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ABSTRACT

Accurate assessment of cognitive load is vital in cognitive research and human–machine interaction. This study investigates
a multimodal approach for classifying graded cognitive load levels using cardiovascular signals derived from photoplethys-
mography (PPG) and impedance plethysmography (IPG). Data were collected from 15 healthy adults performing mental
arithmetic tasks of increasing difficulty (Rest, Level 1, Level 2, and Level 3). Carotid PPG was used as a global indicator
of cerebral perfusion, while frontal IPG captured localized changes in regional blood volume. Machine learning algorithms,
including Decision Trees, Random Forest, and XGBoost, were applied to discriminate between workload levels. Among
these models, Random Forest achieved the highest performance, reaching 96% accuracy in subject-dependent classification.
Subject-independent accuracy was lower (66%), reflecting substantial inter-subject variability. IPG-derived features were
among the most influential contributors to workload discrimination, highlighting the role of localized neurovascular responses to
cognitive demand. These findings support the potential of PPG–IPG fusion as a noninvasive and physiologically grounded
technique for continuous monitoring of cognitive workload.

Introduction
Accurately assessing cognitive load has become increasingly important in modern high-stakes environments such as aviation,
healthcare, education, and complex industrial operations1–4. Effective detection and management of cognitive load can enhance
human performance, reduce errors, and improve overall safety and well-being. Reliable identification of cognitive overload and
fatigue enables timely interventions that support optimal task execution and protect operator health4–9.

Traditional approaches to cognitive load assessment have largely relied on single-modality measurements, particularly
electroencephalography (EEG), due to its direct link to neural activity10–14. For example, Dimitrakopoulos et al.15 reported
87% accuracy in classifying two levels of workload using multiband EEG cortical connectivity. Although EEG provides rich
information about cognitive states, it faces practical limitations such as complex sensor setup, susceptibility to motion and
environmental artifacts, and user discomfort associated with through-hair electrode placement. These limitations have motivated
the exploration of alternative or complementary methods that are more practical for real-world and wearable applications.

Cardiovascular-based measurements have emerged as strong candidates. Qu et al. (2021)16 achieved a mean precision of
90.88% using electrocardiography (ECG)-derived features in a two-class workload task, while Fawwaz et al. (2024)17 reported
81.97% accuracy using a combination of heart rate variability (HRV) and electrodermal activity (EDA), also in a two-class
setting. Despite these advances, single-modality systems remain limited, either in performance or in their ability to handle
multi-level cognitive load. This reinforces the need for multimodal approaches that integrate complementary physiological
signals to enhance accuracy, robustness, and generalizability.

Recent studies have highlighted the close interplay between the brain and the cardiovascular system during cognitive
demands18–20. This brain–heart interaction is regulated by the autonomic nervous system (ANS), where increased cognitive
load alters the balance between sympathetic and parasympathetic activity. These shifts influence heart rate, heart rate variability,
vascular tone, and blood pressure, making cardiovascular responses reliable indirect markers of cognitive load21–24. Accordingly,
we hypothesized that higher cognitive demand would elevate cerebral perfusion, making carotid-based measurements particularly
informative.

Pulse Transit Time (PTT) also provides valuable insight into cognitive load due to its well-established relationship with
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blood pressure. Increases in blood pressure shorten PTT, while decreases lengthen it25. During periods of high cognitive
load, sympathetic activation increases the release of catecholamines, enhances cardiac contractility, and causes peripheral
vasoconstriction, which reduces arterial compliance26. These physiological changes elevate arterial blood pressure above
baseline and accelerate pulse wave propagation, thereby shortening PTT25. In this study, carotid photoplethysmography (PPG)
was used to capture global blood supply to the brain, while forehead impedance plethysmography (IPG) captured localized
perfusion changes during cognitive stimulation. The fusion feature, PTT, was derived from the timing difference between the
two measurement sites, enabling integration of global and regional hemodynamic information relevant to cognitive load.

Building on this physiological foundation, the present study investigates a multimodal framework for multi-class cognitive
load classification using PPG and IPG signals. PPG captures peripheral blood volume changes, while IPG measures tissue
impedance variations associated with pulsatile cerebral blood flow. Both techniques are low-cost, comfortable, and well
suited for wearable applications, making them practical alternatives or complementary tools to EEG. This study evaluates the
contribution and reliability of PPG–IPG fusion for classifying cognitive load during mental arithmetic tasks and examines how
task difficulty affects cardiovascular dynamics. The integration of artificial intelligence further enhances the feasibility of such
systems, as machine learning algorithms can efficiently extract and combine features from multimodal cardiovascular signals to
enable accurate, real-time cognitive load monitoring27–29.

