
ARTIC
LE

 IN
 PRESS

Article in Press

Deep neural network-based coupling model of 
inter-organizational knowledge flow and agent 
collaborative decision-making

Scientific Reports

Received: 14 November 2025

Accepted: 27 January 2026

Cite this article as: Li M., Yu W. & 
Li Y. Deep neural network-based 
coupling model of inter-organizational 
knowledge flow and agent collaborative 
decision-making. Sci Rep (2026). https://
doi.org/10.1038/s41598-026-37838-8

Menglin Li, Wenwen Yu & Yiming Li

We are providing an unedited version of this manuscript to give early access to its 
findings. Before final publication, the manuscript will undergo further editing. Please 
note there may be errors present which affect the content, and all legal disclaimers 
apply.

If this paper is publishing under a Transparent Peer Review model then Peer 
Review reports will publish with the final article.

https://doi.org/10.1038/s41598-026-37838-8

© The Author(s) 2026. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 
License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit 
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do 
not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the 
article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

https://doi.org/10.1038/s41598-026-37838-8
https://doi.org/10.1038/s41598-026-37838-8
https://doi.org/10.1038/s41598-026-37838-8
http://creativecommons.org/licenses/by-nc-nd/4.0


Deep Neural Network-Based Coupling Model of Inter-
Organizational Knowledge Flow and Agent 
Collaborative Decision-Making

Menglin Li1,a, Wenwen Yu2,b, Yiming Li1,c,*

1 College of Business Administration, Woosong University, Daejeon 
34605, Korea

2 Economics and Commerce Studies of North East Asia, the Graduate 
School, Pai Chai University, Daejeon 35345, Korea

Email addresses:

a china2332706@163.com

b wenwen7849@163.com

c dancinglover@126.com

Corresponding author:

Yiming Li (dancinglover@126.com)

ABSTRACT

Inter-organizational knowledge flow and agent collaborative decision-
making constitute mutually interdependent processes critical for 
organizational performance in complex environments. This study 
proposes a novel deep neural network-based framework that explicitly 
models the bidirectional coupling mechanism between knowledge 
propagation dynamics and multi-agent coordination. The architecture 
integrates graph attention networks for knowledge transfer modeling 
with multi-agent reinforcement learning for decision coordination, 
establishing coupling interfaces that enable dynamic adaptation 
between these subsystems. The model incorporates temporal decay 
mechanisms, attention-based knowledge path optimization, and 
closed-loop feedback that propagates decision outcomes back to 
reshape knowledge transfer patterns. Experimental validation on 
synthetic and real-world datasets demonstrates substantial 
performance improvements of 8-24% over state-of-the-art baselines 
across knowledge transfer accuracy, decision success rates, and 
coordination efficiency metrics. Deployment in a supply chain 
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coordination scenario achieved 18.5% cost reduction, 71% stockout 
frequency decrease, and 42.7% inventory turnover improvement. The 
coupling quality correlation coefficient reached 0.812, confirming 
strong interdependencies between knowledge evolution and decision 
outcomes. This work advances theoretical understanding of 
organizational knowledge systems while providing practical tools for 
enhancing inter-organizational collaboration.

KEYWORDS

Inter-organizational knowledge flow; Agent collaborative decision-
making; Deep neural networks; Coupling mechanism; Graph neural 
networks; Multi-agent systems

I. Introduction

In the era of digital economy, inter-organizational knowledge flow has 
emerged as a critical driver of innovation and competitive advantage, 
fundamentally reshaping how organizations create, transfer, and 
utilize knowledge across boundaries [1]. The rapid advancement of 
artificial intelligence technologies, particularly deep neural networks 
(DNNs), has introduced unprecedented opportunities for modeling 
complex knowledge transfer mechanisms and enhancing agent-based 
collaborative decision-making processes [2]. As organizations 
increasingly rely on multi-agent systems to navigate distributed 
decision-making environments, understanding the coupling 
mechanism between knowledge flow dynamics and agent 
collaboration becomes essential for achieving optimal organizational 
performance [3].

Current research on inter-organizational knowledge flow has 
predominantly focused on traditional network analysis and 
organizational theory perspectives, examining knowledge transfer 
patterns, absorption capacity, and social capital effects [4]. 
Meanwhile, agent-based modeling has evolved as a powerful 
paradigm for simulating collective behaviors and emergent 
phenomena in complex adaptive systems [5]. However, existing 
studies largely treat knowledge flow and agent decision-making as 
separate domains, with limited exploration of their intrinsic coupling 
relationships and synergistic effects [6]. Recent advances in deep 
learning have demonstrated remarkable capabilities in capturing 
nonlinear dependencies and temporal dynamics, yet their application 
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to modeling the interplay between organizational knowledge flows 
and multi-agent coordination remains nascent [7].

Several critical challenges persist in this research domain. First, 
conventional approaches struggle to capture the dynamic and 
nonlinear characteristics of knowledge flow across organizational 
boundaries, particularly when multiple knowledge sources and 
heterogeneous agents interact simultaneously [8]. Second, existing 
agent-based decision models often overlook the bidirectional influence 
between knowledge accumulation patterns and collaborative decision 
strategies, leading to incomplete representations of real-world 
organizational systems [9]. Third, the lack of integrated frameworks 
that leverage deep neural networks to model both knowledge 
propagation mechanisms and agent coordination dynamics hinders 
the development of effective computational tools for organizational 
management [10].

Addressing these gaps is crucial for both theoretical advancement and 
practical applications. Theoretically, establishing a coupled modeling 
framework bridges disparate research streams in organizational 
learning, multi-agent systems, and deep learning, offering novel 
insights into how knowledge flows shape collective intelligence and 
decision quality. Practically, such frameworks enable organizations to 
optimize knowledge management strategies, improve inter-
organizational collaboration efficiency, and enhance adaptive 
decision-making capabilities in turbulent environments.

This study proposes an innovative approach to modeling the coupling 
mechanism between inter-organizational knowledge flow and agent 
collaborative decision-making using deep neural networks. The main 
research contributions include: (1) developing a DNN-based 
integrated framework that simultaneously captures knowledge 
propagation dynamics and agent interaction patterns; (2) establishing 
theoretical models that explicitly represent the bidirectional coupling 
relationships between knowledge flow characteristics and 
collaborative decision behaviors; (3) designing computational 
algorithms that enable real-time prediction and optimization of both 
knowledge transfer efficiency and decision-making performance; and 
(4) validating the proposed framework through empirical analysis and 
comparative experiments to demonstrate its superiority over existing 
approaches. These innovations advance the theoretical understanding 
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of organizational knowledge systems while providing practical tools 
for enhancing inter-organizational collaboration in complex 
environments.

II. Theoretical Foundation and Related Work

2.1 Inter-organizational Knowledge Flow Theory

Inter-organizational knowledge flow refers to the dynamic process 
through which knowledge assets are transferred, exchanged, and 
integrated across organizational boundaries, encompassing both 
explicit codified information and tacit experiential insights [11]. The 
fundamental knowledge transfer mechanism operates through 
multiple channels, including collaborative projects, personnel 
mobility, strategic alliances, and technology licensing, with transfer 
efficiency determined by knowledge characteristics and 
organizational absorptive capacity [12]. Knowledge sharing patterns 
manifest in three primary modes: unidirectional transfer from 
knowledge providers to recipients, bidirectional exchange between 
partnering organizations, and network-based diffusion involving 
multiple interconnected entities [13].

Cross-organizational knowledge integration theory posits that 
effective knowledge utilization requires not merely transfer but 
systematic integration into recipient organizational structures and 
routines. The knowledge integration effectiveness can be formalized 
as:

KIeff = α·KCquality + β·ACreceiver + γ·RCcompatibility

(1)

where KIeff represents knowledge integration effectiveness, KCquality 
denotes knowledge content quality, ACreceiver indicates absorptive 
capacity of the receiving organization, RCcompatibility represents 
relational compatibility, and α, β, γ are weighting coefficients 
reflecting contextual priorities [14].

