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ABSTRACT

Existing lightweight Convolutional Neural Network (CNN) detectors 
deployed on Unmanned Aerial Vehicle (UAV) platforms struggle with 
small object recognition and fail to capture long-range spatial 
dependencies, while standard Vision Transformer (ViT) architectures 
suffer from quadratic computational complexity that prohibits real-
time inference on embedded hardware. This paper bridges this gap by 
proposing an integrated framework that adapts ViT for UAV-based 
real-time object detection through edge computing infrastructure. Our 
work presents three key contributions: (1) a hierarchical attention 
mechanism with shifted windows that reduces complexity from O(n²) 
to O(n), (2) a dynamic token pruning strategy that adaptively discards 
uninformative background tokens based on attention variance, and (3) 
a dual-mode edge-UAV collaborative architecture enabling seamless 
switching between autonomous onboard processing and server-
assisted computation. The lightweight ViT variant achieves 68% 
reduction in floating-point operations (FLOPs) while preserving 94.3% 
relative accuracy. Through systematic optimization combining mixed-
precision quantization, structured pruning, and operator fusion, we 
obtain 11.2× inference speedup over baseline implementations. 
Experiments on our collected aerial dataset demonstrate 73.9% 
mAP@0.5:0.95 at 39.2 frames per second (FPS) on NVIDIA Jetson 
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Xavier NX, surpassing YOLOv5s by 4.7% in accuracy under identical 
real-time constraints. Notably, small object detection improves by 
7.4% Average Precision (AP) compared to CNN baselines. Week-long 
field trials on DJI Matrice 300 RTK validate sustained performance 
across varying illumination, platform vibration, and intermittent 
network connectivity, confirming practical viability for time-critical 
applications including search and rescue, disaster response, and 
infrastructure inspection.

KEYWORDS

Vision Transformer; Edge Computing; Unmanned Aerial Vehicle; 
Object Detection; Real-time Processing; Model Optimization

I. Introduction

The rapid advancement of unmanned aerial vehicle (UAV) technology 
has catalyzed unprecedented opportunities across diverse domains, 
ranging from agricultural monitoring to disaster response and urban 
surveillance [1]. Equipped with imaging sensors and computational 
capabilities, UAVs now serve as versatile platforms for real-time visual 
perception tasks, among which object detection stands as a 
fundamental yet challenging requirement [2]. However, the inherent 
constraints of airborne platforms—limited payload capacity, restricted 
power supply, and fluctuating operational environments—pose 
substantial barriers to deploying sophisticated detection algorithms 
that demand intensive computational resources [3].

Recent years have witnessed the emergence of Vision Transformer 
(ViT) architectures, which fundamentally departed from traditional 
convolutional paradigms by modeling long-range dependencies 
through self-attention mechanisms [4]. These models demonstrated 
remarkable performance in various computer vision benchmarks, yet 
their computational complexity grows quadratically with input 
resolution, making direct deployment on resource-constrained UAV 
platforms impractical [5]. Meanwhile, edge computing has evolved as 
a compelling paradigm that shifts computation from centralized cloud 
servers to distributed edge nodes closer to data sources, thereby 
reducing latency and bandwidth consumption [6]. The convergence of 
these two technological trajectories—advanced vision models and 
decentralized computing infrastructure—presents both opportunities 
and complexities that warrant systematic investigation.

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



Current research efforts in UAV-based object detection predominantly 
rely on lightweight convolutional neural networks, which sacrifice 
model capacity for computational efficiency [7]. While such 
approaches achieve acceptable inference speed, they often struggle 
with detecting small objects and maintaining robustness under 
varying illumination conditions or viewpoint changes inherent to 
aerial imagery [8]. On the other hand, existing Vision Transformer 
implementations remain largely confined to server-grade hardware, 
with limited exploration of their adaptation to edge computing 
scenarios where memory bandwidth and energy efficiency become 
critical constraints [9]. This gap between model sophistication and 
deployment feasibility reveals a pressing need for innovative 
frameworks that reconcile detection accuracy with real-time 
performance requirements.

The significance of developing such a framework extends beyond 
technical merits. Autonomous UAV operations in time-critical 
applications—search and rescue missions, traffic accident response, 
or wildlife monitoring—demand detection systems that deliver both 
precision and immediacy [10]. Furthermore, as UAV deployments 
scale up, relying solely on cloud-based processing introduces 
vulnerabilities related to network connectivity and data privacy, 
making edge-based solutions not merely preferable but essential for 
robust and secure operations.

This paper addresses these challenges by proposing an integrated 
framework that adapts Vision Transformer architectures for UAV-
based real-time object detection through edge computing 
infrastructure. Our work makes three primary contributions: First, we 
design a streamlined Vision Transformer variant that maintains global 
receptive field advantages while dramatically reducing computational 
overhead through hierarchical attention and dynamic token pruning 
strategies. Second, we develop an edge computing architecture that 
orchestrates workload distribution between onboard processors and 
ground-based edge servers, optimizing the trade-off between latency 
and detection accuracy through adaptive task partitioning. Third, we 
establish a comprehensive evaluation methodology that assesses 
performance across multiple dimensions—detection precision, 
inference latency, energy consumption, and robustness to aerial 
imaging variations—providing insights into practical deployment 
considerations that existing benchmarks often overlook. Through 
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these innovations, we demonstrate that sophisticated vision models 
need not remain exclusive to high-performance computing 
environments but can be thoughtfully adapted to meet the stringent 
demands of real-world UAV applications.

II. Related Technologies and Theoretical Foundations

2.1 Vision Transformer for Object Detection

The introduction of Transformer architecture into computer vision 
marked a paradigm shift from the dominance of convolutional 
operations that had prevailed since AlexNet's breakthrough [11]. 
Originally conceived for natural language processing, Transformers 
demonstrated an intriguing capacity to capture global contextual 
relationships through self-attention mechanisms, prompting 
researchers to explore their applicability beyond sequential data [12]. 
This transition, however, was not straightforward—early attempts 
grappled with the fundamental challenge of adapting architectures 
designed for discrete tokens to continuous, high-dimensional visual 
data.

At the core of Vision Transformer lies the self-attention mechanism, 
which computes attention weights by measuring similarity between 
query and key representations. For an input sequence X ∈ RN×D, 
where N denotes the number of tokens and D represents feature 
dimensions, the attention operation is formulated as:

Attention(Q,K,V) = softmax(QKT

dk )V
(1)

where Q, K, and V correspond to query, key, and value matrices 
derived through linear projections, and dk denotes the key dimension 
[13]. This mechanism enables each token to attend to all other tokens, 
establishing long-range dependencies that convolutional layers with 
limited receptive fields struggle to capture.

The Vision Transformer (ViT) pioneered the direct application of this 
principle by partitioning images into fixed-size patches, treating each 
patch as a token analogous to words in sentences [14]. Despite its 
elegance, ViT demanded extensive pre-training on massive datasets to 
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achieve competitive performance, revealing an inherent data hunger 
that limited its practical adoption. Data-efficient Image Transformer 
(DeiT) addressed this limitation through knowledge distillation 
strategies, where a student network learns from both ground-truth 
labels and a teacher model's predictions, significantly reducing the 
data requirements while maintaining accuracy. The multi-head 
attention mechanism extends single-head attention by computing 
multiple attention functions in parallel:

MultiHead(Q,K,V) = Concat(head1,...,headh)WO

(2)

where each head captures different representation subspaces [15].

Swin Transformer introduced a hierarchical architecture with shifted 
windows, computing self-attention within local windows rather than 
globally, thereby reducing computational complexity from quadratic 
to linear relative to image resolution. The complexity of standard self-
attention grows as:

Ω(MSA) = 4hwC2 + 2(hw)2C

(3)

where h, w, and C denote height, width, and channel dimensions 
respectively [31]. This quadratic scaling becomes prohibitive for high-
resolution UAV imagery.

While Vision Transformers excel at capturing global context and have 
shown impressive results on standard benchmarks, their deployment 
in object detection scenarios—particularly for UAV applications—
encounters notable obstacles. The computational burden remains 
substantial even with windowed attention schemes. Memory footprint 
during inference often exceeds what embedded processors can 
accommodate. Moreover, the models demonstrate sensitivity to 
resolution changes between training and deployment phases, a non-
trivial concern given the variable flight altitudes in UAV operations. 
These limitations underscore why simply transplanting existing 
architectures onto edge devices proves insufficient, necessitating 
purposeful adaptations that we explore in subsequent sections.

