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Abstract
Accurate crop yield prediction is crucial for enhancing food security and agricultural 
sustainability; however, existing models frequently struggle to capture the intricate 
relationships between environmental drivers and crop performance. Here we 
leveraged a large, spatially explicit yield monitor dataset of U.S. commercial maize 
(Zea mays) and soybean (Glycine max) fields (134 unique crop-site-years). Machine 
learning models were trained to predict yield with high accuracy (R2 > 0.87, RMSE < 
1.13 Mg ha-1), and Shapley Additive Explanations were used to quantify how 
weather, soil, and terrain properties predict yield variability. Our results highlight 
the potential of machine learning to disentangle environmental constraints on crop 
production, thereby providing actionable insights for more resilient U.S. food 
systems. The results presented here represent a novel approach to identifying 
maize and soybean yield constraints that can inform the next generation of crop 
breeding and precision management strategies.
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Introduction

Maize and soybeans are the backbone of the modern United States (U.S.) 

agricultural economy and a critical part of global food security. In 2023, these two 

crops accounted for 57% of all U.S. agricultural area and half of total U.S. crop cash 

receipts, equivalent to $132 billion 1,2. In 2023 alone, over $40 billion was generated 

through the export of these crops to global trading partners 3. Global demand for 

maize and soybean is increasing, driven by factors such as increases in livestock 

production, biofuels, and global population growth 4–6. However, several challenges 

constrain crop yields and hinder efforts to meet growing demand. These challenges 

include both biotic constraints (e.g., pest pressure, disease, weeds), as well as 

abiotic constraints (e.g., drought, temperature extremes, soil fertility)7. 

Management-related factors, including planting date, nutrient management, tillage, 

and cover cropping, also play critical roles in affecting crop yield8.

Yield can be understood as a complex phenotypic expression resulting from 

genotype, environment, management, and their interactions9. Human influence on 

maize and soybean genotypes has expanded significantly over the last several 

decades, particularly in the era of advanced crop breeding and genetics10,11. 

Hybridization, advanced breeding, and genetic modification have further increased 

yields in maize and soybean, but this process has also led to genetic bottlenecks in 

both species, narrowing the genetic basis of U.S. maize and soybean cultivars12,13. 

This may increase potential for yield losses if environmental conditions deviate too 

far from the norm14.  Advancements in management techniques like crop rotation, 

irrigation, fertilizer use, pest deterrence, and weed and disease control have led to 

additional increases in yield throughout the U.S.15. More recently, precision 
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agriculture has emerged as a potential avenue for increasing yields through the 

incorporation of technology and data-driven agricultural decision making16. 

Despite historically increasing yields, environmental conditions continue to 

pose a unique challenge for producers and agricultural scientists. If environmental 

conditions shift too drastically, management strategies alone may not be enough to 

protect yields. Moreover, the interaction between heterogeneous environmental 

patterns and genotype shapes yield in ways that are not always well understood 17. 

Understanding how these factors impact crop performance is essential to predicting 

yield and meeting future increases in demand. However, previous yield prediction 

efforts have often been limited by the availability of high-resolution, spatially 

explicit data. Large-scale yield prediction studies in the U.S. often rely on county-

level data, which reflect broad regional patterns but do not accurately capture 

between-field patterns in yield18. 

This study aims to address this gap by utilizing a multi-year yield monitor 

dataset from farms across nine U.S. states (Nebraska, South Dakota, Illinois, Iowa, 

Indiana, Ohio, Oklahoma, Arkansas, and Pennsylvania). Yield monitor data provide 

spatially explicit point observations, which can be directly linked with other 

geospatial data. Here we bring together a large dataset spanning multiple states 

and years, including yield observations for rainfed maize and soybean fields (Figure 

1). This dataset was paired with geospatial weather, soil, and terrain data to enable 

quantification of associations between environmental conditions and yield. 
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Because of the size of modern geospatial data collection, the number of 

relevant features, and a high degree of collinearity in environmental data, 

frequentist statistical methods are often challenging to use in yield prediction19. 

