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Abstract
Accurate crop yield prediction is crucial for enhancing food security and agricultural
sustainability; however, existing models frequently struggle to capture the intricate
relationships between environmental drivers and crop performance. Here we
leveraged a large, spatially explicit yield monitor dataset of U.S. commercial maize
(Zea mays) and soybean (G/ycine max) fields (134 unique crop-site-years). Machine
learning models were trained to predict yield with high accuracy (R2 > 0.87, RMSE <
1.13 Mg ha'l), and Shapley Additive Explanations were used to quantify how
weather, soil, and terrain properties predict yield variability. Our results highlight
the potential of machine learning to disentangle environmental constraints on crop
production, thereby providing actionable insights for more resilient U.S. food
systems. The results presented here represent a novel approach to identifying
maize and soybean yield constraints that can inform the next generation of crop
breeding and precision management strategies.



Introduction

Maize and soybeans are the backbone of the modern United States (U.S.)
agricultural economy and a critical part of global food security. In 2023, these two
crops accounted for 57% of all U.S. agricultural area and half of total U.S. crop cash
receipts, equivalent to $132 billion 1.2, In 2023 alone, over $40 billion was generated
through the export of these crops to global trading partners 3. Global demand for
maize and soybean is increasing, driven by factors such as increases in livestock
production, biofuels, and global population growth 4-6, However, several challenges
constrain crop yields and hinder efforts to meet growing demand. These challenges
include both biotic constraints (e.g., pest pressure, disease, weeds), as well as
abiotic constraints (e.g., drought, temperature extremes, soil fertility)’.
Management-related factors, including planting daie, nutrient management, tillage,
and cover cropping, also play critical roles in affecting crop yields.

Yield can be understood as @ compiex phenotypic expression resulting from
genotype, environment, management, and their interactions®. Human influence on
maize and soybean genotypes has expanded significantly over the last several
decades, particularly in the era of advanced crop breeding and genetics10.11,
Hybridization, advanced breeding, and genetic modification have further increased
yields in maize and soybean, but this process has also led to genetic bottlenecks in
both species, narrowing the genetic basis of U.S. maize and soybean cultivars1?.13,
This may increase potential for yield losses if environmental conditions deviate too
far from the norm!4, Advancements in management techniques like crop rotation,
irrigation, fertilizer use, pest deterrence, and weed and disease control have led to

additional increases in yield throughout the U.S.13. More recently, precision



agriculture has emerged as a potential avenue for increasing yields through the

incorporation of technology and data-driven agricultural decision making1®.

Despite historically increasing yields, environmental conditions continue to
pose a unique challenge for producers and agricultural scientists. If environmental
conditions shift too drastically, management strategies alone may not be enough to
protect yields. Moreover, the interaction between heterogeneous environmental
patterns and genotype shapes yield in ways that are not always well understood 17.
Understanding how these factors impact crop performance is essential to predicting
yield and meeting future increases in demand. However, previous yield prediction
efforts have often been limited by the availability of high-resolution, spatially
explicit data. Large-scale yield prediction studies in the U.S. often rely on county-
level data, which reflect broad regional patterns but do not accurately capture
between-field patterns in yield18,

This study aims to address this gap by utilizing a multi-year yield monitor
dataset from farms across nine U.S. states (Nebraska, South Dakota, Illinois, lowa,
Indiana, Ohio, Oklahoma, Arkansas, and Pennsylvania). Yield monitor data provide
spatially explicit point observations, which can be directly linked with other
geospatial data. Here we bring together a large dataset spanning multiple states
and years, including yield observations for rainfed maize and soybean fields (Figure
1). This dataset was paired with geospatial weather, soil, and terrain data to enable

quantification of associations between environmental conditions and yield.



