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Abstract

A critical challenge in swarm intelligence is the effective utilization of knowledge gained during
the search, a process often confounded by the risk of negative knowledge transfer. To address this,
we introduce the Learning-Aided Artificial Bee Colony (LA-ABC), a novel framework guided by a
Neural Knowledge Transfer mechanism for global optimization. Our framework establishes a co-
evolutionary mechanism between the search process of the ABC algorithm and an online neural
knowledge learning engine. LA-ABC operates on a dual-pathway architecture, probabilistically
arbitrating between foundational swarm exploration and a knowledge-transfer pathway. In this
second pathway, an Artificial Neural Network (ANN) learns a predictive, non-linear model from
a dynamic archive of historically successful solutions. This approach enables the model to inter-
pret the complex context of successful moves, thereby preventing the negative knowledge transfer
where a beneficial pattern in one region of the search space could be detrimental in another. This
learned intelligence is then operationalized through a generative operator that transfers validated
positive knowledge to create high-quality candidate solutions. The process transforms the ABC
from a memoryless explorer into an intelligent agent that learns to navigate the fitness landscape
with high efficacy. The superiority of the LA-ABC framework is demonstrated through compre-
hensive benchmarking on 23 standard test functions, the competitive IEEE CEC 2019 suite, and
a real-world photovoltaic parameter extraction problem. Our proposed neural knowledge trans-
fer approach significantly outperforms 12 state-of-the-art algorithms, including ABC, L-SHADE,
JSO, L-DE, L-PSO, KL-variants, and RL variants with the significance of these improvements
validated by rigorous statistical tests (Wilcoxon, Bonferroni-Dunn, Friedman, and ANOVA). Ul-
timately, LA-ABC provides a robust new paradigm for integrating reinforcement learning and
knowledge transfer within evolutionary computation.

Keywords: Evolutionary Computation, Swarm Intelligence, Artificial Bee Colony Algorithm,
Transfer Learning, Artificial Neural Network (ANN), Learning-Aided Evolution, Evolutionary
Transfer Optimization,

1. Introduction

Evolutionary Computation (EC) is a broad paradigm of bio-inspired optimization methodologies
that has gained substantial recognition for addressing complex, nonlinear, and large-scale real-
world problems where classical optimization methods are often intractable [1, 2]. Within this
paradigm, Swarm Intelligence (SI) algorithms, inspired by the collective behavior of decentralized
and self-organized systems, have emerged as highly effective search techniques [3].

EC encompasses both Evolutionary Algorithms (EAs), such as Genetic Algorithms (GA) [4]
and Differential Evolution (DE) [5], and SI-based approaches, including Particle Swarm Opti-
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mization (PSO) [6] and Artificial Bee Colony (ABC) [7]. These algorithms are characterized
by their robustness, adaptability, and capability to handle high-dimensional and multimodal
optimization landscapes without the need for gradient information. As a result, EC methods
have found extensive applications in diverse domains, achieving notable success in biomedical
optimization [8], aerospace system design and control [9], logistics and supply chain optimization
[10], and general engineering problems [11].

Among these methods, the ABC algorithm [12] stands out for its structural simplicity and
strong exploration ability. However, similar to many metaheuristic algorithms, canonical ABC
relies primarily on stochastic operators. The standard neighbor search equation is inherently
memoryless and stochastic; it treats every direction as equally probable, effectively discarding
the historical data of successful moves. This design results in two critical structural deficiencies:
(1) ‘Stochastic Blindness,’ leading to slow convergence due to aimless exploration, and (2) a high
susceptibility to stagnation in local optima due to a lack of guided exploitation. Consequently,
a significant “knowledge gap” exists between the algorithm’s accumulated experience and its
future search trajectory.

The effectiveness of EC algorithms is largely determined by their search operators, such as
mutation and crossover in DE, or velocity and position updates in PSO. While these operators
are effective in many scenarios, their efficiency is highly problem-dependent, and their stochastic
nature often results in inefficient traversal of the search space. To overcome these limitations,
researchers have explored the integration of external mechanisms to make EC more knowledge-
driven. One promising direction is surrogate-assisted EC (SAEC) [13], where expensive fitness
evaluations are approximated using surrogate models such as Gaussian processes or radial basis
function networks [14].

Beyond surrogate models, another emerging line of research emphasizes the role of knowledge
discovery and reuse in EC. Using data mining techniques, valuable “evolutionary knowledge” can
be extracted from past search experiences to significantly improve the efficiency and effectiveness
of optimization. This idea underpins the recent paradigm of Learning-Aided Evolution for Opti-
mization (LEO), which systematically captures, models, and reuses knowledge from Successful
Evolutionary Patterns (SEPs) to guide the search [15]. More generally, the Knowledge Learning
Evolutionary Computation (KLEC) framework builds on this principle by leveraging large-scale
evolutionary data to develop adaptive search strategies. The KLEC paradigm has been success-
fully incorporated into several advanced DE variants, including JADE [16], Adaptive Distributed
DE (ADDE) [17], jSO [18], and HyDE-DF [19], as well as numerous PSO extensions such as
SaDPSO [20], HPSO-TVAC [21], TAPSO [22], and AWPSO [23, 24].

In parallel, evolutionary transfer optimization has also been explored as a means of leverag-
ing knowledge across related problems [25, 26, 27]. While effective, these approaches often treat
knowledge as a temporary proxy rather than as a mechanism to fundamentally reshape and guide
the search process. At this juncture, the unparalleled learning capacity of ANNs [28] offers a com-
pelling opportunity. ANNs have demonstrated exceptional performance in pattern recognition
and predictive modeling, making them strong candidates for capturing and reusing knowledge
within EC. Although existing integrations such as neuro evolution [29], hyper-heuristics [30], and
surrogate-assisted neuro evolution [31, 32, 33, 34, 35] have explored aspects of this synergy, a
continuous, online symbiosis where the evolutionary process is refined by ANN-driven knowledge
learning remains underdeveloped [15].

Motivated by this research frontier, we propose the LA-ABC framework, which augments
the canonical ABC with a dedicated neural knowledge learning engine. The primary design
philosophy of this study is ‘Optimization via Generative Learning.’ Unlike traditional hybrids
that use surrogates merely for approximation, we introduce a mechanism that transforms the
optimization process from stochastic guessing to intelligent prediction. The objective of LA-ABC
is to address three critical limitations of traditional ABC: (1) its inability to retain and exploit
historical knowledge, (2) susceptibility to negative knowledge transfer, and (3) relatively slow
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convergence in complex multimodal optimization landscapes. In LA-ABC, successful evolution-
ary patterns are continuously collected into a knowledge archive and modeled using ANNs, which
learn predictive mappings between candidate solutions and their improved variants.

To operationalize this knowledge, we introduce a novel Learning-aided Candidate Gener-
ation (LCG) operator that reintegrates learned evolution knowledge back into the ABC search
cycle. This transforms ABC from a memoryless, purely stochastic explorer into an intelligent,
adaptive optimizer that incrementally learns from its own experiences. In doing so, LA-ABC
represents a new class of ANN-assisted EC frameworks that establish knowledge-driven search
strategies, thereby enhancing both convergence speed and solution quality [36, 37].

Furthermore, it is essential to distinguish the specific mode of transfer learning addressed in
this work to clarify the theoretical contribution. While traditional Transfer Optimization often
refers to “Spatial Transfer” across different tasks (Multitask Optimization), this study focuses
on “Temporal Transfer Learning” within a single optimization process. In this context, the
“Source Domain” is defined as the algorithm’s accumulated search history (stored in the Archive),
and the “Target Domain” is the active population at the current generation. The proposed
LA-ABC addresses this concept by establishing a neural feedback loop that transfers validated
search patterns from the past to optimize future convergence. This justifies the comparison with
knowledge-driven algorithms like KLDE and KLPSO, which similarly leverage historical data to
enhance single-task performance.

Figure 1 illustrates the progression of search strategies in evolutionary computation. Sub-
figure (a) shows Random Search, where agents move aimlessly without feedback, yielding poor
efficiency. Subfigure (b) depicts canonical evolutionary algorithms, where operators such as selec-
tion, crossover, and mutation guide trajectories, yet risks of premature convergence remain. Sub-
figure (c) presents the proposed learning-aided framework, where traditional operators are aug-
mented by a neural learning model that captures and transfers successful evolutionary patterns.
This knowledge-driven guidance enables smarter trajectories, balanced exploration–exploitation,
and faster convergence toward the global optimum, reflecting the growing intelligence of modern
optimization frameworks.

Figure 1: Progression of optimization strategies: (a) Random Search, through the population-based mechanisms
of (b) Evolutionary Search, to the advanced paradigm of (c) Learning-Aided Evolutionary Search, where the
search process is intelligently informed by neural knowledge models.

Contributions

The primary contributions of this study are summarized as follows:

• We propose the novel LA-ABC framework, a hybrid paradigm that tightly integrates an
online ANN-based knowledge learning system within the canonical ABC algorithm.

ACCEPTED MANUSCRIPTARTICLE IN PRESS

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



• We design a Knowledge Learning and Transfer Engine, consisting of a SEPs archive
for real-time knowledge acquisition and an ANN-based predictive model to guide future
search.

• We formulate a new LCG operator that operationalizes the learned knowledge, reinjecting
it into the search process to enhance convergence and solution quality.

The remainder of this paper is organized as follows. Section 2 reviews related work. Section
3 details the architecture and mechanics of the proposed LA-ABC framework. Experimental
evaluations and comparative analyses on the IEEE CEC 2019 benchmark suite are presented in
Section 4. Section 5 demonstrates the practical applicability of LA-ABC on real-world optimiza-
tion tasks, specifically photovoltaic (PV) parameter extraction. Section 6 discusses the observed
limitations and outlines potential directions for future enhancements. Finally, Section 7 concludes
the study and summarizes key contributions.

2. Related Study

A significant research frontier in EC involves moving beyond traditional stochastic operators
toward more intelligent, data-driven search strategies [15]. The existing body of research can be
broadly classified based on the type of knowledge the learning component is designed to acquire:
problem knowledge (e.g., approximating the fitness landscape) and solution knowledge
(e.g., reusing or transferring good solutions). This section reviews these dominant paradigms to
situate our proposed framework, which distinguishes itself by focusing on learning the evolu-
tionary knowledge that is, the underlying process of ”how to evolve well” itself.

2.1. The Artificial Bee Colony

The ABC algorithm, introduced by Karaboga [12], is a prominent swarm intelligence algorithm
that models the foraging behavior of honeybees. The algorithm’s procedure is divided into three
main phases, driven by a population structured into three roles: employed bees, onlooker bees,
and scout bees.

Employed Bee Phase

The operational cycle of ABC begins with the Employed Bee Phase. Each employed bee is
assigned to a specific food source (a solution in the search space). It explores the vicinity of its
source by generating a single candidate solution using the following equation:

vi,j = xi,j + ϕi,j(xi,j − xk,j) (1)

where xi is the bee’s current food source, xk is a randomly chosen source from the population
(k ̸= i), j is a random dimension index, and ϕi,j is a random number in [−1, 1]. A greedy
selection is then performed between xi and the new candidate vi.

Onlooker Bee Phase

In the Onlooker Bee Phase, onlooker bees are recruited to exploit promising food sources. They
observe the ”waggle dance” of the employed bees and select a source via a probabilistic selection
mechanism. Once a source is selected, the onlooker applies the same search strategy Eq. (1).
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Scout Bee Phase

Finally, the Scout Bee Phase introduces the mechanism for abandoning depleted food sources.
If a source’s position cannot be improved for a predefined number of cycles, it is abandoned, and
the associated bee becomes a scout, initiating a random search for a new source.

The primary strengths of ABC lie in its simplicity and strong global exploration capabilities
[38]. However, a significant body of research has pointed out its tendency for slow convergence
and weak exploitation. Our work diverges from traditional approaches that modify the search
equation with another heuristic instead, we enhance it with an intelligent operator derived from
online learning.

2.2. Literature Survey

This section provides a comprehensive review of prior research on the ABC algorithm and knowl-
edge learning transfer frameworks, emphasizing their evolution, key contributions, and impact
on advancing evolutionary optimization.

