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Gastrointestinal (GI) cancer is a fatal malignancy that affects the organs of 
the GI tract. The rising prevalence of GI cancer has recently influenced the 
health of millions of people. To treat GI cancer, radiation oncologists must 
carefully focus X-rays on tumors while avoiding other unaffected organs in 
the GI tract. This research proposes a novel approach to segment healthy 
organs within the GI tract from magnetic resonance imaging (MRI) scans 
using a multi-level attention DeepLab V3+ model. The proposed model aims 
to enhance segmentation performance by incorporating state-of-the-art 
approaches, such as atrous convolutions and EfficientNet B0 as an encoder, 
by leveraging hierarchical information present in the data. Here, the 
attention mechanism is applied at multiple levels of features, i.e., low, 
medium, and high, to capture and leverage hierarchical information present 
in the data. At the same time, EfficientNet B0 extracts deep and meaningful 
features from input images, providing a robust representation of GI tract 
structures. Hierarchical feature fusion combines local and global contextual 
information, resulting in more accurate segmentation with fine-grained 
details. The model is implemented using the UW-Madison dataset, 
comprising MRI scans from 85 patients with gastrointestinal cancer. To 
optimize the model, it has been simulated with different parameters, 
including optimizers, the number of epochs, and cross-validation folds. The 
model has achieved performance metrics such as a model loss of 0.0044, a 
dice coefficient of 0.9378, and an Intersection over Union (IoU) of 0.921.

Keywords: Gastrointestinal Tract, Segmentation, Multi-level Attention, 
DeepLab V3+, EfficientNet B0, Deep Learning.

1. Introduction

Medical image segmentation is the process of identifying and extracting 
specific areas of interest in an image, such as organs in the body and tumors 
[1]. The primary goal of medical image segmentation is to accurately identify 
and precisely locate critical anatomical regions necessary for efficient cancer 
treatment [2]. Nevertheless, the inefficiency of manual segmentation may be 
inferred from its repetitive, time-consuming nature, lower precision, and the 
variability of imaging techniques. This may be determined from the fact that 
it possesses a wide array of applications, such as the examination and 
identification of various medical conditions, including skin cancer [3-5], 
breast cancer [6], brain tumour [7-8], and gastrointestinal (GI) cancer [9-10]. 
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In the last few years, many patients have been diagnosed with GI tract cancer 
worldwide [10-11]. Gastrointestinal cancer is a life-threatening condition that 
affects the digestive system. It has a survival rate of almost 30%. Radiation 
therapy is the most common treatment for GI cancers. During radiation 
treatment, oncologists direct X-rays on the affected area while avoiding the 
healthy organs [11]. Oncologists can view the tumor's location for exact 
dosages according to the presence of tumor cells, which may change daily, 
using linear accelerator devices and magnetic resonance imaging (MRI) [11]. 
The manual outlining of the organs takes a lot of time and effort, which can 
cause treatments to take up to an hour daily. The proposed work outlines the 
stomach and intestines to allow for changes in the X-ray beam's direction to 
improve the dosage distribution to the tumor while neglecting the healthy 
organs. By minimizing collateral damage to adjacent organs, automatic 
segmentation reduces treatment-related side effects and complications, 
enhancing patients' quality of life during and after therapy. Additionally, 
precise segmentation allows for the optimization of radiation dose 
distribution and the exploration of advanced treatment techniques, ultimately 
leading to improved tumor control probability, reduced recurrence rates, and 
enhanced long-term survival outcomes. More patients might receive effective 
care due to the automated segmentation procedure, which would speed up 
the healing process.

Deep learning methods have formed the foundation for many modern 
image segmentation and classification solutions [12]. In the proposed work, 
the multi-level attention DeepLab V3+ model has been implemented for GI 
tract segmentation. Earlier, it has been implemented for other tasks such as 
remote sensing [13], brain tumors [14], skin lesions [15], and kidney tumors 
[16]. This paper used the DeepLab V3+ to segment the GI tract organs for 
the first time.
The major findings of this research work are as follows:

 A multi-level attention DeepLab V3+ model is proposed to segment 
healthy organs in the GI tract. The model integrates state-of-the-art 
techniques such as atrous convolutions, EfficientNet B0 as an encoder, 
and a multi-level attention mechanism to enhance segmentation 
accuracy.

 A attention mechanism is applied at multiple levels of features, i.e., low 
level, medium level, and high level, to capture and leverage 
hierarchical information present in the data. A channel-wise attention 
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module focuses more on relevant channel features for every layer of 
atrous convolution used in DeepLab V3+. 

 EfficientNet B0, as an encoder, facilitates the extraction of deep and 
meaningful features from input images, contributing to a better 
representation of gastrointestinal tract structures. By using 
EfficientNet B0 as the encoder, the proposed approach extracts deep 
and meaningful features from input images, providing a robust 
representation of GI tract structures. 

 The proposed design has been implemented on the UW-Madison 
dataset with 38496 magnetic resonance imaging (MRI) scans of 85 
patients. The proposed model has been trained with varying 
hyperparameters like optimizers, number of epochs, and cross-folds for 
optimizing the model. Also, the proposed design has been compared 
using various performance parameters, i.e., model loss, dice, and 
Intersection over Union (IoU) coefficient.

The rest of the paper has been divided as follows: section 2 provides the 
Related Work of the GI tract segmentation. Section 3 is the Dataset 
Description utilized for applying the proposed model. Section 4 will be 
devoted to the proposed multi-level attention deep lab V3+ model. Section 5 
is the Results and Discussion after implementation; Section 6 illustrates the 
state-of-the-art comparison and section 7 Conclusion and Future work of the 
current research work.

2. Related Work

Automated segmentation of medical images has been an area of interest 
since the 19th century, fuelled by the growing demand for precise, efficient, 
and automated techniques to aid clinical diagnosis and treatment planning 
[17]. Over the past few years, segmentation of the GI tract has become a 
prominent area of interest, with applications varying from disease diagnosis 
and surgical planning to robotic navigation and cancer detection [17-19]. 
There have been a number of investigations into Convolutional Neural 
Network (CNN) based architectures. Ye et al. [20] proposed the SIA-Unet 
model, which uses a spatial attention mechanism to improve MRI scan 
segmentation by selectively filtering spatial data. While SIA-Unet 
demonstrated improved performance through uniform longitudinal guidance, 
it was limited by its reliance on conventional U-Net structures and lacked 
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explicit multi-scale context fusion. In contrast, our method combines multi-
level attention with atrous spatial pyramid pooling (ASPP), enabling it to 
effectively capture both fine and global semantic features across different 
scales. Nemani et al. [21] proposed a hybrid model to balance accuracy and 
computational cost. Their approach mitigates this by using EfficientNet B0 
as a lightweight yet powerful encoder, along with an attention mechanism 
that enhances informative features without significantly increasing 
complexity. Chou et al. [22] employed the Mask R-CNN framework to 
segment human body parts in clinical images. Although it yielded a Dice score 
of 0.51, the method struggled with small or overlapping anatomical 
structures. By contrast, our proposed model achieved a higher Dice score of 
0.73, attributed to its ability to focus on channel-wise salient features and 
maintain spatial context through decoder-based upsampling and skip 
connections. Niu et al. [23] presented a GI tract segmentation method using 
a hybrid of residual connections and U-Net, along with a feature fusion 
strategy. Their method improved the IoU by 2.5% over conventional 
approaches. While residual learning facilitates better gradient flow, it does 
not explicitly incorporate attention to refine features. In contrast, our multi-
level attention framework enables the model to selectively enhance relevant 
features at low-, mid-, and high-levels, contributing to more accurate 
segmentation, particularly in complex or overlapping organ regions.

