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Gastrointestinal (GI) cancer is a fatal malignancy that affects the organs of
the GI tract. The rising prevalence of GI cancer has recently influenced the
health of millions of people. To treat GI cancer, radiation oncologists must
carefully focus X-rays on tumors while avoiding other unaffected organs in
the GI tract. This research proposes a novel approach to segment healthy
organs within the GI tract from magnetic resonance imaging (MRI) scans
using a multi-level attention DeepLab V3+ model. The proposed model aims
to enhance segmentation performance by incorporating state-of-the-art
approaches, such as atrous convolutions and EfficientNet BO as an encoder,
by leveraging hierarchical information present in the data. Here, the
attention mechanism is applied at multiple levels of features, i.e., low,
medium, and high, to capture and leverage hierarchical information present
in the data. At the same time, EfficientNet BO extracts deep and meaningful
features from input images, providing a robust representation of GI tract
structures. Hierarchical feature fusion combines local and global contextual
information, resulting in more accurate segmentation with fine-grained
details. The model is implemented using the UW-Madison dataset,
comprising MRI scans from 85 patients with gastrointestinal cancer. To
optimize the model, it has been simulated with different parameters,
including optimizers, the number of epochs, and cross-validation folds. The
model has achieved performance metrics such as a model loss of 0.0044, a
dice coefficient of 0.9378, and an Intersection over Union (IoU) of 0.921.

Keywords: Gastrointesiinal Tract, Segmentation, Multi-level Attention,
DeepLab V3+, EfficientNet B0, Deep Learning.

1. Introduction

Medical image segmentation is the process of identifying and extracting
specific areas of interest in an image, such as organs in the body and tumors
[1]. The primary goal of medical image segmentation is to accurately identify
and precisely locate critical anatomical regions necessary for efficient cancer
treatment [2]. Nevertheless, the inefficiency of manual segmentation may be
inferred from its repetitive, time-consuming nature, lower precision, and the
variability of imaging techniques. This may be determined from the fact that
it possesses a wide array of applications, such as the examination and
identification of various medical conditions, including skin cancer [3-5],
breast cancer [6], brain tumour [7-8], and gastrointestinal (GI) cancer [9-10].



In the last few years, many patients have been diagnosed with GI tract cancer
worldwide [10-11]. Gastrointestinal cancer is a life-threatening condition that
affects the digestive system. It has a survival rate of almost 30%. Radiation
therapy is the most common treatment for GI cancers. During radiation
treatment, oncologists direct X-rays on the affected area while avoiding the
healthy organs [11]. Oncologists can view the tumor's location for exact
dosages according to the presence of tumor cells, which may change daily,
using linear accelerator devices and magnetic resonance imaging (MRI) [11].
The manual outlining of the organs takes a lot of time and effort, which can
cause treatments to take up to an hour daily. The proposed work outlines the
stomach and intestines to allow for changes in the X-ray beam's direction to
improve the dosage distribution to the tumor while neglecting the healthy
organs. By minimizing collateral damage to adjacent organs, automatic
segmentation reduces treatment-related side effects and complications,
enhancing patients' quality of life during and after therapy. Additionally,
precise segmentation allows for the optimization of radiation dose
distribution and the exploration of advanced treatment techniques, ultimately
leading to improved tumor control probability, reduced recurrence rates, and
enhanced long-term survival outcomes. More patients might receive effective
care due to the automated segmentation procedure, which would speed up
the healing process.

Deep learning methods have formed the foundation for many modern
image segmentation and classification solutions [12]. In the proposed work,
the multi-level attention DeepLab V3+ model has been implemented for GI
tract segmentation. Earlier, it has been implemented for other tasks such as
remote sensing [13], brain tumors [14], skin lesions [15], and kidney tumors
[16]. This paper used the DeepLab V3+ to segment the GI tract organs for
the first time.

The major findings of this research work are as follows:

0 A multi-level attention DeepLab V3+ model is proposed to segment
healthy organs in the GI tract. The model integrates state-of-the-art
techniques such as atrous convolutions, EfficientNet BO as an encoder,
and a multi-level attention mechanism to enhance segmentation
accuracy.

[] A attention mechanism is applied at multiple levels of features, i.e., low
level, medium level, and high level, to capture and leverage
hierarchical information present in the data. A channel-wise attention



module focuses more on relevant channel features for every layer of
atrous convolution used in DeeplLab V3+.

[1 EfficientNet BO, as an encoder, facilitates the extraction of deep and
meaningful features from input images, contributing to a better
representation of gastrointestinal tract structures. By using
EfficientNet BO as the encoder, the proposed approach extracts deep
and meaningful features from input images, providing a robust
representation of GI tract structures.

0 The proposed design has been implemented on the UW-Madison
dataset with 38496 magnetic resonance imaging (MRI) scans of 85
patients. The proposed model has been trained with varying
hyperparameters like optimizers, number of epochs, and cross-folds for
optimizing the model. Also, the proposed design has been compared
using various performance parameters, i.e., model loss, dice, and
Intersection over Union (IoU) coefficient.

The rest of the paper has been divided as foliows: section 2 provides the
Related Work of the GI tract segmentaiion. Section 3 is the Dataset
Description utilized for applying the proposed model. Section 4 will be
devoted to the proposed multi-level attention deep lab V3+ model. Section 5
is the Results and Discussion afier implementation; Section 6 illustrates the
state-of-the-art comparison and section 7 Conclusion and Future work of the
current research work.

2. Related Work

Automated segmentation of medical images has been an area of interest
since the 19th century, fuelled by the growing demand for precise, efficient,
and automated techniques to aid clinical diagnosis and treatment planning
[17]. Over the past few years, segmentation of the GI tract has become a
prominent area of interest, with applications varying from disease diagnosis
and surgical planning to robotic navigation and cancer detection [17-19].
There have been a number of investigations into Convolutional Neural
Network (CNN) based architectures. Ye et al. [20] proposed the SIA-Unet
model, which uses a spatial attention mechanism to improve MRI scan
segmentation by selectively filtering spatial data. While SIA-Unet
demonstrated improved performance through uniform longitudinal guidance,
it was limited by its reliance on conventional U-Net structures and lacked



explicit multi-scale context fusion. In contrast, our method combines multi-
level attention with atrous spatial pyramid pooling (ASPP), enabling it to
effectively capture both fine and global semantic features across different
scales. Nemani et al. [21] proposed a hybrid model to balance accuracy and
computational cost. Their approach mitigates this by using EfficientNet B0
as a lightweight yet powerful encoder, along with an attention mechanism
that enhances informative features without significantly increasing
complexity. Chou et al. [22] employed the Mask R-CNN framework to
segment human body parts in clinical images. Although it yielded a Dice score
of 0.51, the method struggled with small or overlapping anatomical
structures. By contrast, our proposed model achieved a higher Dice score of
0.73, attributed to its ability to focus on channel-wise salient features and
maintain spatial context through decoder-based upsampling and skip
connections. Niu et al. [23] presented a GI tract segmentation method using
a hybrid of residual connections and U-Net, along with a feature fusion
strategy. Their method improved the IoU by 2.5% over conventional
approaches. While residual learning facilitates better gradient flow, it does
not explicitly incorporate attention to refine ieatures. In contrast, our multi-
level attention framework enables the model to selectively enhance relevant
features at low-, mid-, and high-levels, contributing to more accurate
segmentation, particularly in complex or overlapping organ regions.

