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Abstract. Motor impairment following stroke frequently leads to long-term
disability, limiting independence and quality of life. Brain—-Computer Interface (BCI)
systems integrating motor imagery (MI) with virtual reality (VR) offer promising
avenues for enhancing neuroplasticity and engagement through immersive, real-time,
and proprioceptive feedback. Yet, identifying reliable electroencephalography (EEG)-
based bioniarkers that reflect or predict recovery remains challenging. This study
investigated the relationship between event-related desynchronization (ERD) dynamics
during MI-VR training and motor recovery in individuals with chronic stroke. Fourteen
participants with stroke (9 experimental, 5 control) completed a 4-week VR-BCI
intervention and were compared with a non-stroke reference cohort (N = 35). Linear
mixed-effects models assessed ERD modulation across sessions and groups, and a
two-stage regression evaluated the predictive value of ERD features for Fugl-Meyer
Assessment (FMA) gains. Results showed no significant ERD change across sessions,
but stroke participants exhibited significantly reduced ERD compared to controls.
Baseline ERD amplitude predicted motor improvement, whereas ERD progression
did not. Ipsilateral ERD showed a compensatory trend in ischemic stroke. These
findings indicate that baseline ERD may serve as a stronger prognostic biomarker
than short-term ERD dynamics, supporting the development of personalized VR-BCI
rehabilitation strategies for chronic stroke recovery.

Keywords: Brain-Computer Interfaces, Motor Imagery, Event-Related Desynchroniza-
tion, Stroke Rehabilitation, Virtual Reality
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1. Introduction

Stroke continuous to be a leading cause of disability worldwide, often resulting in
motor impairments that significantly affect patients’ quality of life [1]. Among these
impairments, hemiparesis affecting the upper limb is particularly common [2], with many
survivors experiencing chronic limitations despite receiving conventional rehabilitation
therapies |[3].

Current stroke upper—limb rehabilitation combines traditional neurofacilitation
methods, which remain widely used in clinical practice, with more contemporary task-
specific approaches that emphasize movement re-education and functional training.
These rehabilitation strategies are increasingly complemented by technology-based
interventions such as functional electrical stimulation (FES), robotic-assisted therapy,
and virtual reality (VR) [4, 5, 6].

Evidence supports the use of Brain—Computer Interfaces (BCI) for post-stroke
rehabilitation, especially for upper limb motor recovery, with numerous meta-analyses
reporting moderate to large beneficial effect sizes [7, 8, 9, 10|. One of the earliest
randomized controlled trials (RCT) providing direct evidence of BCI efficacy, showing
significantly greater improvements in upper-limb motor function compared to motor
imagery (MI) practice alone in subacute stroke patients [11].  Specifically, BCI
training significantly improves clinical measures like the Fugl-Meyer Assessment—Upper
Extremity (FMA-UE; MD = 3.69) and the Action Research Arm Test (ARAT) [12, 13],
often demonstrating superior results compared to conventional rehabilitation [14, 15,
12|. The interventions are widely considered safe for clinical use [16, 9, 13].

The efficacy relies on the BCI’s ability to promote neuroplasticity by creating a
closed-loop system linking the patient’s neural intent (e.g., motor imagery) with real-
time sensory/motor feedback, which reinforces damaged motor circuits via Hebbian
learning [17, 18, 12|. Specifically, MI and motor observation (MO) are commonly
employed in electroencephalography (EEG)-based BCI protocols, as both processes
are associated with the activation of the sensorimotor cortex and the mirror neuron
system (MNS) [19]. These activities induce event-related desynchronization (ERD) in
the Alpha (8-12 Hz) and Beta (12-30 Hz) bands, which are neural markers linked to
motor planning, execution, and motor recovery [20].

Specifically, enhanced ERD in stroke rehabilitation is consistently linked to
improved BCI control and motor recovery, with stronger ipsilesional ERD indicating
better neuroplastic adaptation [21, 22, 23, 24, 25|. Cortical lesions typically show
greater reductions in ipsilesional alpha and beta ERD, while subcortical lesions display
more variable, often bilateral patterns [23]. However, variability in study methodologies
hampers synthesis and comparability [23]. Further, greater ERD lateralization toward
the ipsilesional hemisphere generally predicts better motor outcomes [26, 21, 22, 27],
and correlations between ERD metrics—such as the Laterality Coefficient—support its
value as a predictive biomarker [27, 28]. Nonetheless, contralesional or bilateral ERD
patterns in severe cases challenge the generalisation of ipsilesional dominance [29].
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EEG-based BCIs are advantageous due to their non-invasive nature, portability,
and cost-effectiveness. Recent reviews underscore the need for prognostic
neurophysiological markers that can inform personalized rehabilitation strategies and
improve patient stratification [30, 31]. However, the effectiveness of MI-BCI training
varies widely across individuals, with factors such as lesion location, cognitive status, and
MI ability contributing to this variability [32, 33, 34, 35]. Moreover, BCI performance
often suffers from inadequate feedback or unstable EEG signals [36], thereby hindering
effective learning [37| and reinforcing the value of co-adaptive or mutual learning
paradigms [38|. Recent research has explored deep learning algorithms to adapt BCIs to
individual neural signatures, though traditional machine learning methods often yield
comparable results [39].

