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ABSTRACT

Existing lightweight Convolutional Neural Network (CNN) detectors
deployed on Unmanned Aerial Vehicle (UAV) platforms struggle with
small object recognition and fai! to capture long-range spatial
dependencies, while standard Vision Transformer (ViT) architectures
suffer from quadratic computational complexity that prohibits real-
time inference on embedded hardware. This paper bridges this gap by
proposing an integrated framework that adapts ViT for UAV-based
real-time object detection through edge computing infrastructure. Our
work presents three key contributions: (1) a hierarchical attention
mechanism with shifted windows that reduces complexity from O(n?)
to O(n), (2) a dynamic token pruning strategy that adaptively discards
uninformative background tokens based on attention variance, and (3)
a dual-mode edge-UAV collaborative architecture enabling seamless
switching between autonomous onboard processing and server-
assisted computation. The lightweight ViT variant achieves 68%
reduction in floating-point operations (FLOPs) while preserving 94.3%
relative accuracy. Through systematic optimization combining mixed-
precision quantization, structured pruning, and operator fusion, we
obtain 11.2X inference speedup over baseline implementations.
Experiments on our collected aerial dataset demonstrate 73.9%
mAP@©@0.5:0.95 at 39.2 frames per second (FPS) on NVIDIA Jetson



Xavier NX, surpassing YOLOv5s by 4.7% in accuracy under identical
real-time constraints. Notably, small object detection improves by
7.4% Average Precision (AP) compared to CNN baselines. Week-long
field trials on DJI Matrice 300 RTK validate sustained performance
across varying illumination, platform vibration, and intermittent
network connectivity, confirming practical viability for time-critical
applications including search and rescue, disaster response, and
infrastructure inspection.
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I. Introduction

The rapid advancement of unmanned aerial vehicle (UAV) technology
has catalyzed unprecedented opportunities across diverse domains,
ranging from agricultural monitoring to disaster response and urban
surveillance [1]. Equipped with imaging sensors and computational
capabilities, UAVs now serve as versatile platforms for real-time visual
perception tasks, among which chject detection stands as a
fundamental yet challenging requirement [2]. However, the inherent
constraints of airborne platforins—limited payload capacity, restricted
power supply, and fluctuating operational environments—pose
substantial barriers to deploying sophisticated detection algorithms
that demand intensive computational resources [3].

Recent years have witnessed the emergence of Vision Transformer
(ViT) architectures, which fundamentally departed from traditional
convolutional paradigms by modeling long-range dependencies
through self-attention mechanisms [4]. These models demonstrated
remarkable performance in various computer vision benchmarks, yet
their computational complexity grows quadratically with input
resolution, making direct deployment on resource-constrained UAV
platforms impractical [5]. Meanwhile, edge computing has evolved as
a compelling paradigm that shifts computation from centralized cloud
servers to distributed edge nodes closer to data sources, thereby
reducing latency and bandwidth consumption [6]. The convergence of
these two technological trajectories—advanced vision models and
decentralized computing infrastructure—presents both opportunities
and complexities that warrant systematic investigation.



Current research efforts in UAV-based object detection predominantly
rely on lightweight convolutional neural networks, which sacrifice
model capacity for computational efficiency [7]. While such
approaches achieve acceptable inference speed, they often struggle
with detecting small objects and maintaining robustness under
varying illumination conditions or viewpoint changes inherent to
aerial imagery [8]. On the other hand, existing Vision Transformer
implementations remain largely confined to server-grade hardware,
with limited exploration of their adaptation to edge computing
scenarios where memory bandwidth and energy efficiency become
critical constraints [9]. This gap between model sophistication and
deployment feasibility reveals a pressing need for innovative
frameworks that reconcile detection accuracy with real-time
performance requirements.

The significance of developing such a framework extends beyond
technical merits. Autonomous UAV operations in time-critical
applications—search and rescue missions, traffic accident response,
or wildlife monitoring—demand detection systems that deliver both
precision and immediacy [10]. Furthermore, as UAV deployments
scale up, relying solely on cloud-bhased processing introduces
vulnerabilities related to network connectivity and data privacy,
making edge-based solutions not merely preferable but essential for
robust and secure operations.

This paper addresses these challenges by proposing an integrated
framework that adapts Vision Transformer architectures for UAV-
based real-time object detection through edge computing
infrastructure. Our work makes three primary contributions: First, we
design a streamlined Vision Transformer variant that maintains global
receptive field advantages while dramatically reducing computational
overhead through hierarchical attention and dynamic token pruning
strategies. Second, we develop an edge computing architecture that
orchestrates workload distribution between onboard processors and
ground-based edge servers, optimizing the trade-off between latency
and detection accuracy through adaptive task partitioning. Third, we
establish a comprehensive evaluation methodology that assesses
performance across multiple dimensions—detection precision,
inference latency, energy consumption, and robustness to aerial
imaging variations—providing insights into practical deployment
considerations that existing benchmarks often overlook. Through



these innovations, we demonstrate that sophisticated vision models
need not remain exclusive to high-performance computing
environments but can be thoughtfully adapted to meet the stringent
demands of real-world UAV applications.

II. Related Technologies and Theoretical Foundations

2.1 Vision Transformer for Object Detection

The introduction of Transformer architecture into computer vision
marked a paradigm shift from the dominance of convolutional
operations that had prevailed since AlexNet's breakthrough [11].
Originally conceived for natural language processing, Transformers
demonstrated an intriguing capacity to capture global contextual
relationships through self-attention mechanisms, prompting
researchers to explore their applicability beyond sequential data [12].
This transition, however, was not straightforward—early attempts
grappled with the fundamental challenge of adapting architectures
designed for discrete tokens to continuous, high-dimensional visual
data.

At the core of Vision Transformer lies the self-attention mechanism,
which computes attention weights by measuring similarity between

query and key representations. For an input sequence X € RN*P,

where N denotes the number of tokens and D represents feature
dimensions, the atiention operation is formulated as:

KT

Vd,

Attention(Q,K,V) = softmax \Y

(1)

where Q, K, and V correspond to query, key, and value matrices
derived through linear projections, and dy denotes the key dimension
[13]. This mechanism enables each token to attend to all other tokens,
establishing long-range dependencies that convolutional layers with
limited receptive fields struggle to capture.

The Vision Transformer (ViT) pioneered the direct application of this
principle by partitioning images into fixed-size patches, treating each
patch as a token analogous to words in sentences [14]. Despite its
elegance, ViT demanded extensive pre-training on massive datasets to



achieve competitive performance, revealing an inherent data hunger
that limited its practical adoption. Data-efficient Image Transformer
(DeiT) addressed this limitation through knowledge distillation
strategies, where a student network learns from both ground-truth
labels and a teacher model's predictions, significantly reducing the
data requirements while maintaining accuracy. The multi-head
attention mechanism extends single-head attention by computing
multiple attention functions in parallel:

MultiHead(Q,K,V) = Concat(head,,...,head,,)W°
(2)
where each head captures different representation subspaces [15].

Swin Transformer introduced a hierarchical architecture with shifted
windows, computing self-attention within local windows rather than
globally, thereby reducing computational complexity from quadratic
to linear relative to image resolution. The complexity of standard self-
attention grows as:

Q(MSA) = 4hw(C? + 2(hw)2C
(3)

where h, w, and C denote height, width, and channel dimensions
respectively [31]. This quadratic scaling becomes prohibitive for high-
resolution UAV imagery.

While Vision Transformers excel at capturing global context and have
shown impressive results on standard benchmarks, their deployment
in object detection scenarios—particularly for UAV applications—
encounters notable obstacles. The computational burden remains
substantial even with windowed attention schemes. Memory footprint
during inference often exceeds what embedded processors can
accommodate. Moreover, the models demonstrate sensitivity to
resolution changes between training and deployment phases, a non-
trivial concern given the variable flight altitudes in UAV operations.
These limitations underscore why simply transplanting existing
architectures onto edge devices proves insufficient, necessitating
purposeful adaptations that we explore in subsequent sections.



