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Abstract

Background: Acute renal failure (ARF) is one of the most common
conditions encountered in the intensive care unit (ICU). ARF has a
complex pathogeriesis and due to the progressive weakening of the
structure and function of the kidney, the incidence of ARF
increases significantly in the aging group. Therefore, the
development of reliable predictive model is of great importance to
identify those patients in high risk for ARF, in order to provide
timely and effective interventions to improve their prognosis.
Objective: Extreme gradient boosting (XGBoost) is an efficient
integrated learning algorithm with advantages over traditional
logistic regression (LR) methods. The purpose of this study was to
compare the performance of the two models in predicting 90-day
mortality in elderly patients with ARF.

Methods: Data of elderly patients (>60years) with ARF in ICU



were extracted from MIMIC IV with 90-day mortality as end-point.
The performance of the two predictive models was tested and
compared by receiver operating characteristic curve and decision
curve analysis (DCA). Cumulative residual distribution plot and
residual box-plot were then used to determine the fit of the model.
Finally, the model with better overall diagnostic value was selected
and a breakdown plot was drawn.

Results: Data of 7,500 elderly ARF patients were analyzed, of
whom 1,150 died within 90 days. Both models showed good
discriminatory ability, but the XGBoost model had a larger area
under the curve value. DCA results revealed that the net benefit of
the XGBoost model had a greater range than the LR model.
Moreover, the XGBoost model had the smallest sainple residuals
and root-mean-square residuals, indicating a better fitting of the
XGBoost algorithm. Finally, a breakdown plot based on the
XGBoost model was created as an individualized tool for prognosis
prediction in elderly patients with ARF.

Conclusions: Our study find that the XGBoost algorithm model
was a better model for predicting 90-day mortality in elderly ICU
patients with ARF compared to the LR model. The model may have
clinical applications for elderly patients with ARF and may help
healthcare professionals to develop detailed treatment plans as

well as provide accurate care.
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Introduction

Acute renal failure (ARF) is a common syndrome characterized



by high morbidity, high mortality and poor prognosis [1]. It is
mainly caused by impaired renal function due to renal ischemia or
obstruction, as well as the consequence of certain types of
nephrotoxic drugs [2]. ARF was defined using the KDIGO criteria,
requiring meeting any of the following within 48 hours: (1) a serum
creatinine increase =0.3 mg/dl, (2) a 1.5-fold elevation from
baseline, or (3) urine output <0.5 ml/kg/h for 6 or more hours. ARF
can lead to rapid decline of renal function, causing symptoms such
as azotemia, water-electrolyte disturbances, and acid-base
imbalance [3]. In the elderly, ARF is more likely to progress to
multi-organ failure with a mortality rate as high as 70% due to the
decline of body functions and the combination of multiple organ
pathologies [4]. Even worse, ARF patients can only slow down the
progression of the disease and improve the guality of life through
long-term medication or dialysis treatment [5].

ARF is also one of the most common disorders with a
prevalence of 10-15% in the intensive care unit (ICU) [6], and as
high as 50-60% in critically ill patients [7], thus it is a serious
global health problem that we are facing [8]. On the other hand,
the incidence of ARF has increased significantly in the aging
population, probably due to the progressive weakening of the
structure and function of the human kidney [9]. A survey showed
that 52.2% of all in-hospital ARF patients were over 60 years of age
[10]. In recent years, despite improvements in the diagnosis and
treatment of the disease, the mortality rate of ARF has not been
significantly reduced [11], and the burden of disease caused by
ARF remains high, especially in ICU [12]. Consequently, early
recognition and diagnosis of ARF is extremely important.
Therefore, the development of reliable predictive models is

particularly urgent to identify those patients at risk and provide



them with timely and effective interventions to improve their
prognosis.

In recent years, the predictive performance of machine
learning (ML) technology has been greatly improved due to the fast
development of computer technology including artificial
intelligence and the establishment of many databases. Extreme
gradient boosting (XGBoost) is an ensemble learning algorithm that
it eratively builds multiple decision trees, with each tree correcting
the residuals of the previous one. The greedy algorithm is adopted
to select the best splitting point, supporting parallel computing and
missing value processing. It is applicable to nonlinear problems and
has strong generalization ability, but it is prone to over-fitting for
small sample data and needs to suppress through parameter
adjustment [13,14]. It has the distinctive features of efficiently and
flexibly handling of missing data and assembling weak predictive
models to build accurate models [15]. XGBoost algorithm has been
widely used in the medical field, including disease diagnosis,
rational and safe use of medication and drug development, which
helps to improve the efficiency and quality of decision making
[16,17]. Logistic regression (LR) is a linear model , which fits the
data by adjusting the weights and the bias, and the decision
boundary is linear . It belongs to a binary classification problem.
The model is simple and highly interpret-able, but has limited
ability to handle nonlinear problems .It has also been applied in
medical research, such as disease diagnosis, patient prognosis
assessment, and drug response prediction [18]. Interestingly, some
studies have compared the performance of the XGBoost algorithm
model with the LR model [19], and while in some cases XGBoost
was more accurate than LR [20], the opposite was shown in other

cases [21]. This study systematically compared these two models to



explore their applicability in predicting the risk of death in elderly
patients with ARF.

