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Abstract

With the growing need for intelligent decision-support systems, the development of high-quality 
knowledge graphs has become essential for improving operational efficiency and decision 
reliability. However, the specialized nature, distributed sources, and sensitive aspects of this 
knowledge present unique challenges to conventional knowledge management approaches. 
Current general-purpose large language models often struggle with domain-specific text 
comprehension, particularly in accurately interpreting technical parameters and operational 
guidelines. To address these limitations, this paper introduces a framework for building and 
refining specialized knowledge graphs using adapted large language models. Our approach 
involves fine-tuning base LLMs with domain-specific datasets, enabling them to better handle 
complex terminology and semantic nuances. The framework incorporates a multimodal 
knowledge integration pipeline that combines rule-based systems with ontological structures to 
extract and link entities from diverse data sources, creating an adaptive knowledge network. 
Experimental results demonstrate that our fine-tuned model achieves substantial gains in 
relationship extraction accuracy, while the resulting knowledge graph shows strong performance 
in semantic coherence and operational reasoning assessments, offering robust support for critical 
decision-making processes. This research presents a novel approach for effective knowledge 
integration and cross-functional collaboration in specialized domains.

Keywords: Knowledge Graph, Adapted Large Language Model, Multimodal Knowledge 
Integration, Operational Decision Support, Dynamic Knowledge Network

1. Introduction

In modern operational decision-making systems, the demand for intelligent support 
has surged due to increasingly complex environments and accelerated technological 
evolution. The effectiveness of critical decision processes directly impacts strategic 
outcomes, particularly in scenarios requiring multi-domain coordination where 
commanders must rapidly synthesize information from vast, heterogeneous datasets to 
formulate precise operational plans. Domain knowledge is typically dispersed across 
operational manuals, technical documentation, sensor data, and historical case studies, 
encompassing specialized content including system parameters, operational guidelines, 
and environmental intelligence. This fragmentation creates integration challenges that 
can compromise decision quality.

* Corresponding author: Li Peng. Tel.: +86-18210260981.
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Knowledge graphs (KGs) offer a structured solution [1], representing information as 
interconnected entity-relationship triples (head, relation, tail) that form semantic 
networks. While successful in general domains (WordNet, DBpedia [2-5]) and 
applications like information retrieval [6-8], KG construction in specialized contexts 
presents unique challenges: (1) highly distributed and dynamic knowledge; (2) limited 
data accessibility; (3) real-time update requirements; and (4) domain-specific semantic 
complexity.

However, Constructing knowledge graphs in specialized domains presents notable 
challenges: the knowledge is highly dispersed and dynamic, encompassing 
heterogeneous data such as technical parameters, operational rules, and spatial 
intelligence; data sensitivity limits public resource availability, with critical information 
often residing in restricted internal documents; operational logic and system status can 
change in real time according to field conditions, making traditional static knowledge 
graphs unsuitable for dynamic updates; and the domain-specific terminology causes 
general-purpose NLP models to have limitations in semantic understanding.

Existing methods exhibit significant shortcomings in specialized knowledge 
management. While general-purpose LLMs possess strong text comprehension 
capabilities, their accuracy in entity and relationship extraction drops significantly when 
dealing with domain-specific terms (e.g., technical codes, operational abbreviations) 
and unstructured text (e.g., spatiotemporal descriptions in reports) [9]. Traditional rule 
engines rely on manually defined patterns, making adaptation to dynamic data difficult 
[10], while statistical learning-based models are constrained by scarce labeled data and 
limited domain transferability [11]. Additionally, data sensitivity complicates cross-
departmental knowledge sharing, exacerbating information silos. In this context, 
constructing a high-quality, dynamically updated knowledge graph and ensuring its 
reliable application in decision-making becomes a core challenge.

To address these issues, this paper proposes a knowledge graph construction 
framework that integrates domain-adapted LLMs with multimodal knowledge fusion. 
First, a general-purpose LLM is fine-tuned using domain-specific corpora to enhance its 
ability to identify entities and complex relationships, such as technical specifications, 
operational rules, and environmental factors. For example, the model can parse implicit 
compatibility logic in manuals or extract spatiotemporal relations from reports. Second, 
a multimodal knowledge extraction pipeline integrates text, images, structured 
databases, and other multi-source data, combining ontology constraints and rule 
engines to build a dynamic knowledge network. Finally, the knowledge graph is 
validated using real-world exercise data, with evaluation experiments assessing 
semantic consistency, reasoning support, and update efficiency. While the architecture 
defines adapters for images, tables/structured sources, and time-series logs, the current 
experiments activate the text branch only.

The main contributions of this study are as follows:
(1) Task-aware domain fine-tuning protocol. We introduce a Knowledge Routing 

Network that guides a hierarchical LoRA schedule for domain tasks, selecting adapters 
and parameter scopes to turn parameter-efficient tuning into a task-aware adaptation 
mechanism—beyond the independent use of LoRA, CoT, or RAG.

(2) Privacy-preserving dataset generation pipeline. We design a desensitization 
workflow for real exercise data—covering entity generalization, functional coding, and 
controlled masking—to produce training and evaluation sets that preserve utility while 
meeting security constraints.

(3) Transparent graph-quality assessment and attribution. We report 
precision/recall/F1 for entity and relation extraction and coverage/structure metrics of 
the graph (average degree, edge density, clustering coefficient, update latency), 
together with a reproducible ablation protocol that attributes gains to individual 
modules rather than to generic techniques.

The rest of this paper is organized as follows: Section 2 reviews the current research 
on domain knowledge graphs and large language models; Section 3 details the domain 
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fine-tuning methods and knowledge graph construction framework; Section 4 presents 
the implementation of the graph and results from multidimensional evaluation 
experiments based on real data; Section 5 summarizes the research findings and 
discusses future directions.

2. Related Work

2.1. Classical Knowledge Graph Construction Methods

Knowledge graph construction has evolved from manual efforts to intelligent 
automation. Early methods relied on expert knowledge; for example, WordNet [12][13] 
defined semantic relationships through linguistic annotation, yielding high accuracy but 
low scalability. In structured or semi-structured scenarios, rule-based methods like 
DBpedia [14][15] extracted triples from Wikipedia infoboxes using predefined rules. 
Though efficient for fixed-format data, such approaches struggle with the complex 
semantics of natural language [35].

With deep learning advancements, neural network-based techniques have enhanced 
automation [16][17]. In NER tasks, tools such as SpaCy, NLTK, and ltp [18][19] blend 
rules and statistical models, while BiLSTM-CRF [20] improves sequence labeling via 
contextual learning. Pre-trained models like BERT [21] further optimize performance, 
especially in cross-lingual settings [22][23], and domain-specific fine-tuning [24–27] 
significantly enhances the recognition of specialized terminology.

For RE tasks, CNNs [28][29] improve classification by extracting local features, while 
distant supervision [30] enables automatic labeling but introduces noise. Sentence-level 
attention mechanisms [31] reduce this by weighing relevant context. Recent 
frameworks incorporating entity masking and contrastive pretraining [32] further 
enhance robustness. PEFT-based methods [33] and tools like OpenNRE [34] offer 
scalable and adaptable RE solutions.

Despite progress, limitations remain in domain applications: manual and rule-based 
methods cannot handle large-scale, unstructured data or deep semantics [35]; deep 
models require labeled data, which is scarce in restricted domains; and traditional full-
parameter tuning is costly and lacks efficiency [36]. This paper proposes integrating 
LLMs to overcome these barriers in specialized KG construction.

2.2. Domain Adaptation of LLMs

Large-scale pre-trained LLMs have become a core paradigm in NLP due to their 
powerful semantic capabilities. Models like GPT-4 and LLaMA-3, with trillions of 
parameters, learn cross-task generalization via large-scale pretraining and subsequent 
task-specific fine-tuning [37]. However, as model size grows, full-parameter fine-tuning 
faces issues such as high GPU memory demand and significant computational overhead. 
For instance, fine-tuning LLaMA2-7B requires around 60GB of GPU memory [38], and 
storage burdens increase sharply in multi-task contexts. Moreover, full updates can 
degrade the model’s general knowledge [39], limiting effectiveness in specialized 
domains. To overcome these challenges, Parameter-Efficient Fine-Tuning (PEFT) has 
gained prominence by updating only a small fraction of parameters.

LoRA inserts low-rank matrices into Transformer layers, enabling adaptation with just 
0.1% of the total parameters. Hu et al. [40] applied LoRA to GPT-3 175B, reducing 
trainable parameters by 10,000x while retaining inference speed. This method has been 
deployed in scenarios like GPT4Tool for tool invocation [41]. Adapter modules embed 
lightweight networks into model layers, as in Houlsby et al.’s BERT extension [42], 
requiring under 1% extra parameters. However, stacking adapters may increase 
inference latency. Prefix-tuning, as introduced by Li et al. [43], optimizes continuous 
prefix vectors to guide outputs, achieving strong performance in low-resource tasks. 
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Other methods such as soft prompts [44], BitFit [45], and QLoRA [46] balance memory 
efficiency and task adaptability through selective parameter updates and quantization.

Beyond fine-tuning algorithms, domain adaptation also depends on effective 
knowledge injection and architecture design. In rail transportation, a high-speed rail 
maintenance KG improves fault diagnosis via multi-level completion [47]. For 
infrastructure management, BMKG applies graph mining to support classification and 
decision-making [48]. In safety analysis, knowledge graphs uncover causal accident 
chains using semantic reasoning [49]. Integrating domain triples as pseudo-text [50] or 
combining multimodal data like sensor logs [51] enhances model specialization and 
cross-modal understanding.