Machine learning (ML) is recognized as a strong alternative given its predictive 

power and ability to handle high-dimensional datasets with correlated features, 

though the limited interpretability of ML models constrains their ability to reveal the 

causal drivers of yield needed for actionable decision-making20,21.  However, recent 

developments have improved interpretability in ML, offering a novel opportunity to 

explore heterogeneity and complex non-linear effects of the environment on yield22.

We focused on three primary environmental conditions influencing yield: 

weather, terrain, and soil. Previous studies have demonstrated shortwave radiation, 

temperature, and precipitation are primary drivers of yield variability20. Terrain 

(shape and changes in elevation) also plays a vital role in crop development 

because it affects the movement of water and soil formation processes23. Soil 

properties such as texture, soil organic matter, water storage capacity, fertility, and 

many others also directly influence crop growth and yield 24. Below, we present a 

framework for rigorously developed ML models trained to predict maize and 

soybean yield based on publicly available environmental data. 

The overall objectives of this study were to (i) quantify how weather, soil, and 

terrain conditions influence maize and soybean yield across major U.S. production 

regions using yield monitor observations; (ii) evaluate the predictive performance 

and generalizability of ML models trained on publicly available environmental 

covariates; and (iii) identify the most influential environmental predictors using 

model-agnostic interpretability methods. We hypothesize that weather variables, 

especially temperature, solar radiation, and precipitation, would dominate maize 
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yield predictions, while soil water-related attributes would play a greater role for 

soybean yield. We also expect non-linear and threshold-like responses for key 

variables, especially for high temperatures in maize. Overall, we anticipate that 

integrating yield monitor data with interpretable ML will reveal generalizable 

environmental patterns affecting yield across diverse U.S. growing conditions.

Figure 1. Workflow of the analysis used in this study to predict yield based on 

environmental covariates and yield monitor data collected via grain harvester. 

Results

Machine learning models are highly predictive of yield

Several ML base models were evaluated for performance, including CatBoost, 

XGBoost, LightGBM, Extremely Randomized Trees, Neural Networks, Random 
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Forest, and K-Nearest Neighbors regression (Supplemental Table 1)25. Final trained 

models exhibited high accuracy in predicting yield for maize (R2=0.87, RMSE=1.12 

Mg ha-1) and soybean (R2=0.90, RMSE=0.46 Mg ha-1). The top-performing maize 

model was a tuned LightGBM model, while the top soybean model was an Extremely 

Randomized Trees model 26,27. Pearson’s correlation coefficient was above 0.9 for 

both models, and a regression of observed vs. predicted values reveals a slight 

trend of overprediction when actual yield values are low, and a corresponding 

underprediction at higher yield values (Figure 2).

Figure 2. Comparison of model predicted yield values and actual yield values from 

testing datasets. A linear regression trend line is shown in red, while the black 

dashed line represents a perfect 1-to1 relationship.

Model generalizability and spatial independence of residuals

We found that the R2 for individual years ranged from 0.45 to 0.93 in maize 

and 0.57 to 0.92 in soybean. R2 averages across years were only slightly lower than 
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the overall model (R2=0.78 for maize and R2=0.76 for soybean) 28,29. Over the 

years, RMSE ranged from 0.57 to 1.42 Mg ha-1 for maize and 0.18 to 0.86 Mg ha-1 

for soybeans. Group-wise validation across states revealed a mean R2=0.77 in 

maize (ranging 0.54 to 0.91) and R2=0.79 in soybean (ranging 0.67 to 0.88), while 

the mean RMSE across states was 1.13 Mg ha-1 in maize (ranging 0.35 to 1.76 Mg 

ha-1) and 0.39 Mg ha-1 in soybean (ranging 0.25 to 0.69 Mg ha-1). Validation metrics 

across all sites and years are included in Supplemental Figures 1 and 2.

To assess whether any unmodeled spatial structure remained in the 

predictions, we evaluated the spatial autocorrelation of model residuals across 

multiple spatial scales using multi-distance Moran’s I. Residuals showed no 

detectable autocorrelation at 500 m or 50 km indicating that between-field and 

regional-scale patterns were appropriately captured by environmental covariates. 