In recent years, with the continuous development of deep
learning and uncertain artificial intelligence, new paths have been
opened up for long-term stable prediction in the field of medical
diagnosis [22]. For example, the deep self-supervised framework
proposed by Zhang et al. [23], combined with feature elimination
and selection, has demonstrated outstanding performance in the
multi-dimensional health risk classification of blood tests. The
dimensionality reduction method proposed by Garcia et al. [24] has
demonstrated significant robustness in clinical practice for
randomly missing data in the diagnosis of thyroid cancer.
Compared with previous studies, this research focuses on core
demands such as clinical interpret-ability, real-time evaluability,
and data robustness. This plan aims to strike a balance between
algorithm performance and clinical practicality. In the future, we
plan to utilize advanced feature elimination techniques to further
enhance the interpret-ability and robustness of the model in high-

dimensional end noisy clinical data.

Methods

Database

Medical information mart for intensive care-IV (MIMIC-IV) is a
publicly available critical care database that contains information
about patients hospitalized at the Higher Medical Center in Boston
from 2008 to 2019. The researchers had completed all the training
course and were certified to access the database. This study
focuses on data from four modules: hosp, core, icu, and ed [25]. For

a description of the main tables in these four modules, please see



Table 1 for details. All data, including demographic data,
medication data, comorbidities, laboratory test data, vital signs and
disease severity score data, were extracted from the official
Physionet website (http://mimic.physionet.org/). The relevant code

for data extraction is available on the official GitHub website

q J/qithul mit-len/mimic-iv).

Table 1. Main tables in the MIMIC-IV database

Module Table name Relevant introduction
hosp diagnoses icd  Patient diagnostic information data
hosp prescriptions Patient's prescription records
hosp labevents Records of the patient's laboratory
tests
hosp pharmacy Patient pharmacy data records
core admission Patient admission information
core patient General information about the patient
core transfers Patient turnover bed records
icu icu stays ICU admission time log
icu chartevents Patient chart data
ed vitalsign Patient vital signs data

Research population
This study included patients with a clinical diagnosis of ARF,
among which 9,768 patients were over 60 years of age. For this

study, the inclusion criteria were: over 60 years old, and admission


https://github.com/mit-lcp/mimic-iv

to the ICU longer than 24 h. Exclusion criteria were: patients who
died within 24 h of ICU admission and patients with incomplete
data. For patients who were admitted to ICU multiple times, only
data from their first admission were used. The multiple
interpolation method is adopted to handle missing values, avoiding
the introduction of noise .Then, eliminate the variables with a
missing ratio of 30%, as a large missing ratio will affect the
accuracy of the prediction model. Ultimately, a total of 7,500
patients were enrolled in this study.
Data extraction

PostgreSQL (v13.0) and Navicat Premium (v15.0) software
were used to extract the data related to elderly patients with ARF.
Then, the data were processed using R softwarc. The main process
of data processing is shown in Figure 1. Gemneral information
included age at admission, body weight, length of stay in ICU, etc.
Treatment measures included: vasopressor use, nor-epinephrine
use, the use of continuous renal replacement therapy, etc. Related
comorbidities inciuded the following: cerebrovascular disease, mild
liver disease, severe liver disease, metastatic solid tumor, etc.
Disease severity scores included: sequential organ failure
assessment (SOFA), acute physiology score-III (APSIII), logistic
organ dysfunction system (LODS), Oxford acute severity of illness
score (OASIS), simplified acute physiology score-II (SPASII), and
systemic inflammatory response syndrome (SIRS). The first
laboratory test results after admission to ICU included: white blood
cells (WBC), prothrombin time (PT), partial thromboplastin time
(PTT), anion gap (AG), and urine output, etc. Vital signs included
the following: systolic blood pressure (SBP), diastolic blood
pressure (DBP), pulse oxygen saturation (Sp0O,), etc. Because of the

high sampling frequency, the maximum, the minimum, and the



average values were used to represent vital signs and laboratory

test results.
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Figure 1. Data processing flow

Statistical analysis

Elderly patients with ARF were divided into two groups based
on 90-day mortality. Continuous variables were represented using
the median and quartile, and were compared by Mann-Whitney U
test. Categorical variables were expressed in terms of frequency or
percentage, and compared using the Chi-square tests or Fisher’s
exact tests. Elderly patients with ARF were randomly assigned to
an 80% training set and a 20% validation set. This stratified
segregation provides an equitable initial data distribution for model
training and initial validation. The model training phase

incorporated a nested cross-validation framework. This entailed an



outer 5-fold random split, with models trained on 80% of the data
and their performance evaluated on the remaining 20%. Within
each outer fold, an inner 5-fold cross-validation combined with grid
search was employed for hyper-parameter optimization. The final
reported model performance is the average across all 5 outer
validation folds, ensuring reliability and reducing the risk of over-
fitting.

