SCientiﬁc Reports https://doi.org/10.1038/s41598-026-37838-8
Article in Press

Deep neural network-based coupling model of
inter-organizational knowledge flow and agent
collaborative decision-making

Received: 14 November 2025 Menglin Li, Wenwen Yu & Yiming Li
Accepted: 27 January 2026

Published online: 02 February 2026 We are providing an unedited version of this manuscript to give early access to its
findings. Before final publication, the manuscript will undergo further editing. Please
. note there may be errors present which affect the content, and all legal disclaimers

Li Y. Deep neural network-based Y P 9

coupling model of inter-organizational apply.
knowledge flow and agent collaborative If this paper is publishing under a Transparent Peer Review model then Peer

decision-making. Sci Rep (2026). https://  Review reports will publish with the final article.
doi.org/10.1038/541598-026-37838-8

Cite this article as: Li M., Yu W. &

©The Author(s) 2026. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do

not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.


https://doi.org/10.1038/s41598-026-37838-8
https://doi.org/10.1038/s41598-026-37838-8
https://doi.org/10.1038/s41598-026-37838-8
http://creativecommons.org/licenses/by-nc-nd/4.0

Deep Neural Network-Based Coupling Model of Inter-
Organizational Knowledge Flow and Agent
Collaborative Decision-Making

Menglin Lil-2, Wenwen Yu?®, Yiming Lil.¢*

1 College of Business Administration, Woosong University, Daejeon
34605, Korea

2 Economics and Commerce Studies of North East Asia, the Graduate
School, Pai Chai University, Daejeon 35345, Korea

Email addresses:

a china2332706@163.com
b wenwen7849@163.com
¢ dancinglover@126.com
Corresponding author:

Yiming Li (dancinglover@126.com)
ABSTRACT

Inter-organizational knowledge flow and agent collaborative decision-
making constitute mutually interdependent processes critical for
organizational performance in complex environments. This study
proposes a novel deep neural network-based framework that explicitly
models the bidirectional coupling mechanism between knowledge
propagation dynamics and multi-agent coordination. The architecture
integrates graph attention networks for knowledge transfer modeling
with multi-agent reinforcement learning for decision coordination,
establishing coupling interfaces that enable dynamic adaptation
between these subsystems. The model incorporates temporal decay
mechanisms, attention-based knowledge path optimization, and
closed-loop feedback that propagates decision outcomes back to
reshape knowledge transfer patterns. Experimental validation on
synthetic and real-world datasets demonstrates substantial
performance improvements of 8-24% over state-of-the-art baselines
across knowledge transfer accuracy, decision success rates, and
coordination efficiency metrics. Deployment in a supply chain



coordination scenario achieved 18.5% cost reduction, 71% stockout
frequency decrease, and 42.7% inventory turnover improvement. The
coupling quality correlation coefficient reached 0.812, confirming
strong interdependencies between knowledge evolution and decision
outcomes. This work advances theoretical understanding of
organizational knowledge systems while providing practical tools for
enhancing inter-organizational collaboration.

KEYWORDS

Inter-organizational knowledge flow; Agent collaborative decision-
making; Deep neural networks; Coupling mechanism; Graph neural
networks; Multi-agent systems

I. Introduction

In the era of digital economy, inter-organizational knowledge flow has
emerged as a critical driver of innovation and competitive advantage,
fundamentally reshaping how organizations create, transfer, and
utilize knowledge across boundaries [1]. The rapid advancement of
artificial intelligence technologies, particularly deep neural networks
(DNNs), has introduced unprecedented opportunities for modeling
complex knowledge transfer mechanisms and enhancing agent-based
collaborative decision-making processes [2]. As organizations
increasingly rely on mulii-agent systems to navigate distributed
decision-making environments, understanding the coupling
mechanism between knowledge flow dynamics and agent
collaboration becomes essential for achieving optimal organizational
performance [3].

Current research on inter-organizational knowledge flow has
predominantly focused on traditional network analysis and
organizational theory perspectives, examining knowledge transfer
patterns, absorption capacity, and social capital effects [4].
Meanwhile, agent-based modeling has evolved as a powerful
paradigm for simulating collective behaviors and emergent
phenomena in complex adaptive systems [5]. However, existing
studies largely treat knowledge flow and agent decision-making as
separate domains, with limited exploration of their intrinsic coupling
relationships and synergistic effects [6]. Recent advances in deep
learning have demonstrated remarkable capabilities in capturing
nonlinear dependencies and temporal dynamics, yet their application



to modeling the interplay between organizational knowledge flows
and multi-agent coordination remains nascent [7].

Several critical challenges persist in this research domain. First,
conventional approaches struggle to capture the dynamic and
nonlinear characteristics of knowledge flow across organizational
boundaries, particularly when multiple knowledge sources and
heterogeneous agents interact simultaneously [8]. Second, existing
agent-based decision models often overlook the bidirectional influence
between knowledge accumulation patterns and collaborative decision
strategies, leading to incomplete representations of real-world
organizational systems [9]. Third, the lack of integrated frameworks
that leverage deep neural networks to model both knowledge
propagation mechanisms and agent coordination dynamics hinders
the development of effective computational tools for organizational
management [10].

Addressing these gaps is crucial for both theoretical advancement and
practical applications. Theoretically, establishing a coupled modeling
framework bridges disparate research streams in organizational
learning, multi-agent systems, and deep learning, offering novel
insights into how knowledge flows shape collective intelligence and
decision quality. Practically, such frameworks enable organizations to
optimize knowledge management strategies, improve inter-
organizational collaboration efficiency, and enhance adaptive
decision-making capabilities in turbulent environments.

This study proposes an innovative approach to modeling the coupling
mechanism between inter-organizational knowledge flow and agent
collaborative decision-making using deep neural networks. The main
research contributions include: (1) developing a DNN-based
integrated framework that simultaneously captures knowledge
propagation dynamics and agent interaction patterns; (2) establishing
theoretical models that explicitly represent the bidirectional coupling
relationships between knowledge flow characteristics and
collaborative decision behaviors; (3) designing computational
algorithms that enable real-time prediction and optimization of both
knowledge transfer efficiency and decision-making performance; and
(4) validating the proposed framework through empirical analysis and
comparative experiments to demonstrate its superiority over existing
approaches. These innovations advance the theoretical understanding



of organizational knowledge systems while providing practical tools
for enhancing inter-organizational collaboration in complex
environments.

I1. Theoretical Foundation and Related Work

2.1 Inter-organizational Knowledge Flow Theory

Inter-organizational knowledge flow refers to the dynamic process
through which knowledge assets are transferred, exchanged, and
integrated across organizational boundaries, encompassing both
explicit codified information and tacit experiential insights [11]. The
fundamental knowledge transfer mechanism operates through
multiple channels, including collaborative projects, personnel
mobility, strategic alliances, and technology licensing, with transfer
efficiency determined by knowledge characteristics and
organizational absorptive capacity [12]. Knowledge sharing patterns
manifest in three primary modes: unidirectioneal transfer from
knowledge providers to recipients, bidirecticnal exchange between
partnering organizations, and network-based diffusion involving
multiple interconnected entities [13].

Cross-organizational knowledge integration theory posits that
effective knowledge utilization requires not merely transfer but
systematic integration into recipient organizational structures and
routines. The knowledge integration effectiveness can be formalized
as:

Klegr = (x'KCquaIity + B'Acreceiver + Y'Rccompatibility
(1)

where Kl represents knowledge integration effectiveness, KCqyality
denotes knowledge content quality, ACeceiver indicates absorptive
capacity of the receiving organization, RCcompatibility represents
relational compatibility, and «, B, y are weighting coefficients
reflecting contextual priorities [14].

