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Abstract
Background: Acute renal failure (ARF) is one of the most common 

conditions encountered in the intensive care unit (ICU). ARF has a 

complex pathogenesis and due to the progressive weakening of the 

structure and function of the kidney, the incidence of ARF 

increases significantly in the aging group. Therefore, the 

development of reliable predictive model is of great importance to 

identify those patients in high risk for ARF, in order to provide 

timely and effective interventions to improve their prognosis. 

Objective: Extreme gradient boosting (XGBoost) is an efficient 

integrated learning algorithm with advantages over traditional 

logistic regression (LR) methods. The purpose of this study was to 

compare the performance of the two models in predicting 90-day 

mortality in elderly patients with ARF.

Methods: Data of elderly patients (>60years) with ARF in ICU 
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were extracted from MIMIC IV with 90-day mortality as end-point. 

The performance of the two predictive models was tested and 

compared by receiver operating characteristic curve and decision 

curve analysis (DCA). Cumulative residual distribution plot and 

residual box-plot were then used to determine the fit of the model. 

Finally, the model with better overall diagnostic value was selected 

and a breakdown plot was drawn.

Results: Data of 7,500 elderly ARF patients were analyzed, of 

whom 1,150 died within 90 days. Both models showed good 

discriminatory ability, but the XGBoost model had a larger area 

under the curve value. DCA results revealed that the net benefit of 

the XGBoost model had a greater range than the LR model. 

Moreover, the XGBoost model had the smallest sample residuals 

and root-mean-square residuals, indicating a better fitting of the 

XGBoost algorithm. Finally, a breakdown plot based on the 

XGBoost model was created as an individualized tool for prognosis 

prediction in elderly patients with ARF.

Conclusions: Our study find that the XGBoost algorithm model 

was a better model for predicting 90-day mortality in elderly ICU 

patients with ARF compared to the LR model. The model may have 

clinical applications for elderly patients with ARF and may help 

healthcare professionals to develop detailed treatment plans as 

well as provide accurate care.

Keywords: Acute renal failure; 90-day mortality; XGBoost; 

Logistic regression;  The elderly

Introduction
Acute renal failure (ARF) is a common syndrome characterized 
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by high morbidity, high mortality and poor prognosis [1]. It is 

mainly caused by impaired renal function due to renal ischemia or 

obstruction, as well as the consequence of certain types of 

nephrotoxic drugs [2]. ARF was defined using the KDIGO criteria, 

requiring meeting any of the following within 48 hours: (1) a serum 

creatinine increase ≥0.3 mg/dl, (2) a 1.5-fold elevation from 

baseline, or (3) urine output <0.5 ml/kg/h for 6 or more hours. ARF 

can lead to rapid decline of renal function, causing symptoms such 

as azotemia, water-electrolyte disturbances, and acid-base 

imbalance [3]. In the elderly, ARF is more likely to progress to 

multi-organ failure with a mortality rate as high as 70% due to the 

decline of body functions and the combination of multiple organ 

pathologies [4]. Even worse, ARF patients can only slow down the 

progression of the disease and improve the quality of life through 

long-term medication or dialysis treatment [5]. 

ARF is also one of the most common disorders with a 

prevalence of 10-15% in the intensive care unit (ICU) [6], and as 

high as 50-60% in critically ill patients [7], thus it is a serious 

global health problem that we are facing [8]. On the other hand, 

the incidence of ARF has increased significantly in the aging 

population, probably due to the progressive weakening of the 

structure and function of the human kidney [9]. A survey showed 

that 52.2% of all in-hospital ARF patients were over 60 years of age 

[10]. In recent years, despite improvements in the diagnosis and 

treatment of the disease, the mortality rate of ARF has not been 

significantly reduced [11], and the burden of disease caused by 

ARF remains high, especially in ICU [12]. Consequently, early 

recognition and diagnosis of ARF is extremely important. 

Therefore, the development of reliable predictive models is 

particularly urgent to identify those patients at risk and provide 
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them with timely and effective interventions to improve their 

prognosis.

In recent years, the predictive performance of machine 

learning (ML) technology has been greatly improved due to the fast 

development of computer technology including artificial 

intelligence and the establishment of many databases. Extreme 

gradient boosting (XGBoost) is an ensemble learning algorithm that 

it eratively builds multiple decision trees, with each tree correcting 

the residuals of the previous one. The greedy algorithm is adopted 

to select the best splitting point, supporting parallel computing and 

missing value processing. It is applicable to nonlinear problems and 

has strong generalization ability, but it is prone to over-fitting for 

small sample data and needs to suppress through parameter 

adjustment [13,14]. It has the distinctive features of efficiently and 

flexibly handling of missing data and assembling weak predictive 

models to build accurate models [15]. XGBoost algorithm has been 

widely used in the medical field, including disease diagnosis, 

rational and safe use of medication and drug development, which 

helps to improve the efficiency and quality of decision making 

[16,17]. Logistic regression (LR) is a linear model , which fits the 

data by adjusting the weights and the bias, and the decision 

boundary is linear . It belongs to a binary classification problem. 