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



2.2 Edge Computing Architecture and Optimization 
Techniques

Edge computing emerged as a distributed paradigm that positions 
computational capabilities in proximity to data sources, contrasting 
sharply with the traditional cloud-centric model where processing 
occurs in distant datacenters [16]. This architectural shift proves 
particularly relevant for UAV applications, where network latency and 
bandwidth constraints render cloud-dependent processing impractical 
for time-sensitive detection tasks. The typical edge computing 
hierarchy consists of three tiers: terminal devices (UAVs with 
embedded processors), edge servers (ground stations or base 
stations), and cloud infrastructure, each offering different trade-offs 
between latency, computational power, and energy consumption [17].

Yet edge devices face stringent resource limitations that constrain 
what models can realistically run onboard. Mobile processors typically 
offer 2-8 GB memory and 5-20 TOPS (tera operations per second) 
computational throughput—orders of magnitude below server-grade 
GPUs. Power budgets remain equally restrictive, with most UAV 
platforms allocating merely 10-30 watts for computation to preserve 
flight endurance. These constraints necessitate aggressive model 
optimization before deployment becomes viable.

Model compression techniques have evolved to address this 
deployment gap. Quantization reduces numerical precision of weights 
and activations from 32-bit floating-point to lower bit-widths, 
dramatically decreasing memory footprint and arithmetic complexity. 
The quantization function maps full-precision values to discrete levels:

Wq = round(WΔ ) × Δ,Δ =
max(W) - min(W)

2b - 1

(4)

where W denotes original weights, Wq represents quantized weights, Δ 
is the quantization step size, and b indicates bit-width [18]. Moving 
from 32-bit to 8-bit precision typically achieves 4× compression with 
minimal accuracy degradation, though further reduction to 4-bit or 
binary values demands careful calibration.

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



Pruning eliminates redundant connections based on weight 
magnitudes or gradient information [19]. The sparse network is 
formulated as:

Wpruned = W ⊙ M,whereMij = {1, if|Wij| > τ 0, otherwise

(5)

with M being the binary mask and τ the pruning threshold [35]. 
Structured pruning removes entire filters rather than individual 
weights, yielding actual speedups on hardware lacking sparse 
operation support [19].

Knowledge distillation transfers knowledge from a cumbersome 
teacher model to a compact student network by matching output 
distributions. The student minimizes a combined loss:

LKD = αLCE(y,
^
ys) + (1 - α)LKL(σ(

^
yt/T),σ(

^
ys/T))

(6)

where LCE denotes cross-entropy loss, LKL represents Kullback-Leibler 

divergence, 
^
yt and 

^
ys are teacher and student predictions, σ is the 

softmax function, T controls temperature, and α balances the two 
objectives [20]. This approach often surpasses training compact 
models from scratch, particularly when labeled data remains scarce.

Beyond compression, inference acceleration exploits hardware-
specific optimizations. Operator fusion merges consecutive operations 
to reduce memory transactions. Dynamic batching amortizes 
overhead across multiple inputs. The theoretical speedup from 
parallelization follows Amdahl’s law [53]:

S =
1

(1 - p) + p
n

(7)

where p represents the parallelizable fraction and n denotes 
processing unit count. These techniques collectively enable deploying 
sophisticated models on resource-constrained edge devices, though 
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achieving optimal performance demands holistic co-design across 
algorithm, architecture, and hardware layers.

2.3 UAV Vision Systems and Real-time Processing 
Requirements

UAV platforms impose unique hardware constraints that 
fundamentally shape what detection systems can accomplish onboard. 
Commercial drones typically carry processors like NVIDIA Jetson 
series or Qualcomm Snapdragon chips, offering 1-5 TFLOPS 
computational throughput—adequate for conventional tasks yet barely 
sufficient for transformer-based architectures that demand intensive 
matrix operations [21]. Memory bandwidth presents an equally 
critical bottleneck, with most embedded systems providing 20-60 GB/s 
compared to the 500+ GB/s available on datacenter GPUs. Battery 
capacity dictates mission duration, and computational workloads 
directly erode flight time through power draw that competes with 
propulsion systems.

The application landscape for UAV-based object detection spans 
remarkably diverse scenarios, each presenting distinct technical 
demands. Search and rescue operations require detecting humans or 
vehicles across vast terrain under varying lighting and weather 
conditions. Precision agriculture needs identifying crop health 
indicators or pest infestations at sufficient resolution to guide 
intervention. Traffic monitoring involves tracking multiple moving 
vehicles simultaneously while maintaining stable detection across 
different viewing angles. Wildlife conservation applications demand 
recognizing specific species from considerable altitudes without 
disturbing natural behaviors [22]. These scenarios share a common 
thread: they cannot tolerate the multi-second latencies typical of 
cloud-based processing, as delayed detection compromises mission 
effectiveness or safety.

Aerial imagery introduces challenges absent from ground-based 
computer vision. Objects appear at drastically different scales 
depending on flight altitude—a vehicle might span 200 pixels at 50 
meters altitude but merely 20 pixels at 500 meters. Camera motion 
induces blur that confounds detection algorithms trained on static 
imagery. Viewing angles deviate significantly from horizontal 
perspectives that dominate training datasets, causing appearance 
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variations that models struggle to generalize across [23]. Background 
clutter in complex urban or natural environments generates false 
positives that erode user trust.

The tension between detection performance and system constraints 
manifests as an optimization problem with competing objectives. Let A 
represent detection accuracy, L denote inference latency, and E 
signify energy consumption. The deployment objective seeks:

maxθf(A(θ))subjecttoL(θ) ≤ Lmax,E(θ) ≤ Ebudget

(8)

where θ represents model parameters, Lmax defines the maximum 
tolerable latency (often 100-200 ms for real-time operation), and 
Ebudget bounds energy expenditure per frame [24]. This multi-objective 
optimization rarely admits analytical solutions, requiring empirical 
exploration of the design space.

Existing UAV detection methods predominantly employ lightweight 
CNNs like YOLOv5 or MobileNet variants, achieving 30-60 FPS on 
embedded hardware but sacrificing accuracy on small objects that 
Vision Transformers handle more capably [25]. These approaches 
treat accuracy and efficiency as a zero-sum trade-off rather than 
exploring architectural innovations that might improve both 
simultaneously. The computational complexity scales linearly with 
input resolution [7]:

C = k·H·W·C

(9)

where H, W, C denote spatial dimensions and channels, and k 
represents operations per pixel. This scaling behavior proves 
problematic when high-resolution inputs become necessary for 
detecting distant or small objects. Moreover, current systems lack 
adaptive mechanisms that adjust processing intensity based on scene 
complexity or mission criticality, resulting in wasteful computation 
during benign scenarios and insufficient capability during demanding 
conditions. These limitations motivate our proposed framework that 
reconciles transformer expressiveness with edge deployment realities.
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To clarify the research gaps our work addresses, Table 1 summarizes 
the limitations of representative detection methods when deployed on 
UAV platforms. As shown in Table 1, CNN-based lightweight detectors 
achieve acceptable inference speed but exhibit degraded performance 
on small objects due to limited receptive fields. Transformer-based 
methods demonstrate superior accuracy yet demand computational 
resources far exceeding embedded hardware capabilities. None of the 
existing approaches provide adaptive mechanisms for varying 
operational conditions. These shortcomings collectively motivate our 
proposed framework.

Table 1. Limitations of existing UAV object detection methods

Method

Computat
ional 
Cost

Memory 
Require
ment

Sma
ll 
Obj
ect 
AP

Real-
time 
Capab
ility

Edge 
Deploya
bility

Primar
y 
Limitat
ions

YOLOv5
s [7]

Low (16.5 
GFLOPs)

Low (14 
MB)

56.8
%

Yes (52 
FPS)

Yes Limited 
receptiv
e field; 
accurac
y drops 
on small 
targets

YOLOv8
n [50]

Low (8.7 
GFLOPs)

Low (6 
MB)

58.3
%

Yes (68 
FPS)

Yes Insuffici
ent 
global 
context 
modelin
g

Efficient
Det-D0 
[51]

Medium 
(2.5 
GFLOPs)

Low (15 
MB)

54.2
%

Yes (48 
FPS)

Yes Multi-
scale 
fusion 
overhea
d; small 
object 
weakne
ss

DETR 
[49]

High (86 
GFLOPs)

High 
(158 MB)

62.1
%

No (8 
FPS)

No Quadrat
ic 
attentio
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Method

Computat
ional 
Cost

Memory 
Require
ment

Sma
ll 
Obj
ect 
AP

Real-
time 
Capab
ility

Edge 
Deploya
bility

Primar
y 
Limitat
ions

n 
complex
ity; slow 
converg
ence

Swin-T 
[31]

