In addition, the MLR is often used to evaluate the prognosis of pulmonary TB[20]. 

The MLR is a convenient and noninvasive inflammatory biomarker[21] that provides a more 

complete representation of the balance between inflammation and immune function. However, 

few studies have investigated the role of the MLR in predicting the prognosis of AP patients. 

Therefore, more detailed experiments are needed to investigate the association between the 

MLR and AP. 

We used LASSO regression for feature selection and constructed six models, including Coxph, 

ctree, GBM, NN, rsf, and xgboost. The SHAP approach was subsequently utilized to evaluate 

the best model (Coxph) and examine how each feature affected the model predictions. SHAP 

is a method that is used for interpreting ML model predictions; moreover, it quantifies the 

contribution of each feature to the model predictions[22], and we utilized this method to 

determine the ten most crucial feature variables pertaining to AP mortality. Recently, research 

based on ML and SHAP has shown that the six most important characteristic variables are 

important for the short-term assessment of AP[23]. By using a greater number of biochemical 

indicators, our study further investigated the important predictors and prediction models for 28-

day and 365-day all-cause mortality in AP patients. The results demonstrated that the 10 
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characteristic variables (apsIII, age, hemoglobin_max, heart_failure, cancer, temperature_mean, 

PTT_min, SpO2_min, MLR, and bilirubin_total_min) involved in the model that was proposed 

in this study are equally important for predicting the poor prognosis of AP patients. 

Research has indicated that in AP patients, a lower SpO2 is associated with a greater mortality 

rate[24]. Moreover, AP may be the first manifestation of pancreatic cancer, and patients with 

malignant tumors such as pancreatic cancer are more likely to have a poor prognosis[25]. 

Additionally, several studies have also suggested that elderly patients with AP are likely to have 

atypical clinical presentations and poor prognoses, which are mainly due to existing 

comorbidities[26,27]. In rats with AP, hypothermia can decrease pancreatic inflammation and 

increase survival[28]. In addition, the death rate of SAP patients has been shown to be closely 

associated with PTT[29]. These results indicate that the previously mentioned variables are 

trustworthy predictors of AP mortality rates. 

In our research, the U-shaped association that was observed between the MLR and mortality 

may be closely related to the body's inflammatory response and immunomodulatory 

mechanisms. Monocytes are a vital part of the innate immune system. And lymphocytes possess 

strong effector mechanisms[26]. Inflammation is associated with a low lymphocyte count and 

function[27]. A higher MLR indicates a high monocyte count, which aggravates local and 

systemic inflammatory responses, thereby leading to tissue damage[25], And the elevated MLR 

may caused by the decrease in the lymphocyte count, making it difficult to effectively eliminate 

inflammatory factors, thus leading to worsening of the disease[28].  

Unlike previous studies, this study not only focused on 28-day mortality but also explored the 

predictive value of the MLR for long-term prognosis by using 365-day follow-up data, which 

further expands the potential application of the MLR in the field of AP. In addition, this study 

used various ML models to analyze the data. These models outperformed traditional statistical 

methods in accurately identifying key mortality factors and provided robust support for clinical 

decision-making. Clinically, the MLR (which is a readily accessible biomarker obtained from 

routine blood tests) demonstrates high utility for early risk stratification, thereby enabling the 

rapid identification of high-risk AP patients upon admission. Methodologically, the integration 

of ML algorithms (such as xbgoost, rsf, and NN) can facilitate the development of robust 

prognostic models and feature analysis frameworks, thus advancing predictive analytics in AP 
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research. These models underscore the role of the MLR in AP.  

Despite the use of rigorous methodologies, several limitations existed in this study. First, the 

data (which were solely derived from the MIMIC-IV database) may have introduced selection 

bias, thereby limiting generalizability. Second, we were unable to account for certain 

confounding factors that are potentially result-altering, such as concurrent infections (beyond 

the diagnosis of sepsis), disease-specific severity scores (e.g., BISAP, Revised Atlanta Criteria), 

and detailed medication records (e.g., steroids or immunomodulators), which could influence 

both patient outcomes and MLR values. Future studies should aim to incorporate these critical 

variables to enhance the robustness and clinical applicability of the prognostic models. Third, 

when considering model-specific constraints, the Coxph model assumes that the risk ratio is 

constant over time, which may not be true in some cases, whereas xgboost has high predictive 

performance but poor model interpretation. Future studies may consider expanding the data 

sources, optimizing model construction methods, performing in-depth explorations on the 

interactions between various characteristics, and validating the findings in more health care 

institutions and patient groups, in order to improve the reliability and usefulness of the results 

of this study. 

Conclusion 

This study demonstrated that the likelihoods of short-term and long-term death in AP patients 

are substantially connected with the MLR, and this association was observed to be U shaped. 

