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Abstract

Facial expressions in the wild are rarely discrete; they often manifest as com-
pound emotions or subtle variations that challenge the discriminative capabilities
of conventional models. While psychological research suggests that expressions
are often combinations of basic emotional units, most existing FER methods
rely on deterministic point estimation, failing to model the intrinsic uncertainty
and continuous nature of emotions. To address this, we propose POSTER-
Var, a framework integrating a Variational Inference-based Classification Head
(VICH). Unlike standard classifiers, VICH maps facial features into a probabilis-
tic latent space via the reparameterization trick, enabling the model to learn
the underlying distribution of expression intensities. Furthermore, we enhance
feature representation by introducing layer embeddings and nonlinear transfor-
mations into the feature pyramid, facilitating the fusion of hierarchical semantic
information. Extensive experiments on RAF-DB, AffectNet, and FER+ demon-
strate that our method effectively handles fine-grained expression recognition,
achieving state-of-the-art performance. The code has been open-sourced at:
https://github.com/lg2578/poster-var.

Keywords: Facial expression recognition, Variational inference, probabilistic model,
feature representation
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1 Introduction

Facial expressions are the manifestation of emotions on the face and are the primary
form of emotional expression. Facial expression recognition (FER) holds vast research
potential and application worth in human-computer interaction, psychology, intelligent
robotics, intelligent surveillance, virtual reality and synthetic animation.

In recent years, with the continuous development of deep learning, facial expression
recognition has achieved remarkable research progress [1–7]. However, existing FER
literature predominantly discretizes and orthogonalizes emotional states. By relying on
deterministic point estimation approaches for coarse classification, these methods fail
to capture the high-dimensional and continuous spectrum of human emotion. FACS
[8] decomposes facial expressions into combinations of multiple action units (AUs),
each AU corresponds to the movement of a specific facial muscle or group of muscles,
and the same AU may occur across different expressions. Psychological studies [9] and
previous FER work [10, 11] have also shown that most emotions occur as combinations,
mixtures, or compounds of the basic emotions, and multiple emotions always have
different intensities within a single facial image, especially in the real world, as show
in Figure 1. Calibrate the feature distribution within a single image and making the
final decision is crucial for improving recognition accuracy. Salient feature suppression
[12] encourages the model to focus on weaker features by suppressing dominant ones.
LDL [13] introduce a simple but efficient label distribution learning method as a
novel training strategy and leverage depthwise convolution to capture local and global-
salient facial features.

Fig. 1 Mixed features that map to different expression classes coexisting in a facial image.Thicker
connecting lines represent higher predicted probabilities for the corresponding class. Class Activation
Maps (CAMs) are generated using Grad-CAM [14], the heatmap shows which regions of the image
contribute positively to a specific class, even if that class is not the model?s final prediction.

Inspired by variational autoencoder (VAE) module widely used in generative mod-
els, we propose a novel method that enables the model to better balance features
corresponding to different expression classes. During training, the model performs
reparameterization via the proposed Variational Inference-based Classification Head
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(VICH) to learn the underlying distribution of expression combinations. This method
encourages the model to learn the probabilistic distribution of expression combina-
tions. Heatmap visualizations demonstrate that the model is able to make decisions
by considering broader regional features.

Variational Inference (VI) [15]offers a principled framework for incorporating
uncertainty into deep models. It is an approximation technique for Bayesian inference
that transforms the problem of computing the intractable posterior distribution into
an optimization task by approximating it with a simpler, tractable distribution. While
VI has shown great success in generative modeling [16], its application to classification
tasks remains limited. We argue that previous methods typically decode the latent vec-
tor before feeding it into the classifier. For a pure classification task, this decoding step
is redundant and compromises the model?s performance. Moreover, during inference,
using the mean of the learned Gaussian distribution helps reduce the intrinsic vari-
ability of the features. So We introduced two improvements to the reparameterization
process. First, sampling is applied only during training, while the learned distribution
mean is output directly during inference. Second, the final fully connected classifier
is removed, allowing the reparameterized output to serve directly as the prediction.
Furthermore, we enhance multi-scale feature fusion by incorporating layer embedding
and nonlinear transformation into the baseline fusion module. The layer embedding
encodes the positional and semantic level of each feature map within the feature pyra-
mid, allowing the model to better distinguish and integrate information from different
scales. The nonlinear transformation enriches the representation capability of fused
features, facilitating more effective learning of complex patterns.