High (45 
GFLOPs)

High 
(112 MB)

65.8
%

No (13 
FPS)

No Memory 
bandwid
th 
bottlene
ck on 
embedd
ed 
devices

RT-
DETR 
[52]

Medium 
(32 
GFLOPs)

Medium 
(67 MB)

63.5
%

Margin
al (22 
FPS)

Limited Still 
exceeds 
edge 
device 
memory 
constrai
nts

III. Integrated Framework of Vision Transformer and 
Edge Computing for Object Detection

3.1 Overall Framework Design

We propose a hierarchical framework that orchestrates ViT-based 
detection across UAV onboard processors and ground-based edge 
servers. The design rationale stems from three observations specific 
to aerial detection scenarios. First, UAV imagery contains substantial 
background regions (typically 60-80% of pixels) where expensive 
attention computation yields minimal benefit, motivating our dynamic 
token pruning that concentrates resources on informative foreground 
areas. Second, flight altitude variations cause dramatic object scale 
changes—a vehicle spanning 200 pixels at 50 meters shrinks to 
merely 20 pixels at 500 meters—necessitating hierarchical multi-scale 
feature extraction rather than single-resolution processing. Third, 
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network connectivity during flight missions proves inherently 
unstable, demanding a dual-mode architecture capable of autonomous 
operation when communication degrades. These UAV-specific 
considerations guided our departure from conventional monolithic 
deployment toward dynamic workload partitioning that adapts to 
network conditions, computational availability, and mission urgency 
[26]. Figure 1 illustrates the complete system architecture comprising 
five interconnected stages.
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Figure 1. Overall architecture of the proposed UAV object 
detection framework integrating Vision Transformer and edge 
computing

The workflow initiates with data acquisition through the UAV's 
onboard camera, which captures high-resolution imagery at 30-60 
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frames per second depending on flight conditions. Raw images 
undergo immediate preprocessing on the UAV's embedded processor, 
encompassing image stabilization to compensate for platform motion, 
adaptive histogram equalization to normalize illumination variations 
across frames, and resolution adjustment based on current 
computational budget [27]. This preprocessing stage proves critical—
aggressive downsampling reduces computational burden but 
sacrifices small object detectability, while maintaining native 
resolution strains memory bandwidth and inference speed.

Feature extraction employs our customized lightweight Vision 
Transformer backbone, which we detail in Section 3.2. Unlike 
standard ViT architectures that process all tokens with equal 
computational intensity, our design implements hierarchical attention 
with progressive token reduction, concentrating computational 
resources on salient image regions while treating background areas 
with reduced precision. The detection head builds upon these multi-
scale features to generate bounding boxes and class predictions, 
employing anchor-free formulation that simplifies deployment and 
reduces post-processing overhead [28].

Table 2 summarizes the functional responsibilities and 
implementation specifics of each framework component. As presented 
in Table 2, the framework distributes computational tasks between 
UAV and edge server based on a runtime scheduler that monitors 
network latency, processing queue depth, and battery status to 
determine optimal workload allocation.

Table 2. Framework module function description
Module Name Main Functions Implementation 

Details
Data Acquisition Capture aerial imagery 

and sensor data
HD camera (1920×1080), 
30-60 FPS, IMU 
synchronization

Preprocessing Stabilization, 
normalization, adaptive 
resizing

Motion compensation via 
optical flow, CLAHE, 
dynamic scaling

Feature Extraction Multi-scale 
representation learning

Lightweight ViT with 
hierarchical attention, 4-
stage pyramid

Detection Head Bounding box regression 
and classification

Anchor-free decoder, 
focal loss, multi-scale 
prediction

Post-processing NMS, confidence 
filtering, result 

Score threshold 0.5, IoU 
threshold 0.45, temporal 
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aggregation smoothing
Edge Coordination Workload distribution and 

result fusion
Latency-aware scheduler, 
redundant computation 
elimination

Post-processing operations include non-maximum suppression to 
eliminate redundant detections, confidence thresholding to filter low-
quality predictions, and temporal consistency enforcement that tracks 
objects across consecutive frames to reduce flickering [29]. When 
network connectivity permits, the edge server handles 
computationally intensive tasks such as processing multiple frames in 
parallel or running ensemble predictions, with results transmitted 
back to the UAV for immediate action or local storage.

The framework's innovative aspects manifest in three dimensions. 
First, we introduce adaptive token pruning that dynamically adjusts 
model capacity based on scene complexity—simple backgrounds 
trigger aggressive pruning while cluttered scenes preserve more 
tokens. Second, our dual-mode operation supports both autonomous 
onboard processing when network connectivity remains unreliable 
and collaborative edge-UAV computation when bandwidth permits, 
ensuring robustness across varying operational conditions. Third, we 
implement early exit mechanisms that terminate computation once 
confidence exceeds predetermined thresholds, avoiding wasteful 
processing for easily detectable objects. These design choices 
collectively enable deploying sophisticated transformer models on 
resource-constrained UAV platforms without sacrificing detection 
quality, bridging the gap between algorithmic capability and practical 
deployment constraints that has hindered previous attempts at 
airborne transformer deployment.

3.2 Lightweight Vision Transformer Detection Module

The core challenge in adapting Vision Transformers for UAV 
deployment lies in reconciling their representational power with the 
severe computational constraints of embedded processors. Our 
lightweight detection module addresses this through architectural 
modifications that reduce complexity without compromising the global 
modeling capacity that makes transformers attractive for aerial object 
detection.

We adopt a hierarchical multi-scale feature extraction mechanism that 
constructs a four-stage feature pyramid, progressively reducing 
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spatial resolution while expanding channel dimensions. Figure 2 
depicts the detailed architecture of our lightweight ViT module. As 
shown in Figure 2, each stage begins with patch merging that 
aggregates neighboring tokens, effectively downsampling the feature 
map by a factor of two while doubling channel count. This pyramidal 
structure mirrors successful CNN designs but retains transformer's 
attention mechanisms within each stage [30].

Figure 2. Architecture of the lightweight Vision Transformer 
detection module with hierarchical feature extraction

The attention computation undergoes substantial modification to curb 
quadratic complexity. Rather than computing global attention across 
all tokens, we employ shifted window attention restricted to local 
regions. For a feature map partitioned into windows of size M × M, the 
computational complexity becomes:

Ω(W - MSA) = 4hwC2 + 2M2hwC

(10)

which grows linearly rather than quadratically with spatial dimensions 
h and w [31]. We set M = 7 as a balance between receptive field and 
efficiency. Additionally, we introduce dynamic token pruning that 
identifies and discards less informative tokens based on attention 
scores. The pruning ratio rl at layer l adapts according to:
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rl = rbase·(1 + β·
Var(Al)

E[Var(A)])
(11)

where Al represents attention scores at layer l, rbase denotes the 
baseline pruning ratio, β controls adaptation strength, and Var(·) 
computes variance as a measure of information content. Higher 
variance indicates heterogeneous attention patterns warranting token 
retention, while uniform attention suggests redundancy suitable for 
pruning.

Table 3 compares various lightweight strategies we evaluated during 
development. The results in Table 3 indicate that combining window 
attention with dynamic pruning achieves the best trade-off, reducing 
FLOPs by 68% while maintaining 94.3% relative accuracy compared 
to the full model.

Table 3. Comparison of lightweight strategies
Strategy FLOPs 

Reduction 
(%)

Parameter 
Reduction 

(%)

Relative 
Accuracy 

(%)

Inference 
Time (ms)

Baseline ViT 0 0 100.0 312
Window 
Attention Only

52 15 96.8 168

Static Token 
Pruning

45 8 93.1 175

Dynamic 
Token Pruning

58 12 95.2 142

Window Attn 
+ Dynamic 
Pruning

68 23 94.3 98

Feature pyramid fusion aggregates multi-scale representations 
through a bidirectional pathway that combines top-down semantic 
information with bottom-up localization cues. The fusion operation at 
scale i follows:

Fi = Conv(Flateral
i + Upsample(Fi+1)) + Downsample(Fi-1)

(12)

where Flateral
i  denotes lateral connections from the backbone, 

establishing connections across pyramid levels [32].
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The detection head employs an anchor-free formulation that predicts 
object center locations, dimensions, and class probabilities directly 
from feature maps. For each spatial location (x,y) in feature map Fi, 
the head outputs:

px,y = {cx,y,bx,y,sx,y}

(13)

where cx,y ∈ R2 represents center offsets, bx,y ∈ R4 denotes bounding 
box dimensions, and sx,y ∈ RK contains class scores for K categories 
[33]. This anchor-free approach eliminates hyperparameter tuning 
associated with anchor design while simplifying the detection 
pipeline.

