

Gene-specific marker and trait-based evaluation of powdery mildew resistance in garden pea (*Pisum sativum var Hortense L.*)

Received: 7 October 2025

Accepted: 31 January 2026

Published online: 13 February 2026

Cite this article as: Hedau N.K., Santhiya S., Mishra K.K. *et al.* Gene-specific marker and trait-based evaluation of powdery mildew resistance in garden pea (*Pisum sativum var Hortense L.*). *Sci Rep* (2026). <https://doi.org/10.1038/s41598-026-38836-6>

Nirmal Kumar Hedau, S. Santhiya, Krishna Kant Mishra, Anu Singh, Anamika Thakur, Rahul Dev, Sushil Kumar & Lakshmi Kant

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

1 **Gene-Specific Marker and Trait-Based Evaluation of Powdery Mildew Resistance in Garden Pea (*Pisum*
 2 *sativum var Hortense L.*)**

3 **Nirmal Kumar Hedau, Santhiya S*, Krishna Kant Mishra, Anu Singh, Anamika Thakur, Rahul Dev,
 4 Sushil Kumar, Lakshmi Kant**

5 **ICAR-Vivekananda Parvathiya Krishi Anusandhan Sansthan, Almora, Uttarkhand-263601**

6 **Corresponding author: Santhiya S**

7 ***Corresponding author mail id: santhiya.bst@gmail.com**

8 **#<https://orcid.org/0009-0003-9358-0269>**

9 **Authors mail id**

10 nirmal.hedau@icar.org.in (N K H)

11 anusingh0911@gmail.com (A S)

12 krishna.mishra@icar.org.in (KKM)

13 inuthakur95@gmail.com (A T)

14 rahul2iari@gmail.com (R D)

15 sushil254386@gmail.com (SK)

16 lakshmi.kant@icar.org.in (L K)

20 **Abstract**

21 Powdery mildew (PM), caused by *Erysiphe pisi* DC ex. Saint-Amans, poses a major constraint in pea cultivation,
 22 underscoring the identification of resistant genotypes for effective disease management. The current study
 23 employed *in-vitro*, *in-vivo*, and molecular screening methods to assess the PM reaction behaviour of 11 pea
 24 genotypes aiming to identify reliable resistance source. Field assessments during two crop growth phases were
 25 carried out at two locations namely Hawalbagh (Almora) and Mukteshwar (Nainital). Among the genotypes
 26 tested VP-2020-101 and VP- 2024-55 were categorised as resistant and showed the lowest disease severity at both
 27 locations, with significantly limited Disease Incidence (DI) and Percent Disease Index (PDI). These results were
 28 corroborated by detached leaf method assay conducted under polyhouse (spore proof chamber) and incubator
 29 conditions, where VP-2020-101 and VP- 2024-55 consistently showed minimal sporulation macroscopically and
 30 sparse mycelial development microscopically. Molecular validation with gene-specific SCAR markers revealed
 31 the presence of resistance genes viz. *er1*, *er2*, and *Er3* in VP-2020-101, while VP- 2024-55 carried only *er1*.
 32 Marker ScOPE-16₁₆₀₀ reliably tracked *er1*, while ScOPX-17₁₄₀₀ and ScW4₆₃₇ confirmed the presence of *er2* and
 33 *Er3*, respectively. Integrating phen-c and geno-typic data strongly supports VP-2020-101 as a promising donor
 34 genotype for pyramiding powdery mildew resistance in the popular garden pea cultivars/genotypes. These
 35 findings demonstrate the importance of integrated disease screening approaches to precisely identify robust
 36 sources of durable resistance facilitating their effective deployment in future pea breeding programs.

37 **Keywords:** Disease screening, Garden pea, Powdery Mildew, Gene specific markers.

38 .

39

40 **Declarations**

41 **Ethics approval and consent to participate**

42 This study does not involve any human or animal participation

43

44 **Consent for publication**

45 All authors have given their consent for publication

46

47 **Availability of data and materials**

48 The original contributions presented in this study are included in the article.

49 **Competing Interest**

50 The authors declare that they have no known competing financial interests or personal relationships that could
51 have appeared to influence the work reported in this paper.

52 **Funding**

53 The Authors received no funding for this work

54 **Author contributions**

55 **NKH:** Conceptualization, reviewing and editing, **SS:** Conceptualization, Investigation, Data Curation, Formal
56 analysis, Writing - Original Draft; **KKM:** Pathological investigation **AS:** Investigation and data curation, writing
57 original draft, **AT:** Data curation and writing review, **RD:** reviewing and editing, **SK:** Supervised molecular work,
58 reviewing and editing **LK:** Resources, Supervision and reviewing.

59 **Acknowledgment**

60 Authors are highly thankful to the Director, ICAR- VPKAS, Almora, Uttarakhand and Indian Council of
61 Agriculture (ICAR) for consortium research project (CRP) on molecular breeding (Garden peas).

62 **1. Introduction**

63 Garden pea (*Pisum sativum* var *Hortense* L, 2n = 2x = 14) is a cool season legume vegetable crop grown for its
64 tender green pods in temperate and tropical highlands of the world (Gupta et al. 2024; Azmat et al. 2010). It is
65 one of the oldest model plants in plant genetics and is considered among the most extensively studied genetic
66 systems in crops next to maize. The green and dry foliage are used as cattle feed and green pods being highly
67 nutritious are preferred for culinary purpose (Devi et al., 2018). Globally it is consumed as green tender and dried
68 forms and also processed into canned, dehydrated, and frozen forms. Pea has numerous nutritional benefits due
69 to presence of functional compounds like essential amino acids (threonine, lysine, methionine, cysteine, and
70 tryptophan), minerals, fatty acids (oleic, linolenic, and linoleic acid), and carbohydrates (Villalobos Solis et al.
71 2013). It is also rich in proteins, minerals, vitamins and fibres. Protein content in pea ranges from 26-33% and 23-
72 31 % in wrinkle and smooth seeded varieties of pea with fibre content between 4 to 7% (Cousin 1997; Janani et
73 al. 2024). India ranks second in area and production of peas as cultivated on 0.563 million hectares' land, yielding
74 5.703 million metric tonnes, with a productivity of about 10.13 t/ha (NHB 2020). Having its own importance there
75 are several stress constrains hindering in achieving potential production of garden peas, one among them is
76 powdery mildew (PM). PM is one of the major threat in peas cultivation leading up to 50% yield and quality loss
77 (Warkentin et al. 1996; Katoch et al. 2010).