The model is simple and highly interpret-able, but has limited 

ability to handle nonlinear problems .It has also been applied in 

medical research, such as disease diagnosis, patient prognosis 

assessment, and drug response prediction [18]. Interestingly, some 

studies have compared the performance of the XGBoost algorithm 

model with the LR model [19], and while in some cases XGBoost 

was more accurate than LR [20], the opposite was shown in other 

cases [21]. This study systematically compared these two models to 
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explore their applicability in predicting the risk of death in elderly 

patients with ARF.

In recent years, with the continuous development of deep 

learning and uncertain artificial intelligence, new paths have been 

opened up for long-term stable prediction in the field of medical 

diagnosis [22]. For example, the deep self-supervised framework 

proposed by Zhang et al. [23], combined with feature elimination 

and selection, has demonstrated outstanding performance in the 

multi-dimensional health risk classification of blood tests. The 

dimensionality reduction method proposed by Garcia et al. [24] has 

demonstrated significant robustness in clinical practice for 

randomly missing data in the diagnosis of thyroid cancer. 

Compared with previous studies, this research focuses on core 

demands such as clinical interpret-ability, real-time evaluability, 

and data robustness. This plan aims to strike a balance between 

algorithm performance and clinical practicality. In the future, we 

plan to utilize advanced feature elimination techniques to further 

enhance the interpret-ability and robustness of the model in high-

dimensional and noisy clinical data. 

Methods
Database

Medical information mart for intensive care-IV (MIMIC-IV) is a 

publicly available critical care database that contains information 

about patients hospitalized at the Higher Medical Center in Boston 

from 2008 to 2019. The researchers had completed all the training 

course and were certified to access the database. This study 

focuses on data from four modules: hosp, core, icu, and ed [25]. For 

a description of the main tables in these four modules, please see 
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Table 1 for details. All data, including demographic data, 

medication data, comorbidities, laboratory test data, vital signs and 

disease severity score data, were extracted from the official 

Physionet website (http://mimic.physionet.org/). The relevant code 

for data extraction is available on the official GitHub website 

(https://github.com/mit-lcp/mimic-iv).

Research population

This study included patients with a clinical diagnosis of ARF, 

among which 9,768 patients were over 60 years of age. For this 

study, the inclusion criteria were: over 60 years old, and admission 

Table 1. Main tables in the MIMIC-IV database
Module Table name Relevant introduction

hosp diagnoses_icd Patient diagnostic information data
hosp prescriptions Patient's prescription records

hosp labevents
Records of the patient's laboratory 

tests
hosp pharmacy Patient pharmacy data records
core admission Patient admission information
core patient General information about the patient
core transfers Patient turnover bed records
icu icu_stays ICU admission time log
icu chartevents Patient chart data
ed vitalsign Patient vital signs data
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to the ICU longer than 24 h. Exclusion criteria were: patients who 

died within 24 h of ICU admission and patients with incomplete 

data. For patients who were admitted to ICU multiple times, only 

data from their first admission were used. The multiple 

interpolation method is adopted to handle missing values, avoiding 

the introduction of noise .Then, eliminate the variables with a 

missing ratio of 30%, as a large missing ratio will affect the 

accuracy of the prediction model. Ultimately, a total of 7,500 

patients were enrolled in this study. 

Data extraction

PostgreSQL (v13.0) and Navicat Premium (v15.0) software 

were used to extract the data related to elderly patients with ARF. 

Then, the data were processed using R software. The main process 

of data processing is shown in Figure 1. General information 

included age at admission, body weight, length of stay in ICU, etc. 

Treatment measures included: vasopressor use, nor-epinephrine 

use, the use of continuous renal replacement therapy, etc. Related 

comorbidities included the following: cerebrovascular disease, mild 

liver disease, severe liver disease, metastatic solid tumor, etc. 

Disease severity scores included: sequential organ failure 

assessment (SOFA), acute physiology score-III (APSIII), logistic 

organ dysfunction system (LODS), Oxford acute severity of illness 

score (OASIS), simplified acute physiology score-II (SPASII), and 

systemic inflammatory response syndrome (SIRS). The first 

laboratory test results after admission to ICU included: white blood 

cells (WBC), prothrombin time (PT), partial thromboplastin time 

(PTT), anion gap (AG), and urine output, etc. Vital signs included 

the following: systolic blood pressure (SBP), diastolic blood 

pressure (DBP), pulse oxygen saturation (SpO2), etc. Because of the 

high sampling frequency, the maximum, the minimum, and the 
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average values were used to represent vital signs and laboratory 

test results.

Figure 1. Data processing flow

Statistical analysis

Elderly patients with ARF were divided into two groups based 

on 90-day mortality. Continuous variables were represented using 

the median and quartile, and were compared by Mann-Whitney U 

test. Categorical variables were expressed in terms of frequency or 

percentage, and compared using the Chi-square tests or Fisher’s 

exact tests. Elderly patients with ARF were randomly assigned to 

an 80% training set and a 20% validation set. This stratified 

segregation provides an equitable initial data distribution for model 

training and initial validation. The model training phase 

incorporated a nested cross-validation framework. This entailed an 
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outer 5-fold random split, with models trained on 80% of the data 

and their performance evaluated on the remaining 20%. Within 

each outer fold, an inner 5-fold cross-validation combined with grid 

search was employed for hyper-parameter optimization. The final 

reported model performance is the average across all 5 outer 

validation folds, ensuring reliability and reducing the risk of over-

fitting.