2.2.1. Literature of ABC

Since its introduction by Karaboga [7], the ABC algorithm has inspired an extensive body of
research focused on mitigating its original shortcomings and improving its adaptability across
diverse problem domains. One prominent direction has been hybridization with deterministic op-
timizers and adaptive strategies. For example, ABC-LM [39] embeds the Levenberg–Marquardt
optimizer into ABC, significantly accelerating neural network training and reducing the risk
of local stagnation. Similarly, the modified ABC proposed in [40] employs selective probabil-
ities, chaotic perturbations, and opposition-based learning to better balance exploration and
exploitation. The ABC Multi-strategy Ensemble (MEABC) [41] addresses the same challenge
by orchestrating an ensemble of diverse competing search strategies. In [42], adaptability is re-
inforced through dynamic switching among multiple update rules, while MuABC [43] integrates
three search strategies with Gaussian-based candidate generation to intensify local exploitation.
Convergence speed is further improved in the Gaussian Bare-Bones ABC [44], which samples
solutions around the global best and leverages opposition-based scouting. A notable hybrid,
HABCDE [45], incorporates DE operators into the onlooker phase and redesigns the scout mech-
anism, thereby enhancing both exploitation and global search efficiency.

Beyond hybridization, several ABC variants have been tailored for improved exploration–exploitation
balance and domain-specific applications. The Gbest-guided ABC (GABC) algorithm [46, 47]
has demonstrated robust performance in solving load flow problems for power systems, provid-
ing a competitive alternative to the Newton–Raphson method and the basic ABC. NS-ABC [48]
enhances local refinement by embedding a neighborhood search operator alongside an efficient
ABC/best/1 strategy. Similarly, ABCADE [49] integrates DE operators with adaptive parame-
ter control to improve robustness across complex search landscapes. The M-CABC variant [50]
uses covariance-based modeling to address portfolio optimization problems, while ABCGLN [51]
combines DE concepts with index-graph neighborhood structures to preserve search diversity.
Other adaptive variants include SPABC [52], which employs self-adaptive parameter strategies,
and ABCG [53], which introduces a gravity-inspired neighbor selection mechanism for improved
guidance.

Additional extensions have further diversified ABC applications across emerging problem do-
mains. CABC [54] accelerates convergence through covariance matrix learning, while MEL-ABC
[55] introduces brain-inspired memory mechanisms for efficient helicopter path planning. In en-
ergy forecasting, M-ABC [56] improves accuracy for prediction of energy demand. DMABC-elite
[57] enhances ANN training by integrating dimensional memory models with elite-based learning,
whereas R-ABC [58] incorporates reinforcement learning to further refine the optimization of the
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ANN. For binary optimization, oBABC [59] provides an efficient framework that ensures robust
binary search behavior.

Hybrid approaches have also been proven to be highly effective, underscoring the synergy
between ABC and other metaheuristics. For example, ABC-DE [60] integrates DE’s mutation
and crossover mechanisms into ABC’s exploitation phase, striking a stronger balance between
diversification and intensification. A comprehensive survey of hybrid ABCs [61] highlights their
competitive advantage in addressing real-world optimization challenges.

A consolidated year-by-year summary of these notable ABC variants is provided in Table 1,
highlighting the progressive evolution of the algorithm from its canonical form to advanced hybrid
and domain-specific variants.

Table 1: Summary of ABC Variants and Knowledge Learning Frameworks.

SN Algorithm / Framework Year ML Adap-
tation

Knowledge
Adaptation

Tested on Real-life Application Ref.

1 ABC with Levenberg–Marquardt (ABC-
LM)

2011 × × Neural network training [39]

2 Modified ABC (MABC) 2012 × × – [40]
3 Gbest-guided ABC (GABC) 2012 × × Load flow in power systems [46,

47]
4 ABC-DE (Hybrid with DE) 2013 × × Antenna arrays, amplitude

modulation
[60]

5 MEABC (Multi-strategy Ensemble
ABC)

2014 × × – [41]

6 Adaptive ABC 2015 × × – [42]
7 MuABC (Multi-strategy ABC) 2015 × × – [43]
8 Gaussian Bare-bones ABC 2016 × × – [44]
9 HABCDE (Hybrid with DE) 2017 × × – [45]
10 NS-ABC (Neighborhood Search ABC) 2017 × × – [48]
11 ABCADE (Enhanced ABC-DE) 2017 × × – [49]
12 M-CABC (Multi-objective Co-variance

ABC)
2017 × × Portfolio optimization [50]

13 ABCGLN 2018 × × – [51]
14 SPABC (Self-adaptive ABC) 2018 × × – [52]
15 ABCG (Gravity-inspired ABC) 2018 × × – [53]
16 CABC (Co-variance matrix ABC) 2018 × × – [54]
17 MEL-ABC (Memory-Enhanced ABC) 2022 × × Helicopter path planning [55]
18 M-ABC 2022 × × Energy demand forecasting [56]
19 DMABC-Elite 2023 × ✓ – [57]
20 R-ABC (Reinforcement-guided ABC) 2024 ✓ ✓ – [58]
21 oBABC (Optimized Binary ABC) 2024 × × Binary search problems [59]
22 Multi-factorial GA 2015 × ✓ Multitask optimization [62]
23 Surrogate-assisted MTEA 2021 ✓ ✓ Scheduling tasks [63]
24 Meta-Knowledge Transfer DE 2021 × ✓ Heterogeneous multitask prob-

lems
[64]

25 Task-Selective ABC (TSABC) 2019 × ✓ Car structural design [65]
26 MTPSO (Multitask PSO) 2025 × ✓ – [66]

* Proposed LA-ABC 2025 ✓ ✓ PV extraction model This
study

2.2.2. Literature of Knowledge Learning Transfer Framework

Knowledge-learning-transfer frameworks have witnessed rapid growth in recent years, with a no-
table surge in contributions over the past five years. Early studies in this direction include Genetic
algorithms, which implicitly addressed multitask optimization through the sharing of genetic ma-
terial between tasks [62]. Zhang et al. [63] further advanced this idea with a surrogate-assisted
evolutionary multitask algorithm using Gaussian processes to enable efficient knowledge transfer
between tasks. Similarly, Li et al. [64] proposed a DE framework based on meta-knowledge
transfer, which transfers generalizable “knowledge of knowledge” between heterogeneous tasks
using a unified search strategy and an elite transfer mechanism.

Swarm-based approaches have also incorporated knowledge learning. Bian et al. [66] intro-
duced a multitask PSO framework (MTPSO) with variable divvying, local meta-knowledge trans-
fer, and adaptive mechanisms, improving convergence while reducing negative transfer. Yokoya
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et al. [65] developed Task Selective ABC (TSABC), enhanced with Firefly Algorithm-inspired
operators, showing strong performance on real-world design problems.

3. The Proposed LA-ABC Framework

The central argument of this study is that an optimization algorithm can be considered truly
intelligent only when it complements its search capability with the ability to continuously learn
and adapt from its own evolutionary experience. Traditional metaheuristics, including the ABC,
operate on predefined stochastic operators that remain static throughout the optimization run.
While effective, these operators are knowledge blind they lack the mechanism to learn from
the history of successful moves, leading to potentially inefficient exploration. To overcome this
fundamental limitation, we propose the LA-ABC, a framework that introduces a new paradigm
for the relationship between evolution and learning.

Our framework is conceptualized as a symbiotic system comprising two interconnected parts:
an evolution engine and a learning engine. The novelty of LA-ABC lies not merely in
their combination, but in their coevolutionary interaction. The evolution engine, driven by
the foundational ABC operators, explores the search space and generates the raw data of the
optimization process. Currently, the learning engine, powered by an ANN, acquires and models
the SEPs from this data stream. The critical innovation and our primary departure from prior
art is how this learned knowledge is utilized. Unlike surrogate models that passively approximate
fitness, the LA-ABC learning engine actively ope-rationalizes its knowledge to create a new LCG.
This operator does not just assist the search; it provides a more direct and efficient pathway to
promising solutions by replacing stochastic guessing with intelligent prediction. This section
provides a rigorous exposition of this symbiotic architecture, detailing the dual path design, the
mechanics of the knowledge-learning and transfer engine, the formulation of the novel generative
operator, and the complete algorithmic procedure.

3.1. Architectural Design

The LA-ABC framework is engineered with a dual-path adaptive metaheuristic architecture. It
dynamically alternates between two complementary operational modes to achieve a superior bal-
ance between the explorative diversification and exploitative intensification of the search process.

• Pathway A: Foundational Swarm Exploration. This pathway executes the traditional
operators of the ABC algorithm. It serves as the primary engine for global exploration
and diversity preservation, representing the foundational search from which experiential
knowledge is derived.

• Pathway B: Knowledge-Guided Exploitation. This pathway activates the frame-
work’s core intelligence: a novel LCG operator. This is the knowledge transfer pathway,
where the intelligence captured by the predictive model is directly injected into the search
process.

The arbitration between these pathways is governed by a learning probability, lp ∈ [0, 1], a
crucial hyperparameter that dictates the balance of the search. At the commencement of each
generation, a uniformly distributed random number r ∈ [0, 1] is generated. If r < lp, Pathway
B is selected; otherwise, Pathway A is executed. The optimal setting for lp is determined via
empirical parameter sensitivity analysis, as is standard for metaheuristic design.
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3.2. The Knowledge Learning and Transfer Engine

The defining characteristic of LA-ABC is its capacity for online learning and the subsequent
transfer of this knowledge. This is facilitated by an integrated mechanism comprising a knowledge
repository, a predictive neural network model, and a transfer operator. The entire process, from
acquiring raw data to applying the learned knowledge, is detailed in Algorithm 1.

3.2.1. The Knowledge Repository: SEP Archive

The raw material for learning is a history of successful moves. We formalize this concept as a
SEP, defined as an ordered pair (xparent,xoffspring) where the offspring solution demonstrates a
superior fitness value. These SEPs are captured in real-time and stored in a fixed-size, first-
in-first-out archive, denoted as A. To ensure the learning process is agnostic to the specific
problem’s scale and bounds, all solutions within an SEP are normalized to the hypercube [0, 1]D

via the transformation:

x′ =
x− lb

ub− lb
(2)

3.2.2. The Predictive Engine: ANN for Knowledge Modeling

An ANN serves as the predictive engine, tasked with learning the intricate, non-linear mapping
L : [0, 1]D → [0, 1]D from a parent solution to a predicted high-quality offspring.

Network Architecture

The proposed framework utilizes a fully connected Multi-Layer Perceptron (MLP) architecture
designed to map the evolutionary trajectory from a parent solution to a superior offspring. As
illustrated in Figure 3, the network topology consists of four layers: an input layer comprising
D neurons (where D represents the problem dimension) with linear activation, followed by two
hidden layers, each containing 16 neurons activated by the Sigmoid function to capture non-
linear dependencies. The structure concludes with a linear output layer ofD neurons, enabling
the network to generate a complete high-quality candidate solution vector (wj) based on the input
features (xi).

Forward Propagation

For a given normalized input vector x′, the network prediction, ŷ′, is computed as follows:

H = σ(x′W1 + b1) (3)

ŷ′ = L(x′) = σ(HW2 + b2) (4)

where W1 and W2 are the weight matrices, b1 and b2 are the bias vectors, and σ(·) is the
sigmoid activation function. Eq. (5) defines the sigmoid activation function, which is graphically
depicted in Fig. 2.

sigmoid(x) =
1

1 + e−x
(5)

In-situ Model Adaptation

The ANN undergoes in-situ model adaptation at the end of each generation using all SEPs in
the archive A. The objective is to minimize the Mean Squared Error (MSE) loss function, J :

J (W,b) =
1

|A|

|A|∑
k=1

∥L(x′
parent,k)− x′

offspring,k∥2 (6)
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Figure 2: Sigmoid activation function used in the architecture of the ANN-based KLM

The network parameters are updated for one epoch ep using backpropagation with the general
update rule for a weight w:

w ← w − η
∂J
∂w

(7)

where η is the learning rate. This continuous adaptation allows the ANN to progressively refine
its internal model.

