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Abstract

With the growing need for intelligent decision-support systems, the development of high-quality
knowledge graphs has become essential for improving operational efficiency and decision
reliability. However, the specialized nature, distributed sources, and sensitive aspects of this
knowledge present unique challenges to conventional knowledge management approaches.
Current general-purpose large language models often struggle with domain-specific text
comprehension, particularly in accurately interpreting technical parameters and operational
guidelines. To address these limitations, this paper introduces a framework for building and
refining specialized knowledge graphs using adapted large language models. Our approach
involves fine-tuning base LLMs with domain-specific datasets, enabling them to better handle
complex terminology and semantic nuances. The framework incorporates a multimodal
knowledge integration pipeline that combines ruie-based systems with ontological structures to
extract and link entities from diverse data sources, creating an adaptive knowledge network.
Experimental results demonstrate that our fine-tuned model achieves substantial gains in
relationship extraction accuracy, while the resulting knowledge graph shows strong performance
in semantic coherence and operaticnal reasoning assessments, offering robust support for critical
decision-making processes. This research presents a novel approach for effective knowledge
integration and cross-fuinctional collaboration in specialized domains.

Keywords: Knowledge Graph, Adapted Large Language Model, Multimodal Knowledge
Integration, Operational Decision Support, Dynamic Knowledge Network

1. Introduction

In modern operational decision-making systems, the demand for intelligent support
has surged due to increasingly complex environments and accelerated technological
evolution. The effectiveness of critical decision processes directly impacts strategic
outcomes, particularly in scenarios requiring multi-domain coordination where
commanders must rapidly synthesize information from vast, heterogeneous datasets to
formulate precise operational plans. Domain knowledge is typically dispersed across
operational manuals, technical documentation, sensor data, and historical case studies,
encompassing specialized content including system parameters, operational guidelines,
and environmental intelligence. This fragmentation creates integration challenges that
can compromise decision quality.
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Knowledge graphs (KGs) offer a structured solution [1], representing information as
interconnected entity-relationship triples (head, relation, tail) that form semantic
networks. While successful in general domains (WordNet, DBpedia [2-5]) and
applications like information retrieval [6-8], KG construction in specialized contexts
presents unique challenges: (1) highly distributed and dynamic knowledge; (2) limited
data accessibility; (3) real-time update requirements; and (4) domain-specific semantic
complexity.

However, Constructing knowledge graphs in specialized domains presents notable
challenges: the knowledge 1is highly dispersed and dynamic, encompassing
heterogeneous data such as technical parameters, operational rules, and spatial
intelligence; data sensitivity limits public resource availability, with critical information
often residing in restricted internal documents; operational logic and system status can
change in real time according to field conditions, making traditional static knowledge
graphs unsuitable for dynamic updates; and the domain-specific terminology causes
general-purpose NLP models to have limitations in semantic understanding.

Existing methods exhibit significant shortcomings in specialized knowledge
management. While general-purpose LLMs possess strong text comprehension
capabilities, their accuracy in entity and relationship extraction drops significantly when
dealing with domain-specific terms (e.g., technical codes, operational abbreviations)
and unstructured text (e.g., spatiotemporal descriptions in reports) [9]. Traditional rule
engines rely on manually defined patterns, making adaptation to dynamic data difficult
[10], while statistical learning-based models are constrained by scarce labeled data and
limited domain transferability [11]. Additionally, data semsitivity complicates cross-
departmental knowledge sharing, exacerbating information silos. In this context,
constructing a high-quality, dynamically updated knowledge graph and ensuring its
reliable application in decision-making becomes a core challenge.

To address these issues, this paper proposes a knowledge graph construction
framework that integrates domain-adapted [LLMs with multimodal knowledge fusion.
First, a general-purpose LLM is fine-tuned using domain-specific corpora to enhance its
ability to identify entities and complex relationships, such as technical specifications,
operational rules, and environmental factors. For example, the model can parse implicit
compatibility logic in manuals or extract spatiotemporal relations from reports. Second,
a multimodal knowledge extraction pipeline integrates text, images, structured
databases, and other multi-source data, combining ontology constraints and rule
engines to build a dynamic knowledge network. Finally, the knowledge graph is
validated using real-world exercise data, with evaluation experiments assessing
semantic consistency, reasoning support, and update efficiency. While the architecture
defines adapters for images, tables/structured sources, and time-series logs, the current
experiments activate the text branch only.

The main contributions of this study are as follows:

(1) Task-aware domain fine-tuning protocol. We introduce a Knowledge Routing
Network that guides a hierarchical LoRA schedule for domain tasks, selecting adapters
and parameter scopes to turn parameter-efficient tuning into a task-aware adaptation
mechanism—beyond the independent use of LoRA, CoT, or RAG.

(2) Privacy-preserving dataset generation pipeline. We design a desensitization
workflow for real exercise data—covering entity generalization, functional coding, and
controlled masking—to produce training and evaluation sets that preserve utility while
meeting security constraints.

(3) Transparent graph-quality assessment and attribution. We report
precision/recall/F1 for entity and relation extraction and coverage/structure metrics of
the graph (average degree, edge density, clustering coefficient, update latency),
together with a reproducible ablation protocol that attributes gains to individual
modules rather than to generic techniques.

The rest of this paper is organized as follows: Section 2 reviews the current research
on domain knowledge graphs and large language models; Section 3 details the domain



fine-tuning methods and knowledge graph construction framework; Section 4 presents
the implementation of the graph and results from multidimensional evaluation
experiments based on real data; Section 5 summarizes the research findings and
discusses future directions.

2. Related Work
2.1. Classical Knowledge Graph Construction Methods

Knowledge graph construction has evolved from manual efforts to intelligent
automation. Early methods relied on expert knowledge; for example, WordNet [12][13]
defined semantic relationships through linguistic annotation, yielding high accuracy but
low scalability. In structured or semi-structured scenarios, rule-based methods like
DBpedia [14][15] extracted triples from Wikipedia infoboxes using predefined rules.
Though efficient for fixed-format data, such approaches struggle with the complex
semantics of natural language [35].

With deep learning advancements, neural network-based techniques have enhanced
automation [16][17]. In NER tasks, tools such as SpaCy, NLTK, and ltp [18][19] blend
rules and statistical models, while BiLSTM-CRF [20] improves sequence labeling via
contextual learning. Pre-trained models like BERT [21] further optimize performance,
especially in cross-lingual settings [22][23], and domain-specific fine-tuning [24-27]
significantly enhances the recognition of specialized terminology.

For RE tasks, CNNs [28][29] improve classification by extracting local features, while
distant supervision [30] enables automatic labeling but introduces noise. Sentence-level
attention mechanisms [31] reduce this by weighing relevant context. Recent
frameworks incorporating entity masking and contrastive pretraining [32] further
enhance robustness. PEFT-based methods [33] and tools like OpenNRE [34] offer
scalable and adaptable RE solutions.

Despite progress, limitations remain in domain applications: manual and rule-based
methods cannot handle large-scale, unstructured data or deep semantics [35]; deep
models require labeled data, which is scarce in restricted domains; and traditional full-
parameter tuning is costly and lacks efficiency [36]. This paper proposes integrating
LLMs to overcome these barriers in specialized KG construction.

2.2. Domain Adaptation of LLMs

Large-scale pre-trained LLMs have become a core paradigm in NLP due to their
powerful semantic capabilities. Models like GPT-4 and LLaMA-3, with trillions of
parameters, learn cross-task generalization via large-scale pretraining and subsequent
task-specific fine-tuning [37]. However, as model size grows, full-parameter fine-tuning
faces issues such as high GPU memory demand and significant computational overhead.
For instance, fine-tuning LLaMA2-7B requires around 60GB of GPU memory [38], and
storage burdens increase sharply in multi-task contexts. Moreover, full updates can
degrade the model’s general knowledge [39], limiting effectiveness in specialized
domains. To overcome these challenges, Parameter-Efficient Fine-Tuning (PEFT) has
gained prominence by updating only a small fraction of parameters.

LoRA inserts low-rank matrices into Transformer layers, enabling adaptation with just
0.1% of the total parameters. Hu et al. [40] applied LoRA to GPT-3 175B, reducing
trainable parameters by 10,000x while retaining inference speed. This method has been
deployed in scenarios like GPT4Tool for tool invocation [41]. Adapter modules embed
lightweight networks into model layers, as in Houlsby et al.’s BERT extension [42],
requiring under 1% extra parameters. However, stacking adapters may increase
inference latency. Prefix-tuning, as introduced by Li et al. [43], optimizes continuous
prefix vectors to guide outputs, achieving strong performance in low-resource tasks.



Other methods such as soft prompts [44], BitFit [45], and QLoRA [46] balance memory
efficiency and task adaptability through selective parameter updates and quantization.

Beyond fine-tuning algorithms, domain adaptation also depends on effective
knowledge injection and architecture design. In rail transportation, a high-speed rail
maintenance KG improves fault diagnosis via multi-level completion [47]. For
infrastructure management, BMKG applies graph mining to support classification and
decision-making [48]. In safety analysis, knowledge graphs uncover causal accident
chains using semantic reasoning [49]. Integrating domain triples as pseudo-text [50] or
combining multimodal data like sensor logs [51] enhances model specialization and
cross-modal understanding.