Li et al. [24] proposed a 2.5D model that combines adjacent slices to 
leverage spatial dependencies across slices. Their fusion method of 2.5D and 
3D improved the Dice by 0.36% and IoU by 0.12%. Although beneficial for 3D 
segmentation, this approach requires higher computational resources and 
may not generalize well to single-slice datasets. Our model operates on 
individual 2D slices but achieves comparable or better accuracy due to its 
efficient multi-scale feature aggregation and attention-based refinement. 
Chia et al. [25] explored the use of FiLM in segmentation with ResNet50 and 
alternative backbones, identifying its effectiveness when test and training 
distributions align. Their results suggest performance dependency on data 
similarity. On the other hand, their model is robust in different folds of the 
UW-Madison dataset because it has deep semantic representation ability via 
ASPP and attentions. Georgescu et al. [26] proposed ensemble-based 
therapeutic image segmentation models via multi-network fusion. While 
ensemble models improve the performance, they make inference time longer 
and need a large amount of training. Our one-network solution provides 
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competitive segmentation performance at the cost of ensemble learning 
overhead and hence is more appropriate for real-time or low-resource 
environment. Jiang et al. [27] proposed BiFTransNet, a transformer 
segementation model with a BiFusion decoder that combines global and local 
features. Their approach reported an IoU of 86.54% and a Dice of 89.51. Their 
structure achieves high accuracy with fewer parameters using compound-
scaling EfficientNet and a slim attention module, achieving a better balance 
between accuracy and efficiency. Qiu et al. [28] employed a Swin 
Transformer-based UPerNet,

While transformer backbones are well-suited to capture global context, 
they tend to lose spatial precision in boundary areas. By contrast, our model, 
which uses its skip connections and multi-level attention-guided decoder, 
preserves boundary acuity without losing large semantic information. John et 
al. [29] used EfficientNet B7 and compound scaling for GI tract image 
segmentation. Even though EfficientNet B7 is deeper to extract features, it 
comes with increased memory and computational requirements. We rather 
use EfficientNet B0 to preserve computational efficiency without losing 
competitive performance. Our application of attention mechanisms still 
further sharpens the learned features, facilitating better region localization 
with lower model complexity. Wang et al. [30] investigated the application of 
soft robotic endoscopes for GI imaging, also highlighting the need for 
accurate segmentation in autonomous medical procedures. Though not 
algorithm-specific, their research highlights the clinical need for high-quality 
segmentation, which our proposed solution addresses directly via attention-
augmented multiscale learning.

Li et al. [31] proposed the UCFNNet model with lesion learners and noise 
suppression gates for diagnosis of ulcerative colitis. While conceptually 
similar to our work with attention mechanisms, their model is designed 
specifically for disease-specific segmentation. Our model, on the other hand, 
addresses healthy organ boundary segmentation in the UW-Madison dataset 
and can be used as a baseline for broader extension into pathological 
analysis. Song et al. [32] introduced a transformer-based cluster center-
augmented network for semantic segmentation, which showed better 
segmentation in intricate images. Though efficient, transformer-based 
clustering increases the complexity and needs significant GPU memory. Our 
model provides a less complex and computationally efficient structure while 
maintaining deep contextual understanding via multi-level attention. Lastly, 
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more recent papers [33][34] highlight the growing overlap of encoder-
decoder architectures, attention modules, and multi-scale feature learning. 
They have proposed a standard UNet-based method in our earlier work [35], 
which had encouraging results but failed to extract multi-scale and 
contextual information efficiently. Despite numerous such attempts that have 
progressed impressively, there are challenges due to the inherent complex 
nature, overlapping boundaries, and intensity variability of GI tract organs. 
This paper directly focuses on these difficulties by introducing an innovative 
Attention DeepLab V3+ model based on a multi-level attention scheme and 
EfficientNet B0 encoder, targeting segmentation of healthy anatomy regions 
in the UW-Madison dataset. The proposed Attention DeepLab V3+ model 
introduces several distinct contributions: (1) the use of EfficientNet B0 for 
lightweight yet powerful encoding, (2) the integration of a novel channel-
based attention mechanism within ASPP to enhance multi-scale feature 
refinement, and (3) a decoder capable of recovering fine spatial resolution by 
fusing attention-enhanced semantic features with shallow encoder features. 

3. Dataset Description

The anonymized MRI scans of radiotherapy at the UW-Madison 
Carbone Cancer Center [36] were a foundation of proposed study. The UW-
Madison GI Tract MRI dataset is presently the only publicly available dataset 
providing annotated multi-organ gastrointestinal segmentation masks, that’s 
why it was selected for this study. The dataset comprises data for 85 patients 
having 38496 MRI scans in 16-bit PNG format, which is taken from Kaggle 
[36]. 
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Figure 1: UW-Madison GI Tract Dataset

Figure 1 depicts dataset configurations that comprise an MRI images 
folder and CSV file with Run-length encoding (RLE) data. The MRI image 
folder consists of 85 folders for patients 1 to 85. The scans are performed 
over one to six days and are stored in folders 1 to 6. The MRI scans of the 
patients are stored in subfolders inside the day folder. The scans have 
variable dimensions such as length and width. Some images are rectangular, 
whereas the remaining images are square. To make the image size same all 
the images are resized to 224x224. The ground truth mask is in CSV format, 
where the segmented portions are shown in RLE form. RLE is a lossless image 
compression method that works well for images containing many 
homogenous regions, such as computer graphics or scanned texts. Here, RLE 
is used for encoding ground truth masks from MRI scans of GI tract. For 
instance, Figure 2(a) displays the scanned image of a 56-number slice of 
patient ID 111. The decoded RLE for the large intestine, the small intestine, 
and the stomach is shown in Figures 2(b), 2(c), and 2(d) for the same slice.
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(a) (b) (c) (d)

Figure 2: UW-Madison Dataset (a) Input Image, (b) RLE Decoded for Large Bowel, (c) RLE 
Decoded for Small Bowel, and (d) RLE Decoded for Stomach

3.1 Data Augmentation

Data augmentation is used to generate diversity in the images to 
increase the segmentation performance and combat overfitting. Figure 3 
shows the results of data augmentation for two gastrointestinal medical 
images. One row represents one image, with the original and five 
augmentations: horizontal flip, vertical flip, rotation, brightness adjustment, 
and elastic transformation. These augmentations improve robustness of 
models by incorporating spatial and intensity variations while maintaining 
anatomical structures. The augmentations used were random horizontal and 
vertical flipping to mimic diversity in the direction of imaging, random 
rotations between ±15 degrees to correct for variation in patient positioning, 
and brightness and contrast changes to reflect diversity in imaging 
conditions. Elastic deformations were also employed to introduce smooth, 
localized distortions that maintain anatomical structure without 
compromising the network's capability to discern fine differences in organ 
shape and texture. These augmentations were used during training so that in 
each epoch, the model was exposed to a large number of different 
transformed samples. 