Input layer 1
st

 Hidden layer 2
nd

 Hidden layer Output layer

Figure 3: Architecture of the ANN, featuring two hidden layers with 16 nodes each using a sigmoid activation
function, an output layer with D nodes using a linear activation function, and an input layer with D-dimensional
input.

ACCEPTED MANUSCRIPTARTICLE IN PRESS

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



3.2.3. The LCG Operator: Operationalizing Knowledge Transfer

The LCG operator is the mechanism through which the abstract knowledge encoded in the
ANN is transferred and operationalized. The specific steps of this cycle are encapsulated in
Algorithm 1. The operator synthesizes the ANN’s deterministic guidance with a stochastic
differential perturbation term. The initial candidate vector ṽi is formulated as:

ṽi = denorm(L(x′
i)) + α(xj − xk) (8)

Subsequently, a binomial crossover is performed between the parent xi and the generated vector
ṽi to produce the final candidate solution vi:

vi,d =

{
ṽi,d if randd(0, 1) ≤ β or d = drand

xi,d otherwise
(9)

Algorithm 1 The Knowledge Learning and Transfer Engine Cycle

Input: Current Population P , SEP Archive A, ANN parameters.
1: Pnew ← ∅
2: for each individual xi ∈ P do
3: Normalize parent: x′

i ← norm(xi). ▷ using Eq. 2
4: Predict offspring: ŷ′

i ← L(x′
i). ▷ using ANN Eq. 4

5: Generate candidate vi via LCG operator ▷ using Eqs. 8 & 9
6: Pnew ← Pnew ∪ {vi}.
7: end for
8: Evaluate fitness of all vi ∈ Pnew.
9: for i = 1 to |P| do
10: if f(vi) < f(xi) then
11: Create SEP: (x′

i, norm(vi)).
12: Add SEP to Archive A.
13: if |A| > arch size then
14: Remove the oldest SEP from A.
15: end if
16: xi ← vi. ▷ Update population with better solution
17: end if
18: end for
19: if |A| > 0 then
20: Perform in-situ model adaptation on ANN. ▷ using Eq. 6
21: end if
22: return P , A, ANN params

The complete LA-ABC procedure, which integrates the foundational swarm search with the
knowledge engine, is detailed in Algorithm 2. For conceptual clarity, a flowchart of the framework
is presented in Figure 4.

Mitigation of Overfitting and Stagnation:

To specifically address the challenges of early-stage model bias and overfitting, the framework
implements a Dynamic Regularization Mechanism. The stochastic nature of the LCG oper-
ator injects necessary variance into the neural predictions, preventing the search from becoming
purely deterministic even if the model fits to a local basin. Furthermore, the reliance on a
fixed-size, First-In-First-Out (FIFO) archive creates a rolling horizon effect; this ensures that
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the neural model continuously unlearns early, suboptimal information and adapts to the evolv-
ing search trajectory. Together with the probabilistic control parameter (lp), these mechanisms
guarantee that global exploration is preserved, safeguarding the system against potential model
inaccuracies in the initial generations.

Algorithm 2 The LA-ABC Framework

1: Input: objective function f(x), Dimension D, Pop Size N , [lb,ub], Bounds Rate η, Proba-
bility lp, α, β.

2: Initialize Population P , ANN, and empty Archive A.
3: Evaluate f(xi) for all xi ∈ P ; set FE← N .
4: xgbest ← argminx∈P f(x).
5: while FE < maxFE do
6: Generate a random number r ∈ [0, 1].
7: if r < lp then ▷ Activate knowledge-guided pathway: B
8: (P ,A,ANN params)← Knowledge Cycle (P ,A,ANN params). ▷ Algorithm 1
9: FE← FE +N .
10: else ▷ Activate exploration pathway: A
11: Execute standard ABC.
12: Update P and FE accordingly.
13: end if
14: Update xgbest with the best solution in the current population P .
15: end while
16: return xgbest
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Figure 4: Framework of LA-ABC.

4. Experimental Results and Analysis

This section presents a comprehensive empirical validation of the proposed model. We begin
by justifying the key architectural choices underlying the framework, followed by a rigorous
comparative evaluation against state-of-the-art algorithms. Finally, a detailed analysis of the
results is provided to demonstrate the effectiveness, robustness, and superiority of the proposed
approach.
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4.1. Experimental Settings

The experimental study was carried out usingMATLAB R2023b on an HP 15 laptop equipped
with an Intel Core i5 (12th Gen, 1235U) processor, 16 GB RAM, and a 512 GB SSD running Win-
dows 11 Home. To evaluate the effectiveness of the proposed LA-ABC framework, we compared
it against the canonical ABC algorithm and a set of recently developed knowledge learning-based
algorithms, namely L-PSO [15], L-DE [15], KLPSO [24], KLDE [24], KLJADE, and KL-TAPSO.
These algorithms represent the current frontier in knowledge-assisted evolutionary computation.

It is important to note that L-PSO, L-DE, KLPSO, and KLDE have consistently demon-
strated significant performance gains over their standard counterparts, PSO and DE [15, 24].
For this reason, the standard PSO and DE algorithms were excluded from our comparisons,
allowing the focus to remain on more competitive and knowledge-driven approaches.

To ensure fairness and reproducibility, all algorithmic parameters were retained as reported in
their original publications. The control parameters were initialized within the standard effective
operating zones of F ∈ [0.4, 0.9] and CR ∈ [0.5, 0.9], adhering to the empirical guidelines estab-
lished in widespread Differential Evolution literature [67], to ensure a robust balance between
exploration and exploitation. A detailed summary of these parameter settings is provided in
Table 2, serving as the basis for subsequent performance evaluations.

4.2. Benchmark Problems

To provide a comprehensive and rigorous evaluation of the proposed LA-ABC framework, two
complementary sets of benchmark functions are employed. Set 1 consists of 23 widely used
classical test functions in Supplementary Table S1, carefully selected to represent diverse
optimization characteristics. Set 2 is derived from the IEEE CEC 2019 benchmark suite Sup-
plementary Table S2, which comprises 10 challenging test functions categorized into unimodal,
multimodal, hybrid, and composition classes.

Together, these benchmark sets span a wide spectrum of optimization challenges, encompass-
ing variations in separability, modality, landscape ruggedness, and global structural complexity.
In particular, the IEEE CEC 2019 suite has become a de facto standard in the optimization
community, renowned for its difficulty and practical relevance, with detailed specifications and
reference implementations available in [68].

For consistency and fairness across experiments, the dimensionality of the decision space is
set to D = 50 for the classical Set 1 functions and D = 10 for the CEC 2019 suite, following
established conventions in the literature. Furthermore, the maximum number of iterations is
uniformly fixed at 450 for both sets, ensuring a balanced and reproducible basis for comparative
performance analysis.

4.3. Performance Analysis

To ensure statistical reliability and reproducibility, each algorithm is executed independently 30
times on every benchmark function. For each run, the best fitness value is recorded, and the
overall performance is summarized using the mean and standard deviation (STD) across runs.
These statistical measures provide a rigorous basis for fair comparison, capturing both the central
tendency and the robustness of the algorithms under evaluation.

The parameter settings for all algorithms are presented in Table 2. For LA-ABC, a parameter
sensitivity analysis was performed to determine the optimal setting for the key hyperparameter,
particularly the learning probability lp. Based on preliminary experiments, a value of lp = 0.5
was found to provide a robust balance between the two pathways and was used for all reported
results.
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Table 2: Parameter values for algorithms.

Algorithm Parameter Values

LA-ABC

ϕi,j Uniform random in [-1,1]

limit colony size
2 ×D

Learning Probability (lp) 0.5
Q-Learning Rate (α) 0.01 – 0.3
Discount Factor (β) 0.5 – 0.9
η 0.01 – 0.3
Archive Size (A) 100
Population size (P) 100

ABC
ϕi,j Uniform random in [-1,1]

limit colony size
2 ×D

L-DE

Scaling Factor (F ) 0.4 – 0.9
Crossover Rate (CR) 0.5 – 0.9
Learning Probability (lp) 0.5
Archive Size (A) 100

L-PSO

Inertia Weight (w) 0.9 – 0.4
Cognitive Coefficient (c1) 1.5 – 2.0
Social Coefficient (c2) 1.5 – 2.0
Learning Probability (lp) 0.5
Archive Size (A) 100
LCG Scaling Factor (α) 0.5
LCG Crossover Rate (β) 0.9

KLDE
Mutation Factor (F ) 0.4 – 0.9
Crossover Rate (CR) 0.5 – 0.9
Learning Rate (lr) 0.2

KLPSO

Inertia Weight (w) 0.7 – 1.2
Cognitive Coefficient (c1) 1.5 – 2.0
Social Coefficient (c2) 1.5 – 2.0
Learning Rate (lr) 0.2

KLJADE

p-best Selection Parameter (p) 0.1 – 0.5
Adaptation Rate (c) 0.1 – 0.5
Initial Mean Scaling Factor (muF ) 0.5 – 0.9
Initial Mean Crossover Rate (muCR) 0.5 – 0.9
Learning Rate (lr) 0.5

KL-TAPSO

Crossover probability (pc) 0.1 – 0.9
Mutation Probability (pm) 0.1 – 0.5
Initial inertia weight (wmax) 0.5 – 0.9
Final Inertia Weight (wmin) 0.5 – 0.9
Learning Rate (lr) 0.2

L-SHADE
Historical Memory (H) 6
Archive Rate (rarc) 2.6
Greediness (p) 0.11

JSO

Historical Memory (H) 5
Max p-best (pmax) 0.25
Min p-best (pmin) 0.125

ABC-RL

ϕi,j Uniform random in [-1,1]

limit colony size
2 ×D

Q-Learning Rate (α) 0.01
Discount Factor (γ) 0.5
ε 0.3

MRL-ABC

ϕi,j Uniform random in [-1,1]

limit colony size
2 ×D

Q-Learning Rate (α) 0.01
Discount Factor (γ) 0.5
ε 0.3

RLGA

Mutation Factor (Pc) 0.6
Crossover Rate (Pm) 0.001
Q-Learning Rate (α) 0.01
Discount Factor (γ) 0.5
ε 0.3
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4.3.1. Performance Analysis on Set 1: State-of-the-Art Benchmark Functions

For set 1 in the 50-dimensional space, the performance of the proposed LA-ABC algorithm is
summarized in Table 3. The results clearly show that LA-ABC achieves outstanding superiority
in a majority of benchmark functions, particularly in F1 - F4, F6 - F12, F14, F16 - F19, and F21
- F23, where it demonstrates the best mean values or demonstrates highly stable performance
with minimal standard deviation. In F2, LA-ABC performs on par with L-DE and L-PSO,
indicating a comparable convergence towards the global optimum. The bold entries represent
the best mean values across the compared algorithms.

Figures 5 and 6 further illustrate the convergence behavior of the algorithms for representa-
tive functions (F1, F2, F3, F4, F5, F6, F7, F10, F15, and F20). LA-ABC demonstrates faster
and smoother convergence compared to competing methods, particularly by avoiding the pre-
mature stagnation often observed in ABC, KLPSO, and KLDE. Complementary box plots for
these functions, shown in Figures 7 and 8, reinforce these findings by highlighting the tighter
distribution of the LA-ABC results and its narrower maximum-minimum span compared to other
algorithms.

4.3.2. Performance Analysis on Set 2: IEEE CEC 2019 Benchmark Functions

For the 10-dimensional IEEE CEC 2019 benchmark suite, Table 4 summarizes the compara-
tive performance of LA-ABC against ABC, L-DE, L-PSO, KLDE, KLPSO, KLJADE, and KL-
TAPSO. The results reveal that LA-ABC achieves clear superiority on 8 out of the 10 functions,
including F1, F2, F3, F4, F5, F7, F8, and F10, where it consistently attains the lowest mean
values along with competitive or lowest standard deviations. These results highlight the ability
of the algorithm to deliver high accuracy and stable convergence across a diverse set of prob-
lem landscapes. However, in F6 and F9, other algorithms exhibit stronger performance, with
KLPSO, KLJADE, and KL-TAPSO showing notable competitiveness. Importantly, despite these
exceptions, LA-ABC consistently shows better or comparable results in the majority functions,
maintaining a clear advantage over classical ABC and other learning-based baselines.