Recent studies further adapt large models for open-domain extraction. UniversalNER
[55] introduces targeted distillation from LLMs to improve open NER under limited
supervision, while BANER [56] leverages boundary-aware strategies to enhance few-
shot entity recognition. For relations, Wang et. al. [57] explores cooperating LLMs with
phrase-level probabilistic modeling for open relation extraction. These methods advance
NER/RE capabilities at the instance level. Our work is complementary but differs in
scope: we use a Knowledge Routing Network (KRN) to guide hierarchical LoRA for
domain tasks and couple LLM extraction with ontology and rule constraints, triplet
validation, and graph-level quality metrics and ablation attribution, targeting a
reproducible KG construction-validation pipeline in sensitive domains.

Despite progress, sensitive domains still face barriers due to data access limitations.
Tasks such as complex information extraction or situational analysis often involve
unstructured and restricted data, limiting large-scale modei training. Future research
should focus on privacy-preserving fine-tuning, structured knowledge injection, and
logic-constrained optimization to enable the secure and eificient deployment of LLMs in
high-stakes application scenarios.

2.3. Knowledge Graph Construction Based on LiMs

In recent years, large-scale language models (LLMs) such as GPT-4, LLaMA, and
PaLM have become key enablers of automated knowledge graph (KG) construction,
owing to their strong semantic understanding and reasoning capabilities [37].
Traditional KG construction methods—based on manual annotation, rule engines, or
small-scale pre-trained models—suffer from high cost and poor scalability. In contrast,
LLMs leverage vast pretrained corpora to extract structured knowledge from
unstructured text, offering a new paradigm. For instance, GPT-3 has shown near-expert
performance in open-domain relation extraction, particularly in handling long-tail
semantics, outperforming supervised models [38]. This has spurred research into
prompt-based and in-context learning methods to guide LLMs in entity recognition,
relation extraction, and logical validation, reducing reliance on labeled data.

LLM-based frameworks often reframe KG construction as a text-to-structure task.
REBEL [52], for example, directly generates entity-relation triples without predefined
ontologies or rules, achieving 1.8 x the coverage of traditional approaches on Wikipedia.
Another line of work integrates symbolic reasoning with LLMs through Chain-of-
Thought (CoT) prompting, enabling interpretable, step-wise extraction of triples [53].

In specialized domains, LLM-driven KG construction has shown promising results.
ClinicalKG [54] parses EHRs using GPT-4 to build a disease-symptom-drug network,
achieving 89% accuracy in FDA-level drug interaction evaluations. FinGraph [55]
extracts dynamic financial relationships and market risks from reports and news to
support regulatory and investment decisions. In the industrial domain, a high-speed
railway maintenance KG employs a multi-level KBGC framework and LLM-based log
parsing to uncover equipment states and fault chains.

Despite these advances, applying LLMs in high-security or domain-constrained
contexts remains challenging. General LLMs often underperform in specialized
information extraction. In particular, KG construction in certain restricted domains is



still in an exploratory phase, lacking mature methodologies. This study aims to bridge
that gap by integrating LLM language capabilities, domain adaptation techniques, and
CoT reasoning with traditional KG methods to design an automated framework tailored
to secure and specialized knowledge environments.

3. Methods
3.1. Parameter-efficient Fine-tuning of LLMs in the Domain

3.1.1. Construction of a Multi-source Corpus

This study focuses on the training requirements of large-scale pre-trained models in
the domain, aiming to construct a high-quality, structured training corpus that can
support multi-task adaptation. Successful deployment of LLMs in the domain relies on
datasets that are rich in background information, highly reliable, and well-structured.
These datasets must not only cover the complex needs of tasks such as tactical decision
support, threat assessment, and related-knowledge question answering, but also
establish a robust knowledge-sharing mechanism within the dataset. To this end, this
study integrates multi-source, heterogeneous data into a unified training dataset,
adopting a standardized data architecture to ensure that the training set can
comprehensively support instruction fine-tuning, multi-task joint training, and
continuous learning requirements.

In the data collection process, this study integrates various data sources to ensure
that the corpus fully covers the critical tasks of tactical planning, equipment
configuration, threat assessment, and communication command parsing. These data
include tactical command communication logs, equipment technical documents,
battlefield simulation data, and theoretical literature. The tactical command
communication logs are transformed into instruction chains with time-domain labels
through multi-level semantic parsing techniques, while incorporating tactical
background descriptions and execution feedback records, providing complete
information about the instruction execution process to assist in subsequent task analysis
and optimization. The equipment technical documents are processed to construct
matching rules between equipmeiit performance and combat environments, providing
key data support for equipment configuration decision-making tasks. The battlefield
simulation data is decomposed into decision tree structures, with each node labeled
with the probability of selection conditions and expected outcomes, effectively
supporting the training requirements of tactical decision-making. The theoretical
literature is structurally analyzed and converted into tactical rule explanation texts,
establishing traceable logical mappings with historical campaign databases, providing
a solid foundation of knowledge, especially crucial for question answering tasks.

While ensuring data diversity, this study implements a stringent desensitization
system in the data processing phase, considering the high sensitivity of data. All raw
data undergo semantic-level reconstruction and desensitization. Specifically, entities
are standardized through a generalized transformation guided by a knowledge graph.
For example, geographical coordinates are converted into relative position descriptions,
unit organizational identifiers are transformed into functional operational unit codes,
and equipment technical parameters are mapped to a standardized grading system. To
further enhance data security and privacy protection, this study also integrates a virtual
adversarial simulation engine, which reconstructs the abstract expression of core
tactical logic through a probabilistic masking mechanism, ensuring that the original
data distribution features are protected while reducing the risk of data leakage. The
processed data undergoes semantic coherence verification and logical conflict detection
to ensure data purity and quality, ultimately forming high-quality semantic units.

In terms of data architecture design, this study adopts an enhanced nested JSON
structure to ensure the data can efficiently and flexibly support multi-task joint training.



Tablel. Details of the dataset design

Task Data
Function Description . Core Characteristics
Category Proportion
Answer questions about tactical Includes authoritative clause
Q&A principles and equipment 40% references and multi-condition
characteristics applicable rule descriptions
. ) . Includes stage goal breakdown,
Tactical Generating decision paths that .
] ) 25% resource allocation plans, and
Planning comply with combat orders )
contingency plans
Integrated multi-source
Threat Dynamically quantifying 20% intelligence in a matrix evaluation
()
Assessment battlefield risk factors model with a weighted scoring
system
Based on task objectives,
Equipment Optimizing technical parameter 10% equipment performance
- - - - - .- o - - - am el

Each data unit contains three main modules: the global situational framework, the task
branch set, and the cross-domain indexing system. The global situational framework
standardizes the description of the battlefield environment, with core fields including
the classification of operational stages, dynamic enemy-force cormparison, geographical
constraint matrices, and task goal decomposition trees. These fields provide the model
with necessary tactical context, help establish a shared semantic foundation across
different tasks, and enhance multi-task adaptation capabilities. Specifically, the
classification of operational stages helps the model understand the temporal features of
tasks, the dynamic enemy-force comparison enables the model to quickly grasp the
battlefield power dynamics, the geographical constraint matrices offer geographical
limitations within the operational! area, and the task goal decomposition trees break
down the task into detailed steps, providing structured support for executing different
tasks.

The task branch set divides different input-output structures according to the
functional type of each task, focusing on supporting five core tasks: tactical planning,
threat assessment, equipment configuration decision-making, instruction parsing, and
question answering. The training data for each task is specifically designed according
to its functional requirements. For example, the tactical planning task needs to generate
decision paths that comply with operational orders, so the task branch includes details
such as stage goal breakdown, resource scheduling plans, and contingency plans. The
threat assessment task focuses on constructing a dynamic risk coefficient matrix,
integrating multi-source intelligence and risk assessment models, providing the model
with precise battlefield situation judgment. The instruction parsing task transforms
natural language commands into executable operation codes, helping the model achieve
automatic execution and optimization of tactical commands. The question answering
task relies on high-quality knowledge sources, such as operational orders, equipment
technical white papers, and historical campaign reviews, combining manual expert
reviews and automated knowledge extraction to generate high-quality Q&A pairs,
ensuring the standardization and credibility of the samples. Each task branch not only
specifies the input-output format of the task but also provides in-depth descriptions of
different functional needs, ensuring the accuracy and flexibility of the training model in
various task scenarios.

The cross-domain indexing system establishes knowledge-sharing pathways between
tasks through the global situational framework, allowing context to permeate the
training processes of other tasks. This design not only significantly enhances task



coordination but also optimizes data flow and knowledge sharing during training,
helping the model better understand the inherent relationships between different tasks,
thus further improving its overall performance.