78 PM in peas is caused by *Erysiphe pisi* DC ex. Saint-Amans, an obligate biotrophic fungal phytopathogen that
 79 depends on photosynthetic activity of the host and cannot survive on photosynthetically inactive tissues (Carver
 80 and Jones 1988). Temperature plays an important role in PM development and epidemics in peas with an ideal
 81 range of 20-24°C favouring conidial germination and proliferation of the pathogen (Smith 1970; Pheirim et al.
 82 2021). The disease shows its prominence in warm dry days and cool nights (Sillero et al. 2006). PM lesions appear
 83 as white talcum like growth in the aerial parts of the plants. In cases of severe infestation, the fungus can penetrate
 84 up to seeds causing seed discoloration and leading to pre-mature drying of whole plant (Singh et al. 1995; Pheirim
 85 et al. 2021). This disease can be controlled by cultural practises and use of fungicides but their efficacy is limited
 86 and also lead to environmental pollution. Identification and development of cultivars having inherent resistance
 87 is effective method to manage this disease in farmer field. But the developing resistant cultivars requires reliable
 88 sources and effective screening method also. In *Pisum* species, two monogenic recessive resistant genes namely
 89 *er1* (Harland 1948) and *er2* (Heringa et al. 1969) as well as one monogenic dominant gene *Er3* (Fonddevilla et
 90 al. 2007) have been identified as conferring inherent resistance to PM. Molecular markers linked to these resistance
 91 genes can be effectively employed in early screening of genotypes harbouring resistance to PM. Among various
 92 molecular markers, PCR based markers are more desirable as it requires template DNA in small quantity and can
 93 be employed in large populations. Sequence Characterized Amplified Region (SCAR) and Simple Sequence
 94 Repeats (SSR) markers reported to be linked with powdery mildew resistance in peas (Katoch et al. 2010; Reddy
 95 et al. 2015; Cobos et al. 2018; Pheirim et al. 2021; Gupta et al. 2024). These markers can be effectively employed
 96 for molecular screening of genotypes and also valuable for pyramiding of PM resistance genes into a single genetic
 97 background. In present investigation in-vitro, in-vivo characterization of institute developed garden pea varieties
 98 and lines for PM resistance have been made and genes responsible for powdery mildew resistance in these lines
 99 were validated using gene specific SCAR markers.

100

101 2. Materials and method

102 2.1 Experimental location and materials

103 The present experiment was carried out at ICAR-Vivekananda Parvathiya Krishi Anusandhan Sansthan (VPKAS),
 104 Almora, experimental farm Hawalbagh (Coordinates 29.61°N, 79.67°E) and High-Altitude Testing site
 105 (HATS), ICAR-VPKAS, Mukteswar, Nainital (Coordinates 29.4722°N, 79.6482°E) located in mid-hills of
 106 Himalayas in Indian state of Uttarakhand. The plant material used for experiment comprised of 11 genotypes of
 107 garden pea maintained in the institute Table 1. The screening of germplasm was carried in both in-vivo and in-
 108 vitro condition in *rabi* (a standard Indian term for winter season) 2024-2025.

109 110 **Table 1: Experimental material used in the study**

Genotypes	Remarks	Release date
Vivek Matar -11	Released varieties of vegetable type pea from ICAR-VPKAS, Almora	12-8-2010
Vivek Matar -12		17-8-2015
VL Sabji Matar-15		05-02-2019
Arkel	Released variety, seeds maintained at ICAR-VPKAS, Almora	Introduced variety in 1970

VP-2317	Advance lines of vegetable type garden
VP-2321	pea from ICAR-VPKAS, Almora
VP-1920	
VP-2206	
VP-2307	
VP-2020-101	
VP- 2024-55	

111

112 **2.2 In-vivo screening**

113 *In-vivo* screening was carried under naturally ventilated Poly-house condition at both the above mentioned
 114 locations. The experiment was laid out in a Randomized Block Design (RBD) with three replications. Each
 115 genotype was sown in ten rows, each of 3 m length, maintaining standard spacing between rows and plants. Disease
 116 development and scoring was recorded at two key growth stages viz. pod development and first picking. At
 117 Hawalbagh site, sowing took place on Dec 12, 2024 with disease scoring at pod development on February 22,
 118 2025 (70 days after sowing) and at first picking on March 3, 2025 82 days after sowing). At Mukteshwar, sowing
 119 was done on Dec 18, 2024 with disease scoring at pod development on April 2, 2025 (105 days after sowing) and
 120 at first picking on April 18, 2025 (111 days after sowing).

121 The individual plants were categorized into different classes as per disease severity scale (Table 2) following the
 122 0–5 scale (Gawande and Patil, 2003). Percent disease index (PDI) was calculated by following formula given by
 123 Pandey et al. (2003) and Rasool et al. (2021) while disease incidence was calculated as per Awan et al. (2018).
 124 The host plant reaction was categorised as highly resistant (HR) (0–5 percent), resistant (R) (5.1–12.0 percent),
 125 moderately resistant (MR) (12.1–25.0 percent), moderately susceptible (MS) (25.1–50.0 percent), susceptible (S)
 126 (50.1–75.0 percent), and highly susceptible (HS) (>75 percent) based on the mean PDI.

127 Percent disease index (%) =
$$\frac{\text{Sum of all rating}}{\text{Total number of observation} \times \text{Maximum rating grade}} \times 100$$

128 Disease incidence =
$$\frac{\text{Number of diseased plants}}{\text{Total number of plants}} \times 100$$

129 To eliminate chances of disease escape, in vitro multiplied conidial inoculums of the disease maintained in
 130 susceptible cv. Arkel in greenhouse of ICAR-VPKAS was collected and dusted on the plants twice with camel
 131 brush hair (55-days old plant and 75-day old plant) for uniform development of disease infestation to facilitate
 132 effective screening of lines for resistance under polyhouse condition. Also, the susceptible genotype Arkel
 133 (Sharada and Makandar 2023) was used as spreader or infector line after every ten rows. Arkel was also used as
 134 susceptible check in the experiment.

135 **Table 2: 0-5 Scale used for powdery mildew disease scoring in field under poly-house condition**

Scale Used	Leaf area affected	Disease Reaction
0	0%	Immune (I)
1	0.1-10.0%	Resistant (R)
2	10.1-25.0%	Moderately resistant (MR)
3	25.1-50%	Moderately susceptible (MS)
4	50.1-75%	Susceptible (S)
5	75.1-100.0%	Highly susceptible (HS)

136

137 **2.3 In-vitro screening**

138 The detached leaf method, as described by Banyal (1994) and Vaid and Tyagi (1997), was used for in-vitro
 139 screening and evaluating powdery mildew reaction on the genotypes. In brief, four to five leaflets detached from
 140 30-40 days old seedlings of each genotype were floated in 90mm Petri dishes containing 25 ml of 50ppm solution
 141 of benzimidazole to enhance leaf longevity. The leaflets were dusted with PM inoculum collected from the PM
 142 infected pea fields at Hawalbagh site. One set of PM inoculated Petri dishes, along with uninoculated controls
 143 were sealed using parafilm and incubated at $25 \pm 1^\circ\text{C}$ under 16 h photoperiod while second set was kept in a spore
 144 proof chamber in polyhouse condition at room temperature. After 10 days of inoculation, the disease reaction was
 145 assessed microscopically through compound microscope (Olympus CX21, Tokyo, Japan) using a 0–4 scale (Vaid
 146 and Tyagi 1997). The leaflets rated 0, 1 and 2 were classified as resistant (Table 3) and those rated 3 and 4 declared
 147 susceptible (Banyal 1994; Vaid and Tyagi 1997).