Methodology
The proposed wearable device
PPG signal acquisition
PPG signal was measured using a MAX30102 optical sensor (Analog Devices, Massachusetts, USA) positioned on the neck
over the common carotid artery (Fig. 1(a)). This location provides a clear optical pathway for detecting arterial pulse–induced
changes in light reflectance and is preferred over ECG electrode sites, as PPG measures vascular light absorption rather than
cardiac electrical activity. The MAX30102 integrates red (660 nm) and infrared (880–940 nm) light-emitting diodes (LEDs)
for optical sensing, with the red wavelength exhibiting strong absorption by oxygenated hemoglobin and thus providing high
sensitivity for PPG measurements.

During operation, the sensor illuminates the tissue and records the reflected intensity, enabling real-time monitoring of
blood volume fluctuations over the cardiac cycle. PPG exploits the fact that tissue absorption varies with pulsatile changes in
arterial blood volume. According to the modified Beer–Lambert law, detected intensity decays exponentially with absorption;
therefore, in reflectance PPG the photodetector signal varies exponentially with the pulsatile blood volume30–33.

IPG signal acquisition
IPG acquisition was performed using a four-electrode (tetrapolar) configuration to minimize the influence of electrode–skin
interface impedance and to improve measurement accuracy34, 35. For cerebral monitoring, electrodes were placed on the
forehead over the frontal cortex (Fig. 1(a)). The outer electrode pair delivered the excitation current, while the inner pair
measured the resulting voltage drop across the targeted tissue segment, producing a pulsatile impedance waveform driven by
cardiac-induced changes in blood volume.

The AD5933 (Texas Instruments, Dallas, USA) served as the bioimpedance module. It generates a sinusoidal excitation
voltage and measures the corresponding voltage drop in terms of magnitude and phase. The AD5933 is an integrated impedance
measurement circuit that contains a frequency generator, a 12-bit analog-to-digital converter (ADC) operating at 1 MSPS, and a
digital signal processing unit. It operates with a supply voltage between 2.7 V and 5.5 V and measures impedance within a
range of 1 kΩ to 10 MΩ, with extended capability down to approximately 100 Ω when additional circuitry is used. The device
supports excitation frequencies up to 100 kHz with 27-bit tuning resolution36.

In this study, a fixed excitation frequency of 50 kHz was selected. This frequency is commonly used in soft-tissue
bioimpedance and arterial assessments and eliminates the need for frequency sweeping, which simplifies hardware design and
enhances portability37–40. At 50 kHz, the measurement primarily reflects extracellular ionic conduction, including blood, with
partial contributions from cell-membrane capacitance37, 38. Under these conditions, the impedance behaves mainly as a resistive
component, and the instantaneous impedance is inversely proportional to the conductive cross-sectional area, which increases
with blood volume37, 41:

Z(t) =
ρL

A(t)

, where:

• Z(t) is the instantaneous impedance at time t (in Ohms, Ω).
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(a)

(b)

Figure 1. (a) Body locations for PPG and IPG sensor placement, and (b) functional block diagram of the complete proposed
system.
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(a)

(b)

Figure 2. (a) Experimental paradigm and (b) photograph of the experimental setup.
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Figure 3. Feature extraction workflow from PPG, IPG, and fused PPG–IPG signals.

• L is the distance between the sensing electrodes (in meters, m).

• ρ is the resistivity of blood (in Ω·m).

• A(t) is the time-varying cross-sectional area of the vessel (in m2).

During systole, arterial expansion increases the cross-sectional area A(t), thereby reducing impedance. Conversely, during
diastole, arterial contraction decreases A(t) and raises impedance. These cyclical changes form the basis of IPG, capturing
pulsatile blood flow dynamics. These cyclic changes constitute the IPG signal, which, although small (milliohms to ohms), can
be resolved by the AD5933 thanks to its sensitivity and phase measurement capability.

In the proposed design, the AD5933 is integrated with a voltage-controlled current source (VCCS) to deliver a constant 1
mA sinusoidal current for bioimpedance measurement, which complies with established biomedical safety standards42–44. As
illustrated in Fig. 1(b), an improved Howland current pump is adopted to generate the stable 1 mA current source45. For IPG
signal acquisition, wet Ag/AgCl ECG electrodes are employed due to their low contact impedance and biocompatibility. A
custom signal-conditioning circuit is implemented to ensure high signal fidelity. The low-amplitude voltage acquired from the
sensing electrodes is initially amplified using an INA128 instrumentation amplifier (Texas Instruments, Dallas, USA) with a
common-mode rejection ratio (CMRR) of 110 dB. The amplified signal is then processed by a second-order active high-pass
filter with a cutoff frequency of 0.2 Hz to suppress baseline drift, followed by a fourth-order active low-pass filter with a cutoff
frequency of 106 kHz to attenuate high-frequency noise and isolate cardiac-related impedance fluctuations modulated on the 50
kHz excitation carrier.