However, a small but significant positive Moran’s I was observed at 50 m (I=0.19, 

p=0.01), suggesting within-field spatial dependence remained below the 30 m grid 

resolution used for model training. 

Feature importance highlights the key role of weather for maize yield

Feature elimination narrowed models from 128 initial features (see 

Supplemental Table 2 for complete list of initial variables) down to twenty features 

in the final maize model (Supplemental Table 3) and thirteen in the soybean model 

(Supplemental Table 4). Two methods were used to evaluate feature importance in 

models: permutation feature importance and Shapley Additive Explanations (SHAP) 

importance (Figure 3). The top five features in the maize model were the same for 

both methods, and weather variables accounted for four out of the five top features. 

Maximum daily temperature during the growing season (approximated as April 1 – 

ACCEPTED MANUSCRIPTARTICLE IN PRESS

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



September 30 for all sites) was most important in maize yield predictions but was 

absent from the final set of soybean model features. Minimum daily shortwave 

radiation and standard deviation of precipitation were also important for predicting 

maize yield. Both importance methods ranked similar features highly in the soybean 

model: slope, June precipitation, and elevation were the top three. June precipitation 

was the only weather variable included in the soybean model. Most of the final 

features in the soybean model were terrain attributes, with the remaining two being 

soil parameters: the Brooks-Corey pore size distribution index (λ) at 30-60 cm 

depth, and residual soil water content (θr) at 0-5 cm depth. 

Figure 3. Feature importance of top variables in final maize (a-b) and soybean (c-d) 

models. Permutation feature importance (a, c) measures the decrease in overall 

model performance when the values of a given feature are randomly shuffled. SHAP 

importance (b, d) ranks features based on the mean absolute SHAP value (change 

in model output from the average model prediction when a feature is added to the 

model). Unless otherwise specified, weather variables are summarized with the 

listed statistic from daily observations April 1 – September 30. Elevation is meters 

ACCEPTED MANUSCRIPTARTICLE IN PRESS

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



above sea level and Distance to Edge is measured from field boundaries. Northness 

refers to the degree of north-facing aspect, λ refers to the Brooks-Corey pore size 

distribution index (unitless), and θr is an estimate of residual soil water content (m3 

water per m3 soil) 30.

Interpreting model results with SHAP

While feature importance gives important indications about the features that 

most affect model output, it does not clarify why those features are important or in 

what direction they shift model predictions. To understand this, we calculated SHAP 

values, which quantify the difference between a model’s prediction for a specific 

observation versus the average model prediction across all observations. These 

individual differences are then additively combined, enabling global interpretation 

based on the aggregation of SHAP values (Figure 4). The SHAP value can be 

interpreted as the impact of that feature on the model prediction in units of the 

predicted variable, in this case crop yield (Mg ha-1). 
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Figure 4. Dependence plots show the relationship between top variables and SHAP 

values for maize (a) and soybean (b) models. Points represent raw SHAP values. 

Pearson product-moment correlation coefficients between each feature and its 

SHAP values are shown above each plot. A smoothed trend line fitted using locally 

estimated scatterplot smoothing (LOESS) is also included in black.

From a dependence plot of SHAP values versus each feature, a response 

curve can be estimated from the model. Complex, non-linear patterns emerge from 

these plots, providing some indication of the correlation between environmental 

variables and yield. Results show higher maximum temperatures (both overall 
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maximum daily temperature and mean maximum July temperature) were 

associated with lower maize yields, as was higher variability in precipitation 

(standard deviation of April 1 – September 30 daily precipitation). Increased solar 

radiation values were associated with increased maize yield predictions, especially 

in June. For soybeans, grid pixels with mean slope above 0.05° saw lower yield 

predictions, while lower elevation sites (especially below 200 m) tended to have 

higher yield predictions. We also saw that greater June precipitation was associated 

with higher soybean yields. Soil parameters λ and θr showed opposite effects on 

yield predictions. As λ at 30-60 cm increased past 0.25, yield predictions decreased, 

while increasing θr tended to increase yield predictions once values exceeded 0.07 

m3 water per m3 soil or above.