Li et al. [24] proposed a 2.5D model that combines adjacent slices to
leverage spatial dependencies across slices. Their fusion method of 2.5D and
3D improved the Dice by 0.36% and IoU by 0.12%. Although beneficial for 3D
segmentation, this approach requires higher computational resources and
may not generalize well to single-slice datasets. Our model operates on
individual 2D slices but achieves comparable or better accuracy due to its
efficient multi-scale feature aggregation and attention-based refinement.
Chia et al. [25] explored the use of FiLM in segmentation with ResNet50 and
alternative backbones, identifying its effectiveness when test and training
distributions align. Their results suggest performance dependency on data
similarity. On the other hand, their model is robust in different folds of the
UW-Madison dataset because it has deep semantic representation ability via
ASPP and attentions. Georgescu et al. [26] proposed ensemble-based
therapeutic image segmentation models via multi-network fusion. While
ensemble models improve the performance, they make inference time longer
and need a large amount of training. Our one-network solution provides



competitive segmentation performance at the cost of ensemble learning
overhead and hence is more appropriate for real-time or low-resource
environment. Jiang et al. [27] proposed BiFTransNet, a transformer
segementation model with a BiFusion decoder that combines global and local
features. Their approach reported an IoU of 86.54% and a Dice of 89.51. Their
structure achieves high accuracy with fewer parameters using compound-
scaling EfficientNet and a slim attention module, achieving a better balance
between accuracy and efficiency. Qiu et al. [28] employed a Swin
Transformer-based UPerNet,

While transformer backbones are well-suited to capture global context,
they tend to lose spatial precision in boundary areas. By contrast, our model,
which uses its skip connections and multi-level attention-guided decoder,
preserves boundary acuity without losing large semantic information. John et
al. [29] used EfficientNet B7 and compound scaling for GI tract image
segmentation. Even though EfficientNet B7 is deeper to extract features, it
comes with increased memory and computationa! requirements. We rather
use EfficientNet BO to preserve computational efficiency without losing
competitive performance. Our application of attention mechanisms still
further sharpens the learned features, facilitating better region localization
with lower model complexity. Wang et al. [30] investigated the application of
soft robotic endoscopes for GI imaging, also highlighting the need for
accurate segmentation in autonomous medical procedures. Though not
algorithm-specific, their research highlights the clinical need for high-quality
segmentation, which our proposed solution addresses directly via attention-
augmented multiscale learning.

Li et al. [31] proposed the UCFNNet model with lesion learners and noise
suppression gates for diagnosis of ulcerative colitis. While conceptually
similar to our work with attention mechanisms, their model is designed
specifically for disease-specific segmentation. Our model, on the other hand,
addresses healthy organ boundary segmentation in the UW-Madison dataset
and can be used as a baseline for broader extension into pathological
analysis. Song et al. [32] introduced a transformer-based cluster center-
augmented network for semantic segmentation, which showed better
segmentation in intricate images. Though efficient, transformer-based
clustering increases the complexity and needs significant GPU memory. Our
model provides a less complex and computationally efficient structure while
maintaining deep contextual understanding via multi-level attention. Lastly,



more recent papers [33][34] highlight the growing overlap of encoder-
decoder architectures, attention modules, and multi-scale feature learning.
They have proposed a standard UNet-based method in our earlier work [35],
which had encouraging results but failed to extract multi-scale and
contextual information efficiently. Despite numerous such attempts that have
progressed impressively, there are challenges due to the inherent complex
nature, overlapping boundaries, and intensity variability of GI tract organs.
This paper directly focuses on these difficulties by introducing an innovative
Attention DeeplLab V3+ model based on a multi-level attention scheme and
EfficientNet BO encoder, targeting segmentation of healthy anatomy regions
in the UW-Madison dataset. The proposed Attention DeepLab V3+ model
introduces several distinct contributions: (1) the use of EfficientNet BO for
lightweight yet powerful encoding, (2) the integration of a novel channel-
based attention mechanism within ASPP to enhance multi-scale feature
refinement, and (3) a decoder capable of recovering fine spatial resolution by
fusing attention-enhanced semantic features with shallow encoder features.

3. Dataset Description

The anonymized MRI scans o¢f radiotherapy at the UW-Madison
Carbone Cancer Center [36] were a foundation of proposed study. The UW-
Madison GI Tract MRI dataset is presently the only publicly available dataset
providing annotated muiti-organ gastrointestinal segmentation masks, that’s
why it was selected for this study. The dataset comprises data for 85 patients
having 38496 MRI scans in 16-bit PNG format, which is taken from Kaggle
[36].
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Figure 1: UW-Madison GI Tract Dataset

Figure 1 depicts dataset configurations that comprise an MRI images
folder and CSV file with Run-length encoding (RLE) data. The MRI image
folder consists of 85 foiders for patients 1 to 85. The scans are performed
over one to six days and are stored in folders 1 to 6. The MRI scans of the
patients are stored in subfolders inside the day folder. The scans have
variable dimensions such as length and width. Some images are rectangular,
whereas the remaining images are square. To make the image size same all
the images are resized to 224x224. The ground truth mask is in CSV format,
where the segmented portions are shown in RLE form. RLE is a lossless image
compression method that works well for images containing many
homogenous regions, such as computer graphics or scanned texts. Here, RLE
is used for encoding ground truth masks from MRI scans of GI tract. For
instance, Figure 2(a) displays the scanned image of a 56-number slice of
patient ID 111. The decoded RLE for the large intestine, the small intestine,
and the stomach is shown in Figures 2(b), 2(c), and 2(d) for the same slice.
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Figure 2: UW-Madison Dataset (a) Input Image, (b) RLE Decoded for Large Bowel, (c) RLE
Decoded for Small Bowel, and (d) RLE Decoded for Stomach

3.1 Data Augmentation

Data augmentation is used to generate diversity in the images to
increase the segmentation performance and combat overfitting. Figure 3
shows the results of data augmentation for two gastrointestinal medical
images. One row represents one image, with the original and five
augmentations: horizontal flip, vertical flip, rotation, brightness adjustment,
and elastic transformation. These augmentations improve robustness of
models by incorporating spatial and intensity variations while maintaining
anatomical structures. The augmentations used were random horizontal and
vertical flipping to mimic diversity in the direction of imaging, random
rotations between *+15 degrees to correct for variation in patient positioning,
and brightness and comnftrast changes to reflect diversity in imaging
conditions. Elastic deformations were also employed to introduce smooth,
localized distortions that maintain anatomical structure without
compromising the network's capability to discern fine differences in organ
shape and texture. These augmentations were used during training so that in
each epoch, the model was exposed to a large number of different
transformed samples.
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Figure 3: Augmented visualization of two gastrointestinal images showing original,
horizontal flip, vertical flip, rotation, brightness adjustment, and elastic transformation.

3.2 Dataset Splitting

The UW-Madison GI Tract dataset used in this study comprises a total of
38,496 MRI images collected from 85 unique patients, each having between
1 to 6 imaging days, where every “day” tolder corresponds to a separate
imaging session of the same patient captured under consistent anatomical
orientation and resolution. Each MRI image contains three organ annotations
small intestine, large intestine, and stomach provided in RLE format within a
CSV file, resulting in a total of 115,488 annotations (14,085 for the large
intestine, 11,201 for the small intestine, 8,627 for the stomach, and 81,575
blank cases without organ presence). The ground truth masks were decoded
from these RLE anmnotations for model training and evaluation.

Table 1: Dataset Splitting

Category Total Training (80%) Testing (20%)
Annotations
Large Intestine 14085 11989 2816
Small Intestine 11201 8961 2240

Stomach 8627 6903 1724




Blank 81575 65261 16314

Total 115488 93114 22374

To ensure independence between the training and testing sets and to
eliminate any possibility of data leakage, the dataset was divided strictly at
the patient level rather than at the patient-day or slice level. This patient-
exclusive split ensured that all MRI slices corresponding to a single patient
across all imaging days and sessions were allocated entirely to either the
training or testing set, but never both. Consequently, the model never
encountered any slices from the same patient during both training and
evaluation, preventing memorization of patient-specific anatomical
structures that could artificially inflate performance. The final data split
consisted of 68 patients (approximately 80%) iu the training set and 17
patients (approximately 20%) in the testing set. Within each subset, the
internal directory structure (patient folders —» day subfolders — slice images)
was maintained to preserve the relationship between patient and imaging
days. In total, the dataset contained 326 imaging days, with an average of
3.83 + 1.2 days per patient, distributed as 262 imaging days (68 patients) for
training and 64 imaging days (17 patients) for testing. Table 1 presents the
corresponding distribution of annotated cases, including 11,989 training and
2,816 testing cases for the large intestine, 8,961 training and 2,240 testing
cases for the smali intestine, 6,903 training and 1,724 testing cases for the
stomach, and 65,261 training and 16,314 testing blank cases. This
proportional division maintained the diversity of anatomical and temporal
variations across subsets. Since each “day” folder represents scans of the
same patient with only minor physiological differences, splitting at the
patient-day level could have led to feature leakage. Therefore, the patient-
level split provides a more robust, unbiased, and generalizable evaluation of
model performance while ensuring that no overlapping anatomical
information is shared between the training and testing sets.