Because of the size of modern geospatial data collection, the number of
relevant features, and a high degree of collinearity in environmental data,
frequentist statistical methods are often challenging to use in yield prediction?!?®.
Machine learning (ML) is recognized as a strong alternative given its predictive
power and ability to handle high-dimensional datasets with correlated features,
though the limited interpretability of ML models constrains their ability to reveal the
causal drivers of yield needed for actionable decision-making2921, However, recent
developments have improved interpretability in ML, offering a novel opportunity to
explore heterogeneity and complex non-linear effects of the environment on yield?2.

We focused on three primary environmental conditions influencing yield:
weather, terrain, and soil. Previous studies have demonstrated shortwave radiation,
temperature, and precipitation are primary drivers of yield variability29. Terrain
(shape and changes in elevation) also plays a vital role in crop development
because it affects the movement of water and soil formation processes?3. Soil
properties such as texture, soil organic matter, water storage capacity, fertility, and
many others also directly influence crop growth and yield 24. Below, we present a
framework for rigorously developed ML models trained to predict maize and
soybean yield based on publicly available environmental data.

The overall objectives of this study were to (i) quantify how weather, soil, and
terrain conditions influence maize and soybean yield across major U.S. production
regions using yield monitor observations; (ii) evaluate the predictive performance
and generalizability of ML models trained on publicly available environmental
covariates; and (iii) identify the most influential environmental predictors using
model-agnostic interpretability methods. We hypothesize that weather variables,

especially temperature, solar radiation, and precipitation, would dominate maize



yield predictions, while soil water-related attributes would play a greater role for

soybean yield. We also expect non-linear and threshold-like responses for key

variables, especially for high temperatures in maize. Overall, we anticipate that

integrating yield monitor data with interpretable ML will reveal generalizable

environmental patterns affecting yield across diverse U.S. growing conditions.
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Figure 1. Workflow of the analysis used in this study to predict yield based on

environmental covariates and yield monitor data collected via grain harvester.

Results

Machine learning models are highly predictive of yield

Several ML base models were evaluated for performance, including CatBoost,

XGBoost, LightGBM, Extremely Randomized Trees, Neural Networks, Random



Forest, and K-Nearest Neighbors regression (Supplemental Table 1)25. Final trained
models exhibited high accuracy in predicting yield for maize (R2=0.87, RMSE=1.12
Mg hal) and soybean (R?=0.90, RMSE=0.46 Mg hal). The top-performing maize
model was a tuned LightGBM model, while the top soybean model was an Extremely
Randomized Trees model 26:27, Pearson’s correlation coefficient was above 0.9 for
both models, and a regression of observed vs. predicted values reveals a slight
trend of overprediction when actual yield values are low, and a corresponding

underprediction at higher yield values (Figure 2).
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Figure 2. Comparison of model predicted yield values and actual yield values from
testing datasets. A linear regression trend line is shown in red, while the black

dashed line represents a perfect 1-tol relationship.

Model generalizability and spatial independence of residuals
We found that the R2 for individual years ranged from 0.45 to 0.93 in maize

and 0.57 to 0.92 in soybean. R2 averages across years were only slightly lower than



the overall model (R2=0.78 for maize and R?2=0.76 for soybean) 2829, Qver the
years, RMSE ranged from 0.57 to 1.42 Mg ha! for maize and 0.18 to 0.86 Mg ha'!
for soybeans. Group-wise validation across states revealed a mean R2=0.77 in
maize (ranging 0.54 to 0.91) and R2=0.79 in soybean (ranging 0.67 to 0.88), while
the mean RMSE across states was 1.13 Mg ha! in maize (ranging 0.35 to 1.76 Mg
ha'l) and 0.39 Mg hal in soybean (ranging 0.25 to 0.69 Mg ha1). Validation metrics
across all sites and years are included in Supplemental Figures 1 and 2.

To assess whether any unmodeled spatial structure remained in the
predictions, we evaluated the spatial autocorrelation of model residuals across
multiple spatial scales using multi-distance Moran’s |. Residuals showed no
detectable autocorrelation at 500 m or 50 km indicating that between-field and
regional-scale patterns were appropriately captured by environmental covariates.
However, a small but significant positive Mcran's | was observed at 50 m (1=0.19,
p=0.01), suggesting within-field spatial dependence remained below the 30 m grid

resolution used for model training.