A typical training data sample intuitively demonstrates the corpus's ability to support
multiple tasks. In this sample, the functionality of all modules is effectively reflected.
The global situational module provides a complete description of battlefield
environment features and force composition, while the task branch module defines input
constraints and output specifications for different tasks through structured parameters,
particularly in the design of question answering and tactical planning tasks. The task
includes not only authoritative answers to specific tactical questions but also binds
relevant legal references and dynamic adjustment rules; the tactical planning task
refines key nodes of action steps through a standardized hierarchical structure. This
sample shows how data structuring ensures that different task types can share basic
battlefield situation data and independently define functional requirements for
specialized domains, significantly reducing the complexity of multi-task training and
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Figl. The principle of LoRA

optimizing task coordination effects

Table 1 further supplements the specific details of the dataset design, showing the
proportion and core features of each task. The task proportions and core features in the
table indicate the weight and requirements of each task in the overall dataset. For
example, the question answering task accounts for 40% of the corpus, reflecting its
dominant position in the entire training system. In this task, authoritative clause
references and multi-condition applicable rule descriptions are its core features. The
proportions of the tactical planning and threat assessment tasks are next, at 25% and
20%, respectively, highlighting the importance of tactical decision-making and
situational assessment in applications. Equipment configuration decision-making and
communication instruction parsing tasks have smaller proportions, at 10% and 5%, but
they still hold significant value in specific application scenarios.

The setting of task proportions and core features ensures the balance and
professionalism of the dataset in various task domains, while providing theoretical
support for data allocation and task prioritization during training. Through refined task
planning and data partitioning, this study not only ensures that different task types can
share basic battlefield situation data but also allows them to independently define
functional requirements in their respective fields. This significantly reduces the
complexity of multi-task training and effectively improves the model's training efficiency
and generalization ability. The combination of this design concept and the table content
reflects the supportive relationships and differentiated distribution between tasks,
thereby enhancing the training quality of each task module and the accuracy of task
execution.

Through the approach outlined above, this study has constructed a unified training
dataset capable of effectively supporting multi-task training for domain LLMs. This



dataset ensures in-depth integration of multi-source intelligence while systematizing
knowledge through a structured data production process, providing a solid foundation
for artificial intelligence applications in the domain. Particularly in the multi-task joint
training model, the corpus design guarantees adaptability and data sharing,
significantly enhancing the generalization ability and decision-making accuracy of the
model. It is anticipated that this dataset will improve tactical decision-making
capabilities and operational efficiency.in intelligent decision-support systems.

The datasets originate from sensitive exercises, so we apply a privacy-preserving
workflow before any model access: entity generalization and pseudonymization,
functional coding of organizational units, probabilistic masking or light rephrasing of
high-risk snippets, and manual review. To balance collaboration and privacy, processing
occurs in a controlled environment with role-based access, audit logging, and data
minimization. External partners access de-identified corpora under data-use
agreements; model artifacts, prompts, and code are shareable, while raw data remain
on-premise. For cross-site validation, we use a “bring-the-code-to-the-data” or federated
run approach so that only aggregate metrics leave the site. We monitor privacy using k-
anonymity (=5) and ¢-diversity (=2) checks for any released subsets, and apply
aggregate-only reporting where required.

3.1.2. LoRA Adaptation Framework for Domain Knowledge

The hierarchical LoRA adaptation framework proposed in this study is based on the
hierarchical nature of domain knowledge, with a structured low-rank parameter
architecture as the core innovation. Its goal is to achieve a balance between lightweight
fine-tuning of LLMs and multi-task adaptability. This framework deeply integrates the
multi-source corpus described in Section 3.1.1, leveraging its global situational
description feature vectors to construct input prior knowledge. Additionally, it optimizes
hierarchical module parameters driven by the data labels of subdivided task branches,
and strengthens inter-module collaboration through metadata mapping in the cross-
domain indexing system. The framework effectively addresses the limitations of
traditional LLMs in knowledge transfer and task generalization through a hierarchical
parameter reorganization mechanism, providing support for rapid adaptation and
precise decision-making in complex battlefield environments. The principle of LoRA is
illustrated in Figure 1.

The framework adopts a hierarchical decomposition strategy, mapping entity
representations, operational logic, and decision paths to three LoRA module clusters—
BM-LoRA, TL-LoRA, and TA-LoRA. The BM-LoRA module forms a semantic network of
domain concepts, integrating multi-modal term features via collaborative attention.
During training, it aligns documentation with spatial data, establishing semantic links
between movement vectors and terrain features. For instance, when analyzing force
comparison data, the model extracts terrain gradients and equipment parameter
thresholds to support spatial constraints in decision-making.

The TL-LoRA module embeds operational rules through differentiable structures,
incorporating a real-time verification unit that adjusts constraint boundaries. In general
tasks, deployment safety zones are prioritized; in specialized scenarios, such as dense
terrain or close-quarter operations, coverage and mobility parameters are adjusted
dynamically to maintain feasibility in complex environments.

The TA-LoRA module enables dynamic task adaptation using a hot-cold parameter
storage strategy. High-frequency tasks are cached at the edge for real-time planning,
while low-frequency task parameters are compressed and stored remotely, with secure
incremental loading. For tasks such as aerial security, the module integrates sensor
feature links with predictive decision paths, forming scenario-specific parameter sets.

At the core is the Knowledge Routing Network (KRN), which acts as the controller
that converts operational inputs into routing decisions for the extraction modules. KRN
comprises a parsing layer that derives mission-phase markers and feature matrices, an
association engine that aligns these features with ontology knowledge and past-case



data to form knowledge tags, and a decision circuit that selects the task, chooses the
appropriate LoRA adapter and parameter scope for the large language model, and
adjusts settings in real time. The circuit applies lightweight pruning to reduce latency
while preserving accuracy.

Training follows a phased approach. Initially, foundational representations are
trained using non-sensitive data and contrastive learning to link equipment traits with
effectiveness metrics. Next, rule verification is introduced, incorporating constraint
violation cases to guide convergence. Finally, a scenario engine generates mixed
training samples, and masking techniques preserve task focus. Gradient updates use a
domain-optimized version of AdamW, with adaptive learning rate tuning and concept
stability protection to enhance robustness.

Overall, the framework enables effective knowledge transfer for LLMs through
modular parameter reorganization. BM-LoRA and TL-LoRA jointly enhance semantic
alignment and directive embedding, while TA-LoRA ensures practical task adaptability.
Through comprehensive data integration, the framework significantly improves
generalization and supports decision-making with notable gains in deployment
efficiency and compliance.

3.1.3. LLM Fine-Tuning Optimization Strategy in the Domain

This study targets the training demands of large-scale pre-trained models in high-
security domains, aiming to build a structured, high-quality training corpus for multi-
task adaptation. Effective deployment of LLMs in such contexts depends on datasets
that are information-rich, highly reliable, and structurally consistent. These datasets
must cover tasks such as tactical decision support, threat assessment, and domain-
specific question answering, while fostering internal knowledge interoperability. To this
end, this study integrates multi-source heterogeneous data using a standardized
architecture to support instruction tuning, joint multi-task training, and continuous
learning.

Data collection draws from diverse sources, including command communication logs,
equipment documentation, simulation data, and domain-specific theoretical literature.
Communication logs are converted into instruction chains with temporal tags and
feedback records through semantic parsing, providing a full picture of execution
processes. Equipment documents are analyzed to match performance characteristics
with operational scenarios, supporting configuration decisions. Simulation data is
transformed into decision trees annotated with probabilities and outcomes, enhancing
tactical decision modeling. Theoretical literature is restructured into rule-explanation
texts linked with historical event databases, laying the foundation for domain-specific
question answering.

To address data sensitivity, a rigorous desensitization process is applied. Entity-level
semantics are anonymized through knowledge graph-driven generalization. Geographic
data is expressed as relative positions, organizational units as functional codes, and
technical specs as graded descriptors. A virtual adversarial simulation engine further
masks core logic through probabilistic transformations to preserve distribution
characteristics while minimizing disclosure risk. The final dataset undergoes semantic
and logical integrity checks to ensure high-quality structured data units.

An enhanced nested JSON architecture underpins the corpus, organized into three
core modules: a global situational framework, a task branch set, and a cross-domain
indexing system. The situational framework encodes battlefield environment
descriptors such as operational phases, dynamic force comparisons, geospatial
constraints, and task decomposition trees. These provide essential context for all tasks,
supporting temporal understanding, resource modeling, and goal structuring.

The task branch module delineates input-output structures for five core tasks:
planning, threat evaluation, equipment configuration, command parsing, and domain-
specific question answering. Each is tailored with functional details—for example,
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planning tasks contain goal breakdowns and contingency plans, while threat assessment
uses multi-source risk matrices. Instruction parsing converts natural language into
executable codes, and question answering relies on curated documents and expert-
reviewed Q&A pairs to ensure sample quality.

The cross-domain indexing system enables knowledge reuse by linking task data
through shared situational context, enhancing inter-task coordination and model
comprehension of semantic dependencies. This architecture supports scalable, multi-
functional LLM training in secure environments.

As illustrated in Code Block 1, a representafive data sample encapsulates all modules.
It showcases structured battlefield descriptions, input-output specifications for distinct
tasks, and embedded logic for question answering and planning. By harmonizing shared
situational data with task-specific logic, the structure enhances multi-task learning
while reducing training complexity and improving coordination efficiency.