148 **Table 3: 0-4 scale used for scoring disease reaction in detached leaf method**

Scale	Description	Rate
0	macroscopically or microscopically no mycelial growth is evident	Resistant
1	microscopically sparse mycelial growth with rare conidiophores is seen	Resistant
2	microscopically slight growth of mycelium with a little sporulation is seen and individual conidiophores on a colony can be easily counted	Resistant
3	microscopically moderate development of mycelium with moderate to heavy sporulation is seen	Susceptible
4	microscopically abundant development of mycelium with heavy to very heavy sporulation is visible	Susceptible

149

150 **2.4 Molecular screening**

151 Molecular screening was carried using a set of 6 SCAR markers reported to be linked with PM resistant genes
 152 namely *er1*, *er2* and *Er3* (Table 4). For SCAR based molecular screening genomic DNA was extracted using
 153 young leaves of the genotype using CTAB method as suggested by Murray and Thompson (1980) with slight
 154 modification. The integrity of DNA was assessed using agarose gel electrophoresis and quantified with a Nano-
 155 drop spectrophotometer (Thermo scientific Nano-drop 2000) (Ausubel et al. 1995). DNA was suspended in Milli-
 156 Q water to a concentration of 50 ng/ μl and stored at -20°C until further use.

157 Polymerase chain reaction (PCR) was carried out that each reaction comprises of 1 \times reaction buffer, 0.76 U Taq
 158 DNA polymerase, 20 μM dNTPs, 20ng each of forward and reverse primers and 50 ng of genomic DNA. The PCR
 159 amplifications were carried out in a thermocycler (ABI, Thermo Scientific, USA). The thermal profiling for PCR
 160 was as follows: an initial denaturation at 94°C for 5 min followed by 35 cycles of 94°C for 1.0 min, the annealing
 161 temperature for 2 min, extension at 72°C for 2 min, with a final extension at 72°C for 10 min followed by storage
 162 at 4°C . To evaluate the DNA amplification, 10 μl of each PCR product was mixed with 3 μl of 6X gel loading dye
 163 and electrophoresed on 2.5% agarose gel. Agarose gels were visualized and documented using the gel
 164 documentation system (Protein simple, Alpha Imager EC, USA). Amplicons of the expected size corresponding
 165 to markers linked with powdery mildew resistance genes were successfully detected.

166 **Table 4: List of SCAR markers used in the study**

Gene	Marker	Forward primer	Reverse primer	Band size (bp)	References
<i>er1</i>	ScOPX 04 ₈₈₀	CCGCTACCGATGTT ATGTTG	CCGCTACCGAACTGGTT GGA	880	Srivastava <i>et al.</i> , 2011
<i>er1</i>	Sc-OPO-18 ₁₂₀₀	CCCTCTCGCTATCC AATCC	CCTCTCGCTATCCGGTGT G	1200	Tiwari <i>et al.</i> , 1998
<i>er1</i>	ScOPE-16 ₁₆₀₀	GGTGACTGTGGAAT GACAAA	GGTGACTGTGACAATT CAG	1600	Katoch <i>et al.</i> , 2010
<i>er2</i>	ScX17 ₁₄₀₀	CAGAACGGATGAG GCGGA	GACACG GACCAATGACATC	1400	Fondevilla <i>et al.</i> , 2008
Er3	SCAB1 ₈₇₄	CCGTCGGTAGTAAA AAAAACTA	CCGTCGGTAGCCACACC A	874	
Er3	SCW4 ₆₃₇	CAGAACGGATGAG GCGGA	CAGAACGGATACAGTA CTAAC	637	

167

168

169 **3. Results**170 **3.1 In-vivo screening**

171 *In-vivo* screening of 11 pea genotypes for PM at both locations—Hawalbagh and Mukteshwar—across two growth
 172 stages: pod development and first picking revealed variable disease progression among genotypes and between
 173 locations. The weather parameters including minimum and maximum temperature and relative humidity of both
 174 the locations during the experimental growth period is given in the Supplementary table. At Hawalbagh, no disease
 175 symptoms were observed at the pod development stage across all genotypes (Table 5). However, as the crop
 176 matured, a gradual increase in disease severity was recorded. By the first picking stage, the highest disease score
 177 (scale: 3) was recorded in VP-2206 as well in Arkel a susceptible check, showed moderately susceptible disease
 178 reaction. Except for Vivek Matar-11 which showed moderately resistant (2.0) disease reaction, all other genotypes
 179 (Vivek Matar-12, VLSM-15, VP-2317, VP-2321, VP-2307, VP-2020-101 and VP- 2024-55) exhibited resistant
 180 (scale: 1.0) disease reaction. At Mukteshwar, disease onset of PM occurred at an earlier growth stage due to
 181 favourable temperature and humidity conditions for PM development, with several genotypes showing disease
 182 symptoms as early as the pod development stage (Table 5). At the first picking stage, overall disease severity was
 183 higher, with Arkel showing highly susceptible disease reaction (scale: 5.0) followed by three susceptible
 184 genotypes (Vivek Matar-11, Vivek Matar-12 and VP-2321) and two moderately susceptible genotypes (VLSM-
 185 15 and VP-2317). Moderately resistant disease reaction was displayed by VP-1920 and VP-2206, whereas, VP-
 186 2020-101 and VP- 2024-55 exhibited the least disease progression by the final stage and were classified as
 187 resistant genotypes (scale 1.0).

188 Disease scoring at Mukteshwar was employed to calculate Disease Incidence (DI) and Percent Disease Index
 189 (PDI). Except for VP-2020-101 and VP- 2024-55, all the genotypes showed 100% disease incidence and were
 190 classified as Susceptible (S), with PDI values ranging from 60.23% (VL Sabji Matar-15) to 70.74% (Arkel). The
 191 second highest PDI was observed in VP-2321 (67.36%) followed by VP-2206 (67.28%), and Vivek Matar-11
 192 (66.67%). In contrast, VP-2020-101 and VP- 2024-55 recorded disease incidences of 86.667% and 83.333%,

193 respectively, along with significantly lower PDI values of 11.11% and 11.52%. Accordingly, these two genotypes
194 were therefore classified as Resistant (R) to powdery mildew under Mukteshwar conditions (Table 5, Figure 1).