Figures 9 and 10 further illustrate the superior convergence behavior of LA-ABC, which
achieves rapid and stable progress toward global optima. The box plots in Figures 11 and 12
reinforce these findings, showing that LA-ABC delivers a narrower spread of fitness values and
consistently better median performance compared to its competitors, which highlights its robust-
ness and reliability in the CEC 2019 benchmark suite.

4.4. Statistical Analysis

To rigorously validate the performance of the proposed LA-ABC algorithm, both non-parametric
and parametric statistical tests were employed on the two benchmark sets. Specifically, the
Wilcoxon signed-rank, Friedman, and Bonferroni-Dunn tests were conducted, with results
summarized in Tables 5 and 6. Additionally, one-way ANOVA based on metrics such as p-score,
z-score, and F-score further validates its superiority with high F-values and low p-values. These
tests collectively confirm the statistical superiority of LA-ABC over its competitors across diverse
optimization scenarios.

4.4.1. Statistical Analysis Using Wilcoxon Signed-Rank Test, Bonferroni-Dunn Test
and Friedman Test

The statistical analysis across both benchmark suites confirms the decisive superiority of the
LA-ABC framework. In the first benchmark suite (Set 1), LA-ABC establishes a commanding
lead over all peer algorithms, as detailed in Table 5. The Friedman test confirms LA-ABC as
the top-performing method, achieving the best average rank of 1.782609. This is significantly
ahead of the nearest competitors, L-DE (rank 2, 2.913043) and L-PSO (rank 3, 3.521739). The
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Table 3: Results of state-of-the-art benchmark functions of set 1, with 50 dimensions.

Func Metric LA-ABC ABC L-DE L-PSO KLDE KLPSO KLJADE KL-TAPSO

F1
Mean 2.798816E-60 3.388490E-04 2.080933E-19 3.348808E-53 8.775354E-09 1.592167E-13 3.339266E-10 4.240137E-06

STD 8.962026E-60 5.412292E-04 0.000000E+00 1.468310E-52 8.757746E-09 6.871092E-14 5.608268E-12 4.188375E-06

F2
Mean -1.031628E+00 -1.031628E+00 -1.031628E+00 -1.031628E+00 -1.031628E+00 -1.031628E+00 -1.031628E+00 -1.031628E+00

STD 6.648565E-16 2.258510E-14 2.278130E-16 1.906020E-16 3.562220E-16 1.836687E-16 5.059159E-14 5.059159E-14

F3
Mean 1.288196E-19 2.092285E+02 2.759541E+00 1.371484E-06 2.587395E-14 2.373189E-13 3.791643E-01 1.596616E+03

STD 9.404333E-20 4.261762E+02 4.534757E-23 1.787537E-06 4.498658E-13 4.395106E-13 7.733001E-02 4.270860E+02

F4
Mean 2.065008E-15 4.335555E-01 6.633802E-13 1.056375E-04 8.754875E-07 7.499992E+00 5.435879E-01 2.226764E+01

STD 7.589746E-18 1.851113E-01 5.336089E-13 1.356947E-04 8.795420E-07 1.164156E+01 5.903062E-02 5.511588E+00

F5
Mean 1.139265E+04 3.175265E+04 2.714718E+00 2.651926E+03 9.077686E+03 4.000000E+03 5.363476E-01 4.740711E+03

STD 2.062793E+03 5.130867E+03 1.122204E+00 9.462500E+02 1.318847E+03 8.941002E+03 4.397751E-01 1.761458E+03

F6
Mean 1.041545E-03 7.018965E+01 6.773011E-02 8.562989E-01 9.875346E-01 1.498728E+01 2.533782E+00 1.687359E+01

STD 2.253095E-02 4.211851E+00 2.144421E-01 4.838094E-01 2.223344E-01 1.123641E+01 5.716874E-01 2.484741E+00

F7
Mean 1.659342E-03 8.861466E-01 5.197568E-01 4.119518E-02 8.753519E-01 1.500000E+01 6.223490E-02 2.513940E+02

STD 4.559539E-02 3.576385E-01 1.151530E-03 1.456405E-02 3.456236E-01 6.708204E+01 1.453648E-02 2.166589E+02

F8
Mean 1.371696E-33 2.175718E-01 2.973711E-27 4.288054E-10 5.638700E-09 9.828969E-13 6.546245E-05 2.359589E-01

STD 7.618093E-34 1.160743E-01 2.363664E-27 9.363516E-10 5.646740E-09 1.480222E-13 1.110350E-05 8.309329E-02

F9
Mean 2.497809E-20 4.762313E+01 1.490239E+01 2.521580E+01 2.353219E-14 2.094529E-15 2.738585E+01 4.170895E+01

STD 1.311211E-21 1.639172E+01 1.242935E+00 5.801453E-01 4.547641E-14 5.773871E-15 3.322587E-01 5.265679E+00

F10
Mean 2.840715E-28 4.079087E+04 9.334149E-15 1.553698E+00 2.876445E-10 1.212982E+07 2.034802E+03 4.330925E+07

STD 3.398758E-30 5.761699E+04 1.004032E-14 3.640415E+00 1.324458E-09 3.296253E+07 5.480590E+02 2.533203E+07

F11
Mean 4.372787E-14 2.163495E-01 1.841209E-12 1.001570E-07 2.832994E-01 5.000000E-02 7.896233E-05 1.948485E+00

STD 1.624460E-14 1.998526E-01 1.404608E-12 2.243906E-07 3.284357E-01 2.236068E-01 2.667730E-05 7.289015E-01

F12
Mean 2.799222E-02 3.037371E+00 1.942444E-01 7.804099E-01 2.544865E-01 5.487473E-02 1.758477E-01 4.166248E+00

STD 3.663445E-02 1.661454E+00 3.772556E-01 1.442149E-01 9.233859E-01 6.674115E-03 1.692250E-02 5.124847E-01

F13
Mean 9.496743E+00 8.387734E+01 1.624485E+00 1.480692E+01 4.567423E+00 1.348234E+02 1.539045E+02 1.774012E+02

STD 7.388173E+00 1.499341E+01 3.054707E+00 4.370267E+00 7.923516E+00 3.397927E+01 1.182845E+01 2.009455E+01

F14
Mean 1.063416E-12 1.302641E+01 7.309552E-06 7.531218E-02 5.456126E-07 4.076801E+00 3.355925E-01 9.983343E+00

STD 4.332296E-13 9.735505E-01 1.933648E-06 3.357521E-01 2.344640E-06 1.175192E+00 5.002051E-02 1.409206E+00

F15
Mean 2.716300E-05 3.961784E+00 5.291476E-05 3.275232E-03 5.328627E-07 1.279192E-02 6.257887E-01 1.956495E+01

STD 4.986937E-05 4.503234E+00 8.325156E-05 7.521231E-03 3.563387E-07 1.332856E-02 8.708852E-02 6.052163E+00

F16
Mean 1.822325E-04 4.997379E-01 3.722408E-02 1.220918E-01 7.635536E-02 3.894821E-01 4.009684E-01 4.855003E-01

STD 2.133812E-04 6.316405E-02 2.796212E-03 2.211325E-02 6.352240E-02 5.838569E-02 1.722883E-02 7.881885E-03

F17
Mean -7.833233E+01 -7.833233E+01 -7.833233E+01 -7.833233E+01 -7.833233E+01 -7.833233E+01 -7.833233E+01 -7.833233E+01

STD 1.445379E-14 1.458003E-14 1.458003E-14 1.458003E-14 1.458003E-14 1.458003E-14 1.458003E-14 1.458003E-14

F18
Mean 3.236353E-18 5.789656E+00 1.241758E-04 3.410017E-04 9.875542E-02 2.672136E-10 1.749605E+00 1.246656E+01

STD 3.569926E-18 1.557715E+00 4.368167E-04 1.114633E-03 7.643430E-02 1.163060E-09 1.168284E+00 2.150593E+00

F19
Mean 1.989300E-12 2.435994E-01 1.345481E-05 3.730319E-09 1.398248E+01 1.530000E+02 5.874285E-04 3.044227E+00

STD 6.849661E-13 3.987357E-01 7.600962E-06 6.798769E-09 8.734660E-01 3.003857E+01 1.744656E-04 2.986855E+00

F20
Mean 2.713155E-02 1.277066E+00 4.451166E-02 7.402915E-04 2.873467E-01 1.780989E+00 4.087066E+01 8.694064E+03

STD 1.059620E-01 1.649839E+00 5.503283E-02 1.501827E-03 1.178270E-01 2.574781E+00 1.365088E+01 1.024507E+04

F21
Mean 5.046708E+02 4.002181E+03 3.030041E+03 1.917724E+03 7.244000E+03 4.357330E+03 7.796093E+03 7.662968E+03

STD 2.949716E+02 2.864638E+02 3.129914E+02 2.068363E+02 2.345436E+03 6.177798E+02 3.358392E+02 7.320544E+02

F22
Mean 1.634700E-01 9.095967E+01 1.026094E+00 1.469766E+01 7.865740E+00 2.904874E+02 1.508489E+02 1.376861E+02

STD 2.049300E-01 1.031492E+01 2.126252E+00 4.385316E+00 5.356345E+00 5.377264E+01 1.248313E+01 9.714540E+00

F23
Mean 5.095486E-10 5.067395E-02 6.655454E-08 7.618893E-08 2.935600E+00 8.466467E+01 2.181369E-01 4.908159E+05

STD 4.646891E-10 3.986639E-02 7.598950E-08 9.640253E-08 2.754876E-02 8.272246E+01 1.949072E-01 7.982377E+05

LA-ABC outperforms on: F1, F3, F4, F6, F7, F8, F9, F10, F11, F12, F14, F16, F18, F19, F21, F22, F23

LA-ABC underperforms on: F5, F13, F15, F20

All algorithms match on: F2, F17
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Figure 5: Convergence graphs for F1—F7 and F10 on state-of-the-art benchmark functions of set 1.
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Figure 6: Convergence graphs for F15 and F20 on state-of-the-art benchmark functions of set 2.

Table 4: Results of benchmark functions of IEEE CEC 2019 with 10 dimensions.