Loss function construction balances multiple objectives through 
weighted combination. The total loss comprises classification, 
localization, and centerness components:

Ltotal = λclsLcls + λlocLloc + λctrLctr

(14)

where Lcls applies focal loss to address class imbalance, Lloc employs 
generalized IoU loss for accurate box regression, and Lctr enhances 
center prediction quality. The weighting coefficients λcls = 1.0, 
λloc = 2.0, and λctr = 1.0 were determined through validation 
experiments. Specifically, the localization loss takes the form:

Lloc = 1 - IoU(bpred,bgt) + ρ2(cpred,cgt)
d2

(15)

where ρ measures Euclidean distance between predicted and ground-
truth centers, and d represents the diagonal length of the smallest 
enclosing box (standard formula). This formulation provides stronger 
gradients than standard IoU loss, particularly for small objects 
prevalent in UAV imagery.

3.3 Edge Deployment and Inference Optimization 
Strategies
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Deploying our lightweight ViT module on edge devices demands 
aggressive optimization that extends beyond architectural design into 
implementation-level refinements. We adopt mixed-precision 
quantization where different layers receive distinct bit-widths based 
on sensitivity analysis. Attention layers, which prove more sensitive to 
precision reduction, retain 8-bit representation, while convolutional 
projections and feed-forward networks operate at 4-bit or even binary 
precision [34]. The quantization-aware training minimizes:

LQAT = E(x,y)~D [L(fquant(x;Wq),y)] + γ|W - Wq|22

(16)

where fquant represents the quantized model, Wq denotes quantized 
weights, and γ controls regularization strength that encourages 
weights to naturally cluster near quantization levels during training. 
This approach outperforms post-training quantization by allowing the 
model to adapt its parameters to accommodate quantization errors.

Structured pruning removes entire channels rather than individual 
weights, ensuring computational savings translate to actual speedup 
on hardware lacking sparse operation support. We determine channel 
importance through first-order Taylor expansion:

Ic = | ∂L
∂wc

|·|wc|

(17)

where wc represents weights of channel c [35]. Channels with 
importance below the p-th percentile threshold undergo removal, with 
p determined adaptively per layer based on validation performance.

Dynamic computational resource allocation responds to runtime 
conditions through a decision policy that balances latency, accuracy, 
and energy consumption. The allocation strategy solves:

a* = argmaxa∈A [α·R(a) - β·T(a) - η·E(a)]

(18)

where a denotes allocation decisions (onboard versus edge server 
processing), R(a) represents detection reward, T(a) measures latency, 
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and E(a) captures energy cost. The weighting parameters α, β, η are 
set heuristically based on mission requirements rather than learned 
during operation. Default values (α=1.0, β=0.5, η=0.3) were 
determined through grid search on validation data, prioritizing 
detection accuracy while maintaining real-time performance. Table 4 
presents parameter sensitivity analysis showing system robustness to 
moderate parameter variations. The allocation decision updates every 
100ms (window-based rather than frame-by-frame) to avoid oscillation 
while remaining responsive to changing conditions. Mode switching 
latency—the time from detecting condition change to completing 
transition—averages 45ms including network handshake overhead. 
When battery reserves drop below 30%, η automatically increases to 
0.8, favoring energy-efficient local processing. Network latency 
thresholds trigger mode changes: connectivity below 20ms enables 
edge collaboration, while latency exceeding 40ms forces autonomous 
onboard operation.

Table 4. Parameter sensitivity analysis for workload allocation

Parameter 
Setting α β η

mAP 
(%)

Avg. 
Latency 
(ms)

Energy 
(J/frame)

Accuracy-
priority

1.5 0.3 0.2 74.8 32.1 0.385

Default 
(balanced)

1.0 0.5 0.3 73.9 25.5 0.327

Latency-
priority

0.8 0.8 0.3 71.2 21.3 0.342

Energy-priority 0.8 0.4 0.8 70.5 28.7 0.278

Operator fusion consolidates multiple operations into single kernel 
launches, dramatically reducing memory access overhead that 
dominates latency on memory-bandwidth-limited edge processors. We 
merge layer normalization, attention computation, and residual 
addition into fused kernels. The memory access reduction follows:

MAfused = MAinput + MAoutput <
n
∑

i=1
MAopi

(19)
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where MA denotes memory access volume and n represents the 
number of fused operations (standard formula). Empirically, fusion 
reduces memory transactions by 40-60% for transformer blocks.

Table 5 summarizes computational complexity across optimization 
strategies. Table 5 shows that combining quantization, pruning, and 
operator fusion achieves 11.2× speedup over the baseline 
implementation while consuming merely 18% of the original memory 
footprint.

Table 5. Computational complexity comparison of different 
optimization strategies

Optimization 
Strategy

FLOPs 
(G)

Memory 
(MB)

Latency 
(ms)

Speedup Accuracy 
(mAP)

Baseline FP32 28.6 342 286 1.0× 76.8
INT8 
Quantization

28.6 98 124 2.3× 76.1

Structured 
Pruning (50%)

14.2 178 158 1.8× 74.5

Combined 
Optimization

12.8 62 25.5 11.2× 73.9

Multi-threading parallelism exploits multi-core processors common in 
modern edge devices by partitioning workloads across independent 
execution streams. We assign image preprocessing, feature 
extraction, and post-processing to separate threads with lock-free 
queues facilitating inter-thread communication. The theoretical 
throughput scales as:

FPSparallel = n·FPSserial
max(Tprep,Tinfer,Tpost)

(20)

where n denotes core count and T represents processing time for each 
stage (standard formula).

Platform adaptation requires addressing hardware-specific 
characteristics. For NVIDIA Jetson devices, we compile models using 
TensorRT with FP16 precision and exploit tensor cores for matrix 
multiplication acceleration [36]. On Qualcomm platforms, we target 
the Hexagon DSP through SNPE framework, favoring 8-bit 
quantization that aligns with DSP's native precision. Intel-based edge 
servers benefit from OpenVINO optimization that fuses operations 
and applies graph-level transformations. This multi-platform strategy 
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ensures our framework remains deployable across diverse edge 
infrastructure without sacrificing performance portability.

IV. Experiments and Result Analysis

4.1 Experimental Setup and Dataset

Our experimental validation employs a heterogeneous hardware 
testbed that mirrors realistic UAV deployment scenarios. Figure 3 
presents the configuration of our experimental platforms. As shown in 
Figure 3, the UAV onboard system comprises an NVIDIA Jetson Xavier 
NX module (6-core ARM CPU, 384-core Volta GPU, 8GB LPDDR4 
memory) consuming 10-15W during inference, mounted on a DJI 
Matrice 300 RTK platform [37]. The ground-based edge server 
deploys an NVIDIA Jetson AGX Orin (12-core ARM CPU, 2048-core 
Ampere GPU, 64GB LPDDR5 memory) with 15-60W configurable TDP, 
simulating realistic base station computational capabilities. 
Communication between aerial and ground systems operates over 
5GHz WiFi with measured latency ranging 15-45ms depending on 
distance and environmental interference. We additionally benchmark 
performance on Intel NUC 11 (Core i7-1165G7, Iris Xe Graphics) to 
assess cross-platform portability.

Figure 3. Experimental platform configuration showing UAV 
onboard processor, edge server, and development workstation
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The software environment builds upon PyTorch 1.13.0 for model 
training, with CUDA 11.7 and cuDNN 8.5 acceleration. Deployment 
employs TensorRT 8.6 for inference optimization on Jetson platforms, 
OpenVINO 2023.0 for Intel hardware, and ONNX Runtime 1.14 as a 
hardware-agnostic fallback. Training occurs on workstation-grade 
NVIDIA RTX 4090 GPUs across 100 epochs with early stopping when 
validation loss plateaus for 10 consecutive epochs.

We construct a comprehensive UAV aerial object detection dataset by 
aggregating samples from multiple sources and conducting additional 
field collections. The dataset integrates 8,426 images from VisDrone 
[38], 3,217 images from UAVDT, and 4,892 newly captured images 
from our flight campaigns. Table 6 provides detailed specifications of 
the newly collected data. Our collection spans urban downtown areas 
(35% of images), suburban residential zones (40%), and rural open 
terrain (25%), captured across four seasons to ensure environmental 
diversity. Flight altitudes follow a stratified distribution: low altitude 
(30-100m, 28% of images), medium altitude (100-250m, 45%), and 
high altitude (250-500m, 27%). Weather conditions include clear sky 
(62%), overcast (28%), and light rain (10%). Illumination encompasses 
daytime (72%), dawn/dusk (18%), and nighttime with artificial lighting 
(10%). Motion blur affects approximately 15% of images, primarily at 
low altitudes where rapid maneuvering occurs. Camera specifications 
include 4K resolution (3840×2160) downsampled to 1920×1080, 84° 
field of view, and 30 FPS capture rate synchronized with IMU data for 
stabilization.