During the model construction phase, the LR model employed 

AIC-based backward stepwise regression (P < 0.05) for feature 

selection, while the XGBoost model relied on its internal feature 

importance mechanism, reflecting the fundamental distinction and 

complementary nature between statistical significance testing and 

algorithm-based gain calculation [26]. The XGBoost objective 

function consists of a loss term and a regularization term, whereas 

the LR model uses the log-loss function to measure performance. 

After feature selection, XGBoost optimized its hyperparameters 

(such as eta and max_depth) through grid search, ultimately 

constructing both models. In the model comparison, ROC and DCA 

analyses showed that XGBoost achieved a slightly higher AUC 

(0.851) than LR (0.838, P < 0.05), but DCA validation indicated that 

the difference in net benefit between the two models was minimal 

at clinically relevant thresholds, suggesting that their impact on 

clinical decision-making may be limited [27]. The model fit was 

validated as acceptable through residual distribution and boxplot 

analyses [28]. In summary, we selected the XGBoost model with 

superior overall performance as the predictive tool and generated a 

breakDown plot to visually illustrate the contribution of each 

variable to the outcome prediction.
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Results
Baseline characteristics

A total of 7,500 elderly patients with ARF were included in this 

study, among which 1,150 patients died within 90 days and 6,350 

patients survived. Comparisons between groups showed that there 

were significant differences in the age at admission, body weight, 

vasopressor use, severe liver disease, metastatic solid tumor, urine 

output, PTT_max, etc. There were no statistically significant 

differences between the variables including myocardial infarction, 

glucose_min, SpO2_max, etc. Other baseline characteristics were 

shown in Tables 2-4.
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Table 2. General information and treatment of the 
patients

Death within 
90 days

Survival within 
90 days P

General information
Number (sample size) 1150 6350

Age, year 80.00(73.28,86
.81)

78.31(71.55,85.0
3)

< 
0.00
1

Gender (%)
< 
0.00
1

 Female 552(48.0) 2738(43.1)
 Male 598(52.0) 3612(56.9)

Body weight, kg 74.80(63.05,87
.38)

77.73(66.20,91.0
9)

< 
0.00
1

Ethnicity (%)
< 
0.00
1

 White 827(71.9) 4500(70.9)
 Black 93(8.1) 703(11.1)
 Yellow 37(3.2) 175(2.7)
 Other 193(16.8) 972(15.3)

Length of stay in the 
ICU, day 4.56(2.30,8.91) 2.96(1.85,5.29)

< 
0.00
1

First care unit (%)
< 
0.00
1

 CCU 177(15.4) 1140(18.0)
 SICU 134(11.7) 595(9.4)
 MICU 301(26.2) 1607(25.3)
 CVICU 63(5.5) 898(14.1)
 Other 475(41.3) 2110(33.2)
The treatment

Antibiotic (%)
< 
0.00
1

 No 65(5.7) 944(14.9)
 Yes 1085(94.3) 5406(85.1)

Dobutamine (%)
< 
0.00
1
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 No 1065(92.6) 6208(97.7)
 Yes 85(7.4) 142 (2.3)

Dopamine (%)
< 
0.00
1

 No 1033(89.8) 6047(95.2)
 Yes 117(10.2) 303(4.8)

Nerve blockers (%)
< 
0.00
1

 No 1082(94.1) 6290(99.1)
 Yes 68(5.9) 60(0.9)

Table 2 (Continued)
Death within 90 
days

Survival within 
90 days P

Epinephrine 
(%)

< 
0.001

 No 1038(90.3) 6036(95.1)
 Yes 112(9.7) 314(4.9)
Norepinephrin
e(%)

< 
0.001

 No 539(46.9) 4736(74.6)
 Yes 611(53.1) 1614(25.4)

Phenylephrine (%) < 
0.001

 No 798(69.4) 5292(83.3)
 Yes 352(30.6) 1058(16.7)

Vasopressor (%) < 
0.001

 No 825(71.7) 5968(94.0)
 Yes 325(28.3) 382(6.0)

CRRT (%) < 
0.001

  No 1104(96.0) 6287(99.0)
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  Yes 46(4.0) 63(0.1)
ICU intensive care unit, CCU coronary care unit, SICU surgical intensive care 
unit, MICU medical intensive care unit, CVICU cardiac vascular intensive care 
unit, CRRT continuous renal replacement therapy, P value less than 0.05 are 
shown in bold text. 