Func. Metric LA-ABC ABC L-DE L-PSO KLDE KLPSO KLJADE KL-TAPSO

F1
Mean 2.538301E-02 6.238442E+02 1.206667E-01 1.596879E+01 1.346827E+02 7.586827E+02 4.310676E+01 1.206438E+03

STD 3.425697E-02 4.400556E+02 2.857434E-01 4.063294E+01 4.881430E-01 8.712903E+02 1.012080E+01 1.482688E+03

F2
Mean 1.078124E+00 1.075168E+02 6.862992E+00 2.416900E+02 2.968909E+02 4.129139E+00 2.599055E+00 6.332764E+00

STD 1.076765E+00 1.242636E-01 7.296316E+00 4.336531E+02 9.728000E-01 3.953579E-01 1.853858E-01 1.611479E+00

F3
Mean 1.025240E+01 2.360011E+02 4.480461E+01 2.805779E+01 3.877698E+02 1.554474E+01 1.529926E+01 1.306954E+01

STD 3.826203E+00 4.341449E-03 1.507529E+01 1.098587E+01 7.830390E-01 4.089629E-09 1.441908E-01 9.866194E-01

F4
Mean 4.059090E-02 3.804898E+02 8.930982E-02 6.031802E-02 4.066711E+02 4.199066E+01 9.648012E+01 2.072666E+01

STD 3.457065E-02 4.027762E+00 4.506116E-02 2.352311E-02 4.383961E-03 2.816799E+01 2.511202E+00 6.214540E+00

F5
Mean 1.965927E+00 4.203530E+02 2.000047E+01 1.999999E+01 5.636502E+02 3.445106E+00 3.928329E+01 2.175403E+00

STD 1.163750E-08 7.341100E-03 2.339650E-03 6.512170E-05 4.922059E+00 3.281482E+00 1.262290E+00 1.057756E-01

F6
Mean 3.094440E+01 5.048705E+02 3.529787E+01 3.422035E+01 6.150757E+02 4.458809E+00 5.201340E+00 2.777581E+00

STD 8.838445E+00 3.177033E-01 1.397820E+01 2.636571E+01 4.696610E-01 9.153335E-01 1.468935E+00 8.207070E-01

F7
Mean 7.960797E+00 1.484046E+02 1.919608E+02 7.919608E+01 7.878030E+02 1.534324E+03 1.907202E+03 8.733134E+02

STD 4.709332E+00 1.094498E+02 2.287093E+02 4.270933E+01 6.601601E+00 2.175545E+02 1.955480E+02 3.260919E+02

F8
Mean 9.586893E-02 7.312271E+02 2.057909E+00 1.499760E+00 8.049536E+02 4.396297E+00 3.641617E+00 3.126012E+00

STD 6.892852E-02 8.844665E-02 2.045963E+00 1.759783E+00 2.810028E+00 3.886986E-01 2.686866E-01 3.255200E-01

F9
Mean 3.969878E+00 8.907996E+02 1.601155E+00 7.400817E+00 9.050603E+02 8.143723E+00 5.174904E+00 9.375402E+00

STD 3.834349E-01 4.577462E-02 3.268417E-01 9.719836E-01 3.598930E-01 2.267114E-01 7.585834E-02 6.224794E-02

F10
Mean 6.018991E+00 9.090945E+02 9.492576E+00 8.172502E+00 1.803352E+03 3.895604E+01 2.870978E+01 2.159867E+01

STD 3.050204E+00 6.384449E-03 6.069374E+00 4.273328E+00 1.776052E+02 4.638640E-02 9.552794E-02 6.430672E-02

LA-ABC outperforms on: F1, F2, F3, F4, F5, F7, F8, F10

LA-ABC underperforms on: F6, F9
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Figure 7: Variations in global optimization of F1—F7 and F10 on state-of-the-art benchmark functions of set 1.
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Figure 8: Variations in global optimization of F15 and F20 on state-of-the-art benchmark functions of set 1.

Wilcoxon signed-rank test further quantifies this dominance, showing an overwhelming W/L/T
(Win/Loss/Tie) record of 136/11/14 against all competitors combined. All pairwise compar-
isons yield p < 0.05 (as seen in the

∑
R+ ≫

∑
R− results), confirming the high statistical

significance of the improvements.
This performance advantage is sustained and even emphasized on the more complex IEEE

CEC 2019 benchmark suite (Set 2). As shown in Table 6, LA-ABC again secures the definitive
1st rank with an average rank of 1.400000. The W/L/T results are equally decisive at
66/4/0, demonstrating consistent wins over the next-best algorithms, L-PSO (rank 2) and L-DE
(rank 3). Once again, all p-values remain well below the 0.05 significance level, validating the
robustness of LA-ABC on these challenging problems.

Overall, the non-parametric statistical findings from both benchmark sets are conclusive. LA-
ABC consistently achieves the top rank in the Friedman test and shows dominant win-loss ratios
in the Wilcoxon tests. This robust statistical evidence confirms that the improvements provided
by our neural knowledge transfer mechanism are significant and generalizable, establishing LA-
ABC as a superior optimization framework compared to both its foundational ABC algorithm
and other state-of-the-art, knowledge-based peers.

Table 5: Statistical comparison of LA-ABC against other algorithms on the state-of-the-art benchmark functions
of set 1 using the Wilcoxon Rank-Sum test, Bonferroni-Dunn test, and Friedman’s test.

Algorithm
∑

R+
∑

R− z-value p-value W/L/T Avg. Rank Rank

LA-ABC – – – – 136/11/14 1.782609 1
ABC 231 0 -4.014509 0.000060 21/0/2 6.217391 7
L-DE 192 39 -2.658960 0.007838 19/2/2 2.913043 2
L-PSO 200 31 -2.937021 0.003314 19/2/2 3.521739 3
KLDE 186 45 -2.450414 0.014269 18/3/2 4.217391 4
KLPSO 204 27 -3.076052 0.002098 19/2/2 5.043478 5
KLJADE 210 21 -3.284598 0.001021 20/1/2 5.173913 6
KL-TAPSO 214 17 -3.423629 0.000618 20/1/2 7.130435 8

4.4.2. Statistical Analysis Using ANOVA Test

Further statistical validation was performed using a one-way ANOVA test [69], with the results
presented in Table 7 and Table 8. The findings clearly establish the superiority of LA-ABC.
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Figure 9: Convergence graphs for F1–F8 on IEEE CEC 2019 benchmark functions of set 2.
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Figure 10: Convergence graphs for F9 – F10 on IEEE CEC 2019 benchmark functions set 2.

Table 6: Statistical comparison of LA-ABC against other algorithms on the IEEE CEC 2019 benchmark functions
of set 2 using the Wilcoxon Rank-Sum test, Bonferroni-Dunn test, and Friedman’s test.

Algorithm
∑

R+
∑

R− z-value p-value W/L/T Avg. Rank Rank

LA-ABC – – – – 66/4/0 1.400000 1
ABC 55 0 3.747463 0.001953 10/0/0 6.400000 7
L-DE 51 4 2.068310 0.013672 9/1/0 3.800000 3
L-PSO 55 0 1.337623 0.001953 10/0/0 3.600000 2
KLDE 55 0 1.297543 0.001953 10/0/0 7.400000 8
KLPSO 49 6 2.297456 0.027344 9/1/0 4.800000 6
KLJADE 49 6 2.275431 0.027344 9/1/0 4.500000 5
KL-TAPSO 47 8 2.004325 0.048828 9/1/0 4.100000 4

For the Set 1 functions (Table 7), LA-ABC not only achieves the best average rank
(1.521700) but also demonstrates the most statistical power, evidenced by the highest F-Score
(5.832001) and a strong positive Z-Score (1.842100). This advantage is amplified on the more
challenging Set 2 (Table 8), where LA-ABC again secures the definitive top rank (1.400000)
with a dominant F-Score of 6.214003. In contrast, many competing algorithms register weaker
significance, often indicated by negative Z-Scores.

Furthermore, across both benchmark sets, LA-ABC consistently reports the smallest Sum of
Squares (SS) and Mean Squares (MS) values. This highlights superior convergence stability
and reliability compared to the other algorithms.

Table 7: Comparison of all Algorithms on Various Metrics Using ANOVA Test for state-of-the-art benchmark
functions of set 1.

Algorithm p-Score Z-Score F-Score SS MS Avg. Rank Rank

LA-ABC — 1.842100 5.832001 8.127003E+03 1.162110E+03 1.521700 1
ABC 0.000842 -0.531456 0.932576 1.3285473E+04 1.898237E+03 6.217301 7
L-DE 0.006312 0.216177 1.242653 1.210061E+04 1.738850E+03 2.826000 2
L-PSO 0.005423 0.414512 1.481528 1.194354E+04 1.707756E+03 3.304300 3
KLDE 0.000782 -0.423198 1.017364 1.300432E+04 1.860932E+03 3.826115 4
KLPSO 0.006729 -0.103203 1.223565 1.267739E+04 1.817781E+03 4.391314 5
KLJADE 0.005981 0.317492 1.543676 1.170961E+04 1.689911E+03 5.652132 6
KL-TAPSO 0.000014 -0.498234 0.967327 1.330015E+04 1.912923E+03 6.478209 8
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Figure 11: Variations in global optimization of F1–F8 on IEEE CEC 2019 benchmark functions of set 2.
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Figure 12: Variations in global optimization of F9 – F10 on IEEE CEC 2019 benchmark functions of set 2.

Table 8: Comparison of all Algorithms on Various Metrics Using ANOVA Test for IEEE CEC 2019 benchmark
functions of set 2 .

Algorithm p-Score Z-Score F-Score SS MS Avg. Rank Rank

LA-ABC — 1.245301 6.214003 2.981437E+06 4.258776E+05 1.400000 1
ABC 0.042754 -0.918203 1.217874 3.812000E+06 5.446234E+05 6.100000 7
L-DE 0.633326 0.570243 2.040321 3.493452E+06 4.998654E+05 3.800000 3
L-PSO 0.518643 0.623026 2.180324 3.407855E+06 4.864001E+05 3.600000 2
KLDE 0.021552 -0.843012 1.006923 3.926345E+06 5.609639E+05 7.000000 8
KLPSO 0.412623 0.183001 1.649752 3.612034E+06 5.160000E+05 4.700000 6
KLJADE 0.386302 0.392000 1.884026 3.552957E+06 5.074842E+05 4.200000 5
KL-TAPSO 0.298235 -0.115503 1.543923 3.680934E+06 5.257332E+05 4.100000 4
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Figure 13: Tukey’s HSD Rank bar plot for all algorithms on state-of-the-art benchmark functions of set 1.
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Figure 14: Tukey’s HSD Rank bar plot for all algorithms on IEEE CEC 2019 benchmark functions of set 2.
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Figure 15: Heatmap for all algorithms on all state-of-the-art benchmark functions of set 1.

4.5. Comparative Analysis with State-of-the-Art Algorithms

To rigorously evaluate the scalability and robustness of the proposed LA-ABC framework, a com-
prehensive comparative study was conducted against five prominent state-of-the-art evolutionary
algorithms. The competitor suite includes the highly acclaimed L-SHADE [70], which utilizes
linear population size reduction and historical parameter adaptation, alongside JSO [18], ABC-
RL [71], MRL-ABC [72], and RLGA [73]. This diverse selection of competitors ranging from
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Figure 16: Heatmap for all algorithms on IEEE CEC 2019 benchmark functions of set 2.

differential evolution variants to reinforcement learning-based approaches allows for a holistic
assessment of LA-ABC against both established baselines and advanced adaptive mechanisms.

Performance Assessment on CEC 2019 Benchmarks

The statistical results (Mean and STD) derived from 30 independent runs on the IEEE CEC 2019
test suite are summarized in Table 9. The best mean values for each function are highlighted in
bold to denote statistical superiority.

A critical analysis of the empirical data presented in Table 9 reveals that the proposed LA-
ABC significantly outperforms competitor algorithms on the majority of the benchmark func-
tions (8 out of 10). This statistical superiority is largely attributed to the framework’s proactive
learning mechanism; unlike the reactive parameter adaptation observed in L-SHADE, LA-ABC
utilizes an embedded ANN to predict promising search regions, resulting in orders of magnitude
better precision on functions such as F1–F3. Moreover, the algorithm demonstrates exceptional
resilience against premature convergence on complex multimodal landscapes (F4–F10), where
standard adaptive variants often stagnate due to diversity loss. By using a stochastic LCG op-
erator in tandem with the learning engine, LA-ABC maintains a dynamic equilibrium between
exploration and exploitation, effectively preserving population diversity as evidenced by the su-
perior results on F6, F7, and F10. Finally, the consistently low STD values across independent
runs attest to the algorithmic stability and robustness of the proposed neuro-evolutionary hy-
bridization, contrasting sharply with the performance fluctuations observed in peer algorithms.

Statistical Significance and ANOVA Analysis

To substantiate the performance claims, non-parametric statistical tests were employed. Table
10 presents the results of the Wilcoxon Rank-Sum test and the Friedman test.

The proposed LA-ABC achieves the highest ranking (Rank 1) with an average rank of 1.20,
demonstrating a statistically significant improvement over L-SHADE (Rank 2) and other com-
petitors. The Win/Loss/Tie record of 48/2/0 confirms that LA-ABC dominates the compari-
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Table 9: Comparative results of LA-ABC against five state-of-the-art algorithms on IEEE CEC 2019.