Feature importance highlights the key role of weather for maize yield
Feature elimination narrowed models from 128 initial features (see

Supplemental Table 2 for complete list of initial variables) down to twenty features
in the final maize model (Supplemental Table 3) and thirteen in the soybean model
(Supplemental Table 4). Two methods were used to evaluate feature importance in
models: permutation feature importance and Shapley Additive Explanations (SHAP)
importance (Figure 3). The top five features in the maize model were the same for
both methods, and weather variables accounted for four out of the five top features.

Maximum daily temperature during the growing season (approximated as April 1 -



September 30 for all sites) was most important in maize yield predictions but was
absent from the final set of soybean model features. Minimum daily shortwave
radiation and standard deviation of precipitation were also important for predicting
maize yield. Both importance methods ranked similar features highly in the soybean
model: slope, June precipitation, and elevation were the top three. June precipitation
was the only weather variable included in the soybean model. Most of the final
features in the soybean model were terrain attributes, with the remaining two being
soil parameters: the Brooks-Corey pore size distribution index (A) at 30-60 cm

depth, and residual soil water content (6,) at 0-5 cm depth.
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Figure 3. Feature importance of top variables in final maize (a-b) and soybean (c-d)
models. Permutation feature importance (a, c) measures the decrease in overall
model performance when the values of a given feature are randomly shuffled. SHAP
importance (b, d) ranks features based on the mean absolute SHAP value (change
in model output from the average model prediction when a feature is added to the
model). Unless otherwise specified, weather variables are summarized with the

listed statistic from daily observations April 1 - September 30. Elevation is meters



above sea level and Distance to Edge is measured from field boundaries. Northness
refers to the degree of north-facing aspect, A refers to the Brooks-Corey pore size
distribution index (unitless), and 6, is an estimate of residual soil water content (m3

water per m3 soil) 39,

Interpreting model results with SHAP

While feature importance gives important indications about the features that
most affect model output, it does not clarify why those features are important or in
what direction they shift model predictions. To understand this, we calculated SHAP
values, which quantify the difference between a model’s prediction for a specific
observation versus the average model prediction across ali observations. These
individual differences are then additively combined, enabling global interpretation
based on the aggregation of SHAP values (Figure 4). The SHAP value can be
interpreted as the impact of that feature on the model prediction in units of the

predicted variable, in this case crop yield (Mg ha'l).
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Figure 4. Dependence plcts show the relationship between top variables and SHAP

values for maize (a) and soybean (b) models. Points represent raw SHAP values.

Pearson product-moment correlation coefficients between each feature and its

SHAP values are shown above each plot. A smoothed trend line fitted using locally

estimated scatterplot smoothing (LOESS) is also included in black.

From a dependence plot of SHAP values versus each feature, a response

curve can be estimated from the model. Complex, non-linear patterns emerge from

these plots, providing some indication of the correlation between environmental

variables and yield. Results show higher maximum temperatures (both overall



maximum daily temperature and mean maximum July temperature) were
associated with lower maize yields, as was higher variability in precipitation
(standard deviation of April 1 - September 30 daily precipitation). Increased solar
radiation values were associated with increased maize yield predictions, especially
in June. For soybeans, grid pixels with mean slope above 0.05° saw lower yield
predictions, while lower elevation sites (especially below 200 m) tended to have
higher yield predictions. We also saw that greater June precipitation was associated
with higher soybean yields. Soil parameters A and 6, showed opposite effects on
yield predictions. As A at 30-60 cm increased past 0.25, yield predictions decreased,
while increasing 6, tended to increase yield predictions once values exceeded 0.07
m3 water per m3 soil or above.