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



Figure 3: Augmented visualization of two gastrointestinal images showing original, 
horizontal flip, vertical flip, rotation, brightness adjustment, and elastic transformation.

3.2 Dataset Splitting

The UW-Madison GI Tract dataset used in this study comprises a total of 
38,496 MRI images collected from 85 unique patients, each having between 
1 to 6 imaging days, where every “day” folder corresponds to a separate 
imaging session of the same patient captured under consistent anatomical 
orientation and resolution. Each MRI image contains three organ annotations 
small intestine, large intestine, and stomach provided in RLE format within a 
CSV file, resulting in a total of 115,488 annotations (14,085 for the large 
intestine, 11,201 for the small intestine, 8,627 for the stomach, and 81,575 
blank cases without organ presence). The ground truth masks were decoded 
from these RLE annotations for model training and evaluation. 

Table 1: Dataset Splitting

Category Total 
Annotations

Training (80%) Testing (20%)

Large Intestine 14085 11989 2816

Small Intestine 11201 8961 2240

Stomach 8627 6903 1724
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Blank 81575 65261 16314

Total 115488 93114 22374

To ensure independence between the training and testing sets and to 
eliminate any possibility of data leakage, the dataset was divided strictly at 
the patient level rather than at the patient-day or slice level. This patient-
exclusive split ensured that all MRI slices corresponding to a single patient 
across all imaging days and sessions were allocated entirely to either the 
training or testing set, but never both. Consequently, the model never 
encountered any slices from the same patient during both training and 
evaluation, preventing memorization of patient-specific anatomical 
structures that could artificially inflate performance. The final data split 
consisted of 68 patients (approximately 80%) in the training set and 17 
patients (approximately 20%) in the testing set. Within each subset, the 
internal directory structure (patient folders → day subfolders → slice images) 
was maintained to preserve the relationship between patient and imaging 
days. In total, the dataset contained 326 imaging days, with an average of 
3.83 ± 1.2 days per patient, distributed as 262 imaging days (68 patients) for 
training and 64 imaging days (17 patients) for testing. Table 1 presents the 
corresponding distribution of annotated cases, including 11,989 training and 
2,816 testing cases for the large intestine, 8,961 training and 2,240 testing 
cases for the small intestine, 6,903 training and 1,724 testing cases for the 
stomach, and 65,261 training and 16,314 testing blank cases. This 
proportional division maintained the diversity of anatomical and temporal 
variations across subsets. Since each “day” folder represents scans of the 
same patient with only minor physiological differences, splitting at the 
patient-day level could have led to feature leakage. Therefore, the patient-
level split provides a more robust, unbiased, and generalizable evaluation of 
model performance while ensuring that no overlapping anatomical 
information is shared between the training and testing sets.

4. Proposed Multi-Level Attention DeepLabV3+ Model

The proposed work introduces a Multi-level Attention DeepLab V3+ [37] 
model specifically designed for the automatic segmentation of GI tract organs 
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namely, small intestine, large intestine, and stomach using MRI scans. This 
model is particularly designed to overcome the limitations in GI organ 
segmentation through combining strong encoding, multi-scale context 
aggregation, attention-based feature improvement, and high-resolution 
decoding schemes. The model starts with an EfficientNet B0 encoder, which 
effectively extracts deep hierarchical features from the input MRI images. 
EfficientNet B0 has been chosen because it is optimized compound scaling 
strategy, keeping balance between depth, width, and resolution to achieve 
better performance with less computational cost. As the image passes 
through the encoder, its spatial dimension is progressively reduced step by 
step and it takes in more abstracted semantic representations. Upon leaving 
the encoder, the feature maps that have been extracted are processed using 
the ASPP module, the core module of the DeepLab V3+ network. There are 
five branches for the ASPP module: a 1×1 convolutional layer, three atrous 
convolutions of size 3×3 with dilation rate 6, 12, and 18 respectively, and 
global average pooling operation. Each branch is batch normalized and 
Rectified Linear Unit (ReLU) activated to stabilize and nonlinearize the 
features. With these multiple receptive fields, the network is able to learn 
both local details and the larger context, which is particularly useful in 
dealing with the intricate anatomical variations in the GI tract. To further 
enhance the semantic richness of the features learned at each scale, we 
introduce a channel-based attention mechanism within every ASPP branch. 
This attention mechanism computes channel-wise significant weights via 
global average pooling, and sigmoid activation function. Such learned 
weights enable the model to focus on more informative channels and dampen 
less informative channels, thus enhancing the quality of multi-scale features 
prior to concatenation. After concatenation, the multi-scale attention-
enhanced feature maps are additionally refined using a spatial attention 
mechanism, which enables the model to focus on the most informative parts 
in the spatial domain. The objective here is to localize the anatomical borders 
of organs more accurately by taking into consideration where the most 
discriminative features are located. The ASPP module output is then fed to 
the decoder. The decoder uses skip connections from the encoder to reinstate 
fine spatial details, which tend to be lost during downsampling. Each 
decoding block has batch normalization, ReLU activation, 1×1 convolutions 
for channel alignment, and upsampling operations to gradually boost feature 
map resolution progressively. These blocks are constructed to combine 
contextual knowledge from the ASPP module and fine-grained information 
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from previous encoding layers. During the decoding process, attention-
enhanced features from various levels are combined such that the 
segmentation output preserves both high-level semantic correctness and low-
level structural accuracy. The final prediction layer generates segmentation 
masks that outline the stomach, small and large intestines regions with 
improved anatomical structure. The complete architecture depicted in Figure 
4 demonstrates how the combuned use of multi-level attention, EfficientNet 
encoding, ASPP-based multi-scale feature extraction, and a robust decoder 
lead to a highly accurate and computationally efficient GI tract segmentation 
pipeline.

Figure 4: Architecture of Proposed Multi-level Attention DeepLab V3+ Model 

The model comprises different convolution blocks that combine 
convolution, batch normalization, and activation layers. The convolutional 
layers (e.g., Conv1, Conv2_block1) apply convolutional operations to the 
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input feature maps using learnable filters as shown in equation (1): 

Output(x,y) = ∑h
i-1 ∑w

j-1 ∑c
k-1 input(x + i,y + j,k) * Filter(i,j,k) + Bias        

(1)

Where Output(x,y) is the resulting feature map value at the spatial location 
(x,y) after applying the convolution operation, input(x + i,y + j,k), is the value 
of the input feature map at location (x+i,y+j) in the k-th channel. This 
represents a patch of the input data that the filter is sliding over. Filter (i, j, 
k) is the learnable weight in the filter (or kernel) at position (i,j) for the k-th 
channel. This defines how the filter interacts with the input data. Bias is a 
learnable bias term added after the multiplication and summation, helping 
the model to better fit the data. h and w is the height and width of the filter. 
These define the spatial dimensions of the convolutional kernel. C is the input 
channels (also called depth). i, j, k are Indices used for iterating over the 
height, width, and channels of the filter, respectively.