A comparison of multiple ML models revealed that the Coxph and rsf models performed well 

in predicting patient prognosis. Via multidimensional data analysis, the MLR was observed to 

be strongly correlated with AP severity, especially in the prediction of long-term survival. 

Therefore, the MLR can be used as a potential indicator to assess the prognostic risk of 

patients with AP in the ICU. 
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Table 1 Patient demographics and baseline characteristics. 

Variables 
Total (n = 

1044) 
G1 (n = 255) G2 (n = 261) G3 (n = 243) G4 (n = 285) P 

Demographics       

Age, M (Q₁, Q₃) 
57.00 (46.00, 

68.00) 
53.00 (44.00,64.50) 57.00 (44.00,68.00) 57.00 (45.50,67.00) 60.00 (49.00,73.00) <.001 

Gender, n(%)      0.039 

  Male 611 (58.52) 130 (50.98) 158 (60.54) 145 (59.67) 178 (62.46)  

  Female 433 (41.48) 125 (49.02) 103 (39.46) 98 (40.33) 107 (37.54)  

Language, n(%)      0.107 

  English 955 (91.48) 225 (88.24) 244 (93.49) 227 (93.42) 259 (90.88)  

  Other 89 (8.52) 30 (11.76) 17 (6.51) 16 (6.58) 26 (9.12)  

Marital Status, n(%)      0.024 

  Single 449 (43.01) 107 (41.96) 98 (37.55) 98 (40.33) 146 (51.23)  

  Married 102 (9.77) 30 (11.76) 29 (11.11) 25 (10.29) 18 (6.32)  

  Widowed 428 (41.00) 105 (41.18) 115 (44.06) 109 (44.86) 99 (34.74)  

  Divorced 65 (6.23) 13 (5.10) 19 (7.28) 11 (4.53) 22 (7.72)  

Race, n(%)      <.001 

  White 647 (61.97) 134 (52.55) 175 (67.05) 156 (64.20) 182 (63.86)  

  Black/Africa American 168 (16.09) 62 (24.31) 44 (16.86) 35 (14.40) 27 (9.47)  

  Other  229 (21.93) 59 (23.14) 42 (16.09) 52 (21.40) 76 (26.67)  

Vital signs       

MAP Mean, M (Q₁, Q₃) 
81.00 (73.00, 

91.00) 
84.00 (75.00,92.50) 82.00 (72.00,92.00) 80.00 (73.50,88.50) 79.00 (71.00,89.00) 0.003 

RR Min, M (Q₁, Q₃) 
13.00 (10.00, 

15.00) 
12.00 (10.00,15.00) 12.00 (10.00,15.00) 13.00 (10.00,16.00) 13.00 (11.00,16.00) 0.015 

RR Max, M (Q₁, Q₃) 
28.00 (25.00, 

33.00) 
28.00 (24.00,32.00) 28.00 (24.00,34.00) 28.00 (25.00,33.00) 28.00 (24.00,34.00) 0.737 

RR Mean, M (Q₁, Q₃) 
19.00 (17.00, 

23.00) 
19.00 (17.00,23.00) 19.00 (17.00,22.00) 19.00 (17.00,22.50) 20.00 (17.00,23.00) 0.198 

Temperature Min, M (Q₁, Q₃) 
36.60 (36.40, 

36.80) 
36.60 (36.30,36.80) 36.60 (36.40,36.80) 36.60 (36.40,36.80) 36.50 (36.30,36.70) 0.010 

Temperature Max, M (Q₁, 

Q₃) 

37.30 (37.00, 

37.80) 
37.20 (36.90,37.90) 37.30 (37.10,37.90) 37.30 (37.00,37.80) 37.20 (37.00,37.70) 0.173 

Temperature Mean, M (Q₁, 

Q₃) 

36.90 (36.70, 

37.20) 
36.90 (36.70,37.25) 36.90 (36.70,37.20) 36.90 (36.70,37.30) 36.90 (36.70,37.10) 0.040 

Spo2 Min, M (Q₁, Q₃) 
92.00 (90.00, 

94.00) 
93.00 (90.00,95.00) 92.00 (90.00,94.00) 92.00 (90.00,95.00) 91.00 (89.00,94.00) 0.016 

Spo2 Max, M (Q₁, Q₃) 
100.00(99.00, 

100.00) 
100.00 (99.00,100.00) 100.00 (99.00,100.00) 100.00 (99.00,100.00) 100.00(99.00,100.00) 0.047 

Spo2 Mean, M (Q₁, Q₃) 
97.00 (95.00, 

98.00) 
97.00 (96.00,98.00) 96.00 (95.00,98.00) 97.00 (95.00,98.00) 96.00 (95.00,98.00) <.001 