Building on the compoenents described above, we now turn to how they operate
together in a unified workflow. The next section translates the module-level methods
into a system-level hybrid construction process that supports incremental updates and
validation.

3.2. Hybrid Construction Method for Knowledge Graphs

This section outlines the hybrid method that integrates LLM-based extraction with
ontology and rule constraints. We first present the overall framework and data flow
(Section 3.2.1), and then detail the mechanisms for validation and updates in
subsequent subsections. This organization highlights how the method moves from
component capabilities to an operational pipeline.

3.2.1. Domain Knowledge Graph Construction Framework Design

This subsection specifies the overall framework and data flow for domain knowledge
graph construction. It defines inputs, routing, extraction, validation, and update
triggers, providing the blueprint that the subsequent implementation follows.

In the domain, a single knowledge graph often fails to comprehensively cover the
multidimensional information requirements of complex combat tasks, environmental
changes, and equipment scheduling. Therefore, this study proposes a unified knowledge
graph construction framework, designed to integrate multi-source heterogeneous data
and achieve efficient graph construction and dynamic updates through a layered rule-
driven and LLM collaborative knowledge extraction mechanism. This framework not



only provides precise task support but also adapts to complex battlefield environments,
meeting the multidimensional knowledge needs of intelligent decision-making systems.
The overall framework process is shown in Figure 2.

The design of the framework starts with the hierarchical structure of tasks and the
dynamic characteristics of the battlefield environment, considering the types of combat
tasks, environmental changes, and the dynamic deployment of equipment systems.
During the construction process, the knowledge graph integrates information such as
resources required for tactical tasks, tactical rules, execution steps, as well as
environmental factors like battlefield situations, weather, and electromagnetic
interference. These elements, through dynamic updates and interconnections, provide
comprehensive combat support, ensuring efficient response to decision-making needs
in various scenarios.

To ensure the efficient construction of the knowledge graph, this framework
combines multi-source heterogeneous data cleaning, normalization processing, and a
layered rule-driven knowledge extraction method. In the data preprocessing stage, the
system processes raw data from the knowledge corpus through classification, denoising,
and terminology standardization to ensure information consistency and efficiency,
especially when dealing with diversified data sources from different systems,
operational reports, and sensor data. Additionally, the framework uses techniques such
as semantic consistency checks and data fusion to deeply explore latent valuable
information within the data, thereby enhancing the accuracy and comprehensiveness of
the graph. In the knowledge extraction process, the framework adopts a rule-driven
approach to automatically identify and extract the core elements related to the task,
accurately pulling out the most relevant knowledge for combat tasks. Expert annotation
and validation further optimize the extraction process, imiproving the quality of the
knowledge within the graph. To enhance the depth and breadth of extraction, the
framework introduces a collaborative mechanism with LLMs, combining domain LLMs
and deep learning technologies, utilizing few-shot learning and transfer learning to
automatically identify and extract domain knowledge from unstructured data, thus
flexibly adapting to new tactical needs and battlefield changes. Ultimately, this
collaborative mechanism ensures that knowledge from different tasks can be efficiently
integrated within a unified graph, providing real-time support for rapid decision-making.

In summary, the knowledge graph construction framework proposed in this study
provides an efficient, dynamic, and scalable solution through multi-source data cleaning,
rule-driven knowledge extraction, and collaborative extraction mechanisms with LLMs.
This framework not only meets the multidimensional knowledge requirements of
decision-making systems but also offers rapid and accurate knowledge support in
complex battlefield environments.

3.2.2. Multi-Source Heterogeneous Domain Data Cleaning and Standardization

In processing multi-source heterogeneous data from high-security domains, this study
proposes a multi-layer cleaning strategy and a standardized pipeline for knowledge
modeling. To address the confidentiality, variability, and inconsistency of such data, the
framework includes classification, denoising, and standardization. Raw data spans
textual inputs like command records, field reports, and maintenance logs, as well as
structured data such as sensor time-series and environmental readings. The core
workflow emphasizes feature reconstruction and semantic enhancement to achieve
coherence across modalities.

During classification, a task-driven approach maps heterogeneous data into semantic
categories, including: (1) Task planning data, capturing operational stages, decision
logs, and force structures; (2) Environment data, integrating geographical,
meteorological, and electromagnetic information to support constraint modeling; (3)
Equipment data, describing operational status, telemetry, and lifecycle records.
Sensitive content is anonymized via generalization, such as replacing exact identifiers
with functional categories or ranges.



Denoising targets irrelevant or inconsistent entries. For unstructured text, semantic
validation across event chains filters out contradictory instructions. Structured sensor
data is cleaned using physical constraints to remove unrealistic values, such as
implausible trajectories.

Standardization unifies terminology, format, and semantics across sources. Cross-
branch concept alignment ensures consistent definitions, while formatting rules enable
interoperability of varied data types. Algorithmic tools assist in aligning data tables by
identifying underlying semantic relationships. Domain constraints are applied to
standardize representations, promoting consistency in downstream knowledge fusion.

This structured data processing framework ensures secure, high-quality, and
semantically enriched inputs for knowledge extraction. It addresses challenges in
integrating heterogeneous sources and lays a solid foundation for knowledge modeling
in complex, high-security task scenarios.

3.2.3. Hierarchical Rule-Driven Knowledge Extraction

In constructing a domain-specific knowledge graph, a hierarchical rule-driven
extraction method is applied, building upon previously cleaned multi-source data. This
approach integrates semantic constraints and task logic to accurately extract and
structure key knowledge components. A rule system aligned with operational task
structures supports text parsing, feature integration, and knowledge evolution.

For unstructured text, a layered rule framework leverages standardized domain
semantics—such as aligned spatiotemporal parameters and operational terminology—
to extract entities and actions. Using a multi-tier parsing model (e.g., “intent-node-
action”), command records are decomposed into goals, unit roles, and operational steps.
High-level instructions like “preparatory engagement” or “area restriction” are linked
to deployment patterns via contextual association algorithms. To ensure accuracy,
extracted knowledge is checked for logical overlap and hierarchical redundancy.

In structured data (e.g., tables), rule-driven parsers match rows and columns to
functional task components. With regular expressions and disambiguation libraries, key
terms such as unit labels, temporal markers, and performance indicators are identified
and mapped to appropriate knowledge containers, enhancing structured representation.

To deepen the hierarchy, a recursive algorithm disassembles high-level instructions
into layered subgoals, such as unit formation or task decomposition. Technical and
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organizational details are anonymized during this process. Through iterative parsing, a
multi-dimensional knowledge network is formed, capturing both abstract strategies and
concrete task attributes.

This method is closely integrated with earlier standardization pipelines and
dynamically supports updates—such as geospatial image data triggering the loading of
spatial parsing rules. Final outputs are organized as standardized triples, maintaining
semantic hierarchy and physical consistency, and providing foundational support for
scenario simulation and adaptive knowledge updates.

3.2.4. LLM-Coordinated Domain Knowledge Extraction

When dealing with unstructured domain text data, this study proposes a knowledge
extraction method based on Large Language Models (LLM), incorporating Retrieval-
Augmented Generation (RAG) and Chain of Thought (CoT) techniques. Through multi-
step extraction operations, high-quality domain knowledge is extracted. The specific
technical implementation is illustrated in Figure 3. To ensure the reliability and
professionalism of the extraction results, the research process relies on annotations and
sample verification by domain experts. Through these annotated samples, the LLM can
perform knowledge extraction using few-shot learning. The entire process consists of
three main steps: text refinement, entity extraction, and relationship extraction,
ensuring that structured, high-quality knowledge can be extracted from unstructured
text.

(1) Text Refinement

Text refinement is a crucial step in the entire knowledge extraction process, aimed at
enhancing the quality and density of key information within unstructured text. During
the text refinement process, we employ three sub-steps: text segmentation, batch
refinement, and refinement evaluation, to improve the efficiency and accuracy of the
extraction process.

1) Text Segmentation: First, to mitigate the impact of long texts on the LLM's
processing, we segment long texts. In domain texts, lengthy narratives often encompass
multiple tactical units or tasks, and long texts may lead to information redundancy or
context fragmentation, which can negatively affect the model’s understanding and
processing. Therefore, texts are segmented according to the spatiotemporal boundaries
of their operational tasks and action sequences, ensuring that each text segment



independently carries the core information of a tactical unit. During text segmentation,
we also ensure that the contextual dependencies of the original text are preserved,
avoiding semantic loss caused by excessive fragmentation.

2) Batch Refinement: After text segmentation, the next step is to use the LLM to
refine each segmented text. The refinement process follows clear rules, with the LLM
extracting key information from the text while removing irrelevant content, such as
historical background, geographical descriptions, and character introductions, which
do not provide direct decision-making value in domain contexts. During refinement, the
LLM must ensure that the results are concise, retaining core semantics, and enhancing
the text’s knowledge density and accuracy. To ensure the quality of refinement, we set
constraints, such as controlling text length and concentrating on extracting essential
information, to ensure that the refined text maximally expresses the key content.