Multiple factors influence inter-organizational knowledge flow 
dynamics, including organizational distance (geographic, cognitive, 
and cultural), trust levels between partners, knowledge stickiness, 
and institutional environments. The knowledge flow rate across 
organizational interfaces can be modeled as:
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Frate = Kpotential·Ttrust
Ddistance + Sstickiness

(2)

where Frate represents the knowledge flow rate, Kpotential denotes the 
knowledge potential difference between organizations, Ttrust reflects 
inter-organizational trust level, Ddistance captures organizational 
distance, and Sstickiness represents knowledge stickiness [15]. These 
factors collectively determine both the velocity and volume of 
knowledge traversing organizational boundaries, with implications for 
collaborative innovation outcomes and competitive positioning.

2.2 Agent Collaborative Decision-Making Mechanism

Multi-agent systems comprise autonomous computational entities that 
perceive environmental states, process information independently, 
and execute coordinated actions to achieve collective objectives 
through decentralized control architectures [16]. The collaborative 
decision-making framework operates on the principle that individual 
agents maintain local decision autonomy while contributing to system-
level optimization through strategic interaction and information 
exchange [17].

Distributed decision algorithms enable agents to reach consensus or 
coordinated strategies without centralized control, with each agent i 
updating its decision variable xi based on local observations and 
neighbor communications. The consensus-based decision update 
follows:

xi(t + 1) = xi(t) + ϵ ∑
j∈Ni

wij(xj(t) - xi(t))

(3)

where Ni represents the neighbor set of agent i, wij denotes the 
communication weight between agents i and j, and ϵ is the learning 
rate parameter [18]. This iterative process guarantees asymptotic 
convergence to collective decision states under connected network 
topologies.

Agent communication protocols define standardized message formats, 
transmission sequences, and interaction rules that facilitate 
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information sharing across the multi-agent network. Common 
protocols include broadcast mechanisms for global information 
dissemination, peer-to-peer communication for bilateral exchanges, 
and blackboard architectures for shared knowledge repositories [19]. 
Protocol efficiency directly impacts coordination latency and network 
bandwidth consumption, particularly in large-scale agent populations.

Collaborative learning mechanisms enable agents to improve decision 
quality through experience accumulation and knowledge synthesis 
from distributed sources. The collective learning objective can be 
formulated as:

minθ

N
∑

i=1
Li(θ;Di) + λR(θ)

(4)

where θ represents shared model parameters, Li denotes the local loss 
function of agent i computed on local dataset Di, N is the total number 
of agents, and R(θ) represents a regularization term with coefficient λ 
[20]. This federated learning paradigm allows agents to collectively 
optimize decision models while maintaining data locality and privacy, 
essential for inter-organizational collaboration scenarios where 
proprietary information cannot be centrally aggregated.

2.3 Application of Deep Neural Networks in Knowledge 
Modeling

Deep learning theory establishes that multi-layer neural architectures 
can learn hierarchical representations of complex data through 
cascaded nonlinear transformations, with theoretical guarantees for 
universal approximation and feature abstraction capabilities [21]. The 
foundational principle relies on gradient-based optimization to 
minimize empirical risk across parameterized function spaces, 
enabling automated feature extraction from raw data without manual 
engineering.

Neural network architectures have evolved from shallow perceptrons 
to sophisticated deep structures including convolutional neural 
networks (CNNs) for spatial pattern recognition, recurrent neural 
networks (RNNs) for sequential modeling, and transformer 
architectures for attention-based representation learning [22]. These 
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architectural innovations have progressively enhanced the capacity to 
capture long-range dependencies, contextual relationships, and 
semantic structures inherent in knowledge-intensive domains.

Knowledge representation learning methods employ deep neural 
networks to encode entities, relations, and concepts into continuous 
vector spaces where semantic similarities correspond to geometric 
proximities. The embedding transformation maps discrete knowledge 
elements to dense representations:

ek = f(xk;θ) = σ(WL⋯σ(W2σ(W1xk + b1) + b2)⋯ + bL)

(5)

where ek denotes the embedding vector for knowledge element k, f(·;θ) 
represents the deep neural encoder with parameters θ, Wi and bi are 
weight matrices and bias vectors for layer i, and σ(·) denotes 
activation functions [23].

Deep networks have demonstrated substantial effectiveness in 
knowledge graph applications, particularly for link prediction, entity 
alignment, and relation extraction tasks. Graph neural networks 
(GNNs) aggregate neighborhood information through message 
passing:

h(l+1)
i = ϕ(h(l)

i ,⨁j∈N(i)ψ(h(l)
i ,h(l)

j ,eij))
(6)

where h(l)
i  represents node i's hidden state at layer l, N(i) denotes 

neighbors of node i, ϕ and ψ are learnable transformation functions, ⨁ 
represents aggregation operations, and eij encodes edge features [24].

Despite these advances, existing methods exhibit critical limitations 
for inter-organizational contexts: static architectures inadequately 
capture temporal knowledge evolution, isolated graph models fail to 
integrate multi-source heterogeneous knowledge streams, and 
standard embeddings cannot represent bidirectional coupling 
between knowledge propagation and decision-making processes [25]. 
These deficiencies necessitate novel frameworks specifically designed 
for dynamic inter-organizational knowledge modeling coupled with 
agent collaboration mechanisms.
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Recent years have witnessed growing research attention toward 
integrating knowledge management with multi-agent coordination 
systems. Chen et al. [51] proposed a knowledge-enhanced multi-agent 
framework for supply chain optimization, yet their approach treats 
knowledge states as static inputs rather than dynamic evolving 
processes. Similarly, Wang and Zhang [52] developed graph-based 
knowledge transfer models for organizational networks, but they did 
not incorporate decision feedback mechanisms that could reshape 
knowledge flows. In the domain of multi-agent reinforcement 
learning, Oroojlooy and Hajinezhad [53] provided a comprehensive 
review of cooperative learning methods, highlighting the challenge of 
information asymmetry among agents—a gap that knowledge 
integration could potentially address. More recently, Foerster et 
al. [54] introduced learning to communicate protocols in multi-agent 
settings, demonstrating that emergent communication improves 
coordination performance. However, their work focused primarily on 
task-specific signaling rather than organizational knowledge as 
commonly understood in management literature. The intersection of 
organizational learning theory and computational multi-agent systems 
remains relatively unexplored. Traditional organizational studies 
emphasize social and structural factors influencing knowledge 
transfer [11, 12], while computational approaches prioritize 
algorithmic efficiency without accounting for organizational context 
[16, 17]. Our work bridges this divide by embedding organizational 
knowledge flow dynamics within a multi-agent decision architecture, 
establishing explicit coupling mechanisms that allow bidirectional 
influence between knowledge evolution and collaborative decision 
outcomes. This integration represents a methodological contribution 
that extends beyond incremental improvements to existing 
techniques, offering a unified framework where knowledge and 
decisions co-evolve through learned coupling functions.

III. Deep Neural Network-Based Coupling Model of 
Knowledge Flow and Decision-Making

3.1 Overall Architecture Design of the Model

The proposed coupling model integrates knowledge flow dynamics 
with agent collaborative decision-making through a dual-layer deep 
neural network architecture that explicitly models bidirectional 
dependencies between organizational knowledge propagation and 
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distributed decision processes [26]. The overall framework comprises 
three interconnected modules: the knowledge flow encoding layer, the 
decision-making coordination layer, and the coupling interface that 
facilitates information exchange and mutual adaptation between these 
subsystems.

The interaction mechanism between the knowledge flow layer and 
decision layer operates through a bidirectional coupling function that 
simultaneously captures how knowledge availability influences agent 
decisions and how decision outcomes reshape knowledge transfer 
patterns. The coupling strength at time t is formalized as:

C(t) = tanh(Wc[K(t);D(t)] + bc)

(7)

where K(t) represents the knowledge flow state vector, D(t) denotes 
the collective decision state vector, [·;·] indicates concatenation 
operation, Wc and bc are learnable coupling parameters, and tanh(·) 
serves as the activation function [27].