Because SHAP values are consistent at both local (observation-level) 

and global (overall) scales, we can also aggregate them spatially and 

temporally to show how unique combinations of factors shape yield. For 

example, it was found that maximum temperature had a strong negative impact on 

predicted maize yield in years 2012 and 2018 when temperatures were above 37 °C 

across sites, even exceeding 40 °C in Illinois. SHAP analysis identified a possible 

threshold transition in maize yield predictions when maximum daily temperatures 

exceed 36–38 °C, beyond which yield predictions declined, a threshold that is 

supported by experimental studies on heat stress in maize31. This suggests that this 

method could be beneficial for detecting non-linear thresholds in environmental 

stressors affecting crop growth across landscapes. However, in most other years the 

effect of maximum temperature was positive. In soybeans, the impact of slope and 

June precipitation showed diverging direction and different magnitudes depending 

on the year (Figure 5). 
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Figure 5. Mean effect for the top five variables in each model, grouped by year. 

Colors represent SHAP values, indicating how much that feature shifts the predicted 

yield value from the average model prediction. SHAP values have the same units as 

the outcome variable of the model (yield in Mg ha-1). Numbers in each cell are the 

annual average of each environmental variable and are expressed in the variable’s 

native units.

Discussion
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Weather drivers of yield dominate in maize

These results demonstrate that pairing yield monitor data with public 

geospatial datasets enables ML models to predict crop yields with high accuracy 

while also generalizing well across geographic regions and growing seasons in the 

U.S. A key finding is that weather variables are the dominant drivers of yield, a 

result supported by previous work demonstrating weather conditions often explain 

the majority of spatiotemporal variability in maize yield 32,33. Khaki & Wang (2019) 

found that environmental factors explained crop yield better than genotype alone, 

noting precipitation, solar radiation and temperature were most important for 

predicting maize yield variation20. Their results are consistent with our findings 

which demonstrate that very high maximum temperatures reduce maize yields, 

most likely via heat stress during sensitive growth stages. Similarly, Shahhosseini et 

al. (2020) found weather variables of precipitation, vapor pressure, temperature, 

and solar radiation were among the top predictors in an ensemble ML framework 

using county level corn yield in the U.S.21. Their findings also reinforce the notion 

that timing of heat and rainfall matter, consistent with our observation that extreme 

heat (maximum temperature) can harm yields during sensitive growth stages 

depending on crop maturity group34. Bhattarai et al. (2025) demonstrated  

environmental variability, especially maximum temperature, evapotranspiration, 

and precipitation, were highly influential of maize yield, underscoring maize’s 

sensitivity to water availability and heat stress35. In addition, Hoffman et al. (2020) 

observed threshold-like responses to high temperatures in maize, similar to what 

we found here32. These findings highlight the need to anticipate and adapt 

production (through breeding, irrigation, or other management) to potential 
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environmental shocks, especially extreme heat and variable precipitation, that pose 

significant risks to maize yield stability. 

Soil and topographic effects in soybean

Results from the soybean model point to the greater importance of terrain 

and soil attributes in predicting yield, though early summer precipitation was also of 

high importance. Given that the top terrain (slope, elevation) and soil (λ and θr) 

features strongly influence water movement and storage in the soil, it is likely that 

these attributes serve as a proxy for water availability or soil conditions that are 

conducive to soybean yields. An earlier precision agriculture study by Kaspar et al. 

(2003) found that spatial yield patterns are strongly related to terrain attributes like 

slope, elevation, and curvature23. We observed that soybean yield was similarly 

associated with slope and elevation (Figure 5). We observed negative associations 

between predicted soybean yields and the terrain properties of slope and elevation, 

consistent with findings from previous work that quantified the relationship between 

topographic properties and soybean yield36. However, we note the observed effect 

of elevation on soybean yield is complicated by the limited representation of high 

and low elevations within the same year. Given the clustered nature of elevation 

values, elevation may also serve as a partial proxy for location-specific effects, 

capturing other underlying factors. Dhillon et al. (2024) found that precipitation in 

the month of August was the most dominant weather variable in soybean yield, and 

Hoffman et al. (2020) note that yields increased with total growing-season 

precipitation up to an optimal point, beyond which additional rain gave diminishing 

or no returns, a finding consistent with the results of this study (Figure 4)28,32. These 
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findings support our assertion that water availability is one of the most important 

factors for soybean yield prediction28.  