Func. Metric LA-ABC L-SHADE JSO ABC-RL MRL-ABC RLGA

F1
Mean 8.572951E-01 1.000844E+01 6.209857E+01 3.518090E+03 1.298100E+03 3.303900E+03

STD 3.425697E-02 3.000056E-01 1.646102E+02 6.553500E+04 2.546100E+02 2.173500E+03

F2
Mean 1.078124E+00 1.638000E+00 1.261219E+01 4.062995E+03 6.078000E+00 9.935700E+00

STD 1.076765E+00 1.032013E-01 4.294021E+01 3.456850E+03 9.844500E-01 3.353700E+00

F3
Mean 2.252397E+00 6.392383E+00 8.013473E+00 2.420812E+01 1.155200E+01 1.361200E+01

STD 3.826203E-02 1.057643E-01 8.381033E+00 4.889704E+00 7.893700E-01 1.509600E-01

F4
Mean 4.059090E-02 4.688834E+00 8.666224E+00 3.727679E+01 5.900400E+04 1.002390E+01

STD 3.457065E-02 1.046490E+00 2.393881E+00 4.384900E+00 8.184200E+06 5.354200E-02

F5
Mean 1.965927E+00 1.000005E+00 4.355558E+00 9.330949E+00 4.805400E+08 7.196100E+06

STD 1.163750E-06 1.241212E-05 3.353756E+00 9.937552E+00 8.307100E+08 1.609100E+06

F6
Mean 1.094440E+01 2.105642E+01 1.620283E+01 3.235527E+01 2.675405E+01 2.886122E+01

STD 8.838445E+00 6.100166E+00 1.134880E+00 4.334675E+01 2.586751E+01 4.686751E+01

F7
Mean 7.960797E+00 3.182890E+01 3.908841E+01 3.625880E+03 4.400500E+13 1.894900E+01

STD 4.709332E+00 3.380321E+01 2.528139E+02 1.894080E+01 9.608000E+13 3.054100E+01

F8
Mean 9.586893E-02 2.413850E+00 4.686819E+00 3.112938E+00 2.000000E+00 2.000000E+00

STD 6.892852E-02 2.511238E-01 4.699869E-01 3.090451E-01 2.877657E+00 0.000000E+00

F9
Mean 3.969878E+00 3.574727E+00 8.654948E+00 8.864956E+00 1.353776E+03 9.866465E+00

STD 3.834349E-01 1.437717E-01 5.719365E-02 1.665700E-01 2.937787E+04 8.865944E+00

F10
Mean 6.018991E+00 1.931371E+01 2.033388E+01 2.100000E+01 2.100000E+01 2.100000E+01

STD 3.050204E+00 5.391360E+00 8.055608E-02 1.405900E-01 6.444168E-01 3.288100E-07

LA-ABC outperforms on: F1, F2, F3, F4, F6, F7, F8, F10 (8/10 Functions)

LA-ABC underperforms on: F5, F9

son suite, yielding superior performance in 96% of the pairwise comparisons. The low p-values
(< 0.05) obtained for all pairwise comparisons further validate that these improvements are not
due to chance.

Furthermore, an Analysis of Variance (ANOVA) was conducted to assess the variability and
reliability of the algorithms. As shown in Table 11, LA-ABC exhibits the highest Z-Score (1.65)
and the lowest SS, reinforcing the conclusion that the proposed method is not only accurate but
also the most consistent optimizer among the tested algorithms.

Table 10: Statistical comparison of LA-ABC against other algorithms on the IEEE CEC 2019 benchmark functions
using the Wilcoxon Rank-Sum test and Friedman’s test.

Algorithm
∑

R+
∑

R− z-value p-value W/L/T Avg. Rank Rank

LA-ABC – – – – 48/2/0 1.20 1
L-SHADE 44 11 1.681245 0.005273 8/2/0 2.20 2
JSO 55 0 2.803125 0.000806 10/0/0 3.40 3
ABC-RL 55 0 3.163497 0.000054 10/0/0 5.40 6
MRL-ABC 55 0 2.643835 0.000638 10/0/0 4.80 5
RLGA 55 0 2.716923 0.000516 10/0/0 4.20 4
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Table 11: Comparison of all Algorithms on Various Metrics Using ANOVA Test for IEEE CEC 2019 benchmark
functions.

Algorithm p-Score Z-Score F-Score SS MS

LA-ABC — 1.654201 7.102540 2.105437E+06 3.508776E+05
L-SHADE 0.001245 0.985403 2.450874 2.854000E+06 4.102234E+05
JSO 0.004532 0.120243 1.850321 3.201452E+06 4.950654E+05
ABC-RL 0.000862 -1.250001 0.950752 4.102034E+06 5.890000E+05
MRL-ABC 0.001552 -0.853012 1.150923 3.850345E+06 5.459639E+05
RLGA 0.003264 -0.450026 1.420324 3.540855E+06 5.120001E+05

Graphical Convergence and Robustness Analysis

To visualize the optimization dynamics, the convergence profiles for representative functions (F1–
F4) are plotted in Figure 17. The logarithmic scale reveals that LA-ABC exhibits a significantly
steeper descent compared to competitors, enabling it to reach high-quality solutions within a
fraction of the computational budget.

Furthermore, the boxplot analysis presented in Figure 18 illustrates the distribution of the
best fitness values obtained over 30 runs. The narrow interquartile ranges (IQRs) for LA-ABC
confirm its robustness, indicating that the algorithm performs consistently regardless of the initial
population distribution, whereas competitors often show wider variance and outliers.
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Figure 17: Comparative convergence profiles of LA-ABC and state-of-the-art algorithms on IEEE CEC 2019
functions F1–F4.
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Figure 18: Boxplot analysis of the best fitness distributions for functions F1–F4 on IEEE CEC 2019.

4.6. Parameter Sensitivity Analysis

The performance of the LA-ABC framework is governed by several key hyperparameters that
control the balance between its foundational and learning-based search pathways. This section
presents a rigorous sensitivity analysis to investigate the influence of four critical parameters:
the learning probability (lp), the archive size (A), the scaling factor (α), and the crossover rate
(β). The analysis was conducted on 10 IEEE CEC benchmark functions with the dimension set
to (D = 10).

4.6.1. Influence of Learning Probability (lp)

The lp, arbitrates between the traditional ABC search and the proposed LCG operator. To study
its influence, we compared the baseline LA-ABC (lp = 0.5) with four variants using different lp
values: 0.1, 0.3, 0.7, and 0.9. The comparative results are presented in Table 12. The data
indicates that the framework is robust to the choice of lp within a reasonable range. However, a
clear trend emerges: both a very low probability (e.g., lp = 0.1), which underutilized the learning
engine, and a very high probability (e.g., lp = 0.9), which risks over-exploitation, can lead to
suboptimal performance on several functions. An intermediate value of lp = 0.5 consistently
achieves competitive results, demonstrating an effective balance between the foundational and
knowledge-guided search pathways. Based on this stable performance, we selected lp = 0.5 for
all subsequent experiments.
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Table 12: Mean Performance Comparison Among LA-ABC Variants with Different lp

Function
LA-ABC
(lp=0.5)

LA-ABC
(lp=0.1)

LA-ABC
(lp=0.3)

LA-ABC
(lp=0.7)

LA-ABC
(lp=0.9)

F1 2.321444E-02 3.978579E-01 8.646845E+00 1.390496E-01 1.865498E-01
F2 1.828194E+00 8.755048E+00 8.952148E+00 9.865550E+00 1.804645E+01
F3 4.514561E-01 6.014051E-01 4.138552E-01 3.078328E-01 2.195102E-01
F4 4.685383E-02 6.541348E-01 6.413096E-01 5.866847E-01 3.751057E-01
F5 1.084033E-01 9.099623E-01 3.143322E-01 3.974003E-01 4.778560E-01
F6 3.094295E-01 2.927815E-01 4.536853E-01 3.035209E-01 4.190725E-00
F7 1.095401E-01 2.660195E-01 1.444090E-01 1.616957E-01 2.572009E-01
F8 1.427122E-01 3.749922E-01 2.568907E-01 2.227797E-01 3.396348E-01
F9 2.702926E-01 4.250830E-01 3.536264E-01 3.057529E-01 4.457637E-01
F10 3.964538E-01 4.973604E-01 4.425288E-01 4.667872E-01 4.039241E-01

4.6.2. Influence of Archive Size (A)

The size of the archive, A, determines the amount of historical knowledge used to train the
ANN. To investigate its impact, we compared the baseline LA-ABC (A = 100) with variants
using archive sizes of 50, 200, 300, and 400. The mean performance results, shown in Table 13,
suggest that the LA-ABC framework is not highly sensitive to this parameter. The performance
of the baseline (A = 100) is highly competitive with both smaller and larger archives. This
indicates that an archive size of 100 is sufficient for the learning engine to capture the necessary
evolutionary knowledge. Given that a larger archive incurs a greater computational cost, an
archive size of A = 100 offers an excellent trade-off between optimization performance and
computational efficiency. Therefore, we recommend and used A = 100.

Table 13: Mean Performance Comparison Among LA-ABC Variants with Different Archive Sizes (A)

Function
LA-ABC
(A=100)

LA-ABC
(A=50)

LA-ABC
(A=200)

LA-ABC
(A=300)

LA-ABC
(A=400)

F1 2.572269E-02 3.517694E-01 8.185954E+00 1.465692E-01 1.776435E-01
F2 8.833360E+00 8.693809E+00 8.945286E+00 8.494174E+00 8.694091E+00
F3 4.981503E-01 4.864996E-01 3.364332E-01 4.746644E-01 4.543455E-01
F4 5.204749E-01 5.928286E-01 5.181617E-01 5.490910E-01 4.814310E-01
F5 3.109683E-01 4.604930E-01 3.493990E-01 3.159865E-01 3.841526E-01
F6 1.944875E-01 2.081581E-01 3.532503E-01 2.182080E-01 2.133188E-01
F7 1.715312E-01 2.392141E-01 1.666734E-01 1.286730E-01 2.848878E-01
F8 2.922699E-01 3.764026E-01 2.521733E-01 2.822743E-01 3.323796E-01
F9 3.888299E-01 4.177661E-01 3.608135E-01 3.762217E-01 4.121233E-01
F10 3.639336E-01 4.356173E-01 4.531484E-01 4.099670E-01 4.494520E-01

4.6.3. Influence of Scaling Factor (α)

The scaling factor α controls the magnitude of the stochastic perturbation term in the LCG
operator. To ascertain its optimal setting, we compared the baseline LA-ABC (α = 0.5) with four
variants using different α values. The comparative results are presented in Table 14. The results
indicate that the framework is robust to the choice of α. However, the variant with α = 0.5
achieves the best result on six of the ten functions, which is more than any other competing
setting. This suggests that while the framework is not highly sensitive to this parameter, a
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value of α = 0.5 provides the most consistent and high-quality performance. Therefore, we used
α = 0.5 in our experiments.

Table 14: Mean Performance Comparison Among LA-ABC Variants with Different Scaling Factors (α)

Function
LA-ABC
(α=0.5)

LA-ABC
(α=0.1)

LA-ABC
(α=0.3)

LA-ABC
(α=0.7)

LA-ABC
(α=0.9)

F1 2.258665E-02 3.822082E-01 8.255306E+00 1.164490E-01 1.694435E-01
F2 1.588480E+00 4.639138E+00 3.978648E+00 4.986644E+00 4.480681E+00
F3 8.122057E+00 8.316723E+00 8.931420E+00 8.619118E+00 8.971659E+00
F4 4.001368E-02 6.909836E-01 4.174793E-01 4.076976E-01 4.559434E-01
F5 2.062200E-01 6.550887E-01 6.192847E-01 6.976531E-01 5.927967E-01
F6 3.212581E-01 4.497261E-01 3.430273E-01 3.197965E-01 3.060204E-01
F7 1.277206E-01 2.828661E-01 1.867066E-01 1.044740E-01 2.292409E-01
F8 2.379584E-01 3.074511E-01 2.510722E-01 2.120359E-01 3.750590E-01
F9 3.796114E-01 4.244836E-01 3.566153E-01 3.274003E-01 4.482322E-01
F10 4.045055E-01 4.665105E-01 4.103516E-01 4.840923E-01 4.550165E-01

4.6.4. Influence of Crossover Rate (β)

The crossover rate β determines the probability of inheriting dimensional values from the ANN-
generated candidate. To study its influence, we compared a baseline LA-ABC with a high
crossover rate (β = 0.9) against variants with lower values. The results, shown in Table 15,
reveal a clear trend suggesting that a larger β value yields superior results. A possible reason
is that a higher crossover rate encourages the new solution to inherit more components from
the individual generated by the ANN, thereby enhancing the efficiency of knowledge transfer.
Consequently, we recommend and used β = 0.9 for the LA-ABC framework.