Overall, our contributions are summarized as follows:

• We propose a novel Variational Inference-based Classification Head (VICH). VICH
is designed to learn the underlying distribution of expression combinations, thereby
encouraging the model to calibrate the feature distribution and to make decisions
based on broader regional features.

• We enhance multi-stage feature fusion by incorporating layer embeddings and non-
linear transformations, which effectively harmonizes the semantic gaps between
different levels and adaptively extracts task-relevant high-level abstractions within
the feature pyramid.

• Our method outperforms current SOTA approaches across multiple Facial Expres-
sion Recognition (FER) benchmarks, achieving accuracies of 92.76% on RAF-DB,
67.91% on AffectNet (7 classes), 64.27% on AffectNet (8 classes), and 91.89% on
FER+.

2 Related Work

2.1 Facial Expression Recognition

With the continuous advancement of deep learning technologies, significant progress
has been made in the research of facial expression recognition. MHCNN [3] uses
multi-task learning to automatically crop edge-free faces and recognize facial expres-
sions, age, gender. TransFER [4] combines multi attention dropping and multi-head
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self attention dropping mechanisms to learn rich relation-aware local representations.
MTSD-CF [17] uses a multi-task self-distillation method with coarse- and fine-grained
labels, providing additional guidance for the extraction of discriminative features.
QCS [1] uses cross similarity attention and quadruplet cross similarity to adaptively
mine discriminative features within the same class while simultaneously separating
interfering features across different classes. ArcFace [2] introduces an additive angular
margin loss to further improve the discriminative power of the face recognition model
and to stabilise the training process. POSTER [5] combines pre-trained facial land-
mark detector [7] with image features detector [2] through a two-stream pyramidal
cross-fusion transformer. POSTER++ [6] removes the image-to-landmark branch from
the original two-stream design of POSTER, performs multi-scale feature extraction
directly from the image backbone as well as from the facial landmark detector, it sig-
nificantly reduces model parameters and computational cost while slightly improving
model performance.

In summary, the aforementioned FER studies predominantly adopt deterministic
point estimation approaches. However, these methods often struggle with the inherent
ambiguity of facial expressions and the label noise present in large-scale datasets.
By reducing a complex emotional state to a single hard label, deterministic models
fail to capture the subtle transitions between different emotions and are sensitive to
subjective annotation biases, which limits their robustness in real-world scenarios.

2.2 Variational inference-based classification network

In machine learning, parameter estimation methods are generally categorized into
point estimation and Bayesian inference. The former yields a single optimal parame-
ter value, while the latter models parameters as probability distributions to capture
uncertainty [15]. VI can be viewed as an approximate form of Bayesian inference,
where the intractable posterior is replaced by a parameterized distribution.

Given the great success of the VI in generative tasks, some studies have also applied
VI in classification tasks. AEVB [? ] uses an improved parameter reparameterization
technique that leads to better performance of variational inference in classification
tasks. AAE [18] is a novel framework for speech emotion recognition that employs
variational inference of latent variables and reconstruction of the speech signal. The
VAE-based classifier [19] removes the decoder and directly connects the latent vari-
ables to a data classifier to perform the learning task, aiming to jointly optimize the
encoder and the classifier with end-to-end training. FRA [20] is a face representa-
tion augmentation method, shifts its focus towards manipulating the face embeddings
generated by any face representation learning algorithm to create new embeddings
representing the same identity and facial emotion but with an altered posture.

The architectural designs of these VI-based approaches provide valuable insights
for improving our POSTER-Var model. By eliminating both the decoder and the final
fully connected (FC) classifier used in conventional VI-based classification models, we
introduce a novel classification head that substantially improves model performance
and streamlines the overall architecture.
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2.3 Attention Mechanism

In deep learning, attention mechanisms often introduce element-wise multiplication
as a core operation, allowing neural networks to dynamically emphasize or suppress
different parts of the learned representation. For instance, in the Squeeze and Exci-
tation block [21], the output of the excitation module is multiplied with the original
feature map to reweight channels according to their relative importance. Similarly,
CBAM [22] applies both channel and spatial attention maps via multiplicative scaling,
thereby enabling the model to focus on salient information from multiple perspec-
tives. ViT [23] treats an input image as a sequence of fixed-size patches and uses a
dot-product self-attention mechanism to compute weighted outputs. Micro NesT [24]
uses a shallow feature extraction module and a hierarchical attention extraction mod-
ule, enabling information interaction between different patches through aggregation
modules. MFD [25, 26] is proposed to integrate features in the whole training set by
memory-attention layers, which encourages the heterogeneous features with the same
identity to present higher similarity.