Integrating environmental drivers into crop breeding

The results presented here suggest important associations between weather, 

terrain, soil, and yield variability. By identifying the environmental factors that most 

strongly influence yield, our results could guide future crop breeding efforts to 

enhance yield in the face of weather variability. For example, SHAP-based analysis 

of U.S. maize yield revealed a sharp tipping point when maximum daily 

temperatures exceed about 36-38°C, aligning with field studies that show maize 

grain set and pollination are highly sensitive to heat stress in that range31. Such 

specific knowledge of key environmental yield drivers can inform selection 

environments and trait priorities for crop breeding. For maize, this has led to 

commercial drought-tolerant hybrids that outperform under rainfed stress while 

maintaining competitive yields in normal conditions, mirroring international efforts 

like CIMMYT’s heat and drought screening pipelines for tropical maize37. Soybean 

breeders are similarly targeting drought and waterlogging tolerance, using traits 

like deep rooting, stomatal control, and anaerobic stress resilience to improve 

performance in variable soil moisture environments 38. These strategies are 

increasingly supported by interpretable models and G×E-informed genomic 

selection, which integrate environmental covariates and high-throughput 

phenotyping to enhance prediction and accelerate adaptation to environment-

related yield constraints.

Limitations of this approach
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Despite the strengths of this approach, some limitations must be addressed 

to improve its applicability and reliability. One major challenge is the presence of 

confounding factors, including differences in crop varieties, management practices, 

economic conditions (the ratio of output to input prices as maximizing yield does 

not relate to maximizing profitability), and policy environments.  Additionally, 

multicollinearity among environmental predictors reduces interpretability, though 

this study attempted to mitigate this issue by applying robust feature selection 

techniques to refine the model’s input variables. Another key challenge is scale 

mismatch—while the model is trained on nationwide data, translating these insights 

into locally relevant recommendations for field-level management remains a 

complex task 39. 

While broad scale spatial patterns were well captured in our modeling 

approach, a small but significant positive autocorrelation was observed at 50 m, 

suggesting remaining fine-scale spatial dependence at within-field distances. This 

reflects sub-pixel heterogeneity in soil properties, micro-topography, or 

management practices that were not resolved in the environmental covariates used 

here. Although this dependence does not strongly influence model performance, it 

highlights the importance of scale alignment and indicates finer-resolution 

environmental, or management covariates could further reduce unexplained within-

field spatial variability. Further research is needed to bridge this gap by integrating 

such site-specific data without losing the model's broader generalizability. 

While this approach provides valuable predictive power, it remains 

correlative. To inform policy and management decisions more effectively, future 

efforts should incorporate causal inference methods to better distinguish the true 

drivers of yield from spurious correlations. The spatial and temporal representation 
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of training data remains a significant limitation; expanding the dataset across more 

locations and growing seasons may improve model robustness. One promising 

avenue for addressing this issue is the incorporation of satellite-based yield 

estimates from time series of moderate to high spatial resolution sensors 18,40. By 

continuously integrating remotely sensed yield data, future iterations of similar 

models could benefit from a larger and more temporally continuous dataset, 

enhancing their predictive accuracy and real-world applicability.

The increasing availability of yield monitor data presents a promising new 

frontier in precision agriculture, offering opportunities to enhance yield prediction 

and inform data-driven management decisions for cereal grains, legumes, oilseeds, 

and forage crops. However, while yield monitors may be effective in grain crops like 

maize and soybeans, their applicability is limited in many vegetable, tuber, fruit, 

and fiber crops where harvesting is done by hand or requires specialized machinery.