195 Briefly, VP-2020-101 and VP- 2024-55 hold potential, as sources of resistance to powdery mildew, while the
196 remaining ten genotypes are susceptible and showed progressive disease development throughout the crop growth
197 stages at both locations.

198

ARTICLE IN PRESS

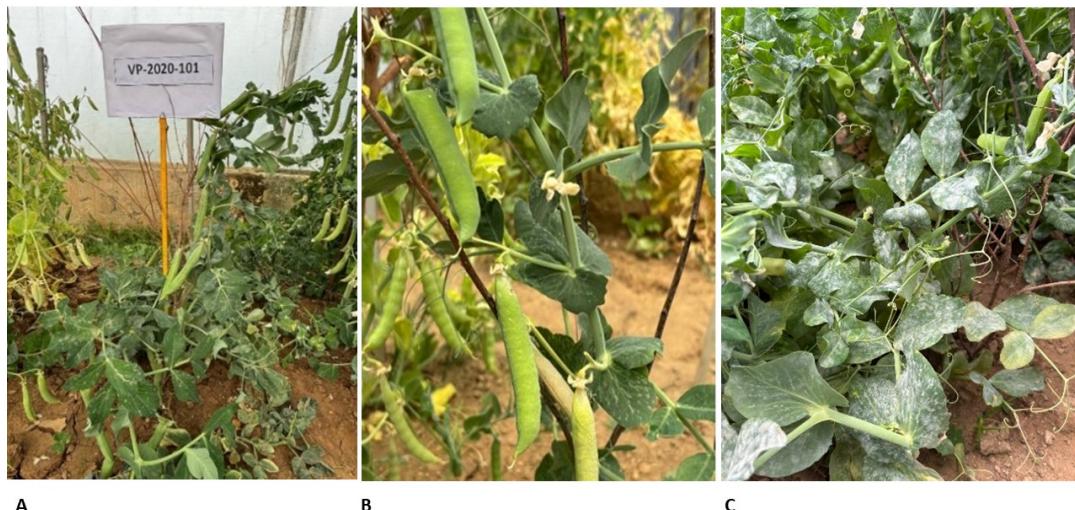

199
200
201

Table 5: Powdery mildew resistance Scoring of 11 garden pea genotypes across two growth stages and location at 0–5 scale; DI and PDI under Mukteshwar field condition

Genotypes	Disease score								Disease incidence (%)	Percent Disease Index (%)	Disease reaction [§]			
	Hawalbagh				Mukteshwar									
	Pod development stage		First picking		Pod development stage		First picking							
	Rating	Reaction	Rating	Reaction	Rating	Reaction	Rating	Reaction						
Vivek Matar -11	0	I	2	MR	3	MS	4	S	100	66.67	S			
Vivek Matar -12	0	I	1	R	1	R	4	S	100	63.13	S			
VL Sabji Matar-15	0	I	1	R	2	MR	3	MS	100	60.23	S			
Arkel	0	I	3	MS	3	MS	5	HS	100	70.74	S			
VP-2317	0	I	1	R	2	MR	3	MS	100	63.4	S			
VP-2321	0	I	1	R	2	MR	4	S	100	67.36	S			
VP-1920	0	I	0	I	1	R	2	MR	100	65.81	S			
VP-2206	0	I	3	MS	1	R	2	MR	100	67.28	S			
VP-2307	0	I	1	R	1	R	3	MS	100	64.81	S			
VP-2020-101	0	I	1	R	1	R	1	R	86.667	11.11	R			
VP- 2024-55	0	I	1	R	1	R	1	R	83.333	11.52	R			

202

[§] S: Susceptible; MS: Moderately susceptible; MR: Moderately Resistant; R: Resistant

A

B

C

203
204
205
206
207

Figure 1: Powdery mildew incidence in field condition at Mukteshwar in resistant (a: VP-2020-101 and b: VP- 2024-55) and susceptible (c: Arkel) genotypes.

3.2 *In-vitro* screening

208 Detached leaf assay was conducted to assess the resistance response of 11 pea genotypes to powdery mildew
209 under three experimental conditions: control (uninoculated, incubated), incubator (inoculated and incubated) and
210 polyhouse (inoculated in spore proof chamber in polyhouse). Under the control condition, no disease symptoms
211 were observed in any genotype throughout the experimental period. This confirms the absence of natural inoculum
212 and rules out contamination during the assay.

213 Under polyhouse conditions, seven genotypes namely Vivek Matar-11, VP-2321, VP-1920, VP-2020-101, and
214 VP- 2024-55—exhibited a resistant (R) reaction, with a disease severity score of 2 on a 0–4 scale. In contrast, six
215 genotypes viz. Vivek Matar-12, VL Sabji Matar-15, Arkel, VP-2317, VP-2206, and VP-2307—were classified as
216 susceptible (S) as displayed higher disease scores of 3 or 4. Under incubator conditions, only five genotypes—
217 VL Sabji Matar-15, VP-2317, VP-2321, VP-1920, VP-2020-101 and VP- 2024-55—maintained resistant
218 reactions with low disease scores (1–2). Whereas the remaining genotypes, including Vivek Matar-11, Vivek
219 Matar-12, Arkel, VP-2206, and VP-2307, were categorized as susceptible due to higher disease scores (≥ 3) (Table
220 6).

221 Notably, genotype VP-2020-101 consistently exhibited resistance across all conditions. It recorded no symptoms
222 (Scale: 0) in the control condition, minimal infection (scale: 1) in the incubator and a slightly higher (scale: 2) but
223 still resistant response in the polyhouse. These outcomes indicated that VP-2020-101 possesses a strong and stable
224 resistance to powdery mildew. Similarly, VP- 2024-55 also demonstrated a high degree of resistance mechanism
225 effective under both controlled (incubator) and semi-natural (polyhouse) conditions. In both of these genotypes,
226 the resistance was characterised by the presence of sparse mycelial growth and minimal sporulation of the
227 pathogen as observed microscopically and macroscopically (Figure 2). Arkel, VP-2206, and VP-2307 showed
228 susceptibility under polyhouse and incubator conditions evidenced by presence of abundant mycelial growth and