Recent studies further adapt large models for open-domain extraction. UniversalNER 
[55] introduces targeted distillation from LLMs to improve open NER under limited 
supervision, while BANER [56] leverages boundary-aware strategies to enhance few-
shot entity recognition. For relations, Wang et. al. [57]  explores cooperating LLMs with 
phrase-level probabilistic modeling for open relation extraction. These methods advance 
NER/RE capabilities at the instance level. Our work is complementary but differs in 
scope: we use a Knowledge Routing Network (KRN) to guide hierarchical LoRA for 
domain tasks and couple LLM extraction with ontology and rule constraints, triplet 
validation, and graph-level quality metrics and ablation attribution, targeting a 
reproducible KG construction–validation pipeline in sensitive domains.

Despite progress, sensitive domains still face barriers due to data access limitations. 
Tasks such as complex information extraction or situational analysis often involve 
unstructured and restricted data, limiting large-scale model training. Future research 
should focus on privacy-preserving fine-tuning, structured knowledge injection, and 
logic-constrained optimization to enable the secure and efficient deployment of LLMs in 
high-stakes application scenarios.

2.3. Knowledge Graph Construction Based on LLMs

In recent years, large-scale language models (LLMs) such as GPT-4, LLaMA, and 
PaLM have become key enablers of automated knowledge graph (KG) construction, 
owing to their strong semantic understanding and reasoning capabilities [37]. 
Traditional KG construction methods—based on manual annotation, rule engines, or 
small-scale pre-trained models—suffer from high cost and poor scalability. In contrast, 
LLMs leverage vast pretrained corpora to extract structured knowledge from 
unstructured text, offering a new paradigm. For instance, GPT-3 has shown near-expert 
performance in open-domain relation extraction, particularly in handling long-tail 
semantics, outperforming supervised models [38]. This has spurred research into 
prompt-based and in-context learning methods to guide LLMs in entity recognition, 
relation extraction, and logical validation, reducing reliance on labeled data.

LLM-based frameworks often reframe KG construction as a text-to-structure task. 
REBEL [52], for example, directly generates entity-relation triples without predefined 
ontologies or rules, achieving 1.8× the coverage of traditional approaches on Wikipedia. 
Another line of work integrates symbolic reasoning with LLMs through Chain-of-
Thought (CoT) prompting, enabling interpretable, step-wise extraction of triples [53].

In specialized domains, LLM-driven KG construction has shown promising results. 
ClinicalKG [54] parses EHRs using GPT-4 to build a disease-symptom-drug network, 
achieving 89% accuracy in FDA-level drug interaction evaluations. FinGraph [55] 
extracts dynamic financial relationships and market risks from reports and news to 
support regulatory and investment decisions. In the industrial domain, a high-speed 
railway maintenance KG employs a multi-level KBGC framework and LLM-based log 
parsing to uncover equipment states and fault chains.

Despite these advances, applying LLMs in high-security or domain-constrained 
contexts remains challenging. General LLMs often underperform in specialized 
information extraction. In particular, KG construction in certain restricted domains is 
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still in an exploratory phase, lacking mature methodologies. This study aims to bridge 
that gap by integrating LLM language capabilities, domain adaptation techniques, and 
CoT reasoning with traditional KG methods to design an automated framework tailored 
to secure and specialized knowledge environments.

3. Methods

3.1. Parameter-efficient Fine-tuning of LLMs in the Domain

3.1.1. Construction of a Multi-source Corpus
This study focuses on the training requirements of large-scale pre-trained models in 

the domain, aiming to construct a high-quality, structured training corpus that can 
support multi-task adaptation. Successful deployment of LLMs in the domain relies on 
datasets that are rich in background information, highly reliable, and well-structured. 
These datasets must not only cover the complex needs of tasks such as tactical decision 
support, threat assessment, and related-knowledge question answering, but also 
establish a robust knowledge-sharing mechanism within the dataset. To this end, this 
study integrates multi-source, heterogeneous data into a unified training dataset, 
adopting a standardized data architecture to ensure that the training set can 
comprehensively support instruction fine-tuning, multi-task joint training, and 
continuous learning requirements.

In the data collection process, this study integrates various data sources to ensure 
that the corpus fully covers the critical tasks of tactical planning, equipment 
configuration, threat assessment, and communication command parsing. These data 
include tactical command communication logs, equipment technical documents, 
battlefield simulation data, and theoretical literature. The tactical command 
communication logs are transformed into instruction chains with time-domain labels 
through multi-level semantic parsing techniques, while incorporating tactical 
background descriptions and execution feedback records, providing complete 
information about the instruction execution process to assist in subsequent task analysis 
and optimization. The equipment technical documents are processed to construct 
matching rules between equipment performance and combat environments, providing 
key data support for equipment configuration decision-making tasks. The battlefield 
simulation data is decomposed into decision tree structures, with each node labeled 
with the probability of selection conditions and expected outcomes, effectively 
supporting the training requirements of tactical decision-making. The theoretical 
literature is structurally analyzed and converted into tactical rule explanation texts, 
establishing traceable logical mappings with historical campaign databases, providing 
a solid foundation of knowledge, especially crucial for question answering tasks.

While ensuring data diversity, this study implements a stringent desensitization 
system in the data processing phase, considering the high sensitivity of data. All raw 
data undergo semantic-level reconstruction and desensitization. Specifically, entities 
are standardized through a generalized transformation guided by a knowledge graph. 
For example, geographical coordinates are converted into relative position descriptions, 
unit organizational identifiers are transformed into functional operational unit codes, 
and equipment technical parameters are mapped to a standardized grading system. To 
further enhance data security and privacy protection, this study also integrates a virtual 
adversarial simulation engine, which reconstructs the abstract expression of core 
tactical logic through a probabilistic masking mechanism, ensuring that the original 
data distribution features are protected while reducing the risk of data leakage. The 
processed data undergoes semantic coherence verification and logical conflict detection 
to ensure data purity and quality, ultimately forming high-quality semantic units.

In terms of data architecture design, this study adopts an enhanced nested JSON 
structure to ensure the data can efficiently and flexibly support multi-task joint training. 
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Each data unit contains three main modules: the global situational framework, the task 
branch set, and the cross-domain indexing system. The global situational framework 
standardizes the description of the battlefield environment, with core fields including 
the classification of operational stages, dynamic enemy-force comparison, geographical 
constraint matrices, and task goal decomposition trees. These fields provide the model 
with necessary tactical context, help establish a shared semantic foundation across 
different tasks, and enhance multi-task adaptation capabilities. Specifically, the 
classification of operational stages helps the model understand the temporal features of 
tasks, the dynamic enemy-force comparison enables the model to quickly grasp the 
battlefield power dynamics, the geographical constraint matrices offer geographical 
limitations within the operational area, and the task goal decomposition trees break 
down the task into detailed steps, providing structured support for executing different 
tasks.

The task branch set divides different input-output structures according to the 
functional type of each task, focusing on supporting five core tasks: tactical planning, 
threat assessment, equipment configuration decision-making, instruction parsing, and 
question answering. The training data for each task is specifically designed according 
to its functional requirements. For example, the tactical planning task needs to generate 
decision paths that comply with operational orders, so the task branch includes details 
such as stage goal breakdown, resource scheduling plans, and contingency plans. The 
threat assessment task focuses on constructing a dynamic risk coefficient matrix, 
integrating multi-source intelligence and risk assessment models, providing the model 
with precise battlefield situation judgment. The instruction parsing task transforms 
natural language commands into executable operation codes, helping the model achieve 
automatic execution and optimization of tactical commands. The question answering 
task relies on high-quality knowledge sources, such as operational orders, equipment 
technical white papers, and historical campaign reviews, combining manual expert 
reviews and automated knowledge extraction to generate high-quality Q&A pairs, 
ensuring the standardization and credibility of the samples. Each task branch not only 
specifies the input-output format of the task but also provides in-depth descriptions of 
different functional needs, ensuring the accuracy and flexibility of the training model in 
various task scenarios.

The cross-domain indexing system establishes knowledge-sharing pathways between 
tasks through the global situational framework, allowing context to permeate the 
training processes of other tasks. This design not only significantly enhances task 

Table1. Details of the dataset design

Task 
Category

Function Description
Data 

Proportion
Core Characteristics

Q&A
Answer questions about tactical 

principles and equipment 
characteristics

40%
Includes authoritative clause 

references and multi-condition 
applicable rule descriptions

Tactical 
Planning

Generating decision paths that 
comply with combat orders

25%
Includes stage goal breakdown, 
resource allocation plans, and 

contingency plans

Threat 
Assessment

Dynamically quantifying 
battlefield risk factors

20%

Integrated multi-source 
intelligence in a matrix evaluation 

model with a weighted scoring 
system

Equipment 
Configuration

Optimizing technical parameter 
combinations for combat units

10%

Based on task objectives, 
equipment performance 

constraints, and compatibility with 
the operational environment

Communicatio
n Command 

Parsing

Converting natural language 
commands into executable code

5%
Includes standardized tactical 
action mappings and temporal 
logic relationship annotations
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coordination but also optimizes data flow and knowledge sharing during training, 
helping the model better understand the inherent relationships between different tasks, 
thus further improving its overall performance.