Laboratory data       

HCT Min, M (Q₁, Q₃) 
29.70 (24.70, 

34.80) 
30.40 (25.20,35.60) 29.50 (25.20,34.50) 29.40 (24.25,34.40) 29.40 (23.40,34.70) 0.135 
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Variables 
Total (n = 

1044) 
G1 (n = 255) G2 (n = 261) G3 (n = 243) G4 (n = 285) P 

HCT Max, M (Q₁, Q₃) 
33.90 (29.00, 

38.90) 
35.20 (29.90,39.65) 33.30 (29.20,38.10) 34.00 (28.80,38.95) 33.00 (28.00,38.60) 0.028 

Hb Min, M (Q₁, Q₃) 
9.70 (7.90, 

11.50) 
10.00 (8.30,11.90) 9.70 (8.10,11.50) 9.40 (7.75,11.25) 9.60 (7.70,11.20) 0.048 

Hb Max, M (Q₁, Q₃) 
11.00 (9.30, 

12.80) 
11.50 (9.50,13.30) 10.90 (9.40,12.70) 11.10 (9.30,12.80) 10.70 (9.00,12.50) 0.027 

Platelets Min, M (Q₁, Q₃) 
163.50(106.7

5, 244.00) 

162.00 

(100.00,235.00) 

160.00 

(106.00,243.00) 

166.00 

(114.00,259.00) 

164.00 

(110.00,235.00) 
0.508 

Platelets Max, M (Q₁, Q₃) 
205.00(141.0

0, 301.25) 

202.00 

(134.00,287.00) 

203.00 

(139.00,299.00) 

215.00 

(142.00,319.00) 

206.00 

(149.00,282.00) 
0.462 

Wbc Min, M (Q₁, Q₃) 
10.20 (6.60, 

14.72) 
8.70 (5.95,13.15) 8.90 (5.80,12.20) 10.30 (6.70,14.85) 12.00 (8.50,17.40) <.001 

Wbc Max, M (Q₁, Q₃) 
13.65 (9.70, 

19.62) 
11.80 (8.20,18.10) 12.20 (8.60,16.80) 13.70 (9.85,19.65) 15.80 (11.80,22.30) <.001 

Albumin Min, M (Q₁, Q₃) 
3.00 (2.60, 

3.42) 
3.10 (2.60,3.70) 3.00 (2.70,3.50) 2.90 (2.50,3.40) 2.80 (2.60,3.20) <.001 

Albumin Max, M (Q₁, Q₃) 
3.20 (2.80, 

3.60) 
3.30 (2.90,3.80) 3.20 (2.80,3.60) 3.10 (2.70,3.60) 3.00 (2.70,3.50) <.001 

AG Max, M (Q₁, Q₃) 
17.00 (14.00, 

21.00) 
17.00 (14.00,22.00) 17.00 (14.00,20.00) 16.00 (14.00,20.00) 18.00 (14.00,22.00) 0.118 

AG Min, M (Q₁, Q₃) 
13.00 (11.00, 

15.00) 
13.00 (11.00,15.00) 13.00 (10.00,15.00) 13.00 (10.00,15.00) 13.00 (11.00,16.00) 0.043 

Bicarbonate Min, M (Q₁, Q₃), 

mmol/L 

20.00 (16.00, 

23.00) 
20.00 (16.00,23.00) 21.00 (17.00,23.00) 20.00 (17.00,23.00) 19.00 (16.00,23.00) 0.102 

Bicarbonate Max, M (Q₁, 

Q₃), mmol/L 

23.00 (20.00, 

26.00) 
23.00 (20.00,26.00) 23.00 (21.00,26.00) 23.00 (21.00,25.50) 23.00 (19.00,25.00) 0.115 

Bun Min, M (Q₁, Q₃), mg/dL 
16.00 (9.00, 

28.00) 
14.00 (8.00,23.00) 14.00 (9.00,21.00) 16.00 (9.00,32.00) 20.00 (12.00,36.00) <.001 

Bun Max, M (Q₁, Q₃), mg/dL 
20.00  

(12.00, 37.00) 
18.00 (12.00,32.50) 18.00 (12.00,28.00) 21.00 (11.50,42.00) 25.00 (15.00,46.00) <.001 

Calcium Min, M (Q₁, Q₃), 

mg/dL 

7.90 

(7.30, 8.40) 

8.00 

 (7.40,8.40) 

7.90  

(7.30,8.40) 

8.00 

 (7.40,8.50) 

7.80  

(7.20,8.30) 
0.059 

Calcium Max, M (Q₁, Q₃), 

mg/dL 

8.40 

(7.90, 8.90) 

8.60  

(8.15,9.00) 

8.40  

(8.00,8.90) 

8.50 

 (7.95,9.00) 