4. Proposed Multi-Level Attention DeepLabV3+ Model

The proposed work introduces a Multi-level Attention DeepLab V3+ [37]
model specifically designed for the automatic segmentation of GI tract organs



namely, small intestine, large intestine, and stomach using MRI scans. This
model is particularly designed to overcome the limitations in GI organ
segmentation through combining strong encoding, multi-scale context
aggregation, attention-based feature improvement, and high-resolution
decoding schemes. The model starts with an EfficientNet BO encoder, which
effectively extracts deep hierarchical features from the input MRI images.
EfficientNet BO has been chosen because it is optimized compound scaling
strategy, keeping balance between depth, width, and resolution to achieve
better performance with less computational cost. As the image passes
through the encoder, its spatial dimension is progressively reduced step by
step and it takes in more abstracted semantic representations. Upon leaving
the encoder, the feature maps that have been extracted are processed using
the ASPP module, the core module of the DeepLab V3+ network. There are
five branches for the ASPP module: a 1x1 convolutional layer, three atrous
convolutions of size 3x3 with dilation rate 6, 12, and 18 respectively, and
global average pooling operation. Each branch is batch normalized and
Rectified Linear Unit (ReLU) activated to stabilize and nonlinearize the
features. With these multiple receptive fields, the network is able to learn
both local details and the larger context, which is particularly useful in
dealing with the intricate anatomical variations in the GI tract. To further
enhance the semantic richness of the features learned at each scale, we
introduce a channel-based attention mechanism within every ASPP branch.
This attention mechanism computes channel-wise significant weights via
global average pocling, and sigmoid activation function. Such learned
weights enable the model to focus on more informative channels and dampen
less informative channels, thus enhancing the quality of multi-scale features
prior to concatenation. After concatenation, the multi-scale attention-
enhanced feature maps are additionally refined using a spatial attention
mechanism, which enables the model to focus on the most informative parts
in the spatial domain. The objective here is to localize the anatomical borders
of organs more accurately by taking into consideration where the most
discriminative features are located. The ASPP module output is then fed to
the decoder. The decoder uses skip connections from the encoder to reinstate
fine spatial details, which tend to be lost during downsampling. Each
decoding block has batch normalization, ReLU activation, 1x1 convolutions
for channel alignment, and upsampling operations to gradually boost feature
map resolution progressively. These blocks are constructed to combine
contextual knowledge from the ASPP module and fine-grained information



from previous encoding layers. During the decoding process, attention-
enhanced features from various levels are combined such that the
segmentation output preserves both high-level semantic correctness and low-
level structural accuracy. The final prediction layer generates segmentation
masks that outline the stomach, small and large intestines regions with
improved anatomical structure. The complete architecture depicted in Figure
4 demonstrates how the combuned use of multi-level attention, EfficientNet
encoding, ASPP-based multi-scale feature extraction, and a robust decoder
lead to a highly accurate and computationally efficient GI tract segmentation
pipeline.

Atrous Spatial Pyramid Pooling (ASPP) with Multilevel Attention
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Figure 4: Architecture of Proposed Multi-level Attention DeepLab V3+ Model

The model comprises different convolution blocks that combine
convolution, batch normalization, and activation layers. The convolutional
layers (e.g., Convl, Conv2 blockl) apply convolutional operations to the



input feature maps using learnable filters as shown in equation (1):

Output(x,y) = 3N 551 5S¢ 1 input(x + i,y + j,k)* Filter(i,j,k) + Bias
(1)

Where Output(x,y) is the resulting feature map value at the spatial location
(x,y) after applying the convolution operation, input(x + i,y + j,k), is the value
of the input feature map at location (x+i,y+j) in the k-th channel. This
represents a patch of the input data that the filter is sliding over. Filter (i, j,
k) is the learnable weight in the filter (or kernel) at position (i,j) for the k-th
channel. This defines how the filter interacts with the input data. Bias is a
learnable bias term added after the multiplication and summation, helping
the model to better fit the data. h and w is the height and width of the filter.
These define the spatial dimensions of the convolutional kernel. C is the input
channels (also called depth). i, j, k are Indices used f{or iterating over the
height, width, and channels of the filter, respectively.

The Pooling layers (e.g., average pooling2d) downsample the input
feature maps to reduce spatial dimensions. The output of a pooling is shown
in equation (2):

Output (x,y,k) = maxjL; maxL,FeatureMap(x + i,y + j,k)
(2)

Where, Output (%, v, k) is the result of the max pooling operation at position
(x,y) in the k-th channel. FeatureMap (x + i, y + j, k) is the value from the
output of the convolution layer at spatial location (x+i,y+j) in the k-th
channel. Pooling operates on these convolutional feature maps. h and w is
the height and width of the pooling window. i, j are the indices that slide
over the pooling window, and k is the channel index.

4.1 EfficientNet B0 as Encoder

EfficientNet BO [38] is a CNN architecture designed to balance high model
performance with computational efficiency by compound scaling. Traditional
CNN architectures typically scale only one dimension of the model at a time
either depth, width, or resolution. In contrast, EfficientNet BO employs a
compound coefficient that uniformly scales all three dimensions in a balanced
manner. This principle scaling method allows the model to reach higher



accuracy with a substantial decrease in parameters and FLOPs. The
backbone of EfficientNet BO is the Mobile Inverted Bottleneck Convolution
(MBConv) block, which is basic block of the network. In contrast to normal
convolutions, MBConv utilizes a bottleneck pattern that initially broadens the
channel number using a pointwise 1x1 convolution (expansion layer), utilizes
a depthwise separable convolution to reduce computational costs while
utilizing efficient spatial filtering, and then projects the output back into a
reduced-dimensional space using another 1x1 convolution (projection layer).
This reverse pattern aids in lowering computational cost without losing
necessary spatial and semantic information. The application of depthwise
separable convolutions makes it possible for EfficientNet BO to heavily
reduce parameters and computations versus typical convolutions.
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Figure 5: Architecture of EfficientNet BO

As shown in Figure 5, the architecture of EfficientNet B0 is divided into seven
consecutive blocks with each block composed of several MBConv layers.
These blocks employ a combination of 3Xx3 and 5x5 kernel sizes to detect
diverse receptive fields. Expansion factors, strides, and layer counts are
different across blocks, allowing the model to evolve to greater depth and
complexity. The structure starts with an initial 3x3 convolutional layer for
the extraction of low-level features followed by the stacked MBConv blocks
that progressively process the input. With the advancing image in the
architecture, spatial resolution is progressively diminished by strided
convolutions, but the feature channel count grows, enabling the network to
acquire deep, high-level abstractions required for sophisticated tasks like GI
organ segmentation. The model is able to capture fine-grained edge details



in the initial layers and rich semantic features in deeper layers through multi-
resolution encoding. The output feature maps generated by EfficientNet BO
refined by MBConv blocks and enhanced through channel attention serve as
the input to the ASPP module, where multi-scale semantic information is
further extracted.

4.2 ASPP Module with Multi-level Attention

To enhance segmentation performance while preserving spatial resolution,
the ASPP module in the proposed attention DeeplLab V3+ architecture
integrates both atrous (dilated) convolutions and a multi-level attention
mechanism. Atrous convolution introduces gaps between kernel elements,
enabling convolutional kernels to cover more receptive field without
increasing the parameters or computation. This technique is particularly
effective in semantic segmentation, where objects and anatomical structures
may appear at varying scales. The mathematical formulation of atrous
convolution is shown in equation (3)

z[i} = Zpa(i + r.n)f[n]
(3)

Where z is the output feature map, i shows the spatial domain location of z,
a is the input feature map, r is the atrous convolution rate, and f is the
convolution filter. The output froin these levels is concatenated and sent to
the following network block named as Multi-level attention mechanism in
DeepLab V3+.

Figure 6 shows the detailed architecture of the ASPP module integrated with
a channel-based attention mechanism. The ASPP consists of five parallel
branches: A standard 1x1 convolution, Three 3x3 convolutions with atrous
rates of 6, 12, and 18, respectively, and A global average pooling branch.
Each branch is followed by batch normalization and ReLU activation to
normalize and activate the outputs. To further improve the discriminative
power of the features extracted at each scale, we introduce channel-based
attention into each branch. This attention mechanism starts by performing
global average pooling on every feature map to create a condensed descriptor
that captures the global context. These descriptors are fed into a set of two
fully connected layers and activated through a sigmoid activation function to
produce channel-wise attention weights. Following attention refinement, all



the five branches' outputs are concatenated. A spatial attention module is
used with the combined feature map to assist the model in localizing spatial
areas important for segmentation. The output of the ASPP module is a multi-
scale, attentioned representation that is transmitted to the decoder.
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Figure 6: Architecture of the proposed Atirous Spatial Pyramid Pooling (ASPP) module.