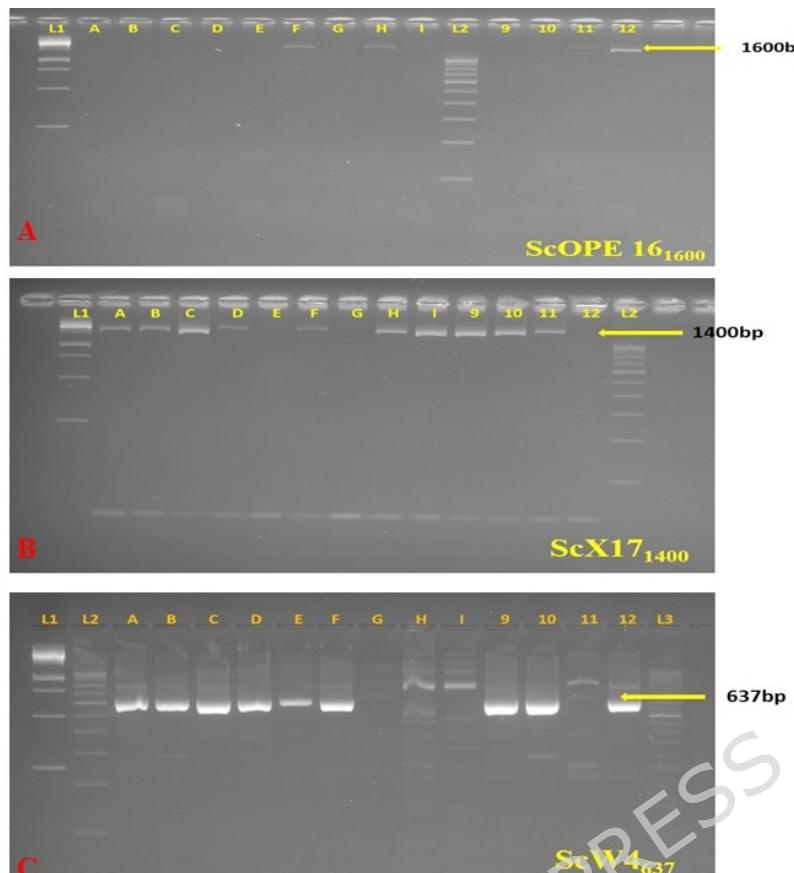
229 profuse sporulation of the pathogen depicting. The detached leaf assay effectively distinguished varying levels of
 230 resistance among genotypes. The results were largely consistent with field observations, further validating the
 231 reliability of the assay in screening for powdery mildew resistance under in-vitro condition.

232 **Table 6: Scoring of garden pea genotypes for powdery mildew resistance under in-vitro condition**
 233 **(Detached leaf method)**

Genotypes	Control		Polyhouse		Incubator	
	Scale	Rate	Scale	Rate	Scale	Rate
Vivek Matar -11	0	R	2	R	3	S
Vivek Matar -12	0	R	4	S	3	S
VL Sabji Matar-15	0	R	3	S	2	R
Arkel	0	R	4	S	3	S
VP-2317	0	R	3	S	2	R
VP-2321	0	R	2	R	2	R
VP-1920	0	R	2	R	2	R
VP-2206	0	R	3	S	3	S
VP-2307	0	R	3	S	3	S
VP-2020-101	0	R	2	R	1	R
VP- 2024-55	0	R	2	R	2	R

234

235


236 **Figure 2: Microscopic and macroscopic views of garden pea genotypes (VM-11, VM-12, VLSM-15, Arkel,
237 VP-2020-101 and VP- 2024-55) showing resistant phenotype in both the inoculated condition (polyhouse
238 and incubator) and control check.**

239

240 **3.3 Molecular screening**

241 For validation of powdery mildew resistance, six markers namely, ScOPX 04₈₈₀, Sc-OPO-18₁₂₀₀ and ScOPE-16₁₆₀₀
242 linked to *er1*, ScOPX-17₁₄₀₀ linked to *er2* and SCAB1₈₇₄ and SCW4₆₃₇ linked to *Er3* were used. The resistant
243 check included, *er1* donor er000202, *er2* donor er000203 and *Er3* donor P660-4 were used, whereas, Arkel was
244 used as a susceptible check. The amplification profiles for *er1*, *er2* and *Er3* linked markers are presented in the
245 Figure 3. Among the *er1* linked marker, ScOPE-16₁₆₀₀ was found to be polymorphic between the resistant check,
246 susceptible check and the genotypes showing resistance in the in-vivo condition. Amplicon of size 1600bp was
247 detected in donor er000202 and genotypes VP- 2024-55 and VP-2020-101, but it was absent in the susceptible
248 check i.e. Arkel. These results highlighted the potential of ScOPE-16₁₆₀₀ for effectively tracking the presence of
249 the *er1* gene among the garden pea genotypes. For *er2* linked marker ScOPX-17₁₄₀₀ amplified a 1400bp amplicon
250 product in resistant check er000203 and genotype VP-2020-101, indicating the presence of *er2* gene. Similarly,
251 ScW4₆₃₇ marker linked to the *Er3* gene generated a 637bp amplicon in resistant check P660-4 and genotype VP-
252 2020-101, confirming the presence of *Er3* gene.

253 Genotype VP-2020-101 was found to carry all three resistance genes (*er1*, *er2*, and *Er3*), as evidenced by the
254 presence of respective markers. Additionally, genotype VP- 2024-55 was positive for the *er1* gene. These findings
255 suggest that VP-2020-101, with its pyramided resistance genes, holds significant potential as a genetic resource
256 in breeding programs aimed at developing durable powdery mildew resistance in pea. Moreover, its resistance
257 validates the results observed under both in vitro and in vivo conditions.

258

259 Figure 3: Agarose gel images depicting polymorphism of amplification products linked to powdery mildew
 260 resistance genes (*er1*, *er2* and *Er3*) in pea genotypes. 3A shows a 1600 bp product amplified by the *er1*-
 261 linked marker ScOPE-16₁₆₀₀, 3B shows a 1400 bp product with the *er2*-linked marker ScX-17₁₄₀₀, and 3C
 262 shows a 637 bp product amplified by the *Er3*-linked marker ScW4₆₃₇. Lane details for all gels include: C.
 263 Arkel (susceptible check), G. P660-4 (resistant check for *Er3*), H. er000203 (resistant check for *er2*), I.
 264 er000202 (resistant check for *er1*), 10. VP-2024-55, 11. VP-2020-101, L1: 1 kb ladder (Puregene), L2:
 265 100 bp ladder (GeNei), and L3: 50 bp ladder (GeNei). These gel images without labelling is also presented
 266 as supplementary information.