The multi-level network topology constructs a hierarchical structure 
with four distinct layers: the input encoding layer that processes raw 
organizational data, the knowledge propagation layer that models 
inter-organizational knowledge transfer dynamics using graph 
attention networks, the agent interaction layer that simulates 
collaborative decision-making through multi-head attention 
mechanisms, and the output prediction layer that generates forecasts 
for both knowledge distribution and decision outcomes [28]. Each 
layer maintains specific dimensionality configurations optimized for 
computational efficiency and representational capacity.
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Figure 1. Overall architecture and operational flow of the 
coupled DNN model

ACCEPTED MANUSCRIPTARTICLE IN PRESS

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



The figure presents a vertical flowchart illustrating the complete 
architecture of the proposed coupling model. At the top, the Input 
Layer receives two data streams: organizational knowledge matrices 
(X_k) and agent state matrices (X_a). These inputs flow into the 
Knowledge Encoding Module, which employs multi-head self-attention 
transformation to process heterogeneous organizational knowledge. 
The encoded representations then enter the Knowledge Propagation 
Layer, built upon graph attention networks that model inter-
organizational transfer dynamics with temporal decay mechanisms. In 
parallel, the Agent Interaction Layer processes agent states through 
recurrent attention mechanisms for collaborative decision-making. 
The central component is the Coupling Interface, which establishes 
bidirectional connections between knowledge and decision 
subsystems through concatenation operations and learnable coupling 
parameters. The coupling strength function C(t) = tanh(W_c[K(t);D(t)] 
+ b_c) governs information exchange between layers. Decision 
outcomes feed back through the Feedback Loop to reshape knowledge 
transfer patterns, implementing closed-loop adaptation. The Output 
Layer generates predictions for both knowledge distribution states 
and collaborative decision outcomes. Arrows indicate forward 
propagation paths (solid lines) and feedback connections (dashed 
lines), with layer dimensions annotated at each stage. Figure 1 
depicts the complete operational flow of the coupled model, showing 
how information travels from input data streams through successive 
network layers toward final output predictions.

The model defines structured input-output interfaces where inputs 
consist of organizational knowledge matrices Xk ∈ RN×Dk and agent 
state matrices Xa ∈ RM×Da, with N organizations, M agents, and 
dimensions Dk and Da respectively [29]. The transformation process 
follows:

H(0)
k = XkWenc

k + benc
k

(8)

H(0)
a = XaWenc

a + benc
a

(9)
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where H(0)
k  and H(0)

a  represent initial embeddings for knowledge and 
agent states, with corresponding encoding weight matrices and bias 
vectors.

The model operation flow executes iteratively through forward 
propagation, coupling computation, and backward optimization 
phases. During forward propagation, knowledge flow states evolve 
through temporal graph convolutions while agent decisions update 
through recurrent attention mechanisms, with coupling signals 
transmitted bidirectionally at each time step. Table 1 summarizes the 
essential parameter configurations governing model behavior, 
including layer dimensions, activation functions, learning rates, and 
regularization coefficients optimized through preliminary experiments 
[30].

Table 1. Model parameter configuration specifications
Parameter 
Category

Parameter 
Name

Symbol Value/Rang
e

Description

Network 
Structure

Knowledge 
embedding 
dimension

Dk 256 Dimensionalit
y of 
knowledge 
representation
s

Network 
Structure

Agent 
embedding 
dimension

Da 128 Dimensionalit
y of agent 
state vectors

Network 
Structure

Coupling layer 
dimension

Dc 192 Hidden 
dimension of 
coupling 
interface

Network 
Structure

Number of 
propagation 
layers

Lk 4 Depth of 
knowledge 
flow encoding

Network 
Structure

Number of 
decision 
layers

Ld 3 Depth of 
agent decision 
network

Optimization Learning rate η 0.001 Step size for 
gradient 
descent

Optimization Regularization 
coefficient

λ 0.0001 Weight decay 
parameter

Training Batch size B 64 Mini-batch 
size for 
training

As presented in Table 1, the parameter configuration balances model 
expressiveness with computational tractability, enabling effective 
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learning of complex coupling patterns while maintaining training 
stability across diverse organizational scenarios.

To facilitate reproducibility and provide comprehensive model 
documentation, we describe the proposed framework following the 
ODD (Overview, Design concepts, Details) protocol commonly used for 
agent-based model specifications [55]. The Overview encompasses the 
model’s purpose (coupling knowledge flow with collaborative 
decision-making), state variables (organizational knowledge vectors 
K_i, agent observation states o_i, coupling signals c_i, and collective 
decision states D), and process scheduling (alternating updates 
between knowledge propagation and decision coordination at each 
time step). Design Concepts include emergence (collective decision 
quality emerges from individual agent interactions modulated by 
knowledge availability), adaptation (agents adjust policies based on 
accumulated experience and knowledge feedback), learning (gradient-
based optimization of neural network parameters), and interaction 
(agents communicate through attention-weighted message passing 
while organizations exchange knowledge through graph-structured 
channels). The Details specification covers initialization procedures 
(Xavier initialization for network weights, random sampling from 
training distributions for initial states), input data requirements 
(organizational knowledge matrices with minimum 128-dimensional 
embeddings, agent observation vectors, network adjacency 
structures), and submodel descriptions (knowledge encoder: 4-layer 
transformer with 8 attention heads; propagation network: 4-layer 
graph attention network; decision network: 3-layer actor-critic 
architecture with 128-unit hidden layers; coupling interface: 192-
dimensional bottleneck layer with tanh activation). Complete 
implementation code, including all baseline model implementations, 
training scripts, and evaluation procedures, is provided in 
Supplementary File S1 to enable full replication of reported results.

3.2 Knowledge Flow Modeling Mechanism

The neural network encoding method for knowledge representation 
employs a hierarchical transformer architecture that processes 
heterogeneous organizational knowledge into unified vector 
representations while preserving semantic structures and contextual 
dependencies [31]. Each knowledge element ki undergoes multi-head 
self-attention transformation to capture internal relationships:
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zi = MultiHead(Qi,Ki,Vi) = Concat(head1,...,headh)WO

(10)

where Qi, Ki, Vi are query, key, and value matrices derived from 
knowledge embeddings, h denotes the number of attention heads, and 
WO represents the output projection matrix. This encoding mechanism 
effectively captures both explicit factual content and implicit 
relational semantics within organizational knowledge bases.

The graph neural network model for inter-organizational knowledge 
propagation constructs a dynamic knowledge flow graph where nodes 
represent organizations and directed edges encode knowledge 
transfer relationships weighted by transfer intensity and accessibility 
[32]. The propagation mechanism updates organizational knowledge 
states through spatial graph convolution with temporal decay:

K(t+1)
i = σ( ∑

j∈Ni
α(t)

ij WflowK(t)
j + WselfK(t)

i ) ⊙ d(t)
i

(11)

where K(t)
i  denotes organization i's knowledge state at time t, Ni 

represents neighboring organizations in the knowledge network, α(t)
ij  

indicates attention-based transfer weights computed through edge 
features, Wflow and Wself are learnable transformation matrices, σ(·) is 
the activation function, ⊙  denotes element-wise multiplication, and 
d(t)

i  represents the decay vector.

Figure 2. Knowledge flow modeling mechanism with GNN 
propagation and decay dynamics
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The figure illustrates the knowledge flow modeling mechanism 
through three interconnected panels. Panel A (Network Structure) 
displays an inter-organizational knowledge network where nodes 
represent organizations (labeled Org_1 through Org_n) and directed 
edges indicate knowledge transfer relationships. Edge weights α_ij 
represent attention-based transfer coefficients computed from 
organizational features. Panel B (Propagation Mechanism) 
demonstrates the graph neural network update process, showing how 
organization i aggregates knowledge from neighbors N_i through the 
propagation equation K_i^(t+1) = σ(Σ α_ij W_flow K_j^(t) + W_self 
K_i^(t)) ⊙ d_i^(t). The aggregation process combines neighbor 
contributions (blue arrows) with self-loop connections (green arrows). 
Panel C (Temporal Dynamics) presents two curves: the Decay 
Function showing exponential knowledge degradation d_i(t) = exp(-δ_i 
· Δt) over time, and the Enhancement Function illustrating knowledge 
amplification through utilization feedback with coefficient γ_enh. The 
intersection point indicates the equilibrium state where decay and 
enhancement balance. A timeline at the bottom shows knowledge 
state evolution across decision cycles t_0 through t_n, with knowledge 
quality indicators at each time point.