An ESP32 microcontroller manages communication and control for both sensing modules, the AD5933 impedance converter
and the MAX30102, through the I2C interface, enabling synchronized and reliable multimodal data acquisition (Fig. 1(b)).
The combined acquisition of PPG and IPG facilitates multimodal cardiovascular monitoring of both cerebral and peripheral
hemodynamics within a compact wearable platform.

Experimental protocol
A total of 15 healthy volunteers participated in this study, comprising 6 females and 9 males, aged between 20 and 35 years.
The study protocol was approved by the Ethics Committee of Ho Chi Minh City University of Technology, Vietnam National
University, and all procedures were conducted in accordance with the Declaration of Helsinki. Written informed consent was
obtained from all participants prior to enrollment. The experimental protocol is illustrated in Fig. 2(a). To elicit different levels
of cognitive load, participants performed a series of arithmetic tasks with systematically increasing difficulty. The experimental
protocol comprised three difficulty levels in addition to a resting condition.
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Each trial began with a 5-second instruction screen, followed by five calculations of mental arithmetic. The difficulty of
the problems increased across sessions to progressively elevate cognitive load46–49. After completing the set of calculations,
participants entered a 15-second relaxation phase in which a fixation cross was displayed on the screen, serving as the resting
baseline condition. Each participant completed three such trials during the session.

The task difficulty levels were defined according to the number of digits involved in each addition problem. Level 1
consisted of adding two single-digit numbers, representing a low cognitive load. Level 2 involved adding two double-digit
numbers, requiring additional mental computation and occasional carry operations, thereby increasing cognitive demand. Level
3 comprised adding two triple-digit numbers, which imposed the highest cognitive load due to the need for multiple carry
operations and increased working-memory engagement50, 51. This structured progression ensured a controlled and repeatable
increase in cognitive load across experimental trials.

Throughout the experiment, PPG and IPG signals were continuously recorded for subsequent analysis. The experimental
setup, illustrated in Fig. 2(b), was conducted in a quiet room with sufficient ambient lighting to minimize external disturbances.
One laptop was dedicated to running the stimulation program, while a second laptop managed real-time acquisition of
physiological signals. During each trial, participants’ reaction times and error rates were recorded. Reaction time was defined
as the interval between stimulus presentation and the participant’s response, recorded when they entered the result in the input
box. The accuracy of each response was automatically evaluated by the stimulation program.

Signal processing
Figure 3 illustrates the signal-processing and feature-extraction workflow for the fused feature set, comprising features from
PPG, IPG, and their combination.

PPG signals
For PPG signal processing, the raw waveform is segmented using a sliding window and filtered with a digital band-pass filter
(0.1–5 Hz) to isolate pulsatile components associated with cardiac activity. Within each segment, several time-domain features
are extracted, including the maximum, minimum, mean, and standard deviation of the PPG waveform. Frequency-domain
features are obtained via the discrete Fourier transform (DFT) and include the dominant frequency and its corresponding
magnitude, the mean magnitude of all frequency components, and the total spectral power.

Furthermore, HRV-related metrics are derived to evaluate autonomic nervous system activity. A peak-detection algorithm52

identifies systolic peaks, from which inter-beat intervals (IBIs) are computed. These IBIs are then used to calculate the
standard deviation of normal-to-normal (NN) intervals (SDNNs), a widely recognized HRV index and marker of autonomic
regulation53, 54. The detected peaks are also utilized to compute PTT in conjunction with the IPG signal, enabling integrated
cardiovascular assessment.

IPG signals
The IPG signals undergo a similar preprocessing pipeline, including segmentation and band-pass filtering to isolate pulsatile
components. In addition to time-domain statistical features analogous to those extracted from the PPG signal, the feature set
also incorporates morphological and temporal parameters, such as the systolic rise time (interval from the waveform foot to its
peak) and systolic wave height (amplitude from baseline to peak). These morphological features capture dynamic variations in
vascular impedance, offering valuable insights into blood-flow dynamics under cognitive load as well as arterial compliance
and tissue elasticity55, 56.

PPG-IPG signal fusion
The combined feature derived from both PPG and IPG signals, PTT, is also computed. PTT integrates the temporal dynamics of
the two modalities to capture complementary physiological information. It is calculated as the time delay between the systolic
peak of the PPG waveform, which marks the onset of the pulse wave at the neck, and the systolic peak of the IPG waveform,
representing the arrival of the pulse wave at the forehead. Because the arterial path to the neck is shorter, the pulse wave reaches
this location earlier than the forehead, resulting in a measurable delay. This delay, defined as PTT, provides valuable insight
into the characteristics of the intermediate arterial segment and serves as a non-invasive, indirect marker of arterial compliance,
vascular responsiveness to cognitive load, and overall vascular health57, 58.

To ensure measurement accuracy, hardware and software-induced timing offsets are corrected through a calibration
procedure. In this process, both sensors are temporarily placed at nearly the same location to identify and compensate for
synchronization discrepancies.