Table 3. Comorbidity and score system of the 
patients

Death within 90 
days

Survival within 
90 days P

Comorbidity
Myocardial_infarct (%) 0.180
  No 812(70.6) 4604(72.5)
  Yes 338(29.4) 1746(27.5)
Congestive_heart_failure (%) 0.090 
  No 530(46.1) 3095(48.7)
  Yes 620(53.9) 3255(51.3)
Peripheral_vascular_disease (%) 0.020 
  No 933(81.1) 5335(84.0)
  Yes 217(18.9) 1015(16.0)
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Cerebrovascular_disease (%) < 
0.001 

  No 956(83.1) 5530(87.1)
  Yes 194(16.9) 820(12.9)
Dementia (%) 0.680 
  No 1055(91.7) 5848(92.1)
  Yes 95(8.3) 502(7.9)
Chronic_pulmonary_disease (%) 0.020 
  No 747(65.0) 4350(68.5)
  Yes 403(35.0) 2000(31.5)
Rheumatic_disease (%) 0.590 
  No 1093(95.0) 6058(95.4)
  Yes 57(5.0) 292(4.6)
Peptic_ulcer_disease (%) 0.280 
  No 1099(95.6) 6111(96.2)
  Yes 51(4.4) 239(3.8)

Mild_liver_disease (%) < 
0.001

  No 943(82.0) 5797(91.3)
  Yes 207(18.0) 553(8.7)
Diabetes uncomplicated (%) 0.310 
  No 813(70.7) 4392(69.2)
  Yes 337(29.3) 1958(30.8)
Diabetes complicated (%) 0.020 
  No 991(86.2) 5298(83.4)
  Yes 159(13.8) 1052(16.6)

Paraplegia (%) < 
0.001 

  No 1094(95.1) 6160(97.0)
  Yes 56(4.9) 190(3.0)

Table 3 (Continued)
Death within 90 
days

Survival within 
90 days P

Renal_disease (%) 0.030 
  No 674(58.6) 3497(55.1)
  Yes 476(41.4) 2853(44.9)

Malignant_cancer (%) < 
0.001

  No 849(73.8) 5413(85.2)
  Yes 301(26.2) 937(14.8)
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Severe_liver_disease (%) < 
0.001

  No 1049(91.2) 6138(96.7)
  Yes 101(8.8) 212(3.3)

Metastatic_solid_tumor (%) < 
0.001

  No 963(83.7) 5980(94.2)
  Yes 187(16.3) 370(5.8)
Aids (%) 0.680
  No 1148(99.8) 6341(99.8)
  Yes 2(0.2) 9(0.2)
Score system

SOFA 8.00(6.00,12.00) 5.00(3.00,8.00) < 
0.001

APSIII 75.00(59.00,97.0
0)

50.00(41.00,63.0
0)

< 
0.001

LODS 9.00(6.00,11.00) 5.00(4.00,7.00) < 
0.001

OASIS 40.00(34.00,47.0
0)

33.00(27.00,39.0
0)

< 
0.001

SAPSII 52.00(43.00,63.0
0)

41.00(35.00,49.0
0)

< 
0.001

SIRS 3.00(2.00,3.00) 3.00(2.00,3.00) < 
0.001

SOFA sequential organ failure assessment, APSIII acute physiology and chronic 
health score III, LODS logistic organ dysfunction system, OASIS Oxford acute 
severity of illness score, SAPSII simplified acute physiology score II, SIRS systemic 
inflammatory response syndrome, P value less than 0.05 are shown in bold text. 
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Table 4. Laboratory tests and vital signs of the 
patients 

Death within 90 
days

Survival within 
90 days P

Laboratory tests

Hematocrit_min (%) 28.00(23.90,32.5
0)

28.70(24.80,33.2
0)

< 
0.00
1 

Hematocrit_max (%) 32.10(28.40,36.4
8)

32.70(29.30,37.1
0)

< 
0.00
1

Hemoglobin_min 
(g/dL) 9.00(7.70,10.60) 9.40(8.10,10.90)

< 
0.00
1

Hemoglobin_max 
(g/dL) 10.30(9.00,11.70) 10.70(9.40,12.20)

< 
0.00
1

Platelets_min (k/uL) 164.00(100.00,22
5.00)

167.00(122.00,22
3.75)

< 
0.00
1

Platelets_max (k/uL) 199.00(132.00,26
4.00)

201.00(154.00,26
7.00)

< 
0.00
1

WBC_min (k/uL) 9.90(7.10,13.50) 9.50(6.93,12.40)
< 
0.00
1 

WBC_max (k/uL) 13.00(10.00,17.9
8) 12.70(9.20,17.00)

< 
0.00
1

AG_min (mEq/L) 14.00(12.00,17.0
0)

13.00(11.00,15.0
0)

< 
0.00
1

AG_max (mEq/L) 17.00(16.00,21.0
0)

17.00(14.00,19.0
0)

< 
0.00
1

Bicarbonate_min 
(mEq/L)

20.00(16.00,23.0
0)

21.00(18.00,23.7
5)

< 
0.00
1

Bicarbonate_max 
(mEq/L)

23.00(20.00,25.0
0)

23.00(21.00,26.0
0)

< 
0.00
1

BUN_min (mg/dL) 34.00(25.00,49.7
5)

30.00(21.00,42.0
0)

< 
0.00
1
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BUN_max (mg/dL) 39.00(29.00,58.0
0)