The Pooling layers (e.g., average_pooling2d) downsample the input 
feature maps to reduce spatial dimensions. The output of a pooling is shown 
in equation (2): 

Output (x,y,k) = maxh
i=1maxw

j=1FeatureMap(x + i,y + j,k)
 (2)

Where, Output (x, y, k) is the result of the max pooling operation at position 
(x,y) in the k-th channel. FeatureMap (x + i, y + j, k) is the value from the 
output of the convolution layer at spatial location (x+i,y+j) in the k-th 
channel. Pooling operates on these convolutional feature maps. h and w is 
the height and width of the pooling window. i, j are the indices that slide 
over the pooling window, and k is the channel index. 

4.1 EfficientNet B0 as Encoder

EfficientNet B0 [38] is a CNN architecture designed to balance high model 
performance with computational efficiency by compound scaling. Traditional 
CNN architectures typically scale only one dimension of the model at a time 
either depth, width, or resolution. In contrast, EfficientNet B0 employs a 
compound coefficient that uniformly scales all three dimensions in a balanced 
manner. This principle scaling method allows the model to reach higher 
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accuracy with a substantial decrease in parameters and FLOPs. The 
backbone of EfficientNet B0 is the Mobile Inverted Bottleneck Convolution 
(MBConv) block, which is basic block of the network. In contrast to normal 
convolutions, MBConv utilizes a bottleneck pattern that initially broadens the 
channel number using a pointwise 1×1 convolution (expansion layer), utilizes 
a depthwise separable convolution to reduce computational costs while 
utilizing efficient spatial filtering, and then projects the output back into a 
reduced-dimensional space using another 1×1 convolution (projection layer). 
This reverse pattern aids in lowering computational cost without losing 
necessary spatial and semantic information. The application of depthwise 
separable convolutions makes it possible for EfficientNet B0 to heavily 
reduce parameters and computations versus typical convolutions.

Figure 5: Architecture of EfficientNet B0

As shown in Figure 5, the architecture of EfficientNet B0 is divided into seven 
consecutive blocks with each block composed of several MBConv layers. 
These blocks employ a combination of 3×3 and 5×5 kernel sizes to detect 
diverse receptive fields. Expansion factors, strides, and layer counts are 
different across blocks, allowing the model to evolve to greater depth and 
complexity. The structure starts with an initial 3×3 convolutional layer for 
the extraction of low-level features followed by the stacked MBConv blocks 
that progressively process the input. With the advancing image in the 
architecture, spatial resolution is progressively diminished by strided 
convolutions, but the feature channel count grows, enabling the network to 
acquire deep, high-level abstractions required for sophisticated tasks like GI 
organ segmentation. The model is able to capture fine-grained edge details 
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in the initial layers and rich semantic features in deeper layers through multi-
resolution encoding. The output feature maps generated by EfficientNet B0 
refined by MBConv blocks and enhanced through channel attention serve as 
the input to the ASPP module, where multi-scale semantic information is 
further extracted.

4.2 ASPP Module with Multi-level Attention 

To enhance segmentation performance while preserving spatial resolution, 
the ASPP module in the proposed attention DeepLab V3+ architecture 
integrates both atrous (dilated) convolutions and a multi-level attention 
mechanism. Atrous convolution introduces gaps between kernel elements, 
enabling convolutional kernels to cover more receptive field without 
increasing the parameters or computation. This technique is particularly 
effective in semantic segmentation, where objects and anatomical structures 
may appear at varying scales. The mathematical formulation of atrous 
convolution is shown in equation (3)
                                                                z[i] = ∑n a(i + r.n)f[n]

           (3)
Where z is the output feature map, i shows the spatial domain location of z, 

a is the input feature map, r is the atrous convolution rate, and f is the 
convolution filter. The output from these levels is concatenated and sent to 
the following network block named as Multi-level attention mechanism in 
DeepLab V3+.

Figure 6 shows the detailed architecture of the ASPP module integrated with 
a channel-based attention mechanism. The ASPP consists of five parallel 
branches: A standard 1×1 convolution, Three 3×3 convolutions with atrous 
rates of 6, 12, and 18, respectively, and A global average pooling branch. 
Each branch is followed by batch normalization and ReLU activation to 
normalize and activate the outputs. To further improve the discriminative 
power of the features extracted at each scale, we introduce channel-based 
attention into each branch. This attention mechanism starts by performing 
global average pooling on every feature map to create a condensed descriptor 
that captures the global context. These descriptors are fed into a set of two 
fully connected layers and activated through a sigmoid activation function to 
produce channel-wise attention weights. Following attention refinement, all 
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the five branches' outputs are concatenated. A spatial attention module is 
used with the combined feature map to assist the model in localizing spatial 
areas important for segmentation. The output of the ASPP module is a multi-
scale, attentioned representation that is transmitted to the decoder.

Figure 6: Architecture of the proposed Atrous Spatial Pyramid Pooling (ASPP) module.

To further enhance segmentation precision, particularly in intricate 
anatomical areas, we integrate a multi-level channel attention mechanism 
that takes effect at various stages of the network: low-level, mid-level, and 
high-level features. Motivated by Squeeze-and-Excitation networks [39], the 
mechanism allows the model to learn inter-channel dependencies and context 
relationships among the feature maps at different depths.

Figure 7: Channel-wise attention mechanism applied to ASPP branches. 
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As demonstrated in Figure 7, the channel attention process starts with 
global average pooling over all the channels of a feature map. The operation 
yields a descriptor vector that captures the global significance of each 
channel. The descriptors obtained after pooling are utilized to provide as 
input to two fully connected layers and a sigmoid activation function to 
produce channel-wise attention weights. These weights are utilized to 
modulate the original feature maps using element-wise multiplication as 
shown in equation (4):

Wn = 1
LxB∑l

i ∑b
j Yn(i,j) (4)

Where, Yn(i,j) is the pixel at position n-th channel, L×B is the spatial size of 
the channel, Wn  is the global average value (attention score) for the n-th 
channel.

This mechanism enables the network to selectively highlight informative 
feature channels and downweight redundant ones, improving its attention to 
semantically significant structures like the small intestine, large intestine, 
and stomach. The multi-level attention mechanism allows features of various 
semantic levels to be adaptively tuned before passing them to the decoder. It 
encodes hierarchical dependencies and enables strong feature fusion 
through attention-refined alignment of features from low, mid, and high-level 
layers. Such features are concatenated and passed to a scale attention 
module that captures relationships between scales as well. The model 
integrates channel-wise and multi-level attention and greatly enhances its 
capacity to identify organs of different shapes and sizes with delicate 
boundaries. This attention-enhanced ASPP output enables more accurate, 
context-aware segmentation downstream in the decoder.

4.3 Decoder

The decoder within the suggested Attention DeepLab V3+ architecture is 
pivotal in reconstructing high-resolution mask from the compressed, high-
level feature representations generated by the encoder and the ASPP block. 
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While semantic features are progressively downsampling in the encoder, 
spatial resolution is drastically decreased. To overcome this, the decoder 
employs progressive upsampling while combining multi-scale, attention-
weighted features to recover fine spatial details.

Figure 8: The decoder architecture of the proposed Attention DeepLab V3+ model.