Taken together, fusing multiple attention mechanisms allows the model to cap-
ture multi-scale and multi-dimensional features, enhancing representational capacity
and generalization. In our proposed method, four different attention mechanisms are
effectively integrated to enhance model performance.

Method

Baseline

We adopt POSTER++ as the baseline, as it significantly reduces the model parameters
and computational cost while achieving slightly better performance than POSTER.
POSTER++ employs IR50 [2] as an image backbone to extract image features at
three different scales, while MobileFaceNe [7] is used to obtain the landmark features
at the corresponding scales.

Let the input imageX ∈ R3×h×w, where 3 denotes the number of channels, h and w
are the height and width of the image. In baseline, the image features Ximg ∈ Rc×h×w

as well as the landmark features Xlm ∈ Rc×h×w are fused using global context
window-based cross-attention [27], and then concatenated along the channel dimen-
sion. The fused features Xfusion ∈ Rn×d are subsequently processed by a lightweight
two-layer ViT to capture long-range dependencies, followed by a feed-forward network
for classification.

2.4 Architecture

We propose POSTER-Var, which extends baseline from two pivotal perspectives.
Firstly, we introduce a layer-embeding feature fusion module. Secondly, we design a
classification head based on variational inference. Unlike previous studies that feed
either the reconstructed output or the latent variables into a separate classifier, our
method directly treats the reparameterized representations as the final classification
outputs during training. As illustrated in Figure 2, the components highlighted with
bold lines represent the improvements introduced over the baseline model.
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Fig. 2 Our proposed POSTER-Var architecture for FER.

A detailed explanation of the figure can be found in the following subsection.
Compared with the baseline, the learnable positional embedding We has a size of only
3× 768, and the VICH module is only 2× 7× 768. Despite the negligible increase in
model size and computational cost, these components effectively improve the model’s
performance.

2.5 Attention-based multi-stage feature representation

In POSTER-Var, various attention mechanisms are employed. Features from different
feature extractors are first fused using global cross-attention:

Attention (Q∗
l ,Kl,Vl) = softmax

(
Q∗

lK
T
l√

dk

)
Vl (1)

Here,subscript l ∈ {0, 1, 2} denotes different feature layers.Kl andVl are generated
by applying a linear projection with learnable weights to the image features Xl

img. In
contrast to the standard self-attention mechanism, in our method the Q∗

l is obtained
by reshaping the landmark featuresXl

lm without applying a learnable linear projection:

Q∗
l = reshape

(
Xl

lm

)
Kl = Xl

imgWkl

Vl = Xl
imgWvl

(2)

In the second stage, the model adds the input embeddings with the layer positional
embedding vector using broadcasting, to incorporate sequential positional information:
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X̃ l = Flatten
(
Embedl(Xl)

)
+W l

e

Xfusion = concat
(
X̃0, X̃1, X̃2

) (3)

W l
e is the learnable layer positional embedding, Embedl refers to the corresponding

embedding layer, which applies different convolution operations to normalize different
layers. In the third stage, Xfusion ∈ Rn×d is further processed by a 2 layers ViT to
model global contextual relationships and get the representation vector xrepr ∈ Rd.
In the fourth stage, xrepris then refined via an enhanced Squeeze-and-Excitation (SE)
module to adaptively recalibrate and enhance informative feature channels:

xse = SE block(xrepr) = xrepr ⊙ σ
(
W2 · ReLU(W1 · xrepr)

)
(4)

⊙ denotes element-wise multiplication, σ(·) denotes the Sigmoid activation func-
tion, ReLU(·) denotes the Rectified Linear Unit activation function; W1,W2 ∈ Rd×d

are the weight matrices of the two fully connected layers.