During the model construction phase, the LR model employed
AlIC-based backward stepwise regression (P < 0.05) for feature
selection, while the XGBoost model relied on its internal feature
importance mechanism, reflecting the fundamental distinction and
complementary nature between statistical significance testing and
algorithm-based gain calculation [26]. The XCGCRoost objective
function consists of a loss term and a regularization term, whereas
the LR model uses the log-loss function to measure performance.
After feature selection, XGRoost optimized its hyperparameters
(such as eta and max depth) through grid search, ultimately
constructing both mocels. In the model comparison, ROC and DCA
analyses showed that XGBoost achieved a slightly higher AUC
(0.851) than LR (0.838, P < 0.05), but DCA validation indicated that
the difference in net benefit between the two models was minimal
at clinically relevant thresholds, suggesting that their impact on
clinical decision-making may be limited [27]. The model fit was
validated as acceptable through residual distribution and boxplot
analyses [28]. In summary, we selected the XGBoost model with
superior overall performance as the predictive tool and generated a
breakDown plot to visually illustrate the contribution of each

variable to the outcome prediction.



Results

Baseline characteristics

A total of 7,500 elderly patients with ARF were included in this
study, among which 1,150 patients died within 90 days and 6,350
patients survived. Comparisons between groups showed that there
were significant differences in the age at admission, body weight,
vasopressor use, severe liver disease, metastatic solid tumor, urine
output, PTT max, etc. There were no statistically significant
differences between the variables including myocardial infarction,
glucose min, SpO2 max, etc. Other baseline characteristics were

shown in Tables 2-4.



Table 2. General information and treatment of the
patients

Death within Survival within

90 days 90 days F
General information
Number (sample size) 1150 6350
<
Age, year 80.00(73.28,86 78.31(71.55,85.0 0.00
.81) 3)
1
<
Gender (%) 0.00
1
Female 552(48.0) 2738(43.1)
Male 598(52.0) 3612(56.9)
<
Body weight, kg 74.80(63.05,87 77.73(66.20,91.0 0.00
.38) 9)
1
<
Ethnicity (%) 0.00
1
White 827(71.9) 4500(70.9)
Black 93(8.1) 703(11.1)
Yellow 37(3.2) 175(2.7)
Other 193(16.8) 972(15.3)
. <
Length of stay inthe * ) o5 30891) 2.96(1.85,5.29) 0.00
ICU, day 1
<
First care unit (%) 0.00
1
CCU 177(15.4) 1140(18.0)
SICU 134(11.7) 595(9.4)
MICU 301(26.2) 1607(25.3)
CVICU 63(5.5) 898(14.1)
Other 475(41.3) 2110(33.2)
The treatment
<
Antibiotic (%) 0.00
1
No 65(5.7) 944(14.9)
Yes 1085(94.3) 5406(85.1)
<
Dobutamine (%) 0.00



No 1065(92.6) 6208(97.7)
Yes 85(7.4) 142 (2.3)
<
Dopamine (%) 0.00
1
No 1033(89.8) 6047(95.2)
Yes 117(10.2) 303(4.8)
<
Nerve blockers (%) 0.00
1
No 1082(94.1) 6290(99.1)
Yes 68(5.9) 60(0.9)
Table 2 (Continued)
Death within 90  Survival within p
days 90 days
Epinephrine <
(%) 0.001
No 1038(90.3) 6036(95.1)
Yes 112(9.7) 314(4.9)
Norepinephrin <
e(%) 0.001
No 539(46.9) 4736(74.6)
Yes 611(53.1) 1614(25.4)
. <
Phenylephrine (%) 0.001
No 798(69.4) 5292(83.3)
Yes 352(30.6) 1058(16.7)
<
Vasopressor (%) 0.001
No 825(71.7) 5968(94.0)
Yes 325(28.3) 382(6.0)
<
CRRT (%) 0.001
No 1104(96.0) 6287(99.0)



Yes 46(4.0) 63(0.1)
ICUintensive care unit, CCU coronary care unit, S/CU surgical intensive care
unit, MICU medical intensive care unit, CVICU cardiac vascular intensive care
unit, CRRT continuous renal replacement therapy, P value less than 0.05 are
shown in bold text.