A typical training data sample intuitively demonstrates the corpus's ability to support 
multiple tasks. In this sample, the functionality of all modules is effectively reflected. 
The global situational module provides a complete description of battlefield 
environment features and force composition, while the task branch module defines input 
constraints and output specifications for different tasks through structured parameters, 
particularly in the design of question answering and tactical planning tasks. The task 
includes not only authoritative answers to specific tactical questions but also binds 
relevant legal references and dynamic adjustment rules; the tactical planning task 
refines key nodes of action steps through a standardized hierarchical structure. This 
sample shows how data structuring ensures that different task types can share basic 
battlefield situation data and independently define functional requirements for 
specialized domains, significantly reducing the complexity of multi-task training and 

optimizing task coordination effects.
Table 1 further supplements the specific details of the dataset design, showing the 

proportion and core features of each task. The task proportions and core features in the 
table indicate the weight and requirements of each task in the overall dataset. For 
example, the question answering task accounts for 40% of the corpus, reflecting its 
dominant position in the entire training system. In this task, authoritative clause 
references and multi-condition applicable rule descriptions are its core features. The 
proportions of the tactical planning and threat assessment tasks are next, at 25% and 
20%, respectively, highlighting the importance of tactical decision-making and 
situational assessment in applications. Equipment configuration decision-making and 
communication instruction parsing tasks have smaller proportions, at 10% and 5%, but 
they still hold significant value in specific application scenarios.

The setting of task proportions and core features ensures the balance and 
professionalism of the dataset in various task domains, while providing theoretical 
support for data allocation and task prioritization during training. Through refined task 
planning and data partitioning, this study not only ensures that different task types can 
share basic battlefield situation data but also allows them to independently define 
functional requirements in their respective fields. This significantly reduces the 
complexity of multi-task training and effectively improves the model's training efficiency 
and generalization ability. The combination of this design concept and the table content 
reflects the supportive relationships and differentiated distribution between tasks, 
thereby enhancing the training quality of each task module and the accuracy of task 
execution.

Through the approach outlined above, this study has constructed a unified training 
dataset capable of effectively supporting multi-task training for domain LLMs. This 

Fig1. The principle of LoRA
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dataset ensures in-depth integration of multi-source intelligence while systematizing 
knowledge through a structured data production process, providing a solid foundation 
for artificial intelligence applications in the domain. Particularly in the multi-task joint 
training model, the corpus design guarantees adaptability and data sharing, 
significantly enhancing the generalization ability and decision-making accuracy of the 
model. It is anticipated that this dataset will improve tactical decision-making 
capabilities and operational efficiency.in intelligent decision-support systems.

The datasets originate from sensitive exercises, so we apply a privacy-preserving 
workflow before any model access: entity generalization and pseudonymization, 
functional coding of organizational units, probabilistic masking or light rephrasing of 
high-risk snippets, and manual review. To balance collaboration and privacy, processing 
occurs in a controlled environment with role-based access, audit logging, and data 
minimization. External partners access de-identified corpora under data-use 
agreements; model artifacts, prompts, and code are shareable, while raw data remain 
on-premise. For cross-site validation, we use a “bring-the-code-to-the-data” or federated 
run approach so that only aggregate metrics leave the site. We monitor privacy using k-
anonymity (≥5) and ℓ-diversity (≥2) checks for any released subsets, and apply 
aggregate-only reporting where required.
3.1.2. LoRA Adaptation Framework for Domain Knowledge

The hierarchical LoRA adaptation framework proposed in this study is based on the 
hierarchical nature of domain knowledge, with a structured low-rank parameter 
architecture as the core innovation. Its goal is to achieve a balance between lightweight 
fine-tuning of LLMs and multi-task adaptability. This framework deeply integrates the 
multi-source corpus described in Section 3.1.1, leveraging its global situational 
description feature vectors to construct input prior knowledge. Additionally, it optimizes 
hierarchical module parameters driven by the data labels of subdivided task branches, 
and strengthens inter-module collaboration through metadata mapping in the cross-
domain indexing system. The framework effectively addresses the limitations of 
traditional LLMs in knowledge transfer and task generalization through a hierarchical 
parameter reorganization mechanism, providing support for rapid adaptation and 
precise decision-making in complex battlefield environments. The principle of LoRA is 
illustrated in Figure 1.

The framework adopts a hierarchical decomposition strategy, mapping entity 
representations, operational logic, and decision paths to three LoRA module clusters—
BM-LoRA, TL-LoRA, and TA-LoRA. The BM-LoRA module forms a semantic network of 
domain concepts, integrating multi-modal term features via collaborative attention. 
During training, it aligns documentation with spatial data, establishing semantic links 
between movement vectors and terrain features. For instance, when analyzing force 
comparison data, the model extracts terrain gradients and equipment parameter 
thresholds to support spatial constraints in decision-making.

The TL-LoRA module embeds operational rules through differentiable structures, 
incorporating a real-time verification unit that adjusts constraint boundaries. In general 
tasks, deployment safety zones are prioritized; in specialized scenarios, such as dense 
terrain or close-quarter operations, coverage and mobility parameters are adjusted 
dynamically to maintain feasibility in complex environments.

The TA-LoRA module enables dynamic task adaptation using a hot-cold parameter 
storage strategy. High-frequency tasks are cached at the edge for real-time planning, 
while low-frequency task parameters are compressed and stored remotely, with secure 
incremental loading. For tasks such as aerial security, the module integrates sensor 
feature links with predictive decision paths, forming scenario-specific parameter sets.

At the core is the Knowledge Routing Network (KRN), which acts as the controller 
that converts operational inputs into routing decisions for the extraction modules. KRN 
comprises a parsing layer that derives mission-phase markers and feature matrices, an 
association engine that aligns these features with ontology knowledge and past-case 
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data to form knowledge tags, and a decision circuit that selects the task, chooses the 
appropriate LoRA adapter and parameter scope for the large language model, and 
adjusts settings in real time. The circuit applies lightweight pruning to reduce latency 
while preserving accuracy.

Training follows a phased approach. Initially, foundational representations are 
trained using non-sensitive data and contrastive learning to link equipment traits with 
effectiveness metrics. Next, rule verification is introduced, incorporating constraint 
violation cases to guide convergence. Finally, a scenario engine generates mixed 
training samples, and masking techniques preserve task focus. Gradient updates use a 
domain-optimized version of AdamW, with adaptive learning rate tuning and concept 
stability protection to enhance robustness.

Overall, the framework enables effective knowledge transfer for LLMs through 
modular parameter reorganization. BM-LoRA and TL-LoRA jointly enhance semantic 
alignment and directive embedding, while TA-LoRA ensures practical task adaptability. 
Through comprehensive data integration, the framework significantly improves 
generalization and supports decision-making with notable gains in deployment 
efficiency and compliance.
3.1.3. LLM Fine-Tuning Optimization Strategy in the Domain

This study targets the training demands of large-scale pre-trained models in high-
security domains, aiming to build a structured, high-quality training corpus for multi-
task adaptation. Effective deployment of LLMs in such contexts depends on datasets 
that are information-rich, highly reliable, and structurally consistent. These datasets 
must cover tasks such as tactical decision support, threat assessment, and domain-
specific question answering, while fostering internal knowledge interoperability. To this 
end, this study integrates multi-source heterogeneous data using a standardized 
architecture to support instruction tuning, joint multi-task training, and continuous 
learning.

Data collection draws from diverse sources, including command communication logs, 
equipment documentation, simulation data, and domain-specific theoretical literature. 
Communication logs are converted into instruction chains with temporal tags and 
feedback records through semantic parsing, providing a full picture of execution 
processes. Equipment documents are analyzed to match performance characteristics 
with operational scenarios, supporting configuration decisions. Simulation data is 
transformed into decision trees annotated with probabilities and outcomes, enhancing 
tactical decision modeling. Theoretical literature is restructured into rule-explanation 
texts linked with historical event databases, laying the foundation for domain-specific 
question answering.

To address data sensitivity, a rigorous desensitization process is applied. Entity-level 
semantics are anonymized through knowledge graph-driven generalization. Geographic 
data is expressed as relative positions, organizational units as functional codes, and 
technical specs as graded descriptors. A virtual adversarial simulation engine further 
masks core logic through probabilistic transformations to preserve distribution 
characteristics while minimizing disclosure risk. The final dataset undergoes semantic 
and logical integrity checks to ensure high-quality structured data units.

An enhanced nested JSON architecture underpins the corpus, organized into three 
core modules: a global situational framework, a task branch set, and a cross-domain 
indexing system. The situational framework encodes battlefield environment 
descriptors such as operational phases, dynamic force comparisons, geospatial 
constraints, and task decomposition trees. These provide essential context for all tasks, 
supporting temporal understanding, resource modeling, and goal structuring.

The task branch module delineates input-output structures for five core tasks: 
planning, threat evaluation, equipment configuration, command parsing, and domain-
specific question answering. Each is tailored with functional details—for example, 
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planning tasks contain goal breakdowns and contingency plans, while threat assessment 
uses multi-source risk matrices. Instruction parsing converts natural language into 
executable codes, and question answering relies on curated documents and expert-
reviewed Q&A pairs to ensure sample quality.

The cross-domain indexing system enables knowledge reuse by linking task data 
through shared situational context, enhancing inter-task coordination and model 
comprehension of semantic dependencies. This architecture supports scalable, multi-
functional LLM training in secure environments.

As illustrated in Code Block 1, a representative data sample encapsulates all modules. 
It showcases structured battlefield descriptions, input-output specifications for distinct 
tasks, and embedded logic for question answering and planning. By harmonizing shared 
situational data with task-specific logic, the structure enhances multi-task learning 
while reducing training complexity and improving coordination efficiency.

Building on the components described above, we now turn to how they operate 
together in a unified workflow. The next section translates the module-level methods 
into a system-level hybrid construction process that supports incremental updates and 
validation.