VI-based classifier

The VI module incorporates the reparameterization trick, is a technique commonly
employed in generative models to sample latent variables from a learned distribution.
In contrast, we repurpose this mechanism for classification tasks, allowing probabilistic
reasoning and uncertainty quantification in the decision process. During the training
phase, the module samples from a Gaussian distribution parameterized by the pre-
dicted mean and log-variance, introducing stochasticity while preserving gradient flow
through the sampling process.

z = µ+ ε · exp
(
logσ2

2

)
(5)

Here,ε ∼ N (0, I) denotes random noise sampled from the standard multivariate
normal distribution , µ and σ are learnable vectors generated by the encoder network.
µ represents the mean of the approximate posterior distribution q(z | x), indicating
the central location of the latent variable z conditioned on the input x. σ represents
the standard deviation of this distribution, capturing the uncertainty or spread around
the mean. These parameters are used to define a diagonal Gaussian distribution in
the latent space, from which z is sampled using the reparameterization trick.

In the testing phase, to ensure stable and deterministic predictions, the module
bypasses sampling and directly outputs the mean as the final latent representation for
classification.This is the key difference between our method and previous classification
approaches based on VI.

3 Experiments

3.1 Datasets

We verify the effectiveness of POSTER-Var on several FER benchmarks, such as
RAF-DB [28], AffectNet [29] and FER+ [30].
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RAF-DB. Real-world Affective Faces Datasets(RAF-DB) [28], developed by Bei-
jing University of Posts and Telecommunications, comprises approximately 30,000
facial images collected from thousands of individuals in unconstrained environments.
In this study, we utilized the RAF-DB Basic Emotion Subset, a widely adopted
benchmark dataset consisting of 15,339 real-world facial images, each annotated with
one of seven basic emotion classes: Happy, Sad, Surprise, Anger, Disgust, Fear, and
Neutral. To ensure annotation consistency and reliability, each image was labeled
by approximately 40 independent raters, and the final label was derived using the
Expectation-Maximization (EM) algorithm. According to the standard partition, the
dataset is divided into 12,271 training images and 3,068 test images, making it
well-suited for training and evaluating facial expression recognition models.

AffectNet. AffectNet [29] developed by University of Denver, is currently the
largest publicly available dataset in the field of FER, containing approximately 1
million facial images associated with emotion labels. The dataset primarily includes
8 classes of basic emotions: Neutral, Happy, Anger, Sadness, Fear, Surprise, Disgust,
and Contempt. In addition to these annotated classes, AffectNet also includes three
extra labels: None for faces that do not express any recognizable emotion, Uncertain
for ambiguous expressions that annotators could not confidently classify, and No-face
for images where no face was detected. To ensure the quality and reliability of model
training, we mainly use the 7-class version of AffectNet (excluding Contempt) and
the 8-class version in this study. AffectNet (7 cls) consists of 283,902 training images
and 3,500 validation images (500 images per category). AffectNet (8 cls) consists of
287,652 training images and 4,000 validation images (500 images per category).

FER+. FER+ [30] developed by Microsoft Research, is an enhanced version of the
original FER2013 dataset,it contains 28,709 training, 3,589 validation, and 3,589 test
images. In FER+, each image has been labeled by 10 crowd-sourced taggers, which
provide better quality ground truth for still image emotion than the original FER
labels. Having 10 taggers for each image enables researchers to estimate an emotion
probability distribution per face. This allows constructing algorithms that produce
statistical distributions or multi-label outputs instead of the conventional single-label
output. Folllowing [1, 30], we utilized FER+ to filter out samples labeled as ’no face’
or ’unknown’ and reported the overall accuracy on the test set.

3.2 Experiment Details

Training is conducted for 200 epochs using the AdamW optimizer [31] to ensure
robust generalization and stable convergence. Beyond standard data augmentations
like random horizontal flipping and random erasing, the optimization process on RAF-
DB, AffectNet, and FER+ is supervised by a joint loss function that leverages both
Cross-Entropy (CE) and Kullback-Leibler (KL) divergence. All experiments were con-
ducted on a single NVIDIA RTX 3090 via PyTorch 2.5. To ensure the comparability
of results, all methods were trained under identical conditions. The detailed training
configurations and hyperparameters are provided in Table 1.