Future directions for ML and yield monitor

Models following a similar approach could enhance yield forecasting by 

identifying the most influential environmental factors over the growing season21. By 

determining the key drivers of yield, these models provide a strong foundation for 

early-season predictions, extending high predictive accuracy further into the early 

stages of crop development21. This advancement would enhance yield forecasts, 

allowing for more proactive decision-making in irrigation scheduling, fertilizer 

management, and crop insurance. Earlier and more precise predictions could help 

producers optimize resource allocation, reduce input waste, and mitigate financial 

risk, ultimately contributing to a more resilient and stable agricultural system41. By 
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integrating these advances, ML could play an increasingly central role in optimizing 

agricultural productivity and resilience in the face of environmental stochasticity.

Conclusion

By integrating yield monitor data with public geospatial datasets and 

leveraging ML techniques, our approach demonstrates the potential to predict crop 

yields with high accuracy, even across varying geographic regions and growing 

seasons. Key environmental drivers of yield were identified, including temperature, 

solar radiation, and precipitation, enabling a deeper understanding of tipping points 

that can guide future crop breeding efforts and precision agriculture practices. 

These results can directly inform crop breeding strategies by highlighting thresholds 

in environmental tolerance between varieties and refining management practices to 

mitigate environmental shocks, providing valuable insights for improving 

agricultural productivity and resilience across changing environmental conditions.

Materials and Methods

Historical yield monitor data

Historical yield monitor data were provided by authors with the Data-

Intensive Farm Management Program (DIFM), a National Resources Conservation 

Service (NRCS) initiative based at the University of Illinois – Urbana-Champaign 42. 

These data represent typical, uniformly managed farm sites, with no active research 

trials. Historical yield was collected from 60 unique rainfed farms across the United 

States, ranging in size from 7.4 ha to 158.3 ha in size (46.3 ha field size on 

average). In total, the dataset includes observations from 52 maize fields and 25 

soybean fields collected between 2007 to 2021, resulting in 134 unique site-year 
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combinations. States represented in this dataset include Illinois, South Dakota, 

Iowa, Oklahoma, Nebraska, Ohio, Pennsylvania, Arkansas, and Indiana. With 

observations from 1-6 years per farm, the dataset reflects 134 unique field-year-

crop observations. Historical yield data were cleaned and preprocessed prior to 

analysis. Raw maize and soybean yield values were first converted to dry yield at 

standard moisture (15% moisture). Global outlier removal included the following: 

any yield values of zero were removed, and values greater than three standard 

deviations from the mean for each field were also removed 43. Values within 30 m of 

field edges were removed to reduce bias from edge effects. Spatial outliers, which 

are points that are significantly different from surrounding values, were identified 

using spatial autocorrelation based on Local Moran’s I, and observations with 

negative values were removed from the dataset 43. A 30 x 30 m grid cell was 

overlayed, and all removed data points (except for field edges) were imputed using 

inverse distance weighted interpolation based on values within each cell. Finally, 

observations from each cell were averaged to calculate yield in a grid with 30 x 30 

m resolution.

Environmental Data

Soil data were derived from POLARIS, which has a spatial resolution of 30 m. 

The POLARIS soils dataset provides probabilistic estimates of soil properties at 

varying depths, derived from the USDA Soil Survey Geographic Database 30. 

Weather data were extracted from Daymet version 4 44. Daymet provides daily 

meteorological data, including temperature, precipitation, and incident shortwave 

radiation variables. These data were processed to calculate summary statistics for 

an approximation of each year's growing season (April 1–September 30), since 
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planting and harvesting dates were not always available. Summary statistics for 

each month were also included as covariates. All weather statistics used in the 

models are included in Supplemental Table 2. 

Terrain data were derived from the U.S. Geological Survey (USGS) 3D 

Elevation Program (3DEP), a lidar-derived elevation model with a native resolution 

of 1 m 45. These data were processed using the “tagee” package for terrain analysis 

in Google Earth Engine. From tagee, the following terrain parameters were 

calculated: slope, aspect, hillshade, northness, eastness, horizontal curvature, 

vertical curvature, mean curvature, minimal curvature, maximal curvature, 

gaussian curvature, and shape index. Detailed descriptions of these metrics are 

provided by Safanelli et al. (2020). In addition to these metrics, a topographic 

wetness index was also calculated using the 15 arc-second HydroSHEDS flow 

accumulation dataset from the World Wildlife Fund and the USGS watershed 

boundary dataset of basins dataset at the basin hydrologic unit level47 . Terrain 

attributes were included because they represent stable, within-field sources of 

hydrological and pedological variation that can be reliably mapped at 30 m 

resolution, and have been shown to influence yield through runoff, erosion, and 

topsoil distribution23,46. After calculating terrain metrics, all environmental data 

were resampled to a 30 m resolution pixel and aligned with the soil and yield data. 