3) Refinement Evaluation: The evaluation of the refinement process is a critical
step that directly determines the effectiveness and quality of the extracted results. The
evaluation criteria include accuracy, semantic integrity, and knowledge density across
multiple dimensions. After each refinement cycle, the LLM performs a self-assessment
of the text quality and optimizes itself based on feedback. If the evaluation results do
not meet the standards, the model adjusts the generation temperature parameters and
refines the text again. After several rounds of refinement and evaluation, the process
continues until the set quality standards are met or the maximum refinement cycle limit
is reached.

(2) Entity Extraction

Entity extraction is one of the core tasks in knowledge extraction, aimed at identifying
key entities with decision-making value from unstructured text. This process is divided
into three progressive steps: semantic integrity control, domain relevance focusing, and
quality validation. Each step is designed to enhance the accuracy and reliability of the
extraction results, ensuring that the extracted entities accurately reflect the core
information of the operational tasks and meet the professional requirements of the
domain.

1) Semantic Integrity Control: First, the core tactical elements are located within
the refined text. The language model is set as a "tactical entity recognizer" and uses
chain-of-thought (CoT) techniques to step through the extraction of equipment
parameters, troop formations, and operational nodes. The extraction follows the rule of
"comprehensive coverage of core terms," avoiding the erroneous splitting of compound
entities, such as breaking down "multi-role unmanned aerial vehicle cluster" into
"drone" and "cluster." At this stage, a domain knowledge base is simultaneously applied
for semantic calibration to ensure that the entity representations align with the
standardized naming system.

2) Domain Relevance Focusing: Next, domain-specific entity matching and
filtering are performed. The model constructs a domain-specific lexicon based on
battlefield environmental characteristics and operational task types to filter out
conflicts in the initial entity list. Semantic exclusion rules are applied, such as
automatically identifying and removing non-tactical related entities like "logistics
vehicle license plate number" based on the operational hierarchy, ensuring only those
related to operations are retained.

3) Quality Validation: Finally, dynamic quality assessment is conducted. The model
performs a dual validation of the entity set by comparing it to annotated samples and
rule constraints. The model verifies whether entities conform to the logical space
constraints of the operational phase from a temporal perspective and checks whether
they cover equipment performance parameters and troop functional labels from an
attribute perspective. For entities with insufficient confidence, contextual re-
localization is triggered.

(3) Relationship Extraction

Relationship extraction is a crucial process for identifying and constructing the logical
relationships between entities from unstructured text. The goal of this process is to



recognize and establish the connections between entities. This process can be divided
into two stages: relationship localization and hierarchical matching validation.

Relationship Localization: Initially, based on the existing entity set, the model uses
battlefield causal chain modeling to identify potential relationship fields. Command-
level analysis is employed to locate upstream and downstream nodes in the task chain,
utilizing syntactic dependency parsing techniques to extract tactical interaction
relationships such as "forward-covering" and "reconnaissance-strike." A dynamic
attention mechanism is used to strengthen the capture of adversarial characteristics.
For instance, when describing battlefield firepower configurations, the model
automatically converts the implicit text "artillery positions responsible for area
blockade" into a structured triple.

Hierarchical Matching Validation: The relationship validation process introduces a
layered constraint strategy. The first layer validates entity alignment, requiring both
ends of the relationship to be present in the standardized entity database, and verifies
whether their attributes align with branch and unit composition rules. The second layer
conducts logical validation by considering factors such as equipment operational range,
task time window, and battlefield physical laws, to filter out infeasible relationships,
automatically eliminating contradictions such as those beyond equipment range or
violating spatiotemporal synchronization. For multi-level composite relationships, the
model decomposes them into atomic tactical actions, such as breaking down "cross-
theater coordinated anti-missile" into basic relationship chains like "early warning radar
detection" and "intercept missile launch platform response."The final output is deeply
integrated into the domain knowledge system framework constructed during the entity
extraction stage, ensuring that the relationship network supports task simulation.

This method strengthens the granularity control of domain knowledge through strict
step-by-step operations. The entity extraction phase achieves a quality leap from
semantic localization to domain focus, while the relationship reasoning process
completes the transition from surface-level associations to deep logical tactical
mappings.

(4) Construction of the Knowledge Graph

After completing entity extraction and relationship extraction, the final step is to
utilize the extracted knowledge to construct a domain knowledge graph. In this process,
based on the extracted eritities and relationship triples, we constructed a knowledge
structure encompassing various aspects such as combat tasks, equipment, and tactical
deployments. These knowledge structures not only describe the operational
environment but also provide support for tactical decision-making.

Through this LLM-based knowledge extraction method, we have successfully
transformed unstructured texts into highly structured knowledge graphs, which can
provide real-time decision support during decision-making processes. The method’s key
steps are shown in Algorithm 1.

Algorithm 1

Inputs: D (documents), O (ontology), H (hierarchical rules), M (LLM), {A t} (LoRA
adapters), KRN, G (current KG), A € [0,1] (fusion weight), 8 (accept threshold)
Output: G' (updated KG), L (log)

1) For each sentence s in D: detect and type entities; link to O.

2) Route task: t « KRN.Route(s, context from linked entities and G).

3) Extract candidates: C « Inference(M ® A t, s, constrained by O).

4) Normalize arguments under O (roles, units, cardinality).

5) Rule matching: apply H (lexical - schema - domain); collect actions and notes.

6) Score fusion: p = A-p model + (1—2)-p rule.

7) Filter by 6; keep provenance (source, adapter, rules).

8) Canonicalize and deduplicate triplets under O.

9) Conflict check against G; resolve by policy or mark pending; log to L.

10) If consistent, apply incremental update to obtain G'; otherwise rollback and
record.




4. Experiments

In this section, we conduct experiments to evaluate the effectiveness of the
constructed domain LLM and knowledge graph, addressing the following key research
questions:

Q1: Can the fine-tuned domain LLM significantly improve task performance
in knowledge answering, tactical planning, and threat assessment tasks?

Q2: Can the proposed domain knowledge graph construction framework
generate a high-quality domain knowledge graph?

4.1. Experimental Setup

4.1.1. Model Comparison Baselines

In this study, we designed several baseline models to compare the performance of the
fine-tuned LLM (DeepSeek-R1 70B LoRA version) in domain tasks. The baseline models
for comparison include: DeepSeek-R1 70B (the untuned original parameter version),
GPT-4, GPT-3.5, and LLaMA3 70B. These models represent the current mainstream pre-
trained LLMs in the field of natural language processing, covering various scales and
architectures to thoroughly assess the advantages and improvements of the fine-tuned
DeepSeek-R1 70B across multiple tasks.

1) DeepSeek-R1 70B (Original Parameters): This model is the untuned version of
DeepSeek, with a 70B parameter structure. As a comparisocn baseline, the original
model is used to evaluate the performance of the base maodel in tasks, providing a
foundation for evaluating the improvements made after fine-tuning.

2) GPT-4: This model is one of the most advanced language generation models,
utilizing a more complex pre-training dataset and a multi-layer deep learning network
architecture. We will compare it with the fine-tuned model to evaluate its performance
in tasks.

3) GPT-3.5: GPT-3.5 is another model that has made significant breakthroughs in
natural language understanding and generation tasks, but its performance is more
limited compared to GPT-4. It will serve as one of the standard models for performance
comparison.

4) LLaMA3 70B: This model is the third-generation version of the LLaMA series,
with 70B parameters. [LLaMA3’s design employs a different architecture and pre-
training strategy from the GPT series, offering distinct advantages. It will serve as a
comparison baseline to effectively assess whether the fine-tuned domain-specific LLM
demonstrates stronger task adaptability and reasoning ability in tasks.

4.1.2. Ablation Study Setup

To comprehensively evaluate the contribution of each component in our proposed
framework, we design an ablation study that systematically removes or disables key
modules. This allows us to isolate the impact of individual elements on overall
performance. The ablation experiments are conducted using the same evaluation
datasets as described in the original study (i.e., for knowledge question answering,
tactical planning, and threat assessment tasks), ensuring consistency in comparisons.
The evaluation metrics follow Section 4.1.3, including BERTScore for automated
scoring and Kendall’s Tau for ranking tasks.

We define the following ablation variants:

1) Full Model: The complete framework integrating all modules, including BM-LoRA,
TL-LoRA, TA-LoRA, and the combined use of RAG and CoT techniques for knowledge
extraction. This serves as the baseline for comparison.

2) w/o TA-LoRA: A variant excluding the Task-Adaptive LoRA module (TA-LoRA),
which handles dynamic task adaptation. This tests the importance of task-specific
parameter tuning.



3) w/o RAG: A variant that disables the Retrieval-Augmented Generation component
during knowledge extraction, relying solely on the fine-tuned LLM without external
retrieval. This evaluates the role of contextual enhancement.

4) w/o CoT: A variant that removes Chain-of-Thought prompting in entity and relation
extraction, using direct extraction instead. This assesses the impact of step-wise
reasoning.

5) Rule-based Only: A traditional baseline that employs only rule-based systems and
ontological constraints without LLM involvement, highlighting the advantages of neural
components.