Table 2 presents the performance comparison between our method and recent
advanced approaches in the field of emotion recognition. Overall, emotion recognition
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Table 1 Training configurations

Configs RAF-DB AffectNet FER+

Optimizer AdamW AdamW AdamW
Init LR 9e-6 2e-5 3e-5
Weight Decay 1e-4 1e-4 1e-4
Batch Size 48 48 48
Max Epochs 250 200 200
LR Schedule Exp. (γ = 0.98) Exp. (γ = 0.90) Exp. (γ = 0.96)
Augmentation Resize: 2242 Resize: 2362 Resize: 2322

H. Flip H. Flip H. Flip
Rot. (12◦) Rot. (10◦)
Random Crop (2242) Random Crop (2242)

Color Jitter (0.2) Color Jitter (0.2) Color Jitter (0.2)
Normalize() Normalize() Normalize()
Random Erasing Random Erasing Random Erasing

Classes 7 7/8 8
Loss Function CE + λ KL CE + λ KL CE + λ KL

techniques demonstrate continuous performance improvement across multiple bench-
mark datasets. POSTER-Var achieves state-of-the-art (SOTA) performance across
several benchmarks, with accuracies of 92.76% on RAF-DB, 67.91% on AffectNet
(7 classes), and 91.89% on FER+. These results consistently surpass the leading
DCS method, which achieves 92.57%, 67.66%, and 91.41% respectively. The model
also achieves a competitive 64.27% accuracy on the 8-class AffectNet, aligning with
top-tier SOTA results. These results underscore the model’s exceptional capability
in characterizing complex facial expressions. Such gains are primarily attributed to
our probabilistic modeling of expression variation, which empowers the framework to
effectively capture nuanced, subject-specific differences.

Table 2 Comparison with SOTA methods

Methods Year RAF-DB AffectNet (7 cls) AffectNet (8 cls) FER+

PSR [32] CVPR 2020 88.98 63.77 60.68 89.75
EfficientFace [13] AAAI 2021 88.36 63.70 60.23 –
Meta-Face2Exp [33] CVPR 2022 88.54 64.23 – –
POSTER [5] ICCV 2023 92.05 67.31 63.34 91.62
MFER [34] T-AFFC 2024 92.08 67.06 63.15 91.09
POSTER++ [6] PR 2025 92.21 67.49 63.77 –
DCS [1] AAAI 2025 92.57 67.66 64.40 91.41
MTSD-CF [17] ESWA 2025 92.63 66.26 – –

Ours* 2026 92.76 67.91 64.27 91.89

* Detailed training logs and reproducibility results are available at: https://swanlab.cn/@lezi.

3.3 Ablation Study

To evaluate the effectiveness of the proposed layer embedding and VICH module, we
conduct extensive ablation studies on three benchmark facial expression recognition
datasets: RAF-DB, AffectNet (7 and 8 classes), and FER+. The results are sum-
marized in Table 3. Inference time is calculated as the average of 1000 runs on a
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single NVIDIA 3090 GPU. Full POSTER-Var Model achieves the best results across
all datasets, RAF-DB: 92.76%, AffectNet (7 cls): 67.91%, AffectNet (8 cls): 64.27%,
FER+: 91.89% with negligible computational overhead, maintaining an inference time
nearly identical to the baseline.

Table 3 Ablation results of POSTER-Var

Methods RAF-DB AffectNet (7 cls) AffectNet (8 cls) FER+ Inf. Time (ms)

Ours 92.76 67.91 64.27 91.89 1.502
w/o Layer Emb. 92.66 67.85 64.24 91.85 1.502
w/o VI Module 92.50 67.66 64.02 91.69 1.492
Baseline 92.21 67.49 63.77 91.62 1.491

Layer embedding. Removing the layer positional embedding leads to a consistent
performance drop. On RAF-DB, accuracy decreases slightly to 92.66%. On AffectNet
(7 cls) and (8 cls), accuracies drop to 67.85% and 64.24%, respectively. On FER+,
accuracy decreases slightly to 91.85%. This suggests that the layer embedding helps
improve the model’s capacity to capture hierarchical feature representations.

VICH module. Disabling the VICH module results in a more significant perfor-
mance decline. RAF-DB drops to 92.50%, and AffectNet (7 cls) and (8 cls) decline
to 67.66% and 64.02%, on FER+ accuracy falls to 91.69%. This indicates that the
VICH module plays a vital role in modeling uncertainty and enhancing generalization,
especially on more complex datasets like AffectNet and FER+.

Both the layer embedding and VICH module are crucial to the success of
POSTER-Var. Their removal consistently degrades performance, confirming their
complementary contributions to improving expression recognition accuracy. Notably,
the VICH module appears slightly more impactful, particularly in datasets with
greater variation and class imbalance like AffectNet.