To further enhance segmerntation precision, particularly in intricate
anatomical areas, we integrate a multi-level channel attention mechanism
that takes effect at various stages of the network: low-level, mid-level, and
high-level features. Motivated by Squeeze-and-Excitation networks [39], the
mechanism allows the model to learn inter-channel dependencies and context
relationships among the feature maps at different depths.
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Figure 7: Channel-wise attention mechanism applied to ASPP branches.



As demonstrated in Figure 7, the channel attention process starts with
global average pooling over all the channels of a feature map. The operation
yields a descriptor vector that captures the global significance of each
channel. The descriptors obtained after pooling are utilized to provide as
input to two fully connected layers and a sigmoid activation function to
produce channel-wise attention weights. These weights are utilized to
modulate the original feature maps using element-wise multiplication as
shown in equation (4):

Wn = 5152 vn(i,j) (4)

Where, Yn(i,j) is the pixel at position n-th channel, LxB is the spatial size of

the channel, Wn is the global average value (attention score) for the n-th
channel.

This mechanism enables the network to selectively highlight informative
feature channels and downweight redundant ones, improving its attention to
semantically significant structures like the small intestine, large intestine,
and stomach. The multi-level attention mechanism allows features of various
semantic levels to be adaptively tuned before passing them to the decoder. It
encodes hierarchical dependencies and enables strong feature fusion
through attention-refined alignment of features from low, mid, and high-level
layers. Such features are concatenated and passed to a scale attention
module that captures relationships between scales as well. The model
integrates channel-wise and multi-level attention and greatly enhances its
capacity to identify organs of different shapes and sizes with delicate
boundaries. This attention-enhanced ASPP output enables more accurate,
context-aware segmentation downstream in the decoder.

4.3 Decoder

The decoder within the suggested Attention DeeplLab V3+ architecture is
pivotal in reconstructing high-resolution mask from the compressed, high-
level feature representations generated by the encoder and the ASPP block.



While semantic features are progressively downsampling in the encoder,
spatial resolution is drastically decreased. To overcome this, the decoder
employs progressive upsampling while combining multi-scale, attention-
weighted features to recover fine spatial details.
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Figure 8: The decoder architecture of the proposed Attention DeepLab V3+ model.

As shown in Figure 8, the decoder starts by taking multi-scale feature maps
from both the ASPP inodule and the EfficientNet BO encoder through skip
connections. The skip connections act as routes for directly transmitting low-
level features to the decoder so it can regain fine spatial details, which tend
to be lost in deeper layers of the network. The ASPP module feature maps are
then upscaled by a factor of 4 to be comparable with the spatial dimensions
of features in the previous stages of the encoder. Alignment allows fusion of
structural (low-level) and semantic (high-level) information. The fusion is
done through a series of operations: Batch normalization stabilizes training
and normalizes feature distributions. Activation using ReLU injects non-
linearity to enhance the learning ability of the network. 1x1 convolutions are
employed for matching channel dimensions and further detailing the feature
representation per stage. Through conducting convolution followed by
upsampling per stage, the decoder progressively reconstructs the feature
maps to the original input resolution. This produces a high-resolution
segmentation map that precisely outlines target anatomical structures such



as the small bowel, large bowel, and stomach. Inclusion of multi-level
attention mechanisms in ASPP output ensures decoder pays attention to
semantically important and spatially significant regions. It improves the
network's performance in delineating finer structural borders, particularly in
overlapping and confusing gastrointestinal anatomy areas. The final output
is a segmented prediction map which identifies regions of interest with room
for identifying relevant patterns, anatomical variations, or disease affected
areas.

5 Results and Discussions

This study introduced a DeepLab V3+ model integrating EfficientNet BO,
ASPP and multilevel attention to segment the GI tract organ. All experiments
were performed on a workstation with an NVIDIA RTX A5000 GPU (24 GB
VRAM), Intel Core i7-11700 CPU, and 32 GB RAM, under Windows 10 (64-
bit) operating system with CUDA 11.2 and cuDNN 8.1i. The suggested Multi-
Level Attention DeeplLab V3+ model with IfficientNet-BO encoder has
around 8.3 million trainable parameters and lias = 21.7 FLOPs per forward
pass, providing the best balance between accuracy and computational cost.
The model was trained for 30 epochs with a batch size of 16, RMSprop
optimizer, and an initial learning rate of 0.0001. Categorical cross-entropy
was used as the loss funciion for multi-class segmentation. The overall
training time was around 4.5 hours, and each epoch took around 540 seconds.
In inference, the model obtained an average inference time of = 31
milliseconds for every 224 x 224 MRI slice, which is a throughput rate of ~32
frames per second (FPS). The highest GPU memory usage for inference was
2.4 GB at batch size 16, proving that the model is light and computationally
viable for near real-time clinical use. Experiments were run on Python 3.8
using TensorFlow and Keras libraries for absolute reproducibility of the
results.

5.1 Analysis based on Different Optimizers

The model proposed in this research has been tested with three optimizers
with the rest of the hyperparameters remaining the same. Optimizers
employed in this research are Adaptive Moment Estimation (Adam) [40], RMS
prop [41], and Stochastic Gradient Descent (SGD) [42-43]. Various ways of
optimization are applied as each of them has its strengths and weaknesses
and can be better or worse suited for different models. The optimizers are



executed for ten epochs and employ two cross-folds [44].
demonstrates the relative performance of these optimizers using Dice
coefficient, IoU, and loss. The graphs show that the curves of Dice coefficient
and IoU reach their best values when the RMSprop optimization is used,
which suggests better precision in segmenting organs in the GI tract when
compared to using Adam and SGD optimizers. Meanwhile, the loss curve
shows its smallest path when RMSprop is used, revealing faster convergence
and reduced error in training as well as validation stages. This implies that
RMSprop performs better than Adam and SGD in optimizing the model's
parameters in order to obtain the best segmentation outcome.

Figure 9
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Figure 9: Graphical Analysis of Dice, IoU, and Loss using Different Optimizers: For
Adam- (a) Dice (b) IoU, (c) Loss, For RMSprop- (d) Dice (e) IoU, (f) Loss, For SGD- (g) Dice,
(h) IoU, (i) Loss

Figure 10 presents the values of the performance parameters such as IoU
coefficient shown in figure 10(a), Dice Coefficient shown in figure 10(b) and
Loss shown in figure 10(c) for optimizers Adam, RMSprop, and SGD.
RMSprop is the best optimizer and delivers the highest Dice coefficient
(0.9271), the lowest Loss (0.0071), and the highest IoU (0.8764) of the three.
Adam is very close to competitive values in all three categories, signifying its
effectiveness in identifying semantic segmentation trends. Conversely, SGD
is far behind with the lowest Dice coefficient (0.2737), highest Loss (0.0703),
and lowest IoU (0.2502). The significant performance metrics gap
demonstrates the difference that the choice of optimizer makes in the
proposed model to define semantic regions in the current task. From Figure
10, the proposed attention DeepLab V3+ using the RMSprop optimizer is
seen performing better than Adam and SGD.
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Figure 10: Performance Parameters using Different Optimizers (a) IoU Coefficient
Comparison, (b) Dice Coefficient Comparison, and (c) Loss Comparison