2.2 Edge Computing Architecture and Optimization
Techniques

Edge computing emerged as a distributed paradigm that positions
computational capabilities in proximity to data sources, contrasting
sharply with the traditional cloud-centric model where processing
occurs in distant datacenters [16]. This architectural shift proves
particularly relevant for UAV applications, where network latency and
bandwidth constraints render cloud-dependent processing impractical
for time-sensitive detection tasks. The typical edge computing
hierarchy consists of three tiers: terminal devices (UAVs with
embedded processors), edge servers (ground stations or base
stations), and cloud infrastructure, each offering different trade-offs
between latency, computational power, and energy consumption [17].

Yet edge devices face stringent resource limitations that constrain
what models can realistically run onboard. Mobile processors typically
offer 2-8 GB memory and 5-20 TOPS (tera operatiions per second)
computational throughput—orders of magnitude below server-grade
GPUs. Power budgets remain equally restrictive, with most UAV
platforms allocating merely 10-30 watts for computation to preserve
flight endurance. These constrainis necessitate aggressive model
optimization before deployment becomes viable.

Model compression techniques have evolved to address this
deployment gap. Quantization reduces numerical precision of weights
and activations from 32-bit floating-point to lower bit-widths,
dramatically decreasing memory footprint and arithmetic complexity.
The quantization function maps full-precision values to discrete levels:

max(W) - min(W)
20 -1

X AN =

Wq = round

(4)

where W denotes original weights, Wy represents quantized weights, A

is the quantization step size, and b indicates bit-width [18]. Moving
from 32-bit to 8-bit precision typically achieves 4 X compression with
minimal accuracy degradation, though further reduction to 4-bit or
binary values demands careful calibration.



Pruning eliminates redundant connections based on weight
magnitudes or gradient information [19]. The sparse network is
formulated as:

Woruned = W © M,whereM;; = {1, iffwy| > T 0, otherwise
(5)

with M being the binary mask and T the pruning threshold [35].
Structured pruning removes entire filters rather than individual
weights, yielding actual speedups on hardware lacking sparse
operation support [19].

Knowledge distillation transfers knowledge from a cumbersome
teacher model to a compact student network by matching output
distributions. The student minimizes a combined loss:

~

Lxp = ALlce(Y.ys) + (1 - a)Ly (o(ye/T),0(ys/T))

(6)

where Lcg denotes cross-entropy loss, Ly, represents Kullback-Leibler

~

divergence, Y: and Ys are teacher and student predictions, o is the
softmax function, T controls temperature, and a balances the two
objectives [20]. This approach often surpasses training compact
models from scratch, particularly when labeled data remains scarce.

Beyond compression, inference acceleration exploits hardware-
specific optimizations. Operator fusion merges consecutive operations
to reduce memory transactions. Dynamic batching amortizes
overhead across multiple inputs. The theoretical speedup from
parallelization follows Amdahl’s law [53]:

1
S =

p
(1_p)+ﬁ

(7)

where p represents the parallelizable fraction and n denotes
processing unit count. These techniques collectively enable deploying
sophisticated models on resource-constrained edge devices, though



achieving optimal performance demands holistic co-design across
algorithm, architecture, and hardware layers.

2.3 UAV Vision Systems and Real-time Processing
Requirements

UAYV platforms impose unique hardware constraints that
fundamentally shape what detection systems can accomplish onboard.
Commercial drones typically carry processors like NVIDIA Jetson
series or Qualcomm Snapdragon chips, offering 1-5 TFLOPS
computational throughput—adequate for conventional tasks yet barely
sufficient for transformer-based architectures that demand intensive
matrix operations [21]. Memory bandwidth presents an equally
critical bottleneck, with most embedded systems providing 20-60 GB/s
compared to the 500+ GB/s available on datacenter GPUs. Battery
capacity dictates mission duration, and computational workloads
directly erode flight time through power draw that competes with
propulsion systems.

The application landscape for UAV-based object detection spans
remarkably diverse scenarios, each presenting distinct technical
demands. Search and rescue operations require detecting humans or
vehicles across vast terrain under varying lighting and weather
conditions. Precision agriculture needs identifying crop health
indicators or pest infestations at sufficient resolution to guide
intervention. Traffic monitoring involves tracking multiple moving
vehicles simultaneously while maintaining stable detection across
different viewing angles. Wildlife conservation applications demand
recognizing specific species from considerable altitudes without
disturbing natural behaviors [22]. These scenarios share a common
thread: they cannot tolerate the multi-second latencies typical of
cloud-based processing, as delayed detection compromises mission
effectiveness or safety.

Aerial imagery introduces challenges absent from ground-based
computer vision. Objects appear at drastically different scales
depending on flight altitude—a vehicle might span 200 pixels at 50
meters altitude but merely 20 pixels at 500 meters. Camera motion
induces blur that confounds detection algorithms trained on static
imagery. Viewing angles deviate significantly from horizontal
perspectives that dominate training datasets, causing appearance



variations that models struggle to generalize across [23]. Background
clutter in complex urban or natural environments generates false
positives that erode user trust.

The tension between detection performance and system constraints
manifests as an optimization problem with competing objectives. Let A

represent detection accuracy, L denote inference latency, and E
signify energy consumption. The deployment objective seeks:

maxgf(A(B))subjecttol(6) = Ly« E(8) = Epyqget
(8)

where 6 represents model parameters, L,,x defines the maximum
tolerable latency (often 100-200 ms for real-time operation), and
Epudget bOunds energy expenditure per frame [24]. This multi-objective
optimization rarely admits analytical solutions, requiring empirical
exploration of the design space.

Existing UAV detection methods predominantly employ lightweight
CNNss like YOLOVS or MobileNet variants, achieving 30-60 FPS on
embedded hardware but sacrificing accuracy on small objects that
Vision Transformers handle more capably [25]. These approaches
treat accuracy and efficiency as a zero-sum trade-off rather than
exploring architectura! innovations that might improve both
simultaneously. The computational complexity scales linearly with
input resolution [7}:

C = k-H-W-C
(9)

where H, W, C denote spatial dimensions and channels, and k
represents operations per pixel. This scaling behavior proves
problematic when high-resolution inputs become necessary for
detecting distant or small objects. Moreover, current systems lack
adaptive mechanisms that adjust processing intensity based on scene
complexity or mission criticality, resulting in wasteful computation
during benign scenarios and insufficient capability during demanding
conditions. These limitations motivate our proposed framework that
reconciles transformer expressiveness with edge deployment realities.



To clarify the research gaps our work addresses, Table 1 summarizes
the limitations of representative detection methods when deployed on
UAYV platforms. As shown in Table 1, CNN-based lightweight detectors
achieve acceptable inference speed but exhibit degraded performance
on small objects due to limited receptive fields. Transformer-based
methods demonstrate superior accuracy yet demand computational
resources far exceeding embedded hardware capabilities. None of the

existing approaches provide adaptive mechanisms for varying

operational conditions. These shortcomings collectively motivate our

proposed framework.