267

268 4. Discussion

269 Powdery mildew caused by *Erysiphe pisi* is regarded as one of the major constrain in achieving potential
 270 production causing economical losses by having significant impact on the quantity and quality of pea crop. One
 271 conventional way to control the PM disease is the use of Sulphur containing chemical fungicide (Warkentin et al.
 272 1996). However, their unsustainability and the high cost of repeated applications preclude their extensive use in
 273 many countries (Fondevilla et al. 2012). Thus, the development of genetic resistance is more favoured to attain a
 274 stable resistance in the cultivated genotypes of garden pea. Historically, genotype resistant to powdery mildew
 275 was first described by Hammarlund (1925). Numerous resistant lines have been identified in earlier studies for
 276 powdery mildew resistance through both natural epiphytotic conditions and controlled artificial inoculation
 277 techniques (Rana et al. 2023). So far, three genes, two recessive and a dominant, have been identified that confers
 278 resistance to powdery mildew in pea. Harland (1948) first reported resistance as a monogenic recessive trait and

279 designated the gene as *er1*. In contrary, Heringa et al. (1969) identified the resistance gene *er2* in Peruvian material
 280 that was confined to leaves of pea providing complete resistance above 25°C. Later, Fondevilla et al. (2007)
 281 reported a third dominant gene (*Er3*) in *P. fulvum* that segregates independently from both *er1* and *er2* genes.

282 The expression and presence of above genes can be evaluated through conventional (field screening and detached
 283 leaf assay) as well as molecular assay techniques. Though, the conventional methods give proper result especially
 284 field-based screening but the screening become complicated during experiment associated with obligate fungus
 285 like *Erysiphe* spp. and resistance governed by recessive genes (Raj et al. 2024). Therefore, the current study
 286 evaluated powdery mildew resistance across two different agro-climatic areas using a multifaceted strategy by
 287 integrating in-vitro assay, molecular marker analysis, and in-vivo testing to identify the resistance sources suitable
 288 for incorporation in the gene pyramiding and breeding programs. Strong insights into the resistance behaviour of
 289 these genotypes have been obtained by the integration of field, controlled environment, and molecular data.
 290 Earlier, Rana et al. (2013) also screened the pea germplasm in different agro-climatic regions under natural
 291 epihytotic conditions. The multi-location trials help to avoid the ambiguities in disease reaction due to
 292 environmental factors.

293 Field screening at Hawalbagh and Mukteshwar highlighted significant variability in powdery mildew incidence
 294 and progression across both locations and developmental stages. The result is in agreement with Fondevilla et al.
 295 (2007b). At Hawalbagh, disease symptoms were absent at the pod development stage but increased steadily with
 296 crop maturity, whereas at Mukteshwar, symptoms appeared earlier and intensified due to conducive
 297 environmental conditions, particularly favourable temperature and humidity levels at Mukteshwar. During the
 298 disease assessment stage (February–March) at Hawalbagh, the average maximum and minimum temperatures
 299 were around 23 °C and 1 °C, respectively, with mean relative humidity below 45%. Such dry conditions are
 300 generally unfavorable for the development and spread of foliar fungal pathogens like powdery mildew. In contrast,
 301 at Mukteshwar, during May, the mean temperature remained around 23 °C with minimum temperatures above 8
 302 °C and relative humidity averaging 70%. These moderate temperature combined with higher humidity created a
 303 congenial microclimate that favoured pathogen establishment and sporulation, resulting in greater disease
 304 incidence and severity. These observations were corroborated by Pheirim et al. 2021. Genotype-specific
 305 differences were evident, with VP-2020-101 and VP- 2024-55 consistently exhibiting the lowest disease severity
 306 at both sites, suggesting inherent resistance. Importantly, disease incidence reached 100% in all genotypes except
 307 VP-2020-101 and VP- 2024-55 at Mukteshwar, reaffirming the high disease pressure at this site. The varied degree
 308 of disease reaction in pea germplasm has been reported earlier by Chaudhary and Banyal (2017). The differential
 309 response of genotypes across the two locations necessitated screening the germplasm under controlled conditions
 310 using the detached leaf assay.

311 Detached leaf assays under polyhouse and incubator conditions provided a controlled setting to validate field
 312 resistance (Özer et al. 2018). Disease development patterns were largely consistent with in-vivo data, supporting
 313 the effectiveness of detached leaf assays as a reliable screening method. The result aligns well with whole-plant
 314 assay outcomes and are consistent with findings from previous studies utilizing detached leaf assays (Miller-
 315 Butler et al. 2018). Previous studies of Sharma et al (1992) and Thakur et al (1996) reported (in)complete
 316 resistance due to presence of multiple resistance genes and interaction of *er-2* with environment. This may be the

317 reason for detection of different number of resistance/susceptible plants in polyhouse (whole plant and detach leaf
 318 assay) and incubator. Notably, VP-2020-101 and VP- 2024-55 maintained resistance across all artificial
 319 environments, characterized by low disease scores and sparse mycelial growth. Conversely, some genotypes, such
 320 as Vivek Matar-12 and VL Sabji Matar-13, which showed susceptible responses in vitro despite field-level
 321 variability, indicate that environmental stress can reveal cryptic susceptibility, potentially due to inducible or
 322 unstable resistance mechanisms. The breakdown of resistance in certain genotypes under induced conditions also
 323 underscores the importance of integrating both field and controlled environment evaluations to capture the full
 324 spectrum of disease responses.

325 Molecular markers enable cost-effective, reliable selection of germplasm and breeding lines through DNA assays,
 326 minimizing the need for extensive phenotypic evaluation when closely linked to target traits to reduce
 327 recombination (Javid et al. 2017). In current study, molecular characterization using gene-specific markers linked
 328 to *er1* (major resistance gene), *er2* express under specific conditions), and *Er3* (isolated from *P. fulvum*) resistance
 329 genes provided genetic validation of phenotypic observations. VP-2020-101 was found to harbour all three
 330 resistance genes as its amplicon profiling perfectly matched with respective donor (*er-1*: er000202; *er-2*: er000203
 331 and *Er-3*: P660-4), indicating a pyramided resistance genotype. This likely contributes to its robust and consistent
 332 resistance across all test conditions/locations, making it an ideal parent in resistance breeding programs. The
 333 genotypes harbouring *er 1* and *er 2* have been reported to be resistant and validated through these markers
 334 previously (Sharma et al., 2025). Given the breakdown of resistance under varying environmental conditions, the
 335 most viable strategy is to incorporate multiple resistance genes into cultivated genotypes through gene pyramiding
 336 (Devi et al. 2022). This is a significant finding, as pyramiding resistance genes is a proven strategy for achieving
 337 durable and broad-spectrum resistance. In contrast, VP- 2024-55 was positive only for *er1*, suggesting that while
 338 it exhibits high resistance, it may be more vulnerable to virulent pathogen races that overcome single-gene
 339 resistance. Resistance due to *er1* gene is said to be complete and durable as it avoids the epidermal cell penetration
 340 of the peg that emerges from the appressorium formed after the conidia germination and penetrates the epidermal
 341 host cells through the cuticle and cell wall. Earlier Tiwari et al (2017) also reported that mere *er-1* is sufficient to
 342 mitigate the PM in pea. The results of this study is in agreement with Tiwari et al (2017) as *er-1* containing both
 343 genotypes exhibited resistance.