8.30  

(7.70,8.80) 
<.001 

Chloride Min, M (Q₁, Q₃), 

mEq/L, 

100.00(96.00, 

104.00) 
100.00 (95.00,104.00) 101.00 (97.00,105.00) 100.00 (96.00,105.00) 99.00 (94.00,104.00) 0.120 

Chloride Max, M (Q₁, Q₃), 

mEq/L, 

105.00(100.7

5, 109.00) 

105.00 

(102.00,110.00) 

105.00 

(101.00,109.00) 

104.00 

(100.00,109.00) 
103.00 (99.00,108.00) <.001 

Creatinine Min, M (Q₁, Q₃), 

mg/dL 

0.90 (0.60, 

1.50) 
0.80 (0.60,1.40) 0.80 (0.60,1.30) 0.90 (0.60,1.70) 1.00 (0.70,2.20) <.001 

Creatinine Max, M (Q₁, Q₃), 

mg/dL 

1.10 (0.80, 

2.12) 
1.10 (0.80,1.85) 1.00 (0.70,1.80) 1.10 (0.80,2.15) 1.40 (0.80,2.80) <.001 

Glucose Min, M (Q₁, Q₃), 

g/dL 

111.00(91.00, 

137.00) 
108.00 (88.50,136.50) 110.00 (89.00,134.00) 112.00 (91.00,139.00) 113.00(94.00,138.00) 0.577 

Glucose Max, M (Q₁, Q₃), 

g/dL 

157.00(121.0

0, 225.25) 

163.00 

(121.50,263.50) 
152.00 (121.00,212.00) 156.00(119.50,212.50) 155.00(125.00,208.00) 0.229 
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Variables 
Total (n = 

1044) 
G1 (n = 255) G2 (n = 261) G3 (n = 243) G4 (n = 285) P 

Sodium Min, M (Q₁, Q₃), 

mEq/L, 

136.00(132.0

0, 138.00) 

136.00 

(132.00,139.00) 

136.00  

(133.00,139.00) 

136.00 

(132.00,138.00) 

135.00 

(131.00,138.00) 
0.065 

Sodium Max, M (Q₁, Q₃), 

mEq/L, 

139.00(136.0

0, 142.00) 

140.00 

(137.00,143.00) 

139.00  

(137.00,142.00) 

139.00 

(136.00,142.00) 

138.00 

(135.00,141.00) 
0.002 

Potassium Min, M (Q₁, Q₃), 

mEq/L 

3.80 (3.40, 

4.10) 
3.70 (3.40,4.10) 3.80 (3.50,4.10) 3.80 (3.40,4.10) 3.80 (3.40,4.20) 0.574 

Potassium Max, M (Q₁, Q₃), 

mEq/L, 

4.40 (4.00, 

5.10) 
4.40 (4.00,5.10) 4.40 (4.10,4.90) 4.50 (4.10,5.10) 4.40 (4.00,5.20) 0.603 

Inr Min, M (Q₁, Q₃) 
1.30 (1.10, 

1.50) 
1.20 (1.10,1.40) 1.30 (1.10,1.50) 1.30 (1.10,1.50) 1.30 (1.20,1.70) <.001 

Inr Max, M (Q₁, Q₃) 
1.40 (1.20, 

1.70) 
1.30 (1.20,1.60) 1.40 (1.20,1.70) 1.40 (1.20,1.70) 1.40 (1.20,1.90) 0.015 

Pt Min, M (Q₁, Q₃), s 
14.10 (12.40, 

16.40) 
13.30 (12.10,15.55) 14.00 (12.50,16.10) 14.20 (12.35,16.25) 14.60 (12.80,18.10) <.001 

Pt Max, M (Q₁, Q₃), s 
15.10 (13.10, 

19.00) 
14.80 (12.70,17.90) 15.00 (13.10,18.50) 15.20 (13.15,18.60) 15.60 (13.60,21.30) 0.013 

Ptt Min, M (Q₁, Q₃), s 
30.20 (26.70, 

34.30) 
29.80 (26.60,33.75) 30.00 (26.80,34.20) 29.80 (26.70,33.65) 30.90 (26.80,36.30) 0.117 

Ptt Max, M (Q₁, Q₃), s 
33.80 (28.60, 

42.90) 
32.50 (28.35,44.75) 32.80 (28.50,40.70) 33.70 (28.45,42.85) 34.90 (29.50,44.50) 0.122 

Alt Min, M (Q₁, Q₃), U/L 
41.00 (20.00, 

109.25) 
41.00 (19.50,105.00) 42.00 (19.00,126.00) 31.00 (17.50,77.50) 51.00 (25.00,127.00) 0.001 