Table 1. Limitations of existing UAV object detection methods

Sma
11 Real-
Computat Memory Obj time
ional Require ect Capab
Method Cost ment AP  ility
YOLOv5 Low (16.5 Low (14 56.8 Yes (52
s [7] GFLOPs) MB) % FPS)
YOLOv8 Low (8.7 Low (6 58.3 Yes (68
n [50] GFLOPs) MB) % FPS)
Efficient Medium Low (15 54.2 Yes (48
Det-DO (2.5 MB) % FPS)
[51] GFLOPs)
DETR High (86 High 62.1 No (8
[49] GFLOPs) (158 MB) % FPS)

Edge
Deploya
Dility

Primar
y
Limitat
ions

Yes

Yes

Yes

No

Limited
receptiv
e field;
accurac
y drops
on small
targets

Insuffici
ent
global
context
modelin

g

Multi-
scale
fusion
overhea
d; small
object
weakne
SS

Quadrat
ic
attentio



Sma
11 Real- Primar
Computat Memory Obj time Edge y
ional Require ect Capab Deploya Limitat
Method Cost ment AP ility bility ions

n
complex
ity; slow
converg
ence

Swin-T  High (45 High 65.8 No (13 No Memory

[31] GFLOPs) (112 MB) % FPS) bandwid
th
bottlene
ck on
embedd
ed
devices

RT- Medium Medium 63.5 Margin Limited Still

DETR (32 (67 MB) % al (22 exceeds

[52] GFLOPs) FPS) edge
device
memory
constrai
nts

ITI1. Integrated Framework of Vision Transformer and
Edge Computing for Object Detection

3.1 Overall Framework Design

We propose a hierarchical framework that orchestrates ViT-based
detection across UAV onboard processors and ground-based edge
servers. The design rationale stems from three observations specific
to aerial detection scenarios. First, UAV imagery contains substantial
background regions (typically 60-80% of pixels) where expensive
attention computation yields minimal benefit, motivating our dynamic
token pruning that concentrates resources on informative foreground
areas. Second, flight altitude variations cause dramatic object scale
changes—a vehicle spanning 200 pixels at 50 meters shrinks to
merely 20 pixels at 500 meters—necessitating hierarchical multi-scale
feature extraction rather than single-resolution processing. Third,



network connectivity during flight missions proves inherently
unstable, demanding a dual-mode architecture capable of autonomous
operation when communication degrades. These UAV-specific
considerations guided our departure from conventional monolithic
deployment toward dynamic workload partitioning that adapts to
network conditions, computational availability, and mission urgency
[26]. Figure 1 illustrates the complete system architecture comprising
five interconnected stages.
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Figure 1. Overall architecture of the proposed UAV object
detection framework integrating Vision Transformer and edge
computing

The workflow initiates with data acquisition through the UAV's
onboard camera, which captures high-resolution imagery at 30-60



frames per second depending on flight conditions. Raw images
undergo immediate preprocessing on the UAV's embedded processor,
encompassing image stabilization to compensate for platform motion,

adaptive histogram equalization to normalize illumination variations
across frames, and resolution adjustment based on current
computational budget [27]. This preprocessing stage proves critical—
aggressive downsampling reduces computational burden but
sacrifices small object detectability, while maintaining native
resolution strains memory bandwidth and inference speed.

Feature extraction employs our customized lightweight Vision
Transformer backbone, which we detail in Section 3.2. Unlike
standard ViT architectures that process all tokens with equal
computational intensity, our design implements hierarchical attention
with progressive token reduction, concentrating computational
resources on salient image regions while treating background areas
with reduced precision. The detection head builds upon these multi-
scale features to generate bounding boxes aud class predictions,
employing anchor-free formulation that simplifies deployment and
reduces post-processing overhead [28].

Table 2 summarizes the functional responsibilities and
implementation specifics of each framework component. As presented
in Table 2, the framework distributes computational tasks between
UAV and edge server based on a runtime scheduler that monitors
network latency, processing queue depth, and battery status to
determine optimal workload allocation.

Table 2. Framework module function description

Module Name

Main Functions

Implementation
Details

Data Acquisition

Capture aerial imagery
and sensor data

HD camera (1920x1080),
30-60 FPS, IMU
synchronization

Preprocessing Stabilization, Motion compensation via
normalization, adaptive optical flow, CLAHE,
resizing dynamic scaling

Feature Extraction

Multi-scale
representation learning

Lightweight ViT with
hierarchical attention, 4-
stage pyramid

Detection Head

Bounding box regression
and classification

Anchor-free decoder,
focal loss, multi-scale
prediction

Post-processing

NMS, confidence
filtering, result

Score threshold 0.5, IoU
threshold 0.45, temporal




aggregation smoothing
Edge Coordination Workload distribution and | Latency-aware scheduler,
result fusion redundant computation
elimination

Post-processing operations include non-maximum suppression to
eliminate redundant detections, confidence thresholding to filter low-
quality predictions, and temporal consistency enforcement that tracks
objects across consecutive frames to reduce flickering [29]. When
network connectivity permits, the edge server handles
computationally intensive tasks such as processing multiple frames in
parallel or running ensemble predictions, with results transmitted
back to the UAV for immediate action or local storage.

The framework's innovative aspects manifest in three dimensions.
First, we introduce adaptive token pruning that dynamically adjusts
model capacity based on scene complexity—simple backgrounds
trigger aggressive pruning while cluttered scenes preserve more
tokens. Second, our dual-mode operation supports both autonomous
onboard processing when network connectivity remains unreliable
and collaborative edge-UAV computation when bandwidth permits,
ensuring robustness across varying operational conditions. Third, we
implement early exit mechanisms that terminate computation once
confidence exceeds predetermined thresholds, avoiding wasteful
processing for easily detectable objects. These design choices
collectively enable deploving sophisticated transformer models on
resource-constrained UAV platforms without sacrificing detection
quality, bridging the gap between algorithmic capability and practical
deployment constraints that has hindered previous attempts at
airborne transformer deployment.

3.2 Lightweight Vision Transformer Detection Module

The core challenge in adapting Vision Transformers for UAV
deployment lies in reconciling their representational power with the
severe computational constraints of embedded processors. Our
lightweight detection module addresses this through architectural
modifications that reduce complexity without compromising the global
modeling capacity that makes transformers attractive for aerial object
detection.

We adopt a hierarchical multi-scale feature extraction mechanism that
constructs a four-stage feature pyramid, progressively reducing



spatial resolution while expanding channel dimensions. Figure 2
depicts the detailed architecture of our lightweight ViT module. As
shown in Figure 2, each stage begins with patch merging that
aggregates neighboring tokens, effectively downsampling the feature
map by a factor of two while doubling channel count. This pyramidal
structure mirrors successful CNN designs but retains transformer's
attention mechanisms within each stage [30].

Feature Fusig,,

Input Image Patch Embedding Patch Merging
HxWx3 Tokenization H/8 x W/8 x 2C

Window Attention Detection Head
H/4 xW/4:C Julti-seale Prediction

Stage 1 Patch Merging
H/4 xW/f4 C H/16 x W/16 x 4C

Feature Fusion

Figure 2. Architecture of the lightweight Vision Transformer
detection moduie with hierarchical feature extraction

The attention computation undergoes substantial modification to curb
quadratic complexity. Rather than computing global attention across
all tokens, we employ shifted window attention restricted to local

regions. For a feature map partitioned into windows of size M x M, the
computational complexity becomes:

Q(W - MSA) = 4hwC?2 + 2M2hwC
(10)

which grows linearly rather than quadratically with spatial dimensions

hand w [31]. We set M = 7 as a balance between receptive field and
efficiency. Additionally, we introduce dynamic token pruning that
identifies and discards less informative tokens based on attention

scores. The pruning ratio r; at layer | adapts according to:



Var(A))
+B E[Var(A)]

rn= rbase'(l

(11)

where A, represents attention scores at layer |, rp,ce denotes the

baseline pruning ratio, B controls adaptation strength, and Var(:)
computes variance as a measure of information content. Higher
variance indicates heterogeneous attention patterns warranting token
retention, while uniform attention suggests redundancy suitable for
pruning.

Table 3 compares various lightweight strategies we evaluated during
development. The results in Table 3 indicate that combining window

attention with dynamic pruning achieves the best trade-off, reducing
FLOPs by 68% while maintaining 94.3% relative accuracy compared

to the full model.

Table 3. Comparison of lightweight strategies

Strategy FLOPs Parameter Relative Inference
Reduction Rednction Accuracy Time (ms)
(%) Y5) (%)
Baseline ViT 0 0 100.0 312
Window 52 15 96.8 168
Attention Only (.
Static Token 45 8 93.1 175
Pruning ~ \
Dynamic 58 12 95.2 142
Token Pruning
Window Attn 68 23 94.3 98
+ Dynamic
Pruning

Feature pyramid fusion aggregates multi-scale representations
through a bidirectional pathway that combines top-down semantic
information with bottom-up localization cues. The fusion operation at

scale i follows:

F, = Conv(Fl™ + Upsample(F;,,)) + Downsample(F; ;)

(12)

where F?**™ denotes lateral connections from the backbone,
establishing connections across pyramid levels [32].