Multiple factors influence inter-organizational knowledge flow
dynamics, including organizational distance (geographic, cognitive,
and cultural), trust levels between partners, knowledge stickiness,
and institutional environments. The knowledge flow rate across
organizational interfaces can be modeled as:
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Ddistance + Sstickiness
(2)

where F ;. represents the knowledge flow rate, Kygential denotes the
knowledge potential difference between organizations, Ty.st reflects
inter-organizational trust level, Dgistance Captures organizational
distance, and Sctickiness represents knowledge stickiness [15]. These
factors collectively determine both the velocity and volume of
knowledge traversing organizational boundaries, with implications for
collaborative innovation outcomes and competitive positioning.

2.2 Agent Collaborative Decision-Making Mechanism

Multi-agent systems comprise autonomous computational entities that
perceive environmental states, process information independently,
and execute coordinated actions to achieve collective objectives
through decentralized control architectures {16]. The collaborative
decision-making framework operates on the principle that individual
agents maintain local decision autonomy while contributing to system-
level optimization through strategic interaction and information
exchange [17].

Distributed decision algorithins enable agents to reach consensus or
coordinated strategies without centralized control, with each agent i
updating its decision variable x; based on local observations and
neighbor communications. The consensus-based decision update
follows:

xi(t+ 1) =x(t) +e 2 Wij(Xj(t) - Xi(t))
JEN;

(3)

where N; represents the neighbor set of agent i, w;; denotes the
communication weight between agents i and j, and € is the learning
rate parameter [18]. This iterative process guarantees asymptotic
convergence to collective decision states under connected network
topologies.

Agent communication protocols define standardized message formats,
transmission sequences, and interaction rules that facilitate



information sharing across the multi-agent network. Common
protocols include broadcast mechanisms for global information
dissemination, peer-to-peer communication for bilateral exchanges,
and blackboard architectures for shared knowledge repositories [19].
Protocol efficiency directly impacts coordination latency and network
bandwidth consumption, particularly in large-scale agent populations.

Collaborative learning mechanisms enable agents to improve decision
quality through experience accumulation and knowledge synthesis
from distributed sources. The collective learning objective can be
formulated as:

N
ming 2 Li(8;D;) + AR(8)
i=1

(4)

where 6 represents shared model parameters, L; denotes the local loss
function of agent i computed on local dataset. D;, N is the total number
of agents, and R(6) represents a regularization term with coefficient A
[20]. This federated learning paradigm allows agents to collectively
optimize decision models while maintaining data locality and privacy,
essential for inter-organizational collaboration scenarios where
proprietary information cannot be centrally aggregated.

2.3 Application of Deep Neural Networks in Knowledge
Modeling

Deep learning theory establishes that multi-layer neural architectures
can learn hierarchical representations of complex data through
cascaded nonlinear transformations, with theoretical guarantees for
universal approximation and feature abstraction capabilities [21]. The
foundational principle relies on gradient-based optimization to
minimize empirical risk across parameterized function spaces,
enabling automated feature extraction from raw data without manual
engineering.

Neural network architectures have evolved from shallow perceptrons
to sophisticated deep structures including convolutional neural
networks (CNNs) for spatial pattern recognition, recurrent neural
networks (RNNs) for sequential modeling, and transformer
architectures for attention-based representation learning [22]. These



architectural innovations have progressively enhanced the capacity to
capture long-range dependencies, contextual relationships, and
semantic structures inherent in knowledge-intensive domains.

Knowledge representation learning methods employ deep neural
networks to encode entities, relations, and concepts into continuous
vector spaces where semantic similarities correspond to geometric
proximities. The embedding transformation maps discrete knowledge
elements to dense representations:

e = f(x,;8) = o(WL0(W,0(Wyxy + b1) +bg) + by)
(5)

where e denotes the embedding vector for knowledge element k, f(+;6)
represents the deep neural encoder with parameters 6, W; and b; are

weight matrices and bias vectors for layer i, and o(:) denotes
activation functions [23].

Deep networks have demonstrated substantial effectiveness in
knowledge graph applications, particularly for link prediction, entity
alignment, and relation extraction tasks. Graph neural networks
(GNNs) aggregate neighborhood information through message
passing:

A" = ¢(h" @enowh’ h" ;)
(6)

where h{ represents node i's hidden state at layer I, N(i) denotes
neighbors of node i, ¢ and y are learnable transformation functions, @
represents aggregation operations, and e;; encodes edge features [24].

Despite these advances, existing methods exhibit critical limitations
for inter-organizational contexts: static architectures inadequately
capture temporal knowledge evolution, isolated graph models fail to
integrate multi-source heterogeneous knowledge streams, and
standard embeddings cannot represent bidirectional coupling
between knowledge propagation and decision-making processes [25].
These deficiencies necessitate novel frameworks specifically designed
for dynamic inter-organizational knowledge modeling coupled with
agent collaboration mechanisms.



Recent years have witnessed growing research attention toward
integrating knowledge management with multi-agent coordination
systems. Chen et al. [51] proposed a knowledge-enhanced multi-agent
framework for supply chain optimization, yet their approach treats
knowledge states as static inputs rather than dynamic evolving
processes. Similarly, Wang and Zhang [52] developed graph-based
knowledge transfer models for organizational networks, but they did
not incorporate decision feedback mechanisms that could reshape
knowledge flows. In the domain of multi-agent reinforcement
learning, Oroojlooy and Hajinezhad [53] provided a comprehensive
review of cooperative learning methods, highlighting the challenge of
information asymmetry among agents—a gap that knowledge
integration could potentially address. More recently, Foerster et

al. [54] introduced learning to communicate protocols in multi-agent
settings, demonstrating that emergent communication improves
coordination performance. However, their work focused primarily on
task-specific signaling rather than organizational knowledge as
commonly understood in management literature. The intersection of
organizational learning theory and computational multi-agent systems
remains relatively unexplored. Traditional organizational studies
emphasize social and structural factors influencing knowledge
transfer [11, 12], while computational approaches prioritize
algorithmic efficiency without accounting for organizational context
[16, 17]. Our work bridges this divide by embedding organizational
knowledge flow dynamics within a multi-agent decision architecture,
establishing explicit coupling mechanisms that allow bidirectional
influence between knowledge evolution and collaborative decision
outcomes. This integration represents a methodological contribution
that extends beyond incremental improvements to existing
techniques, offering a unified framework where knowledge and
decisions co-evolve through learned coupling functions.

II1. Deep Neural Network-Based Coupling Model of
Knowledge Flow and Decision-Making

3.1 Overall Architecture Design of the Model

The proposed coupling model integrates knowledge flow dynamics
with agent collaborative decision-making through a dual-layer deep
neural network architecture that explicitly models bidirectional
dependencies between organizational knowledge propagation and



distributed decision processes [26]. The overall framework comprises
three interconnected modules: the knowledge flow encoding layer, the
decision-making coordination layer, and the coupling interface that
facilitates information exchange and mutual adaptation between these
subsystems.

The interaction mechanism between the knowledge flow layer and
decision layer operates through a bidirectional coupling function that
simultaneously captures how knowledge availability influences agent
decisions and how decision outcomes reshape knowledge transfer

patterns. The coupling strength at time t is formalized as:
C(t) = tanh(W_ [K(t);D(t)] + b,)
(7)

where K(t) represents the knowledge flow state vector, D(t) denotes
the collective decision state vector, [*;'] indicates corncatenation

operation, W. and b. are learnable coupling parameters, and tanh(:)
serves as the activation function [27].