Because SHAP values are consistent at both iocal (observation-level)
and global (overall) scales, we can alsoc aggregate them spatially and
temporally to show how unique combinations of factors shape yield. For
example, it was found that maximum temperature had a strong negative impact on
predicted maize yield in years 2012 and 2018 when temperatures were above 37 °C
across sites, even exceeding 40 °C in lllinois. SHAP analysis identified a possible
threshold transition in maize yield predictions when maximum daily temperatures
exceed 36-38 °C, beyond which yield predictions declined, a threshold that is
supported by experimental studies on heat stress in maize3l. This suggests that this
method could be beneficial for detecting non-linear thresholds in environmental
stressors affecting crop growth across landscapes. However, in most other years the
effect of maximum temperature was positive. In soybeans, the impact of slope and
June precipitation showed diverging direction and different magnitudes depending

on the year (Figure 5).
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Figure 5. Mean effect for the top five variables in each model, grouped by year.
Colors represent SHAP values, indicating how much that feature shifts the predicted
yield value from the average model prediction. SHAP values have the same units as
the outcome variable of the model (yield in Mg ha'l). Numbers in each cell are the
annual average of each environmental variable and are expressed in the variable’s

native units.

Discussion



Weather drivers of yield dominate in maize

These results demonstrate that pairing yield monitor data with public
geospatial datasets enables ML models to predict crop yields with high accuracy
while also generalizing well across geographic regions and growing seasons in the
U.S. A key finding is that weather variables are the dominant drivers of yield, a
result supported by previous work demonstrating weather conditions often explain
the majority of spatiotemporal variability in maize yield 3233, Khaki & Wang (2019)
found that environmental factors explained crop yield better than genotype alone,
noting precipitation, solar radiation and temperature were most important for
predicting maize yield variation2°. Their results are consistent with our findings
which demonstrate that very high maximum temperatures reduce maize yields,
most likely via heat stress during sensitive growth stages. Similarly, Shahhosseini et
al. (2020) found weather variables of precipitation, vapor pressure, temperature,
and solar radiation were among the top predictors in an ensemble ML framework
using county level corn yield in the U.S.2%. Their findings also reinforce the notion
that timing of heat and rainfall matter, consistent with our observation that extreme
heat (maximum temperature) can harm yields during sensitive growth stages
depending on crop maturity group34. Bhattarai et al. (2025) demonstrated
environmental variability, especially maximum temperature, evapotranspiration,
and precipitation, were highly influential of maize yield, underscoring maize’s
sensitivity to water availability and heat stress3>. In addition, Hoffman et al. (2020)
observed threshold-like responses to high temperatures in maize, similar to what
we found here32. These findings highlight the need to anticipate and adapt

production (through breeding, irrigation, or other management) to potential



environmental shocks, especially extreme heat and variable precipitation, that pose

significant risks to maize yield stability.

Soil and topographic effects in soybean

Results from the soybean model point to the greater importance of terrain
and soil attributes in predicting yield, though early summer precipitation was also of
high importance. Given that the top terrain (slope, elevation) and soil (A and 6,)
features strongly influence water movement and storage in the soil, it is likely that
these attributes serve as a proxy for water availability or soil conditions that are
conducive to soybean yields. An earlier precision agriculture study by Kaspar et al.
(2003) found that spatial yield patterns are strongly related to terrain attributes like
slope, elevation, and curvature?3. We observed that soybean yield was similarly
associated with slope and elevation (Figure 5). We observed negative associations
between predicted soybean yields and the terrain properties of slope and elevation,
consistent with findings from previous work that quantified the relationship between
topographic properties and soybean yield3¢. However, we note the observed effect
of elevation on soybean yield is complicated by the limited representation of high
and low elevations within the same year. Given the clustered nature of elevation
values, elevation may also serve as a partial proxy for location-specific effects,
capturing other underlying factors. Dhillon et al. (2024) found that precipitation in
the month of August was the most dominant weather variable in soybean yield, and
Hoffman et al. (2020) note that yields increased with total growing-season
precipitation up to an optimal point, beyond which additional rain gave diminishing