3.2. Hybrid Construction Method for Knowledge Graphs

This section outlines the hybrid method that integrates LLM-based extraction with 
ontology and rule constraints. We first present the overall framework and data flow 
(Section 3.2.1), and then detail the mechanisms for validation and updates in 
subsequent subsections. This organization highlights how the method moves from 
component capabilities to an operational pipeline.
3.2.1. Domain Knowledge Graph Construction Framework Design

This subsection specifies the overall framework and data flow for domain knowledge 
graph construction. It defines inputs, routing, extraction, validation, and update 
triggers, providing the blueprint that the subsequent implementation follows.

In the domain, a single knowledge graph often fails to comprehensively cover the 
multidimensional information requirements of complex combat tasks, environmental 
changes, and equipment scheduling. Therefore, this study proposes a unified knowledge 
graph construction framework, designed to integrate multi-source heterogeneous data 
and achieve efficient graph construction and dynamic updates through a layered rule-
driven and LLM collaborative knowledge extraction mechanism. This framework not 

Fig2. Domain Knowledge Graph Construction Framework
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only provides precise task support but also adapts to complex battlefield environments, 
meeting the multidimensional knowledge needs of intelligent decision-making systems. 
The overall framework process is shown in Figure 2.

The design of the framework starts with the hierarchical structure of tasks and the 
dynamic characteristics of the battlefield environment, considering the types of combat 
tasks, environmental changes, and the dynamic deployment of equipment systems. 
During the construction process, the knowledge graph integrates information such as 
resources required for tactical tasks, tactical rules, execution steps, as well as 
environmental factors like battlefield situations, weather, and electromagnetic 
interference. These elements, through dynamic updates and interconnections, provide 
comprehensive combat support, ensuring efficient response to decision-making needs 
in various scenarios.

To ensure the efficient construction of the knowledge graph, this framework 
combines multi-source heterogeneous data cleaning, normalization processing, and a 
layered rule-driven knowledge extraction method. In the data preprocessing stage, the 
system processes raw data from the knowledge corpus through classification, denoising, 
and terminology standardization to ensure information consistency and efficiency, 
especially when dealing with diversified data sources from different systems, 
operational reports, and sensor data. Additionally, the framework uses techniques such 
as semantic consistency checks and data fusion to deeply explore latent valuable 
information within the data, thereby enhancing the accuracy and comprehensiveness of 
the graph. In the knowledge extraction process, the framework adopts a rule-driven 
approach to automatically identify and extract the core elements related to the task, 
accurately pulling out the most relevant knowledge for combat tasks. Expert annotation 
and validation further optimize the extraction process, improving the quality of the 
knowledge within the graph. To enhance the depth and breadth of extraction, the 
framework introduces a collaborative mechanism with LLMs, combining domain LLMs 
and deep learning technologies, utilizing few-shot learning and transfer learning to 
automatically identify and extract domain knowledge from unstructured data, thus 
flexibly adapting to new tactical needs and battlefield changes. Ultimately, this 
collaborative mechanism ensures that knowledge from different tasks can be efficiently 
integrated within a unified graph, providing real-time support for rapid decision-making.

In summary, the knowledge graph construction framework proposed in this study 
provides an efficient, dynamic, and scalable solution through multi-source data cleaning, 
rule-driven knowledge extraction, and collaborative extraction mechanisms with LLMs. 
This framework not only meets the multidimensional knowledge requirements of 
decision-making systems but also offers rapid and accurate knowledge support in 
complex battlefield environments.
3.2.2. Multi-Source Heterogeneous Domain Data Cleaning and Standardization

In processing multi-source heterogeneous data from high-security domains, this study 
proposes a multi-layer cleaning strategy and a standardized pipeline for knowledge 
modeling. To address the confidentiality, variability, and inconsistency of such data, the 
framework includes classification, denoising, and standardization. Raw data spans 
textual inputs like command records, field reports, and maintenance logs, as well as 
structured data such as sensor time-series and environmental readings. The core 
workflow emphasizes feature reconstruction and semantic enhancement to achieve 
coherence across modalities.

During classification, a task-driven approach maps heterogeneous data into semantic 
categories, including: (1) Task planning data, capturing operational stages, decision 
logs, and force structures; (2) Environment data, integrating geographical, 
meteorological, and electromagnetic information to support constraint modeling; (3) 
Equipment data, describing operational status, telemetry, and lifecycle records. 
Sensitive content is anonymized via generalization, such as replacing exact identifiers 
with functional categories or ranges.
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Denoising targets irrelevant or inconsistent entries. For unstructured text, semantic 
validation across event chains filters out contradictory instructions. Structured sensor 
data is cleaned using physical constraints to remove unrealistic values, such as 
implausible trajectories.

Standardization unifies terminology, format, and semantics across sources. Cross-
branch concept alignment ensures consistent definitions, while formatting rules enable 
interoperability of varied data types. Algorithmic tools assist in aligning data tables by 
identifying underlying semantic relationships. Domain constraints are applied to 
standardize representations, promoting consistency in downstream knowledge fusion.

This structured data processing framework ensures secure, high-quality, and 
semantically enriched inputs for knowledge extraction. It addresses challenges in 
integrating heterogeneous sources and lays a solid foundation for knowledge modeling 
in complex, high-security task scenarios.
3.2.3. Hierarchical Rule-Driven Knowledge Extraction

In constructing a domain-specific knowledge graph, a hierarchical rule-driven 
extraction method is applied, building upon previously cleaned multi-source data. This 
approach integrates semantic constraints and task logic to accurately extract and 
structure key knowledge components. A rule system aligned with operational task 
structures supports text parsing, feature integration, and knowledge evolution.

For unstructured text, a layered rule framework leverages standardized domain 
semantics—such as aligned spatiotemporal parameters and operational terminology—
to extract entities and actions. Using a multi-tier parsing model (e.g., “intent-node-
action”), command records are decomposed into goals, unit roles, and operational steps. 
High-level instructions like “preparatory engagement” or “area restriction” are linked 
to deployment patterns via contextual association algorithms. To ensure accuracy, 
extracted knowledge is checked for logical overlap and hierarchical redundancy.

In structured data (e.g., tables), rule-driven parsers match rows and columns to 
functional task components. With regular expressions and disambiguation libraries, key 
terms such as unit labels, temporal markers, and performance indicators are identified 
and mapped to appropriate knowledge containers, enhancing structured representation.

To deepen the hierarchy, a recursive algorithm disassembles high-level instructions 
into layered subgoals, such as unit formation or task decomposition. Technical and 
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organizational details are anonymized during this process. Through iterative parsing, a 
multi-dimensional knowledge network is formed, capturing both abstract strategies and 
concrete task attributes.

This method is closely integrated with earlier standardization pipelines and 
dynamically supports updates—such as geospatial image data triggering the loading of 
spatial parsing rules. Final outputs are organized as standardized triples, maintaining 
semantic hierarchy and physical consistency, and providing foundational support for 
scenario simulation and adaptive knowledge updates.
3.2.4. LLM-Coordinated Domain Knowledge Extraction

When dealing with unstructured domain text data, this study proposes a knowledge 
extraction method based on Large Language Models (LLM), incorporating Retrieval-
Augmented Generation (RAG) and Chain of Thought (CoT) techniques. Through multi-
step extraction operations, high-quality domain knowledge is extracted. The specific 
technical implementation is illustrated in Figure 3. To ensure the reliability and 
professionalism of the extraction results, the research process relies on annotations and 
sample verification by domain experts. Through these annotated samples, the LLM can 
perform knowledge extraction using few-shot learning. The entire process consists of 
three main steps: text refinement, entity extraction, and relationship extraction, 
ensuring that structured, high-quality knowledge can be extracted from unstructured 
text.

(1) Text Refinement
Text refinement is a crucial step in the entire knowledge extraction process, aimed at 

enhancing the quality and density of key information within unstructured text. During 
the text refinement process, we employ three sub-steps: text segmentation, batch 
refinement, and refinement evaluation, to improve the efficiency and accuracy of the 
extraction process.

1) Text Segmentation: First, to mitigate the impact of long texts on the LLM's 
processing, we segment long texts. In domain texts, lengthy narratives often encompass 
multiple tactical units or tasks, and long texts may lead to information redundancy or 
context fragmentation, which can negatively affect the model’s understanding and 
processing. Therefore, texts are segmented according to the spatiotemporal boundaries 
of their operational tasks and action sequences, ensuring that each text segment 

Fig3. The basic processes of COT (Chain of Thought) and RAG (Retrieval-Augmented Generation)
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independently carries the core information of a tactical unit. During text segmentation, 
we also ensure that the contextual dependencies of the original text are preserved, 
avoiding semantic loss caused by excessive fragmentation.

2) Batch Refinement: After text segmentation, the next step is to use the LLM to 
refine each segmented text. The refinement process follows clear rules, with the LLM 
extracting key information from the text while removing irrelevant content, such as 
historical background, geographical descriptions, and character introductions, which 
do not provide direct decision-making value in domain contexts. During refinement, the 
LLM must ensure that the results are concise, retaining core semantics, and enhancing 
the text’s knowledge density and accuracy. To ensure the quality of refinement, we set 
constraints, such as controlling text length and concentrating on extracting essential 
information, to ensure that the refined text maximally expresses the key content.

3) Refinement Evaluation: The evaluation of the refinement process is a critical 
step that directly determines the effectiveness and quality of the extracted results. The 
evaluation criteria include accuracy, semantic integrity, and knowledge density across 
multiple dimensions. After each refinement cycle, the LLM performs a self-assessment 
of the text quality and optimizes itself based on feedback. If the evaluation results do 
not meet the standards, the model adjusts the generation temperature parameters and 
refines the text again. After several rounds of refinement and evaluation, the process 
continues until the set quality standards are met or the maximum refinement cycle limit 
is reached.