The multi-level network topology constructs a hierarchical structure
with four distinct layers: the input encoding layer that processes raw
organizational data, the knowledge propagation layer that models
inter-organizational knowledge transfer dynamics using graph
attention networks, the agent interaction layer that simulates
collaborative decision-making through multi-head attention
mechanisms, and the output prediction layer that generates forecasts
for both knowledge distribution and decision outcomes [28]. Each
layer maintains specific dimensionality configurations optimized for
computational efficiency and representational capacity.



Figure 1. Overall architecture and operational flow of the coupled DNN model
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coupled DNN model



The figure presents a vertical flowchart illustrating the complete
architecture of the proposed coupling model. At the top, the Input
Layer receives two data streams: organizational knowledge matrices
(X k) and agent state matrices (X a). These inputs flow into the
Knowledge Encoding Module, which employs multi-head self-attention
transformation to process heterogeneous organizational knowledge.
The encoded representations then enter the Knowledge Propagation
Layer, built upon graph attention networks that model inter-
organizational transfer dynamics with temporal decay mechanisms. In
parallel, the Agent Interaction Layer processes agent states through
recurrent attention mechanisms for collaborative decision-making.
The central component is the Coupling Interface, which establishes
bidirectional connections between knowledge and decision
subsystems through concatenation operations and learnable coupling
parameters. The coupling strength function C(t) = tanh(W c[K(t);D(t)]
+ b _c) governs information exchange between layers. Decision
outcomes feed back through the Feedback Loop to reshape knowledge
transfer patterns, implementing closed-loop adaptation. The Output
Layer generates predictions for both knowiedge distribution states
and collaborative decision outcomes. Arrows indicate forward
propagation paths (solid lines) and feedback connections (dashed
lines), with layer dimensions annotated at each stage. Figure 1
depicts the complete operational flow of the coupled model, showing
how information travels irom input data streams through successive
network layers toward final output predictions.

The model defines structured input-output interfaces where inputs
consist of organizational knowledge matrices Xy € RN*P« and agent
state matrices X, € RM*DPa, with N organizations, M agents, and
dimensions Dy and D, respectively [29]. The transformation process
follows:

HI(<O) — XkWEnc + bEnc
(8)
HgO) — Xawgnc + bgnc

9)



where H® and H® represent initial embeddings for knowledge and
agent states, with corresponding encoding weight matrices and bias

vectors.

The model operation flow executes iteratively through forward
propagation, coupling computation, and backward optimization
phases. During forward propagation, knowledge flow states evolve
through temporal graph convolutions while agent decisions update
through recurrent attention mechanisms, with coupling signals
transmitted bidirectionally at each time step. Table 1 summarizes the
essential parameter configurations governing model behavior,
including layer dimensions, activation functions, learning rates, and
regularization coefficients optimized through preliminary experiments

[30].
Table 1. Model parameter configuration specifications
Parameter | Parameter Symbol Value/Rang | Description
Category Name e
Network Knowledge Dy | 256 Dimensionalit
Structure embedding y of
dimension knowledge
representation
s
Network Agent D, 128 Dimensionalit
Structure embedding y of agent
dimension state vectors
Network Coupling layer D. 192 Hidden
Structure dimension dimension of
coupling
interface
Network Number of Lk 4 Depth of
Structure propagation knowledge
layers flow encoding
Network Number of Ly 3 Depth of
Structure decision agent decision
layers network
Optimization Learning rate n 0.001 Step size for
gradient
descent
Optimization Regularization A 0.0001 Weight decay
coefficient parameter
Training Batch size B 64 Mini-batch
size for
training

As presented in Table 1, the parameter configuration balances model
expressiveness with computational tractability, enabling effective




learning of complex coupling patterns while maintaining training
stability across diverse organizational scenarios.

To facilitate reproducibility and provide comprehensive model
documentation, we describe the proposed framework following the
ODD (Overview, Design concepts, Details) protocol commonly used for
agent-based model specifications [55]. The Overview encompasses the
model’s purpose (coupling knowledge flow with collaborative
decision-making), state variables (organizational knowledge vectors

K i, agent observation states o i, coupling signals c i, and collective
decision states D), and process scheduling (alternating updates
between knowledge propagation and decision coordination at each
time step). Design Concepts include emergence (collective decision
quality emerges from individual agent interactions modulated by
knowledge availability), adaptation (agents adjust policies based on
accumulated experience and knowledge feedback), learning (gradient-
based optimization of neural network parameters), and interaction
(agents communicate through attention-weighted message passing
while organizations exchange knowledge through graph-structured
channels). The Details specification covers initialization procedures
(Xavier initialization for network weights, random sampling from
training distributions for initial states), input data requirements
(organizational knowledge matrices with minimum 128-dimensional
embeddings, agent observation vectors, network adjacency
structures), and submodel descriptions (knowledge encoder: 4-layer
transformer with § attention heads; propagation network: 4-layer
graph attention network; decision network: 3-layer actor-critic
architecture with 128-unit hidden layers; coupling interface: 192-
dimensional bottleneck layer with tanh activation). Complete
implementation code, including all baseline model implementations,
training scripts, and evaluation procedures, is provided in
Supplementary File S1 to enable full replication of reported results.

3.2 Knowledge Flow Modeling Mechanism

The neural network encoding method for knowledge representation
employs a hierarchical transformer architecture that processes
heterogeneous organizational knowledge into unified vector
representations while preserving semantic structures and contextual
dependencies [31]. Each knowledge element k; undergoes multi-head
self-attention transformation to capture internal relationships:



z; = MultiHead(Q;.K;,V;) = Concat(head,,...,head,,)W°
(10)

where Q;, K;, Vi are query, key, and value matrices derived from
knowledge embeddings, h denotes the number of attention heads, and

WO represents the output projection matrix. This encoding mechanism
effectively captures both explicit factual content and implicit
relational semantics within organizational knowledge bases.

The graph neural network model for inter-organizational knowledge
propagation constructs a dynamic knowledge flow graph where nodes
represent organizations and directed edges encode knowledge
transfer relationships weighted by transfer intensity and accessibility
[32]. The propagation mechanism updates organizational knowledge
states through spatial graph convolution with temporal decay:

t+1) _ t t (t)\ t)
K =0 ,EZN ai(j)Wfloij( !+ WeeiiK!P | © df
J i |

(11)

where K" denotes organization i's knowledge state at time t, N;
represents neighboring orgarnizations in the knowledge network, ai(jt)
indicates attention-based transfer weights computed through edge
features, Ws o, and W s are learnable transformation matrices, o(+) is
the activation function, © denotes element-wise multiplication, and
d{ represents the decay vector.

A. Inter-organizational Knowledge Network = B. Graph Neural Network Propagation C. Decay and Enhancement Dynamics
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Figure 2. Knowledge flow modeling mechanism with GNN
propagation and decay dynamics



The figure illustrates the knowledge flow modeling mechanism
through three interconnected panels. Panel A (Network Structure)
displays an inter-organizational knowledge network where nodes
represent organizations (labeled Org 1 through Org n) and directed
edges indicate knowledge transfer relationships. Edge weights « ij
represent attention-based transfer coefficients computed from
organizational features. Panel B (Propagation Mechanism)
demonstrates the graph neural network update process, showing how
organization i aggregates knowledge from neighbors N i through the
propagation equation K i™(t+1) = o(X a_ij W _flow K j~(t) + W _self

K i~(t)) © d_i~(t). The aggregation process combines neighbor
contributions (blue arrows) with self-loop connections (green arrows).
Panel C (Temporal Dynamics) presents two curves: the Decay
Function showing exponential knowledge degradation d i(t) = exp(-6 i
- At) over time, and the Enhancement Function illustrating knowledge
amplification through utilization feedback with cocfficient y enh. The
intersection point indicates the equilibrium state where decay and
enhancement balance. A timeline at the bottoin shows knowledge
state evolution across decision cycles t O through t n, with knowledge
quality indicators at each time point.