Table 3. Comorbidity and score system of the

patients
Death within 90 Survival within p
days 90 days
Comorbidity
Myocardial infarct (%) 0.180
No 812(70.6) 4604(72.5)
Yes 338(29.4) 1746(27.5)
Congestive heart failure (%) 0.090
No 530(46.1) 3095(48.7)
Yes 620(53.9) 3255(51.3)
Peripheral vascular disease (%) 0.020
No 933(81.1) 5335(84.0)

Yes 217(18.9) 1015(16.0)



Cerebrovascular disease (%)

0.001
No 956(83.1) 5530(87.1)
Yes 194(16.9) 820(12.9)
Dementia (%) 0.680
No 1055(91.7) 5848(92.1)
Yes 95(8.3) 502(7.9)
Chronic_pulmonary disease (%) 0.020
No 747(65.0) 4350(68.5)
Yes 403(35.0) 2000(31.5)
Rheumatic disease (%) 0.590
No 1093(95.0) 6058(95.4)
Yes 57(5.0) 292(4.6)
Peptic ulcer disease (%) 0.280
No 1099(95.6) 6111(96.2)
Yes 51(4.4) 239(3.8)
<
Mild liver disease (%) 0.001
No 943(82.0) 5797(91.3)
Yes 207(18.0) 553(8.7)
Diabetes uncomplicated (%) 0.310
No 813(70.7) 4392(69.2)
Yes 337(29.3) 1958(30.8)
Diabetes complicated (%) 0.020
No 991(86.2) 5298(83.4)
Yes 159(13.8) 1052(16.6)
. <
Paraplegia (%} 0.001
No 1094(95.1) 6160(97.0)
Yes 56(4.9) 190(3.0)
Table 3 (Continued)
Death within 90 Survival within P
days 90 days
Renal disease (%) 0.030
No 674(58.6) 3497(55.1)
Yes 476(41.4) 2853(44.9)
. o <
Malignant cancer (%) 0.001
No 849(73.8) 5413(85.2)
Yes 301(26.2) 937(14.8)



Severe liver disease (%)

0.001
No 1049(91.2) 6138(96.7)
Yes 101(8.8) 212(3.3)
<
) ) o
Metastatic solid tumor (%) 0.001
No 963(83.7) 5980(94.2)
Yes 187(16.3) 370(5.8)
Aids (%) 0.680
No 1148(99.8) 6341(99.8)
Yes 2(0.2) 9(0.2)
Score system
<
SOFA 8.00(6.00,12.00) 5.00(3.00,8.00) 0.001
75.00(59.00,97.0 50.00(41.00,63.0 <
APSII 0) 0) 0.001
<
LODS 9.00(6.00,11.00) 5.00(4.00,7.00) 0.001
40.00(34.00,47.0 33.00(27.00,39.0 <
OASIS 0) 0) 0.001
52.00(43.00,63.0 41.00(35.00,49.0 <
SAPSII 0) 0) 0.001
<
N
SIRS 3.00(2.00,3.00) 3.00(2.00,3.00) 0.001

SOFA sequential organ failure assessment, APSII] acute physiology and chronic
health score III, LODS logistic organ dysfunction system, OASIS Oxford acute
severity of illness score, SAPSIIsimplified acute physiology score II, S/RS systemic
inflammatory response syndrome, P value less than 0.05 are shown in bold text.



Table 4. Laboratory tests and vital signs of the

patients
Death within 90 Survival within p
days 90 days
Laboratory tests
<
Hematoorit min (o)  28:00(23.90,325  28.7024.80,332 &0
0) 0)
1
<
Hematoorit max (o)  3210(28:40,36.4  327029.30,37.1 &0
8) 0)
1
Hemoglobin min <
emogiobin._ 9.00(7.70,10.60)  9.40(8.10,10.90) 0.00
(g/dL) 1
Hemoglobin max <
emogiobin_ma 10.30(9.00,11.70) 10.70(9.40,12.20) 0.00
(g/dL) 1
<
(12
Platelots min (gur) 1640001000022 167.00122.00,22 & 0
5.00) 3:75) .
<
199.00(132.00,26 201.00(154.00,26
Platelets max (k/uL) 4.00) 7.00) (1).00
<
WBC_min (k/uL) 9.90(7.10,13.50) 9.50(6.93,12.40) 0.00
1
13.00(10.00,17.9 =
WBC max (k/uL) 8 T 19 70(9.20,17.00)  0.00
1
<
AG min (mEQ/L) 14.00(12.00,17.0  13.00(11.00,15.0 &
0) 0)
1
<
AG max (mEQ/L) 17.00(16.00,21.0  17.00(14.00,19.0 o
0) 0)
1
Bicarbonate min 20.00(16.00,23.0 21.00(18.00,23.7 ;00
(mEq/L) 0) 5) 1'
Bicarbonate max 23.00(20.00,25.0 23.00(21.00,26.0 ;00
(mEq/L) 0) 0) 1'
<
BUN min (mg/dL) 34.00(25.00,49.7 30.00(21.00,42.0 o

5)

0)