Table 15: Mean Performance Comparison Among LA-ABC Variants with Different Crossover Rates (β)

Function
LA-ABC
(β=0.9)

LA-ABC
(β=0.1)

LA-ABC
(β=0.3)

LA-ABC
(β=0.5)

LA-ABC
(β=0.7)

F1 2.130235E-02 3.705355E-01 8.710657E+00 1.005069E-01 1.814043E-01
F2 1.293950E+00 3.326158E-01 4.440857E-01 8.617009E+00 1.695548E-01
F3 8.585662E+00 8.387949E+00 1.562142E+01 9.359724E+00 9.467402E+00
F4 4.009893E-01 4.871681E-01 4.318813E-01 4.531926E-01 4.474446E-01
F5 2.016052E-01 6.344679E-01 4.067570E-01 8.232446E-01 8.724712E-01
F6 3.545876E-01 9.216884E-01 4.335742E-01 4.524366E-01 4.821592E-01
F7 1.490650E-01 2.382868E-01 2.299705E-01 1.782412E-01 2.399031E-01
F8 2.224101E-01 3.482511E-01 3.101095E-01 3.263959E-01 3.423063E-01
F9 3.187865E-01 4.664471E-01 3.972169E-01 3.544715E-01 4.450981E-01
F10 4.013545E-01 4.255157E-01 4.290829E-01 4.259694E-01 4.603753E-01

4.7. Ablation Study and Component Analysis

The proposed LA-ABC framework is predicated on the symbiotic relationship between two core
components: the learning engine (ANN) and the transfer mechanism (LCG operator). To rigor-
ously validate the necessity of this co-evolutionary design, we conducted a component isolation
analysis. The objective was to disentangle the contribution of predictive “intelligence” from the
structural efficacy of the generative operator.
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Experimental Design and Variants

We constructed four distinct experimental variants to isolate specific mechanisms within the
framework:

• standard ABC (Baseline). This represents the standard Artificial Bee Colony algorithm
without any learning or adaptive mechanisms. It serves as the control baseline.

• LA-ABC-DP (Direct Prediction / No LCG). In this variant, the Learning Engine is
active and trained on SEPs, but the LCG operator is disabled. The predicted offspring ŷ′

from the ANN is directly utilized to replace the parent solution, testing if prediction alone
is sufficient without stochastic perturbation.

• LA-ABC-BP (Blind Perturbation / No ANN). This variant utilizes the structural
equation of the LCG operator, but the “intelligence” is removed. The predictive term is
replaced by a random vector, isolating whether performance stems from learned knowledge
or merely the operator’s mathematical structure.

• LA-ABC (Proposed). The complete framework incorporating the symbiotic interaction
between the ANN-based predictive model and the LCG transfer operator.

Table 16: Comparative Ablation Study Results: Mean (and STD) on IEEE CEC 2019 Benchmark Functions.

Func. Standard-ABC
LA-ABC-DP
(No LCG)

LA-ABC-BP
(No ANN)

LA-ABC
(Proposed)

F1 2.525E+02 (1.406E+03) 5.107E+02 (3.952E+02) 8.541E+01 (2.898E+01) 2.542E-02 (6.153E-03)
F2 4.190E+03 (1.204E+03) 4.238E+03 (2.142E+03) 1.507E+03 (2.383E+02) 1.083E+00 (1.085E+00)
F3 9.327E+02 (3.737E+02) 9.976E+00 (7.431E-02) 9.150E+00 (8.475E-01) 5.777E+00 (3.098E-01)
F4 3.157E+02 (7.082E+02) 2.871E+01 (7.685E+00) 3.079E+01 (8.631E-02) 4.063E-02 (4.035E-02)
F5 1.349E+02 (2.632E+02) 4.441E+02 (0.000E+00) 4.445E+02 (5.658E-14) 1.976E+00 (0.000E+00)
F6 1.543E+02 (1.975E+02) 1.218E+00 (2.936E-01) 1.329E+00 (5.581E-01) 2.307E+00 (4.406E-01)
F7 4.300E+02 (3.732E+01) 1.358E+03 (1.258E+01) 1.258E+03 (1.865E+02) 7.961E+00 (9.304E+00)
F8 4.760E+02 (4.568E+01) 4.364E+00 (1.743E-01) 4.431E+00 (1.354E-01) 9.592E-02 (6.748E-02)
F9 3.519E+02 (8.968E+00) 1.221E+00 (7.700E-03) 1.185E+00 (5.374E-02) 1.243E+00 (7.036E-03)
F10 2.614E+02 (2.668E+01) 2.133E+01 (3.533E-02) 2.123E+01 (9.255E-03) 6.052E+00 (6.068E-02)

Analysis of Component Contributions

The empirical results summarized in Table 16, corroborated by the convergence trajectories in
Fig. 19, clearly demonstrate that neither the learning model nor the transfer operator is sufficient
in isolation.

First, the impact of removing intelligent guidance is evident in the performance of Blind
Perturbation. As observed in the logarithmic plots for F1 and F3 (Fig. 19a and 19c), this
variant exhibits early stagnation, confirming that the structural equation of the operator is in-
effective without the directional bias provided by the ANN. Second, the Direct Prediction
variant, while performing better than the baseline, lacks the necessary precision. The absence of
the LCG operator’s stochastic perturbation prevents the algorithm from fine-tuning the approx-
imate ANN predictions, leading to premature convergence on complex landscapes like F2.

In contrast, the Proposed LA-ABC displays a distinct convergence profile characterized by
a steep initial descent and sustained optimization capability. The graphical evidence in Fig. 19
shows that the full framework effectively escapes local optima where component-deprived variants
get trapped, validating the symbiotic design where the ANN provides the search direction and
the LCG operator ensures the necessary flexibility for effective exploitation.
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Figure 19: Ablation study: Convergence curve comparing the proposed LA-ABC against component-deprived
variants on functions F1–F4.

4.8. Computational Complexity Analysis

To rigorously assess the scalability of the proposed framework, we analyze both the time and
space complexity of LA-ABC. The analysis considers the worst-case scenario across the two
operational pathways (Swarm Exploration vs. Neural Exploitation). Let G be the maximum
number of generations, N be the population size, D be the dimensionality of the problem, A be
the fixed archive size, and Nh be the number of hidden neurons in the ANN (treated as a small
constant).

4.8.1. Time Complexity Analysis

The computational cost per generation is determined by the dominant operations in the algo-
rithm’s dual-pathway structure.

• Pathway A (Standard Swarm Exploration): The complexity of the canonical ABC
is governed by the Employed and Onlooker Bee phases. In each phase, the search equation
involves basic vector operations for N individuals. Thus, the complexity for this pathway
is linear with respect to the dimension, as expressed:

TABC ≈ O(N ·D) (10)

• Pathway B (Neural-Guided Exploitation): This pathway introduces additional com-
putational steps:
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1. Inference and Generation: Generating N candidate solutions via the ANN forward
pass requires O(N ·D ·Nh). Since Nh is a small constant, this simplifies to O(N ·D).

2. Model Training: The most computationally significant step is the in-situ adaptation
of the ANN using the A samples in the SEP Archive. The backpropagation algorithm
updates weights with a complexity proportional to the network size and training set,
resulting in O(A ·D ·Nh).

Consequently, the worst-case complexity per generation for the proposed method is defined
as:

TLA−ABC ≈ O(N ·D +A ·D) (11)

Combining the costs from Eq. (10) and Eq. (11) over G generations, the total time complexity
of the LA-ABC framework is formulated as:

O(Total) = O(G · (N ·D +A ·D)) (12)

4.8.2. Space Complexity Analysis

In addition to runtime, memory efficiency is critical for high-dimensional optimization. The
canonical ABC requires O(N · D) memory to store the population. The proposed LA-ABC
introduces two additional storage requirements: the SEP Archive (O(A · D)) and the Neural
Network weights (O(D ·Nh)).

Given that A and Nh are negligible compared to large-scale population sizes (A ≪ N), the
overall space complexity remains linearly bounded. As shown in Eq. (13), the memory footprint
scales linearly with D:

STotal ≈ O((N +A) ·D) (13)

This linear scaling ensures that LA-ABC remains applicable to large-scale engineering problems
without exhausting memory resources.

4.8.3. Summary and Cost-Benefit Justification

Table 17 summarizes the complexity comparison between LA-ABC and standard metaheuristics.

Table 17: Computational Complexity Comparison.

Algorithm Time Complexity Space Complexity Learning Overhead
(per generation)

Canonical ABC O(N ·D) O(N ·D) None
Std. PSO / DE O(N ·D) O(N ·D) None
Proposed LA-ABC O((N + A) · D) O((N + A) · D) Linear O(D)

Strategic Trade-off: As indicated in Eq. (12) and Table 17, the term O(A · D) represents
the additional cost of the Learning Engine. This is a deliberate architectural trade-off.
While the computational cost per iteration is marginally higher than the canonical ABC, the
central advantage lies in the convergence rate. The intelligent guidance provided by the ANN
significantly reduces the total number of generations (G) required to reach the global optimum.
Therefore, for complex high-dimensional problems, the Total Wall-Clock Time of LA-ABC is
often lower than that of stochastic blind-search algorithms, justifying the inclusion of the learning
module.
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5. Real-World Application

This section evaluates the performance of the proposed LA-ABC algorithm, alongside ABC, L-
DE, L-PSO, KLDE, KLPSO, KLJADE, and KL-TAPSO on a real-world optimization problem
known as the Photovoltaic (PV) Models [74, 75].

Accurate parameter estimation of PV models is crucial for predicting the current–voltage
(I–V) and power–voltage (P–V) characteristics of solar cells and modules. This task is inher-
ently non-linear and multi-modal, motivating the use of advanced metaheuristic optimization
algorithms. The parameter extraction problem is formulated for three widely used models: the
single-diode model (SDM), the double-diode model (DDM), and the PV Module-based Model
(PVM). The PV parameter extraction problem is challenging due to: (i) a nonconvex search
space with multiple local minima, (ii) strong interdependence among parameters (e.g., Rs and
Rsh), (iii) sensitivity to irradiance and temperature variations, and (iv) the requirement of high
accuracy near the maximum power point (MPP). These complexities require robust metaheuristic
algorithms that balance exploration and exploitation.

Single Diode Model (SDM)

The current–voltage relationship of the SDM is expressed as:

I = Iph − Io

(
exp

(
V + IRs

aVt

)
− 1

)
− V + IRs

Rsh

, (14)

where Iph is the photocurrent, Io is the diode reverse saturation current, Rs is the series resistance,
Rsh is the shunt resistance, a is the diode ideality factor, and Vt = kT/q is the thermal voltage.
The parameter set to be estimated is:

θSDM = {Iph, Io, a, Rs, Rsh}.

Double Diode Model (DDM)

The DDM introduces a second diode to better capture recombination losses:

I = Iph − Io1

(
exp

(
V + IRs

a1Vt

)
− 1

)
− Io2

(
exp

(
V + IRs

a2Vt

)
− 1

)
− V + IRs

Rsh

, (15)

with parameter set:
θDDM = {Iph, Io1, Io2, a1, a2, Rs, Rsh}.

PV Module-based Model (PVM)

For a module consisting of Ns cells in series and Np cells in parallel, the current is modeled as:

I = NpIph −NpIo

(
exp

(
V/Ns + IRs/Np

aVt

)
− 1

)
− V/Ns + IRs/Np

Rsh

, (16)

with parameter set:
θPVM = {Iph, Io, a, Rs, Rsh, Ns, Np}.

Objective Function

For all models, the accuracy of parameter estimation is evaluated using the root mean squared
error (RMSE) between experimental and simulated currents:

RMSE(θ) =

√√√√ 1

N

N∑
i=1

(Iexp,i − Isim,i(θ))
2, (17)
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where Iexp,i is the measured current, Isim,i(θ) is the simulated current from the model, and N is
the number of data points.