Each variant is fine-tuned and evaluated under identical conditions, including
hardware (e.g., GPU memory constraints) and hyperparameters (e.g., learning rate set
to 2e-5 via AdamW optimizer). The datasets are partitioned to avoid data leakage, with
70% for training, 15% for validation, and 15% for testing. This setup ensures a fair
comparison of how each module contributes to tasks such as semantic coherence and
operational reasoning.

In high-security domains, data desensitization is critical to protect sensitive
information while maintaining utility for knowledge graph construction. This subsection
defines the desensitization levels adopted in our framework and outlines the
experimental setup for evaluating their impact on model performance and data privacy.
Our approach balances information preservation with security requirements, ensuring
compliance with domain-specific constraints.

1)Desensitization Levels

We categorize desensitization into two levels based on the degree of data
transformation:

(1)No Desensitization: Raw data is used without alteration, preserving full semantic
integrity but posing significant privacy risks. This level is unsuitable for sensitive
domains but serves as a baseline for comparing information loss.

(2)Desensitization (Applied in This Study): Data undergoes rigorous anonymization
and generalization, as described in Section 3.1.1. This includes:

Entity-level generalization (e.g., converting precise coordinates to relative positions).

Functional coding of organizational units.

Probabilistic masking of cois logic via virtual adversarial simulation.

This level ensures privacy while retaining essential semantic features for model
training.

We considered adding a "Light Desensitization" level but deemed it unnecessary, as
our applied desensitization already optimizes the trade-off between privacy and utility
based on domain expertise.

2)Experimental Setup for Desensitization Impact Evaluation

To assess the effect of desensitization on knowledge graph quality and model
performance, we designed a controlled experiment comparing the two levels above. The
experiment uses the same datasets and tasks outlined in Section 4.1.3 (knowledge
question answering, tactical planning, and threat assessment), with the following
additions:

(1)Datasets: We created desensitized and non-desensitized versions of the evaluation
datasets (from Section 4.1.3) using the pipeline in Section 3.1.1. This allows direct
comparison of model outputs with and without desensitization.

(2)Metrics: Beyond standard task metrics (e.g., BERTScore, Kendall’s Tau), we
introduce:

(3)Privacy Score: Measured via k-anonymity (=5) and l-diversity (=2) criteria to
quantify re-identification risk.

(4)Information Retention Rate: The percentage of key semantic elements (e.g.,
tactical entities, relationships) preserved after desensitization, calculated by comparing
with expert-annotated references.

(5)Procedure:



Train and evaluate the fine-tuned LLM (DeepSeek-R1 70B LoRA) on both desensitized
and non-desensitized datasets.

Compare performance differences to quantify desensitization-induced degradation.

Validate privacy guarantees through adversarial testing, where attempts are made to
reconstruct original data from desensitized outputs.

This setup ensures a comprehensive analysis of how desensitization influences the
trade-off between data security and functional efficacy, providing insights for
deployment in sensitive environments.

4.1.3. Evaluation Dataset Construction

To comprehensively assess the performance of the models in the domain, we designed
evaluation datasets for three tasks: knowledge question answering, tactical planning,
and threat assessment. The datasets for each task were carefully constructed to ensure
that the domain complexity and real-world relevance align with actual scenarios.

Table2. The evaluation metrics for each task

Task Type Automated Metric Human Scoring Overall Score Formula
Dimension
Knowledge Q&A BERTScore (0,1) Answer Correctness 0.7xBERT + 0.3xHuman

Tactical Planning BERTScore (0,1) Answer Rationality 0.5xXBERT + 0.5xHuman

(1) Question Answering

The dataset for the knowledge question answering task is derived from regulations
documents, extracting and constructing a question-answer set with complex conditions.
The questions cover key areas such as the applicability of tactical rules, equipment
usage standards, etc., ensuring that the model can answer complex questions related to
actual combat decision-making. The answers are also sourced from standardized
documents and checked by experts to ensure accuracy. An example question-answer
pair is as follows:

Q: How can one identify areas of concentrated enemy fire and quickly evade in
mountainous combat?

A: Tt is necessary to confirm the location of enemy fire concentration points using
aerial reconnaissance images, radar scan data, and intelligence, and formulate the
optimal bypass route based on the deployment of friendly forces.

(2) Tactical Planning Task

The goal of this task is to plan a tactical mission based on known conditions, with
objectives driving the planning process. Drawing from existing guidance documents and
combat cases, battlefield information and the most appropriate sequence of task
arrangements are extracted. The battlefield information includes multi-dimensional
data such as battlefield environment, combat resources, and mission objectives.

Battlefield Environment: Includes terrain complexity, meteorological factors, etc.;

Combat Resources: Includes force allocation, equipment parameters, etc.;

Mission Objectives: Involves multi-level objectives, such as seizing key positions and
controlling air superiority in the theater.

All battlefield information corresponds to the optimal mission planning, such as the
timeline from the preparatory phase, main attack coordination, to the consolidation
phase, along with more detailed resource allocation and action nodes.

(3) Threat Assessment Task

The dataset for the threat assessment task consists of five threat scenarios for each
data entry, along with a ranking of threat levels, totaling 500 pieces of professional data.
These are extracted from professional documents and constructed with expert guidance.
Each scenario includes descriptions of potential threats, such as electromagnetic



spectrum shifts, enemy offensive troop movements, etc. The threat levels for these five
scenarios are ranked on a scale from 1 to 5, with 5 indicating the most severe threat.

4.1.4. Evaluation Rule Design

In the task evaluation process, we employed different evaluation criteria and weight
configurations to ensure the authenticity and rationality of the tasks. The evaluation
rules are divided into automated metrics and human scoring dimensions, with the
weight assignments for each task based on the task's complexity and the importance of
human evaluation. The specific rules are shown in Table 2.

The explanation of the evaluation standards and coefficient design is as follows:

Knowledge Q&A: Since the dataset for this task is based on expert-verified
professional documents, the answers represent the correct answers. However, due to
the inherent uncertainty in the large model's generation process, there may be
deviations in different expressions of the same meaning. Therefore, human scoring is
introduced, with the automated score set to 0.7 and the human score set to 0.3, to
ensure a comprehensive evaluation of the model's answers. Additionally, BERTScore is
used to calculate the similarity between the generated answer and the standard answer,
serving as the automated evaluation result. The principle of BERTScore will be
explained in detail later.

Tactical Planning: This task is generated by experts based on existing documents,
and the standard answers have considerable reference value. However, tactical
execution plans usually involve multiple valid solutions, with variations in the expression
of specific tasks. Therefore, compared to Knowledge Q&A, the weight of the automated
score is reduced to 0.5, and the weight of the human score is increased to 0.5. The
BERTScore method is also used for evaluation.

Threat Assessment: In the threat assessment dataset, the standard answers are
manually crafted, accurate, and unique. The results generated by the model mainly rely
on the precision of the model’s ranking. Therefore, a purely automated evaluation is
employed. The similarity of rankings is assessed using the Kendall’s Tau method,
evaluating the consistency between the generated answers and the standard answers.
The principle of this method will be explained in detail later.

BERTScore: BERTScore evaluates semantic consistency by comparing the BERT
embeddings of the generated text and reference text. The steps are as follows:

(1) Word Embeddino Representation: Map the words of the generated text and
reference text to the embedding space, obtaining word vectors {e;} and {rj} for the
generated and reference texts, respectively.

(2) Cosine Similarity Matrix Calculation: Calculate the cosine similarity for each
word pair between the generated and reference texts to form the similarity matrix sim(j,
J):
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(3) Precision (P): The average similarity of each word vector in the generated text

to the most similar word vector in the reference text:
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(4) Recall (R): The average similarity of each word vector in the reference text to
the most similar word vector in the generated text:
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Kendall’s Tau is a statistical measure used to assess the ordinal association between
two ranked variables. It is particularly useful for evaluating the degree of correlation
between two variables, where the variables represent ordinal data with a natural order
but no meaningful numerical difference. The value of Kendall’s Tau ranges from -1 to 1,
where 1 indicates a perfect positive correlation, -1 indicates a perfect negative
correlation, and 0 indicates no correlation.

In the context of threat assessment tasks, Kendall’s Tau is used to evaluate the
consistency between the model-generated threat ranking and the reference ranking. By
comparing the relative order of items in the generated ranking with those in the
reference ranking, Kendall’s Tau provides a measure to assess the ranking accuracy of
the model across different threat scenarios.

The formula for Kendall’s Tau is as follows:

C-D
T=
J(C+D+T)x (C+D+U)

In the formula, C is the number of concordant pairs, which are pairs where the
relative order is the same in both rankings; D is the number of discordant pairs; T is the
number of tied pairs in the first ranking; and U is the number of tied pairs in the second
ranking.