Figure 2 reveals the operational principles of the knowledge flow 
modeling mechanism. It shows how knowledge propagates through 
the organizational network while undergoing transformation and 
decay processes, capturing the dynamic nature of inter-organizational 
knowledge exchange.

The knowledge decay mechanism models temporal degradation 
through exponential functions di(t) = exp( - δi·Δt) where δi represents 
organization-specific decay rates and Δt denotes elapsed time, while 
the enhancement mechanism amplifies knowledge through utilization 
feedback and collaborative reinforcement effects [33]. Organizations 
that actively apply transferred knowledge experience reduced decay 
rates and enhanced absorption capacity.

The knowledge flow path optimization algorithm employs 
reinforcement learning to identify optimal transfer routes that 
maximize knowledge diffusion efficiency while minimizing 
transmission costs and quality degradation [34]. The algorithm 
evaluates candidate paths using a reward function incorporating 
transfer speed, knowledge retention, and organizational compatibility 
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metrics, iteratively updating path selection policies through policy 
gradient methods. Table 2 specifies the critical parameters governing 
knowledge flow dynamics within the model framework.

Table 2. Knowledge flow dynamics parameter specifications
Parameter Symbol Value/Range Description

Base decay rate δbase 0.05-0.15 Fundamental 
knowledge 
degradation 
coefficient

Enhancement 
factor

γenh 1.2-2.0 Amplification 
coefficient for 
knowledge 
utilization

Transfer attention 
heads

hflow 8 Number of 
attention heads in 
propagation

Path optimization 
horizon

Topt 10-20 Time steps for 
path planning

Quality threshold qmin 0.6 Minimum 
acceptable 
knowledge quality

Flow update 
frequency

fupdate 1-5 steps Interval for 
recalculating flow 
patterns

The results in Table 2 indicate parameter ranges calibrated through 
systematic sensitivity analysis to ensure stable knowledge 
propagation across diverse organizational configurations. We 
conducted extensive experiments varying each parameter individually 
while holding others constant at baseline values, measuring the 
impact on three key metrics: knowledge transfer accuracy, decision 
success rate, and training convergence speed. The sensitivity analysis 
results are summarized in Table 3 and visualized in Figure 3.

Table 3. Sensitivity analysis results for key model parameters

Parameter
Tested 
Range

Optimal 
Value

Performance 
Variation

Sensitivity 
Level

Base decay rate 
(δ_base)

0.01-
0.25

0.08 ±4.2% 
accuracy

Medium

Enhancement 
factor (γ_enh)

1.0-3.0 1.5 ±6.8% 
accuracy

High

Learning rate 
(η)

0.0001-
0.01

0.001 ±12.3% 
convergence

High

ACCEPTED MANUSCRIPTARTICLE IN PRESS

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



Parameter
Tested 
Range

Optimal 
Value

Performance 
Variation

Sensitivity 
Level

Knowledge 
embedding dim 
(D_k)

64-512 256 ±3.1% 
accuracy

Low

Agent 
embedding dim 
(D_a)

32-256 128 ±2.7% 
accuracy

Low

Coupling layer 
dim (D_c)

64-384 192 ±5.4% 
accuracy

Medium

Number of 
propagation 
layers (L_k)

2-6 4 ±4.9% 
accuracy

Medium

Transfer 
attention heads 
(h_flow)

4-16 8 ±3.6% 
accuracy

Low
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Figure 3. Sensitivity analysis visualization showing parameter 
impact on model performance

The figure displays a multi-panel sensitivity analysis visualization. 
Each panel shows one parameter on the x-axis and three performance 
metrics (knowledge transfer accuracy, decision success rate, 
convergence epochs) on the y-axis. Panel A examines learning rate 
sensitivity, revealing sharp performance degradation beyond η = 
0.005 and optimal stability at η = 0.001. Panel B shows enhancement 
factor effects, with performance peaking at γ_enh = 1.5 and declining 
at extreme values due to over-amplification artifacts. Panel C 
illustrates decay rate influence, demonstrating robust performance 
within δ_base ∈ [0.05, 0.15] with degradation outside this range. 
Panel D presents coupling dimension analysis, showing diminishing 
returns beyond D_c = 192. Shaded regions indicate 95% confidence 
intervals across 10 independent runs. Vertical dashed lines mark 
selected optimal values used in final experiments.

The sensitivity analysis reveals that learning rate and enhancement 
factor exhibit highest sensitivity, requiring careful tuning for optimal 
performance. Embedding dimensions show relatively low sensitivity, 
indicating model robustness to representation capacity choices. Based 
on these findings, we selected parameter values that maximize 
performance while maintaining stability across the tested ranges. 
Knowledge quality assessment employs composite metrics 
incorporating accuracy, completeness, timeliness, and relevance 
dimensions, computed through weighted aggregation with coefficients 
learned from historical transfer success rates [35]. 

Quality scores influence subsequent transfer decisions, creating 
adaptive feedback loops that progressively optimize knowledge flow 
patterns based on empirical performance outcomes.

3.3 Agent Collaborative Decision-Making Coupling 
Algorithm

The agent decision network architecture employs deep reinforcement 
learning principles where each agent i maintains a policy network πθi 
and a value network Vϕi that jointly optimize action selection based on 
local observations and global knowledge states [36]. The policy 
network maps the combined state space comprising agent 
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observations oi and accessible knowledge representations ki to action 
distributions:

ai~πθi (ai|si) = softmax(Wπ[oi;ki;ci] + bπ)
(12)

where si = [oi;ki;ci] represents the augmented state incorporating 
observations, knowledge embeddings, and coupling signals ci from the 
knowledge flow layer, Wπ and bπ denote policy network parameters, 
and ai represents the selected action. This architecture explicitly 
integrates knowledge availability into decision-making processes, 
enabling agents to adapt strategies based on evolving organizational 
knowledge landscapes.

The multi-agent attention mechanism facilitates coordination by 
computing importance weights for inter-agent communications, 
allowing each agent to selectively attend to relevant collaborators 
based on task context and knowledge complementarity [37]. Agent i 
computes attention scores over neighboring agents through scaled 

dot-product attention: αij = exp(qT
i kj/ dk)

∑j'∈Ni exp(qT
i kj'/ dk) where qi and kj represent 

query and key vectors derived from agent states, dk denotes the key 
dimension, and Ni represents agent i's communication neighbors. 
These attention weights modulate information aggregation, enabling 
dynamic coalition formation responsive to changing task 
requirements.

The knowledge-driven collaborative decision algorithm integrates 
real-time knowledge flow information into multi-agent coordination by 
conditioning agent policies on knowledge state embeddings extracted 
from the knowledge flow layer [38]. At each decision epoch, agents 
receive knowledge context vectors summarizing relevant 
organizational knowledge through cross-attention between agent 
queries and knowledge memory banks, which subsequently inform 
action selection through concatenation with traditional state 
representations. This mechanism ensures that collaborative decisions 
reflect current knowledge availability, preventing coordination 
failures due to information asymmetries or outdated knowledge 
assumptions.
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The closed-loop feedback mechanism establishes bidirectional 
coupling by propagating decision outcomes back to the knowledge 
flow layer, where successful collaborative actions trigger knowledge 
enhancement and failed coordination attempts indicate knowledge 
gaps requiring targeted acquisition [39]. The feedback signal f(t) 
quantifying decision quality is computed from task rewards and 
coordination metrics, then backpropagated through coupling layers to 
adjust knowledge propagation patterns:

K(t+1) = K(t) + ηk·f(t) ⊙ ∇KLdecision

(13)

where ηk represents the knowledge update rate, Ldecision denotes the 
decision-making loss, and ∇K indicates gradients with respect to 
knowledge states. This feedback loop creates adaptive knowledge 
management where organizational learning priorities dynamically 
align with collaborative decision-making needs.