Alt Max, M (Q₁, Q₃),U/L,   
48.50 (23.00, 

147.25) 
48.00 (24.50,140.00) 49.00 (22.00,183.00) 36.00 (20.00,98.00) 60.00 (29.00,167.00) 0.001 

Alp Min, M (Q₁, Q₃), U/L 
112.00(72.00, 

188.00) 
114.00 (74.00,188.00) 112.00 (70.00,175.00) 101.00 (69.00,177.00) 119.00 (74.00,205.00) 0.176 

Alp Max, M (Q₁, Q₃), U/L 
127.00(80.00, 

219.25) 
136.00 (86.00,215.50) 124.00 (78.00,216.00) 111.00 (77.50,203.50) 136.00 (81.00,238.00) 0.114 

Ast Min, M (Q₁, Q₃),U/L,  
61.00 (28.00, 

142.00) 
65.00 (27.50,156.00) 50.00 (27.00,140.00) 50.00 (23.00,102.00) 84.00 (35.00,159.00) <.001 

Ast Max, M (Q₁, Q₃), U/L 
80.00 (34.00, 

203.25) 
81.00 (35.00,205.00) 72.00 (32.00,216.00) 59.00 (29.50,149.50) 108.00 (42.00,234.00) <.001 

Bilirubin Total Min, M (Q₁, 

Q₃) 

1.00 (0.50, 

2.50) 
0.80 (0.40,2.00) 0.90 (0.50,2.30) 0.80 (0.40,2.30) 1.60 (0.60,4.10) <.001 

Bilirubin Total Max, M (Q₁, 

Q₃) 

1.20 (0.60, 

3.40) 
1.00 (0.50,2.70) 1.20 (0.50,3.10) 1.00 (0.50,3.25) 2.00 (0.80,5.20) <.001 

First Monocytes Abs, M (Q₁, 

Q₃), K/µL 

0.69 (0.45, 

1.07) 
0.43 (0.25,0.60) 0.59 (0.42,0.80) 0.84 (0.58,1.18) 1.08 (0.78,1.49) <.001 

First Lymphocytes Abs, M 

(Q₁, Q₃), K/µL  

1.19 (0.71, 

1.86) 
1.93 (1.16,2.84) 1.40 (0.99,1.97) 1.16 (0.80,1.60) 0.67 (0.47,0.98) <.001 

Scoring system       

CCI, M (Q₁, Q₃) 
5.00 (3.00, 

7.00) 
4.00 (2.00,6.00) 4.00 (3.00,6.00) 5.00 (3.00,7.00) 5.00 (3.00,7.00) <.001 

Apsiii, M (Q₁, Q₃) 
48.00 (36.00, 

68.00) 
45.00 (34.00,68.00) 43.00 (33.00,61.00) 49.00 (37.00,64.50) 55.00 (40.00,78.00) <.001 

Sapsii, M (Q₁, Q₃) 
32.00 (23.00, 

44.00) 
29.00 (20.00,41.50) 29.00 (21.00,41.00) 34.00 (24.00,44.00) 37.00 (28.00,49.00) <.001 
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Variables 
Total (n = 

1044) 
G1 (n = 255) G2 (n = 261) G3 (n = 243) G4 (n = 285) P 

Oasis, M (Q₁, Q₃) 
31.00 (25.00, 

39.00) 
29.00 (23.00,39.00) 30.00 (24.00,38.00) 32.00 (25.50,38.00) 34.00 (28.00,40.00) <.001 

Comorbidities,n(%)       

Hypertension, n(%)      0.039 

survival 379 (36.30) 93 (36.47) 113 (43.30) 79 (32.51) 94 (32.98)  

death 665 (63.70) 162 (63.53) 148 (56.70) 164 (67.49) 191 (67.02)  

Myocardial Infarct, n(%)      0.335 

survival 926 (88.70) 223 (87.45) 239 (91.57) 211 (86.83) 253 (88.77)  

death 118 (11.30) 32 (12.55) 22 (8.43) 32 (13.17) 32 (11.23)  

Congestive Heart Failure, 

n(%) 
     0.114 

survival 815 (78.07) 213 (83.53) 200 (76.63) 186 (76.54) 216 (75.79)  

death 229 (21.93) 42 (16.47) 61 (23.37) 57 (23.46) 69 (24.21)  

Peripheral Vascular Disease, 

n(%) 
     0.384 

survival 973 (93.20) 241 (94.51) 247 (94.64) 223 (91.77) 262 (91.93)  

death 71 (6.80) 14 (5.49) 14 (5.36) 20 (8.23) 23 (8.07)  

Cerebrovascular Disease, 

n(%) 
     0.197 

survival 975 (93.39) 234 (91.76) 251 (96.17) 225 (92.59) 265 (92.98)  

death 69 (6.61) 21 (8.24) 10 (3.83) 18 (7.41) 20 (7.02)  