5.2 Analysis based on the Number of Folds

The proposed method has been tested with various cross-folds to evaluate
results better with the other hyperparameters unchanged. In this analysis,
RMSprop was used as concluded from the previous experiment. The model
has been tested with 2, 4, and 8 cross-folds. In Figure 11, the performance
evaluation of segmentation over varying cross-folds numbers is illustrated,
with emphasis on the Dice coefficient, IoU, and loss in the context of an
approach model. The plots show that the curves for Dice coefficient and IoU
reach their highest values when using four cross-folds, implying maximum
segmentation accuracy as compared to configurations using two and eight
cross-folds. Further, the loss curve path at its minimum is when using four
cross-folds, which shows better convergence and less error in both the
training phase and validation phase. This denotes the usefulness of using four
cross-folds in improving segmentation accuracy and reducing loss, for the
improvement of the effectiveness of radiation treatment planning in GI
cancer.
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Figure 11: Graphical Analysis of Dice, IoU, and Loss using Different Cross Folds: For 2
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Figure 12 demonstrates the performance parameter values such as IoU
coefficient shown in figure 12(a), Dice Coefficient shown in figure 12(b) and
Loss shown in figure 12(c) for various cross folds 2, 4, and 8. The outcomes
indicate that the performance is consistent and similar in all folds. The Dice
coefficient is constant, with values of 0.9273, 0.9276, and 0.9274 for folds 2,
4, and 8, respectively, showing a high degree of performance in detecting
overlap in predicted and ground truth masks. The loss values also
demonstrate a slight variation, with 0.0062, 0.0058, and 0.0062 for folds 2,
4, and 8, respectively. The IoU wvalues also vary from 0.8916 to 0.910,
demonstrating uniform and good boundary delineation of segmented regions.
The segmentation pericrmance of the model is strong and also generalizes
well across different folds, demonstrating a solid and consistent performance
on different sets of the dataset. Figure 12 concludes that the suggested model
performed better with four folds than 2 and 8 folds.
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Figure 12: Performance Parameters using Different Cross Folds (a) IoU Coefficient
Comparison, (b) Dice Coefficient Comparison, and (c) I.oss Comparison

5.3 Analysis based on Number of Epochs

The research work proposed is trained with the number of epochs while
keeping all the other hyperparameters tiie same. The model was trained with
10, 20, and 30 epochs with RMSprop optimizer and four folds. The dice, IoU,
and loss plots are shown in Figure 13 using 10, 20, and 30 epochs. The graphs
prove that the Dice coefficient and the IoU curves both attain their highest
values at training the model for 30 epochs, signifying ideal segmentation
accuracy in contrest with training periods of 10 and 20 epochs. The loss curve
also attains its lowest point at 30 epochs, denoting better convergence and
less error in the training and validation periods. In addition, the results
indicate that increasing the training period beyond 30 epochs does not result
in additional improvements in segmentation performance. Therefore, the
choice of restricting the training time to 30 epochs is justified to help utilize
resources effectively while achieving maximum segmentation accuracy for
radiation therapy planning in GI cancer treatment.
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Figure 14 depicts the values of performance parameters such as IoU
coefficient shown in figure 10(a), Dice Coefficient shown in figure 10(b) and
Loss shown in figure 10(c) for various epochs 10, 20, and 30. In all
parameters, the model shows a noticeable improvement with an increase in
the number of training epochs. The Dice coefficient, which is a parameter of
segmentation performance, improves steadily from 0.9271 for 10 epochs to
0.9378 for 30 epochs. Similarly, the Loss measure goes down from 0.0071 to
0.0044, which represents better convergence and less dissimilarity in



predicted vs. actual values. The IoU, a pixel-wise measure of overlap, also
increases steadily from 0.8764 to 0.9217, reflecting better segmentation
boundary delineation. These findings highlight the necessity of adequate
training epochs in optimizing the model's segmentation accuracy, with
significant improvements in accuracy and convergence metrics when the
training time increases. Figure 14 concludes that the proposed model
performs better for 30 epochs.
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5.4 Quantitative Analysis of the Proposed Model

The final optimized model undergoes a rigorous evaluation process
involving 30 epochs and four cross-folds, utilizing the RMSprop optimizer.
Figure 15 shows the quantitative analysis of the proposed model. Figure 15(a)
illustrates the actual result while training which indicates the general overall
distribution of the model. Figure 15(b) gives an idea of Dice score. For a good
analysis of the segmentations, how much is it similar between predicted and
the actual segmentation. It gives an estimate of overlap in between predicted
and true segmentation by showing IoU in figure 15(c). Combined, this data
gives in-depth information regarding the performance trend of the various
indicators, providing an idea regarding the validity and reliability.
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Table 2 reports the overall and per-class performance metrics of the
proposed Multi-Level Attention DeepLab V3+ model. The model achieved an
accuracy of 0.9976, confirming that a high proportion of pixels in the MRI
images were correctly segmented. The average Dice score of 0.9378 and IoU
of 0.9217 reflect strong agreement and substantial spatial overlap between
the predicted and ground-truth segmentation masks. The model loss value of
0.0044 further indicates stable convergence and low prediction error during
optimization. Moreover, the class-wise outcomes reflect balanced
segmentation performance over all three gastrointestinal organs, with the
large intestine, small intestine, and stomach obtaining Dice scores of 94.12%,
93.47%, and 93.75% and their respective IoU values of 92.36%, 91.18%, and
91.02%. These uniform values validate that the model performs well
uniformly across various anatomical areas without class bias. All of the
metrics were calculated per-slice and per-class with a 0.5 threshold applied
to softmax outputs and then macro-averaged over classes. The minimal



numerical difference between the Dice and IoU scores stems from class-wise
averaging instead of a global binary sum. Overall, these findings prove that
the model proposed here attains high segmentation accuracy, robust
generalization, and stable convergence, justifying its efficiency and reliability
for gastrointestinal organ segmentation tasks.

Table 2: Performance Parameters of Final Optimized Model

Class Dice (%) IoU (%)
Large Intestine 94.12 92.36
Small Intestine 93.47 91.18
Stomach 93.75 91.02
Mean (Macro-Average) 93.78 92.17

5.5 Qualitative Analysis of the Proposed Mode!

The final optimized model, which was trained for 30 epochs and used 4
cross-folds with the RMSprop optimizer. The qualitative analysis of the
proposed model is presented in Figure 16, comprising the original image,
predicted image, ground truth masks, and the missed mask, where the model
predictions failed to agree with the ground truth. Notably, the predicted
ground truth masks and the initial ground truth masks are presented in a
three-color mode to provide easy visualization: red for the large bowel, green
for the small bowel, and biue for the stomach. In addition, the missed mask
image uses three colors: green indicates agreement or matching areas
between the predicted and original masks, red indicates regions of
disagreement or misprediction, and black indicates the background. Visual
representation highlights the potential benefit of the proposed model in
predicting the segmentation of the stomach, small intestine, and large
intestine to be useful in GI cancer treatment planning using radiation
therapy.

Although the overall good performance of the proposed model, some
limitations were noted in certain segmentation instances. Most significant
were the segmentation errors along organ boundary regions, for example,
the juncture of the small and large intestine, where anatomical structures
tend to overlap or resemble each other visually. In a few instances, the model
wrongfully labeled low-contrast areas or did not identify organ edges when



the intensity gradient was weak. Moreover, images with motion blur, noise,
or artifacts yielded incomplete or fragmented segmentations. These problems
arise from an amalgamation of factors, such as class imbalance due to the
underrepresentation of smaller organs or narrow structures in the training
set, as well as the inherent texture and intensity similarity between
gastrointestinal organs. Future enhancements may involve the application of
edge-aware or boundary refinement loss functions, adaptive weighting of
classes, and more drastic data augmentation to improve robustness. Adding
extra layers of attention or multi-modal imaging data can further help in
resolving ambiguities between overlapping structures and enhance overall
segmentation accuracy.

Original Image  Predicted Mask Ground Truth Miss Mask
Image Mask Image




Figure 16: Visualization of Results (Here red color represents the large bowel, the green
color shows the small bowel, and the blue color represents the stomach)

The model was trained solely on the UW-Madison dataset, which includes
only healthy anatomical regions, limiting its generalizability to pathological
cases or multi-institutional datasets compared to our previous model [35],
which used a basic UNet architecture without attention mechanisms, the
proposed Multi-level Attention Deeplab V3+ framework demonstrates
substantial improvements. In particular, our former method obtained a Dice
score of 0.8984% and an IoU of 0.8697%, while the present model obtained
a Dice score of 93.78% and an loU of 92.17%. This is because the current
model utilized an EfficientNet BO encoder for better feature extraction, an
ASPP module for capturing multi-scale context, and a multi-level attention
mechanism for feature refinement over semantic layers. These developments
allow for improved boundary specification and structural precision in
gastrointestinal organ segmentation. There are still issues in proper
segmentation of overlapping or low-contrast structures, especially in complex
anatomy regions. While EfficientNet BO provides an effective balance
between performance and computational costs, real-time clinical application
and robustness under diverse environments remain unexplored.
Furthermore, potential biases in the dataset and class imbalance can
compromise segmentation accuracy for structures with low representation.
Future research will aim to generalize the model to multi-modal and disease
datasets, adding transformer-based modules in order to learn more
contextual dimensions, and using domain adaptation or semi-supervised
learning methods in order to increase robustness. Clinical testing and
integration into real-time clinical workflows will also be critical to making



practical impact.