The detection head employs an anchor-free formulation that predicts
object center locations, dimensions, and class probabilities directly
from feature maps. For each spatial location (x,y) in feature map F;,
the head outputs:

Pxy = {Cxy:DxyrSxy}

(13)

where ¢, , € R? represents center offsets, b, , € R* denotes bounding
box dimensions, and sy, € R® contains class scores for K categories
[33]. This anchor-free approach eliminates hyperparameter tuning
associated with anchor design while simplifying the detection
pipeline.

Loss function construction balances multiple objectives through
weighted combination. The total loss comprises classification,
localization, and centerness components:

Ltotal = Aclsl—cls + )\Iocl—lov T Acrrletr
(14)

where L s applies focal loss to address class imbalance, L, employs
generalized IoU loss for accurate box regression, and L, enhances
center prediction quality. The weighting coefficients A = 1.0,

Aoc = 2.0, and A = 1.0 were determined through validation
experiments. Specifically, the localization loss takes the form:

2
P (Cpred'Cgt)

Lioc = 1 - 10U(bpreq.bgt) + d2

(15)

where p measures Euclidean distance between predicted and ground-

truth centers, and d represents the diagonal length of the smallest
enclosing box (standard formula). This formulation provides stronger
gradients than standard IoU loss, particularly for small objects
prevalent in UAV imagery.

3.3 Edge Deployment and Inference Optimization
Strategies



Deploying our lightweight ViT module on edge devices demands
aggressive optimization that extends beyond architectural design into
implementation-level refinements. We adopt mixed-precision
quantization where different layers receive distinct bit-widths based
on sensitivity analysis. Attention layers, which prove more sensitive to
precision reduction, retain 8-bit representation, while convolutional
projections and feed-forward networks operate at 4-bit or even binary
precision [34]. The quantization-aware training minimizes:

LoaT = Epxy)~b | LFquant X Wo).¥) | + VIW - W, |3

(16)

where fy,ant represents the quantized model, W, denotes quantized

weights, and vy controls regularization strength that encourages
weights to naturally cluster near quantization levels during training.
This approach outperforms post-training quantization by allowing the
model to adapt its parameters to accommodate guantization errors.

Structured pruning removes entire channels rather than individual
weights, ensuring computational savings translate to actual speedup
on hardware lacking sparse operation support. We determine channel
importance through first-order Taylor expansion:

oL

aWC

lc = Twl

(17)

where w. represents weights of channel c [35]. Channels with
importance below the p-th percentile threshold undergo removal, with
p determined adaptively per layer based on validation performance.

Dynamic computational resource allocation responds to runtime
conditions through a decision policy that balances latency, accuracy,
and energy consumption. The allocation strategy solves:

a" = argmax,ea[0-R(a) - B-T(a) - n*E(a)]
(18)

where a denotes allocation decisions (onboard versus edge server
processing), R(a) represents detection reward, T(a) measures latency,



and E(a) captures energy cost. The weighting parameters «, B, n are
set heuristically based on mission requirements rather than learned
during operation. Default values (a=1.0, =0.5, n=0.3) were
determined through grid search on validation data, prioritizing
detection accuracy while maintaining real-time performance. Table 4
presents parameter sensitivity analysis showing system robustness to
moderate parameter variations. The allocation decision updates every
100ms (window-based rather than frame-by-frame) to avoid oscillation
while remaining responsive to changing conditions. Mode switching
latency—the time from detecting condition change to completing
transition—averages 45ms including network handshake overhead.
When battery reserves drop below 30%, n automatically increases to
0.8, favoring energy-efficient local processing. Network latency
thresholds trigger mode changes: connectivity below 20ms enables
edge collaboration, while latency exceeding 40ms forces autonomous
onboard operation.

Table 4. Parameter sensitivity analysis for workload allocation

Avg.
Parameter mAP Latency Energy
Setting a B n (o) (ms) (J/frame)
Accuracy- 1.5 0.3 0.2 74.8 32.1 0.385
priority
Default 1.0 0.5 0.3 73.9 25.5 0.327
(balanced)
Latency- 0.8 0.8 0.3 71.2 21.3 0.342
priority
Energy-priority 0.8 0.4 0.8 70.5 28.7 0.278

Operator fusion consolidates multiple operations into single kernel
launches, dramatically reducing memory access overhead that
dominates latency on memory-bandwidth-limited edge processors. We
merge layer normalization, attention computation, and residual
addition into fused kernels. The memory access reduction follows:

MAqseq = MAour + MA

inpu

n
output < 'Zl MAopi
1=

(19)



where MA denotes memory access volume and n represents the
number of fused operations (standard formula). Empirically, fusion
reduces memory transactions by 40-60% for transformer blocks.

Table 5 summarizes computational complexity across optimization

strategies. Table 5 shows that combining quantization, pruning, and
operator fusion achieves 11.2X speedup over the baseline
implementation while consuming merely 18% of the original memory

footprint.

Table 5. Computational complexity comparison of different

optimization strategies

Optimization | FLOPs Memory | Latency | Speedup | Accuracy
Strategy (G) (MB) (ms) (mAP)

Baseline FP32 28.6 342 286 1.0X% 76.8

INT8 28.6 98 124 2.3% 76.1

Quantization

Structured 14.2 178 158 1.8% 74.5

Pruning (50%) !

Combined 12.8 62 25.5 F11.2x 73.9

Optimization |

Multi-threading parallelism exploits multi-core processors common in
modern edge devices by partitioning workloads across independent
execution streams. We assign image preprocessing, feature
extraction, and post-processing to separate threads with lock-free
queues facilitating inter-thread communication. The theoretical
throughput scales as:

n-FPS
max(T

serial

FPS

parallel =
prep'Tinfer'Tpost)

(20)

where n denotes core count and T represents processing time for each
stage (standard formula).

Platform adaptation requires addressing hardware-specific
characteristics. For NVIDIA Jetson devices, we compile models using
TensorRT with FP16 precision and exploit tensor cores for matrix
multiplication acceleration [36]. On Qualcomm platforms, we target
the Hexagon DSP through SNPE framework, favoring 8-bit
quantization that aligns with DSP's native precision. Intel-based edge
servers benefit from OpenVINO optimization that fuses operations
and applies graph-level transformations. This multi-platform strategy




ensures our framework remains deployable across diverse edge
infrastructure without sacrificing performance portability.

IV. Experiments and Result Analysis

4.1 Experimental Setup and Dataset

Our experimental validation employs a heterogeneous hardware
testbed that mirrors realistic UAV deployment scenarios. Figure 3
presents the configuration of our experimental platforms. As shown in
Figure 3, the UAV onboard system comprises an NVIDIA Jetson Xavier
NX module (6-core ARM CPU, 384-core Volta GPU, 8GB LPDDR4
memory) consuming 10-15W during inference, mounted on a D]I
Matrice 300 RTK platform [37]. The ground-based edge server
deploys an NVIDIA Jetson AGX Orin (12-core ARM CPU, 2048-core
Ampere GPU, 64GB LPDDR5 memory) with 15-60W configurable TDP,
simulating realistic base station computational capabilities.
Communication between aerial and ground systems operates over
5GHz WiFi with measured latency ranging 15-45ms depending on
distance and environmental interference. We additionally benchmark
performance on Intel NUC 11 (Core i7-1165G7, Iris Xe Graphics) to
assess cross-platform portability.

Experimental Platform Hardware Specifications Comparison
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Figure 3. Experimental platform configuration showing UAV
onboard processor, edge server, and development workstation



The software environment builds upon PyTorch 1.13.0 for model
training, with CUDA 11.7 and cuDNN 8.5 acceleration. Deployment
employs TensorRT 8.6 for inference optimization on Jetson platforms,
OpenVINO 2023.0 for Intel hardware, and ONNX Runtime 1.14 as a
hardware-agnostic fallback. Training occurs on workstation-grade
NVIDIA RTX 4090 GPUs across 100 epochs with early stopping when
validation loss plateaus for 10 consecutive epochs.