Table 6. Specifications of newly collected UAV dataset

Attribute Distribution/Value

Total images 4,892

Flight altitude 30-100m (28%), 100-250m (45%), 250-500m 
(27%)

Environment type Urban (35%), Suburban (40%), Rural (25%)

Weather conditions Clear (62%), Overcast (28%), Light rain (10%)

Illumination Daytime (72%), Dawn/dusk (18%), Night (10%)

Motion blur 
presence

15% of images
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Attribute Distribution/Value

Camera resolution 3840×2160 (downsampled to 1920×1080)

Field of view 84°

Frame rate 30 FPS

Collection period March 2023 - February 2024 (12 months)

Geographic 
locations

8 cities across Eastern China

Figure 4 illustrates the distribution across object categories and 
imaging conditions. Figure 4 demonstrates that the dataset 
encompasses 10 object classes (pedestrian, car, truck, bus, van, 
bicycle, motorcycle, awning, tricycle, barrier) with substantial class 
imbalance reflecting real-world frequency distributions. Small objects 
(area < 32²pixels) constitute 58% of instances, medium objects (32²-
96²pixels) account for 33%, and large objects (>96²pixels) represent 
9% of the dataset, emphasizing the small-object detection challenge 
inherent to aerial imagery [39].

Figure 4. Dataset sample distribution showing object category 
frequencies, size distributions, and altitude coverage

Annotation follows COCO format with axis-aligned bounding boxes, 
verified through three-round quality control where annotators cross-
validate each other's labels. Ambiguous cases—heavily occluded 
objects or objects at image boundaries—receive special flags but 
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remain in the dataset to maintain realism. Data partitioning allocates 
70% for training (11,574 images), 15% for validation (2,481 images), 
and 15% for testing (2,480 images), stratified by scene type and 
altitude to ensure representative distributions across splits.

Data augmentation during training encompasses geometric and 
photometric transformations. Geometric operations include random 
horizontal flipping (p=0.5), rotation within ±15° (p=0.3), and scaling 
between 0.8-1.2× (p=0.4) [40]. Photometric augmentation applies 
brightness adjustment (±20%), contrast variation (0.8-1.2×), 
saturation modification (0.7-1.3×), and hue shifting (±10°), each with 
0.5 probability. We additionally implement Mosaic augmentation that 
tiles four images into one training sample, significantly enriching 
contextual diversity while introducing minimal computational 
overhead.

Evaluation employs multiple complementary metrics capturing 
different performance dimensions. Detection accuracy uses mean 
Average Precision (mAP) computed as:

mAP =
1
K

K
∑

k=1
APk,APk = ∫1

0 Pk(R)dR

(21)

where K denotes object categories, Pk(R) represents the precision-
recall curve for class k [41]. We report mAP at IoU thresholds of 0.5 
(mAP@0.5) and averaged across 0.5-0.95 in 0.05 increments 
(mAP@0.5:0.95) following COCO evaluation protocol. Inference speed 
measures frames per second (FPS):

FPS =
N

∑N
i=1 Ti

(22)

where N represents total frames and Ti denotes processing time for 
frame i including preprocessing, inference, and post-processing 
(standard formula). Energy efficiency quantifies detection operations 
per joule:
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Efficiency =
FPS × 3600

Pavg

(23)

where Pavg denotes average power consumption in watts measured via 
onboard power monitors (standard formula).

Baseline comparisons include YOLOv5s, YOLOv8n, and EfficientDet-
D0 representing state-of-the-art lightweight detectors, plus DETR and 
Swin-T as transformer-based alternatives. Table 7 lists all 
experimental parameters. As presented in Table 7, training employs 
AdamW optimizer with cosine annealing schedule, starting from 1e-3 
learning rate with 5-epoch linear warmup.

Table 7. Experimental parameter configuration
Parameter Value Description

Input Resolution 640×640 Standard detection 
resolution

Batch Size 16 (training), 1 
(inference)

Per-device batch 
configuration

Learning Rate 1e-3 → 1e-5 Cosine decay schedule
Weight Decay 5e-4 L2 regularization 

coefficient
Optimizer AdamW Adaptive moment 

estimation with 
decoupled weight decay

Loss Weights λ_cls=1.0, λ_loc=2.0, 
λ_ctr=1.0

Multi-task loss balancing

Quantization INT8 (most layers), FP16 
(attention)

Mixed precision 
configuration

IoU Threshold 0.45 Non-maximum 
suppression threshold

4.2 Detection Performance Evaluation

Table 8 presents comprehensive performance metrics comparing our 
proposed framework against established baseline methods. The 
results in Table 8 indicate that our approach achieves 73.9% 
mAP@0.5:0.95 and 89.2% mAP@0.5, outperforming lightweight CNN-
based detectors while maintaining competitive inference speed. 
Notably, our method surpasses YOLOv5s by 4.7% in mAP@0.5:0.95 
despite similar parameter counts, and exceeds YOLOv8n by 3.2%, 
demonstrating the effectiveness of incorporating Vision Transformer 
architecture for aerial detection tasks [42].
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Table 8. Detection performance comparison of different 
methods

Metho
d

Para
ms 
(M)

FLO
Ps 
(G)

mAP
@0.5 
(%)

mAP@0.5
:0.95 (%)

Preci
sion 
(%)

Rec
all 
(%)

F1-
Sco
re 
(%)

FPS 
(Xav
ier 
NX)

YOLOv5
s [7]

7.2 16.5 85.6 69.2 82.4 78.9 80.
6

52.3

YOLOv8
n [50]

3.2 8.7 87.1 70.7 84.1 80.3 82.
1

68.4

YOLOv9
t [54]

2.0 7.7 87.8 71.2 84.6 80.8 82.
7

61.2

YOLOv1
0n [55]

2.3 6.7 88.2 71.5 85.0 81.2 83.
0

72.1

Efficien
tDet-D0 
[51]

3.9 2.5 83.8 67.5 81.2 76.8 78.
9

48.6

DETR 
[49]

41.3 86.0 88.4 71.8 85.7 81.2 83.
4

8.4

Swin-T 
[31]

28.3 45.0 90.1 74.3 87.2 83.5 85.
3

12.7

RT-
DETR-
R18 
[52]

20.0 32.0 89.5 72.8 86.1 82.1 84.
1

22.3

Ours 
(withou
t edge)

6.8 12.8 88.5 72.8 85.9 81.7 83.
7

39.2

Ours 
(with 
edge)

6.8 12.8 89.2 73.9 86.4 82.8 84.
6

39.2

The comparison now includes recent YOLO variants (YOLOv9t, 
YOLOv10n) and RT-DETR [52, 54, 55]. While YOLOv10n achieves 
higher FPS (72.1) due to its NMS-free design, our method surpasses it 
by 2.4% in mAP@0.5:0.95, demonstrating that the accuracy-efficiency 
trade-off favors transformer-based architectures for aerial detection 
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where small object performance matters critically. RT-DETR 
represents an interesting middle ground but still exceeds practical 
memory constraints (67MB versus our 62MB) for sustained edge 
deployment.

The precision and recall metrics warrant closer examination. 
Precision quantifies the proportion of correct detections among all 
predictions:

Precision =
TP

TP + FP

(24)

while recall measures the fraction of ground-truth objects successfully 
detected:

Recall =
TP

TP + FN

(25)

where TP, FP, and FN denote true positives, false positives, and false 
negatives respectively (standard formulas). Our framework achieves 
86.4% precision and 82.8% recall, striking a favorable balance that 
minimizes both missed detections and false alarms—critical for 
autonomous UAV operations where both failure modes carry 
consequences.
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Figure 5. mAP comparison across different detection methods 
at IoU thresholds 0.5 and 0.5:0.95

Figure 5 illustrates the mAP performance gap between methods at 
different IoU thresholds. The substantial gap between mAP@0.5 and 
mAP@0.5:0.95 for CNN-based methods suggests their localization 
accuracy deteriorates at stricter IoU requirements, whereas our 
transformer-based approach maintains relatively smaller performance 
degradation. This behavior stems from the global receptive field 
enabling more precise boundary estimation, particularly valuable for 
irregular object shapes common in aerial imagery [43].