5.6 Ablation Study of the Proposed Model

An extensive ablation study was performed to thoroughly assess the
contribution of various architectural components and different attention
mechanisms in the proposed model; the results are of the ablation study are
summarized in Table 3. The ablation is started with the baseline DeepLab
V3+ architecture using a standard ResNet-50 encoder without any attention
mechanism, which provided a Dice score of 87.21% and an IoU score of
83.04%. Replacing ResNet-50 with a more efficient encoder, EfficientNetBO,
resulted in notable improvements as Dice as 89.73%, and IoU as 85.92%,
thereby confirming the advantages of compound scaling and lightweight
computation during feature extraction. Such performance was further
improved with the addition of the ASPP module to achieve Dice as 91.05%
and IoU as 88.01%, due to its functionality of capturing multi-scale contextual
information with dilated convolutions. To evaluaie the effectiveness of the
attention mechanism, we incorporate various widely adopted modules in a
systematic manner after the ASPP block

Implementing Squeeze-and-Excitation (SE) attention resulted in a Dice as
92.33% and IoU as 89.47%, thus proving the efficiency of channel
reweighting. Utilizing Convolutional Block Attention Module (CBAM) [45],
which combines spatial and channel attention, enabled further improvement
such as Dice of 92.56% and IoU of 89.84%. Triplet Attention [46] with Dice
of 92.41% and IoU of 89.58%, and Permute Squeeze-and-Excitation (PSE)
[47] with Dice of 92.28% and IoU of 89.35%, also represent other successful
alternatives with marginal improvements. The proposed model, which
includes multi-level channel and spatial attention applied across different
semantic levels, achieved the best overall performance as Dice of 93.78% and
IoU of 92.17%. This confirms that hierarchically applied attention
mechanisms provide superior feature refinement in capturing global context
and fine-grained spatial information, which is especially critical in
segmenting complex anatomical structures like the gastrointestinal organs.

Table 3: Ablation Study of the Proposed Model



Model Configuration Attention Dice IoU Remarks
Mechanism Coeff Coeff
(%) (%)

Baseline DeepLab V3+ None 87.21 83.04 Standard
baseline; lacks
attention of
lightweight
design

DeepLab V3+ None 89.73 85.92 Improved

with EfficientNetBO efficiency and

Encoder feature
representation

DeepLab V3+ None 91.05 88.01 ASPP

with EfficientNetBO enhances

Encoder and ASPP multi-scale
contextual
understanding

DeepLab V3+ SE 92.33 89.47 Channel

with EfficientNetBO attention

Encoder, ASPP, and SE emphasizes
important
feature maps.

DeepLab V3+ CBAM 92.56 89.84 Improves

with EfficientNetRO spatial focus

Encoder, ASPP, and but increases

CBAM complexity

DeepLab V3+ Triplet 92.41 89.58 Captures inter-

with EfficientNet BO Attention dimensional

Encoder, ASPP, and relations

Triplet Attention

DeepLab V3+ PSE 92.28 89.35 Focus on

with EfficientNetBO spatial

Encoder, ASPP, and PSE sensitivity  at
pixel level

Proposed Model Multi-Level 93.78 92.17 Best overall

(DeepLab V3+ with
EfficientNet BO

Channel +

performance;
efficient and




Encoder, ASPP, Spatial accurate

channel attention, Attention segmentation
and multilevel
attention)

6. State-of-the-Art Comparison

To put the performance of the suggested Multi-level Attention DeepLab
V3+ model into context, there was a thorough comparative analysis
performed against the variety of recent state-of-the-art methods in
gastrointestinal tract segmentation, as illustrated in Table 4. Models range
across diverse architectural designs, from traditional U-Net-based structures
to ensemble models, transformer-based models, and hybrid encoder-decoder
structures. The aim is to show the positioning of suggested model in the
overall research. Each of the comparative models included in Table 4 was
originally trained and tested on the same UW-Madison GI Tract MRI dataset,
the sole publicly available benchmark for GI organ segmentation. Reported
values for Dice and IoU were directly extracted from the corresponding
studies. The cited value is the performance metric reported by authors
wherever full metrics are not available. The model that was suggested was
trained and tested under the saine dataset conditions and preprocessing
procedures to ensure that all the comparisons were fair and directly
comparable.

Approaches like SIA-UNet [20] and hybrid CNN Transformer networks
[21] have contribuied to GI tract segmentation to a great extent, with the
latter using transformer blocks to improve long-range contextual awareness.
Yet, these approaches either lack high-performance segmentation capability
or require huge computational resources. For example, the hybrid CNN-
Transformer model has a dice score of 79% and an IoU of 72% with roughly
18.6 M parameters and 56.2 FLOPs, which shows only slight improvement in
capturing global features but poor boundary accuracy. Ensemble-based
models like [26] yield higher performance (Dice = 91.30%) but require
several pretrained backbones, resulting in 45 M parameters, over 120 FLOPs,
and inference times of over 90 ms, which limits their applicability for real-
time or clinical settings. Similarly, transformer-dense architectures like
BiFTransNet [29], Swin Transformer-based UPerNet [30], and EfficientNet-
B7 models [31] provide comparable Dice scores of 86.8% to 89.9%, but with
25-33 M parameter count and 70-95 FLOPs computational requirement, they



have slow inference times and more memory-intensive usage. The opposite,
the suggested Multi-Level Attention DeepLab V3+ model achieves the best
dice coefficient of 93.78% and IoU coefficient of 92.17% at having only 8.3 M
trainable parameters, 21.7 FLOPs, and an average inference time of 31 ms
per image. This reflects the best trade-off for segmentation performance and
efficiency. The advancement is the result of a few architectural
breakthroughs: (1) using EfficientNet-BO as a lightweight yet powerful
encoder to learn deep hierarchical features with compound scaling; (2) using
multi-level channel and spatial attention in both the ASPP module and
decoder to selectively highlight informative features at low, mid, and high
semantic levels; and (3) using attention-refined skip connections that improve
boundary localization and structural consistency during upsampling.
Together, these design choices enable the model to achieve state-of-the-art
accuracy with the lowest parameter footprint, validating its claim of being a
truly lightweight and efficient segmentation framework suitable for clinical
environments.

Although nnU-Net [48] has established strong and standardized
performance across diverse medical image segmentation challenges, no
official results or benchmark implementation currently exist for the UW-
Madison GI Tract MRI dataset. Given that nnU-Net dynamically adapts its
architecture to dataset-specific characteristics such as voxel spacing and
modality, reproducing its resulis without the original 3D volumetric MRI data
would not yield a fair comparison. Nevertheless, based on its consistent
success in other organ segmentation tasks (e.g., brain, prostate, liver), it can
be expected that ninU-Net would achieve high performance on this dataset.
Future work will include a full retraining of nnU-Net on the UW-Madison

dataset to enable a standardized performance comparison
Table 4: Performance Comparison of the Proposed Attention Deeplab V3+ Model
with Recent State-of-the-Art Segmentation Methods on the UW-Madison GI Tract

Dataset.
Ref. Yea Technique Trainable Flop Inferenc Results Summary
No. r Parameter s (G) e Time
s (M) per
Image
(ms)
[20 202 SIA-Unet 23.1 61.4 48 IoU- Spatial
1 2 0.65 attention;
limited context
modeling

[21 202 Hybrid 18.6 56.2 52 Dice- Transformer




1 2 CNN- 0.79 improves long-
transformer IoU- range capture
Architecture 0.72

[22 202 U-Net and 25.4 64.9 58 Dice- Combines
1 2 Mask R- 0.73 detection and
CNN segmentation
[24 202 Unet on 28.3 68.7 63 Dice- Used adjacent
1 2 2.5D 0.63 slices; lower