4.1.5. Knowledge Graph Evaluation Experimental Design

To systematically verify the reliability of the knowledge graph, this study designs a
multi-level confidence evaluation framework. The framework quantifies the quality of
the triplets from a comprehensive perspective, including graph structure analysis,
semantic embedding, and logical path mining. For each triplet in the knowledge graph,
the study evaluates its credibility from thres aspects: entity-level confidence,
relationship-level confidence, and global confidence. These confidence metrics will

Table3. Evaluation results of fine-tuned and baseline models across various tasks

Model Knowledge Q&A Model Knowledge Q&A
GPT-4 0.84 (B:0.85, 0.76 (B:0.78, H:0.74) 0.7
H:0.82)
DeepSeek-R1 70B 0.79 (B:0.82, 0.67 (B:0.70, H:0.64) 0.74
H:0.73)
GPT-3.5 0.73 (B:0.77, 0 A3 (R0 A5 H-0 A1) 0 R7

assign a quantified confidence score to each triplet or entity in the graph.

(1) Entity-Level Confidence: Entity-level confidence evaluates the node
connectivity based on the topological features of the graph, representing the number
and closeness of relationships between a particular entity EEE and other entities in the
knowledge graph. The more relationships entity EEE has with other entities, and the
closer the connections, the lower the likelihood of errors in the associated triplets.
Therefore, entity-level confidence can be determined by quantifying the strength of the
connections between entities. The specific formula is as follows:

Centity (E) = m

(2) Relationship-Level Confidence: Relationship-level confidence relies on the
ComplEx model, which uses complex space embeddings to capture asymmetric
semantic characteristics by interacting entity and relationship vectors. For a target
triplet (h,r,t), the scoring function and loss function in the ComplEx model are as follows:

f(hrt) = Re({(h,r,))
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(3) Global Confidence: Global-level confidence introduces a multi-hop logical path
verification mechanism. For the target triplet, all reachable paths in the graph from
entity h to entity t are extracted, and the global confidence is computed based on path
strength. If there are multiple logically consistent paths from entity h to entity t in the
knowledge graph, the relationship between h and t is deemed to have higher reliability.

By integrating entity-level, relationship-level, and global-level confidences, this study
designs a fusion method based on a multilayer perceptron (MLP) to output the final
confidence value for each triplet. This confidence value represents the probability of the
triplet being correct, with the output range of [0, 1]. If the confidence value is greater
than or equal to 0.5, the triplet is judged to be correct (reliable); otherwise, it is
considered unreliable (incorrect).

Specifically, the entity-level confidence, relationship-level confidence, and global-
level confidence are concatenated into a feature vector f(s), which is then input into the
Fusioner model. After several nonlinear transformations through hidden layers, the
Fusioner model outputs a confidence value p(y=1 |f(s))between 0 and 1, representing
the probability of the triplet being correct.

The final decision rule is as follows:

If p(y=1|f(s))=0.5, the triplet is judged to be reliable (correct).

If p(y=1|f(s))<0.5, the triplet is judged to be unreliable (incorrect).

Through the collaborative effect of three layers of checks—entity association strength,
relationship semantic coherence, and logical path stability—this research method is
capable of covering multiple types of anomalies, including structural errors (e.g.,
isolated entities), semantic conflicts (e.g., mismatched equipment types), and logical
contradictions (e.g., tactical breakdowns). Compared to a single-dimensional evaluation
framework, the triple confidence indicators can hetter assess the quality of the triplets,
providing a quantifiable and interpretable basis for knowledge graph quality control.

4.2. Knowledge Graph Construction Results

This section presents the comprehensive results of the domain-specific knowledge
graph construction, leveraging the integrated framework of fine-tuned LLMs and
multimodal data processing as detailed in Section 3. The knowledge graph was built
using a hybrid approach that combines rule-based systems, ontological constraints, and
LLM-driven extraction, resulting in a high-quality, dynamically updatable semantic
network. The evaluation focuses on structural accuracy, semantic coherence, and
operational utility, aligning with the rigorous validation metrics established in Section
4.1.3.

The construction process yielded a knowledge graph comprising approximately 1.2
million entities and 3.5 million relationships, covering key domain aspects such as
tactical operations, equipment specifications, and environmental factors. The graph's
density and connectivity were optimized to support real-time decision-making, with an
average node degree of 5.8 and a clustering coefficient of 0.67, indicating strong
relational integrity and efficient knowledge traversal.

The framework's effectiveness is evident in the high confidence scores achieved
across triplets. Using the multi-level confidence evaluation (entity-level, relationship-
level, and global-level), as described in Section 4.1.4, we classified triplets based on a
threshold of 0.5. Results show that 91.3% of triplets were above this threshold, deemed
reliable, with only 8.7% requiring further validation. This demonstrates the robustness
of the extraction pipeline, particularly in handling unstructured text and complex
domain terminology.

Key performance metrics include:



1)Precision and Recall: For entity extraction, the model achieved a precision of 93.5%
and recall of 89.2%, while relationship extraction reached 88.7% precision and 86.4%
recall, outperforming traditional methods like rule-based systems alone.

2)Semantic Coherence: Evaluated via BERTScore on a subset of 10,000 triplets, the
graph showed an average semantic similarity of 0.92 to expert-annotated references,
indicating high factual accuracy.

3)Operational Utility: In tactical reasoning tests, the knowledge graph reduced
decision-making time by 35% compared to baseline systems, as it provided concise,
interconnected knowledge paths.

Despite these successes, minor challenges persisted, such as handling highly
ambiguous abbreviations in real-time data streams, which contributed to the lower
confidence in some triplets. Future iterations will incorporate enhanced disambiguation
algorithms to address this.

Overall, the knowledge graph construction results validate the proposed framework's
capability to integrate diverse data sources and produce a reliable knowledge base for
critical decision-support applications. The integration of LLMs with domain adaptation
techniques ensured both scalability and accuracy, paving the way for broader adoption
in specialized domains.

4.3. Multi-Task Performance Comparison Experiment

Table4. Confidence Threshold Distribution

Sample Count Sample Proportion  _ Verification Conclusion
Confidence = 0.5 98,632 90.7% correct
Confidence < 0.5 10,113 9.3% incorrect

This section presents a systematic comparison of the performance of different models
in knowledge question answering, tactical planning, and threat assessment tasks,
evaluated within a cross-task framework. The evaluation framework combines
automated scoring (BERTScore) with human evaluation (H), while also applying
Kendall's Tau ranking correiation coefficient in the threat assessment task, providing a
multidimensional assessment of model performance. Through this framework, we
comprehensively analyze the performance differences across multiple tasks for each
model, further validating the applicability and advantages of the LoRA fine-tuning
method in the domain. The specific evaluation results are shown in Table 3.

From the evaluation results, it is evident that the LoRA fine-tuned model outperforms
other comparative models in all tasks, particularly in knowledge question answering
and tactical planning tasks, where it demonstrates significant advantages. Firstly, in the
knowledge question answering task, the LoRA fine-tuned model achieves an overall
score of 0.94, higher than GPT-4's score of 0.84, with both BERTScore and human
scoring showing substantial improvements (BERTScore of 0.96 and 0.85, respectively).
This result suggests that the LoRA fine-tuned model is better at capturing complex
questions and rules, leading to more accurate answers.

In the tactical planning task, the LoRA fine-tuned model’s overall score of 0.88 clearly
surpasses other large models. In comparison, GPT-4 scored 0.76, demonstrating the
advantage of LoRA fine-tuning in optimizing tactical resources and planning tasks. This
indicates that the LoRA fine-tuned model can better integrate battlefield information
and strategies, generating more realistic and practical tactical plans.

For the threat assessment task, the LoRA fine-tuned model achieved a Kendall’s Tau
value of 0.92, significantly outperforming other models, showcasing higher accuracy
and stability in complex ranking tasks. In the dataset of 500 threat scenarios, the LoRA
model exhibited strong robustness in threat level prediction, accurately reflecting the



hierarchical relationships between scenarios, significantly outperforming other
comparative models.

Through cross-task comprehensive evaluation, the advantages of the LoRA fine-tuned
model are clear. Whether in knowledge question answering, tactical planning, or threat
assessment, the LoRA fine-tuned model demonstrated superior capabilities compared
to general models. In knowledge question answering, the overall score of the LoRA fine-
tuned model was 11.9% higher than GPT-4. In tactical planning, the fine-tuned model's
score improved by nearly 15.8% compared to GPT-4, further proving its operational
feasibility and advantages in tasks. In the threat assessment task, the LoRA fine-tuned
model's score also improved by 16.5% over GPT-4, demonstrating its consistency and
efficiency in complex ranking tasks.

These evaluation results lead us to the conclusion that the LoRA fine-tuning method
not only enhances the model’s performance in domain tasks but also proves its
robustness in multi-task environments. Particularly in the complex threat assessment
task, the LoRA fine-tuned model demonstrates significant advantages in ranking
accuracy and model stability. Furthermore, the multi-dimensional evaluation system
that combines human scoring and automation scoring has effectively enhanced the
credibility of the experimental results, avoiding biases that might arise from a single
evaluation metric.

4.3.1. Ablation Study Results

This subsection presents the quantitative results of the ablation study designed in
Section 4.1.2, which systematically evaluates the contribution of each core component
to the overall performance of our knowledge graph construction framework. The
ablation experiments were conducted across all threes domain tasks—knowledge
question answering, tactical planning, and threat assessment—using the same
evaluation metrics and dataset splits described previously.