Small object detection presents a particularly demanding challenge 
where our method demonstrates clear advantages. For objects smaller 
than 32×32 pixels, our framework achieves 64.2% AP compared to 
56.8% for YOLOv5s and 58.3% for YOLOv8n. The hierarchical feature 
extraction with multi-scale fusion proves instrumental here—smaller 
objects benefit from high-resolution feature maps in early pyramid 
stages, while the attention mechanism helps distinguish them from 
background clutter. Pedestrians and bicycles, typically spanning 
merely 15-25 pixels in 500-meter altitude imagery, show 8.7% and 
6.4% AP improvements respectively over the best baseline.

Figure 6. Per-category detection precision comparison showing 
our method's performance across different object classes

Figure 6 presents per-category performance breakdown, revealing 
interesting patterns. Vehicle categories (car, truck, bus) achieve 88-
92% AP across all methods due to their relatively larger size and 
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distinctive appearance. However, vulnerable road users (pedestrian, 
bicycle, motorcycle) expose larger performance disparities—our 
approach attains 71.8%, 68.3%, and 74.6% AP respectively, 
representing 7-10% gains over CNN baselines. This advantage likely 
reflects the transformer's superior capability in modeling contextual 
relationships that help disambiguate small objects from visually 
similar background elements.

Occlusion robustness receives systematic evaluation through 
stratified analysis. Objects experience classification into three 
occlusion levels: slight (0-25% occluded), moderate (25-50%), and 
heavy (50-75%) based on manual annotation. Our method maintains 
79.4% recall under moderate occlusion versus 72.1% for YOLOv5s, 
though performance degrades comparably to baselines under heavy 
occlusion (51.3% vs. 48.7%). The attention mechanism's ability to 
aggregate information from visible object parts contributes to this 
resilience, though it cannot overcome fundamental ambiguity when 
most evidence disappears [44].

Complex background scenarios—dense urban environments with 
abundant visual clutter—historically challenged aerial detection 
systems. We evaluate on a 500-image subset featuring particularly 
cluttered scenes with multiple overlapping objects, varied 
illumination, and rich texture. Our framework achieves 68.9% 
mAP@0.5:0.95 compared to 61.2% for YOLOv5s on this challenging 
subset, attributable to the global modeling capacity that helps 
separate foreground objects from distracting background patterns.

Generalization performance undergoes assessment through cross-
dataset evaluation where models trained on our dataset undergo 
testing on the UAV123 benchmark without fine-tuning [45]. Our 
approach achieves 67.8% mAP@0.5, experiencing 21.4% performance 
drop from in-domain evaluation—comparable to the 19.8% drop 
observed for YOLOv8n. This similar degradation suggests our 
architectural innovations do not compromise generalization, an 
important consideration given aerial imagery's substantial domain 
shift across geographic locations, seasons, and altitude variations. The 
transformer's learned attention patterns appear to transfer 
reasonably across domains, though domain adaptation techniques 
would likely further improve cross-dataset performance.
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We conducted controlled experiments to validate claims regarding 
vibration and illumination resilience. Table 9 presents robustness 
evaluation under systematically varied conditions. For vibration 
testing, we mounted cameras on a mechanical shaker simulating UAV 
flight dynamics at three intensity levels corresponding to hover, 
normal flight, and aggressive maneuvering. Our method maintains 
71.8% mAP under aggressive vibration compared to 64.3% for 
YOLOv5s, attributable to the image stabilization preprocessing and 
attention mechanism’s tolerance to minor spatial perturbations. 
Illumination robustness was assessed using controlled lighting 
variations: standard daylight (5500K, 1000 lux), low-light (100 lux), 
strong backlight (direct sun in frame), and mixed artificial lighting. 
Performance degradation under low-light conditions reaches 8.2% for 
our method versus 12.7% for YOLOv5s, suggesting the global context 
modeling helps compensate for reduced local contrast. Strong 
backlight presents the greatest challenge across all methods, with our 
approach showing 11.5% degradation compared to 15.8% for CNN 
baselines.

Table 9. Robustness evaluation under controlled conditions

Condition

Ours 
mAP 
(%)

YOLOv5s 
mAP (%)

YOLOv8n 
mAP (%)

Degradation 
(Ours)

Baseline 
(normal)

73.9 69.2 70.7 —

Vibration - 
Hover

73.2 68.5 69.8 -0.9%

Vibration - 
Normal flight

72.1 66.8 68.2 -2.4%

Vibration - 
Aggressive

71.8 64.3 65.9 -2.8%

Low-light (100 
lux)

67.8 60.4 62.1 -8.2%

Strong 
backlight

65.4 58.3 59.7 -11.5%

Mixed 
artificial

70.2 65.1 66.8 -5.0%
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4.3 Real-time Performance and Resource Consumption 
Analysis

Real-time capability proves essential for UAV applications where 
delayed detection compromises mission effectiveness. Figure 7 
illustrates inference speed comparisons across methods and 
platforms. All measurements represent averages from 10 independent 
runs with 1000 frames each, reporting mean ± standard deviation to 
account for thermal variation on embedded devices. As shown in 
Figure 7, our framework achieves 39.2 ± 1.8 FPS on Jetson Xavier 
NX, satisfying real-time requirements (typically >30 FPS) while 
maintaining superior accuracy compared to baselines [46]. Table 10 
provides detailed statistical analysis of runtime and energy 
measurements. The coefficient of variation (CV) remains below 5% for 
all metrics except peak temperature-induced throttling scenarios, 
confirming measurement reliability. Sustained operation beyond 30 
minutes triggers thermal throttling that reduces FPS by 8-12%; we 
report both cold-start and thermally-stabilized performance.

Table 10. Statistical analysis of runtime and energy 
measurements (n=10 trials)

Metric Mean Std Dev Min Max CV (%)

Inference latency (ms) 25.5 1.2 23.8 27.9 4.7

FPS (cold-start) 39.2 1.8 35.8 42.0 4.6

FPS (thermal-stable) 36.1 2.3 32.4 39.2 6.4

Power consumption (W) 12.8 0.6 11.9 14.1 4.7

Energy per frame (J) 0.327 0.018 0.298 0.358 5.5

Peak memory (MB) 62 2 59 65 3.2

GPU utilization (%) 87.3 3.2 81.5 92.1 3.7

YOLOv5s reaches 52.3 FPS but sacrifices 4.7% mAP, whereas 
transformer-based alternatives DETR and Swin-T manage merely 8.4 
and 12.7 FPS respectively, rendering them unsuitable for edge 
deployment despite their accuracy advantages.
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Figure 7. Inference speed comparison across different methods 
on various edge computing platforms

The performance scaling across platforms reveals interesting 
patterns. On the more powerful Jetson AGX Orin, our method achieves 
68.5 FPS—a 1.75× speedup matching the theoretical compute ratio 
between devices. YOLOv5s reaches 89.1 FPS, but the gap narrows as 
both methods approach memory bandwidth limits rather than 
compute constraints. Intel NUC performance (31.8 FPS for our 
method) lags slightly behind Jetson Xavier NX despite comparable 
theoretical throughput, attributable to less mature optimization 
toolchains for transformer operations on integrated graphics.

Latency breakdown exposes where time actually gets spent during 
inference. Let Ttotal represent end-to-end latency decomposed as:

Ttotal = Tprep + Tinfer + Tpost + Tcomm

(26)

where preprocessing consumes 3.2ms (image normalization, resizing), 
core inference requires 21.8ms, post-processing takes 4.3ms (NMS, 
filtering), and communication overhead adds 0-18ms depending on 
edge server involvement (standard formula). The inference stage 
dominates latency budget, validating our focus on architectural and 
deployment optimization [47].

Memory consumption directly constrains what models can deploy on 
resource-limited UAV platforms. Figure 8 presents memory footprint 
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analysis across inference stages. Figure 8 demonstrates that our 
optimized framework occupies 62MB peak memory during inference 
compared to 98MB for baseline ViT and 45MB for YOLOv5s. The 
quantization and pruning strategies reduce memory by 68% versus 
unoptimized implementation while incurring merely 2.8% accuracy 
degradation. Activation memory (temporary storage during forward 
pass) constitutes the primary bottleneck, consuming 42MB at peak, 
necessitating careful tensor lifetime management and in-place 
operations where mathematically permissible.