or no returns, a finding consistent with the results of this study (Figure 4)28.32, These



findings support our assertion that water availability is one of the most important

factors for soybean yield prediction?8,

Integrating environmental drivers into crop breeding

The results presented here suggest important associations between weather,
terrain, soil, and yield variability. By identifying the environmental factors that most
strongly influence yield, our results could guide future crop breeding efforts to
enhance yield in the face of weather variability. For example, SHAP-based analysis
of U.S. maize yield revealed a sharp tipping point when maximum daily
temperatures exceed about 36-38°C, aligning with field studies that show maize
grain set and pollination are highly sensitive to heat stress in that range3!. Such
specific knowledge of key environmental yield drivers can inform selection
environments and trait priorities for crop breeding. For maize, this has led to
commercial drought-tolerant hybrids that outperform under rainfed stress while
maintaining competitive yields in normal conditions, mirroring international efforts
like CIMMYT's heat and drought screening pipelines for tropical maize3’. Soybean
breeders are similarly targeting drought and waterlogging tolerance, using traits
like deep rooting, stomatal control, and anaerobic stress resilience to improve
performance in variable soil moisture environments 38. These strategies are
increasingly supported by interpretable models and GxXE-informed genomic
selection, which integrate environmental covariates and high-throughput
phenotyping to enhance prediction and accelerate adaptation to environment-

related yield constraints.

Limitations of this approach



Despite the strengths of this approach, some limitations must be addressed
to improve its applicability and reliability. One major challenge is the presence of
confounding factors, including differences in crop varieties, management practices,
economic conditions (the ratio of output to input prices as maximizing yield does
not relate to maximizing profitability), and policy environments. Additionally,
multicollinearity among environmental predictors reduces interpretability, though
this study attempted to mitigate this issue by applying robust feature selection
techniques to refine the model’s input variables. Another key challenge is scale
mismatch—while the model is trained on nationwide data, translating these insights
into locally relevant recommendations for field-level management remains a
complex task 39,

While broad scale spatial patterns were weil captured in our modeling
approach, a small but significant positive autoccrrelation was observed at 50 m,
suggesting remaining fine-scale spatial dependence at within-field distances. This
reflects sub-pixel heterogeneity in soil properties, micro-topography, or
management practices that were not resolved in the environmental covariates used
here. Although this dependence does not strongly influence model performance, it
highlights the importance of scale alignment and indicates finer-resolution
environmental, or management covariates could further reduce unexplained within-
field spatial variability. Further research is needed to bridge this gap by integrating
such site-specific data without losing the model's broader generalizability.

While this approach provides valuable predictive power, it remains
correlative. To inform policy and management decisions more effectively, future
efforts should incorporate causal inference methods to better distinguish the true

drivers of yield from spurious correlations. The spatial and temporal representation



of training data remains a significant limitation; expanding the dataset across more
locations and growing seasons may improve model robustness. One promising
avenue for addressing this issue is the incorporation of satellite-based yield
estimates from time series of moderate to high spatial resolution sensors 1840, By
continuously integrating remotely sensed yield data, future iterations of similar
models could benefit from a larger and more temporally continuous dataset,
enhancing their predictive accuracy and real-world applicability.

The increasing availability of yield monitor data presents a promising new
frontier in precision agriculture, offering opportunities to enhance yield prediction
and inform data-driven management decisions for cereal grains, legumes, oilseeds,
and forage crops. However, while yield monitors may be effective in grain crops like
maize and soybeans, their applicability is limited in many vegetable, tuber, fruit,

and fiber crops where harvesting is done by hand or requires specialized machinery.