IoU- accuracy

0.56

[25 202 UNet 33.2 71.5 65 IoU- Light weight,

1 2 trained with 0.78 but lacks

a ResNet50 attention
backbone
and a more
economical
and
streamlined
UNet
[26 202 Ensembles 45.6 120.8 94 Dice- High accuracy
1 2 of different 0.9130 but
transfer computationall
learning y expensive
architecture
s as the
backbone of
UNet
[27 202 Different  29.5 70.4 61 IoU- Comparison of
1 2 encoders 0.84 backbones
ResNet,
EfficientNet,
VGG16, and
MobileNet
for U-Net
[29 202 BiFTransNet 25.4 82.6 64 Dice- Global-local

1 3 transformer- 0.8951 fusion via

based model BiFusion
[30 202 EfficientNet 28.3 95.1 72 Dice- Strong
1 3 4B + Swin 0.8682 transformer
Transformer backbone
[31 202 EfficientNet 33.2 88.4 70 Dice- High
1 3 B7 0.8991 performance,
IoU- high
0.8693 computational

cost




[32 202 Multiscale 21.8 58.9 46 Dice- Combines

1 4 CNN with 0.9041 multi-
Deep IoU- resolution
Feature 0.8817 streams
Fusion
[33 202 Swin-ViT+ 24.9 66.3 51 Dice- Efficient with
1 4 Channel SE 0.9102 channel
Attention IoU- attention for
0.8906 medical
imaging
Proposed Multi-level 8.3 21.7 31 Dice- Highest
model Attention 0.9378 accuracy with
DeepLab , lightweight
V3+ Model IoU- encoder and
0.9217 attention
integration

7. Conclusion and Future Work

This research study proposed a multi-level attention DeepLab V3+ model.
The proposed model employs EfficientNet BO as the encoder, atrous
convolution, and a multi-level attention mechanism to improve model
effectiveness. This study assists doctors in segmenting the stomach, small
intestine, and large intestine to adjust the X-ray beam and ensure drug
delivery to the tumor in the GI tract. The multi-level attention mechanism
introduced in Deepl.ab V3+ is highly effective for cancer treatment by
improving segmentation. The enhanced segmentation accuracy supports
early tumor detection, tumor evaluation, and clinical monitoring, ultimately
leading to more precise treatment decisions and better patient outcomes.
Moreover, the model was also tested with Adam, RMSprop, and SGD
optimizers. The model was also run with 2, 4, and 8 cross-folds and 10, 20,
and 30 epochs. The optimized model was trained with the RMSprop
optimizer, 4 cross-validation folds, and 30 epochs. The optimized model's
outcomes are dice, IoU, and loss of 0.9378, 0.9217, and 0.0044, respectively.
Future directions may involve optimizing the computational model and
computational resources to make it more accessible to researchers with
limited computational capabilities.

Although the novel Attention DeeplLab V3+ model achieves excellent
performance on the UW-Madison GI Tract dataset, several limitations should
be considered. The model was trained and tested solely on healthy anatomical



zones from a single dataset, which may make its application to pathological
examples or data from other institutions or imaging modalities, such as CT
or endoscopy, challenging. Further, the dataset's class imbalance and limited
range of image quality can introduce bias into feature learning, potentially
compromising segmentation in underrepresented areas. Real-time
performance and clinical deployment have not been pursued as yet. In the
future, the model will be extended to multi-institutional datasets, include
pathological cases, and incorporate transformer-based modules for enhanced
global context learning. Additional enhancements may include domain
adaptation methods, real-time inference optimization, and clinical workflow
evaluation to assess practicability. The UW-Madison GI Tract dataset is the
only existing publicly available MRI dataset with pixel-level annotations for
segmentation of gastrointestinal organs. Thus, the model suggested was
trained and validated solely on this dataset. Even though cross-dataset or
multi-center validation was not possible because comparable datasets were
unavailable, comprehensive data augmentation, cross-fold validation, and
testing for robustness against noise and motion artifacts were used to enable
the model to generalize. Collaboration with clinical centers to build and test
the model on multi-institutional gastrointestinal datasets will be pursued in
the future, once such datasets beconie accessible.
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CNN Convolutional Neural Network
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SE Squeeze-and-Excitation

MRI Magnetic Resonance Imaging

Author Contributions



Neha Sharma: Conceived the study, designed the model architecture, and
led the experimental implementation and manuscript writing.

Sheifali Gupta: Contributed to data preprocessing, model optimization, and
assisted in drafting and reviewing the manuscript.

Fuad Ali Mohammed Al-Yarimi was responsible for literature review,
dataset preprocessing, and assisted in the formulation of the evaluation
metrics and performance analysis

Upinder Kaur: Participated in literature review, performance evaluation,
and analysis of segmentation results.

Salil Bharany: Provided technical guidance, contributed to model evaluation
metrics, and reviewed the manuscript for technical accuracy.

Ateeq Ur Rehman: Supported model tuning, cross-validation experiments,
and interpretation of results from a clinical perspective.

Belayneh Matebie Taye: Supervised the research, provided critical
revisions to the manuscript, and managed overall coordination,
communication, and final submission.

Acknowledgement: The authors extend their appreciation to the Deanship

of Research and Graduate Studies at King Khalid University for funding this
work through the Large Research Project under grant number RGP2/27/46.

Data availability statement: The dataset used in this study, the "UW-
Madison GI Tract Image Segmentation" dataset, is publicly available on

Kaggle. It can be accessed at https://www.kaggle.com/competitions/uw-
madison-gi-tract-image-segmentation/data.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Ethics Approval Statement: No animals or human subjects were involved
in this study. The study utilized publicly available datasets, and all methods

were carried out in accordance with relevant guidelines and regulations.

Consent to Publish Declaration: not applicable.


https://www.kaggle.com/competitions/uw-madison-gi-tract-image-segmentation/data
https://www.kaggle.com/competitions/uw-madison-gi-tract-image-segmentation/data

Funding Declaration section: No funding.

References

[1] Zhou, S. K. et al. A review of deep learning in medical imaging: Imaging traits, technology
trends, case studies with progress highlights, and future promises. Proc. IEEE Inst. Electr.
Electron. Eng. 109, 820-838 (2021).

[2] Ozdemir, B., Aslan, E. & Pacal, 1. Attention Enhanced InceptionNeXt Based Hybrid Deep
Learning Model for Lung Cancer Detection. (IEEE Access, 2025).

[3] Pacal, 1., Ozdemir, B., Zeynalov, J., Gasimov, H. & Pacal, N. A novel CNN-ViT-based deep
learning model for early skin cancer diagnosis. Biomed. Signal Process. Control 104,
107627 (2025).

[4] Ozdemir, B. & Pacal, I. A robust deep learning framework for multiclass skin cancer
classification. Sci. Rep. 15, 4938 (2025).

[5] Ozdemir, B. & Pacal, I. An innovative deep learning framework for skin cancer detection
employing ConvNeXtV2 and focal self-attention mechanisms. Results Eng. 25, 103692
(2025).

[6] Yi, S. et al. IDC-Net: Breast cancer classification network based on BI-RADS 4. Pattern
Recognit. 150, 110323 (2024).

[7] Bayram, B., Kunduracioglu, I., Ince, S. & Pacal, I. A systematic review of deep learning
in MRI-based cerebral vascular occlusion-based brain diseases. Neuroscience 568, 76-94
(2025).

[8] ince, S., Kunduracioglu, I., Bayram, B. & Pacal, I. U-Net-based models for precise brain
stroke segmentation. Chaos Theory and Applications 7, 50-60 (2025).

[9] Heavey, S. F., Roeland, E. J., Tipps, A. M. P., Datnow, B. & Sicklick, J. K. Rapidly
progressive subcutaneous metastases from gallbladder cancer: insight into a rare
presentation in gastrointestinal malignancies. J. Gastrointest. Oncol. 5, E58-64 (2014).

[10] Rawla, P. & Barsouk, A. Epidemiology of gastric cancer: global trends, risk factors, and
prevention. Gastroenteroiogy Review/Przeglad Gastroenterologiczny 14, 26-38 (2019).

[11] Jaffray, D. A., & Gospodarowicz, M. K. Radiation therapy for cancer. Cancer: disease
control priorities, 3,2015, 239-248.

[12]Yi, S., Qin, S., She, F. & Shao, D. BSD: A multi-task framework for pulmonary disease
classification using deep learning. Expert Syst. Appl. 259, 125355 (2025).