36.00(25.00,49.0
0)

< 
0.00
1

Calcium Total_min 
(EU/dL) 8.00(7.50,8.50) 8.10(7.70,8.60)

< 
0.00
1

Calcium Total_max 
(EU/dL) 8.60(8.00,9.00) 8.60(8.10,9.00) 0.04

0 

Chloride_min(mEq/L) 102.00(97.00,105
.00)

102.00(98.00,106
.00)

< 
0.00
1 

Chloride_max (mEq/L) 105.00(101.00,10
9.75)

106.00(102.00,11
0.00)

< 
0.00
1

Creatinine_min (g/dL) 1.30(1.10,1.90) 1.30(1.10,1.70)
< 
0.00
1

Creatinine_max (g/dL) 1.60(1.30,2.30) 1.60(1.30,2.10)
< 
0.00
1

Sodium_min (mEq/L) 137.00(134.00,14
0.00)

137.00(134.00,14
0.00) 0.190

Sodium_max (mEq/L) 140.00(137.00,14
3.00)

140.00(137.00,14
2.00) 0.410 

Potassium_min 
(mEq/L) 4.00(3.60,4.50) 4.00(3.60,4.40) 0.080 

Potassium_max 
(mEq/L) 4.60(4.20,5.20) 4.60(4.20,5.00) 0.02

0

PT_min (s) 13.90(13.10,16.4
0)

13.60(12.30,14.9
8)

< 
0.00
1

PTT_min (s) 29.50(27.70,34.9
8)

29.30(26.40,32.7
0)

< 
0.00
1

PTT_max (s) 39.95(31.13,66.5
0)

34.19(29.00,49.7
0)

< 
0.00
1

Glucose_min (mg/dL) 110.50(93.00,138
.00)

110.00(94.00,130
.00) 0.110

Glucose_max (mg/dL) 155.00(127.00,20
0.00)

150.00(123.00,18
8.00)

< 
0.00
1
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Urine output (ml) 812.0(397.75,143
0.75)

1315.0(880.0,199
0.0)

< 
0.00
1

Vital Signs

Heart rate_min (min-
1)

73.00(63.00,86.0
0)

68.00(60.00,78.0
0)

< 
0.00
1

Heart rate_max (min-
1)

107.00(94.05,124
.00)

99.00(87.00,114.
00)

< 
0.00
1

Heart rate_mean (min-
1)

89.24(77.50,101.
57)

81.62(72.38,92.3
2)

< 
0.00
1

Table 4 (Continued)
Death within 90 
days

Survival within 
90 days P

SBP_min (mmHg) 84.00(75.00,91.00
)

88.00(80.00,98.0
0)

< 
0.001

SBP_max (mmHg) 141.00(126.00,15
6.00)

144.00(132.00,16
0.0)

< 
0.001

SBP_mean (mmHg) 108.15(100.49,11
7.5)

113.75(105.62,12
5.26)

< 
0.001

DBP_min (mmHg) 41.00(35.00,47.00
)

42.00(37.00,48.0
0)

< 
0.001

DBP_max (mmHg) 84.00(72.00,97.00
)

84.00(72.00,97.0
0) 0.690

DBP_mean (mmHg) 57.81(51.97,63.91
)

58.12(52.44,64.8
7) 0.030 

Respiratory_rate_min 
(min-1)

13.00(11.00,16.00
)

13.00(11.00,16.0
0)

< 
0.001

Respiratory_rate_max(
min-1)

30.00(26.00,34.00
)

28.00(24.00,31.0
0)

< 
0.001

Respiratory 
rate_mean(min-1)

20.45(18.15,23.54
)

19.24(17.13,21.7
2)

< 
0.001

Temperature_min (℃) 36.39(36.06,36.56
)

36.39(36.17,36.6
1)

< 
0.001 
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Temperature_max (℃) 37.11(36.83,37.50
)

37.11(36.89,37.4
4) 0.040 

Temperature_mean (℃) 36.73(36.51,36.92
)

36.75(36.56,36.9
5)

< 
0.001 

SpO2_min (%) 91.00(87.00,94.00
)

92.00(90.00,94.0
0)

< 
0.001

SpO2_max (%) 100.00(99.85,100.
00)

100.00(99.00,100
.00) 0.070 

SpO2_mean (%) 96.70(94.96,98.30
)

96.88(95.50,98.2
0)

< 
0.001

WBC white blood cells, AG anion gap, BUN blood urea nitrogen, PT prothrombin 
time, PTT partial thromboplastin time, SBP systolic blood pressure, DBP diastolic 
blood pressure, SpO2 pulse oxygen saturation, Max maximum, Min minimum , P 
value less than 0.05 are shown in bold text. 

Model construction

(1) XGBoost model

Using the method of backward stepwise regression analysis, 

the variables with p-values less than 0.05 were screened out, and 

then the XGBoost model was constructed. The analysis of different 

variables according to the XGBoost model showed that APSIII, 

LODS, length of stay in ICU, urine output, age at admission, 

vasopressor, metastatic solid tumor, SpO2_mean, platelets_max, 

respiratory rate_mean, PTT_max, SBP_mean, heart rate_min, 

hemoglobin_max, and body weight were the 15 most important 

features, which were all strongly correlated with the 90-day 

mortality rate as shown in Figure 2.
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Figure 2. Top 15 features selected using XGBoost.