By extracting features from the PPG, IPG, and their fusion, the system enables a comprehensive assessment of arterial
dynamics that reflect both cardiac function and vascular responses to cognitive load59–61. This multimodal approach captures
complementary information from central and peripheral pulse waveforms, enhancing the system’s ability to characterize
hemodynamic changes driven by autonomic regulation. TABLE I summarizes the mathematical formulas and corresponding
descriptions used to compute the 29 features extracted from each segment of the PPG and IPG signals, as previously described.
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Table 1. Multimodal feature set derived from PPG, IPG, and fused signals.

Feature Description Mathematical formula a

PPG_Max/IPG_Max Maximum value of segmented PPG/IPG signals x(m)
max = max0≤ℓ<L x[nm + ℓ]

PPG_Min/IPG_Min Minimum value of segmented PPG/IPG signals x(m)
min = min0≤ℓ<L x[nm + ℓ]

PPG_Mean/IPG_Mean Mean value of segmented PPG/IPG signals µ(m) = 1
L ∑

L−1
ℓ=0 x[nm + ℓ]

PPG_ST D/IPG_ST D Standard deviation of segmented PPG/IPG signals σ (m) =

√
1
L ∑

L−1
ℓ=0

(
x[nm + ℓ]−µ(m)

)2

PPG_FFT _Dom_Freq/
IPG_FFT _Dom_Freq

Dominant frequency component of PPG/IPG sig-
nals

X (m)[k] = ∑
L−1
ℓ=0 x[nm + ℓ] · e− j 2π

L kℓ;

f (m)
max = argmaxk

∣∣∣X (m)[k]
∣∣∣

PPG_FFT _Dom_Mag/
IPG_FFT _Dom_Mag

Magnitude at the dominant frequency of PPG/IPG
signals

|X |(m)
max = maxk

∣∣∣X (m)[k]
∣∣∣

PPG_FFT _Mean_Mag/
IPG_FFT _Mean_Mag

Mean magnitude of the frequency components of
PPG/IPG signals

µ
(m)
X [k] =

1
L ∑

L−1
k=0

∣∣∣X (m)[k]
∣∣∣

PPG_FFT _Total_Power/
IPG_FFT _Total_Power

Total spectral power of segmented PPG/IPG signals P(m)
X [k] =

1
L ∑

L−1
k=0

∣∣∣X (m)[k]
∣∣∣2

HRV _IBI_Mean Mean inter-beat interval µ
(m)
IBI = 1

Nm
∑

Nm
i=1 IBI(m)

i

HRV _SDNN Standard deviation of NN intervals (SDNN) σ
(m)
IBI =

√
1

Nm
∑

Nm
i=1

(
IBI(m)

i −µ
(m)
IBI

)2

PT T _Max Maximum of pulse transit time PT T (m)
i = t(m,i)

IPG, f oot − t(m,i)
PPG, f oot ;

PT T (m)
max = max1≤i<Nm PT T (m)

i

PT T _Min Minimum of pulse transit time PT T (m)
min = min1≤i<Nm PT T (m)

i

PT T _Mean Mean of pulse transit time µ
(m)
PT T = 1

Nm
∑

Nm
i=1 PT T m

i

PT T _Mean Median of pulse transit time Med
(m)

PT T = Median
{

PT T (m)
i

}Nm

i=1

PT T _ST D Standard deviation of pulse transit time σ
(m)
PT T =

√
1

Nm
∑

Nm
i=1

(
PT T (m)

i −µ
(m)
PT T

)2

SysHeight_Mean Mean impedance systolic wave height µ
(m)
ISWH = 1

Nm
∑

Nm
i=1 ISWH(m)

i

SysHeight_ST D Standard deviation of impedance systolic wave
height

σ
(m)
ISWH =

√
1

Nm
∑

Nm
i=1

(
ISWH(m)

i −µ
(m)
ISWH

)2

SysHeight_Median Median impedance systolic wave height Med
(m)

ISWH = Median
{

ISWH(m)
i

}Nm

i=1
RiseTime_Mean Mean impedance rise time µ

(m)
IRT = 1

Nm
∑

Nm
i=1 IRT (m)

i

RiseTime_ST D Standard deviation of impedance rise time σ
(m)
IRT =

√
1

Nm
∑

Nm
i=1

(
IRT (m)

i −µ
(m)
IRT

)2

RiseTime_Median Median impedance rise time Med
(m)

IRT = Median
{

IRT (m)
i

}Nm

i=1
aNm: Heartbeat count per window; L: analysis window length (in samples); x: time-domain signal (in samples); X : DFT of x;
ISWH = impedance systolic wave height; IRT = impedance rise time; IBI = inter-beat interval; (m) window index m; nm:
start index of analysis window m.
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Based on the extracted feature sets from PPG, IPG, and their fusion, a feature attribution algorithm is applied to determine
which features contribute most significantly to the performance of the machine learning classification model. Among the
commonly used methods, Gini importance, also known as mean decrease in impurity (MDI), is frequently adopted in tree-based
models such as Decision Trees, Random Forests, and XGBoost. This technique quantifies feature importance by measuring the
total reduction in node impurity, typically calculated using the Gini index, attributable to each feature across all decision splits
in the model ensemble. The resulting importance scores are aggregated and ranked to reflect each feature’s relative contribution
to predictive accuracy62.