As shown in Figure 8, the decoder starts by taking multi-scale feature maps 
from both the ASPP module and the EfficientNet B0 encoder through skip 
connections. The skip connections act as routes for directly transmitting low-
level features to the decoder so it can regain fine spatial details, which tend 
to be lost in deeper layers of the network. The ASPP module feature maps are 
then upscaled by a factor of 4 to be comparable with the spatial dimensions 
of features in the previous stages of the encoder. Alignment allows fusion of 
structural (low-level) and semantic (high-level) information. The fusion is 
done through a series of operations: Batch normalization stabilizes training 
and normalizes feature distributions. Activation using ReLU injects non-
linearity to enhance the learning ability of the network. 1×1 convolutions are 
employed for matching channel dimensions and further detailing the feature 
representation per stage. Through conducting convolution followed by 
upsampling per stage, the decoder progressively reconstructs the feature 
maps to the original input resolution. This produces a high-resolution 
segmentation map that precisely outlines target anatomical structures such 
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as the small bowel, large bowel, and stomach. Inclusion of multi-level 
attention mechanisms in ASPP output ensures decoder pays attention to 
semantically important and spatially significant regions. It improves the 
network's performance in delineating finer structural borders, particularly in 
overlapping and confusing gastrointestinal anatomy areas. The final output 
is a segmented prediction map which identifies regions of interest with room 
for identifying relevant patterns, anatomical variations, or disease affected 
areas.

5 Results and Discussions

This study introduced a DeepLab V3+ model integrating EfficientNet B0, 
ASPP and multilevel attention to segment the GI tract organ. All experiments 
were performed on a workstation with an NVIDIA RTX A5000 GPU (24 GB 
VRAM), Intel Core i7-11700 CPU, and 32 GB RAM, under Windows 10 (64-
bit) operating system with CUDA 11.2 and cuDNN 8.1. The suggested Multi-
Level Attention DeepLab V3+ model with EfficientNet-B0 encoder has 
around 8.3 million trainable parameters and has ≈ 21.7 FLOPs per forward 
pass, providing the best balance between accuracy and computational cost. 
The model was trained for 30 epochs with a batch size of 16, RMSprop 
optimizer, and an initial learning rate of 0.0001. Categorical cross-entropy 
was used as the loss function for multi-class segmentation. The overall 
training time was around 4.5 hours, and each epoch took around 540 seconds. 
In inference, the model obtained an average inference time of ≈ 31 
milliseconds for every 224 × 224 MRI slice, which is a throughput rate of ~32 
frames per second (FPS). The highest GPU memory usage for inference was 
2.4 GB at batch size 16, proving that the model is light and computationally 
viable for near real-time clinical use. Experiments were run on Python 3.8 
using TensorFlow and Keras libraries for absolute reproducibility of the 
results.

5.1 Analysis based on Different Optimizers

The model proposed in this research has been tested with three optimizers 
with the rest of the hyperparameters remaining the same. Optimizers 
employed in this research are Adaptive Moment Estimation (Adam) [40], RMS 
prop [41], and Stochastic Gradient Descent (SGD) [42-43]. Various ways of 
optimization are applied as each of them has its strengths and weaknesses 
and can be better or worse suited for different models. The optimizers are 

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



executed for ten epochs and employ two cross-folds [44]. Figure 9 
demonstrates the relative performance of these optimizers using Dice 
coefficient, IoU, and loss. The graphs show that the curves of Dice coefficient 
and IoU reach their best values when the RMSprop optimization is used, 
which suggests better precision in segmenting organs in the GI tract when 
compared to using Adam and SGD optimizers. Meanwhile, the loss curve 
shows its smallest path when RMSprop is used, revealing faster convergence 
and reduced error in training as well as validation stages. This implies that 
RMSprop performs better than Adam and SGD in optimizing the model's 
parameters in order to obtain the best segmentation outcome.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Figure 9: Graphical Analysis of Dice, IoU, and Loss using Different Optimizers: For 
Adam- (a) Dice (b) IoU, (c) Loss, For RMSprop- (d) Dice (e) IoU, (f) Loss, For SGD- (g) Dice, 

(h) IoU, (i) Loss

Figure 10 presents the values of the performance parameters such as IoU 
coefficient shown in figure 10(a), Dice Coefficient shown in figure 10(b) and 
Loss shown in figure 10(c) for optimizers Adam, RMSprop, and SGD. 
RMSprop is the best optimizer and delivers the highest Dice coefficient 
(0.9271), the lowest Loss (0.0071), and the highest IoU (0.8764) of the three. 
Adam is very close to competitive values in all three categories, signifying its 
effectiveness in identifying semantic segmentation trends. Conversely, SGD 
is far behind with the lowest Dice coefficient (0.2737), highest Loss (0.0703), 
and lowest IoU (0.2502). The significant performance metrics gap 
demonstrates the difference that the choice of optimizer makes in the 
proposed model to define semantic regions in the current task. From Figure 
10, the proposed attention DeepLab V3+ using the RMSprop optimizer is 
seen performing better than Adam and SGD.
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Figure 10: Performance Parameters using Different Optimizers (a) IoU Coefficient 
Comparison, (b) Dice Coefficient Comparison, and (c) Loss Comparison 

5.2 Analysis based on the Number of Folds

The proposed method has been tested with various cross-folds to evaluate 
results better with the other hyperparameters unchanged. In this analysis, 
RMSprop was used as concluded from the previous experiment. The model 
has been tested with 2, 4, and 8 cross-folds. In Figure 11, the performance 
evaluation of segmentation over varying cross-folds numbers is illustrated, 
with emphasis on the Dice coefficient, IoU, and loss in the context of an 
approach model. The plots show that the curves for Dice coefficient and IoU 
reach their highest values when using four cross-folds, implying maximum 
segmentation accuracy as compared to configurations using two and eight 
cross-folds. Further, the loss curve path at its minimum is when using four 
cross-folds, which shows better convergence and less error in both the 
training phase and validation phase. This denotes the usefulness of using four 
cross-folds in improving segmentation accuracy and reducing loss, for the 
improvement of the effectiveness of radiation treatment planning in GI 
cancer.

(a) (b) (c)

(d) (e) (f)
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(g) (h) (i)
Figure 11: Graphical Analysis of Dice, IoU, and Loss using Different Cross Folds: For 2 

Folds- (a) Dice (b) IoU (c) Loss, For 4 Folds - (d) Dice (e) IoU (f) Loss, For 8 Folds - (g) Dice, 
(h) IoU (i) Loss

Figure 12 demonstrates the performance parameter values such as IoU 
coefficient shown in figure 12(a), Dice Coefficient shown in figure 12(b) and 
Loss shown in figure 12(c) for various cross folds 2, 4, and 8. The outcomes 
indicate that the performance is consistent and similar in all folds. The Dice 
coefficient is constant, with values of 0.9273, 0.9276, and 0.9274 for folds 2, 
4, and 8, respectively, showing a high degree of performance in detecting 
overlap in predicted and ground truth masks. The loss values also 
demonstrate a slight variation, with 0.0062, 0.0058, and 0.0062 for folds 2, 
4, and 8, respectively. The IoU values also vary from 0.8916 to 0.910, 
demonstrating uniform and good boundary delineation of segmented regions. 
The segmentation performance of the model is strong and also generalizes 
well across different folds, demonstrating a solid and consistent performance 
on different sets of the dataset. Figure 12 concludes that the suggested model 
performed better with four folds than 2 and 8 folds.
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(a) (b)