The training strategy for the coupled model employs alternating 
optimization between knowledge flow parameters and agent decision 
parameters to prevent gradient conflicts while ensuring convergence 
of both subsystems [40]. Each training iteration consists of three 
phases: knowledge flow pretraining using historical transfer data, 
agent policy optimization through proximal policy optimization with 
knowledge states held fixed, and joint fine-tuning with reduced 
learning rates to refine coupling parameters. Curriculum learning 
progressively increases scenario complexity, beginning with single-
domain knowledge transfer and simple coordination tasks before 
advancing to multi-domain heterogeneous knowledge flows with 
complex collaborative objectives. This staged training approach 
stabilizes learning dynamics while enabling the model to capture 
intricate coupling patterns between organizational knowledge 
evolution and multi-agent coordination strategies.

IV. Experimental Verification and Application Analysis

4.1 Experimental Environment and Dataset Construction

The experimental platform operates on a distributed computing 
cluster equipped with 8 NVIDIA A100 GPUs (40GB memory each), 
512GB system RAM, and 20TB storage capacity, running Ubuntu 
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20.04 LTS with PyTorch 2.0 framework and CUDA 11.8 for 
accelerated deep learning computations [41]. The implementation 
employs Python 3.9 with supporting libraries including NetworkX for 
graph operations, Ray for distributed multi-agent simulation, and 
TensorBoard for training visualization. This configuration enables 
parallel training of multiple model variants while accommodating 
large-scale organizational network simulations with thousands of 
knowledge transfer events.

The cross-organizational knowledge flow simulation dataset 
synthesizes realistic inter-organizational collaboration patterns 
derived from three data sources: anonymized enterprise collaboration 
records from technology consortiums, publicly available scientific 
research collaboration networks, and synthetically generated 
scenarios based on organizational theory models [42]. Knowledge 
elements are represented as 512-dimensional embeddings encoding 
semantic content, temporal metadata, quality indicators, and 
organizational origin. The dataset construction process applies 
temporal partitioning with 70% training data, 15% validation data, 
and 15% test data, ensuring chronological separation to prevent 
information leakage. Table 4 summarizes the comprehensive 
statistical characteristics of the constructed dataset across multiple 
dimensions.

Table 4. Statistical characteristics of the experimental dataset
Dataset 

Component
Training 

Set
Validation 

Set
Test Set Total Time 

Span
Organizations 450 97 103 650 36 months
Knowledge 
elements

125,000 18,750 18,750 162,500 -

Transfer 
events

385,000 57,500 57,500 500,000 -

Agents per 
organization

8-20 8-20 8-20 Avg: 12 -

Decision 
episodes

48,000 7,200 7,200 62,400 -

Collaboration 
tasks

12,000 1,800 1,800 15,600 -

Network 
density

0.085 0.083 0.087 0.085 -

As presented in Table 4, the dataset encompasses diverse 
organizational scales and collaboration intensities, with network 
density maintained consistently across partitions to ensure 
comparable evaluation conditions.
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Figure 4. Distribution analysis of knowledge element 
characteristics across organizational categories

Figure 4 illustrates the distribution patterns of knowledge element 
characteristics, revealing heterogeneous knowledge quality and 
semantic diversity across organizational categories, which provides 
rich variation for testing model generalization capabilities.

The multi-agent collaborative decision scenarios encompass three 
task categories: resource allocation requiring agents to distribute 
limited resources across competing organizational objectives, 
consensus formation where agents negotiate collective strategies 
under conflicting preferences, and coordinated exploration tasks 
involving distributed search for optimal solutions in complex decision 
spaces [43]. Each scenario incorporates 50-200 agents with varying 
communication topologies (fully connected, hierarchical, and small-
world networks) and knowledge access patterns (centralized, 
distributed, and hybrid). Task complexity progressively increases 
through scenario tiers, with success criteria requiring both individual 
agent performance and collective coordination quality metrics 
exceeding predefined thresholds.
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Figure 5. Complexity distribution and task characteristics 
across experimental scenarios

As shown in Figure 5, the designed scenarios span a wide complexity 
spectrum, enabling systematic evaluation of model performance under 
diverse conditions ranging from simple bilateral coordination to 
complex multi-party negotiations with knowledge constraints.

The model evaluation index system comprises four primary 
dimensions quantified through composite metrics. Knowledge flow 
effectiveness is measured by transfer accuracy Ak, coverage ratio Ck, 
and temporal efficiency Ek, aggregated as:

Mknowledge = ωaAk + ωcCk + ωeEk

(14)

where ωa, ωc, ωe represent importance weights summing to unity. 
Decision-making performance employs task success rate Rtask, 
coordination efficiency ηcoord, and convergence speed vconv. Coupling 
quality assesses bidirectional information flow through correlation 
coefficient ρcoupling between knowledge states and decision outcomes, 
computed as:

ρcoupling =
Cov(K,D)

σKσD

(15)
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where Cov(K,D) denotes covariance between knowledge and decision 
state sequences, and σK, σD represent their standard deviations. 
Computational efficiency tracks training time, inference latency, and 
memory consumption.

The comparative experiment scheme evaluates the proposed coupling 
model against five baseline approaches: independent knowledge flow 
networks without decision coupling, standalone multi-agent 
reinforcement learning systems without knowledge modeling, 
sequential pipeline models processing knowledge and decisions 
separately, simple concatenation methods combining features without 
explicit coupling mechanisms, and state-of-the-art graph neural 
network models adapted for organizational contexts. To ensure fair 
comparison, all models—including baselines and the proposed 
approach—were trained and evaluated using identical data splits. 
Specifically, every model received the same 70% training set (385,000 
transfer events, 48,000 decision episodes), 15% validation set (57,500 
transfer events, 7,200 decision episodes), and 15% test set (57,500 
transfer events, 7,200 decision episodes) with consistent temporal 
ordering preserved across partitions. Data preprocessing pipelines, 
including knowledge embedding generation and agent state 
normalization procedures, remained identical for all approaches. Each 
baseline undergoes identical hyperparameter tuning protocols with 
grid search over learning rates (range: 0.0001-0.01), network depths 
(range: 2-6 layers), and regularization coefficients (range: 0.00001-
0.001), selecting configurations that maximize validation 
performance. Training procedures employed consistent early stopping 
criteria (patience = 50 epochs without validation improvement) and 
identical random seeds for weight initialization to ensure 
reproducibility. Experiments execute with 5-fold cross-validation and 
report mean performance with 95% confidence intervals across 10 
independent runs per configuration, ensuring statistical reliability of 
comparative conclusions. Complete training configurations, data 
preprocessing scripts, and baseline implementations are provided in 
Supplementary File S1.

4.2 Model Performance Comparison Experiments

Comprehensive performance evaluation comparing the proposed 
coupling model against five baseline methods reveals substantial 
improvements across multiple dimensions. Table 5 presents 
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quantitative results obtained from experiments on the test dataset, 
demonstrating the superiority of the coupled DNN approach in both 
knowledge flow modeling and collaborative decision-making tasks.