(2) LR model

Using the method of backward stepwise regression analysis, 

the variables with p-values less than 0.05 were screened out, and 

then the LR model was constructed. LR analysis showed that age, 

vasopressor, severe liver disease, and metastatic solid tumor were 

significant risk factors that increased the risk of death in elderly 

ARF patients. Urine output, serum creatinine, body 

temperature_min, and SpO2_mean were protective factors for 

elderly ARF patients. Detailed information of LR analysis was 

shown in Table 5.
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Table 5. Features selected in the logistic 
regression
Variable OR(95%CI) P

(Intercept)      0.006(0.004-
0.01)

< 
0.001

Age                1.349(1.227-
1.485)

< 
0.001

Body weight                0.827(0.753-
0.907)

< 
0.001

Dobutamine             1.874(1.247-
2.803)

< 
0.001

Dopamine               1.576(1.125-
2.192)

< 
0.001

Norepinephrine      1.324(1.068-
1.642) 0.010

Vasopressor           2.540(1.955-
3.300)

< 
0.001

Myocardial_infarct       1.364(1.122-
1.655)

< 
0.001

Peripheral_vascular_dis
ease 

1.299(1.035-
1.624) 0.020

Cerebrovascular_diseas
e   

1.391(1.075-
1.791) 0.010

Chronic_pulmonary_dis
ease 

1.336(1.112-
1.605)

< 
0.001

Mild_liver_disease        1.812(1.356-
2.408)

< 
0.001

Paraplegia              2.399(1.512-
3.743)

< 
0.001

Malignant_cancer         1.601(1.266-
2.017)

< 
0.001

Severe_liver_disease    1.892(1.257-
2.840)

< 
0.001

Metastatic_solid_tumor    3.144(2.342-
4.215)

< 
0.001

Hemoglobin_max          0.796(0.727-
0.871)

< 
0.001

Platelets_min           1.396(1.179-
1.655)

< 
0.001

Platelets_max            0.656(0.553-
0.775)

< 
0.001
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WBC_min                    1.119(1.030-
1.217)

< 
0.001

Chloride_min               0.905(0.829-
0.986) 0.020

Creatinine_max             0.823(0.753-
0.898)

< 
0.001

PTT_max                    1.175(1.084-
1.272)

< 
0.001

Urine output                0.744(0.668-
0.827)

< 
0.001

Heart_rate_min            1.268(1.159-
1.388)

< 
0.001

SBP_min                    1.273(1.126-
1.442)

< 
0.001

SBP_mean                  0.875(0.770-
0.993) 0.040

Respiratory_rate_mean            1.253(1.146-
1.370)

< 
0.001

Temperature_min 0.874(0.802-
0.953)

< 
0.001

SpO2_mean                  0.811(0.743-
0.883)

< 
0.001

APSIII                    1.029(1.023-
1.036)

< 
0.001

LODS                     1.159(1.107-
1.214)

< 
0.001

OASIS                     0.981(0.966-
0.997) 0.020

OR odds ratio, WBC white blood cells, PTT partial thromboplastin time, SBP 
systolic blood pressure, SpO2 pulse oxygen saturation, APSIII acute physiology 
and chronic health score III, LODS logistic organ dysfunction system, OASIS 
Oxford acute severity of illness score.

Model comparison

In the model validation phase, both the XGBoost algorithm 

model and the LR model showed good discrimination ability. The 

area under the curve (AUC) values of the two models were 0.838 

(LR) and 0.851 (XGBoost), respectively, whereas the AUC value of 

the XGBoost model was larger (Figure 3). There were significant 

differences in AUC among different models (P=0.013). The DCA 

mainly directly assesses the practicability of the model for clinical 
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decision-making by quantifying the "net benefit" under different 

intervention thresholds . As can be seen from the figure 4, the 

curves of the two models are higher than those of the "all 

treatment" or "all no treatment" strategies in the vast majority of 

threshold ranges, indicating that these two models have a clinical 

net benefit. By further observing the DCA of the two prediction 

models, we found that the net benefit of the XGBoost model had a 

larger range than the LR model, indicating that the XGBoost model 

had a higher clinical utility (Figure 4). Furthermore, the XGBoost 

model had smaller sample residuals and root-mean-square 

residuals, indicating that the XGBoost algorithm fitted better and 

the predicted values of the model were closer to the actual values 

(Figure 5). Taken together, comparison of the two models showed 

that the XGBoost algorithm model was a better model for 

predicting 90-day mortality in elderly patients with ARF. 
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Figure 3. The receiver operating characteristic curves. A 

Logistic regression model, area under curves (AUC) is 0.838; 

B XGBoost model, AUC is 0.851.

Figure 4. Decision curve analysis of the two prediction 
models. 
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Figure 5. Cumulative residual distribution plot for two 
models. X-axis indicates the absolute residual value and Y-axis 
indicates the cumulative percentage of residuals. Solid blue 
line=XGBoost, Solid sky-blue line=Logistic regression. The 
preferred model is the XGBoost model.