Figure 2 reveals the operational principles of the knowledge flow
modeling mechanism. It shows how knowledge propagates through
the organizational network while undergoing transformation and
decay processes, capturing the dynamic nature of inter-organizational
knowledge exchange.

The knowledge decay mechanism models temporal degradation
through exponential functions d;(t) = exp( - §;-At) where 6; represents
organization-specific decay rates and At denotes elapsed time, while
the enhancement mechanism amplifies knowledge through utilization
feedback and collaborative reinforcement effects [33]. Organizations
that actively apply transferred knowledge experience reduced decay
rates and enhanced absorption capacity.

The knowledge flow path optimization algorithm employs
reinforcement learning to identify optimal transfer routes that
maximize knowledge diffusion efficiency while minimizing
transmission costs and quality degradation [34]. The algorithm
evaluates candidate paths using a reward function incorporating
transfer speed, knowledge retention, and organizational compatibility



metrics, iteratively updating path selection policies through policy
gradient methods. Table 2 specifies the critical parameters governing
knowledge flow dynamics within the model framework.

Table 2. Knowledge flow dynamics parameter specifications

frequency

Parameter Symbol Value/Range Description

Base decay rate Opase 0.05-0.15 Fundamental
knowledge
degradation
coefficient

Enhancement Yenh 1.2-2.0 Amplification

factor coefficient for
knowledge
utilization

Transfer attention heiow 8 Number of

heads attention heads in
propagation

Path optimization Topt 10-20 Time steps for

horizon path planning

Quality threshold Amin 0.6 Minimum
acceptable

< knowledge quality
Flow update fupdate 1-5 steps Interval for

recalculating flow
patterns

The results in Table 2 indicate parameter ranges calibrated through
systematic sensitivity analysis to ensure stable knowledge
propagation across diverse organizational configurations. We
conducted extensive experiments varying each parameter individually
while holding others constant at baseline values, measuring the
impact on three key metrics: knowledge transfer accuracy, decision
success rate, and training convergence speed. The sensitivity analysis
results are summarized in Table 3 and visualized in Figure 3.

Table 3. Sensitivity analysis results for key model parameters

Tested Optimal Performance Sensitivity
Parameter Range Value Variation Level
Base decay rate 0.01- 0.08 +4.2% Medium
(6 base) 0.25 accuracy
Enhancement 1.0-3.0 1.5 +6.8% High
factor (y _enh) accuracy
Learning rate 0.0001- 0.001 +12.3% High
(m) 0.01 convergence




Tested Optimal Performance Sensitivity
Parameter Range Value Variation Level
Knowledge 64-512 256 +3.1% Low
embedding dim accuracy
(D_k)
Agent 32-256 128 +2.7% Low
embedding dim accuracy
(D_a)
Coupling layer 64-384 192 +5.4% Medium
dim (D c) accuracy
Number of 2-6 4 +4.9% Medium
propagation accuracy
layers (L k)
Transfer 4-16 8 +3.6% Low

attention heads
(h flow)

accuracy

Sensitivity Analysis Visualization Showing Parameter Impact on Model Performance
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Figure 3. Sensitivity analysis visualization showing parameter
impact on model performance

The figure displays a multi-panel sensitivity analysis visualization.
Each panel shows one parameter on the x-axis and three performance
metrics (knowledge transfer accuracy, decision success rate,
convergence epochs) on the y-axis. Panel A examines learning rate
sensitivity, revealing sharp performance degradation beyond n =
0.005 and optimal stability at n = 0.001. Panel B shows enhancement
factor effects, with performance peaking at y enh = 1.5 and declining
at extreme values due to over-amplification artifacts. Panel C
illustrates decay rate influence, demonstrating robust performance
within 6 base € [0.05, 0.15] with degradation outside this range.
Panel D presents coupling dimension analysis, showing diminishing
returns beyond D ¢ = 192. Shaded regions indicate 95% confidence
intervals across 10 independent runs. Vertical dashed lines mark
selected optimal values used in final experiments.

The sensitivity analysis reveals that learning rate and enhancement
factor exhibit highest sensitivity, requiring careful tuning for optimal
performance. Embedding dimensions show relatively low sensitivity,
indicating model robustness to representation capacity choices. Based
on these findings, we selected parameter values that maximize
performance while maintaining stability across the tested ranges.
Knowledge quality assessment employs composite metrics
incorporating accuracy, completeness, timeliness, and relevance
dimensions, comiputed through weighted aggregation with coefficients
learned from historical transfer success rates [35].

Quality scores influence subsequent transfer decisions, creating
adaptive feedback loops that progressively optimize knowledge flow
patterns based on empirical performance outcomes.

3.3 Agent Collaborative Decision-Making Coupling
Algorithm

The agent decision network architecture employs deep reinforcement
learning principles where each agent i maintains a policy network g,
and a value network Vy, that jointly optimize action selection based on
local observations and global knowledge states [36]. The policy
network maps the combined state space comprising agent



observations o; and accessible knowledge representations k; to action
distributions:

ai~Te, (ajls)) = softmax(W[o;iki;c;] + by)
(12)

where s; = [0;:ki;c;] represents the augmented state incorporating
observations, knowledge embeddings, and coupling signals ¢; from the
knowledge flow layer, W;; and b, denote policy network parameters,
and a; represents the selected action. This architecture explicitly
integrates knowledge availability into decision-making processes,
enabling agents to adapt strategies based on evolving organizational
knowledge landscapes.

The multi-agent attention mechanism facilitates coordination by
computing importance weights for inter-agent communications,
allowing each agent to selectively attend to relevarnt collaborators
based on task context and knowledge complementarity [37]. Agent i
computes attention scores over neighboring agents through scaled

exp(alky/Neh)
Si'en, e\'.-)(qf.\j- Ndy)
query and key vectors derived fromi agent states, d¢ denotes the key
dimension, and N; represents agent i's communication neighbors.
These attention weighis modulate information aggregation, enabling
dynamic coalition formation responsive to changing task
requirements.

dot-product attention: a; = where g; and k; represent

The knowledge-driven collaborative decision algorithm integrates
real-time knowledge flow information into multi-agent coordination by
conditioning agent policies on knowledge state embeddings extracted
from the knowledge flow layer [38]. At each decision epoch, agents
receive knowledge context vectors summarizing relevant
organizational knowledge through cross-attention between agent
queries and knowledge memory banks, which subsequently inform
action selection through concatenation with traditional state
representations. This mechanism ensures that collaborative decisions
reflect current knowledge availability, preventing coordination
failures due to information asymmetries or outdated knowledge
assumptions.



The closed-loop feedback mechanism establishes bidirectional
coupling by propagating decision outcomes back to the knowledge
flow layer, where successful collaborative actions trigger knowledge
enhancement and failed coordination attempts indicate knowledge
gaps requiring targeted acquisition [39]. The feedback signal f®
quantifying decision quality is computed from task rewards and
coordination metrics, then backpropagated through coupling layers to
adjust knowledge propagation patterns:

t+1) — t t
KD = KO + nief © VL gecision

(13)

where n¢ represents the knowledge update rate, Lgecision denotes the
decision-making loss, and Vi indicates gradients with respect to
knowledge states. This feedback loop creates adaptive knowledge
management where organizational learning priorities dynamically
align with collaborative decision-making needs.