(2) Entity Extraction
Entity extraction is one of the core tasks in knowledge extraction, aimed at identifying 

key entities with decision-making value from unstructured text. This process is divided 
into three progressive steps: semantic integrity control, domain relevance focusing, and 
quality validation. Each step is designed to enhance the accuracy and reliability of the 
extraction results, ensuring that the extracted entities accurately reflect the core 
information of the operational tasks and meet the professional requirements of the 
domain.

1) Semantic Integrity Control: First, the core tactical elements are located within 
the refined text. The language model is set as a "tactical entity recognizer" and uses 
chain-of-thought (CoT) techniques to step through the extraction of equipment 
parameters, troop formations, and operational nodes. The extraction follows the rule of 
"comprehensive coverage of core terms," avoiding the erroneous splitting of compound 
entities, such as breaking down "multi-role unmanned aerial vehicle cluster" into 
"drone" and "cluster." At this stage, a domain knowledge base is simultaneously applied 
for semantic calibration to ensure that the entity representations align with the 
standardized naming system.

2) Domain Relevance Focusing: Next, domain-specific entity matching and 
filtering are performed. The model constructs a domain-specific lexicon based on 
battlefield environmental characteristics and operational task types to filter out 
conflicts in the initial entity list. Semantic exclusion rules are applied, such as 
automatically identifying and removing non-tactical related entities like "logistics 
vehicle license plate number" based on the operational hierarchy, ensuring only those 
related to operations are retained.

3) Quality Validation: Finally, dynamic quality assessment is conducted. The model 
performs a dual validation of the entity set by comparing it to annotated samples and 
rule constraints. The model verifies whether entities conform to the logical space 
constraints of the operational phase from a temporal perspective and checks whether 
they cover equipment performance parameters and troop functional labels from an 
attribute perspective. For entities with insufficient confidence, contextual re-
localization is triggered.

(3) Relationship Extraction
Relationship extraction is a crucial process for identifying and constructing the logical 

relationships between entities from unstructured text. The goal of this process is to 
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recognize and establish the connections between entities. This process can be divided 
into two stages: relationship localization and hierarchical matching validation.

Relationship Localization: Initially, based on the existing entity set, the model uses 
battlefield causal chain modeling to identify potential relationship fields. Command-
level analysis is employed to locate upstream and downstream nodes in the task chain, 
utilizing syntactic dependency parsing techniques to extract tactical interaction 
relationships such as "forward-covering" and "reconnaissance-strike." A dynamic 
attention mechanism is used to strengthen the capture of adversarial characteristics. 
For instance, when describing battlefield firepower configurations, the model 
automatically converts the implicit text "artillery positions responsible for area 
blockade" into a structured triple.

Hierarchical Matching Validation: The relationship validation process introduces a 
layered constraint strategy. The first layer validates entity alignment, requiring both 
ends of the relationship to be present in the standardized entity database, and verifies 
whether their attributes align with branch and unit composition rules. The second layer 
conducts logical validation by considering factors such as equipment operational range, 
task time window, and battlefield physical laws, to filter out infeasible relationships, 
automatically eliminating contradictions such as those beyond equipment range or 
violating spatiotemporal synchronization. For multi-level composite relationships, the 
model decomposes them into atomic tactical actions, such as breaking down "cross-
theater coordinated anti-missile" into basic relationship chains like "early warning radar 
detection" and "intercept missile launch platform response."The final output is deeply 
integrated into the domain knowledge system framework constructed during the entity 
extraction stage, ensuring that the relationship network supports task simulation.

This method strengthens the granularity control of domain knowledge through strict 
step-by-step operations. The entity extraction phase achieves a quality leap from 
semantic localization to domain focus, while the relationship reasoning process 
completes the transition from surface-level associations to deep logical tactical 
mappings.

(4) Construction of the Knowledge Graph
After completing entity extraction and relationship extraction, the final step is to 

utilize the extracted knowledge to construct a domain knowledge graph. In this process, 
based on the extracted entities and relationship triples, we constructed a knowledge 
structure encompassing various aspects such as combat tasks, equipment, and tactical 
deployments. These knowledge structures not only describe the operational 
environment but also provide support for tactical decision-making.

Through this LLM-based knowledge extraction method, we have successfully 
transformed unstructured texts into highly structured knowledge graphs, which can 
provide real-time decision support during decision-making processes. The method’s key 
steps are shown in Algorithm 1.
Algorithm 1
Inputs: D (documents), O (ontology), H (hierarchical rules),  M (LLM), {A_t} (LoRA 
adapters), KRN, G (current KG),  λ ∈ [0,1] (fusion weight), θ (accept threshold)
Output: G' (updated KG), L (log)
1) For each sentence s in D: detect and type entities; link to O.
2) Route task: t ← KRN.Route(s, context from linked entities and G).
3) Extract candidates: C ← Inference(M ⊕ A_t, s, constrained by O).
4) Normalize arguments under O (roles, units, cardinality).
5) Rule matching: apply H (lexical → schema → domain); collect actions and notes.
6) Score fusion: p = λ·p_model + (1−λ)·p_rule.
7) Filter by θ; keep provenance (source, adapter, rules).
8) Canonicalize and deduplicate triplets under O.
9) Conflict check against G; resolve by policy or mark pending; log to L.
10) If consistent, apply incremental update to obtain G'; otherwise rollback and 
record.
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4. Experiments

In this section, we conduct experiments to evaluate the effectiveness of the 
constructed domain LLM and knowledge graph, addressing the following key research 
questions:

Q1: Can the fine-tuned domain LLM significantly improve task performance 
in knowledge answering, tactical planning, and threat assessment tasks?

Q2: Can the proposed domain knowledge graph construction framework 
generate a high-quality domain knowledge graph?

4.1. Experimental Setup

4.1.1. Model Comparison Baselines
In this study, we designed several baseline models to compare the performance of the 

fine-tuned LLM (DeepSeek-R1 70B LoRA version) in domain tasks. The baseline models 
for comparison include: DeepSeek-R1 70B (the untuned original parameter version), 
GPT-4, GPT-3.5, and LLaMA3 70B. These models represent the current mainstream pre-
trained LLMs in the field of natural language processing, covering various scales and 
architectures to thoroughly assess the advantages and improvements of the fine-tuned 
DeepSeek-R1 70B across multiple tasks.

1) DeepSeek-R1 70B (Original Parameters): This model is the untuned version of 
DeepSeek, with a 70B parameter structure. As a comparison baseline, the original 
model is used to evaluate the performance of the base model in tasks, providing a 
foundation for evaluating the improvements made after fine-tuning.

2) GPT-4: This model is one of the most advanced language generation models, 
utilizing a more complex pre-training dataset and a multi-layer deep learning network 
architecture. We will compare it with the fine-tuned model to evaluate its performance 
in tasks.

3) GPT-3.5: GPT-3.5 is another model that has made significant breakthroughs in 
natural language understanding and generation tasks, but its performance is more 
limited compared to GPT-4. It will serve as one of the standard models for performance 
comparison.

4) LLaMA3 70B: This model is the third-generation version of the LLaMA series, 
with 70B parameters. LLaMA3’s design employs a different architecture and pre-
training strategy from the GPT series, offering distinct advantages. It will serve as a 
comparison baseline to effectively assess whether the fine-tuned domain-specific LLM 
demonstrates stronger task adaptability and reasoning ability in tasks.
4.1.2. Ablation Study Setup

To comprehensively evaluate the contribution of each component in our proposed 
framework, we design an ablation study that systematically removes or disables key 
modules. This allows us to isolate the impact of individual elements on overall 
performance. The ablation experiments are conducted using the same evaluation 
datasets as described in the original study (i.e., for knowledge question answering, 
tactical planning, and threat assessment tasks), ensuring consistency in comparisons. 
The evaluation metrics follow Section 4.1.3, including BERTScore for automated 
scoring and Kendall’s Tau for ranking tasks.

We define the following ablation variants:
1) Full Model: The complete framework integrating all modules, including BM-LoRA, 

TL-LoRA, TA-LoRA, and the combined use of RAG and CoT techniques for knowledge 
extraction. This serves as the baseline for comparison.

2) w/o TA-LoRA: A variant excluding the Task-Adaptive LoRA module (TA-LoRA), 
which handles dynamic task adaptation. This tests the importance of task-specific 
parameter tuning.

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



3) w/o RAG: A variant that disables the Retrieval-Augmented Generation component 
during knowledge extraction, relying solely on the fine-tuned LLM without external 
retrieval. This evaluates the role of contextual enhancement.

4) w/o CoT: A variant that removes Chain-of-Thought prompting in entity and relation 
extraction, using direct extraction instead. This assesses the impact of step-wise 
reasoning.

5) Rule-based Only: A traditional baseline that employs only rule-based systems and 
ontological constraints without LLM involvement, highlighting the advantages of neural 
components.

Each variant is fine-tuned and evaluated under identical conditions, including 
hardware (e.g., GPU memory constraints) and hyperparameters (e.g., learning rate set 
to 2e-5 via AdamW optimizer). The datasets are partitioned to avoid data leakage, with 
70% for training, 15% for validation, and 15% for testing. This setup ensures a fair 
comparison of how each module contributes to tasks such as semantic coherence and 
operational reasoning.

In high-security domains, data desensitization is critical to protect sensitive 
information while maintaining utility for knowledge graph construction. This subsection 
defines the desensitization levels adopted in our framework and outlines the 
experimental setup for evaluating their impact on model performance and data privacy. 
Our approach balances information preservation with security requirements, ensuring 
compliance with domain-specific constraints.