Optimal model analysis

Given that the XGBoost model was superior to the LR model in 

terms of discrimination, clinical validity, and degree of fit, 

breakdown plots were constructed on the basis of the XGBoost 

model to predict the risk of death at the individual level in elderly 

patients with ARF. Breakdown plots were constructed using 

significant variables such as age, vasopressor, urine output, 

metastatic solid tumor, etc. Green color indicated a positive effect 

on outcome indicators and red color indicated a negative effect. 

The size of the absolute value indicated the degree of risk, with 

larger values indicating higher risk. As shown in Figure 6, the 

extent to which each indicator contributed to the outcome variable 

could be clearly seen. This study identified through the breakdown 
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plot that critical illness score, urine output, age, weight, 

hemoglobin, heart rate, partial thromboplastin time, blood oxygen 

saturation, vasopressin and metastatic solid tumor were the ten key 

predictive factors affecting the mortality rate of this patient. These 

factors together explained the total predictive power of the model. 

Finally, the risk of death at 90 days for the patient was obtained. 

Figure 6. Breakdown plot for XGBoost model.

Discussion
Compared with previous studies using the MIMIC database to 

predict ARF in ICU [29], there are several advantages in this study 

[30]. Firstly, the group with the highest ARF mortality rate was 

used in this study. Elderly ARF patients in ICU were preferentially 

selected for the study of short-term mortality in ARF. This is 

because age-related changes in organ structure and function 
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render elderly patients in ICU more susceptible to ARF [31]. 

Moreover, relevant studies have shown that the short-term 

mortality rate of ARF is more than 60% [32]. Secondly, the metric 

of goodness of fit was added to determine the performance of the 

model in this study, and the comparison of goodness of fit was 

mainly demonstrated by cumulative residual distribution plot and 

residual box-plot. Finally, this study utilized breakdown plots to 

predict the impact of different variables from the XGBoost model 

on the outcome metrics.

The results of this study showed that the XGBoost model has 

better performance than the LR model for predicting ARF mortality 

in the elderly by AUC and DCA. The advantage of XGBoost lies in 

its powerful nonlinear modeling capability, which can capture the 

interaction relationships and threshold effects in complex clinical 

data. However, its "black box" nature may affect the trust of 

clinicians. For example, Mohamadlou et al. [33] utilized the 

XGBoost algorithm to predict the risk of ARF in critically ill 

patients. Lei et al. [34] built the XGBoost algorithm to identify the 

risk of ARF after surgery. Koyner et al. [35] also utilized the 

XGBoost algorithm model to make a prediction of the risk of ARF 

occurring within 48 h of admission, thus identifying influencing 

factors that would increase the risk of ARF development. In 

contrast, the advantage of LR lies in its simplicity and interpret-

ability, but it is difficult to handle nonlinear relationships and 

multicollinearity problems. For example, Kristovic et al. [36] 

applied LR method to construct a predictive model for ARF in 

postoperative patients. An et al. [37] utilized LR modeling to study 

the common risk factors of ARF patients in neurosurgical ICU. 

However, several studies have found that LR methods have lower 

AUC values compared to some of the newer techniques [38], 
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suggesting that the measured performance metrics are relatively 

low, or with higher prediction errors [39]. Our result is in 

consistent with some previous studies in which the XGBoost model 

was shown to be superior. For instance, Yue et al. [40] studied the 

risk of ARF in patients with sepsis and found that the XGBoost 

model was the most effective model among all the prediction 

models. Furthermore, a meta-analysis study showed that XGBoost 

is more effective than LR and other ML algorithms in predicting 

ARF [43]. It is noteworthy that while XGBoost demonstrated 

statistically significant advantages in key clinical metrics (e.g., 

clinical net benefit in critical thresholds), the overall predictive 

performance of traditional logistic regression remained 

comparable. This aligns with a recent comparative study in the 

Iranian ED setting, which concluded that LR can perform as well as 

advanced ensemble models in predicting in-hospital mortality [44]. 

While both XGBoost and LR models showed good predictive 

performance, clinical implementation requires interpretable 

decision support. As demonstrated in recent studies, nomograms 

offer key advantages by consolidating risk factors into a visual 

format, enabling rapid risk estimation via point-scoring, and clearly 

marking clinical thresholds (e.g., ICU admission at 85% probability) 

[45].

Although the XGBoost model only slightly outperforms the 

logistic regression model in terms of the area under the ROC curve 

(AUC), this difference holds significant clinical and statistical 

importance. First, the AUC difference demonstrates statistical 

significance (p < 0.05), indicating that the XGBoost model 

consistently outperforms traditional methods in distinguishing 

between high-risk and low-risk patients. Second, clinical decision-

making is not solely based on a single metric. Decision curve 
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analysis (DCA) confirms that the XGBoost model provides higher 

clinical net benefits across a broader range of decision thresholds. 

This means that when using the XGBoost model, clinicians can 

identify more true high-risk patients at the same false-positive rate, 

or reduce unnecessary interventions at the same true-positive rate. 