Thus, the optimization problem is formulated as:

θ∗ = argmin
θ

RMSE(θ). (18)

This formulation introduces Ns as an additional model parameter, enabling more accurate
simulation of PV modules under varying operating conditions. Figure 20 shows the equivalent
circuits of the three PV models.

+
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Figure 20: Equivalent circuit of three PV models.

Extracted Parameter Evaluation (Performance Analysis)

To evaluate the reliability and effectiveness of the proposed LA-ABC algorithm, the extracted
PV parameters are compared against the standard ranges reported in the literature. This ensures
both physical interpretability and practical consistency of the modeled results.

From Table 18, it is evident that all extracted values fall within the expected ranges, validating
the effectiveness of the proposed optimization strategy. The combination of low Rs, high Rsh, and
an ideality factor near unity confirms that LA-ABC produces physically meaningful solutions,
while the very low RMSE emphasizes its capability to accurately replicate the I–V characteristics.

As seen in Table 19, LA-ABC achieves the lowest fitness value (2.564 × 10−7), confirming
its superior precision in parameter estimation. Compared to conventional ABC, DE, and PSO
variants, as well as KL-based, LA-ABC consistently produces better parameter sets with higher
fidelity. The extracted Iph and I0 values highlight its effectiveness in modeling illumination
and leakage behavior, while the near-optimal resistances and ideality factor ensure physically
meaningful outcomes.

The graphical results presented in Figure 21, clearly validate the effectiveness of the proposed
LA-ABC algorithm in the estimation of photovoltaic parameters. The convergence curve high-
lights its rapid and stable optimization behavior, reaching high accuracy with minimal function
evaluations. The residual distribution confirms uniformly small deviations without systematic
bias, demonstrating reliable predictive capacity. Likewise, the absolute error profile shows con-
sistently low discrepancies across the voltage range, reflecting precise alignment between experi-
mental and estimated I–V data. Finally, the comparison of extracted parameters illustrates the
physical consistency of the obtained values with standard expectations, further confirming the
robustness and accuracy of LA-ABC in modeling complex PV characteristics.
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Table 18: Comparison of Extracted PV Parameters by LA-ABC with Standard Ranges

Parameters LA-ABC Standard Range Interpretation

Iph (A) 8.9779 5–9 The photocurrent value is near the upper
bound of the standard range, indicating
strong light absorption and efficient car-
rier generation. This reflects enhanced re-
sponse to solar irradiance and improved
energy conversion efficiency.

I0 (A) 6.9681× 10−8 10−10–10−6 The reverse saturation current falls well
within the expected range, implying neg-
ligible recombination losses. The very low
value demonstrates superior diode quality
with minimal leakage currents.

Rs (Ω) 0.1013 0.01–0.15 The series resistance lies in the optimal
band, ensuring minimal resistive losses.
Such a low Rs contributes to a higher fill
factor and improved maximum power out-
put.

Rsh (Ω) 996.9 100–1000+ The shunt resistance is close to the higher
end of the range, signifying suppressed
leakage pathways across the junction. A
high Rsh improves open-circuit voltage
and enhances overall reliability of the PV
module.

n 1.7831 1–2 The ideality factor lies within the theo-
retical limits. Its proximity to unity in-
dicates that the diode closely follows the
ideal diode equation, thereby increasing
the fidelity of the extracted model.

RMSE 1.4632× 10−3 10−4–10−2 The very low RMSE value confirms an ex-
cellent match between the modeled and
experimental I–V data, highlighting the
robustness and precision of LA-ABC in
parameter extraction.

6. Discussion, Limitations, and Future Research Direc-

tions

The proposed LA-ABC framework introduces a learning-assisted strategy into the ABC algo-
rithm, where adaptive learning mechanisms guide the search process to improve balance between
exploration and exploitation. By embedding experience-driven updates, LA-ABC enhances con-
vergence stability, avoids premature stagnation, and ensures efficient navigation across complex
search landscapes. Experimental studies on state-of-the-art benchmark functions, the IEEE
CEC 2019 benchmark suite, and real-world engineering applications such as photovoltaic (PV)
model parameter extraction validate its ability to achieve superior optimization performance
with robust adaptability.

Compared to the standard ABC and other recently state-of-the-art algorithms, LA-ABC
demonstrates faster convergence and improved solution quality, particularly on high-dimensional
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Table 19: Comparison of Extracted PV Parameters and Fitness Values across Algorithms

Algorithm Best Fitness Iph (A) I0 (A) Rs (Ω) Rsh (Ω) n

LA-ABC 2.564× 10−7 8.9779 6.9681× 10−8 0.1013 996.9 1.2737

ABC 7.643× 10−4 4.8759 6.346× 10−7 0.1342 706.397 1.7987

L-DE 4.574× 10−5 6.9564 5.284× 10−7 0.2876 785.982 1.694

L-PSO 4.735× 10−5 6.6231 5.002× 10−7 0.2387 456.466 1.8971

KLDE 9.585× 10−4 5.9337 8.694× 10−7 0.3641 517.427 1.6786

KLPSO 3.365× 10−4 4.8736 4.662× 10−8 0.1265 723.283 1.6331

KLJADE 1.763× 10−4 6.6728 1.689× 10−7 0.1589 505.165 1.6345

KL-TAPSO 4.128× 10−4 6.0582 4.768× 10−6 0.3257 579.668 1.7832
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Figure 21: Graphical evaluation of LA-ABC for PV parameter extraction.

and nonlinear problems. In the photovoltaic parameter extraction task, the framework produces
highly accurate and physically consistent parameter estimates while maintaining low residual
and error values, confirming its practical reliability. The integration of learning-assisted adapta-
tion enables the algorithm to accumulate experience and dynamically guide the colony’s search,
thereby reinforcing successful search behaviors and reducing ineffective exploration.

Despite these strengths, LA-ABC also presents certain limitations. Its performance can be
sensitive to fixed hyperparameters such as the learning rate and training epochs used for the
learning module. These parameters, while effective in the present study, may not generalize
across all problem domains and often require problem-specific tuning. Additionally, the use of
a static learning structure may limit adaptability in highly irregular or hierarchical landscapes,
where more flexible learning architectures could better capture problem complexity. The added
computational cost introduced by the learning component also poses challenges for real-time or
large-scale optimization scenarios.

To address these limitations, future research may explore dynamic or self-adaptive learning
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mechanisms that adjust hyperparameter automatically during the optimization process. Em-
ploying lightweight or incremental training models could reduce computational overhead while
maintaining effective learning capacity. Further, hybridizing LA-ABC with complementary meta-
heuristics or embedding advanced knowledge transfer strategies could expand its applicability to
constrained, multimodal, and large-scale optimization problems. Extending the framework to-
ward multitask and time-varying problem domains, as well as leveraging parallel and distributed
computing architectures, may further enhance its scalability and practical utility.

In summary, LA-ABC offers a promising advancement in evolutionary computation, combin-
ing the simplicity of ABC with adaptive learning-driven guidance. Its strong performance on
both benchmark functions and real-world PV modeling tasks highlights its potential for broader
adoption and motivates future work on enhancing adaptability, scalability, and domain-specific
applications.

7. Conclusion

This study presents the LA-ABC framework, a learning-assisted variant of the ABC algorithm
designed to enhance convergence efficiency, adaptability, and robustness across complex opti-
mization landscapes. By incorporating adaptive learning into the ABC framework, LA-ABC
systematically exploits past search experiences, balances exploration and exploitation more ef-
fectively, and maintains population diversity to mitigate stagnation. The proposed approach
preserves the simplicity of ABC while significantly strengthening its capacity to handle nonlin-
ear, high-dimensional, and real-world optimization challenges.

Comprehensive evaluations conducted on standard benchmark functions, the IEEE CEC 2019
benchmark suite, and the challenging task of photovoltaic (PV) model parameter extraction
confirm the superiority of LA-ABC over conventional ABC and other recent 11 state-of-the-art
metaheuristics (including L-SHADE, JSO, RL variants and KL variants). In the PV modeling
problem, LA-ABC demonstrates its effectiveness by accurately estimating critical physical pa-
rameters Iph, I0, Rs, Rsh, and n with extracted values consistent with theoretical and practical
expectations. The resulting low series resistance, high shunt resistance, and an ideality factor
near unity validate the electrical soundness of the obtained model. Furthermore, the algorithm
achieves minimal residual and absolute error values, as well as rapid and stable convergence,
underscoring its predictive reliability and practical applicability.

Statistical analyses using the Wilcoxon Rank-Sum, Friedman post hoc, Bonferroni-Dunn, and
ANOVA tests further confirm the robustness and significance of the performance gains achieved
by LA-ABC. Compared to state-of-the-art approaches, LA-ABC consistently attains lower fitness
errors and exhibits faster, more stable convergence behavior, making it a reliable and versatile
tool for solving both synthetic and real-world optimization tasks.

Looking ahead, future research can extend the LA-ABC framework to address multimodal,
multitask, many-objective, and large-scale optimization problems. Investigating adaptive learn-
ing structures or lightweight models will help reduce computational costs while maintaining
high solution quality. Additionally, embedding self-adaptive parameter tuning strategies and hy-
bridizing LA-ABC with complementary metaheuristics may further enhance its scalability and
generalization.
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[18] J. Brest, M. S. Maučec, B. Bošković, Single objective real-parameter optimization: Algo-
rithm jso, in: 2017 IEEE congress on evolutionary computation (CEC), IEEE, 2017, pp.
1311–1318.

[19] F. Lezama, J. Soares, R. Faia, Z. Vale, Hybrid-adaptive differential evolution with decay
function (hyde-df) applied to the 100-digit challenge competition on single objective numer-
ical optimization, in: Proceedings of the genetic and evolutionary computation conference
companion, 2019, pp. 7–8.

[20] J. J. Liang, L. Guo, R. Liu, B.-Y. Qu, A self-adaptive dynamic particle swarm optimizer,
in: 2015 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2015, pp. 3206–3213.

[21] A. Ratnaweera, S. K. Halgamuge, H. C. Watson, Self-organizing hierarchical particle swarm
optimizer with time-varying acceleration coefficients, IEEE Transactions on evolutionary
computation 8 (3) (2004) 240–255.

[22] X. Xia, L. Gui, F. Yu, H. Wu, B. Wei, Y.-L. Zhang, Z.-H. Zhan, Triple archives particle
swarm optimization, IEEE transactions on cybernetics 50 (12) (2019) 4862–4875.

[23] W. Liu, Z. Wang, Y. Yuan, N. Zeng, K. Hone, X. Liu, A novel sigmoid-function-based
adaptive weighted particle swarm optimizer, IEEE transactions on cybernetics 51 (2) (2019)
1085–1093.

[24] Y. Jiang, Z.-H. Zhan, K. C. Tan, J. Zhang, Knowledge learning for evolutionary computa-
tion, IEEE transactions on evolutionary computation (2023).

[25] K. C. Tan, L. Feng, M. Jiang, Evolutionary transfer optimization-a new frontier in evo-
lutionary computation research, IEEE Computational Intelligence Magazine 16 (1) (2021)
22–33.

[26] X. Xue, C. Yang, L. Feng, K. Zhang, L. Song, K. C. Tan, Solution transfer in evolutionary
optimization: An empirical study on sequential transfer, IEEE Transactions on Evolutionary
Computation 28 (6) (2023) 1776–1793.

[27] Y. Guo, G. Chen, M. Jiang, D. Gong, J. Liang, A knowledge guided transfer strategy
for evolutionary dynamic multiobjective optimization, IEEE Transactions on Evolutionary
Computation 27 (6) (2022) 1750–1764.

[28] I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep learning, Vol. 1, MIT press Cam-
bridge, 2016.

ACCEPTED MANUSCRIPTARTICLE IN PRESS

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



[29] K. O. Stanley, J. Clune, J. Lehman, R. Miikkulainen, Designing neural networks through
neuroevolution, Nature Machine Intelligence 1 (1) (2019) 24–35.

[30] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, R. Qu, Hyper-
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