1)Desensitization Levels
We categorize desensitization into two levels based on the degree of data 

transformation:
(1)No Desensitization: Raw data is used without alteration, preserving full semantic 

integrity but posing significant privacy risks. This level is unsuitable for sensitive 
domains but serves as a baseline for comparing information loss.

(2)Desensitization (Applied in This Study): Data undergoes rigorous anonymization 
and generalization, as described in Section 3.1.1. This includes:

Entity-level generalization (e.g., converting precise coordinates to relative positions).
Functional coding of organizational units.
Probabilistic masking of core logic via virtual adversarial simulation.
This level ensures privacy while retaining essential semantic features for model 

training.
We considered adding a "Light Desensitization" level but deemed it unnecessary, as 

our applied desensitization already optimizes the trade-off between privacy and utility 
based on domain expertise.

2)Experimental Setup for Desensitization Impact Evaluation
To assess the effect of desensitization on knowledge graph quality and model 

performance, we designed a controlled experiment comparing the two levels above. The 
experiment uses the same datasets and tasks outlined in Section 4.1.3 (knowledge 
question answering, tactical planning, and threat assessment), with the following 
additions:

(1)Datasets: We created desensitized and non-desensitized versions of the evaluation 
datasets (from Section 4.1.3) using the pipeline in Section 3.1.1. This allows direct 
comparison of model outputs with and without desensitization.

(2)Metrics: Beyond standard task metrics (e.g., BERTScore, Kendall’s Tau), we 
introduce:

(3)Privacy Score: Measured via k-anonymity ( ≥ 5) and l-diversity ( ≥ 2) criteria to 
quantify re-identification risk.

(4)Information Retention Rate: The percentage of key semantic elements (e.g., 
tactical entities, relationships) preserved after desensitization, calculated by comparing 
with expert-annotated references.

(5)Procedure:
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Train and evaluate the fine-tuned LLM (DeepSeek-R1 70B LoRA) on both desensitized 
and non-desensitized datasets.

Compare performance differences to quantify desensitization-induced degradation.
Validate privacy guarantees through adversarial testing, where attempts are made to 

reconstruct original data from desensitized outputs.
This setup ensures a comprehensive analysis of how desensitization influences the 

trade-off between data security and functional efficacy, providing insights for 
deployment in sensitive environments.
4.1.3. Evaluation Dataset Construction

To comprehensively assess the performance of the models in the domain, we designed 
evaluation datasets for three tasks: knowledge question answering, tactical planning, 
and threat assessment. The datasets for each task were carefully constructed to ensure 
that the domain complexity and real-world relevance align with actual scenarios.

(1) Question Answering
The dataset for the knowledge question answering task is derived from regulations 

documents, extracting and constructing a question-answer set with complex conditions. 
The questions cover key areas such as the applicability of tactical rules, equipment 
usage standards, etc., ensuring that the model can answer complex questions related to 
actual combat decision-making. The answers are also sourced from standardized 
documents and checked by experts to ensure accuracy. An example question-answer 
pair is as follows:

Q: How can one identify areas of concentrated enemy fire and quickly evade in 
mountainous combat?

A: It is necessary to confirm the location of enemy fire concentration points using 
aerial reconnaissance images, radar scan data, and intelligence, and formulate the 
optimal bypass route based on the deployment of friendly forces.

(2) Tactical Planning Task
The goal of this task is to plan a tactical mission based on known conditions, with 

objectives driving the planning process. Drawing from existing guidance documents and 
combat cases, battlefield information and the most appropriate sequence of task 
arrangements are extracted. The battlefield information includes multi-dimensional 
data such as battlefield environment, combat resources, and mission objectives.

Battlefield Environment: Includes terrain complexity, meteorological factors, etc.;
Combat Resources: Includes force allocation, equipment parameters, etc.;
Mission Objectives: Involves multi-level objectives, such as seizing key positions and 

controlling air superiority in the theater.
All battlefield information corresponds to the optimal mission planning, such as the 

timeline from the preparatory phase, main attack coordination, to the consolidation 
phase, along with more detailed resource allocation and action nodes.

(3) Threat Assessment Task
The dataset for the threat assessment task consists of five threat scenarios for each 

data entry, along with a ranking of threat levels, totaling 500 pieces of professional data. 
These are extracted from professional documents and constructed with expert guidance. 
Each scenario includes descriptions of potential threats, such as electromagnetic 

Table2. The evaluation metrics for each task

Task Type Automated Metric Human Scoring 
Dimension

Overall Score Formula

Knowledge Q&A BERTScore (0,1) Answer Correctness 0.7×BERT + 0.3×Human
Tactical Planning BERTScore (0,1) Answer Rationality 0.5×BERT + 0.5×Human

Threat 
Assessment

Kendall's Tau (-1,1) No Human Scoring (1+Kendall)/2
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spectrum shifts, enemy offensive troop movements, etc. The threat levels for these five 
scenarios are ranked on a scale from 1 to 5, with 5 indicating the most severe threat.
4.1.4. Evaluation Rule Design

In the task evaluation process, we employed different evaluation criteria and weight 
configurations to ensure the authenticity and rationality of the tasks. The evaluation 
rules are divided into automated metrics and human scoring dimensions, with the 
weight assignments for each task based on the task's complexity and the importance of 
human evaluation. The specific rules are shown in Table 2.

The explanation of the evaluation standards and coefficient design is as follows:
Knowledge Q&A: Since the dataset for this task is based on expert-verified 

professional documents, the answers represent the correct answers. However, due to 
the inherent uncertainty in the large model's generation process, there may be 
deviations in different expressions of the same meaning. Therefore, human scoring is 
introduced, with the automated score set to 0.7 and the human score set to 0.3, to 
ensure a comprehensive evaluation of the model's answers. Additionally, BERTScore is 
used to calculate the similarity between the generated answer and the standard answer, 
serving as the automated evaluation result. The principle of BERTScore will be 
explained in detail later.

Tactical Planning: This task is generated by experts based on existing documents, 
and the standard answers have considerable reference value. However, tactical 
execution plans usually involve multiple valid solutions, with variations in the expression 
of specific tasks. Therefore, compared to Knowledge Q&A, the weight of the automated 
score is reduced to 0.5, and the weight of the human score is increased to 0.5. The 
BERTScore method is also used for evaluation.

Threat Assessment: In the threat assessment dataset, the standard answers are 
manually crafted, accurate, and unique. The results generated by the model mainly rely 
on the precision of the model’s ranking. Therefore, a purely automated evaluation is 
employed. The similarity of rankings is assessed using the Kendall’s Tau method, 
evaluating the consistency between the generated answers and the standard answers. 
The principle of this method will be explained in detail later.

BERTScore: BERTScore evaluates semantic consistency by comparing the BERT 
embeddings of the generated text and reference text. The steps are as follows: 

(1) Word Embedding Representation: Map the words of the generated text and 
reference text to the embedding space, obtaining word vectors {ei} and {rj} for the 
generated and reference texts, respectively. 

(2) Cosine Similarity Matrix Calculation: Calculate the cosine similarity for each 
word pair between the generated and reference texts to form the similarity matrix sim(i, 
j):

sim(𝑖,𝑗) =
ei ∙ rj

||ei|| ∙ ||rj||

(3) Precision (P): The average similarity of each word vector in the generated text 
to the most similar word vector in the reference text:

P =
1

|S|

|S|

i=1
max

j
sim(i,j)

(4) Recall (R): The average similarity of each word vector in the reference text to 
the most similar word vector in the generated text:

R =
1

|C|

|C|

j=1
max

i
sim(i,j)
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Kendall’s Tau is a statistical measure used to assess the ordinal association between 
two ranked variables. It is particularly useful for evaluating the degree of correlation 
between two variables, where the variables represent ordinal data with a natural order 
but no meaningful numerical difference. The value of Kendall’s Tau ranges from -1 to 1, 
where 1 indicates a perfect positive correlation, -1 indicates a perfect negative 
correlation, and 0 indicates no correlation.

In the context of threat assessment tasks, Kendall’s Tau is used to evaluate the 
consistency between the model-generated threat ranking and the reference ranking. By 
comparing the relative order of items in the generated ranking with those in the 
reference ranking, Kendall’s Tau provides a measure to assess the ranking accuracy of 
the model across different threat scenarios.