Classification models
This study explores cognitive load classification using three widely adopted machine learning models: Decision Tree, Random
Forest (RF), and Extreme Gradient Boosting (XGBoost). Two classification tasks are addressed: (1) a binary classification
that distinguishes between the resting state and engagement in an arithmetic task, and (2) a multiclass classification that
differentiates among the resting state and three distinct levels of arithmetic difficulty, referred to as Level 1, Level 2, and Level 3.
These levels correspond to progressively increasing degrees of cognitive load, aligned with the difficulty levels of the arithmetic
stimulation tasks.

Decision Tree is a machine learning model that organizes decision-making in a tree structure, allowing predictions to be
made based on input features. Each internal node evaluates a condition on a specific feature, each branch represents the outcome
of that condition, and each leaf node assigns a class label in classification tasks. The tree is built recursively by selecting
features and thresholds that maximize class separation, typically evaluated using criteria such as Gini impurity or entropy.
Growth continues until a predefined stopping condition is met, such as a maximum tree depth or a minimum number of samples
per node. Decision Trees are widely used due to their interpretability, ability to handle both categorical and numerical data, and
effectiveness in modeling complex decision boundaries63.

RF is an ensemble learning method that extends Decision Tree algorithm by constructing a collection of trees instead of
relying on a single one. Each tree is trained on a random subset of the training data and features, and predictions are aggregated
using majority voting for classification tasks. This ensemble approach mitigates overfitting and generally improves predictive
performance compared to individual decision trees64.

XGBoost is a high-performance ensemble technique that addresses several limitations of RF. Unlike Random Forest, which
trains trees independently, XGBoost builds trees sequentially, with each new tree aiming to correct the residual errors of the
previous ensemble using a gradient boosting framework. This iterative learning strategy enables faster convergence, better
management of the bias–variance trade-off, and often superior predictive accuracy in practical applications, as demonstrated in
numerous studies65.

These models learn to associate patterns in the extracted features with varying levels of cognitive load and perform final
classification based on these learned representations.

The training process employed three evaluation strategies: subject-dependent, subject-independent, and mixed-subject. In
the subject-dependent approach, the model was trained and tested on data from the same individual, resulting in 15 distinct
machine-learning models, one corresponding to each participant, trained and validated independently. In the subject-independent
approach, the emphasis was on assessing model generalizability across individuals. Data from 14 participants were combined
to form the training set, while the data from the remaining participant served as the test set. This procedure followed a
leave-one-subject-out cross-validation scheme, repeated 15 times to ensure that each participant’s data was used once for testing.
In the mixed-subject strategy, data from all participants were pooled and partitioned into five folds. Four folds were used for
training and the remaining fold for testing, with the process repeated across all folds. The average testing accuracy across the
five folds was then computed to evaluate performance.

Results and Discussion

PPG and IPG segmented data
Figure 4 presents a representative segment of the filtered PPG signal alongside the concurrently recorded IPG signal. It
illustrates the computation of the IBI feature, defined as the time interval between two successive systolic peaks in the PPG
waveform, which serves as a measure of beat-to-beat variability. For the IPG signal, the figure also demonstrates the extraction
of morphological features, including systolic rise time and wave height, to characterize the vascular impedance response to
pulse wave propagation. Both signals clearly capture the systolic and diastolic phases of the cardiac cycle, enabling robust
extraction of pulse-related features. Additionally, the figure highlights the computation of PTT, defined as the temporal delay
between the systolic peaks of the PPG and IPG waveforms, which reflects the travel time of the pulse wave between the two
sensing sites.
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Figure 4. Representative PPG and IPG waveforms with extracted features highlighted.

Reaction time and error rate
Figure 5 illustrates the relationship between reaction time and error rate across the three levels of arithmetic task difficulty. A
moderate to strong positive correlation is observed at all levels, indicating that participants who responded more slowly tended
to make more errors. Notably, Level 2 exhibited the strongest correlation, with a Pearson coefficient of r = 0.74. Level 3, which
represents the highest cognitive demand, is associated with both the longest reaction times (ranging from 4.6 to 8 seconds)
and the highest error rates (reaching up to 60%), underscoring the increased task difficulty. Although Levels 1 and 3 show
similar correlation coefficients (approximately 0.6), the wider spread of data points in Level 3 suggests greater variability in
both response time and performance. This pattern reflects the heightened cognitive load and response inconsistency elicited by
more complex tasks.