Table 5. Performance comparison between proposed model and 
baseline methods

Method Knowle
dge 

Transf
er 

Accura
cy (%)

Knowle
dge 

Covera
ge 

Ratio 
(%)

Decis
ion 

Succ
ess 

Rate 
(%)

Coordin
ation 

Efficienc
y

Converg
ence 
Time 

(epochs)

Coupli
ng 

Qualit
y (ρ)

F1-
Sco
re

Independ
ent KF 
Network

72.4±1.
8

68.3±2.
1

61.5±
2.4

0.643±0.0
28

485±32 0.231±0
.045

0.67
3

Standalo
ne MARL

45.2±3.
2

52.1±2.
9

79.8±
1.7

0.762±0.0
21

358±28 0.198±0
.052

0.71
2

Sequenti
al 
Pipeline

76.8±1.
5

71.6±1.
8

73.4±
2.1

0.701±0.0
25

412±35 0.447±0
.038

0.73
6

Simple 
Concaten
ation

78.3±1.
4

74.2±1.
6

76.9±
1.9

0.728±0.0
23

389±30 0.512±0
.041

0.76
2

Adapted 
GNN 
Model

81.5±1.
2

77.8±1.
5

80.3±
1.6

0.758±0.0
19

342±26 0.568±0
.035

0.79
5

Proposed 
Coupling 
Model

89.7±0.
9

86.4±1.
1

88.6±
1.3

0.847±0.
015

267±21 0.812±
0.028

0.87
3

Improve
ment vs. 
Best 
Baseline

+8.2% +8.6% +8.3% +8.9% -21.9% +24.4% +7.8
%

Statistica
l 
Significa
nce (p-
value)

<0.001 <0.001 <0.00
1

<0.001 <0.001 <0.001 <0.0
01

The results in Table 5 indicate that the proposed coupling model 
consistently outperforms all baseline methods across evaluation 
metrics, with improvements ranging from 7.8% to 24.4% compared to 
the best-performing baseline [44]. Knowledge transfer accuracy 
reaches 89.7%, substantially exceeding the adapted GNN model's 
81.5%, demonstrating enhanced capability in capturing complex 
knowledge propagation dynamics. Decision success rates achieve 
88.6%, reflecting effective integration of knowledge states into agent 
coordination strategies.
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Knowledge flow efficiency analysis reveals critical differences in how 
various approaches handle inter-organizational knowledge transfer. 
The proposed model achieves superior coverage ratios by dynamically 
optimizing transfer paths based on real-time decision feedback, 
whereas independent knowledge flow networks lack decision context 
to guide propagation strategies. The knowledge utilization efficiency 
metric, defined as:

ηutil =
∑N

i=1 Kapplied
i

∑N
i=1 Kreceived

i

(16)

where Kapplied
i  represents knowledge actually utilized by organization i 

in decision-making and Kreceived
i  denotes total received knowledge, 

reaches 0.847 for the coupling model compared to 0.643 for 
independent networks, indicating that bidirectional coupling enables 
more effective knowledge application [45].

Figure 6. Decision accuracy comparison across different 
methods under varying scenario complexities

Figure 6 illustrates decision accuracy trajectories as scenario 
complexity increases, revealing that the proposed coupling model 
maintains robust performance even in high-complexity environments 
while baseline methods experience degradation. The standalone 
MARL system performs well in simple scenarios but deteriorates 
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rapidly when knowledge availability becomes critical, whereas the 
coupling model leverages knowledge states to sustain decision quality 
across complexity levels.

Convergence speed and stability assessment demonstrates substantial 
training efficiency advantages. The proposed model converges in 267 
epochs on average, representing a 21.9% reduction compared to the 
adapted GNN baseline's 342 epochs. The convergence stability 
coefficient, quantified through loss variance across training epochs:

σconv =
1
T

T
∑

t=1
(Lt -

―
L )2

(17)

where Lt represents loss at epoch t and 
―
L  denotes mean loss, yields 

σconv = 0.034 for the coupling model versus 0.089 for sequential 
pipeline methods, indicating smoother and more predictable training 
dynamics [46]. This stability stems from the alternating optimization 
strategy that prevents gradient conflicts between knowledge flow and 
decision-making components.

Figure 7. Scalability analysis showing model performance and 
computational cost across varying organizational network sizes

As shown in Figure 7, scalability testing across network sizes ranging 
from 100 to 1000 organizations demonstrates that the proposed 
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model maintains near-linear computational complexity while 
preserving performance quality. Inference time scales as O(NlogN) 
where N represents the number of organizations, significantly better 
than the O(N2) complexity exhibited by simple concatenation methods 
that process all pairwise interactions. The model successfully 
processes networks with 1000 organizations in under 2.5 seconds per 
decision cycle, meeting real-time operational requirements for large-
scale organizational systems.

Validation of coupling mechanism effectiveness employs ablation 
studies that systematically remove coupling components. Models 
without bidirectional knowledge-decision coupling experience 15.3% 
degradation in decision success rates and 12.7% reduction in 
knowledge transfer accuracy, confirming that explicit coupling 
modeling provides substantial benefits beyond simple feature 
concatenation. The coupling quality metric ρcoupling reaches 0.812 for 
the complete model, indicating strong correlation between knowledge 
evolution and decision outcomes, whereas methods lacking explicit 
coupling mechanisms achieve only 0.512 or lower [47]. Statistical 
significance testing via paired t-tests confirms all performance 
improvements exceed random variation with p-values below 0.001, 
establishing robust evidence for the coupling model's superiority 
across diverse organizational contexts and task configurations.

4.3 Real-World Application Case Analysis

To validate practical applicability, the proposed coupling model was 
deployed in a supply chain collaborative decision-making scenario 
involving 23 manufacturing enterprises, 15 logistics providers, and 8 
distribution centers across a regional industrial network [48]. The 
application scenario addresses demand forecasting coordination 
where organizations must share market intelligence knowledge while 
making interdependent inventory and production decisions under 
uncertain demand conditions. Each organization operates autonomous 
agents responsible for procurement, production scheduling, and 
distribution planning, with decisions requiring real-time coordination 
to minimize system-wide costs while maintaining service levels.
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Figure 8. Knowledge flow visualization showing inter-
organizational transfer patterns and intensity evolution over 
decision cycles

Figure 8 presents the knowledge flow visualization results captured 
during a 30-day operational period, revealing dynamic transfer 
patterns where market demand knowledge propagates from 
downstream distribution centers to upstream manufacturers with 
varying intensities. The visualization employs node size to represent 
knowledge accumulation levels and edge thickness to indicate 
transfer volumes, demonstrating that the model successfully identifies 
critical knowledge pathways connecting demand-sensing 
organizations with production decision-makers. Temporal analysis 
shows that knowledge flow intensity increases during demand 
volatility periods, with the coupling mechanism automatically 
enhancing transfer rates when decision uncertainty escalates.
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The agent decision-making process operates through three 
coordinated phases: individual preference formation based on local 
knowledge and observations, collaborative negotiation leveraging 
shared knowledge states, and collective action execution with 
feedback-driven adjustment. During a representative coordination 
episode addressing sudden demand surge, manufacturer agents 
initially proposed conservative production increases based on 
historical patterns, but real-time knowledge flows from distribution 
agents indicating actual point-of-sale data triggered revised strategies 
through the coupling mechanism. The decision quality improvement 
metric, measuring the reduction in system-wide cost relative to 
isolated decision-making:

ΔQdecision = Cisolated - Ccoordinated
Cisolated

× 100%

(18)

reached 24.7% for this episode, demonstrating substantial value 
creation through knowledge-enhanced coordination [49]. Agent 
learning curves show progressive improvement over decision cycles, 
with coordination latency decreasing from initial 18 minutes to 
stabilized 7 minutes as agents adapted strategies based on 
accumulated knowledge patterns.

Table 6 quantifies the application effects comparing pre-deployment 
baseline performance using conventional supply chain management 
systems against post-deployment metrics with the coupling model 
operational.

Table 6. Application effectiveness evaluation in supply chain 
coordination scenario

Performance 
Indicator

Baseline 
System

Coupling 
Model

Improvement Statistical 
Confidence

Demand 
forecast 
accuracy (%)

73.5±3.2 86.8±1.9 +13.3% 95% CI

Inventory 
turnover rate

8.2±0.6 11.7±0.5 +42.7% 95% CI

Stockout 
frequency (per 
month)

12.4±2.1 3.6±1.2 -71.0% 95% CI

Coordination 
response time 
(min)

42±8 15±3 -64.3% 95% CI
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System-wide 
cost reduction 
(%)

Baseline 18.5±2.3 +18.5% 95% CI

Knowledge 
utilization rate 
(%)

52.3±4.5 81.2±2.8 +28.9% 95% CI

Decision 
consensus time 
(min)

35±6 12±2 -65.7% 95% CI

Overall 
satisfaction 
score (1-10)

6.8±0.7 8.9±0.4 +30.9% 95% CI

As presented in Table 6, the coupling model delivers substantial 
improvements across operational metrics, with demand forecast 
accuracy increasing by 13.3 percentage points and stockout frequency 
reduced by 71.0% compared to baseline systems. The inventory 
turnover rate improvement of 42.7% reflects enhanced coordination 
enabling leaner operations without service degradation. Notably, 
knowledge utilization rates increased from 52.3% to 81.2%, indicating 
that the explicit coupling mechanism successfully mobilizes 
organizational knowledge assets for decision support.