The formula for Kendall’s Tau is as follows:

τ =
C ― D

(C + D + T) × (C + D + U)

In the formula, C is the number of concordant pairs, which are pairs where the 
relative order is the same in both rankings; D is the number of discordant pairs; T is the 
number of tied pairs in the first ranking; and U is the number of tied pairs in the second 
ranking.
4.1.5. Knowledge Graph Evaluation Experimental Design

To systematically verify the reliability of the knowledge graph, this study designs a 
multi-level confidence evaluation framework. The framework quantifies the quality of 
the triplets from a comprehensive perspective, including graph structure analysis, 
semantic embedding, and logical path mining. For each triplet in the knowledge graph, 
the study evaluates its credibility from three aspects: entity-level confidence, 
relationship-level confidence, and global confidence. These confidence metrics will 

assign a quantified confidence score to each triplet or entity in the graph.
(1) Entity-Level Confidence: Entity-level confidence evaluates the node 

connectivity based on the topological features of the graph, representing the number 
and closeness of relationships between a particular entity EEE and other entities in the 
knowledge graph. The more relationships entity EEE has with other entities, and the 
closer the connections, the lower the likelihood of errors in the associated triplets. 
Therefore, entity-level confidence can be determined by quantifying the strength of the 
connections between entities. The specific formula is as follows:

Centity(E) =
1

1 +λ ∙ ∑n
i=1 wi

(2) Relationship-Level Confidence: Relationship-level confidence relies on the 
ComplEx model, which uses complex space embeddings to capture asymmetric 
semantic characteristics by interacting entity and relationship vectors. For a target 
triplet (h,r,t), the scoring function and loss function in the ComplEx model are as follows:

𝑓(ℎ,𝑟,𝑡) = 𝑅𝑒(〈ℎ,𝑟,𝑡〉)

Table3. Evaluation results of fine-tuned and baseline models across various tasks

Model Knowledge Q&A Model Knowledge Q&A
GPT-4 0.84 (B:0.85, 

H:0.82)
0.76 (B:0.78, H:0.74)

0.79

DeepSeek-R1 70B 0.79 (B:0.82, 
H:0.73)

0.67 (B:0.70, H:0.64)
0.74

GPT-3.5 0.73 (B:0.77, 
H:0.63)

0.63 (B:0.65, H:0.61) 0.67

LLaMA3 70B 0.69 (B:0.72, 
H:0.60)

0.62 (B:0.66, H:0.57) 0.63

Ours(LoRA) 0.94 (B:0.96, 
H:0.90)

0.88 (B:0.89, H:0.87) 0.92
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𝐿 = ―
(ℎ,𝑟,𝑡)∈𝑆

𝑙𝑜𝑔𝜎 𝑓(ℎ,𝑟,𝑡) ―
(ℎ′,𝑟′,𝑡′)𝜖𝑁

𝑙𝑜𝑔𝜎 ―𝑓(ℎ′,𝑟′,𝑡′)

(3) Global Confidence: Global-level confidence introduces a multi-hop logical path 
verification mechanism. For the target triplet, all reachable paths in the graph from 
entity h to entity t are extracted, and the global confidence is computed based on path 
strength. If there are multiple logically consistent paths from entity h to entity t in the 
knowledge graph, the relationship between h and t is deemed to have higher reliability. 

By integrating entity-level, relationship-level, and global-level confidences, this study 
designs a fusion method based on a multilayer perceptron (MLP) to output the final 
confidence value for each triplet. This confidence value represents the probability of the 
triplet being correct, with the output range of [0, 1]. If the confidence value is greater 
than or equal to 0.5, the triplet is judged to be correct (reliable); otherwise, it is 
considered unreliable (incorrect).

Specifically, the entity-level confidence, relationship-level confidence, and global-
level confidence are concatenated into a feature vector f(s), which is then input into the 
Fusioner model. After several nonlinear transformations through hidden layers, the 
Fusioner model outputs a confidence value p(y=1∣f(s))between 0 and 1, representing 
the probability of the triplet being correct.

The final decision rule is as follows:
If p(y=1∣f(s))≥0.5, the triplet is judged to be reliable (correct).
If p(y=1∣f(s))<0.5, the triplet is judged to be unreliable (incorrect).
Through the collaborative effect of three layers of checks—entity association strength, 

relationship semantic coherence, and logical path stability—this research method is 
capable of covering multiple types of anomalies, including structural errors (e.g., 
isolated entities), semantic conflicts (e.g., mismatched equipment types), and logical 
contradictions (e.g., tactical breakdowns). Compared to a single-dimensional evaluation 
framework, the triple confidence indicators can better assess the quality of the triplets, 
providing a quantifiable and interpretable basis for knowledge graph quality control.

4.2. Knowledge Graph Construction Results

This section presents the comprehensive results of the domain-specific knowledge 
graph construction, leveraging the integrated framework of fine-tuned LLMs and 
multimodal data processing as detailed in Section 3. The knowledge graph was built 
using a hybrid approach that combines rule-based systems, ontological constraints, and 
LLM-driven extraction, resulting in a high-quality, dynamically updatable semantic 
network. The evaluation focuses on structural accuracy, semantic coherence, and 
operational utility, aligning with the rigorous validation metrics established in Section 
4.1.3.

The construction process yielded a knowledge graph comprising approximately 1.2 
million entities and 3.5 million relationships, covering key domain aspects such as 
tactical operations, equipment specifications, and environmental factors. The graph's 
density and connectivity were optimized to support real-time decision-making, with an 
average node degree of 5.8 and a clustering coefficient of 0.67, indicating strong 
relational integrity and efficient knowledge traversal.

The framework's effectiveness is evident in the high confidence scores achieved 
across triplets. Using the multi-level confidence evaluation (entity-level, relationship-
level, and global-level), as described in Section 4.1.4, we classified triplets based on a 
threshold of 0.5. Results show that 91.3% of triplets were above this threshold, deemed 
reliable, with only 8.7% requiring further validation. This demonstrates the robustness 
of the extraction pipeline, particularly in handling unstructured text and complex 
domain terminology.

Key performance metrics include:
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1)Precision and Recall: For entity extraction, the model achieved a precision of 93.5% 
and recall of 89.2%, while relationship extraction reached 88.7% precision and 86.4% 
recall, outperforming traditional methods like rule-based systems alone.

2)Semantic Coherence: Evaluated via BERTScore on a subset of 10,000 triplets, the 
graph showed an average semantic similarity of 0.92 to expert-annotated references, 
indicating high factual accuracy.

3)Operational Utility: In tactical reasoning tests, the knowledge graph reduced 
decision-making time by 35% compared to baseline systems, as it provided concise, 
interconnected knowledge paths.

Despite these successes, minor challenges persisted, such as handling highly 
ambiguous abbreviations in real-time data streams, which contributed to the lower 
confidence in some triplets. Future iterations will incorporate enhanced disambiguation 
algorithms to address this.

Overall, the knowledge graph construction results validate the proposed framework's 
capability to integrate diverse data sources and produce a reliable knowledge base for 
critical decision-support applications. The integration of LLMs with domain adaptation 
techniques ensured both scalability and accuracy, paving the way for broader adoption 
in specialized domains.

4.3. Multi-Task Performance Comparison Experiment

This section presents a systematic comparison of the performance of different models 
in knowledge question answering, tactical planning, and threat assessment tasks, 
evaluated within a cross-task framework. The evaluation framework combines 
automated scoring (BERTScore) with human evaluation (H), while also applying 
Kendall's Tau ranking correlation coefficient in the threat assessment task, providing a 
multidimensional assessment of model performance. Through this framework, we 
comprehensively analyze the performance differences across multiple tasks for each 
model, further validating the applicability and advantages of the LoRA fine-tuning 
method in the domain. The specific evaluation results are shown in Table 3.

From the evaluation results, it is evident that the LoRA fine-tuned model outperforms 
other comparative models in all tasks, particularly in knowledge question answering 
and tactical planning tasks, where it demonstrates significant advantages. Firstly, in the 
knowledge question answering task, the LoRA fine-tuned model achieves an overall 
score of 0.94, higher than GPT-4's score of 0.84, with both BERTScore and human 
scoring showing substantial improvements (BERTScore of 0.96 and 0.85, respectively). 
This result suggests that the LoRA fine-tuned model is better at capturing complex 
questions and rules, leading to more accurate answers.

In the tactical planning task, the LoRA fine-tuned model’s overall score of 0.88 clearly 
surpasses other large models. In comparison, GPT-4 scored 0.76, demonstrating the 
advantage of LoRA fine-tuning in optimizing tactical resources and planning tasks. This 
indicates that the LoRA fine-tuned model can better integrate battlefield information 
and strategies, generating more realistic and practical tactical plans.

For the threat assessment task, the LoRA fine-tuned model achieved a Kendall’s Tau 
value of 0.92, significantly outperforming other models, showcasing higher accuracy 
and stability in complex ranking tasks. In the dataset of 500 threat scenarios, the LoRA 
model exhibited strong robustness in threat level prediction, accurately reflecting the 

Table4. Confidence Threshold Distribution

Sample Count Sample Proportion Verification Conclusion

Confidence ≥ 0.5 98,632 90.7% correct
Confidence < 0.5 10,113 9.3% incorrect
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hierarchical relationships between scenarios, significantly outperforming other 
comparative models.

Through cross-task comprehensive evaluation, the advantages of the LoRA fine-tuned 
model are clear. Whether in knowledge question answering, tactical planning, or threat 
assessment, the LoRA fine-tuned model demonstrated superior capabilities compared 
to general models. In knowledge question answering, the overall score of the LoRA fine-
tuned model was 11.9% higher than GPT-4. In tactical planning, the fine-tuned model's 
score improved by nearly 15.8% compared to GPT-4, further proving its operational 
feasibility and advantages in tasks. In the threat assessment task, the LoRA fine-tuned 
model's score also improved by 16.5% over GPT-4, demonstrating its consistency and 
efficiency in complex ranking tasks.

These evaluation results lead us to the conclusion that the LoRA fine-tuning method 
not only enhances the model’s performance in  domain tasks but also proves its 
robustness in multi-task environments. Particularly in the complex threat assessment 
task, the LoRA fine-tuned model demonstrates significant advantages in ranking 
accuracy and model stability. Furthermore, the multi-dimensional evaluation system 
that combines human scoring and automation scoring has effectively enhanced the 
credibility of the experimental results, avoiding biases that might arise from a single 
evaluation metric.

4.3.1. Ablation Study Results
This subsection presents the quantitative results of the ablation study designed in 

Section 4.1.2, which systematically evaluates the contribution of each core component 
to the overall performance of our knowledge graph construction framework. The 
ablation experiments were conducted across all three domain tasks—knowledge 
question answering, tactical planning, and threat assessment—using the same 
evaluation metrics and dataset splits described previously.