We construct a comprehensive UAV aerial object detection dataset by
aggregating samples from multiple sources and conducting additional
field collections. The dataset integrates 8,426 images from VisDrone
[38], 3,217 images from UAVDT, and 4,892 newly captured images
from our flight campaigns. Table 6 provides detailed specifications of
the newly collected data. Our collection spans urban downtown areas
(35% of images), suburban residential zones (40%), and rural open
terrain (25%), captured across four seasons to ensure environmental
diversity. Flight altitudes follow a stratified distribution: low altitude
(30-100m, 28% of images), medium altitude (100-250m, 45%), and
high altitude (250-500m, 27%). Weather conditions include clear sky
(62%), overcast (28%), and light rain (10%). Illumination encompasses
daytime (72%), dawn/dusk (18%), and nighttime with artificial lighting
(10%). Motion blur affects approximately 15% of images, primarily at
low altitudes where rapid manecuvering occurs. Camera specifications
include 4K resolution {(3340x2160) downsampled to 1920x1080, 84°
field of view, and 30 FPS capture rate synchronized with IMU data for
stabilization.

Table 6. Specifications of newly collected UAV dataset

Attribute Distribution/Value

Total images 4,892

Flight altitude 30-100m (28%), 100-250m (45%), 250-500m
(27%)

Environment type Urban (35%), Suburban (40%), Rural (25%)
Weather conditions Clear (62%), Overcast (28%), Light rain (10%)
IIlumination Daytime (72%), Dawn/dusk (18%), Night (10%)

Motion blur 15% of images
presence



Attribute

Distribution/Value

Camera resolution
Field of view
Frame rate
Collection period

Geographic

3840x2160 (downsampled to 1920x1080)
84°

30 FPS

March 2023 - February 2024 (12 months)

8 cities across Eastern China

locations

Figure 4 illustrates the distribution across object categories and
imaging conditions. Figure 4 demonstrates that the dataset
encompasses 10 object classes (pedestrian, car, truck, bus, van,
bicycle, motorcycle, awning, tricycle, barrier) with substantial class
imbalance reflecting real-world frequency distributions. Small objects
(area < 322pixels) constitute 58% of instances, medium objects (322-
962pixels) account for 33%, and large objects (>96%pixels) represent
9% of the dataset, emphasizing the small-object detection challenge
inherent to aerial imagery [39].

Dataset Distribution Across Object Categories
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Figure 4. Dataset sample distribution showing object category
frequencies, size distributions, and altitude coverage

Annotation follows COCO format with axis-aligned bounding boxes,
verified through three-round quality control where annotators cross-
validate each other's labels. Ambiguous cases—heavily occluded
objects or objects at image boundaries—receive special flags but



remain in the dataset to maintain realism. Data partitioning allocates
70% for training (11,574 images), 15% for validation (2,481 images),
and 15% for testing (2,480 images), stratified by scene type and
altitude to ensure representative distributions across splits.

Data augmentation during training encompasses geometric and
photometric transformations. Geometric operations include random
horizontal flipping (p=0.5), rotation within £15° (p=0.3), and scaling
between 0.8-1.2x (p=0.4) [40]. Photometric augmentation applies
brightness adjustment (+20%), contrast variation (0.8-1.2x),
saturation modification (0.7-1.3x%), and hue shifting (+10°), each with
0.5 probability. We additionally implement Mosaic augmentation that
tiles four images into one training sample, significantly enriching
contextual diversity while introducing minimal computational
overhead.

Evaluation employs multiple complementary metrics capturing
different performance dimensions. Detection accuracy uses mean
Average Precision (mAP) computed as:

K

1
mMAP = — > AP, AP, = {)l Pc(R)dR
Kk=1

(21)

where K denotes object categories, Pc(R) represents the precision-
recall curve for class k [41]. We report mAP at IoU thresholds of 0.5
(mAP@0.5) and averaged across 0.5-0.95 in 0.05 increments
(mAP@0.5:0.95) following COCO evaluation protocol. Inference speed
measures frames per second (FPS):

FPS =

z:lﬂ
(22)

where N represents total frames and T; denotes processing time for

frame i including preprocessing, inference, and post-processing
(standard formula). Energy efficiency quantifies detection operations
per joule:



FPS x 3600

Efficiency = b
avg

(23)

where P,,4 denotes average power consumption in watts measured via
onboard power monitors (standard formula).

Baseline comparisons include YOLOv5s, YOLOv8n, and EfficientDet-
DO representing state-of-the-art lightweight detectors, plus DETR and
Swin-T as transformer-based alternatives. Table 7 lists all
experimental parameters. As presented in Table 7, training employs
AdamW optimizer with cosine annealing schedule, starting from 1e-3
learning rate with 5-epoch linear warmup.

Table 7. Experimental parameter configuration

Parameter Value Description

Input Resolution 640x640 Standard detection
| resolution

Batch Size 16 (training), 1 1_Per-device batch

(inference) ~\ configuration
Learning Rate le-3 - 1e-5 Cosine decay schedule
Weight Decay 5e-4 L2 regularization
coefficient
Optimizer AdamwW Adaptive moment

estimation with
decoupled weight decay

Loss Weights A cls=1.0, A loc=2.0, Multi-task loss balancing
| Actr=1.0
Quantization INT8 (most layers), FP16 | Mixed precision
(attention) configuration
IoU Threshold 0.45 Non-maximum

suppression threshold

4.2 Detection Performance Evaluation

Table 8 presents comprehensive performance metrics comparing our
proposed framework against established baseline methods. The
results in Table 8 indicate that our approach achieves 73.9%
mAP@0.5:0.95 and 89.2% mAP@0.5, outperforming lightweight CNN-
based detectors while maintaining competitive inference speed.
Notably, our method surpasses YOLOv5s by 4.7% in mAP@0.5:0.95
despite similar parameter counts, and exceeds YOLOv8n by 3.2%,
demonstrating the effectiveness of incorporating Vision Transformer
architecture for aerial detection tasks [42].



Table 8. Detection performance comparison of different

methods
F1- FPS

Para FLO mAP Preci Rec Sco (Xav
Metho ms Ps @0.5 mAP@0.5 sion all re ier
d M) (G (%)  :0.95%) (%) (%) (%) NX)
YOLOvS 7.2 16.5 85.6 69.2 82.4 78.9 80. 52.3
s [7] 6
YOLOv8 3.2 8.7 87.1 70.7 84.1 80.3 82. 684
n [50] 1
YOLOvV9 2.0 7.7 87.8 71.2 84.6 80.8 82. 61.2
t [54] 7
YOLOvl 2.3 6.7 88.2 71.5 85.0 81.2 83. 72.1
On [55] 0
Efficien 3.9 2.5 83.8 67.5 81.2 76.8 78. 48.6
tDet-DO 9
[51]
DETR 41.3 86.0 88.4 71.8 85.7 81.2 83. 84
[49] 4
Swin-T 28.3 45.0 90.1 74.3 87.2 83.5 85. 12.7
[31] 3
RT- 20.0 32.0 89.5 72.8 86.1 82.1 84. 22.3
DETR- 1
R18
[52]
Ours 6.8 12.8 88.5 72.8 85.9 81.7 83. 39.2
(withou 7
t edge)
Ours 6.8 12.8 89.2 73.9 86.4 82.8 84. 39.2
(with 6
edge)

The comparison now includes recent YOLO variants (YOLOv9t,

YOLOv10n) and RT-DETR [52, 54, 55]. While YOLOv10n achieves

higher FPS (72.1) due to its NMS-free design, our method surpasses it
by 2.4% in mAP@0.5:0.95, demonstrating that the accuracy-efficiency
trade-off favors transformer-based architectures for aerial detection



where small object performance matters critically. RT-DETR
represents an interesting middle ground but still exceeds practical

memory constraints (67MB versus our 62MB) for sustained edge
deployment.

The precision and recall metrics warrant closer examination.