39.00(29.00,58.0 36.00(25.00,49.0

BUN max (mg/dL) 0) 0) 0.00
1
Calcium Total min =
- .00(7.50,8. .10(7.70,8. .
(EU/dL) 8.00(7.50,8.50) 8.10(7.70,8.60) (1) 00
Calcium Total max 0.04
(EU/dL) 8.60(8.00,9.00) 8.60(8.10,9.00) 0
<
Chloride min(mEq/L) 102.00(97.00,105 102.00(98.00,106 0.00
.00) .00) 1
<
. 105.00(101.00,10 106.00(102.00,11
Chloride max (mEq/L) 9.75) 0.00) (1).00
<
Creatinine min (g/dL) 1.30(1.10,1.90) 1.30(1.10,1.70) 0.00
1
<
Creatinine max (g/dL) 1.60(1.30,2.30) 1.60(1.30,2.10) 0.00
1
. . 137.00(134.00,14 137.00(134.00,14
Sodium min (mEq/L) 0.00) 0.00) 0.190
140. 137.00,14 140.00(137.00,14
Sodium max (mEq/L) 0.00(3X Y0 0.00(137.00 0.410
3.00) 2.00)

b . .
otassium_min 4.00(3.60,4.50)  4.00(3.60,4.40)  0.080

(mEq/L)
Potassium max 0.02
(mEq/L) 4.60(4.20,5.20) 4.60(4.20,5.00) 0
PT min (s) 13.90(13.10,16.4 13.60(12.30,14.9 0.00
0) 8)
1
<
PTT min (s) 29.50(27.70,34.9 29.30(26.40,32.7 0.00
- 8) 0)
1
<
PTT max (s) 39.95(31.13,66.5 34.19(29.00,49.7 0.00
0) 0) 1
) 110.50(93.00,138 110.00(94.00,130
Glucose min (mg/dL) 00) 00) 0.110
<
155.00(127.00,20 150.00(123.00,18
Glucose max (mg/dL) 0.00) 8.00) 0.00



Urine output (ml)

812.0(397.75,143
0.75)

1315.0(880.0,199
0.0)

<
0.00

Vital Signs
Heart rate min (min- 73.00(63.00,86.0 68.00(60.00,78.0
0.00
1) 0) 0)
1
Heart rate max (min- 107.00(94.05,124 99.00(87.00,114. =
0.00
1) .00) 00)
1
Heart rate mean (min- 89.24(77.50,101. 81.62(72.38,92.3 =
0.00
1) 57) 2)
1
Table 4 (Continued)
Death withiin 90 Survival within p
days_ 90 days
. 84.00(75.00,91.00 88.00(80.00,98.0 <
BP H
SBP min (mmFHg) ) 0) 0.001
. 141.00(126.00,15 144.00(132.00,16 <
SBP_max (mmHg) 6.00) 0.0) 0.001
108.15(100.49,11 113.75(105.62,12 <
SBP_mean (mmHg) 7.5) 5.26) 0.001
) 41.00(35.00,47.00 42.00(37.00,48.0 <
DBP H
~min (mmHg) ) 0) 0.001
DBP max (mmHg) ;34.00(72.00,97.00 3;1.00(72.00,97.0 0.690
DBP mean (mmHg) ;37.81(51.97,63.91 3?.12(52.44,64.8 0.030
Respiratory rate min 13.00(11.00,16.00 13.00(11.00,16.0 <
(min-1) ) 0) 0.001
Respiratory rate max( 30.00(26.00,34.00 28.00(24.00,31.0 <
min-1) ) 0) 0.001
Respiratory 20.45(18.15,23.54 19.24(17.13,21.7 <
rate mean(min-1) ) 2) 0.001
Temperature min (°C) 36.39(36.06,36.56 36.39(36.17,36.6 <
P E ) 1) 0.001



37.11(36.83,37.50 37.11(36.89,37.4
) 4)
36.73(36.51,36.92 36.75(36.56,36.9 <

Temperature max (°C) 0.040

Temperature mean (°C)

) 5) 0.001
SpO2 min (%) ;91.00(87.00,94.00 3)2.00(90.00,94.0 (<).001
SpO2 max (%) (1)8;).00(99.85,100. .10000).00(99.00,100 0.070
SpO2 mean (%) ;96.70(94.96,98.30 35.88(95.50,98.2 (<).001

WBC white blood cells, AG anion gap, BUN blood urea nitrogen, P7 prothrombin
time, P77 partial thromboplastin time, SBP systolic blood pressure, DBP diastolic
blood pressure, SpOZ pulse oxygen saturation, Max maximum, Min minimum , P
value less than 0.05 are shown in bold text.