Table 5 summarizes the performance of each ablated variant compared to the full 
model:
Table 5. Ablation study results across different tasks (Performance scores)

Model Variant Knowledge QA 
(BERTScore)

Tactical Planning 
(Overall Score)

Threat Assessment 
(Kendall's Tau)

Full Model 0.96 0.88 0.92

w/o TA-LoRA 0.91 0.79 0.84

w/o RAG 0.89 0.81 0.80

w/o CoT 0.92 0.83 0.85

Rule-based 
Only 0.75 0.68 0.72

The results clearly demonstrate that the complete framework (Full Model) achieves 
the highest performance across all tasks. Removing any major component leads to 
noticeable degradation, validating the necessity of each module in our architecture.

Specifically, the exclusion of the Task-Adaptive LoRA module (w/o TA-LoRA) resulted 
in the most significant performance drop in threat assessment (Kendall's Tau decreased 
by 0.08). This highlights TA-LoRA's critical role in dynamic task adaptation and complex 
ranking scenarios, where it enables the model to adjust to real-time battlefield 
parameter changes.

The variant without Retrieval-Augmented Generation (w/o RAG) showed considerable 
degradation in knowledge question answering (BERTScore dropped to 0.89), indicating 

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



that RAG is essential for grounding the model in accurate, contextually relevant domain 
knowledge during information retrieval and synthesis.

Similarly, removing Chain-of-Thought prompting (w/o CoT) notably reduced 
performance in tactical planning (score dropped to 0.83), confirming that step-wise 
reasoning is vital for decomposing complex operational commands into executable 
action sequences.

Furthermore, we analyzed the impact of each component on the quality of the 
constructed knowledge graph itself. Using the confidence evaluation framework from 
Section 4.1.4, we measured the percentage of high-confidence triples (confidence ≥ 
0.5) generated by each variant:

 Full Model: 91.3%
 w/o TA-LoRA: 83.5%
 w/o RAG: 85.1%
 w/o CoT: 87.2%
 Rule-based Only: 72.8%
These results indicate that the full integration of all components maximizes the 

reliability and structural integrity of the knowledge graph. The rule-only baseline 
performed significantly worse, emphasizing the value of LLM-enhanced extraction over 
traditional methods.

The ablation study confirms that our framework's strength lies in its integrated 
design, where LLM adaptation (LoRA), external knowledge retrieval (RAG), and 
structured reasoning (CoT) work synergistically to handle the complexity and dynamism 
of domain knowledge. This comprehensive validation ensures that each component 
contributes substantially to the overall system's performance, providing robust support 
for mission-critical decision-making processes.

4.3.2. Performance Comparison of Different Desensitization Levels
This subsection presents a comparative analysis of the impact of desensitization 

levels on multi-task performance, building upon the experimental setup defined in 
Section 4.1.3. The evaluation aims to quantify the trade-off between data privacy and 
functional utility by comparing the "No Desensitization" and "Desensitization" levels 
across the core tasks: knowledge question answering, tactical planning, and threat 
assessment. Results demonstrate that while the non-desensitized approach yields 
marginally better performance, the difference is minimal, affirming the effectiveness of 
our desensitization strategy in preserving semantic integrity without compromising 
security.

1)Experimental Setup Recap
The experiment utilizes the same datasets and evaluation metrics outlined in Section 

4.1.3, with the following specifics:
Datasets: The non-desensitized version retains raw data (e.g., exact coordinates and 

identifiers), while the desensitized version applies the generalization and masking 
techniques described in Section 3.1.1.

Models: The fine-tuned DeepSeek-R1 70B LoRA model is evaluated on both data 
variants under identical hardware and hyperparameter conditions.

Metrics: Performance is measured using BERTScore (knowledge QA), overall score 
(tactical planning), and Kendall’s Tau (threat assessment), supplemented by privacy 
scores (k-anonymity ≥5, l-diversity ≥2).

2)Results and Analysis
Table 6 summarizes the performance comparison across tasks. The non-desensitized 

data consistently achieves slightly higher scores, but the differences are within 1–2%, 
indicating that desensitization introduces negligible performance degradation. For 
instance, in knowledge question answering, the non-desensitized BERTScore is 0.97, 
compared to 0.96 for desensitized data—a difference of just 0.01. Similarly, tactical 
planning shows a 0.02 gap in overall scores, while threat assessment exhibits a 0.01 
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divergence in Kendall’s Tau. These results highlight the robustness of our 
desensitization pipeline in maintaining task efficacy.
Table 6. Performance comparison of desensitization levels across tasks

Desensitization 
Level

Knowledge QA 
(BERTScore)

Tactical Planning 
(Overall Score)

Threat Assessment 
(Kendall’s Tau)

No Desensitization 0.97 0.90 0.93

Desensitization 
(Ours) 0.96 0.88 0.92

Privacy metrics further validate the necessity of desensitization: the non-desensitized 
data fails to meet k-anonymity (k=2) and l-diversity (l=1) thresholds, whereas the 
desensitized version achieves k=7 and l=3, reducing re-identification risks by over 80%. 
This confirms that the minor performance trade-off is justified by significant security 
gains.

3)Discussion and Implications
The minimal performance gap underscores the efficiency of our desensitization 

techniques, such as entity generalization and probabilistic masking, which retain 
critical semantic features while obfuscating sensitive details. For example, in tactical 
planning, the desensitized model maintains accuracy in resource scheduling by 
leveraging relative positional data instead of exact coordinates. However, a subtle 
observation is that the non-desensitized data occasionally outperforms in tasks 
requiring precise temporal reasoning (e.g., threat assessment with real-time sensor 
streams), suggesting that further optimization of time-series desensitization could 
bridge this gap.

Notably, the results align with our framework’s design goals: the desensitized 
approach reduces data leakage risks by 95% based on adversarial testing simulations, 
where reconstruction attacks on desensitized data achieved less than 5% success rates. 
This makes it suitable for high-stakes domains where privacy is paramount.

The comparative analysis confirms that desensitization introduces only negligible 
performance losses while providing robust privacy guarantees. This balance ensures 
the practical deployment of our knowledge graph framework in sensitive environments 
without sacrificing decision-support capabilities. Future work will focus on refining 
desensitization for dynamic data streams to enhance real-time adaptability.

4.4. Domain Knowledge Graph Quality Verification

In this experiment, we performed automated quality verification of the triples in the  
knowledge graph based on the confidence evaluation framework. By setting the 
confidence threshold at 0.5, the triples were classified into trustworthy and 
untrustworthy groups. The experimental results are shown in Table 4.

From the table, it can be seen that triples with a confidence higher than 0.5 account 
for 90.7% of the total sample, demonstrating the reliability of the graph quality. Further 
analysis reveals that in the untrustworthy triples group with confidence below 0.5, only 
7.4% of the samples were confirmed as correct through expert manual verification, 
resulting in a false positive rate of just 7.4%. This indicates that a significant number of 
potential errors exist within the low-confidence triples, and by setting a threshold of 0.5, 
we can quickly identify low-quality triples that need to be prioritized for validation. 
Therefore, it can be reasonably inferred that in the high-confidence range above 0.5, 
the false positive rate is also below 10%. This method can effectively filter out high-
quality triples, providing a reliable knowledge foundation for subsequent applications.

Future improvements include: 1) further reducing the false positive rate in the 0.4-
0.5 range to enhance the accuracy of boundary sample identification; 2) for high-
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confidence but actually incorrect triples, introducing a semantic-based supplementary 
validation mechanism to improve the model's robustness.

Overall, this experiment fully validates the effectiveness of the proposed  knowledge 
graph construction framework. Through a multi-dimensional confidence evaluation 
method, we conducted a comprehensive quality verification of the triples in the graph. 
The experimental results show that most triples exhibit high reliability under the 
confidence evaluation, providing strong evidence of the framework's ability to ensure 
graph quality. In conclusion, by conducting automated quality verification of the graph, 
this study successfully validates the proposed methodology and constructs a high-
quality domain knowledge graph, providing a solid data foundation for future intelligent 
decision support systems.

5. Conclusions

This study develops a knowledge graph construction and fine-grained extraction 
framework for the domain knowledge, integrating domain-adaptive large language 
models (LLMs) and multimodal knowledge fusion technologies to effectively address the 
challenges in domain knowledge management. We propose an LLM fine-tuning strategy, 
which significantly enhances the model’s understanding of domain issues by fine-tuning 
with a specific corpus. Subsequently, we design a knowledge graph construction 
framework that combines a rule engine and ontology constraints to extract entities and 
relationships from multi-source data, creating a knowledge network. Experimental 
results show that the fine-tuned LLM performs significantly better on domain tasks 
compared to general-purpose LLMs, while the constructed knowledge graph achieves 
high structural accuracy. This research opens new avenues for knowledge management 
in the domain through the integration of knowledge graphs and domain-adaptive LLMs. 
Our future work includes further expanding the knowledge graph to cover more 
scenarios, ultimately applying it to decision-making.

Empirically, multi-task evaluations show consistent improvements over general-
purpose baselines, while ablations clarify which modules contribute most to ranking, 
question answering, and planning performance. Graph-level analyses further indicate 
reliable triplet quality and healthy structural properties, supporting the engineering 
choices made in the system.

Although the framework is designed to support multimodal fusion, the current 
implementation is text-centric and does not yet constitute a fully multimodal knowledge 
graph. A natural next step is to incorporate additional data types (document 
images/diagrams, tables and other structured sources, and time-series logs) within the 
same ontology and to quantify their incremental value against the text-only baseline. 
These clarifications align claims with the present implementation and outline a focused 
path for extending the work.
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