Figure 9. Decision-making effectiveness comparison showing 
cost reduction and service level improvements across monthly 
periods

As shown in Figure 9, the decision-making effectiveness exhibits 
consistent superiority over the six-month deployment period, with cost 
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reductions stabilizing around 18.5% and service levels improving from 
94.2% to 98.7%. The temporal stability demonstrates model 
robustness across varying market conditions including seasonal 
demand fluctuations and supply disruptions.

The practical business value assessment reveals multiple benefit 
dimensions beyond direct cost savings. Enhanced knowledge sharing 
reduced redundant information collection efforts, saving an estimated 
840 person-hours monthly across participating organizations. 
Improved demand visibility enabled 23% reduction in safety stock 
levels while maintaining target service levels, releasing working 
capital for productive investments. The coordination efficiency gains 
manifested in faster response to market changes, with new product 
introduction cycles shortened by 31% through accelerated knowledge 
transfer about customer preferences and technical requirements [50]. 
Participating organizations reported increased trust and willingness 
to share proprietary insights, indicating positive network effects that 
compound over time.

The business impact quantification through return on investment:

ROI = (Csaved + Vbenefits) - Ideployment
Ideployment

× 100%

(19)

where Csaved represents direct cost savings, Vbenefits captures indirect 
value creation, and Ideployment denotes deployment investment 
including infrastructure, training, and integration costs, yields 287% 
over the first year of operation, substantially exceeding organizational 
hurdle rates for technology investments.

Model deployment feasibility analysis identifies several enabling 
factors: compatibility with existing enterprise resource planning 
systems through API-based integration, acceptable computational 
requirements allowing real-time operation on standard cloud 
infrastructure, and gradual implementation pathways enabling phased 
rollout without disrupting current operations. However, critical 
challenges emerged including data quality and standardization 
requirements across heterogeneous organizational systems, change 
management resistance from personnel accustomed to traditional 
coordination approaches, and cybersecurity concerns regarding 
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sensitive knowledge sharing across organizational boundaries. 
Privacy-preserving adaptations implementing federated learning 
protocols addressed data sovereignty concerns while maintaining 
model effectiveness. Organizational governance structures required 
modification to accommodate algorithm-driven decision 
recommendations, with human oversight mechanisms established to 
maintain accountability and handle exception scenarios beyond model 
training scope. The deployment experience demonstrates that 
technical model superiority alone proves insufficient without 
comprehensive attention to organizational, procedural, and cultural 
dimensions of technology adoption in complex inter-organizational 
environments.

V. Discussion

The proposed deep neural network-based coupling model advances 
both theoretical understanding and practical methodology for 
modeling inter-organizational knowledge systems. Theoretically, this 
work bridges three previously disparate research domains—
organizational knowledge management, multi-agent coordination, and 
deep learning—by establishing formal representations of bidirectional 
dependencies between knowledge propagation and collective 
decision-making. The primary theoretical contribution lies in 
demonstrating that knowledge flow and agent collaboration constitute 
mutually constitutive processes rather than independent phenomena, 
challenging conventional approaches that treat these dimensions 
separately. This coupling perspective reveals that effective knowledge 
transfer depends critically on decision-making contexts, while optimal 
collaborative decisions require dynamic knowledge state awareness, 
fundamentally reframing how researchers conceptualize inter-
organizational coordination dynamics.

From a technical innovation standpoint, the model introduces several 
novel architectural components that enable practical implementation 
of coupling mechanisms. The dual-layer network architecture with 
explicit coupling interfaces allows simultaneous optimization of 
knowledge encoding and decision policies while maintaining 
computational tractability through alternating training strategies. The 
integration of graph attention networks for knowledge propagation 
with multi-agent reinforcement learning for decision coordination 
represents a methodological advancement beyond existing hybrid 
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architectures, which typically apply these techniques sequentially 
rather than interactively. The feedback loop mechanism enabling 
decision outcomes to reshape knowledge transfer patterns 
implements adaptive learning at the system level, moving beyond 
static knowledge management paradigms toward truly dynamic 
organizational intelligence systems.

The intrinsic coupling mechanisms operate through multiple 
interdependent pathways that experimental results help illuminate. 
Knowledge availability directly constrains feasible decision spaces by 
determining what information agents can access and integrate, while 
knowledge quality influences decision confidence and risk tolerance. 
Conversely, decision outcomes generate feedback signals that 
prioritize future knowledge acquisition and transfer, creating 
information-seeking behaviors aligned with coordination needs. The 
coupling strength observed in experiments (correlation coefficient 
0.812) suggests that these bidirectional influences operate with 
substantial intensity in organizational contexts, implying that models 
neglecting either direction sacrifice significant predictive and 
prescriptive power. The temporal dynamics reveal that coupling 
effects strengthen over time as agents learn which knowledge sources 
improve decision quality, establishing virtuous cycles where better 
decisions motivate enhanced knowledge sharing, which subsequently 
enables superior coordination.

Model advantages manifest across several dimensions validated 
through comparative experiments. The explicit coupling architecture 
achieves superior performance without requiring substantially more 
parameters than baseline models, indicating architectural efficiency 
rather than mere capacity scaling. The model demonstrates robust 
generalization across varying organizational scales and network 
topologies, suggesting that learned coupling patterns capture 
fundamental coordination principles applicable beyond training 
distributions. Convergence stability and training efficiency 
improvements reflect well-designed optimization procedures that 
prevent gradient conflicts between subsystems. The interpretability 
advantages, though not extensively explored in current experiments, 
merit emphasis: the model's modular architecture allows practitioners 
to examine knowledge flow patterns and decision logic separately 
while understanding their interactions through coupling layer 
activations.
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The applicable scope extends broadly across organizational contexts 
involving distributed decision-making with knowledge dependencies. 
Supply chain coordination, strategic alliance management, inter-firm 
innovation networks, and public-private partnerships all exhibit 
structural characteristics—multiple autonomous decision-makers, 
asymmetric information distribution, and coordination requirements—
that align with model assumptions. However, limitations exist for 
contexts with extremely sparse knowledge transfer (where coupling 
provides minimal advantage over independent models) or scenarios 
requiring very high-frequency real-time decisions that exceed current 
computational performance. Organizations with mature knowledge 
management systems and digital infrastructure will achieve easier 
deployment than those requiring substantial preliminary digitalization 
efforts.

Experimental results provide several important insights for both 
researchers and practitioners. The substantial performance gaps 
between coupled models and independent approaches (8-24% 
improvements) quantify the value of explicitly modeling knowledge-
decision interactions, justifying the additional architectural 
complexity. The scalability results demonstrating near-linear 
complexity growth suggest that deployment barriers decrease as 
computational infrastructure improves. The real-world case study 
revealing 18.5% cost reductions and 71% stockout frequency 
improvements indicates that laboratory performance translates to 
meaningful business value, though implementation challenges require 
attention beyond algorithmic considerations.