Precision quantifies the proportion of correct detections among all
predictions:

TP

Precision = ——
TP + FP

(24)

while recall measures the fraction of ground-truth objects successfully
detected:

TP

Recall = ——
TP + FN

(25)

where TP, FP, and FN denote true positives, false positives, and false
negatives respectively (standard formulas). Our framework achieves
86.4% precision and 82.8% recall, striking a favorable balance that
minimizes both missed detections and false alarms—critical for
autonomous UAV operations where both failure modes carry
consequences.

mAP Comparison Across Methods at Different [oU Thresholds

88.4

Mean Average Precision (%)
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Figure 5. mAP comparison across different detection methods
at IoU thresholds 0.5 and 0.5:0.95

Figure 5 illustrates the mAP performance gap between methods at
different IoU thresholds. The substantial gap between mAP@0.5 and
mAP@0.5:0.95 for CNN-based methods suggests their localization
accuracy deteriorates at stricter IoU requirements, whereas our
transformer-based approach maintains relatively smaller performance
degradation. This behavior stems from the global receptive field
enabling more precise boundary estimation, particularly valuable for
irregular object shapes common in aerial imagery [43].

Small object detection presents a particularly demanding challenge
where our method demonstrates clear advantages. For objects smaller
than 32x32 pixels, our framework achieves 64.2% AP compared to
56.8% for YOLOv5s and 58.3% for YOLOv8n. The hierarchical feature
extraction with multi-scale fusion proves instrumental here—smaller
objects benefit from high-resolution feature maps in early pyramid
stages, while the attention mechanism helps distinguish them from
background clutter. Pedestrians and bicvcles, typically spanning
merely 15-25 pixels in 500-meter altitude imagery, show 8.7% and
6.4% AP improvements respectively over the best baseline.

Per-Calcgory Detection Precision Comparison
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Figure 6. Per-category detection precision comparison showing
our method's performance across different object classes

Figure 6 presents per-category performance breakdown, revealing
interesting patterns. Vehicle categories (car, truck, bus) achieve 88-
92% AP across all methods due to their relatively larger size and



distinctive appearance. However, vulnerable road users (pedestrian,
bicycle, motorcycle) expose larger performance disparities—our
approach attains 71.8%, 68.3%, and 74.6% AP respectively,
representing 7-10% gains over CNN baselines. This advantage likely
reflects the transformer's superior capability in modeling contextual
relationships that help disambiguate small objects from visually
similar background elements.

Occlusion robustness receives systematic evaluation through
stratified analysis. Objects experience classification into three
occlusion levels: slight (0-25% occluded), moderate (25-50%), and
heavy (50-75%) based on manual annotation. Our method maintains
79.4% recall under moderate occlusion versus 72.1% for YOLOv5s,
though performance degrades comparably to baselines under heavy
occlusion (51.3% vs. 48.7%). The attention mechanism's ability to
aggregate information from visible object parts contributes to this
resilience, though it cannot overcome fundamenta! embiguity when
most evidence disappears [44].

Complex background scenarios—dense urban environments with
abundant visual clutter—historically chailenged aerial detection
systems. We evaluate on a 500-image subset featuring particularly
cluttered scenes with multiple overlapping objects, varied
illumination, and rich texture. Our framework achieves 68.9%
mAP@0.5:0.95 compared to 61.2% for YOLOv5s on this challenging
subset, attributable to the global modeling capacity that helps
separate foreground objects from distracting background patterns.

Generalization performance undergoes assessment through cross-
dataset evaluation where models trained on our dataset undergo
testing on the UAV123 benchmark without fine-tuning [45]. Our
approach achieves 67.8% mAP@0.5, experiencing 21.4% performance
drop from in-domain evaluation—comparable to the 19.8% drop
observed for YOLOv8n. This similar degradation suggests our
architectural innovations do not compromise generalization, an
important consideration given aerial imagery's substantial domain
shift across geographic locations, seasons, and altitude variations. The
transformer's learned attention patterns appear to transfer
reasonably across domains, though domain adaptation techniques
would likely further improve cross-dataset performance.



We conducted controlled experiments to validate claims regarding
vibration and illumination resilience. Table 9 presents robustness
evaluation under systematically varied conditions. For vibration
testing, we mounted cameras on a mechanical shaker simulating UAV
flight dynamics at three intensity levels corresponding to hover,
normal flight, and aggressive maneuvering. Our method maintains
71.8% mAP under aggressive vibration compared to 64.3% for
YOLOvS5s, attributable to the image stabilization preprocessing and
attention mechanism’s tolerance to minor spatial perturbations.
[llumination robustness was assessed using controlled lighting
variations: standard daylight (5500K, 1000 lux), low-light (100 lux),
strong backlight (direct sun in frame), and mixed artificial lighting.
Performance degradation under low-light conditions reaches 8.2% for
our method versus 12.7% for YOLOv5s, suggesting the global context
modeling helps compensate for reduced local contrast. Strong
backlight presents the greatest challenge across all methods, with our
approach showing 11.5% degradation compared to 15.8% for CNN
baselines.

Table 9. Robustness evaluation under controlled conditions

Ours

mAP YOLOvV5s YOLOv8n Degradation
Condition (%) mAP (%) mAP (%) (Ours)
Baseline 73.9  69.2 70.7 —
(normal)
Vibration - 73.2 68.5 69.8 -0.9%
Hover
Vibration - 72.1 66.8 68.2 -2.4%
Normal flight
Vibration - 71.8 64.3 65.9 -2.8%
Aggressive
Low-light (100 67.8 60.4 62.1 -8.2%
lux)
Strong 65.4 58.3 59.7 -11.5%
backlight
Mixed 70.2 65.1 66.8 -5.0%

artificial



4.3 Real-time Performance and Resource Consumption
Analysis

Real-time capability proves essential for UAV applications where
delayed detection compromises mission effectiveness. Figure 7
illustrates inference speed comparisons across methods and
platforms. All measurements represent averages from 10 independent
runs with 1000 frames each, reporting mean + standard deviation to
account for thermal variation on embedded devices. As shown in
Figure 7, our framework achieves 39.2 + 1.8 FPS on Jetson Xavier
NX, satisfying real-time requirements (typically >30 FPS) while
maintaining superior accuracy compared to baselines [46]. Table 10
provides detailed statistical analysis of runtime and energy
measurements. The coefficient of variation (CV) remains below 5% for
all metrics except peak temperature-induced throttling scenarios,
confirming measurement reliability. Sustained operation beyond 30
minutes triggers thermal throttling that reduces FPS by 8-12%; we
report both cold-start and thermally-stabilized performance.

Table 10. Statistical analysis of runtime and energy
measurements (n=10 trials)

Metric Mean Std Dev Min Max CV (%)
Inference latency (ms)  25.5 1.2 23.8 27.9 4.7
FPS (cold-start) 39.2 1.8 35.8 42.0 4.6
FPS (thermal-stable) 36.1 2.3 32.4 39.2 6.4
Power consumption (W) 12.8 0.6 11.9 14.1 4.7
Energy per frame (J) 0.327 0.018 0.298 0.358 5.5
Peak memory (MB) 62 2 59 65 3.2
GPU utilization (%) 87.3 3.2 81.5 92.1 3.7

YOLOv5s reaches 52.3 FPS but sacrifices 4.7% mAP, whereas
transformer-based alternatives DETR and Swin-T manage merely 8.4
and 12.7 FPS respectively, rendering them unsuitable for edge
deployment despite their accuracy advantages.



Inference Speed Comparison Across Methods on Edge Platforms
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Figure 7. Inference speed comparison across different methods
on various edge computing platforms

The performance scaling across platforms reveals interesting
patterns. On the more powerful Jetson AGX Orin, our method achieves
68.5 FPS—a 1.75x% speedup matching the theoretical compute ratio
between devices. YOLOv5s reaches €9.1 FPS, but the gap narrows as
both methods approach memory bandwidth limits rather than
compute constraints. Intel NUC performance (31.8 FPS for our
method) lags slightly behind jetson Xavier NX despite comparable
theoretical throughput, attributable to less mature optimization
toolchains for transformer operations on integrated graphics.