Model construction
(1) XGBoost model

Using the method of backward stepwise regression analysis,
the variables with p-values less than (.05 were screened out, and
then the XGBoost model was constructed. The analysis of different
variables according to the XGBoost model showed that APSIII,
LODS, length of stay in ICU, urine output, age at admission,
vasopressor, metastatic solid tumor, SpO2 mean, platelets max,
respiratory rate mean, PTT max, SBP mean, heart rate min,
hemoglobin max, and body weight were the 15 most important
features, which were all strongly correlated with the 90-day

mortality rate as shown in Figure 2.
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Figure 2. Top 15 features selected using XGBoost.

(2) LR model

Using the method of backward stepwise regression analysis,
the variables with p-values less than 0.05 were screened out, and
then the LR model was constructed. LR analysis showed that age,
vasopressor, severe liver disease, and metastatic solid tumor were
significant risk factors that increased the risk of death in elderly
AREF patients. Urine output, serum creatinine, body
temperature min, and SpO2 mean were protective factors for
elderly ARF patients. Detailed information of LR analysis was

shown in Table 5.



Table 5. Features selected in the logistic

regression
Variable OR(95%CI) P
(Intercept) 0.006(0.004- <
P 0.01) 0.001
Ade 1.349(1.227- <
g 1.485) 0.001
. 0.827(0.753- <
Body weight 0.907) 0.001
. 1.874(1.247- <
Dobutamine 2.803) 0.001
Dopamine 1.576(1.125- <
P 2.192) 0.001
. . 1.324(1.068-
Norepinephrine 1.642) 0.010
Vasonressor 2.540(1.955- <
P 3.300) 0.001
. 1.364(1.122- <
Myocardial infarct 1.655) 0.001
i i 1.299(1. -
Peripheral vascular dis %9 (1.035 0.020
ease 1.624)
Cerebrovascular disecas 1.391(1.075-
e 1.791) 0.010
Chronic pulmonary dis 1.336(1.112- <
ease 1.605) 0.001
AN ) 1.812(1.356- <
,] .
Mild liver disease 2.408) 0.001
Parapleqia 2.399(1.512- <
peg 3.743) 0.001
Malignant cancer 1.601(1.266- <
ghant_ 2.017) 0.001
Severe liver disease 1.892(1.257- =
- - 2.840) 0.001
. ) 3.144(2.342- <
Metastatic solid tumor 4.215) 0.001
) 0.796(0.727- <
Hemoglobin max 0.871) 0.001
. 1.396(1.179- <
Platelets min 1.655) 0.001
Platelets max 0.656(0.553- =
- 0.775) 0.001



WBC min 1.119(1.030- <

1.217) 0.001
i : 0.905(0.829-
Chloride_min 0.956) 0.020
Creatinine max 0.823(0.753- <
B 0.898) 0.001
1.175(1.084- <
P max 1.272) 0.001
Urine output 0.744(0.668- <
’ 0.827) 0.001
Heart rate min 1.268(1.159- <
- 1.388) 0.001
i 1.273(1.126- <
SBP min 1 142) -
0.875(0.770-
SBP mean 0.993) 0.040
Respiratory rate mean 1.253(1.146- <
PO 1.370) 0.001
Temperature min 0.874(0.802- <
’ - 0.953) 0.001
0.811(0.743- <
>po2 mean 0.883) 0.001
1.029(1.023- <
APSIII 1 036) .
1.159(1.107- <
HOPS 1.214) 0.001
g 0.981(0.966-
N 0.997) 0.020

OR odds ratio, WBC white blood cells, PTT partial thromboplastin time, SBP
systolic blood pressure, SpOZ2 pulse oxygen saturation, APSIII acute physiology
and chronic health score III, LODS logistic organ dysfunction system, OASIS
Oxford acute severity of illness score.

Model comparison

In the model validation phase, both the XGBoost algorithm
model and the LR model showed good discrimination ability. The
area under the curve (AUC) values of the two models were 0.838
(LR) and 0.851 (XGBoost), respectively, whereas the AUC value of
the XGBoost model was larger (Figure 3). There were significant
differences in AUC among different models (P=0.013). The DCA

mainly directly assesses the practicability of the model for clinical



decision-making by quantifying the "net benefit" under different
intervention thresholds . As can be seen from the figure 4, the
curves of the two models are higher than those of the "all
treatment" or "all no treatment" strategies in the vast majority of
threshold ranges, indicating that these two models have a clinical
net benefit. By further observing the DCA of the two prediction
models, we found that the net benefit of the XGBoost model had a
larger range than the LR model, indicating that the XGBoost model
had a higher clinical utility (Figure 4). Furthermore, the XGBoost
model had smaller sample residuals and root-mean-square
residuals, indicating that the XGBoost algorithm fitted better and
the predicted values of the model were closer to the actual values
(Figure 5). Taken together, comparison of the two models showed
that the XGBoost algorithm model was a better model for

predicting 90-day mortality in elderly patients with ARF.
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Logistic regression model, area under curves (AUC) is 0.838;