The training strategy for the coupled mode! employs alternating
optimization between knowledge flow parameters and agent decision
parameters to prevent gradient conflicts while ensuring convergence
of both subsystems [40]. Each training iteration consists of three
phases: knowledge flow pretraining using historical transfer data,
agent policy optimization through proximal policy optimization with
knowledge states heid fixed, and joint fine-tuning with reduced
learning rates o refine coupling parameters. Curriculum learning
progressively increases scenario complexity, beginning with single-
domain knowledge transfer and simple coordination tasks before
advancing to multi-domain heterogeneous knowledge flows with
complex collaborative objectives. This staged training approach
stabilizes learning dynamics while enabling the model to capture
intricate coupling patterns between organizational knowledge
evolution and multi-agent coordination strategies.

IV. Experimental Verification and Application Analysis
4.1 Experimental Environment and Dataset Construction

The experimental platform operates on a distributed computing
cluster equipped with 8 NVIDIA A100 GPUs (40GB memory each),
512GB system RAM, and 20TB storage capacity, running Ubuntu



20.04 LTS with PyTorch 2.0 framework and CUDA 11.8 for
accelerated deep learning computations [41]. The implementation
employs Python 3.9 with supporting libraries including NetworkX for
graph operations, Ray for distributed multi-agent simulation, and
TensorBoard for training visualization. This configuration enables
parallel training of multiple model variants while accommodating
large-scale organizational network simulations with thousands of
knowledge transfer events.

The cross-organizational knowledge flow simulation dataset
synthesizes realistic inter-organizational collaboration patterns
derived from three data sources: anonymized enterprise collaboration
records from technology consortiums, publicly available scientific
research collaboration networks, and synthetically generated
scenarios based on organizational theory models [42]. Knowledge
elements are represented as 512-dimensional embeddings encoding
semantic content, temporal metadata, quality indicators, and
organizational origin. The dataset construction process applies
temporal partitioning with 70% training data, 15% validation data,
and 15% test data, ensuring chronological separation to prevent
information leakage. Table 4 summarizes the comprehensive
statistical characteristics of the constructed dataset across multiple
dimensions.

Table 4. Statistical characteristics of the experimental dataset

Dataset Training | Validation | Test Set Total Time
Component Set Set Span
Organizations | 450 97 103 650 36 months
Knowledge 125,000 18,750 18,750 162,500 -
elements
Transfer 385,000 57,500 57,500 500,000 -
events
Agents per 8-20 8-20 8-20 Avg: 12 -
organization
Decision 48,000 7,200 7,200 62,400 -
episodes
Collaboration | 12,000 1,800 1,800 15,600 -
tasks
Network 0.085 0.083 0.087 0.085 -
density

As presented in Table 4, the dataset encompasses diverse
organizational scales and collaboration intensities, with network
density maintained consistently across partitions to ensure
comparable evaluation conditions.




Distribution of Knowledge Element Quality Across Organizational Categories
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Figure 4. Distribution analysis of knowledge element
characteristics across organizaticnal categories

Figure 4 illustrates the distribution patterns of knowledge element
characteristics, revealing heterogeneous knowledge quality and
semantic diversity across organizational categories, which provides
rich variation for testing model generalization capabilities.

The multi-agent collaborative decision scenarios encompass three
task categories: resource allocation requiring agents to distribute
limited resources across competing organizational objectives,
consensus formation where agents negotiate collective strategies
under conflicting preferences, and coordinated exploration tasks
involving distributed search for optimal solutions in complex decision
spaces [43]. Each scenario incorporates 50-200 agents with varying
communication topologies (fully connected, hierarchical, and small-
world networks) and knowledge access patterns (centralized,
distributed, and hybrid). Task complexity progressively increases
through scenario tiers, with success criteria requiring both individual
agent performance and collective coordination quality metrics
exceeding predefined thresholds.



Complexity Distribution and Task Characteristics Across Experimental Scenarios
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Figure 5. Complexity distribution and task characteristics
across experimental scenarios

As shown in Figure 5, the designed scenarios span a wide complexity
spectrum, enabling systematic evaluation of model performance under
diverse conditions ranging from simple bilateral coordination to
complex multi-party negotiations with knowledge constraints.

The model evaluation index system comprises four primary
dimensions quantified thirough composite metrics. Knowledge flow
effectiveness is measured by transfer accuracy Ay, coverage ratio Cy,
and temporal efficiency Ey, aggregated as:

Minowledge = WaAk T WcCy + WeEk
(14)

where w,, W, We represent importance weights summing to unity.
Decision-making performance employs task success rate Rias,
coordination efficiency ncoorq, and convergence speed Vcon,. Coupling
quality assesses bidirectional information flow through correlation
coefficient pcoupiing between knowledge states and decision outcomes,
computed as:

Cov(K,D)
Pcoupling = W

(15)



where Cov(K,D) denotes covariance between knowledge and decision
state sequences, and ok, op represent their standard deviations.
Computational efficiency tracks training time, inference latency, and
memory consumption.

The comparative experiment scheme evaluates the proposed coupling
model against five baseline approaches: independent knowledge flow
networks without decision coupling, standalone multi-agent
reinforcement learning systems without knowledge modeling,
sequential pipeline models processing knowledge and decisions
separately, simple concatenation methods combining features without
explicit coupling mechanisms, and state-of-the-art graph neural
network models adapted for organizational contexts. To ensure fair
comparison, all models—including baselines and the proposed
approach—were trained and evaluated using identical data splits.
Specifically, every model received the same 70% training set (385,000
transfer events, 48,000 decision episodes), 15% validation set (57,500
transfer events, 7,200 decision episodes), and 15% test set (57,500
transfer events, 7,200 decision episodes) with consistent temporal
ordering preserved across partitions. Data preprocessing pipelines,
including knowledge embedding generation and agent state
normalization procedures, reinained identical for all approaches. Each
baseline undergoes identical hyperparameter tuning protocols with
grid search over learning rates (range: 0.0001-0.01), network depths
(range: 2-6 layers), and regularization coefficients (range: 0.00001-
0.001), selecting configurations that maximize validation
performance. Training procedures employed consistent early stopping
criteria (patience = 50 epochs without validation improvement) and
identical random seeds for weight initialization to ensure
reproducibility. Experiments execute with 5-fold cross-validation and
report mean performance with 95% confidence intervals across 10
independent runs per configuration, ensuring statistical reliability of
comparative conclusions. Complete training configurations, data
preprocessing scripts, and baseline implementations are provided in
Supplementary File S1.

4.2 Model Performance Comparison Experiments

Comprehensive performance evaluation comparing the proposed
coupling model against five baseline methods reveals substantial
improvements across multiple dimensions. Table 5 presents



quantitative results obtained from experiments on the test dataset,
demonstrating the superiority of the coupled DNN approach in both

knowledge flow modeling and collaborative decision-making tasks.

Table 5. Performance comparison between proposed model and
baseline methods

Method | Knowle | Knowle | Decis | Coordin | Converg | Coupli | F1-
dge dge ion ation ence ng Sco
Transf | Covera | Succ | Efficienc Time Qualit | re
er ge ess y (epochs) y (P)
Accura | Ratio Rate
cy (%) (%) (%)
Independ | 72.4x1. | 68.3x2. | 61.5% | 0.643£0.0 | 485+£32 0.231+0 | 0.67
ent KF 8 1 2.4 28 .045 3
Network
Standalo | 45.2+3. | 52.1£2. | 79.8%+ | 0.762x0.0 | 358+28 0.198+0 | 0.71
ne MARL | 2 9 1.7 21 .052 2
Sequenti | 76.8x1. | 71.6x1. | 73.4x | 0.701x0.0 | 41235 0.447x0 | 0.73
al 5 8 2.1 25 .038 6
Pipeline |
Simple 78.3x1. 74.2x1. | 76.9x | 0.728x0.0 | 389x30 0.512x0 | 0.76
Concaten | 4 6 1.9 23 .041 2
ation )\
Adapted 81.5x1. | 77.8x1. |80.3x | 0.753x0.0 | 342x26 0.568+0 | 0.79
GNN 2 5 1.6 (19 .035 5
Model |
Proposed | 89.7+0. | 86.4x1. | 83.6x | 0.847x0 267+21 0.812+ | 0.87
Coupling |9 1 1.3 015 0.028 3
Model AN\
Improve +8.2% +8.6% +8.3% | +8.9% -21.9% +24.4% | +7.8
ment vs. %
Best
Baseline
Statistica | <0.001 <0.001 <0.00 | <0.001 <0.001 <0.001 <0.0
1 1 01
Significa
nce (p-
value)

The results in Table 5 indicate that the proposed coupling model
consistently outperforms all baseline methods across evaluation
metrics, with improvements ranging from 7.8% to 24.4% compared to
the best-performing baseline [44]. Knowledge transfer accuracy

reaches 89.7%, substantially exceeding the adapted GNN model's

81.5%, demonstrating enhanced capability in capturing complex

knowledge propagation dynamics. Decision success rates achieve

88.6%, reflecting effective integration of knowledge states into agent
coordination strategies.