Latency breakdown exposes where time actually gets spent during
inference. Let Tita represent end-to-end latency decomposed as:

Ttotal = Tprep + Tinfer + Tpost + Tcomm

(26)

where preprocessing consumes 3.2ms (image normalization, resizing),
core inference requires 21.8ms, post-processing takes 4.3ms (NMS,
filtering), and communication overhead adds 0-18ms depending on
edge server involvement (standard formula). The inference stage
dominates latency budget, validating our focus on architectural and
deployment optimization [47].

Memory consumption directly constrains what models can deploy on
resource-limited UAV platforms. Figure 8 presents memory footprint



analysis across inference stages. Figure 8 demonstrates that our
optimized framework occupies 62MB peak memory during inference
compared to 98MB for baseline ViT and 45MB for YOLOv5s. The
quantization and pruning strategies reduce memory by 68% versus
unoptimized implementation while incurring merely 2.8% accuracy
degradation. Activation memory (temporary storage during forward
pass) constitutes the primary bottleneck, consuming 42MB at peak,
necessitating careful tensor lifetime management and in-place
operations where mathematically permissible.

Memory Consumption Breakdown and Peak Usage Comparison
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Figure 8. Resource consumption analysis showing memory
footprint breakdown and peak memory usage across methods

Energy efficiency becomes paramount for battery-powered UAV
platforms where computation directly erodes flight duration. Our
framework consumes 12.8W average power on Jetson Xavier NX,
yielding 3.06 FPS/W efficiency. YOLOv5s achieves higher absolute
FPS but similar efficiency (4.08 FPS/W at 12.8W), whereas
unoptimized transformers prove catastrophically inefficient (DETR:
0.53 FPS/W, Swin-T: 0.81 FPS/W). The energy per frame metric
provides mission-relevant perspective:

E Pavg _ 12.8W 0.327J/f
= = = . rame
frame ™ tpg ~ 39.2FPS

(27)



meaning our system processes approximately 11,000 frames per watt-
hour, or 135 minutes of continuous operation from a 50Wh battery
allocated entirely to detection (standard formula).

Ablation studies quantify how individual optimization strategies
contribute to overall efficiency. Starting from the baseline lightweight
ViT (98ms latency, 156MB memory), window attention reduces
latency to 68ms (31% improvement), dynamic token pruning further
decreases it to 52ms (cumulative 47% reduction), INT8 quantization
achieves 32ms (67% total reduction), and operator fusion reaches
final 25.5ms (74% overall improvement) [48]. These gains prove
roughly multiplicative rather than additive, underscoring the
necessity of holistic optimization rather than isolated improvements.

Real-world deployment validation occurred through week-long field
trials on DJI Matrice 300 RTK platform. Table 11 summarizes the field
test parameters and outcomes. We conducted 47 {light missions
totaling 62.5 hours across industrial parks (18 missions), highway
corridors (15 missions), and urban residential areas (14 missions).
Environmental conditions varied from clear sunny days to overcast
skies, with ambient temperatures spanning 15-35°C. The system
maintained 38.1+2.7 FPS average throughput under operational
conditions. We logged all detection events for post-hoc analysis:
across 2.8 million processed {rames, the system generated 156,423
true positive detections, 12,847 false positives (8.2% false positive
rate), and 18,956 false negatives (10.8% miss rate). False positives
predominantly involved shadows misclassified as vehicles (34%),
reflective surfaces (28%), and dense vegetation patterns (22%). False
negatives concentrated on heavily occluded pedestrians (41%) and
distant motorcycles at altitudes exceeding 400m (35%). No system
crashes or memory overflow events occurred during the trial period.

Table 11. Field deployment test summary

Parameter Value
Total missions 47
Total flight hours 62.5 hours

Test environments Industrial parks (18), Highways (15), Urban
residential (14)



Parameter Value

Temperature range 15-35°C

Total frames 2,847,652

processed

True positive 156,423

detections

False positives 12,847 (8.2% FP rate)
False negatives 18,956 (10.8% miss rate)
System failures 0

Average FPS (field) 38.1 £ 2.7

Edge collaboration 42% (when network latency <20ms)
rate

Edge collaboration mode—where computationally intensive frames
offload to ground servers when network permits—demonstrates
adaptive behavior: under strong connectivity (latency <20ms), 42% of
frames undergo edge processing achieving 72.3% mAP, while
degraded connectivity (latency >40ms) triggers full onboard
processing maintaining 38.7 FPS but 69.8% mAP. The system
dynamically selects mode based on network conditions monitored
every 100ms [49].

The accuracy-efficiency tradeoff manifests as a Pareto frontier where
no single configuration dominates all others. We characterize this
relationship through the efficiency-accuracy product:

Score = mAP X% log(FPS)
(28)

where logarithmic scaling prevents excessive emphasis on marginal
FPS improvements (standard formula). Our method achieves score
119.6 (73.9 mAP, 39.2 FPS), compared to 112.8 for YOLOv5s (69.2
mAP, 52.3 FPS) and 103.4 for EfficientDet-DO (67.5 mAP, 48.6 FPS).
Practitioners can tune this balance through configuration parameters:
reducing input resolution from 640 to 512 pixels boosts FPS to 58.3
while mAP drops to 68.7, whereas increasing to 768 achieves 76.4
mAP at 24.1 FPS. Mission requirements dictate optimal operating
points—traffic monitoring prioritizes speed for tracking continuity,



while search-and-rescue emphasizes accuracy to minimize missed
detections.

The deployment experience surfaces practical considerations absent
from laboratory benchmarks. Thermal throttling on Jetson platforms
reduces sustained performance by 8-12% compared to short-burst
measurements when ambient temperature exceeds 30°C. Cache
warming requires 3-5 frames before achieving steady-state latency,
necessitating pre-warming during system initialization. Memory
fragmentation over extended operation occasionally triggers
slowdowns resolved through periodic garbage collection every 500
frames. These real-world factors emphasize that deployment success
demands attention to system-level engineering beyond algorithmic
innovation alone.

V. Discussion

The experimental results reveal compelling evidence that Vision
Transformers, despite their computational intensity, can be
successfully adapted for edge-based UAV deployment through
judicious architectural modifications and system-level co-design. Our
framework's 4.7% mAP improvement over YOLOv5s while maintaining
real-time performance validates the hypothesis that global contextual
modeling provides tangible benefits for aerial object detection—
benefits not merely theoretical but practically realizable under
resource constraints.

The synergy between Vision Transformer architecture and edge
computing manifests through complementary strengths addressing
each other's weaknesses. Transformers excel at capturing long-range
dependencies critical for disambiguating small objects from cluttered
backgrounds, yet their quadratic complexity renders standalone
deployment infeasible. Edge computing infrastructure provides the
computational elasticity needed to accommodate variable workloads,
but requires algorithms capable of graceful degradation when
connectivity falters. Our hierarchical design enables this mutual
reinforcement: the lightweight backbone operates autonomously
onboard during network disruption, while edge collaboration activates
opportunistically to enhance accuracy when bandwidth permits. This
adaptive behavior proved essential during field trials where
connectivity varied unpredictably.



Examining the lightweight strategies' impact mechanism unveils
interesting patterns. Window attention reduces complexity from
quadratic to linear growth with resolution, but this architectural
change alone achieves merely 31% latency reduction. The
multiplicative improvements from combining multiple optimizations—
pruning, quantization, operator fusion—suggest they address different
bottlenecks rather than competing for the same gains. Window
attention alleviates compute intensity, pruning reduces memory
bandwidth demands, quantization lowers arithmetic precision
requirements, and fusion minimizes memory transaction overhead.
Each strategy targets a distinct resource dimension, explaining their
compounding effectiveness.