344 5. Conclusion

345 This study underscores the critical importance of multi-environment screening and the integration of molecular
 346 tools for robust validation of resistance against powdery mildew. The genotypes VP-2020-101 and VP-2024-55
 347 consistently exhibited resistance across diverse environments, highlighting their potential as valuable donor
 348 parents in resistance breeding programs. These genotypes can be effectively utilized in the development of
 349 mapping populations, thereby facilitating QTL mapping and further genetic dissection of resistance traits. Future
 350 research should focus on detailed patho-typing of powdery mildew isolates to understand genotype-pathogen
 351 interactions better and on mapping quantitative trait loci (QTLs) associated with resistance expression under
 352 varying environmental conditions.

353 Abbreviations

354 PM - Powdery mildew

355 QTL- Quantitative trait loci

356 PDI – Percent Disease Incidence

357 S: Susceptible

358 MS: Moderately susceptible

359 MR: Moderately Resistant

360 R: Resistant

361 PCR: Polymerase chain reaction

362 CTAB: Cetyltrimethylammonium bromide

363 ICAR-VPKAS: ICAR-Vivekananda Parvathiya Krishi Anusandhan Sansthan

364 HATS: High-Altitude Testing Site

365 SCAR: Sequence Characterized Amplified Region

366 SSR: Simple Sequence Repeats

367 **Reference**

368 1. Ausubel, F. M. *et al.* Short protocols in molecular biology. Wiley, New York (1995).

369 2. Awan, Z. A., Shoaib, A. & Khan, K. A. Variations in total phenolics and antioxidant enzymes cause
370 phenotypic variability and differential resistant response in tomato genotypes against early blight disease. *Sci.*
371 *Hortic.* 239, 216–223 (2018).

372 3. Azmat, M. A. *et al.* Single recessive gene controls powdery mildew resistance in pea. *Int. J. Veg. Sci.* 16,
373 278–286 (2010).

374 4. Banyal, D. K. & Chand, J. C. Evaluation of pea genotypes for resistance against powdery mildew caused by
375 *Erysiphe pisi*. *Indian Phytopathol.* 70, 69–74 (2017).

376 5. Banyal, D. K. Studies on powdery mildew of pea caused by *Erysiphe pisi* DC. Ph.D. Thesis, Himachal
377 Pradesh Krishi Vishvavidyalaya, Palampur, India, 80 pp. (1994).

378 6. Carver, T. L. W. & Jones, S. W. Colony development by *Erysiphe graminis* f. sp. *hordei* on isolated
379 epidermis of barley coleoptile incubated under continuous light or short day conditions. *Trans. Br. Mycol. Soc.*
380 90, 114–116 (1988).

381 7. Cousin, R. Peas (*Pisum sativum* L.). *Field Crops Res.* 53, 111–130 (1997).

382 8. Devi, J. *et al.* Gene based resistance to *Erysiphe* species causing powdery mildew disease in peas (*Pisum*
383 *sativum* L.). *Genes* 13, 316 (2022).

384 9. Devi, M., Bilashini, M., Devi, M. T., Jha, A. K., Yumnam, A., Balusamy, A., Verma, V. K., Talang, H. D.,
385 Deshmukh, N. A., Rymbai, H. & Assumi, S. R. Yield and yield attributes of garden pea (*Pisum sativum* var.
386 *hortense* L.) as influenced by nutrient management practices under agroclimatic conditions of Meghalaya. *Int. J.
387 Curr. Microbiol. Appl. Sci.* 7, 3447–3454 (2018)

388 10. Fondevilla, S., Carver, T. L. W., Moreno, M. T. & Rubiales, D. Identification and characterization of
389 sources of resistance to *Erysiphe pisi* Syd. in *Pisum* spp. *Plant Breed.* 126, 113–119 (2007).

390 11. Fondevilla, S. & Rubiales, D. Powdery mildew control in pea: A review. *Agron. Sustain. Dev.* 32, 401–409
391 (2012).

392 12. Fondevilla, S., Rubiales, D., Moreno, M. T. & Torres, A. M. Identification and validation of RAPD and
393 SCAR markers linked to the gene *Er3* conferring resistance to *Erysiphe pisi* DC in pea. *Mol. Breed.* 22, 193–
394 200 (2008).

395 13. Fondevilla, S., Torres, A. M., Moreno, M. T. & Rubiales, D. Identification of a new gene for resistance to
396 powdery mildew in *Pisum fulvum*, a wild relative of pea. *Breed. Sci.* 57, 181–184 (2007).

397 14. Gawande, V. L. & Patil, J. V. Genetics of powdery mildew (*Erysiphe polygoni* DC) resistance in mungbean
398 (*Vigna radiata* L.). *Crop Prot.* 22, 567–571 (2003). [https://doi.org/10.1016/S0261-2194\(02\)00202-8](https://doi.org/10.1016/S0261-2194(02)00202-8)

399 15. Gupta, A. *et al.* Identification of SSR markers linked to powdery mildew resistance in table pea (*Pisum*
400 *sativum* var. *hortense* L.). *Legume Res.* 47, 1032–1038 (2024).

401 16. Harland, S. C. Inheritance of immunity to mildew in Peruvian forms of *Pisum sativum*. *Heredity* 2, 263–269
402 (1948).

403 17. Heringa, K. J., Vannorel, A. & Tazelaar, M. F. Resistance to powdery mildew (*Erysiphe polygoni* D.C.) in
404 peas (*Pisum sativum* L.). *Euphytica* 18, 163–169 (1969).

405 18. Janani, R. *et al.* Physiological and biochemical responses of garden pea genotypes under reproductive stage
406 heat stress. *Genet. Resour. Crop Evol.* 71, 1177–1200 (2024).

407 19. Javid, M. *et al.* Validation of molecular markers associated with boron tolerance, powdery mildew
408 resistance, and salinity tolerance in field peas. *Front. Plant Sci.* 6, 917 (2015).

409 20. Tiwari, K. R., Penner, G. A. & Warkentin, T. D. Inheritance of powdery mildew resistance in pea. *Can. J.
410 Plant Sci.* 77, 307–310 (1997).

411 21. Katoch, V. *et al.* Molecular mapping of pea powdery mildew resistance gene *er2* to pea linkage group III.
412 *Mol. Breed.* 25, 229–237 (2009).