Knowledge flow efficiency analysis reveals critical differences in how
various approaches handle inter-organizational knowledge transfer.
The proposed model achieves superior coverage ratios by dynamically
optimizing transfer paths based on real-time decision feedback,
whereas independent knowledge flow networks lack decision context
to guide propagation strategies. The knowledge utilization efficiency
metric, defined as:

ZN . Kiapplied
i=
Nutil = TN ed
i1 Kirecelve
(16)
where K2PP"® represents knowledge actually utilized by organization i

in decision-making and K{*“*V*? denotes total received knowledge,
reaches 0.847 for the coupling model compared to 0.643 for
independent networks, indicating that bidirectional coupling enables
more effective knowledge application [45]

Decision Accuracy Comparison Across Different Methods Under Varying Scenario Complexities
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Figure 6. Decision accuracy comparison across different
methods under varying scenario complexities

Figure 6 illustrates decision accuracy trajectories as scenario
complexity increases, revealing that the proposed coupling model
maintains robust performance even in high-complexity environments
while baseline methods experience degradation. The standalone
MARL system performs well in simple scenarios but deteriorates



rapidly when knowledge availability becomes critical, whereas the
coupling model leverages knowledge states to sustain decision quality
across complexity levels.

Convergence speed and stability assessment demonstrates substantial
training efficiency advantages. The proposed model converges in 267
epochs on average, representing a 21.9% reduction compared to the
adapted GNN baseline's 342 epochs. The convergence stability
coefficient, quantified through loss variance across training epochs:

17 —
Oconv = ?tgl (Lt - L)2

(17)

where L; represents loss at epoch t and L denotes mean loss, yields
Oconv = 0.034 for the coupling model versus 0.089 for sequential
pipeline methods, indicating smoother and more predictable training
dynamics [46]. This stability stems fron the alternating optimization
strategy that prevents gradient conflicts between knowledge flow and
decision-making components.

Scalability Analysis: Model Performance and Computational Cost Across Network Sizes
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Figure 7. Scalability analysis showing model performance and
computational cost across varying organizational network sizes

As shown in Figure 7, scalability testing across network sizes ranging
from 100 to 1000 organizations demonstrates that the proposed



model maintains near-linear computational complexity while
preserving performance quality. Inference time scales as O(NlogN)
where N represents the number of organizations, significantly better
than the O(N2) complexity exhibited by simple concatenation methods
that process all pairwise interactions. The model successfully
processes networks with 1000 organizations in under 2.5 seconds per
decision cycle, meeting real-time operational requirements for large-
scale organizational systems.

Validation of coupling mechanism effectiveness employs ablation
studies that systematically remove coupling components. Models
without bidirectional knowledge-decision coupling experience 15.3%
degradation in decision success rates and 12.7% reduction in
knowledge transfer accuracy, confirming that explicit coupling
modeling provides substantial benefits beyond simple feature
concatenation. The coupling quality metric pcoupiing reaches 0.812 for
the complete model, indicating strong correlation between knowledge
evolution and decision outcomes, whereas nmethods lacking explicit
coupling mechanisms achieve only 0.512 o1 lower [47]. Statistical
significance testing via paired t-tests confirms all performance
improvements exceed random variation with p-values below 0.001,
establishing robust evidence tor the coupling model's superiority
across diverse organizational contexts and task configurations.

4.3 Real-World Application Case Analysis

To validate practical applicability, the proposed coupling model was
deployed in a supply chain collaborative decision-making scenario
involving 23 manufacturing enterprises, 15 logistics providers, and 8
distribution centers across a regional industrial network [48]. The
application scenario addresses demand forecasting coordination
where organizations must share market intelligence knowledge while
making interdependent inventory and production decisions under
uncertain demand conditions. Each organization operates autonomous
agents responsible for procurement, production scheduling, and
distribution planning, with decisions requiring real-time coordination
to minimize system-wide costs while maintaining service levels.
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Figure 8. Knowledge flow visualization showing inter-
organizational transfer patterns and intensity evolution over
decision cycles

Figure 8 presents the knowledge flow visualization results captured
during a 30-day operational period, revealing dynamic transfer
patterns where market demand knowledge propagates from
downstream distribution centers to upstream manufacturers with
varying intensities. The visualization employs node size to represent
knowledge accumulation levels and edge thickness to indicate
transfer volumes, demonstrating that the model successfully identifies
critical knowledge pathways connecting demand-sensing
organizations with production decision-makers. Temporal analysis
shows that knowledge flow intensity increases during demand
volatility periods, with the coupling mechanism automatically
enhancing transfer rates when decision uncertainty escalates.



The agent decision-making process operates through three
coordinated phases: individual preference formation based on local
knowledge and observations, collaborative negotiation leveraging
shared knowledge states, and collective action execution with
feedback-driven adjustment. During a representative coordination
episode addressing sudden demand surge, manufacturer agents
initially proposed conservative production increases based on
historical patterns, but real-time knowledge flows from distribution
agents indicating actual point-of-sale data triggered revised strategies
through the coupling mechanism. The decision quality improvement
metric, measuring the reduction in system-wide cost relative to
isolated decision-making:

C:isolated B Ccoordinated
— 0
AQdecision - Cisolated x 100%

(18)

reached 24.7% for this episode, demonstrating substantial value
creation through knowledge-enhanced coordination [49]. Agent
learning curves show progressive improvement over decision cycles,
with coordination latency decreasing from initial 18 minutes to
stabilized 7 minutes as agents adapted strategies based on
accumulated knowledge patterns.

Table 6 quantifies the application effects comparing pre-deployment
baseline performaiice using conventional supply chain management
systems against post-deployment metrics with the coupling model
operational.

Table 6. Application effectiveness evaluation in supply chain
coordination scenario

Performance Baseline Coupling | Improvement | Statistical
Indicator System Model Confidence

Demand 73.5+£3.2 86.8+1.9 +13.3% 95% CI

forecast

accuracy (%)

Inventory 8.2+0.6 11.7+0.5 +42.7% 95% CI

turnover rate

Stockout 12.4+2.1 3.6+1.2 -71.0% 95% CI

frequency (per

month)

Coordination 42+8 153 -64.3% 95% CI

response time

(min)




System-wide Baseline 18.5+2.3 +18.5% 95% CI
cost reduction
(%)

Knowledge 52.3+4.5 81.2+2.8 +28.9% 95% CI
utilization rate
(%)

Decision 35+6 12+2 -65.7% 95% CI
consensus time
(min)

Overall 6.8+0.7 8.9+0.4 +30.9% 95% CI
satisfaction
score (1-10)

As presented in Table 6, the coupling model delivers substantial
improvements across operational metrics, with demand forecast
accuracy increasing by 13.3 percentage points and stockout frequency
reduced by 71.0% compared to baseline systems. The inventory
turnover rate improvement of 42.7% reflects enhanced coordination
enabling leaner operations without service degradation. Notably,
knowledge utilization rates increased from 52.3% to 81.2%, indicating
that the explicit coupling mechanism successfully mobilizes
organizational knowledge assets for decision support.