3.4 Visualization

We conducted a visual analysis comparing the baseline and POSTER-Var(ours) on
RAF-DB. Figure 3 shows attention visualization on facial images of different classes,
include visualized facial landmarks and class activation maps. We can see that both
models focus on similar regions, indicating that they are both able to learn the key fea-
tures. However, the activation regions produced by POSTER-Var are more extensive
and better aligned with key facial landmarks than those of the baseline. This broader
attention helps the model capture the uncertainty of facial expressions and make deci-
sions based on more comprehensive regional features and reducing the likelihood of
misclassification.

The more detailed experimental results of POSTER-Var on RAF-DB are presented
in Table 4 and Figure 4 The class distributions in the training and validation sets
of RAF-DB are relatively consistent, and the classification performance of individual
classes tends to correlate with the number of training samples. Nevertheless, our model
still achieves satisfactory precision for classes with fewer samples, such as sad, fear,
and neutral.
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Fig. 3 Attention visualization on facial images of different classes. Recognisable faces in the figure
have been replaced by their dataset indices to comply with privacy policies, label #xxxx denotes the
image indexed xxxx in the RAF-DB test set.

Table 4 Sample distribution and performance per expression Class

Suprise Anger Sad Neutral Fear Happy Disgust

Training samples 1290 705 1982 2524 281 4772 717
Testing samples 329 162 478 680 74 1185 160
Recall 91.79% 86.42% 92.68% 93.53% 70.27% 96.79% 78.75%
Precision 92.35% 90.91% 89.68% 90.47% 85.25% 97.20% 84.56%

From Figure 4, we observe that the neutral class(label=3) exhibits a significantly
higher false positive rate compared to the happy class(label=5). The neutral class has
70 false positives, far exceeding the 38 of the happy class, resulting in a considerably
higher false positive rate (9.92% vs. 3.21%). This suggests that the model is more
prone to misclassify other emotions as neutral. However, the neutral class contains
only about half as many training samples as the happy class, indicating that this
phenomenon is not due to class imbalance.

Fig. 4 Confusion matrix of ours method on RAF-DB.
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Benefiting from the ability of the VICH module to learn the underlying distribution
of expression combinations, we can easily plot the expression feature distribution of
a given image, as shown in Figure 5. The x-axis represents the expression intensity
predicted by the model, and the class with the highest intensity among the seven
categories is taken as the final classification result. The baseline output (indicated at
the origin) incorrectly classifies the image as sad instead of neutral. In contrast, our
model produces the correct classification. The reparameterization strategy employed
during training encourages the model to evaluate images across a broader range of
intensity values, strengthens the calibration of expression features, and enlarges inter-
class discriminative distances.

Fig. 5 Normal distributions of seven emotions learned by VICH for a given image. Points and solid
curves denote the outputs of the baseline and POSTER-Var, respectively. The final prediction is
determined by the expression category with the highest intensity value. Recognisable faces in the
figure have been replaced by their dataset indices to comply with privacy policies, label #xxxx denotes
the image indexed xxxx in the RAF-DB test set.

4 Conclusions

In this paper, we addressed the limitation of deterministic point estimation in captur-
ing the complexity of real-world facial expressions. By acknowledging that expressions
are often combinations of basic emotions, we proposed POSTER-Var, incorporat-
ing a VI-based Classification Head. This approach fundamentally shifts the learning
paradigm from fitting specific points to modeling feature distributions, thereby quan-
tifying the uncertainty inherent in compound expressions. Coupled with our enhanced
multi-scale feature fusion, the proposed method achieves superior performance on
benchmark datasets. Our work suggests that probabilistic modeling is a promising
direction for the next generation of fine-grained and robust Affective Computing
systems. Future research will focus on integrating Domain Generalization (DG) frame-
works with our variational architecture. Specifically, we aim to explore disentangled
representation learning to effectively separate emotion-specific latent variables from
identity-related nuisance factors. This will ensure that the learned feature distributions
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are more invariant across different datasets, ultimately facilitating the deployment of
POSTER-Var in diverse, real-world human-computer interaction applications.

Data availability

The RAF-DB dataset is available from the original authors upon request for
non-commercial research purposes. Researchers affiliated with academic institutions
may request access by contacting the authors as described at http://whdeng.cn/
RAF/model1.html. The FER+ dataset is available at https://github.com/microsoft/
FERPlus. The AffectNet dataset can be requested from the original authors at https:
//mohammadmahoor.com/pages/databases/affectnet/ by eligible researchers (e.g.,
Principal Investigators) subject to a signed license agreement.
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