Chronic Pulmonary Disease, 

n(%) 
     0.263 

survival 817 (78.26) 198 (77.65) 194 (74.33) 195 (80.25) 230 (80.70)  

death 227 (21.74) 57 (22.35) 67 (25.67) 48 (19.75) 55 (19.30)  

Diabetes, n(%)      0.052 

survival 649 (62.16) 140 (54.90) 168 (64.37) 159 (65.43) 182 (63.86)  

death 395 (37.84) 115 (45.10) 93 (35.63) 84 (34.57) 103 (36.14)  

Renal Disease, n(%)      0.002 

survival 801 (76.72) 212 (83.14) 208 (79.69) 182 (74.90) 199 (69.82)  

death 243 (23.28) 43 (16.86) 53 (20.31) 61 (25.10) 86 (30.18)  

Malignant Cancer, n(%)      0.508 

survival 965 (92.43) 237 (92.94) 246 (94.25) 222 (91.36) 260 (91.23)  

death 79 (7.57) 18 (7.06) 15 (5.75) 21 (8.64) 25 (8.77)  

Liver Disease, n(%)      0.342 

survival 676 (64.75) 171 (67.06) 174 (66.67) 146 (60.08) 185 (64.91)  

death 368 (35.25) 84 (32.94) 87 (33.33) 97 (39.92) 100 (35.09)  

Aids, n(%)      0.475 

survival 1032 (98.85) 250 (98.04) 258 (98.85) 242 (99.59) 282 (98.95)  

death 12 (1.15) 5 (1.96) 3 (1.15) 1 (0.41) 3 (1.05)  

Sepsis, n(%)      <.001 

survival 438 (41.95) 143 (56.08) 110 (42.15) 93 (38.27) 92 (32.28)  

death 606 (58.05) 112 (43.92) 151 (57.85) 150 (61.73) 193 (67.72)  

Therapies, n (%)       
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Variables 
Total (n = 

1044) 
G1 (n = 255) G2 (n = 261) G3 (n = 243) G4 (n = 285) P 

CRRT, n(%)      0.009 

No 928 (88.89) 232 (90.98) 237 (90.80) 221 (90.95) 238 (83.51)  

Yes 116 (11.11) 23 (9.02) 24 (9.20) 22 (9.05) 47 (16.49)  

Norepinephrine, n(%)      0.007 

No 786 (75.29) 202 (79.22) 208 (79.69) 181 (74.49) 195 (68.42)  

Yes 258 (24.71) 53 (20.78) 53 (20.31) 62 (25.51) 90 (31.58)  

Dobutamine, n(%)      0.105 

No 1031 (98.75) 251 (98.43) 260 (99.62) 242 (99.59) 278 (97.54)  

Yes 13 (1.25) 4 (1.57) 1 (0.38) 1 (0.41) 7 (2.46)  

Dopamine, n(%)      0.383 

No 1026 (98.28) 253 (99.22) 254 (97.32) 238 (97.94) 281 (98.60)  

Yes 18 (1.72) 2 (0.78) 7 (2.68) 5 (2.06) 4 (1.40)  

Vasopressin, n(%)      0.010 

No 921 (88.22) 228 (89.41) 237 (90.80) 220 (90.53) 236 (82.81)  

Yes 123 (11.78) 27 (10.59) 24 (9.20) 23 (9.47) 49 (17.19)  

Epinephrine, n(%)      0.030 

No 1010 (96.74) 242 (94.90) 256 (98.08) 240 (98.77) 272 (95.44)  

Yes 34 (3.26) 13 (5.10) 5 (1.92) 3 (1.23) 13 (4.56)  

Group 1: MLR＜0.32; Group 2: 0.32≤MLR＜0.57; Group 3: 0.57≤MLR＜1; Group 4: MLR≥1 

M: Median, Q₁: 1st Quartile, Q₃: 3st Quartile 

MAP, mean arterial pressure ; RR, respiratory rate ; SPO2, oxygen saturation ; Hct,Hematocrit ; Hb,Hemoglobin ; 

WBC, White Blood Cell ; AG, Anion gap ; PT, prothrombin time ; PTT, partial thromboplastin time ;  

INR, international normalized ratio ; ALT, alanine aminotransferase ; AST, aspartate aminotransferase ; 

ALP, alkaline phosphatase; CRRT, Continuous Renal Replacement Therapy; Los, Length of Stay; Abs, Absolute;  

MLR, monocyte to lymphocyte ratio ; CCI, Charlson Comorbidity Index ; OASISO, Oxford acute severity of illness score ;  

SAPS II, Simplified Acute Physiology Score II ; APS III, Acute physiology score III. 
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Table 2. Clinical outcomes 