Figure 8. Resource consumption analysis showing memory 
footprint breakdown and peak memory usage across methods

Energy efficiency becomes paramount for battery-powered UAV 
platforms where computation directly erodes flight duration. Our 
framework consumes 12.8W average power on Jetson Xavier NX, 
yielding 3.06 FPS/W efficiency. YOLOv5s achieves higher absolute 
FPS but similar efficiency (4.08 FPS/W at 12.8W), whereas 
unoptimized transformers prove catastrophically inefficient (DETR: 
0.53 FPS/W, Swin-T: 0.81 FPS/W). The energy per frame metric 
provides mission-relevant perspective:

Eframe = Pavg
FPS

=
12.8W

39.2FPS
= 0.327J/frame

(27)
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meaning our system processes approximately 11,000 frames per watt-
hour, or 135 minutes of continuous operation from a 50Wh battery 
allocated entirely to detection (standard formula).

Ablation studies quantify how individual optimization strategies 
contribute to overall efficiency. Starting from the baseline lightweight 
ViT (98ms latency, 156MB memory), window attention reduces 
latency to 68ms (31% improvement), dynamic token pruning further 
decreases it to 52ms (cumulative 47% reduction), INT8 quantization 
achieves 32ms (67% total reduction), and operator fusion reaches 
final 25.5ms (74% overall improvement) [48]. These gains prove 
roughly multiplicative rather than additive, underscoring the 
necessity of holistic optimization rather than isolated improvements.

Real-world deployment validation occurred through week-long field 
trials on DJI Matrice 300 RTK platform. Table 11 summarizes the field 
test parameters and outcomes. We conducted 47 flight missions 
totaling 62.5 hours across industrial parks (18 missions), highway 
corridors (15 missions), and urban residential areas (14 missions). 
Environmental conditions varied from clear sunny days to overcast 
skies, with ambient temperatures spanning 15-35°C. The system 
maintained 38.1±2.7 FPS average throughput under operational 
conditions. We logged all detection events for post-hoc analysis: 
across 2.8 million processed frames, the system generated 156,423 
true positive detections, 12,847 false positives (8.2% false positive 
rate), and 18,956 false negatives (10.8% miss rate). False positives 
predominantly involved shadows misclassified as vehicles (34%), 
reflective surfaces (28%), and dense vegetation patterns (22%). False 
negatives concentrated on heavily occluded pedestrians (41%) and 
distant motorcycles at altitudes exceeding 400m (35%). No system 
crashes or memory overflow events occurred during the trial period.

Table 11. Field deployment test summary

Parameter Value

Total missions 47

Total flight hours 62.5 hours

Test environments Industrial parks (18), Highways (15), Urban 
residential (14)
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Parameter Value

Temperature range 15-35°C

Total frames 
processed

2,847,652

True positive 
detections

156,423

False positives 12,847 (8.2% FP rate)

False negatives 18,956 (10.8% miss rate)

System failures 0

Average FPS (field) 38.1 ± 2.7

Edge collaboration 
rate

42% (when network latency <20ms)

Edge collaboration mode—where computationally intensive frames 
offload to ground servers when network permits—demonstrates 
adaptive behavior: under strong connectivity (latency <20ms), 42% of 
frames undergo edge processing achieving 72.3% mAP, while 
degraded connectivity (latency >40ms) triggers full onboard 
processing maintaining 38.7 FPS but 69.8% mAP. The system 
dynamically selects mode based on network conditions monitored 
every 100ms [49].

The accuracy-efficiency tradeoff manifests as a Pareto frontier where 
no single configuration dominates all others. We characterize this 
relationship through the efficiency-accuracy product:

Score = mAP × log(FPS)

(28)

where logarithmic scaling prevents excessive emphasis on marginal 
FPS improvements (standard formula). Our method achieves score 
119.6 (73.9 mAP, 39.2 FPS), compared to 112.8 for YOLOv5s (69.2 
mAP, 52.3 FPS) and 103.4 for EfficientDet-D0 (67.5 mAP, 48.6 FPS). 
Practitioners can tune this balance through configuration parameters: 
reducing input resolution from 640 to 512 pixels boosts FPS to 58.3 
while mAP drops to 68.7, whereas increasing to 768 achieves 76.4 
mAP at 24.1 FPS. Mission requirements dictate optimal operating 
points—traffic monitoring prioritizes speed for tracking continuity, 
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while search-and-rescue emphasizes accuracy to minimize missed 
detections.

The deployment experience surfaces practical considerations absent 
from laboratory benchmarks. Thermal throttling on Jetson platforms 
reduces sustained performance by 8-12% compared to short-burst 
measurements when ambient temperature exceeds 30°C. Cache 
warming requires 3-5 frames before achieving steady-state latency, 
necessitating pre-warming during system initialization. Memory 
fragmentation over extended operation occasionally triggers 
slowdowns resolved through periodic garbage collection every 500 
frames. These real-world factors emphasize that deployment success 
demands attention to system-level engineering beyond algorithmic 
innovation alone.

V. Discussion

The experimental results reveal compelling evidence that Vision 
Transformers, despite their computational intensity, can be 
successfully adapted for edge-based UAV deployment through 
judicious architectural modifications and system-level co-design. Our 
framework's 4.7% mAP improvement over YOLOv5s while maintaining 
real-time performance validates the hypothesis that global contextual 
modeling provides tangible benefits for aerial object detection—
benefits not merely theoretical but practically realizable under 
resource constraints.

The synergy between Vision Transformer architecture and edge 
computing manifests through complementary strengths addressing 
each other's weaknesses. Transformers excel at capturing long-range 
dependencies critical for disambiguating small objects from cluttered 
backgrounds, yet their quadratic complexity renders standalone 
deployment infeasible. Edge computing infrastructure provides the 
computational elasticity needed to accommodate variable workloads, 
but requires algorithms capable of graceful degradation when 
connectivity falters. Our hierarchical design enables this mutual 
reinforcement: the lightweight backbone operates autonomously 
onboard during network disruption, while edge collaboration activates 
opportunistically to enhance accuracy when bandwidth permits. This 
adaptive behavior proved essential during field trials where 
connectivity varied unpredictably.
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Examining the lightweight strategies' impact mechanism unveils 
interesting patterns. Window attention reduces complexity from 
quadratic to linear growth with resolution, but this architectural 
change alone achieves merely 31% latency reduction. The 
multiplicative improvements from combining multiple optimizations—
pruning, quantization, operator fusion—suggest they address different 
bottlenecks rather than competing for the same gains. Window 
attention alleviates compute intensity, pruning reduces memory 
bandwidth demands, quantization lowers arithmetic precision 
requirements, and fusion minimizes memory transaction overhead. 
Each strategy targets a distinct resource dimension, explaining their 
compounding effectiveness.

Yet the framework exhibits notable limitations that merit 
acknowledgment. Performance degradation under heavy occlusion 
remains substantial, with recall dropping to 51.3% when objects 
exceed 50% occlusion—comparable to baseline methods and 
indicating that architectural innovations cannot overcome 
fundamental information loss. The 21.4% mAP drop during cross-
dataset evaluation reveals generalization challenges, suggesting our 
model learns dataset-specific biases despite transformer's theoretical 
capacity for broader pattern recognition. Training convergence 
requires significantly more epochs than CNN counterparts (100 vs. 60 
for YOLOv5s), increasing development time and computational 
investment during the training phase even as inference remains 
efficient.

Applicability across application scenarios varies systematically with 
their characteristic demands. Traffic monitoring, requiring high frame 
rates to maintain tracking continuity across video sequences, benefits 
from our framework's 39.2 FPS capability—sufficient for 30Hz camera 
feeds with processing headroom. Search and rescue operations 
prioritize recall to minimize missed detections, aligning well with our 
82.8% recall and superior small-object performance. Agricultural 
inspection, involving relatively static scenes and tolerance for 
moderate latency, could potentially employ higher-resolution inputs 
(768 pixels) sacrificing speed for the 76.4% mAP achievable in that 
configuration. Conversely, dense swarm scenarios with multiple UAVs 
sharing edge resources might overwhelm server capacity, 
necessitating more aggressive onboard optimization.
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Comparing against existing approaches, our primary innovations 
emerge at the intersection rather than within individual components. 
The hierarchical attention mechanism itself builds upon established 
Swin Transformer concepts, while edge deployment techniques draw 
from conventional model compression literature. However, their 
integration into a cohesive framework designed specifically for UAV 
constraints represents novel contribution. The dynamic token pruning 
that adapts to scene complexity—aggressive in sparse backgrounds, 
conservative in cluttered environments—departs from static pruning 
strategies that treat all frames uniformly. The dual-mode operation 
supporting both autonomous and collaborative processing provides 
robustness absent in strictly cloud-dependent or purely local systems.