All environmental data were processed in Google Earth Engine 48. 

We note that some variables known to influence yield, such as 

evapotranspiration (ET), soil nutrients (N, P, K, SOM), and field-level management 

practices, were not included. These variables were excluded because they were not 

consistently available across the multi-state dataset and would introduce potential 

confounding effects. Additionally, ET would potentially introduce redundancy and 
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collinearity and could obscure direct relationships between fundamental 

environmental drivers and yield, which are the focus of this interpretable ML 

analysis. We note these omissions as an important limitation and interpret results 

accordingly.

Model selection and training

For this study, our initial dataset included 128 environmental features. A brief 

description, units, and data source is provided for each of the initial features in 

Supplemental Table 2. To reduce dimensionality and collinearity, any features that 

had low variance (less than 0.1 after scaling features between 0 and 1) or that were 

highly correlated (r > 0.9) were removed from the dataset, resulting in 80 features 

remaining for initial model training. The dataset was then split using a random 70-

30 training-testing split. 

Several automated ML platforms have recently emerged, enabling systematic 

evaluation of candidate ML models. Here we used the AutoGluon package in Python 

for automated ML training, enabling a comparison of ML models in terms of 

predictive accuracy and error rates 25. All models were optimized to reduce the root 

mean square error (RMSE). The top-performing model from the first round of 

training was selected based on the lowest RMSE. A recursive feature elimination 

with five-fold cross-validation (RFECV) was then implemented to eliminate additional 

features from the top performing model and to reduce the feature space 49. The 

optimal number of features for each model was automatically selected during the 

RFECV process. Reduced, optimal-features datasets (20 features for maize, 13 for 

soybeans) were used in a second round of model training in AutoGluon. 

Hyperparameter tuning was then performed on the top-performing model using a 
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random search space, and the final trained model was saved for analysis. All figures 

and results reported in this manuscript were derived from these crop-specific final 

models.

Model validation and interpretation

Validation was conducted by withholding 30% of pixel values from the 

dataset for testing purposes. Performance was evaluated for those unseen 

observations after completing model training, feature elimination, and 

hyperparameter tuning. Permutation feature importance and SHAP, both model-

agnostic methods, were used to interpret model predictions and identify features of 

high relevance to model outputs. 

Permutation importance quantifies how much each feature contributes to 

overall model performance by measuring the increase in RMSE after shuffling its 

values; larger performance degradation indicates greater importance. SHAP values, 

conversely, measure the average magnitude of a features’ effect on model 

predictions and are expressed in the units of the outcome variable (Mg ha-1) 50. 

Features with larger mean absolute SHAP values therefore exert greater influence 

on predicted yield. Because SHAP has a rigorous theoretical foundation and can 

provide explanations that are both locally and globally consistent, SHAP has become 

one of the most widely used methods for ML interpretation and is considered by 

many to be the current standard for interpretable ML 51. Including both metrics 

enables evaluation of feature contributions both in terms of predictive performance 

(permutation importance) and in terms of direction, magnitude, and non-linear 

structure (SHAP).
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High overall performance may obscure poor performance in particular sites or 

years, reflecting the potential for overfitting in ML models 52.  To address this, we 

grouped testing data by growing year and site to perform an additional group-wise 

validation. This approach assesses how models perform across subsets of the 

testing dataset, indicating both temporal and spatial generalizability. We also 

performed an analysis of spatial autocorrelation of model residuals to test how well 

our model captures spatial patterns in the data. To accomplish this, we calculated 

multi-scale Moran’s I statistics at distance intervals of 50m, 500m and 50km, to 

evaluate within-field, between-field, and between-region spatial clustering of 

residuals, respectively.
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