413 22. Miller Butler, M. A., Smith, B. J. & Babiker, E. M. Comparison of whole plant and detached leaf screening
414 techniques for identifying anthracnose resistance in strawberry plants. *Plant Dis.* 102, 2112–2119 (2018).

415 23. Murray, M. G. & Thompson, W. F. Rapid isolation of high molecular weight plant DNA. *Nucleic Acids Res.*
416 8, 4321–4326 (1980).

417 24. Özer, N., Kün, A. & İlbi, H. Detached leaf test for evaluation of resistance to powdery mildew in pepper.
418 *Agric. Res. Technol. Open Access J.* 14, Article 555923 (2018).

419 25. Pandey, K. K., Pandey, P. K., Kalloo, G. & Banerjee, M. K. Resistance to early blight of tomato with respect
420 to various parameters of disease epidemics. *J. Gen. Plant Pathol.* 69, 364–371 (2003).

421 26. Pheirim, R., Konjengbam, N. S. & Mahanta, M. Molecular markers for powdery mildew in pea (*Pisum*
422 *sativum* L.): A review. *Legume Res.* 45, 399–409 (2022).

423 27. Raj, P. *et al.* Evaluation of powdery mildew resistant pyramid vegetable pea genotypes introgressed with *er1*
424 and *er2* genes for yield and related traits in mid hills of Himachal Pradesh. *Veg. Sci.* 51, 335–341 (2024).

425 28. Rana, C. *et al.* In vivo and in vitro validation of powdery mildew resistance in garden pea genotypes. *Sci.*
426 *Rep.* 13, 2243 (2023).

427 29. Rasool, M., Akhter, A., Soja, G. & Haider, M. S. Role of biochar, compost and plant growth promoting
428 rhizobacteria in the management of tomato early blight disease. *Sci. Rep.* 11, 6092 (2021).

429 30. Sharada, P. & Makandar, R. Assessing garden pea germplasm for powdery mildew resistance through
430 disease phenotyping and genotyping using molecular markers. *Plant Gene* 35, 100425 (2023).

431 31. Sharma, N. Evaluation of varietal susceptibility in pea to *Erysiphe polygoni*. *Ann. Appl. Biol.* 120, 110–111
432 (1992).

433 32. Sillero, J. C. *et al.* Screening techniques and sources of resistance to rusts and mildews in grain legumes.
434 *Euphytica* 147, 255–272 (2006).

435 33. Singh, U. P., Prithviraj, B., Wagner, K. G. & Schumacher, K. G. Effect of ajoene, a constituent of garlic
436 (*Allium sativum*), on powdery mildew (*Erysiphe pisi*) of pea (*Pisum sativum*). *J. Plant Dis. Prot.* 102, 399–406
437 (1995).

438 34. Smith, C. G. Production of powdery mildew cleistocarp in a controlled environment. *Trans. Br. Mycol. Soc.*
439 55, 355–365 (1970).

440 35. Srivastava, R., Mishra, S., Singh, A. & Mohapatra, T. Development of a coupling phase SCAR marker
441 linked to the powdery mildew resistance gene *er1* in pea (*Pisum sativum* L.). *Euphytica* 186, 855–866 (2012).

442 36. Thakur, B. R., Kapoor, A. S. & Jamwal, R. S. Varietal resistance of pea to powdery mildew in dry
443 temperature zone of Himachal Pradesh. *Indian Phytopathol.* 49, 92–93 (1996).

444 37. Tiwari, K. R. & Penner, G. A. Identification of coupling and repulsion phase RAPD markers for powdery
445 mildew resistance gene *er1* in pea. *Can. J. Plant Sci.* 78, 361–367 (1998).

446 39. Vaid, A. & Tyagi, P. D. Genetics of powdery mildew resistance in pea. *Euphytica* 96, 203–206 (1997).

447 40. Villalobos Solis, M. I., Patel, A., Orsat, V. *et al.* Fatty acid profiling of the seed oils of some varieties of
448 field peas (*Pisum sativum*) by RP LC/ESI MS/MS: towards the development of an oilseed pea. *Food Chem.* 139,
449 986–993 (2013).

450 41. Warkentin, T. D., Rashid, K. Y. & Xue, A. G. Fungicidal control of powdery mildew in field pea. *Can. J.*
451 *Plant Sci.* 76, 933–935 (1996).

452 42. Sharma, A., Banyal, D. K., Dhole, V. J., Bansuli, Rana, R. S., Kumar, R., ... & Sharma, A. (2025).
453 Development of new powdery mildew resistant lines in garden pea (*Pisum sativum* L.) using induced mutagenesis
454 and validation of resistance for the *er1* and *er2* gene through molecular markers. *Frontiers in Plant Science*, 15,
455 1501661.

456 **Table legends**

457 **Table 1:** Experimental material used in the study

458 **Table 2:** 0-5 Scale used for powdery mildew disease scoring in field under poly-house condition

459

460 **Table 3:** 0-4 scale used for scoring disease reaction in detached leaf method

461 **Table 4:** List of SCAR markers used in the study

462

463 **Table 5:** Powdery mildew resistance Scoring of 11 garden pea genotypes across two growth stages and location

464 at 0–5 scale; DI and PDI under Mukteshwar field condition

465 **Table 6:** Scoring of garden pea genotypes for powdery mildew resistance under in-vitro condition (Detached leaf

466 method)

467

468 **Figure legends**

469 **Figure 1:** Powdery mildew incidence in field condition at Mukteshwar in resistant (a: VP-2020-101 and b: VP-

470 2024-55) and susceptible (c: Arkel) genotypes.

471 **Figure 2:** Microscopic and macroscopic views of garden pea genotypes (VM-11, VM-12, VLSM-15, Arkel, VP-

472 2020-101 and VP- 2024-55) showing resistant phenotype in both the inoculated condition (polyhouse and

473 incubator) and control check.

474 **Figure 3:** Agarose gel images depicting polymorphism of amplification products linked to powdery mildew

475 resistance genes (*er1*, *er2* and *Er3*) in pea genotypes. 3A shows a 1600 bp product amplified by the *er1*-linked

476 marker ScOPE-16₁₆₀₀, 3B shows a 1400 bp product with the *er2*-linked marker ScX-17₁₄₀₀, and 3C shows a

477 637 bp product amplified by the *Er3*-linked marker ScW4₆₃₇. Lane details for all gels include: C. Arkel

478 (susceptible check), G. P660-4 (resistant check for *Er3*), H. er000203 (resistant check for *er2*), I. er000202

479 (resistant check for *er1*), 10. VP-2024-55, 11. VP-2020-101, L1: 1 kb ladder (Puregene), L2: 100 bp ladder

480 (GeNei), and L3: 50 bp ladder (GeNei).

481