Feature visualization
Feature visualization with t-SNE
Figure 6 presents the two-dimensional projection of 29 features extracted from the PPG, IPG, and fused PPG–IPG datasets
using the t-SNE algorithm, which transforms high-dimensional data into a lower-dimensional space for visualization66. The
projection includes data from all mixed-subject trials, enabling an overall assessment of class separability across participants.
In the binary classification scenario (Fig. 6(a)), the projected feature distribution reveals a distinct separation between the
resting state and the arithmetic-induced cognitive load condition, indicating strong discriminative potential of the extracted
features in distinguishing between low and high cognitive demand.

In contrast, the four-class scenario (Fig. 6(b)), which represents the resting state and three increasing levels of cognitive
load, exhibits substantial overlap among clusters corresponding to different task difficulties. This reduced class separability
reflects the challenge of differentiating between subtle gradations of cognitive load, particularly under mixed-subject conditions
where inter-individual variability may further obscure class boundaries. These observations emphasize the complexity of
multiclass cognitive load classification and suggest the need for more advanced feature representations or subject-specific
modeling strategies to improve discrimination among intermediate workload levels.

Feature importance
Figure 7 presents the feature importance rankings obtained from the RF model. In both the binary (Fig. 7(a)) and four-class
(Fig. 7(b)) classification tasks, IPG-derived features dominate. The four most informative features across both settings are the
mean amplitude of the IPG segment, the maximum and minimum IPG values within the segment, and the average amplitude of
the PPG segment. Among these, the mean IPG amplitude consistently ranks as the top contributor.

The higher importance of IPG-derived features can be explained by the fundamental physiological differences between IPG
and PPG. We hypothesize that carotid PPG primarily reflects global cerebral perfusion, while frontal IPG captures localized
hemodynamic responses related to task-specific neural activity. This aligns with the mechanism of neurovascular coupling
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Figure 5. Relationship between reaction time and error rate across three levels of arithmetic task difficulty.

(NVC). Mental arithmetic tasks strongly activate the prefrontal cortex (PFC), increasing its metabolic demand67, 68. NVC
triggers local vasodilation in the PFC, leading to region-specific increases in cerebral blood flow and blood volume56.

Because the IPG sensor was placed directly over the PFC, it is well positioned to detect these localized impedance changes.
In contrast, carotid PPG reflects broader cerebral blood flow and is less sensitive to localized cortical activation. As a result,
IPG-derived features provide a more direct and sensitive representation of load-related neural activity, explaining their higher
importance in the classification model.

Furthermore, the top seven features remain consistent across the two scenarios, collectively accounting for the majority of
the importance scores within the classification model. While their exact ranking order differs slightly between the binary and
four-class cases, all seven features consistently appear among the most dominant, underscoring their robustness in cognitive
load decoding. Notably, these top-ranked features are primarily time-domain statistical descriptors, highlighting their critical
role as indicators of cognitive load. This suggests that temporal variations in signal magnitude, particularly from the IPG
modality, are highly informative for distinguishing cognitive states.

Figure 8 illustrates the distribution of the top seven contributing features, averaged across all subjects and grouped into four
cognitive states: Resting (Relax), Level 1, Level 2, and Level 3 of arithmetic-induced cognitive load. Prior to visualization,
the features were independently normalized for the IPG and PPG modalities to ensure comparability. The radar plot reveals
distinct distribution patterns between the resting and task-engaged states. In the resting condition, higher values are observed for
IPG-related features, including IPG_Max, IPG_Min, IPG_Mean, and RiseTime_Median. In contrast, during arithmetic tasks,
the distribution shifts toward PPG-derived features, specifically PPG_Mean, PPG_Min, and PPG_Max, and is accompanied by
a reduction in the values of the IPG-related features. This shift indicates a transition in physiological signal dominance from
impedance-based features to PPG-based features as cognitive load increases.

Across the three workload levels, the feature distributions retain similar shapes with substantial overlap, making Level 1,
Level 2, and Level 3 difficult to distinguish based solely on these features. RiseTime_Median shows the largest variability but
does not follow a consistent trend across conditions, suggesting limited reliability as an indicator of cognitive load intensity.

The observed patterns reflect the complementary effects of systemic autonomic regulation and localized neurovascular
coupling during cognitive stress. Increased cognitive demand activates sympathetic cardiovascular control, elevating arterial
pressure and central pulsatility to sustain cerebral perfusion, which accounts for the increased carotid PPG features69–71.
Concurrently, enhanced prefrontal neural activity induces neurovascular coupling and functional hyperemia, increasing local
blood volume72, 73. Because blood is more conductive than surrounding tissue, this results in reduced forehead bioimpedance,
explaining the decrease in IPG features. Thus, within this measurement setup, PPG primarily reflects systemic sympathetic
arousal, whereas IPG captures localized hemodynamic recruitment associated with cortical activation.