Table 5 summarizes the performance of each ablated variant compared to the full
model:

Table 5. Ablation study results across different tasks (Performance scores)

Model Variant  Kowledr 04 TacticalPlamning  Thyeat Assessment
Full Model 8—56 0.88 0.92
w/o TA-LoRA 0.91 0.79 0.84
w/o RAG 0.89 0.81 0.80
w/o CoT 0.92 0.83 0.85
Rule-based
Only 0.75 0.68 0.72

The results clearly demonstrate that the complete framework (Full Model) achieves
the highest performance across all tasks. Removing any major component leads to
noticeable degradation, validating the necessity of each module in our architecture.

Specifically, the exclusion of the Task-Adaptive LoRA module (w/o TA-LoRA) resulted
in the most significant performance drop in threat assessment (Kendall's Tau decreased
by 0.08). This highlights TA-LoRA's critical role in dynamic task adaptation and complex
ranking scenarios, where it enables the model to adjust to real-time battlefield
parameter changes.

The variant without Retrieval-Augmented Generation (w/o RAG) showed considerable
degradation in knowledge question answering (BERTScore dropped to 0.89), indicating



that RAG is essential for grounding the model in accurate, contextually relevant domain
knowledge during information retrieval and synthesis.

Similarly, removing Chain-of-Thought prompting (w/o CoT) notably reduced
performance in tactical planning (score dropped to 0.83), confirming that step-wise
reasoning is vital for decomposing complex operational commands into executable
action sequences.

Furthermore, we analyzed the impact of each component on the quality of the
constructed knowledge graph itself. Using the confidence evaluation framework from
Section 4.1.4, we measured the percentage of high-confidence triples (confidence =
0.5) generated by each variant:

Full Model: 91.3%

w/o TA-LoRA: 83.5%
w/o RAG: 85.1%

w/o CoT: 87.2%
Rule-based Only: 72.8%

These results indicate that the full integration of all components maximizes the
reliability and structural integrity of the knowledge graph. The rule-only baseline
performed significantly worse, emphasizing the value of LLM-enhanced extraction over
traditional methods.

The ablation study confirms that our framework's strength lies in its integrated
design, where LLM adaptation (LoRA), external knowledge retrieval (RAG), and
structured reasoning (CoT) work synergistically to handle the complexity and dynamism
of domain knowledge. This comprehensive validation ensures that each component
contributes substantially to the overall system's performance, providing robust support
for mission-critical decision-making processes.
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4.3.2. Performance Comparison of Different Desensitization Levels

This subsection presents a comparative analysis of the impact of desensitization
levels on multi-task performance, building upon the experimental setup defined in
Section 4.1.3. The evaluation aims to cuantify the trade-off between data privacy and
functional utility by comparing the "No Desensitization" and "Desensitization" levels
across the core tasks: knowledge question answering, tactical planning, and threat
assessment. Results demonstrate that while the non-desensitized approach yields
marginally better performance, the difference is minimal, affirming the effectiveness of
our desensitization strategy in preserving semantic integrity without compromising
security.

1)Experimental Setup Recap

The experiment utilizes the same datasets and evaluation metrics outlined in Section
4.1.3, with the following specifics:

Datasets: The non-desensitized version retains raw data (e.g., exact coordinates and
identifiers), while the desensitized version applies the generalization and masking
techniques described in Section 3.1.1.

Models: The fine-tuned DeepSeek-R1 70B LoRA model is evaluated on both data
variants under identical hardware and hyperparameter conditions.

Metrics: Performance is measured using BERTScore (knowledge QA), overall score
(tactical planning), and Kendall’s Tau (threat assessment), supplemented by privacy
scores (k-anonymity =5, 1-diversity =2).

2)Results and Analysis

Table 6 summarizes the performance comparison across tasks. The non-desensitized
data consistently achieves slightly higher scores, but the differences are within 1-2%,
indicating that desensitization introduces negligible performance degradation. For
instance, in knowledge question answering, the non-desensitized BERTScore is 0.97,
compared to 0.96 for desensitized data—a difference of just 0.01. Similarly, tactical
planning shows a 0.02 gap in overall scores, while threat assessment exhibits a 0.01



divergence in Kendall’s Tau. These results highlight the robustness of our
desensitization pipeline in maintaining task efficacy.

Table 6. Performance comparison of desensitization levels across tasks

Desensitization Knowledge QA Tactical Planning Threat Assessment
Level (BERTScore) (Overall Score) (Kendall’s Tau)
No Desensitization 0.97 0.90 0.93
Desensitization
(Ours) 0.96 0.88 0.92

Privacy metrics further validate the necessity of desensitization: the non-desensitized
data fails to meet k-anonymity (k=2) and l-diversity (I=1) thresholds, whereas the
desensitized version achieves k=7 and 1=3, reducing re-identification risks by over 80%.
This confirms that the minor performance trade-off is justified by significant security
gains.

3)Discussion and Implications

The minimal performance gap underscores the efficiency of our desensitization
techniques, such as entity generalization and probabilistic masking, which retain
critical semantic features while obfuscating sensitive details. For example, in tactical
planning, the desensitized model maintains accuracy in resource scheduling by
leveraging relative positional data instead of exact coordinates. However, a subtle
observation is that the non-desensitized data occasionally outperforms in tasks
requiring precise temporal reasoning (e.g., threat assessment with real-time sensor
streams), suggesting that further optimization of tiine-series desensitization could
bridge this gap.

Notably, the results align with our framework’s design goals: the desensitized
approach reduces data leakage risks bv 95% based on adversarial testing simulations,
where reconstruction attacks on desensitized data achieved less than 5% success rates.
This makes it suitable for high-stakes doinains where privacy is paramount.

The comparative analysis confirms that desensitization introduces only negligible
performance losses while providing robust privacy guarantees. This balance ensures
the practical deployment of our knowledge graph framework in sensitive environments
without sacrificing decision-support capabilities. Future work will focus on refining
desensitization for dynamic data streams to enhance real-time adaptability.

4.4. Domain Knowledge Graph Quality Verification

In this experiment, we performed automated quality verification of the triples in the
knowledge graph based on the confidence evaluation framework. By setting the
confidence threshold at 0.5, the triples were classified into trustworthy and
untrustworthy groups. The experimental results are shown in Table 4.

From the table, it can be seen that triples with a confidence higher than 0.5 account
for 90.7% of the total sample, demonstrating the reliability of the graph quality. Further
analysis reveals that in the untrustworthy triples group with confidence below 0.5, only
7.4% of the samples were confirmed as correct through expert manual verification,
resulting in a false positive rate of just 7.4%. This indicates that a significant number of
potential errors exist within the low-confidence triples, and by setting a threshold of 0.5,
we can quickly identify low-quality triples that need to be prioritized for validation.
Therefore, it can be reasonably inferred that in the high-confidence range above 0.5,
the false positive rate is also below 10%. This method can effectively filter out high-
quality triples, providing a reliable knowledge foundation for subsequent applications.

Future improvements include: 1) further reducing the false positive rate in the 0.4-
0.5 range to enhance the accuracy of boundary sample identification; 2) for high-



confidence but actually incorrect triples, introducing a semantic-based supplementary
validation mechanism to improve the model's robustness.

Overall, this experiment fully validates the effectiveness of the proposed knowledge
graph construction framework. Through a multi-dimensional confidence evaluation
method, we conducted a comprehensive quality verification of the triples in the graph.
The experimental results show that most triples exhibit high reliability under the
confidence evaluation, providing strong evidence of the framework's ability to ensure
graph quality. In conclusion, by conducting automated quality verification of the graph,
this study successfully validates the proposed methodology and constructs a high-
quality domain knowledge graph, providing a solid data foundation for future intelligent
decision support systems.

5. Conclusions

This study develops a knowledge graph construction and fine-grained extraction
framework for the domain knowledge, integrating domain-adaptive large language
models (LLMs) and multimodal knowledge fusion technologies to effectively address the
challenges in domain knowledge management. We propose an LLM fine-tuning strategy,
which significantly enhances the model’s understanding of domain issues by fine-tuning
with a specific corpus. Subsequently, we design a knowledge graph construction
framework that combines a rule engine and ontology constraints to extract entities and
relationships from multi-source data, creating a knowledge network. Experimental
results show that the fine-tuned LLM performs significantly better on domain tasks
compared to general-purpose LLMs, while the constructed knowledge graph achieves
high structural accuracy. This research opens new avenues for knowledge management
in the domain through the integration of knowledge graphs and domain-adaptive LLMs.
Our future work includes further expanding the knowledge graph to cover more
scenarios, ultimately applying it to decision-making.

Empirically, multi-task evaluations show consistent improvements over general-
purpose baselines, while ablations clarify which modules contribute most to ranking,
question answering, and planning performance. Graph-level analyses further indicate
reliable triplet quality and healthy structural properties, supporting the engineering
choices made in the system.

Although the framework is designed to support multimodal fusion, the current
implementation is text-centric and does not yet constitute a fully multimodal knowledge
graph. A natural next step is to incorporate additional data types (document
images/diagrams, tables and other structured sources, and time-series logs) within the
same ontology and to quantify their incremental value against the text-only baseline.
These clarifications align claims with the present implementation and outline a focused
path for extending the work.
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