Future directions for ML and yield riionitor

Models following a similar approach could enhance yield forecasting by
identifying the most influential environmental factors over the growing season?!. By
determining the key drivers of yield, these models provide a strong foundation for
early-season predictions, extending high predictive accuracy further into the early
stages of crop development?l. This advancement would enhance yield forecasts,
allowing for more proactive decision-making in irrigation scheduling, fertilizer
management, and crop insurance. Earlier and more precise predictions could help
producers optimize resource allocation, reduce input waste, and mitigate financial

risk, ultimately contributing to a more resilient and stable agricultural system?1. By



integrating these advances, ML could play an increasingly central role in optimizing

agricultural productivity and resilience in the face of environmental stochasticity.

Conclusion

By integrating yield monitor data with public geospatial datasets and
leveraging ML techniques, our approach demonstrates the potential to predict crop
yields with high accuracy, even across varying geographic regions and growing
seasons. Key environmental drivers of yield were identified, including temperature,
solar radiation, and precipitation, enabling a deeper understanding of tipping points
that can guide future crop breeding efforts and precision agriculture practices.
These results can directly inform crop breeding strategies by highlighting thresholds
in environmental tolerance between varieties and refining management practices to
mitigate environmental shocks, providing valuable insights for improving

agricultural productivity and resilierice across changing environmental conditions.

Materials and Methods
Historical yield monitor data

Historical yield monitor data were provided by authors with the Data-
Intensive Farm Management Program (DIFM), a National Resources Conservation
Service (NRCS) initiative based at the University of lllinois - Urbana-Champaign 42.
These data represent typical, uniformly managed farm sites, with no active research
trials. Historical yield was collected from 60 unique rainfed farms across the United
States, ranging in size from 7.4 ha to 158.3 ha in size (46.3 ha field size on
average). In total, the dataset includes observations from 52 maize fields and 25

soybean fields collected between 2007 to 2021, resulting in 134 unique site-year



combinations. States represented in this dataset include lllinois, South Dakota,
lowa, Oklahoma, Nebraska, Ohio, Pennsylvania, Arkansas, and Indiana. With
observations from 1-6 years per farm, the dataset reflects 134 unique field-year-
crop observations. Historical yield data were cleaned and preprocessed prior to
analysis. Raw maize and soybean yield values were first converted to dry yield at
standard moisture (15% moisture). Global outlier removal included the following:
any yield values of zero were removed, and values greater than three standard
deviations from the mean for each field were also removed 43. Values within 30 m of
field edges were removed to reduce bias from edge effects. Spatial outliers, which
are points that are significantly different from surrounding values, were identified
using spatial autocorrelation based on Local Moran’s I, and observations with
negative values were removed from the dataset #3. A 30 x 30 m grid cell was
overlayed, and all removed data points (except for field edges) were imputed using
inverse distance weighted interpolation based on values within each cell. Finally,
observations from each cell were averaged to calculate yield in a grid with 30 x 30

m resolution.

Environmental Data

Soil data were derived from POLARIS, which has a spatial resolution of 30 m.
The POLARIS soils dataset provides probabilistic estimates of soil properties at
varying depths, derived from the USDA Soil Survey Geographic Database 39,
Weather data were extracted from Daymet version 4 44, Daymet provides daily
meteorological data, including temperature, precipitation, and incident shortwave
radiation variables. These data were processed to calculate summary statistics for

an approximation of each year's growing season (April 1-September 30), since



planting and harvesting dates were not always available. Summary statistics for
each month were also included as covariates. All weather statistics used in the
models are included in Supplemental Table 2.

Terrain data were derived from the U.S. Geological Survey (USGS) 3D
Elevation Program (3DEP), a lidar-derived elevation model with a native resolution
of 1 m 45, These data were processed using the “tagee” package for terrain analysis
in Google Earth Engine. From tagee, the following terrain parameters were
calculated: slope, aspect, hillshade, northness, eastness, horizontal curvature,
vertical curvature, mean curvature, minimal curvature, maximal curvature,
gaussian curvature, and shape index. Detailed descriptions of these metrics are
provided by Safanelli et al. (2020). In addition to these metrics, a topographic
wetness index was also calculated using the 15 arc-second HydroSHEDS flow
accumulation dataset from the World Wildlife Fund and the USGS watershed
boundary dataset of basins dataset at the basin hydrologic unit level4’ . Terrain
attributes were included because they represent stable, within-field sources of
hydrological and pedolcgical variation that can be reliably mapped at 30 m
resolution, and have been shown to influence yield through runoff, erosion, and
topsoil distribution?3.46, After calculating terrain metrics, all environmental data
were resampled to a 30 m resolution pixel and aligned with the soil and yield data.
All environmental data were processed in Google Earth Engine 48,