Tracking both IPG and PPG therefore provides complementary insight into vascular reactivity and autonomic nervous
system modulation.
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(a)

(b)

Figure 6. Feature visualization of the multidimensional fusion features extracted from PPG and IPG signals using the t-SNE
algorithm for (a) the two class classification problem and (b) the four class classification problem in cognitive load
categorization.
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(a)

(b)

Figure 7. Feature-importance rankings for cognitive workload classification during arithmetic tasks: (a) two-class, and (b)
four-class settings.
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Figure 8. Distributions of the top four contributing feature values across four cognitive load classes.

Classification results
Figure 9 presents the average classification accuracies across all participants for two classification tasks: a 2-class problem
that distinguishes between Relax and cognitive load, and a 4-class problem that includes Relax, Level 1, Level 2, and Level 3
cognitive states. The results compare the performance of three evaluation strategies, namely subject-independent, mix-subject,
and subject-dependent, applied across three machine learning algorithms: Decision Tree, RF, and XGBoost.

Two-class cognitive task classification
In the 2-class classification task, shown in Fig. 9(a), all models achieved high average accuracy (> 95%) under both the
mix-subject and subject-dependent strategies. These two approaches consistently outperformed the subject-independent setting,
where all models yielded an accuracy around 90%. Notably, under the subject-dependent condition, all three models reached
perfect classification accuracy of 100%. This finding suggests that when the model is trained and tested on data from the same
individual, it can nearly achieve flawless discrimination between resting and workload states. In contrast, generalizing across
subjects remains more challenging due to individual variability in physiological responses.

Four-class cognitive task classification
For the 4-class classification task (Fig. 9(b)), overall accuracies decreased across all models, reflecting the greater difficulty
of distinguishing multiple workload levels. In the subject-dependent setting, RF achieved the highest accuracy (96%),
demonstrating its effectiveness in capturing intra-subject physiological patterns. In contrast, subject-independent performance
dropped notably, with RF reaching 66%, XGBoost 65%, and Decision Tree 60%. For the mix-subject evaluation, XGBoost
(87%) and RF (83%) performed substantially better than Decision Tree (65%).

The sharp decline from subject-dependent accuracy (up to 100%) to subject-independent accuracy (as low as 60%) is a key
finding. This gap is primarily due to strong inter-individual variability in baseline cardiovascular metrics, skin impedance, and
autonomic responses to mental load. Additionally, small differences in sensor placement and morphology across subjects can
affect waveform characteristics. These factors hinder the generalization ability of subject-independent models and suggest that
practical implementations will likely require a brief user-specific calibration phase to ensure reliable performance.

Comparison between binary and four-class tasks
Overall, these results demonstrate that subject-dependent classification yields the highest accuracy, as it benefits from consistent
physiological patterns within individuals. In contrast, subject-independent models are hindered by inter-individual variability
in baseline physiology and cognitive load responses. Furthermore, the performance gap between the 2-class and 4-class
problems highlights the challenge of detecting subtle differences in cognitive load. Among the three models, RF delivered the
best performance in 4 out of 6 scenarios, closely followed by XGBoost, which achieved 3 out of 6 top scores. Both models
reached 100% accuracy in the 2-class subject-dependent case, confirming their strong capacity for personalized cognitive state
classification.
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(a)

(b)

Figure 9. Classification performance for cognitive load was evaluated in (a) a two class scenario (Relax vs. Task) and (b) a
four class scenario (Relax, Level 1, Level 2, Level 3), using both subject dependent and subject independent approaches, and
compared across three machine learning algorithms.
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Figure 10. ROC analysis for the four-class cognitive classification problem based on Random Forest algorithm, using the
mixed-subject strategy.

To further evaluate multiclass classification performance, Fig. 10 presents the receiver operating characteristic (ROC)
curves for one-versus-one binary classifications among the four cognitive states using the RF algorithm under the mixed-subject
strategy. These curves illustrate the model’s ability to distinguish between each pair of cognitive load levels. The highest
performance, with an area under the curve (AUC) of 1.0, was achieved when classifying the Relax condition against Level 1,
Level 2, or Level 3. This reflects a clear distinction between the resting state and any level of cognitive load.

In contrast, lower AUC values were observed for comparisons among the three workload levels, underscoring the increased
difficulty in distinguishing between varying degrees of mental effort. Despite this challenge, the model demonstrated strong
performance in separating Level 1 from Level 3 (AUC = 0.97) and Level 2 from Level 3 (AUC = 0.94). However, its ability to
differentiate between Level 1 and Level 2 declined, yielding a lower AUC of 0.88. This pattern suggests that cognitive workload
may vary along a continuum rather than forming sharply distinct categories. Moreover, starting from a minimal cognitive
state during rest, mental effort may increase gradually with the onset of low-difficulty tasks and then accelerate more rapidly
as task complexity continues to rise74–76. Future research should consider modeling cognitive load as a continuous variable.
Approaching the problem through regression may allow for more fine-grained and accurate decoding of cognitive effort.