(c)

Figure 12: Performance Parameters using Different Cross Folds (a) IoU Coefficient 
Comparison, (b) Dice Coefficient Comparison, and (c) Loss Comparison

5.3 Analysis based on Number of Epochs

The research work proposed is trained with the number of epochs while 
keeping all the other hyperparameters the same. The model was trained with 
10, 20, and 30 epochs with RMSprop optimizer and four folds. The dice, IoU, 
and loss plots are shown in Figure 13 using 10, 20, and 30 epochs. The graphs 
prove that the Dice coefficient and the IoU curves both attain their highest 
values at training the model for 30 epochs, signifying ideal segmentation 
accuracy in contrast with training periods of 10 and 20 epochs. The loss curve 
also attains its lowest point at 30 epochs, denoting better convergence and 
less error in the training and validation periods. In addition, the results 
indicate that increasing the training period beyond 30 epochs does not result 
in additional improvements in segmentation performance. Therefore, the 
choice of restricting the training time to 30 epochs is justified to help utilize 
resources effectively while achieving maximum segmentation accuracy for 
radiation therapy planning in GI cancer treatment.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 13: Graphical Analysis of Dice, IoU and Loss using Different Numbers of Epochs: 
For epochs 10- (a) Dice (b) IoU (c) Loss, For epochs 20- (d) Dice (e) IoU (f) Loss, For 

Epochs 30- (g) Dice, (h) IoU, (i) Loss

Figure 14 depicts the values of performance parameters such as IoU 
coefficient shown in figure 10(a), Dice Coefficient shown in figure 10(b) and 
Loss shown in figure 10(c) for various epochs 10, 20, and 30. In all 
parameters, the model shows a noticeable improvement with an increase in 
the number of training epochs. The Dice coefficient, which is a parameter of 
segmentation performance, improves steadily from 0.9271 for 10 epochs to 
0.9378 for 30 epochs. Similarly, the Loss measure goes down from 0.0071 to 
0.0044, which represents better convergence and less dissimilarity in 
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predicted vs. actual values. The IoU, a pixel-wise measure of overlap, also 
increases steadily from 0.8764 to 0.9217, reflecting better segmentation 
boundary delineation. These findings highlight the necessity of adequate 
training epochs in optimizing the model's segmentation accuracy, with 
significant improvements in accuracy and convergence metrics when the 
training time increases. Figure 14 concludes that the proposed model 
performs better for 30 epochs.

(a) (b)

(c)

Figure 14: Performance Parameters using Different Number of Epochs (a) IoU 
Coefficient Comparison, (b) Dice Coefficient Comparison, and (c) Loss Comparison
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5.4 Quantitative Analysis of the Proposed Model

The final optimized model undergoes a rigorous evaluation process 
involving 30 epochs and four cross-folds, utilizing the RMSprop optimizer. 
Figure 15 shows the quantitative analysis of the proposed model. Figure 15(a) 
illustrates the actual result while training which indicates the general overall 
distribution of the model. Figure 15(b) gives an idea of Dice score. For a good 
analysis of the segmentations, how much is it similar between predicted and 
the actual segmentation. It gives an estimate of overlap in between predicted 
and true segmentation by showing IoU in figure 15(c). Combined, this data 
gives in-depth information regarding the performance trend of the various 
indicators, providing an idea regarding the validity and reliability.

(a) (b) (c)
Figure 15: Qualitative Analysis of the Proposed Model (a) Accuracy, (b) Dice and, (c) IoU

Table 2 reports the overall and per-class performance metrics of the 
proposed Multi-Level Attention DeepLab V3+ model. The model achieved an 
accuracy of 0.9976, confirming that a high proportion of pixels in the MRI 
images were correctly segmented. The average Dice score of 0.9378 and IoU 
of 0.9217 reflect strong agreement and substantial spatial overlap between 
the predicted and ground-truth segmentation masks. The model loss value of 
0.0044 further indicates stable convergence and low prediction error during 
optimization. Moreover, the class-wise outcomes reflect balanced 
segmentation performance over all three gastrointestinal organs, with the 
large intestine, small intestine, and stomach obtaining Dice scores of 94.12%, 
93.47%, and 93.75% and their respective IoU values of 92.36%, 91.18%, and 
91.02%. These uniform values validate that the model performs well 
uniformly across various anatomical areas without class bias. All of the 
metrics were calculated per-slice and per-class with a 0.5 threshold applied 
to softmax outputs and then macro-averaged over classes. The minimal 
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numerical difference between the Dice and IoU scores stems from class-wise 
averaging instead of a global binary sum. Overall, these findings prove that 
the model proposed here attains high segmentation accuracy, robust 
generalization, and stable convergence, justifying its efficiency and reliability 
for gastrointestinal organ segmentation tasks.

Table 2: Performance Parameters of Final Optimized Model
Class Dice (%) IoU (%)

Large Intestine 94.12 92.36
Small Intestine 93.47 91.18

Stomach 93.75 91.02
Mean (Macro-Average) 93.78 92.17

5.5 Qualitative Analysis of the Proposed Model

The final optimized model, which was trained for 30 epochs and used 4 
cross-folds with the RMSprop optimizer. The qualitative analysis of the 
proposed model is presented in Figure 16, comprising the original image, 
predicted image, ground truth masks, and the missed mask, where the model 
predictions failed to agree with the ground truth. Notably, the predicted 
ground truth masks and the initial ground truth masks are presented in a 
three-color mode to provide easy visualization: red for the large bowel, green 
for the small bowel, and blue for the stomach. In addition, the missed mask 
image uses three colors: green indicates agreement or matching areas 
between the predicted and original masks, red indicates regions of 
disagreement or misprediction, and black indicates the background. Visual 
representation highlights the potential benefit of the proposed model in 
predicting the segmentation of the stomach, small intestine, and large 
intestine to be useful in GI cancer treatment planning using radiation 
therapy.

Although the overall good performance of the proposed model, some 
limitations were noted in certain segmentation instances. Most significant 
were the segmentation errors along organ boundary regions, for example, 
the juncture of the small and large intestine, where anatomical structures 
tend to overlap or resemble each other visually. In a few instances, the model 
wrongfully labeled low-contrast areas or did not identify organ edges when 
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the intensity gradient was weak. Moreover, images with motion blur, noise, 
or artifacts yielded incomplete or fragmented segmentations. These problems 
arise from an amalgamation of factors, such as class imbalance due to the 
underrepresentation of smaller organs or narrow structures in the training 
set, as well as the inherent texture and intensity similarity between 
gastrointestinal organs. Future enhancements may involve the application of 
edge-aware or boundary refinement loss functions, adaptive weighting of 
classes, and more drastic data augmentation to improve robustness. Adding 
extra layers of attention or multi-modal imaging data can further help in 
resolving ambiguities between overlapping structures and enhance overall 
segmentation accuracy.