B XGBoost model, AUC is 0.851.
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Optimal model analysis

Given that the XGBoost model was superior to the LR model in
terms of discrimination, clinical validity, and degree of fit,
breakdown plots were constructed on the basis of the XGBoost
model to predict the risk of death at the individual level in elderly
patients with ARF. Breakdown plots were constructed using
significant variables such as age, vasopressor, urine output,
metastatic solid tumor, etc. Green color indicated a positive effect
on outcome indicators and red color indicated a negative effect.
The size of the absolute value indicated the degree of risk, with
larger values indicating higher risk. As shown in Figure 6, the
extent to which each indicator contributed to the outcome variable

could be clearly seen. This study identified through the breakdown



plot that critical illness score, urine output, age, weight,
hemoglobin, heart rate, partial thromboplastin time, blood oxygen
saturation, vasopressin and metastatic solid tumor were the ten key
predictive factors affecting the mortality rate of this patient. These
factors together explained the total predictive power of the model.

Finally, the risk of death at 90 days for the patient was obtained.

breakDown plot for XGBoost model
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Figure 6. Breakdown plot for XGBoost model.

Discussion

Compared with previous studies using the MIMIC database to
predict ARF in ICU [29], there are several advantages in this study
[30]. Firstly, the group with the highest ARF mortality rate was
used in this study. Elderly ARF patients in ICU were preferentially
selected for the study of short-term mortality in ARF. This is

because age-related changes in organ structure and function



render elderly patients in ICU more susceptible to ARF [31].
Moreover, relevant studies have shown that the short-term
mortality rate of ARF is more than 60% [32]. Secondly, the metric
of goodness of fit was added to determine the performance of the
model in this study, and the comparison of goodness of fit was
mainly demonstrated by cumulative residual distribution plot and
residual box-plot. Finally, this study utilized breakdown plots to
predict the impact of different variables from the XGBoost model
on the outcome metrics.

The results of this study showed that the XGBoost model has
better performance than the LR model for predicting ARF mortality
in the elderly by AUC and DCA. The advantage of XGBoost lies in
its powerful nonlinear modeling capability, which can capture the
interaction relationships and threshold effects in complex clinical
data. However, its "black box" nature may affect the trust of
clinicians. For example, Mohamadlou et al. [33] utilized the
XGBoost algorithm to predict the risk of ARF in critically ill
patients. Lei ef al. |34] built the XGBoost algorithm to identify the
risk of ARF aiter surgery. Koyner et al. [35] also utilized the
XGBoost algorithm model to make a prediction of the risk of ARF
occurring within 48 h of admission, thus identifying influencing
factors that would increase the risk of ARF development. In
contrast, the advantage of LR lies in its simplicity and interpret-
ability, but it is difficult to handle nonlinear relationships and
multicollinearity problems. For example, Kristovic et al. [36]
applied LR method to construct a predictive model for ARF in
postoperative patients. An et al. [37] utilized LR modeling to study
the common risk factors of ARF patients in neurosurgical ICU.
However, several studies have found that LR methods have lower

AUC values compared to some of the newer techniques [38],



suggesting that the measured performance metrics are relatively
low, or with higher prediction errors [39]. Our result is in
consistent with some previous studies in which the XGBoost model
was shown to be superior. For instance, Yue et al. [40] studied the
risk of ARF in patients with sepsis and found that the XGBoost
model was the most effective model among all the prediction
models. Furthermore, a meta-analysis study showed that XGBoost
is more effective than LR and other ML algorithms in predicting
ARF [43]. It is noteworthy that while XGBoost demonstrated
statistically significant advantages in key clinical metrics (e.g.,
clinical net benefit in critical thresholds), the overall predictive
performance of traditional logistic regression remained
comparable. This aligns with a recent comparative study in the
Iranian ED setting, which concluded that LR can perform as well as
advanced ensemble models in predicting in-hospital mortality [44].
While both XGBoost and LR inodels showed good predictive
performance, clinical inplementation requires interpretable
decision support. As demonstrated in recent studies, nomograms
offer key advantages by consolidating risk factors into a visual
format, enabling rapid risk estimation via point-scoring, and clearly
marking clinical thresholds (e.g., ICU admission at 85% probability)
[45].

Although the XGBoost model only slightly outperforms the
logistic regression model in terms of the area under the ROC curve
(AUC), this difference holds significant clinical and statistical
importance. First, the AUC difference demonstrates statistical
significance (p < 0.05), indicating that the XGBoost model
consistently outperforms traditional methods in distinguishing
between high-risk and low-risk patients. Second, clinical decision-

making is not solely based on a single metric. Decision curve



analysis (DCA) confirms that the XGBoost model provides higher
clinical net benefits across a broader range of decision thresholds.
This means that when using the XGBoost model, clinicians can
identify more true high-risk patients at the same false-positive rate,
or reduce unnecessary interventions at the same true-positive rate.
Additionally, the model fit evaluation ( residual analysis) shows that
the XGBoost model has a lower root mean square error compared
to the LR model, indicating that its predictions are not only more
accurate but also more stable. This subtle difference is particularly
crucial in resource-intensive ICU settings, as it may enable more
precise timing for critical interventions. Therefore, we recommend
that future research further validate the added value of these two
models in real-world clinical decision-making through prospective,
multicenter cohorts, and explore their potential applications in
personalized treatment planning.