Variables Total (n = 1044) G1 (n = 255) G2 (n = 261) G3 (n = 243) G4 (n = 285) P 

Status 28, n(%)      <.001 

  survival 936 (89.66) 234 (91.76) 247 (94.64) 222 (91.36) 233 (81.75)  

  death 108 (10.34) 21 (8.24) 14 (5.36) 21 (8.64) 52 (18.25)  

Status 60, n(%)      <.001 

  survival 893 (85.54) 227 (89.02) 243 (93.10) 206 (84.77) 217 (76.14)  

  death 151 (14.46) 28 (10.98) 18 (6.90) 37 (15.23) 68 (23.86)  

Status 90, n(%)      <.001 

  survival 868 (83.14) 222 (87.06) 238 (91.19) 202 (83.13) 206 (72.28)  

  death 176 (16.86) 33 (12.94) 23 (8.81) 41 (16.87) 79 (27.72)  

Status 180, n(%)      <.001 

  survival 841 (80.56) 220 (86.27) 236 (90.42) 194 (79.84) 191 (67.02)  

  death 203 (19.44) 35 (13.73) 25 (9.58) 49 (20.16) 94 (32.98)  

Status 365, n(%)      <.001 

  survival 803 (76.92) 208 (81.57) 227 (86.97) 188 (77.37) 180 (63.16)  

  death 241 (23.08) 47 (18.43) 34 (13.03) 55 (22.63) 105 (36.84)  

Icu Death, n(%)      <.001 

  survival 982 (94.06) 241 (94.51) 252 (96.55) 235 (96.71) 254 (89.12)  

  death 62 (5.94) 14 (5.49) 9 (3.45) 8 (3.29) 31 (10.88)  

Hospital Expire Flag, n(%)      <.001 

  survival 933 (89.37) 237 (92.94) 250 (95.79) 220 (90.53) 226 (79.30)  

  death 111 (10.63) 18 (7.06) 11 (4.21) 23 (9.47) 59 (20.70)  

Los Icu, M (Q₁, Q₃) 2.33 (1.27, 5.67) 1.95 (1.16,4.39) 2.23 (1.26,5.17) 2.54 (1.29,5.67) 2.88 (1.39,6.96) 0.010 

Los Hospital, M (Q₁, Q₃) 11.85 (5.86, 22.56) 8.19 (4.78,19.45) 8.97 (4.85,19.68) 12.52 (6.52,26.01) 16.04 (8.37,28.79) <.001 

Group 1: MLR＜0.32; Group 2: 0.32≤MLR＜0.57; Group 3: 0.57≤MLR＜1; Group 4: MLR≥1 

M: Median, Q₁: 1st Quartile, Q₃: 3st Quartile.  
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Table 3 Cox regression model (28-day all-cause mortality) 

Variables 
Model1 

 
Model2 

 
Model3 

HR (95%CI) P HR (95%CI) P HR (95%CI) P 

MLR 4 group         

  Quartile 1 1.57 (0.80 ~ 3.08) 0.194  1.58 (0.80 ~ 3.14) 0.189  1.79 (0.90 ~ 3.56) 0.095 

  Quartile 2 1.00 (Reference)   1.00 (Reference)   1.00 (Reference)  

  Quartile 3 1.64 (0.83 ~ 3.22) 0.154  1.54 (0.78 ~ 3.04) 0.210  1.39 (0.70 ~ 2.76) 0.346 

  Quartile 4 3.63 (2.01 ~ 6.54) <.001  3.03 (1.66 ~ 5.52) <.001  2.91 (1.59 ~ 5.32) <.001 

HR for trend 2.53 (1.72 ~ 3.70)   2.15 (1.44 ~ 3.19)   2.00 (1.34 ~ 2.99)  

P for trend  <.001   <.001   <.001 

Quartile 1 ( MLR＜0.32) ; Quartile 2: 0.32≤MLR＜0.57; Quartile 3: 0.57≤MLR＜1; Quartile 4: MLR≥1 

HR: Hazard Ratio, CI: Confidence Interval 

Model 1: Crude 

Model 2: Adjust: age, gender, language, marital status, race 

Model 3: Adjust: age, hypertension, myocardial infarct, congestive heart failure, cerebrovascular disease, chronic pulmonary 

disease, diabetes, renal disease, malignant cancer, liver disease, sepsis, gender, language, marital status, race 
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Table 4. Cox regression model (365-day all-cause mortality) 

Variables 
Model1 

 
Model2 

 
Model3 

HR (95%CI) P HR (95%CI) P HR (95%CI) P 

MLR 4 group         

  Quartile 1 1.46 (0.94 ~ 2.28) 0.090  1.55 (0.99 ~ 2.42) 0.055  1.63 (1.04 ~ 2.56) 0.032 