Original Image Predicted Mask 
Image

Ground Truth 
Mask Image

Miss Mask 
Image
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Figure 16: Visualization of Results (Here red color represents the large bowel, the green 
color shows the small bowel, and the blue color represents the stomach)

The model was trained solely on the UW-Madison dataset, which includes 
only healthy anatomical regions, limiting its generalizability to pathological 
cases or multi-institutional datasets compared to our previous model [35], 
which used a basic UNet architecture without attention mechanisms, the 
proposed Multi-level Attention DeepLab V3+ framework demonstrates 
substantial improvements. In particular, our former method obtained a Dice 
score of 0.8984% and an IoU of 0.8697%, while the present model obtained 
a Dice score of 93.78% and an IoU of 92.17%. This is because the current 
model utilized an EfficientNet B0 encoder for better feature extraction, an 
ASPP module for capturing multi-scale context, and a multi-level attention 
mechanism for feature refinement over semantic layers. These developments 
allow for improved boundary specification and structural precision in 
gastrointestinal organ segmentation. There are still issues in proper 
segmentation of overlapping or low-contrast structures, especially in complex 
anatomy regions. While EfficientNet B0 provides an effective balance 
between performance and computational costs, real-time clinical application 
and robustness under diverse environments remain unexplored. 
Furthermore, potential biases in the dataset and class imbalance can 
compromise segmentation accuracy for structures with low representation. 
Future research will aim to generalize the model to multi-modal and disease 
datasets, adding transformer-based modules in order to learn more 
contextual dimensions, and using domain adaptation or semi-supervised 
learning methods in order to increase robustness. Clinical testing and 
integration into real-time clinical workflows will also be critical to making 
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practical impact.

5.6 Ablation Study of the Proposed Model

An extensive ablation study was performed to thoroughly assess the 
contribution of various architectural components and different attention 
mechanisms in the proposed model; the results are of the ablation study are 
summarized in Table 3. The ablation is started with the baseline DeepLab 
V3+ architecture using a standard ResNet-50 encoder without any attention 
mechanism, which provided a Dice score of 87.21% and an IoU score of 
83.04%. Replacing ResNet-50 with a more efficient encoder, EfficientNetB0, 
resulted in notable improvements as Dice as 89.73%, and IoU as 85.92%, 
thereby confirming the advantages of compound scaling and lightweight 
computation during feature extraction. Such performance was further 
improved with the addition of the ASPP module to achieve Dice as 91.05% 
and IoU as 88.01%, due to its functionality of capturing multi-scale contextual 
information with dilated convolutions. To evaluate the effectiveness of the 
attention mechanism, we incorporate various widely adopted modules in a 
systematic manner after the ASPP block.

Implementing Squeeze-and-Excitation (SE) attention resulted in a Dice as 
92.33% and IoU as 89.47%, thus proving the efficiency of channel 
reweighting. Utilizing Convolutional Block Attention Module (CBAM) [45], 
which combines spatial and channel attention, enabled further improvement 
such as Dice of 92.56% and IoU of 89.84%. Triplet Attention [46] with Dice 
of 92.41% and IoU of 89.58%, and Permute Squeeze-and-Excitation (PSE) 
[47] with Dice of 92.28% and IoU of 89.35%, also represent other successful 
alternatives with marginal improvements. The proposed model, which 
includes multi-level channel and spatial attention applied across different 
semantic levels, achieved the best overall performance as Dice of 93.78% and 
IoU of 92.17%. This confirms that hierarchically applied attention 
mechanisms provide superior feature refinement in capturing global context 
and fine-grained spatial information, which is especially critical in 
segmenting complex anatomical structures like the gastrointestinal organs.

Table 3: Ablation Study of the Proposed Model
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Model Configuration Attention 
Mechanism

Dice 
Coeff 
(%)

IoU 
Coeff 
(%)

Remarks

Baseline DeepLab V3+ None 87.21 83.04 Standard 
baseline; lacks 
attention of 
lightweight 
design

DeepLab V3+ 
with EfficientNetB0 
Encoder

None 89.73 85.92 Improved 
efficiency and 
feature 
representation

DeepLab V3+ 
with EfficientNetB0 
Encoder and ASPP

None 91.05 88.01 ASPP 
enhances 
multi-scale 
contextual 
understanding

DeepLab V3+ 
with EfficientNetB0 
Encoder, ASPP, and SE

SE 92.33 89.47 Channel 
attention 
emphasizes 
important 
feature maps.

DeepLab V3+ 
with EfficientNetB0 
Encoder, ASPP, and 
CBAM

CBAM 92.56 89.84 Improves 
spatial focus 
but increases 
complexity

DeepLab V3+ 
with EfficientNet B0 
Encoder, ASPP, and 
Triplet Attention

Triplet 
Attention 

92.41 89.58 Captures inter-
dimensional 
relations

DeepLab V3+ 
with EfficientNetB0 
Encoder, ASPP, and PSE

PSE 92.28 89.35 Focus on 
spatial 
sensitivity at 
pixel level

Proposed Model 
(DeepLab V3+ with 
EfficientNet B0 

Multi-Level 
Channel + 

93.78 92.17 Best overall 
performance; 
efficient and 
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Encoder, ASPP, 
channel attention, 
and multilevel 
attention)

Spatial 
Attention

accurate 
segmentation

6. State-of-the-Art Comparison 

To put the performance of the suggested Multi-level Attention DeepLab 
V3+ model into context, there was a thorough comparative analysis 
performed against the variety of recent state-of-the-art methods in 
gastrointestinal tract segmentation, as illustrated in Table 4. Models range 
across diverse architectural designs, from traditional U-Net-based structures 
to ensemble models, transformer-based models, and hybrid encoder-decoder 
structures. The aim is to show the positioning of suggested model in the 
overall research. Each of the comparative models included in Table 4 was 
originally trained and tested on the same UW–Madison GI Tract MRI dataset, 
the sole publicly available benchmark for GI organ segmentation. Reported 
values for Dice and IoU were directly extracted from the corresponding 
studies. The cited value is the performance metric reported by authors 
wherever full metrics are not available. The model that was suggested was 
trained and tested under the same dataset conditions and preprocessing 
procedures to ensure that all the comparisons were fair and directly 
comparable.

Approaches like SIA-UNet [20] and hybrid CNN Transformer networks 
[21] have contributed to GI tract segmentation to a great extent, with the 
latter using transformer blocks to improve long-range contextual awareness. 
Yet, these approaches either lack high-performance segmentation capability 
or require huge computational resources. For example, the hybrid CNN–
Transformer model has a dice score of 79% and an IoU of 72% with roughly 
18.6 M parameters and 56.2 FLOPs, which shows only slight improvement in 
capturing global features but poor boundary accuracy. Ensemble-based 
models like [26] yield higher performance (Dice = 91.30%) but require 
several pretrained backbones, resulting in 45 M parameters, over 120 FLOPs, 
and inference times of over 90 ms, which limits their applicability for real-
time or clinical settings. Similarly, transformer-dense architectures like 
BiFTransNet [29], Swin Transformer-based UPerNet [30], and EfficientNet-
B7 models [31] provide comparable Dice scores of 86.8% to 89.9%, but with 
25–33 M parameter count and 70–95 FLOPs computational requirement, they 
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have slow inference times and more memory-intensive usage. The opposite, 
the suggested Multi-Level Attention DeepLab V3+ model achieves the best 
dice coefficient of 93.78% and IoU coefficient of 92.17% at having only 8.3 M 
trainable parameters, 21.7 FLOPs, and an average inference time of 31 ms 
per image. This reflects the best trade-off for segmentation performance and 
efficiency. The advancement is the result of a few architectural 
breakthroughs: (1) using EfficientNet-B0 as a lightweight yet powerful 
encoder to learn deep hierarchical features with compound scaling; (2) using 
multi-level channel and spatial attention in both the ASPP module and 
decoder to selectively highlight informative features at low, mid, and high 
semantic levels; and (3) using attention-refined skip connections that improve 
boundary localization and structural consistency during upsampling.  
Together, these design choices enable the model to achieve state-of-the-art 
accuracy with the lowest parameter footprint, validating its claim of being a 
truly lightweight and efficient segmentation framework suitable for clinical 
environments.