Yet the framework exhibits notable limitations that merit
acknowledgment. Performance degradation under heavy occlusion
remains substantial, with recall dropping to 51.3% when objects
exceed 50% occlusion—comparable to baseline methods and
indicating that architectural innovations cannot overcome
fundamental information loss. The 21.4% mAP drop during cross-
dataset evaluation reveals generalization challenges, suggesting our
model learns dataset-specific biases despite transformer's theoretical
capacity for broader pattern recognition. Training convergence
requires significantly more epochs than CNN counterparts (100 vs. 60
for YOLOvVSs), increasing development time and computational
investment during the training phase even as inference remains
efficient.

Applicability across application scenarios varies systematically with
their characteristic demands. Traffic monitoring, requiring high frame
rates to maintain tracking continuity across video sequences, benefits
from our framework's 39.2 FPS capability—sufficient for 30Hz camera
feeds with processing headroom. Search and rescue operations
prioritize recall to minimize missed detections, aligning well with our
82.8% recall and superior small-object performance. Agricultural
inspection, involving relatively static scenes and tolerance for
moderate latency, could potentially employ higher-resolution inputs
(768 pixels) sacrificing speed for the 76.4% mAP achievable in that
configuration. Conversely, dense swarm scenarios with multiple UAVs
sharing edge resources might overwhelm server capacity,
necessitating more aggressive onboard optimization.



Comparing against existing approaches, our primary innovations
emerge at the intersection rather than within individual components.
The hierarchical attention mechanism itself builds upon established
Swin Transformer concepts, while edge deployment techniques draw
from conventional model compression literature. However, their
integration into a cohesive framework designed specifically for UAV
constraints represents novel contribution. The dynamic token pruning
that adapts to scene complexity—aggressive in sparse backgrounds,
conservative in cluttered environments—departs from static pruning
strategies that treat all frames uniformly. The dual-mode operation
supporting both autonomous and collaborative processing provides
robustness absent in strictly cloud-dependent or purely local systems.

Several experimental observations suggest promising research
directions. First, the attention visualization occasionally reveals the
model attending to irrelevant background regions in cluttered scenes,
indicating room for attention mechanism refinemernt through spatial
priors or object-centric biases. Second, temporal information across
consecutive frames remains unexploited in our current frame-
independent processing, whereas object tracking could provide
motion cues improving detection consistency. Third, the fixed input
resolution cannot adapt to altitude variations—a 500-meter flight
altitude yields dramatically different object scales than 50 meters, yet
our model processes both identically rather than adjusting
computational allocation based on expected object sizes.

The thermal throttling observed during extended operation exposes a
practical deployment challenge we inadequately addressed: sustained
performance under thermal constraints demands not just algorithmic
efficiency but also thermal-aware scheduling that preemptively
reduces workload before throttling occurs. Memory fragmentation
requiring periodic garbage collection suggests our tensor
management strategy needs improvement, perhaps through memory
pooling or fixed-size buffer reuse patterns. These system-level
considerations, often neglected in academic work focused purely on
algorithmic innovation, proved crucial determinants of real-world
deployment success.

Our findings align with observations reported by Bakirci [56], who
systematically evaluated lightweight detectors on resource-
constrained drone systems and identified latency-accuracy trade-offs



as the central deployment challenge. While Bakirci’s work focused
primarily on CNN-based architectures operating at 15-45 FPS, our
transformer-based approach extends this analysis by demonstrating
that attention mechanisms, despite higher computational overhead
per operation, achieve favorable efficiency when measured by
accuracy-per-FLOP on aerial detection benchmarks. The key insight
from both studies converges on the necessity of hardware-aware
design rather than architecture-agnostic optimization—our edge-ViT
framework embodies this principle through platform-specific
quantization and operator fusion tailored to Jetson tensor core
capabilities.

Understanding why performance plateaus below 80% mAP requires
examining systematic failure modes. We analyzed 500 randomly
sampled false negatives and false positives to identify recurring
patterns. The most frequent failure cases involve: (1) severely
occluded pedestrians where only heads or shoulders remain visible
(contributing 23% of false negatives), which no architectural
modification can address given fundamental information absence; (2)
small motorcycles at high altitudes (above 400m) where objects shrink
below 10 pixels (19% of misses), approaching the theoretical
detection limit for our 640x640 input resolution; (3) shadow-vehicle
confusion under strong directional lighting (31% of false positives),
where elongated shadow patterns mimic vehicle silhouettes; and (4)
dense vegetation false alarms (18% of false positives) where repetitive
texture patterns cccasionally trigger detection. Class-wise analysis
reveals pedestrians and bicycles as the most challenging categories,
achieving only 71.8% and 68.3% AP respectively—substantially below
vehicle categories (88-92% AP). These failure modes suggest that
reaching 80%+ mAP would require either higher input resolution
(computationally prohibitive), specialized small-object detection
heads, or domain-specific training data augmentation targeting the
identified failure scenarios.

VI. Conclusion

This research tackled the deployment of ViT models for real-time
object detection on resource-constrained UAV platforms through
strategic integration with edge computing infrastructure. We
developed a framework reconciling transformer computational



demands with the stringent latency, memory, and energy constraints
of airborne systems.

Our contributions span three dimensions. First, the lightweight ViT
variant with hierarchical attention and dynamic token pruning
reduces computational complexity by 68% while preserving 94.3%
baseline accuracy, demonstrating that transformers can be adapted
for embedded systems beyond datacenter confinement. Second, the
dual-mode operational paradigm supports both autonomous onboard
processing and collaborative edge-server computation with dynamic
workload allocation, providing robustness across varying connectivity
scenarios. Third, the systematic optimization pipeline combining
mixed-precision quantization, structured pruning, and operator fusion
achieves 11.2x inference speedup while maintaining practical
accuracy.

Experimental validation confirms effectiveness: 73.9% mAP@0.5:0.95
at 39.2 FPS on Jetson Xavier NX, surpassing CNN baselines in
accuracy while satisfying real-time constraints. Small object detection
reaches 64.2% AP versus 56.8% for YOLOv5s. Week-long field
deployment demonstrated sustained operation under realistic
conditions including variable lighting, platform vibration, and thermal
fluctuations across 47 missions totaling 62.5 flight hours.

The theoretical significance extends beyond UAV applications. Our
work provides empirical evidence that attention mechanisms offer
measurable advantages for tasks requiring global context, realizable
through hardware-aware design. The optimization methodology
applies broadly to deploying computationally intensive models on
edge devices. Practically, the framework enables autonomous
operations in time-critical applications where cloud dependency
introduces unacceptable latency or connectivity vulnerabilities.

Several limitations warrant acknowledgment. Heavy occlusion
performance remains comparable to baselines, suggesting
architectural innovations cannot overcome fundamental information
scarcity. Cross-dataset generalization shows 21.4% degradation,
indicating domain adaptation techniques deserve future integration.
Training requires significantly more epochs than CNN counterparts.
Frame-independent processing neglects temporal information
exploitable through video-based tracking.



Future research directions follow naturally from these observations.
First, incorporating temporal modeling through recurrent connections
or temporal attention would enhance detection stability across video
sequences while providing motion cues for disambiguation—
preliminary experiments suggest 3-5% mAP improvement is
achievable through simple temporal smoothing. Second, adaptive
resolution mechanisms adjusting input size based on flight altitude
would optimize computational allocation; a 500m flight needs less
resolution than 50m operation, yet our current system treats both
identically. Third, neural architecture search could automatically
discover optimal lightweight configurations surpassing our manually
designed architecture, potentially identifying non-obvious
combinations of attention patterns and pruning strategies. Fourth,
uncertainty quantification integration would enable the system to
recognize when detection confidence warrants human operator
involvement versus autonomous action, critical for safety-sensitive
applications. Fifth, multi-UAV collaborative scenarios where platforms
share computational resources and detection information present
challenges in distributed inference, consensus formation, and
redundancy exploitation—an increasingly relevant direction as swarm
deployments become practical. Sixth, domain adaptation techniques
including few-shot learning and self-supervised pretraining on
unlabeled aerial imagery could address the generalization gap
observed in cross-dataset evaluation. These directions collectively
promise to bridge remaining gaps between algorithmic capability and
practical deployment requirements in autonomous aerial systems.
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