Incorporating ECG in future studies could offer deeper insights into cardiovascular dynamics and complement the informa-
tion provided by PPG and IPG measurements. As cognitive load originates in the brain and induces systemic physiological
responses through the autonomic nervous system, ECG is well-suited to capture subtle or delayed cardiac changes associated
with cognitive stress. By integrating ECG with PPG and IPG, the system could provide a more comprehensive view of
brain–heart interactions and the body’s adaptive mechanisms in response to varying mental demands23, 77.

A limitation of this study lies in the experimental protocol, in which arithmetic tasks were presented sequentially with
increasing difficulty and separated by a brief 15-s rest period, potentially allowing cognitive fatigue to accumulate. Consequently,
physiological responses at higher levels may reflect both task difficulty and fatigue effects. While this does not undermine the
study’s primary objective of classifying progressively increasing cognitive load states, future work will employ randomized or
counterbalanced task orders and statistical control of trial order or time-on-task effects to better disentangle these factors78.
In addition, studies with larger and more diverse cohorts, along with baseline measures of cognitive ability and arithmetic
proficiency, are planned to improve statistical power and account for inter-individual variability.

From a hardware perspective, the current neck placement of the PPG sensor may cause discomfort during prolonged use.
Future designs will prioritize printed circuit board miniaturization, the use of flexible materials, and wireless communication to
improve wearability, mobility, and user comfort.

In addition, future work will explore deep learning approaches, including convolutional neural networks, recurrent neural
networks, and attention-based multimodal fusion models, to enable end-to-end learning directly from raw PPG and IPG signals.
With larger datasets, these approaches are expected to further improve classification accuracy, robustness across subjects, and
multimodal integration.
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Conclusions
This study presents a synergistic framework that integrates global, localized, and fused cardiovascular measurements to
characterize cerebral hemodynamics under cognitive load. Specifically, carotid PPG was used to assess global cerebral
perfusion, frontal IPG captured localized blood volume changes in the engaged cortical region, and pulse transit time between
the neck and forehead reflected arterial properties along the intervening pathway. The experimental results show that features
extracted from both signals enable accurate classification of cognitive load levels, highlighting strong brain–heart interactions
governed by neurovascular and autonomic mechanisms20, 79, 80. Notably, heart rate variability and IPG-based indices were
particularly sensitive to task difficulty, with IPG-derived features contributing most strongly to workload discrimination,
underscoring the value of region-specific monitoring for cognitive state assessment.

Among the evaluated features, IPG-derived metrics that reflect localized neurovascular coupling within the prefrontal cortex
consistently dominated the classification models. This key finding indicates that regional hemodynamic responses provide
more informative markers of cognitive load than global perfusion measures or the fused PTT feature, underscoring the novelty
and physiological relevance of the proposed approach. These results further highlight the substantial metabolic demands
associated with cognitive processing and the importance of dynamic regulation of cerebral blood flow. Taken together, global
perfusion assessed via PPG and localized cerebral blood volume changes captured through IPG provide complementary and
physiologically meaningful insights into cognitive engagement.

While our primary goal was to explore a non-EEG alternative, it is useful to contextualize our results relative to existing
EEG-based workload detection studies. In subject-dependent evaluations, many EEG systems report accuracies in the 80–95%
range for binary or multi-level mental arithmetic tasks, with some deep-learning models achieving approximately 94–97%
under optimized conditions. The proposed framework achieved a subject-dependent accuracy of 96% for the four-class task,
placing it within the upper range of EEG-based performance. Although the subject-independent accuracy (around 65%) is
lower, this trend is consistent with the EEG literature, where cross-subject generalization typically drops substantially without
subject-specific calibration81–84.

In conclusion, the proposed multimodal PPG–IPG framework demonstrates strong potential for accurate multi-level
cognitive load classification and offers promising applications in adaptive human–machine interaction and real-world monitoring.
Continuous workload estimation could enable adaptive systems to regulate information flow, adjust task difficulty, or suppress
non-critical alerts in high-demand environments such as aviation, driving, and industrial operations, thereby reducing cognitive
overload and enhancing safety. In educational and training contexts, real-time workload feedback may support personalized
learning by dynamically adapting task difficulty or identifying periods of excessive mental strain. Moreover, in operational
settings including healthcare, transportation, and security monitoring, wearable PPG–IPG systems could facilitate early
detection of cognitive fatigue, enabling timely intervention and improved performance.
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