Although nnU-Net [48] has established strong and standardized 
performance across diverse medical image segmentation challenges, no 
official results or benchmark implementation currently exist for the UW-
Madison GI Tract MRI dataset. Given that nnU-Net dynamically adapts its 
architecture to dataset-specific characteristics such as voxel spacing and 
modality, reproducing its results without the original 3D volumetric MRI data 
would not yield a fair comparison. Nevertheless, based on its consistent 
success in other organ segmentation tasks (e.g., brain, prostate, liver), it can 
be expected that nnU-Net would achieve high performance on this dataset. 
Future work will include a full retraining of nnU-Net on the UW-Madison 
dataset to enable a standardized performance comparison

Table 4: Performance Comparison of the Proposed Attention DeepLab V3+ Model 
with Recent State-of-the-Art Segmentation Methods on the UW-Madison GI Tract 

Dataset.
Ref. 
No.

Yea
r

Technique Trainable 
Parameter

s (M)

Flop
s (G)

Inferenc
e Time 

per 
Image 
(ms)

Results Summary

[20
]

202
2

SIA-Unet 23.1 61.4 48 IoU- 
0.65

Spatial 
attention; 

limited context 
modeling

[21 202 Hybrid 18.6 56.2 52 Dice- Transformer 
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] 2 CNN-
transformer 
Architecture

0.79 
IoU- 
0.72 

improves long-
range capture

[22
]

202
2

U-Net and 
Mask R-

CNN

25.4 64.9 58 Dice- 
0.73 

Combines 
detection and 
segmentation

[24
]

202
2

Unet on 
2.5D

28.3 68.7 63 Dice- 
0.63 
IoU- 
0.56 

Used adjacent 
slices; lower 

accuracy

[25
]

202
2

UNet 
trained with 
a ResNet50 
backbone 

and a more 
economical 

and 
streamlined 

UNet

33.2 71.5 65 IoU- 
0.78 

Light weight, 
but lacks 
attention

[26
]

202
2

Ensembles 
of different 

transfer 
learning  

architecture
s as the 

backbone of 
UNet

45.6 120.8 94 Dice- 
0.9130 

High accuracy 
but 

computationall
y expensive

[27
]

202
2

Different 
encoders 
ResNet, 

EfficientNet, 
VGG16, and 
MobileNet 
for U-Net

29.5 70.4 61 IoU- 
0.84 

Comparison of 
backbones

[29
]

202
3

BiFTransNet 
transformer-
based model

25.4 82.6 64 Dice-
0.8951

Global-local 
fusion via 
BiFusion

[30
]

202
3

EfficientNet 
4B + Swin 

Transformer

28.3 95.1 72 Dice- 
0.8682

Strong 
transformer 
backbone

[31
]

202
3

EfficientNet 
B7

33.2 88.4 70 Dice- 
0.8991 

IoU- 
0.8693 

High 
performance, 

high 
computational 

cost
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[32
]

202
4

Multiscale 
CNN with 

Deep 
Feature 
Fusion

21.8 58.9 46 Dice-
0.9041

IoU-
0.8817

Combines 
multi-

resolution 
streams

[33
]

202
4

Swin-ViT+ 
Channel SE 
Attention

24.9 66.3 51 Dice-
0.9102

IoU-
0.8906

Efficient with 
channel 

attention for 
medical 
imaging

Proposed 
model

Multi-level 
Attention 
DeepLab 

V3+ Model

8.3 21.7 31 Dice- 
0.9378

, 
IoU- 

0.9217

Highest 
accuracy with 
lightweight 
encoder and 

attention 
integration

7. Conclusion and Future Work

This research study proposed a multi-level attention DeepLab V3+ model. 
The proposed model employs EfficientNet B0 as the encoder, atrous 
convolution, and a multi-level attention mechanism to improve model 
effectiveness. This study assists doctors in segmenting the stomach, small 
intestine, and large intestine to adjust the X-ray beam and ensure drug 
delivery to the tumor in the GI tract. The multi-level attention mechanism 
introduced in DeepLab V3+ is highly effective for cancer treatment by 
improving segmentation. The enhanced segmentation accuracy supports 
early tumor detection, tumor evaluation, and clinical monitoring, ultimately 
leading to more precise treatment decisions and better patient outcomes. 
Moreover, the model was also tested with Adam, RMSprop, and SGD 
optimizers. The model was also run with 2, 4, and 8 cross-folds and 10, 20, 
and 30 epochs. The optimized model was trained with the RMSprop 
optimizer, 4 cross-validation folds, and 30 epochs. The optimized model's 
outcomes are dice, IoU, and loss of 0.9378, 0.9217, and 0.0044, respectively. 
Future directions may involve optimizing the computational model and 
computational resources to make it more accessible to researchers with 
limited computational capabilities.

Although the novel Attention DeepLab V3+ model achieves excellent 
performance on the UW-Madison GI Tract dataset, several limitations should 
be considered. The model was trained and tested solely on healthy anatomical 
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zones from a single dataset, which may make its application to pathological 
examples or data from other institutions or imaging modalities, such as CT 
or endoscopy, challenging. Further, the dataset's class imbalance and limited 
range of image quality can introduce bias into feature learning, potentially 
compromising segmentation in underrepresented areas. Real-time 
performance and clinical deployment have not been pursued as yet. In the 
future, the model will be extended to multi-institutional datasets, include 
pathological cases, and incorporate transformer-based modules for enhanced 
global context learning. Additional enhancements may include domain 
adaptation methods, real-time inference optimization, and clinical workflow 
evaluation to assess practicability. The UW–Madison GI Tract dataset is the 
only existing publicly available MRI dataset with pixel-level annotations for 
segmentation of gastrointestinal organs. Thus, the model suggested was 
trained and validated solely on this dataset. Even though cross-dataset or 
multi-center validation was not possible because comparable datasets were 
unavailable, comprehensive data augmentation, cross-fold validation, and 
testing for robustness against noise and motion artifacts were used to enable 
the model to generalize. Collaboration with clinical centers to build and test 
the model on multi-institutional gastrointestinal datasets will be pursued in 
the future, once such datasets become accessible.

List of Abbreviations
GI Gastrointestinal
CNN Convolutional Neural Network
ASPP Atrous Spatial Pyramid Pooling
RLE Run-Length Encoding
MBConv Mobile Inverted Bottleneck Convolution
ReLU Rectified Linear Unit
IoU Intersection over Union
Adam Adaptive Moment Estimation
SGD Stochastic Gradient Descent
CBAM Convolutional Block Attention Module
PSE Permute Squeeze-and-Excitation
SE Squeeze-and-Excitation
MRI Magnetic Resonance Imaging 
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