Additionally, the model fit evaluation ( residual analysis) shows that 

the XGBoost model has a lower root mean square error compared 

to the LR model, indicating that its predictions are not only more 

accurate but also more stable. This subtle difference is particularly 

crucial in resource-intensive ICU settings, as it may enable more 

precise timing for critical interventions. Therefore, we recommend 

that future research further validate the added value of these two 

models in real-world clinical decision-making through prospective, 

multicenter cohorts, and explore their potential applications in 

personalized treatment planning.

Then, for clinical scenarios with abundant data and complex 

interactions among variables, XGBoost is a better choice[46]. 

However, in clinical Settings where resources are limited and rapid 

explanations are required, LR still holds significant value. 

Therefore, for large medical institutions, it is recommended to use 

XGBoost to build predictive models and combine them with 

interpret-able tools such as breakdown plots to assist clinical 

decision-making. For primary medical institutions, the LR model 

can be adopted because of its relatively low demand for computing 

resources. Both models can be used in clinical decision support 

systems, but they need to be optimized in combination with 

feedback from clinicians.

In the XGBoost algorithm model, APSIII, urine output, age at 

admission, vasopressor, metastatic solid tumor, SpO2_mean, 

SBP_mean, and body weight were all strongly correlated with the 
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mortality rate of elderly ARF patients. APSIII score had the 

greatest weight among these characteristics. APSIII score is 

commonly used for determining disease severity and predicting 

mortality, and performs well in the timely identification of high-risk 

patients and the development of intervention strategies [47]. Urine 

output has long been recognized as the most common influencing 

factor for ARF [48]. Oliguria is often presented as the first clinical 

sign of ARF and is one of the criteria for the diagnosis of ARF by 

KDIGO (Kidney Disease: Improving Global Outcomes) [49]. Also, 

decreased urine output can cause hypovolemia, which can promote 

the development of ARF [50]. Prompt rehydration therapy restores 

circulating blood volume and improves impaired renal perfusion 

[51,52]. Furthermore, vasoactive substances may influence ARF 

progression; for instance, vasopressors can increase glomerular 

perfusion pressure and urine output, potentially elevating ARF risk 

[53]. Our model demonstrated superior predictive performance for 

90-day mortality in elderly ARF patients, with vasopressin 

identified as a key predictor. However, limitations exist: (1) CRRT-

exclusive enrollment due to ICU data completeness may limit 

generalizability to non-ICU populations; (2) the 90-day observation 

period may miss long-term outcomes; (3) inter-institutional dialysis 

criteria variability could introduce heterogeneity. Future 

multicenter studies with extended follow-up and comprehensive 

dialysis tracking are recommended. In addition, metastatic solid 

tumor is a common comorbidity in elderly patients with ARF, and 

Rosner and Perazella suggested that the production of 

inflammatory cytokines resulted in an increased mortality rate of 

patients with ARF [54]. Because these factors are easy to assess at 

the time of patient admission, they can be used as predictors in 

elderly patients with ARF.

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



Since the XGBoost model outperforms the LR model, we 

constructed breakdown plot for interpreting the XGBoost model. 

The breakdown plot helps doctors quickly identify key risk factors 

by quantifying the contribution rate of each clinical variable to the 

predicted outcome (such as age, laboratory indicators, etc.), 

thereby enabling targeted adjustment of treatment plans. 

Meanwhile, it is also a visualization tool used to discover how the 

specific value of each variable affects the prognosis of the model. 

Finally, by comparing the consistency between the contribution 

values and clinical experience, the rationality of the model logic is 

verified to provide data-driven optimization basis for decision-

making [55]. It can help doctors provide the best medical plans for 

patients and offer reliable conclusions for research. Therefore, this 

study suggests that the predictive results of the XGBoost model 

should be regarded as an auxiliary, higher-precision risk 

stratification tool, rather than an isolated decision-making basis. 

Clinically, it is recommended to integrate the predictions of such 

models with dynamic renal function monitoring (e.g., daily urine 

output changes, electrolyte levels) and the comprehensive 

judgment of physicians, thereby achieving more precise and 

personalized patient management.

This study also has some limitations: first, it is a single-center 

study and lacks external validation. Second, the MIMIC-IV database 

does not provide patient history and long-term follow-up events, 

and some key impact variables (contrast agent exposure and 

nephrotoxic drug exposure) might be overlooked. Thirdly, when the 

number of deaths is scarce, the model tends to favor the majority 

category, leading to missed diagnoses. In subsequent research, it is 

planned to optimize the model by adjusting parameters or through 

oversampling techniques. Finally, this is a retrospective study in 
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which most of the patients were white, which may impact on the 

results. In future studies, it needs to be validated in conjunction 

with further prospective multi-center studies.

Conclusions
The study shows that for predicting 90-day mortality in elderly 

ARF patients in the ICU, the XGBoost algorithm model is 

significantly better than the traditional LR model. APSIII, urine 

output, vasopressor medications, and metastatic solid tumor were 

all found to be strongly associated with ARF mortality in the 

elderly.
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