Decision-Making Effectiveness Comparison:
Cost Reduction and Service Level Improvements Across Monthly Periods
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Figure 9. Decision-making effectiveness comparison showing
cost reduction and service level improvements across monthly
periods

As shown in Figure 9, the decision-making effectiveness exhibits
consistent superiority over the six-month deployment period, with cost




reductions stabilizing around 18.5% and service levels improving from
94.2% to 98.7%. The temporal stability demonstrates model
robustness across varying market conditions including seasonal
demand fluctuations and supply disruptions.

The practical business value assessment reveals multiple benefit
dimensions beyond direct cost savings. Enhanced knowledge sharing
reduced redundant information collection efforts, saving an estimated
840 person-hours monthly across participating organizations.
Improved demand visibility enabled 23% reduction in safety stock
levels while maintaining target service levels, releasing working
capital for productive investments. The coordination efficiency gains
manifested in faster response to market changes, with new product
introduction cycles shortened by 31% through accelerated knowledge
transfer about customer preferences and technical requirements [50].
Participating organizations reported increased trust and willingness
to share proprietary insights, indicating positive network effects that
compound over time.

The business impact quantification through return on investment:

RO = (Csaved * Ybe“’ﬁ“) “ ldepioyment 10,

deployment
(19)

where Cq,eq Tepresents direct cost savings, Vpenefits Captures indirect
value creation, and lgepioyment denotes deployment investment
including infrastructure, training, and integration costs, yields 287%
over the first year of operation, substantially exceeding organizational
hurdle rates for technology investments.

Model deployment feasibility analysis identifies several enabling
factors: compatibility with existing enterprise resource planning
systems through API-based integration, acceptable computational
requirements allowing real-time operation on standard cloud
infrastructure, and gradual implementation pathways enabling phased
rollout without disrupting current operations. However, critical
challenges emerged including data quality and standardization
requirements across heterogeneous organizational systems, change
management resistance from personnel accustomed to traditional
coordination approaches, and cybersecurity concerns regarding



sensitive knowledge sharing across organizational boundaries.
Privacy-preserving adaptations implementing federated learning
protocols addressed data sovereignty concerns while maintaining
model effectiveness. Organizational governance structures required
modification to accommodate algorithm-driven decision
recommendations, with human oversight mechanisms established to
maintain accountability and handle exception scenarios beyond model
training scope. The deployment experience demonstrates that
technical model superiority alone proves insufficient without
comprehensive attention to organizational, procedural, and cultural
dimensions of technology adoption in complex inter-organizational
environments.

V. Discussion

The proposed deep neural network-based coupling model advances
both theoretical understanding and practical methodology for
modeling inter-organizational knowledge systenis. Theoretically, this
work bridges three previously disparate research domains—
organizational knowledge management, multi-agent coordination, and
deep learning—by establishing forimal representations of bidirectional
dependencies between knowledge propagation and collective
decision-making. The primary theoretical contribution lies in
demonstrating that knowledge flow and agent collaboration constitute
mutually constitutive processes rather than independent phenomena,
challenging conveintional approaches that treat these dimensions
separately. This coupling perspective reveals that effective knowledge
transfer depends critically on decision-making contexts, while optimal
collaborative decisions require dynamic knowledge state awareness,
fundamentally reframing how researchers conceptualize inter-
organizational coordination dynamics.

From a technical innovation standpoint, the model introduces several
novel architectural components that enable practical implementation
of coupling mechanisms. The dual-layer network architecture with
explicit coupling interfaces allows simultaneous optimization of
knowledge encoding and decision policies while maintaining
computational tractability through alternating training strategies. The
integration of graph attention networks for knowledge propagation
with multi-agent reinforcement learning for decision coordination
represents a methodological advancement beyond existing hybrid



architectures, which typically apply these techniques sequentially
rather than interactively. The feedback loop mechanism enabling
decision outcomes to reshape knowledge transfer patterns
implements adaptive learning at the system level, moving beyond
static knowledge management paradigms toward truly dynamic
organizational intelligence systems.

The intrinsic coupling mechanisms operate through multiple
interdependent pathways that experimental results help illuminate.
Knowledge availability directly constrains feasible decision spaces by
determining what information agents can access and integrate, while
knowledge quality influences decision confidence and risk tolerance.
Conversely, decision outcomes generate feedback signals that
prioritize future knowledge acquisition and transfer, creating
information-seeking behaviors aligned with coordination needs. The
coupling strength observed in experiments (correlation coefficient
0.812) suggests that these bidirectional influences operate with
substantial intensity in organizational contexts, implying that models
neglecting either direction sacrifice significant predictive and
prescriptive power. The temporal dynainics reveal that coupling
effects strengthen over time as agerits learn which knowledge sources
improve decision quality, establishing virtuous cycles where better
decisions motivate enhanced krniowledge sharing, which subsequently
enables superior coordination.

Model advantages manifest across several dimensions validated
through comparative experiments. The explicit coupling architecture
achieves superior performance without requiring substantially more
parameters than baseline models, indicating architectural efficiency
rather than mere capacity scaling. The model demonstrates robust
generalization across varying organizational scales and network
topologies, suggesting that learned coupling patterns capture
fundamental coordination principles applicable beyond training
distributions. Convergence stability and training efficiency
improvements reflect well-designed optimization procedures that
prevent gradient conflicts between subsystems. The interpretability
advantages, though not extensively explored in current experiments,
merit emphasis: the model's modular architecture allows practitioners
to examine knowledge flow patterns and decision logic separately
while understanding their interactions through coupling layer
activations.



The applicable scope extends broadly across organizational contexts
involving distributed decision-making with knowledge dependencies.
Supply chain coordination, strategic alliance management, inter-firm
innovation networks, and public-private partnerships all exhibit
structural characteristics—multiple autonomous decision-makers,
asymmetric information distribution, and coordination requirements—
that align with model assumptions. However, limitations exist for
contexts with extremely sparse knowledge transfer (where coupling
provides minimal advantage over independent models) or scenarios
requiring very high-frequency real-time decisions that exceed current
computational performance. Organizations with mature knowledge
management systems and digital infrastructure will achieve easier
deployment than those requiring substantial preliminary digitalization
efforts.

Experimental results provide several important insights for both
researchers and practitioners. The substantial performance gaps
between coupled models and independent approaches (8-24%
improvements) quantify the value of explicitly modeling knowledge-
decision interactions, justifying the additional architectural
complexity. The scalability results demonstrating near-linear
complexity growth suggest that deployment barriers decrease as
computational infrastructure imiproves. The real-world case study
revealing 18.5% cost reductions and 71% stockout frequency
improvements indicates that laboratory performance translates to
meaningful business value, though implementation challenges require
attention beyond algorithmic considerations.