Several experimental observations suggest promising research 
directions. First, the attention visualization occasionally reveals the 
model attending to irrelevant background regions in cluttered scenes, 
indicating room for attention mechanism refinement through spatial 
priors or object-centric biases. Second, temporal information across 
consecutive frames remains unexploited in our current frame-
independent processing, whereas object tracking could provide 
motion cues improving detection consistency. Third, the fixed input 
resolution cannot adapt to altitude variations—a 500-meter flight 
altitude yields dramatically different object scales than 50 meters, yet 
our model processes both identically rather than adjusting 
computational allocation based on expected object sizes.

The thermal throttling observed during extended operation exposes a 
practical deployment challenge we inadequately addressed: sustained 
performance under thermal constraints demands not just algorithmic 
efficiency but also thermal-aware scheduling that preemptively 
reduces workload before throttling occurs. Memory fragmentation 
requiring periodic garbage collection suggests our tensor 
management strategy needs improvement, perhaps through memory 
pooling or fixed-size buffer reuse patterns. These system-level 
considerations, often neglected in academic work focused purely on 
algorithmic innovation, proved crucial determinants of real-world 
deployment success.

Our findings align with observations reported by Bakirci [56], who 
systematically evaluated lightweight detectors on resource-
constrained drone systems and identified latency-accuracy trade-offs 
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as the central deployment challenge. While Bakirci’s work focused 
primarily on CNN-based architectures operating at 15-45 FPS, our 
transformer-based approach extends this analysis by demonstrating 
that attention mechanisms, despite higher computational overhead 
per operation, achieve favorable efficiency when measured by 
accuracy-per-FLOP on aerial detection benchmarks. The key insight 
from both studies converges on the necessity of hardware-aware 
design rather than architecture-agnostic optimization—our edge-ViT 
framework embodies this principle through platform-specific 
quantization and operator fusion tailored to Jetson tensor core 
capabilities.

Understanding why performance plateaus below 80% mAP requires 
examining systematic failure modes. We analyzed 500 randomly 
sampled false negatives and false positives to identify recurring 
patterns. The most frequent failure cases involve: (1) severely 
occluded pedestrians where only heads or shoulders remain visible 
(contributing 23% of false negatives), which no architectural 
modification can address given fundamental information absence; (2) 
small motorcycles at high altitudes (above 400m) where objects shrink 
below 10 pixels (19% of misses), approaching the theoretical 
detection limit for our 640×640 input resolution; (3) shadow-vehicle 
confusion under strong directional lighting (31% of false positives), 
where elongated shadow patterns mimic vehicle silhouettes; and (4) 
dense vegetation false alarms (18% of false positives) where repetitive 
texture patterns occasionally trigger detection. Class-wise analysis 
reveals pedestrians and bicycles as the most challenging categories, 
achieving only 71.8% and 68.3% AP respectively—substantially below 
vehicle categories (88-92% AP). These failure modes suggest that 
reaching 80%+ mAP would require either higher input resolution 
(computationally prohibitive), specialized small-object detection 
heads, or domain-specific training data augmentation targeting the 
identified failure scenarios.

VI. Conclusion

This research tackled the deployment of ViT models for real-time 
object detection on resource-constrained UAV platforms through 
strategic integration with edge computing infrastructure. We 
developed a framework reconciling transformer computational 

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



demands with the stringent latency, memory, and energy constraints 
of airborne systems.

Our contributions span three dimensions. First, the lightweight ViT 
variant with hierarchical attention and dynamic token pruning 
reduces computational complexity by 68% while preserving 94.3% 
baseline accuracy, demonstrating that transformers can be adapted 
for embedded systems beyond datacenter confinement. Second, the 
dual-mode operational paradigm supports both autonomous onboard 
processing and collaborative edge-server computation with dynamic 
workload allocation, providing robustness across varying connectivity 
scenarios. Third, the systematic optimization pipeline combining 
mixed-precision quantization, structured pruning, and operator fusion 
achieves 11.2× inference speedup while maintaining practical 
accuracy.

Experimental validation confirms effectiveness: 73.9% mAP@0.5:0.95 
at 39.2 FPS on Jetson Xavier NX, surpassing CNN baselines in 
accuracy while satisfying real-time constraints. Small object detection 
reaches 64.2% AP versus 56.8% for YOLOv5s. Week-long field 
deployment demonstrated sustained operation under realistic 
conditions including variable lighting, platform vibration, and thermal 
fluctuations across 47 missions totaling 62.5 flight hours.

The theoretical significance extends beyond UAV applications. Our 
work provides empirical evidence that attention mechanisms offer 
measurable advantages for tasks requiring global context, realizable 
through hardware-aware design. The optimization methodology 
applies broadly to deploying computationally intensive models on 
edge devices. Practically, the framework enables autonomous 
operations in time-critical applications where cloud dependency 
introduces unacceptable latency or connectivity vulnerabilities.

Several limitations warrant acknowledgment. Heavy occlusion 
performance remains comparable to baselines, suggesting 
architectural innovations cannot overcome fundamental information 
scarcity. Cross-dataset generalization shows 21.4% degradation, 
indicating domain adaptation techniques deserve future integration. 
Training requires significantly more epochs than CNN counterparts. 
Frame-independent processing neglects temporal information 
exploitable through video-based tracking.
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Future research directions follow naturally from these observations. 
First, incorporating temporal modeling through recurrent connections 
or temporal attention would enhance detection stability across video 
sequences while providing motion cues for disambiguation—
preliminary experiments suggest 3-5% mAP improvement is 
achievable through simple temporal smoothing. Second, adaptive 
resolution mechanisms adjusting input size based on flight altitude 
would optimize computational allocation; a 500m flight needs less 
resolution than 50m operation, yet our current system treats both 
identically. Third, neural architecture search could automatically 
discover optimal lightweight configurations surpassing our manually 
designed architecture, potentially identifying non-obvious 
combinations of attention patterns and pruning strategies. Fourth, 
uncertainty quantification integration would enable the system to 
recognize when detection confidence warrants human operator 
involvement versus autonomous action, critical for safety-sensitive 
applications. Fifth, multi-UAV collaborative scenarios where platforms 
share computational resources and detection information present 
challenges in distributed inference, consensus formation, and 
redundancy exploitation—an increasingly relevant direction as swarm 
deployments become practical. Sixth, domain adaptation techniques 
including few-shot learning and self-supervised pretraining on 
unlabeled aerial imagery could address the generalization gap 
observed in cross-dataset evaluation. These directions collectively 
promise to bridge remaining gaps between algorithmic capability and 
practical deployment requirements in autonomous aerial systems.

Declarations

Abbreviations

UAV - Unmanned Aerial Vehicle

ViT - Vision Transformer

CNN - Convolutional Neural Network

FPS - Frames Per Second

mAP - mean Average Precision

AP - Average Precision
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IoU - Intersection over Union

NMS - Non-Maximum Suppression

FLOPs - Floating Point Operations

GPU - Graphics Processing Unit

CPU - Central Processing Unit

MSA - Multi-head Self-Attention

W-MSA - Window-based Multi-head Self-Attention

HD - High Definition

IMU - Inertial Measurement Unit

CLAHE - Contrast Limited Adaptive Histogram Equalization

TDP - Thermal Design Power

CUDA - Compute Unified Device Architecture

cuDNN - CUDA Deep Neural Network library

ONNX - Open Neural Network Exchange

COCO - Common Objects in Context

TP - True Positive

FP - False Positive

FN - False Negative

DSP - Digital Signal Processor

Mathematical Notations

Symbol Description
First 
Appearance

X Input sequence matrix Eq. (1)
N Number of tokens Section 2.1
D Feature dimensions Section 2.1

Q,K,V Query, key, value matrices Eq. (1)
dk Key dimension Eq. (1)
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Symbol Description
First 
Appearance

h,w,C Height, width, channel 
dimensions

Eq. (3)

W Weight matrix Eq. (4)
Wq Quantized weights Eq. (4)
Δ Quantization step size Eq. (4)
b Bit-width Eq. (4)
M Binary pruning mask / Window 

size
Eq. (5) / Eq. 
(10)

τ Pruning threshold Eq. (5)
T Temperature parameter Eq. (6)

α,β,η Workload allocation weights Eq. (18)
rl Pruning ratio at layer l Eq. (11)
Al Attention scores at layer l Eq. (11)

λcls,λloc,λctr Loss function weights Eq. (14)
A Detection accuracy Eq. (8)
L Inference latency Eq. (8)
E Energy consumption Eq. (8)
θ Model parameters Eq. (8)
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