Generalization potential across domains appears promising but 
domain-specific adaptations will prove necessary. We outline concrete 
transfer procedures and required modifications for four target 
domains. For healthcare networks coordinating patient referrals and 
treatment knowledge, the transfer process involves: (a) redefining 
knowledge nodes as medical institutions with clinical expertise 
vectors derived from electronic health record summaries, (b) adapting 
edge weights to reflect referral patterns and treatment outcome 
correlations, (c) implementing differential privacy mechanisms with ε 
= 0.1 to satisfy HIPAA compliance requirements, and (d) modifying 
the decision layer to output referral recommendations rather than 
procurement decisions. The knowledge decay function requires 
adjustment to reflect medical knowledge obsolescence rates (typically 
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δ_base = 0.02 for clinical guidelines versus 0.08 for market 
intelligence). For scientific research collaboration networks, 
knowledge representations should encode publication topics, citation 
relationships, and methodological expertise, while decision outputs 
address collaboration formation and resource allocation. The coupling 
mechanism naturally extends since research decisions (funding 
allocation, collaboration choices) directly influence future knowledge 
production. Transfer requires approximately 5,000-10,000 
collaboration events for fine-tuning based on our preliminary 
experiments with academic datasets. Smart city infrastructure 
coordination demands hierarchical knowledge structures reflecting 
municipal department specializations, with temporal dynamics 
adjusted for infrastructure planning horizons (months to years versus 
days in supply chains). Privacy-preserving federated learning becomes 
essential when coordinating across jurisdictional boundaries. 
Educational institution networks present unique challenges regarding 
student privacy and curriculum standardization; knowledge flows 
must respect institutional autonomy while enabling coordination on 
shared objectives like credit transfer and program articulation. For all 
domains, we recommend a staged transfer approach: first, pre-train 
the knowledge flow layer on domain-specific transfer data; second, 
initialize the decision layer with domain-appropriate reward 
structures; third, fine-tune coupling parameters using small samples 
of coupled knowledge-decision episodes. This procedure achieved 78-
85% of fully-trained performance using only 20% of domain-specific 
data in preliminary cross-domain experiments. Validating 
effectiveness requires domain-specific datasets and performance 
metrics appropriate to each application context.

The coupling mechanism's theoretical elegance and empirical 
validation suggest broader applicability beyond organizational 
contexts. Biological systems exhibiting information transfer and 
behavioral coordination, distributed sensing networks balancing data 
collection and processing decisions, and autonomous vehicle fleets 
coordinating navigation and traffic information sharing all manifest 
analogous coupling dynamics. Exploring these extensions would both 
test model robustness and potentially reveal universal principles 
governing coupled information-decision systems across natural and 
engineered domains. Such investigations could establish inter-
organizational knowledge flow modeling as a specific instance of more 
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general coupling phenomena, elevating theoretical contributions from 
domain-specific methodology to fundamental systems science 
principles.

VI. Conclusion

This study presents a comprehensive framework for modeling the 
coupling mechanism between inter-organizational knowledge flow and 
agent collaborative decision-making using deep neural networks, 
addressing a critical gap in understanding how knowledge 
propagation and distributed coordination mutually influence 
organizational performance. The research systematically integrates 
graph neural networks for knowledge transfer modeling with multi-
agent reinforcement learning for decision coordination, establishing 
explicit bidirectional coupling interfaces that enable dynamic 
adaptation between these interdependent processes.

The primary contributions of this work encompass four dimensions. 
First, the proposed dual-layer architecture with coupling mechanisms 
provides a novel computational framework that simultaneously 
optimizes knowledge propagation patterns and collaborative decision 
strategies, moving beyond conventional approaches that treat these 
dimensions independently. Second, the graph attention-based 
knowledge flow model captures temporal dynamics and organizational 
heterogeneity in knowledge transfer, incorporating decay mechanisms 
and quality assessment metrics that reflect realistic inter-
organizational exchange conditions. Third, the knowledge-driven 
collaborative decision algorithm integrates real-time knowledge state 
embeddings into agent policy networks, enabling coordination 
strategies that adapt to evolving information landscapes. Fourth, the 
closed-loop feedback mechanism establishing bidirectional 
information flow between knowledge and decision layers implements 
adaptive organizational learning where decision outcomes reshape 
knowledge management priorities.

Key research innovations include the formal mathematical 
representation of coupling strength between knowledge and decision 
subsystems, the alternating optimization training strategy that 
prevents gradient conflicts while ensuring convergence, the attention-
based knowledge flow path optimization algorithm that dynamically 
routes organizational knowledge to maximize decision quality, and the 
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empirical validation demonstrating substantial performance 
improvements (8-24%) over state-of-the-art baseline methods across 
diverse scenarios. The integration of heterogeneous neural 
architectures—transformers for knowledge encoding, graph networks 
for propagation, and recurrent attention for agent coordination—
within a unified framework represents a methodological advancement 
enabling holistic modeling of complex organizational systems.

The theoretical value manifests in establishing knowledge flow and 
collaborative decision-making as mutually constitutive processes 
rather than separate organizational functions, fundamentally 
reconceptualizing inter-organizational coordination dynamics. This 
perspective reveals that effective knowledge management requires 
decision context awareness while optimal coordination demands 
knowledge state visibility, challenging disciplinary boundaries 
between organizational learning research and multi-agent systems 
studies. The formal coupling mechanisms provide theoretical 
constructs applicable across domains exhibiting information-decision 
interdependencies, potentially contributing to broader systems 
science understanding of coupled adaptive processes.

Practical application significance emerges through demonstrated 
effectiveness in real-world supply chain coordination, achieving 18.5% 
cost reductions, 71% stockout frequency decreases, and 42.7% 
inventory turnover improvements. These results quantify substantial 
business value creation potential while validating model robustness 
under operational conditions with inherent uncertainties and 
complexities. The deployment experience provides actionable insights 
for practitioners regarding implementation requirements, integration 
strategies, and change management considerations essential for 
successful organizational adoption. The model's scalability to 
networks involving hundreds of organizations with near-linear 
computational complexity indicates feasibility for enterprise-scale 
applications across industries including manufacturing, healthcare, 
logistics, and collaborative innovation networks.

Several limitations warrant acknowledgment and suggest directions 
for improvement. The current model assumes relatively stable 
organizational network topologies, potentially limiting applicability in 
highly dynamic environments with frequent participant turnover. 
Knowledge representation relies on vector embeddings that may 
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inadequately capture complex semantic structures or domain-specific 
expertise nuances requiring richer symbolic representations. The 
training process demands substantial computational resources and 
high-quality historical data, creating barriers for smaller 
organizations or newly formed networks lacking extensive 
collaboration records. Privacy and security mechanisms, while 
addressed through federated learning adaptations, require further 
development to ensure robust protection of proprietary organizational 
knowledge in adversarial environments. The model's interpretability, 
though superior to black-box approaches, could benefit from 
enhanced explanation capabilities enabling practitioners to 
understand specific coupling pathways influencing outcomes.

Future research directions include extending the framework to 
incorporate hierarchical organizational structures where knowledge 
flows and decisions occur across multiple levels simultaneously, 
developing online learning mechanisms enabling continuous model 
adaptation as organizations evolve without periodic retraining, 
investigating hybrid approaches combining neural network pattern 
recognition with symbolic reasoning for complex domain knowledge 
representation, and exploring transfer learning strategies allowing 
models trained in one organizational context to generalize to different 
domains with limited additional data. Incorporating uncertainty 
quantification providing confidence intervals for predictions would 
enhance decision-maker trust and enable risk-aware coordination 
strategies. Investigating the temporal evolution of coupling strengths 
over extended periods could reveal organizational learning 
trajectories and identify intervention points for strengthening 
knowledge-decision integration. Extending validation to diverse 
sectors beyond supply chain management, including healthcare 
networks, research collaborations, and public service coordination, 
would establish broader applicability and potentially uncover domain-
specific coupling patterns requiring specialized model adaptations.

The integration of emerging technologies including large language 
models for natural language knowledge processing, blockchain for 
decentralized knowledge verification and trust establishment, and 
edge computing for distributed model inference could enhance model 
capabilities and deployment flexibility. Exploring human-AI 
collaboration frameworks where the coupling model provides decision 
support while preserving human judgment and accountability 
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represents another promising direction, particularly for high-stakes 
organizational decisions requiring ethical considerations beyond 
algorithmic optimization. Ultimately, this research establishes 
foundational concepts and methodologies for computationally 
modeling coupled organizational processes, opening pathways toward 
more sophisticated understanding and effective management of inter-
organizational knowledge systems in an increasingly interconnected 
and data-rich business environment.
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