[13] Du, S., Du, S, Liu, B. & Zhang, X. Incorporating DeepLabv3+ and object-based image
analysis for semantic segmentation of very high-resolution remote sensing images.
International Journal of Digital Earth 14, 357-378 (2021).

[14] Choudhury, R., Vanguri, A., Jambawalikar, R. & Kumar, S. R. Segmentation of brain
tumors using DeepLabv3+. in Brainlesion: Glioma, Multiple Sclerosis, Stroke, and
Traumatic Brain Injuries: 4th International Workshop, Brainles 154-167 (Springer
International Publishing, Granada, Spain, 2018).

[15] Azad, R., Asadi-Aghbolaghi, M., Fathy, M. & Escalera, S. Attention Deeplabv3+: Multi-
level context attention mechanism for skin lesion segmentation. in Lecture Notes in
Computer Science 251-266 (Springer International Publishing, Cham, 2020).

[16] da Cruz, L. B. et al. Kidney tumor segmentation from computed tomography images
using DeepLabv3+ 2.5D model. Expert Syst. Appl. 192, 116270 (2022).



[17] Bernal, J., Sédnchez, J., & Vilarino, F. (2012). Towards automatic polyp detection with a
polyp appearance model. Pattern Recognition, 45(9), 3166-3182.

[18] Poorneshwaran, J. M., Santhosh Kumar, S., Ram, K., Joseph, J. & Sivaprakasam, M. Polyp
Segmentation using Generative Adversarial Network. Annu. Int. Conf. IEEE Eng. Med.
Biol. Soc. 2019, 7201-7204 (2019).

[19] Lafraxo, S. & El Ansari, M. GastroNet: Abnormalities recognition in gastrointestinal
tract through endoscopic imagery using deep learning techniques. in 2020 8th
International Conference on Wireless Networks and Mobile Communications (WINCOM)
(IEEE, 2020).

[20] Ye, R., Wang, R., Guo, Y. & Chen, L. SIA-Unet: A Unet with Sequence Information for
Gastrointestinal Tract Segmentation. in Pacific Rim International Conference on Artificial
Intelligence 316-326 (Springer, Cham, 2022).

[21] Nemani, P. & Vollala, S. Medical image segmentation using LeViT-UNet++: A case study
on GI tract data. arXiv [cs.NE] (2022).

[22] Chou, A., Li, W. & Roman, E. GI Tract Image Segmentation with U-Net and Mask R-
CNN. Image Segmentation with U-Net and Mask R-CNN.

[23] Niu, H. & Lin, Y. SER-UNet: A Network for Gastrointestinal Image Segmentation. in
Proceedings of the 2022 2nd International Conference on Control and Intelligent Robotics
(ACM, New York, NY, USA, 2022).

[24] Li, H. & Liu, J. Multi-view unet for automated GI iract segmentation. in 2022 5th
International Conference on Pattern Recognition and Artificial Intelligence (PRAI) (IEEE,
2022).

[25] Chia, B., Gu, H. & Lui, N. Gastrointestinal Tract Segmentation Using Multi-Task
Learning.

[26] Georgescu, M.-1., Ionescu, R. T. & Miron, A.-I. Diversity-promoting ensemble for medical
image segmentation. arXiv [eess.IV] (2022).

[27] Jiang, X. et al. BiFTransNet: A unified and simultaneous segmentation network for
gastrointestinal images of CT & MRI. Comput. Biol. Med. 165, 107326 (2023).

[28] Qiu, Y. Upernet-Rased Deep Learning Method For The Segmentation Of Gastrointestinal
Tract Images. in Proceedings of the 2023 8th International Conference on Multimedia and
Image Processing 34-39 (2023).

[29] John, S. V. & Benifa, B. Automated segmentation of tracking healthy organs from
gastrointestinal tumor images. in Smart Innovation, Systems and Technologies 363-373
(Springer Nature Singapore, Singapore, 2023).

[30] Wang, B. et al. Low-friction soft robots for targeted bacterial infection treatment in
gastrointestinal tract. Cyborg Bionic Syst. 5, 0138 (2024).

[31] Li, H. et al. UCFNNet: Ulcerative colitis evaluation based on fine-grained lesion learner
and noise suppression gating. Comput. Methods Programs Biomed. 247, 108080 (2024).
[32] Song, W. et al. CenterFormer: A novel cluster center enhanced transformer for
unconstrained dental plaque segmentation. IEEE Trans. Multimedia 26, 10965-10978

(2024).

[33] Jiang, X. et al. BiFTransNet: A unified and simultaneous segmentation network for

gastrointestinal images of CT & MRI. Comput. Biol. Med. 165, 107326 (2023).



[34] Nobel, S. M. N, Sifat, O. F., Islam, M. R,, Sayeed, M. S. & Amiruzzaman, M. Enhancing
GI cancer radiation therapy: Advanced organ segmentation with ResECA-U-Net model.
Emerg. Sci. J. 8, 999-1015 (2024).

[35] Sharma, N., Gupta, S., Gupta, D., Gupta, P., Juneja, S., Shah, A., & Shaikh, A. (2024).
UMobileNetV2 model for semantic segmentation of gastrointestinal tract in MRI scans.
Plos one, 19(5), e0302880.

[36] https://www.kaggle.com/competitions/uw-madison-gi-tract-image-segmentation/data

[37] Wu, Z. et al. Segmentation of abnormal leaves of hydroponic lettuce based on
DeepLabV3+ for robotic sorting. Comput. Electron. Agric. 190, 106443 (2021).

[38] Koonce, B. EfficientNet. in Convolutional Neural Networks with Swift for Tensorflow
109-123 (Apress, Berkeley, CA, 2021).

[39] J. Hu, L. Shen and G. Sun, "Squeeze-and-Excitation Networks," 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp.
7132-7141, doi: 10.1109/CVPR.2018.00745.

[40] Zhang, Z. Improved Adam optimizer for deep neural networks. in 2018 IEEE/ACM 26th

International Symposium on Quality of Service (IWQoS) (IEEE, 2018).

[41] Wichrowska, O. et al. Learned Optimizers that Scale and Generalize. arXiv [cs.LG]
(2017).

[42] Keskar, N. S. & Socher, R. Improving generalization performance by switching from
Adam to SGD. arXiv [cs.LG] (2017).

[43] Wang B, Chen Y, Ye Z, Yu H, Chan KF, Xu T, Guo Z, Liu W, Zhang L. Low-Friction Soft
Robots for Targeted Bacterial Infection Treatment in Gastrointestinal Tract. Cyborg Bionic
Syst. 2024;5: Article 0138. https://doi.org/10.34133/cbsystems.0138

[44] Li, H., Wang, Z., Guan, Z., Miao, J., Li, W., Yu, P., Molina Jimenez, C. (2024). UCFNNet:
Ulcerative colitis evaluation based on fine-grained lesion learner and noise suppression
gating. Computer Methods and Programs in Biomedicine, 247, 108080. doi:
h : i.org/10.1016/j.cmpbh.2024,108080

[45] Woo, S., Park, J., Lee, JY., Kweon, I.S. (2018). CBAM: Convolutional Block Attention
Module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds) Computer Vision -
ECCV 2018. ECCV 2018. Lecture Notes in Computer Science(), vol 11211. Springer,
Cham. h : i.org/10.1007/978-3-030-01234-2 1

[46] D. Misra, T. Nalamada, A. U. Arasanipalai and Q. Hou, "Rotate to Attend: Convolutional
Triplet Attention Module," 2021 IEEE Winter Conference on Applications of Computer
Vision (WACV), Waikoloa, HI, USA, 2021, pPp. 3138-3147, doi:
10.1109/WACV48630.2021.00318.

[47] Yiran Wang, Yuxin Bian, Shenlu Jiang, PSE: Enhancing structural contextual awareness
of networks in medical imaging with Permute Squeeze-and-Excitation module, Biomedical
Signal Processing and Control, Volume 100, Part B, 2025, 107052, doi:
https://doi.org/10.1016/j.bspc.2024.107052.

[48] Luu, H.M. and Park, S.H., 2021, September. Extending nn-UNet for brain tumor
segmentation. In International MICCAI brainlesion workshop (pp. 173-186). Cham:
Springer International Publishing.


https://doi.org/10.34133/cbsystems.0138
https://doi.org/10.1016/j.cmpb.2024.108080
https://doi.org/10.1007/978-3-030-01234-2_1

ARTICLE IN PRESS