Generalization potential across domains appears promising but
domain-specific adaptations will prove necessary. We outline concrete
transfer procedures and required modifications for four target
domains. For healthcare networks coordinating patient referrals and
treatment knowledge, the transfer process involves: (a) redefining
knowledge nodes as medical institutions with clinical expertise
vectors derived from electronic health record summaries, (b) adapting
edge weights to reflect referral patterns and treatment outcome
correlations, (c) implementing differential privacy mechanisms with ¢
= 0.1 to satisfy HIPAA compliance requirements, and (d) modifying
the decision layer to output referral recommendations rather than
procurement decisions. The knowledge decay function requires
adjustment to reflect medical knowledge obsolescence rates (typically



6 base = 0.02 for clinical guidelines versus 0.08 for market
intelligence). For scientific research collaboration networks,
knowledge representations should encode publication topics, citation
relationships, and methodological expertise, while decision outputs
address collaboration formation and resource allocation. The coupling
mechanism naturally extends since research decisions (funding
allocation, collaboration choices) directly influence future knowledge
production. Transfer requires approximately 5,000-10,000
collaboration events for fine-tuning based on our preliminary
experiments with academic datasets. Smart city infrastructure
coordination demands hierarchical knowledge structures reflecting
municipal department specializations, with temporal dynamics
adjusted for infrastructure planning horizons (months to years versus
days in supply chains). Privacy-preserving federated learning becomes
essential when coordinating across jurisdictional boundaries.
Educational institution networks present unique challenges regarding
student privacy and curriculum standardization; knowledge flows
must respect institutional autonomy while enabling coordination on
shared objectives like credit transfer and program articulation. For all
domains, we recommend a staged transier approach: first, pre-train
the knowledge flow layer on domain-specific transfer data; second,
initialize the decision layer with domain-appropriate reward
structures; third, fine-tune coupling parameters using small samples
of coupled knowledge-decision episodes. This procedure achieved 78-
85% of fully-trained performance using only 20% of domain-specific
data in preliminary cross-domain experiments. Validating
effectiveness requires domain-specific datasets and performance
metrics appropriate to each application context.

The coupling mechanism's theoretical elegance and empirical
validation suggest broader applicability beyond organizational
contexts. Biological systems exhibiting information transfer and
behavioral coordination, distributed sensing networks balancing data
collection and processing decisions, and autonomous vehicle fleets
coordinating navigation and traffic information sharing all manifest
analogous coupling dynamics. Exploring these extensions would both
test model robustness and potentially reveal universal principles
governing coupled information-decision systems across natural and
engineered domains. Such investigations could establish inter-
organizational knowledge flow modeling as a specific instance of more



general coupling phenomena, elevating theoretical contributions from
domain-specific methodology to fundamental systems science
principles.

VI. Conclusion

This study presents a comprehensive framework for modeling the
coupling mechanism between inter-organizational knowledge flow and
agent collaborative decision-making using deep neural networks,
addressing a critical gap in understanding how knowledge
propagation and distributed coordination mutually influence
organizational performance. The research systematically integrates
graph neural networks for knowledge transfer modeling with multi-
agent reinforcement learning for decision coordination, establishing
explicit bidirectional coupling interfaces that enable dynamic
adaptation between these interdependent processes.

The primary contributions of this work encompass four dimensions.
First, the proposed dual-layer architecture with coupling mechanisms
provides a novel computational framework that simultaneously
optimizes knowledge propagation patterns and collaborative decision
strategies, moving beyond conventional approaches that treat these
dimensions independently. Second, the graph attention-based
knowledge flow model captures temporal dynamics and organizational
heterogeneity in knowledge transfer, incorporating decay mechanisms
and quality assessment metrics that reflect realistic inter-
organizational exchange conditions. Third, the knowledge-driven
collaborative decision algorithm integrates real-time knowledge state
embeddings into agent policy networks, enabling coordination
strategies that adapt to evolving information landscapes. Fourth, the
closed-loop feedback mechanism establishing bidirectional
information flow between knowledge and decision layers implements
adaptive organizational learning where decision outcomes reshape
knowledge management priorities.

Key research innovations include the formal mathematical
representation of coupling strength between knowledge and decision
subsystems, the alternating optimization training strategy that
prevents gradient conflicts while ensuring convergence, the attention-
based knowledge flow path optimization algorithm that dynamically
routes organizational knowledge to maximize decision quality, and the



empirical validation demonstrating substantial performance
improvements (8-24%) over state-of-the-art baseline methods across
diverse scenarios. The integration of heterogeneous neural
architectures—transformers for knowledge encoding, graph networks
for propagation, and recurrent attention for agent coordination—
within a unified framework represents a methodological advancement
enabling holistic modeling of complex organizational systems.

The theoretical value manifests in establishing knowledge flow and
collaborative decision-making as mutually constitutive processes
rather than separate organizational functions, fundamentally
reconceptualizing inter-organizational coordination dynamics. This
perspective reveals that effective knowledge management requires
decision context awareness while optimal coordination demands
knowledge state visibility, challenging disciplinary boundaries
between organizational learning research and multi-agent systems
studies. The formal coupling mechanisms provide tlicoretical
constructs applicable across domains exhibiting information-decision
interdependencies, potentially contributing to broader systems
science understanding of coupled adaptive processes.

Practical application significance emerges through demonstrated
effectiveness in real-world supply chain coordination, achieving 18.5%
cost reductions, 71% stockout frequency decreases, and 42.7%
inventory turnover improvements. These results quantify substantial
business value creation potential while validating model robustness
under operational conditions with inherent uncertainties and
complexities. The deployment experience provides actionable insights
for practitioners regarding implementation requirements, integration
strategies, and change management considerations essential for
successful organizational adoption. The model's scalability to
networks involving hundreds of organizations with near-linear
computational complexity indicates feasibility for enterprise-scale
applications across industries including manufacturing, healthcare,
logistics, and collaborative innovation networks.

Several limitations warrant acknowledgment and suggest directions
for improvement. The current model assumes relatively stable
organizational network topologies, potentially limiting applicability in
highly dynamic environments with frequent participant turnover.
Knowledge representation relies on vector embeddings that may



inadequately capture complex semantic structures or domain-specific
expertise nuances requiring richer symbolic representations. The
training process demands substantial computational resources and
high-quality historical data, creating barriers for smaller
organizations or newly formed networks lacking extensive
collaboration records. Privacy and security mechanisms, while
addressed through federated learning adaptations, require further
development to ensure robust protection of proprietary organizational
knowledge in adversarial environments. The model's interpretability,
though superior to black-box approaches, could benefit from
enhanced explanation capabilities enabling practitioners to
understand specific coupling pathways influencing outcomes.

Future research directions include extending the framework to
incorporate hierarchical organizational structures where knowledge
flows and decisions occur across multiple levels simultaneously,
developing online learning mechanisms enabling continuous model
adaptation as organizations evolve without periodic retraining,
investigating hybrid approaches combining neural network pattern
recognition with symbolic reasoning for complex domain knowledge
representation, and exploring transfer learning strategies allowing
models trained in one organizational context to generalize to different
domains with limited additional data. Incorporating uncertainty
quantification providing confidence intervals for predictions would
enhance decision-maker trust and enable risk-aware coordination
strategies. Investigating the temporal evolution of coupling strengths
over extended periods could reveal organizational learning
trajectories and identify intervention points for strengthening
knowledge-decision integration. Extending validation to diverse
sectors beyond supply chain management, including healthcare
networks, research collaborations, and public service coordination,
would establish broader applicability and potentially uncover domain-
specific coupling patterns requiring specialized model adaptations.

The integration of emerging technologies including large language
models for natural language knowledge processing, blockchain for
decentralized knowledge verification and trust establishment, and
edge computing for distributed model inference could enhance model
capabilities and deployment flexibility. Exploring human-Al
collaboration frameworks where the coupling model provides decision
support while preserving human judgment and accountability



represents another promising direction, particularly for high-stakes
organizational decisions requiring ethical considerations beyond
algorithmic optimization. Ultimately, this research establishes
foundational concepts and methodologies for computationally
modeling coupled organizational processes, opening pathways toward
more sophisticated understanding and effective management of inter-
organizational knowledge systems in an increasingly interconnected
and data-rich business environment.
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