Then, for clinical scenarios with abundant data and complex
interactions among variables, XGBoost is a better choice[46].
However, in clinical Settings where resources are limited and rapid
explanations are required, LR still holds significant value.
Therefore, for large medical institutions, it is recommended to use
XGBoost to build predictive models and combine them with
interpret-able tools such as breakdown plots to assist clinical
decision-making. For primary medical institutions, the LR model
can be adopted because of its relatively low demand for computing
resources. Both models can be used in clinical decision support
systems, but they need to be optimized in combination with
feedback from clinicians.

In the XGBoost algorithm model, APSIII, urine output, age at
admission, vasopressor, metastatic solid tumor, SpO2 mean,

SBP mean, and body weight were all strongly correlated with the



mortality rate of elderly ARF patients. APSIII score had the
greatest weight among these characteristics. APSIII score is
commonly used for determining disease severity and predicting
mortality, and performs well in the timely identification of high-risk
patients and the development of intervention strategies [47]. Urine
output has long been recognized as the most common influencing
factor for ARF [48]. Oliguria is often presented as the first clinical
sign of ARF and is one of the criteria for the diagnosis of ARF by
KDIGO (Kidney Disease: Improving Global Outcomes) [49]. Also,
decreased urine output can cause hypovolemia, which can promote
the development of ARF [50]. Prompt rehydration therapy restores
circulating blood volume and improves impaired renal perfusion
[51,52]. Furthermore, vasoactive substances may influence ARF
progression; for instance, vasopressors can iicrease glomerular
perfusion pressure and urine output, potentially elevating ARF risk
[53]. Our model demonstrated superior predictive performance for
90-day mortality in elderly ARF patients, with vasopressin
identified as a key predictor. However, limitations exist: (1) CRRT-
exclusive enroilment due to ICU data completeness may limit
generalizability to non-ICU populations; (2) the 90-day observation
period may miss long-term outcomes; (3) inter-institutional dialysis
criteria variability could introduce heterogeneity. Future
multicenter studies with extended follow-up and comprehensive
dialysis tracking are recommended. In addition, metastatic solid
tumor is a common comorbidity in elderly patients with ARF, and
Rosner and Perazella suggested that the production of
inflammatory cytokines resulted in an increased mortality rate of
patients with ARF [54]. Because these factors are easy to assess at
the time of patient admission, they can be used as predictors in

elderly patients with ARF.



Since the XGBoost model outperforms the LR model, we
constructed breakdown plot for interpreting the XGBoost model.
The breakdown plot helps doctors quickly identify key risk factors
by quantifying the contribution rate of each clinical variable to the
predicted outcome (such as age, laboratory indicators, etc.),
thereby enabling targeted adjustment of treatment plans.
Meanwhile, it is also a visualization tool used to discover how the
specific value of each variable affects the prognosis of the model.
Finally, by comparing the consistency between the contribution
values and clinical experience, the rationality of the model logic is
verified to provide data-driven optimization basis for decision-
making [55]. It can help doctors provide the best medical plans for
patients and offer reliable conclusions for research. Therefore, this
study suggests that the predictive resulis of the XGBoost model
should be regarded as an auxiliary, higher-precision risk
stratification tool, rather than an isolated decision-making basis.
Clinically, it is recommended to integrate the predictions of such
models with dynamic renal function monitoring (e.g., daily urine
output changes, electrolyte levels) and the comprehensive
judgment of physicians, thereby achieving more precise and
personalized patient management.

This study also has some limitations: first, it is a single-center
study and lacks external validation. Second, the MIMIC-IV database
does not provide patient history and long-term follow-up events,
and some key impact variables (contrast agent exposure and
nephrotoxic drug exposure) might be overlooked. Thirdly, when the
number of deaths is scarce, the model tends to favor the majority
category, leading to missed diagnoses. In subsequent research, it is
planned to optimize the model by adjusting parameters or through

oversampling techniques. Finally, this is a retrospective study in



which most of the patients were white, which may impact on the
results. In future studies, it needs to be validated in conjunction

with further prospective multi-center studies.

Conclusions

The study shows that for predicting 90-day mortality in elderly
ARF patients in the ICU, the XGBoost algorithm model is
significantly better than the traditional LR model. APSIII, urine
output, vasopressor medications, and metastatic solid tumor were
all found to be strongly associated with ARF mortality in the
elderly.
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