  Quartile 2 1.00 (Reference)   1.00 (Reference)   1.00 (Reference)  

  Quartile 3 1.84 (1.20 ~ 2.83) 0.005  1.82 (1.18 ~ 2.79) 0.006  1.63 (1.06 ~ 2.52) 0.027 

  Quartile 4 3.33 (2.26 ~ 4.90) <.001  2.90 (1.96 ~ 4.29) <.001  2.81 (1.89 ~ 4.17) <.001 

HR for trend 2.36 (1.83 ~ 3.05)   2.03 (1.56 ~ 2.65)   1.96 (1.50 ~ 2.58)  

P for trend  <.001   <.001   <.001 

Quartile 1 ( MLR＜0.32) ; Quartile 2: 0.32≤MLR＜0.57; Quartile 3: 0.57≤MLR＜1; Quartile 4: MLR≥1 

HR: Hazard Ratio, CI: Confidence Interval 

Model1: Crude 

Model2: Adjust: age, gender, language, marital status, race 

Model3: Adjust: age, hypertension, myocardial infarct, congestive heart failure, cerebrovascular disease, chronic pulmonary 

disease, diabetes, renal disease, malignant cancer, liver disease, sepsis, gender, language, marital status, race 

 

 

 

 

Fig1.Screening process for AP patients in ICU and the research process. 
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Fig 2.28-day KM survival curve.KM curves showing the survival rates at 28 days for 

each quartile.MLR: Quartile 1 (＜0.32), Quartile 2 (0.32≤MLR＜0.57), Quartile 3 (0.57

≤MLR＜1), and Quartile 4 (MLR≥1). 

 

Fig 3. RCS analysis of 28-day (A) and 365-day (B) all-cause mortality after adjusting the 

covariates. Adjusted covariates: age, hypertension, myocardial infarct,congestive heart failure, 

cerebrovascular disease, chronic pulmonary disease, diabetes,renal disease, malignant cancer, 

liver disease, sepsis, gender, language, marital status,race 
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Fig 4. (A) Subgroup forest plot for 28-day all-cause mortality. (B) Subgroup forest plot 

for 365-day all-cause mortality. 
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Fig 5. Demographic and clinical feature selection using the least absolute shrinkage and 

selection operator (LASSO) binary logistic regression model. (A)LASSO coefficient 

profiles of the 68 texture features; (B) Tuning parameter (λ) selection using LASSO 

penalized logistic regression with 10-fold cross validation. 

 

Fig 6. ROC curves of the machine learning algorithms. (A) derivation groups; 

(B)validation groups.  
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Fig 7. The calibration curve of each model. (A) derivation groups; (B) validation groups. 

 

Fig 8. DCA curves of the machine learning algorithms. (A) derivation groups; 

(B)validation groups. 
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Fig 9. The SHAP summary plots for all models. (A)coxph shap (B)gbm shap (C)xgboost 

shap (D)nn shap (E)rsf shap (F)ctree shap 
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Legends 

Fig 1. Screening process for AP patients in ICU and the research process. 

Fig 2.28-day KM survival curve.KM curves showing the survival rates at 28 days for each 

quartile.MLR: Quartile 1 (＜0.32), Quartile 2 (0.32≤MLR＜0.57), Quartile 3 (0.57≤MLR＜1), 

and Quartile 4 (MLR≥1). 

Fig 3. RCS analysis of 28-day (A) and 365-day (B) all-cause mortality after adjusting the 

covariates. Adjusted covariates: age, hypertension, myocardial infarct,congestive heart failure, 

cerebrovascular disease, chronic pulmonary disease, diabetes,renal disease, malignant cancer, 
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liver disease, sepsis, gender, language, marital status,race 

Fig 4. (A) Subgroup forest plot for 28-day all-cause mortality. (B) Subgroup forest plot for 365-

day all-cause mortality. 

Fig 5. Demographic and clinical feature selection using the least absolute shrinkage and 

selection operator (LASSO) binary logistic regression model. (A)LASSO coefficient profiles 

of the 68 texture features; (B) Tuning parameter (λ) selection using LASSO penalized logistic 

regression with 10-fold cross validation. 

Fig 6. ROC curves of the machine learning algorithms. (A) derivation groups; (B)validation 

groups. Coxph, Cox proportional hazards survival learner; GBM, gradient boosting machines; 

ctree, conditional inference tree; NN, neural network; rsf,Survival Random Forest SRC Learner; 

xgboost, extreme gradient boosting survival learner; T days; AUC area under the curve. 

Fig 7. The calibration curve of each model. (A) derivation groups; (B) validation groups. 

Fig 8. DCA curves of the machine learning algorithms. (A) derivation groups; (B)validation 

groups. 

Fig 9. The SHAP summary plots for all models. 
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