We note that some variables known to influence yield, such as
evapotranspiration (ET), soil nutrients (N, P, K, SOM), and field-level management
practices, were not included. These variables were excluded because they were not
consistently available across the multi-state dataset and would introduce potential

confounding effects. Additionally, ET would potentially introduce redundancy and



collinearity and could obscure direct relationships between fundamental
environmental drivers and yield, which are the focus of this interpretable ML
analysis. We note these omissions as an important limitation and interpret results

accordingly.

Model selection and training

For this study, our initial dataset included 128 environmental features. A brief
description, units, and data source is provided for each of the initial features in
Supplemental Table 2. To reduce dimensionality and collinearity, any features that
had low variance (less than 0.1 after scaling features between 0 and 1) or that were
highly correlated (r > 0.9) were removed from the dataset, resulting in 80 features
remaining for initial model training. The dataset was then split using a random 70-
30 training-testing split.

Several automated ML platforms have recently emerged, enabling systematic
evaluation of candidate ML models. Here we used the AutoGluon package in Python
for automated ML training, enabling a comparison of ML models in terms of
predictive accuracy and error rates 2>, All models were optimized to reduce the root
mean square error (RMSE). The top-performing model from the first round of
training was selected based on the lowest RMSE. A recursive feature elimination
with five-fold cross-validation (RFECV) was then implemented to eliminate additional
features from the top performing model and to reduce the feature space 4°. The
optimal number of features for each model was automatically selected during the
RFECV process. Reduced, optimal-features datasets (20 features for maize, 13 for
soybeans) were used in a second round of model training in AutoGluon.

Hyperparameter tuning was then performed on the top-performing model using a



random search space, and the final trained model was saved for analysis. All figures
and results reported in this manuscript were derived from these crop-specific final

models.

Model validation and interpretation

Validation was conducted by withholding 30% of pixel values from the
dataset for testing purposes. Performance was evaluated for those unseen
observations after completing model training, feature elimination, and
hyperparameter tuning. Permutation feature importance and SHAP, both model-
agnostic methods, were used to interpret model predictions and identify features of
high relevance to model outputs.

Permutation importance quantifies how much each feature contributes to
overall model performance by measuring the increase in RMSE after shuffling its
values; larger performance degradation indicates greater importance. SHAP values,
conversely, measure the average magnitude of a features’ effect on model
predictions and are expressed in the units of the outcome variable (Mg ha1) 39,
Features with larger mean absolute SHAP values therefore exert greater influence
on predicted yield. Because SHAP has a rigorous theoretical foundation and can
provide explanations that are both locally and globally consistent, SHAP has become
one of the most widely used methods for ML interpretation and is considered by
many to be the current standard for interpretable ML >1. Including both metrics
enables evaluation of feature contributions both in terms of predictive performance
(permutation importance) and in terms of direction, magnitude, and non-linear

structure (SHAP).



High overall performance may obscure poor performance in particular sites or

years, reflecting the potential for overfitting in ML models 32. To address this, we

grouped testing data by growing year and site to perform an additional group-wise

validation. This approach assesses how models perform across subsets of the

testing dataset, indicating both temporal and spatial generalizability. We also

performed an analysis of spatial autocorrelation of model residuals to test how well

our model captures spatial patterns in the data. To accomplish this, we calculated

multi-scale Moran’s | statistics at distance intervals of 50m, 500m and 50km, to

evaluate within-field, between-field, and between-region spatial clustering of

residuals, respectively.
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