Integrating VR into BCI training is a promising strategy to enhance motor
rehabilitation. VR provides immersive, first-person experiences that can induce a sense
of embodiment, allowing patients to visualize and experience virtual limb movements
even without physical execution. Prior findings have been shown increased embodiment,
higher sensorimotor brain activity, and improved accuracy of task execution in immersive
VR environments compared to conventional screen feedback. Pilot studies indicated
enhanced motivation, focus, and motor outcomes for stroke and healthy subjects [40, 41,
42, 43, 44]. Further, employing a virtual therapist with augmented feedback within VR,
have showed showed promising results in neuro—inotor recovery [45]. VR environments
also offer safe, engaging, and motivating settings for rehabilitation, with gamified tasks
that have been shown to enhance engagement and adherence to therapy [6].

Despite growing eviderice supporting the use of VR-BCI systems for stroke
rehabilitation, the relationship between brain activity modulation and clinical outcomes
remains insufficiently understood. Specifically, the long-term effects of VR-BCI training
on motor function and its correlation with neurophysiological changes, such as Alpha
and Beta ERD patterns, require further investigation. This need is driven by high inter-
and intra-subject variability in neural responses [46], which can arise from differences
in stroke severity, location, and levels of engagement. Additionally, the variability
in training protocols further complicates our understanding of how neurophysiological
adaptation supports motor learning and recovery [36].

While the clinical efficacy of VR-BCI system for post-stroke motor rehabilitation
has been demonstrated in previous studies, this study aims to bridge existing
knowledge gaps by identifying EEG-based neural features that may predict individual
responsiveness to therapy. Building on previous work, this study ensures consistency
of the experimental paradigm, feedback design, and analysis pipeline, addressing
the persistent lack of standardization across BCI studies. By examining the
interaction between motor recovery and neural activity, this work seeks to advance the
development of more effective and personalized BCI-based neurorehabilitation strategies
for individuals with chronic and severe motor impairments.
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2. Methods

2.1. Participants

Fourteen individuals with stroke were recruited between August 2019 and December
2023 and randomly allocated in two groups. Recruitment was disrupted by COVID-
19-related hospital restrictions. Ultimately, nine were allocated to the experimental
group (four female), and five (one female) served as a control group (Table 1). The
final sample was unbalanced due to participant dropouts over the course of the
study. Participants provided their written informed consent in accordance with the
Declaration of Helsinki. This study was approved by Scientific and Ethic Committees
of the Central Hospital of Funchal, Portugal - approval: 21/2019 with a clinical trial
registration number: NCT04376138. No interim analyses were planned; however, all
study sessions were conducted at the hospital, allowing prompt response in case of
medical need and enabling standardized stopping guidelines if necessary. The control
group received standard care. All participants continued their usual therapy; no
additional rehabilitation was provided. Harms were defined as any adverse events
or unintended effects related to study procedures (e.g., discomfort, dizziness, anxiety,
technical intolerance) and were monitored non-systematically through self-report and
investigator observation. No adverse events were reported in either group. Further, data
from 35 individuals without stroke were used as a reference cohort. This diverse dataset
provides a baseline for comparing neurophysiological responses observed in individuals
with stroke. These participants followed the same VR-BCI protocol and experimental
setup as the stroke group, ensuring methodological consistency across cohorts.

Table 1: Demographic and Clinical Profile of Participants with Stroke. Participants
are divided into two groups: experimental and control. MPS refers to Months Post-
Stroke. FMA refers to the Fugl-Meyer Assessment for the upper limb (maximum value
= 66). AFMA is the change between pre- and post-FMA scores, with * indicating
minimal clinically important difference (MCID). MoCA refers to the Montreal Cognitive
Assessment (maximum score = 30). AMoCA is the difference between pre- and post-
MoCA scores. Follow-up assessment was performed a month after they finished the

intervention.
Participant ID  Group  Gender Age (years) Stroke Type Lesion Type MPS (months) Affected Side FMA MoCA
Pre Post Follow-up A Pre Post Follow-up A
PO1 Experimental F 48 Hemorrhagic Mixed 11.3 Right 22 19 19 -3 25 21 25 -4
P02 Experimental F 63 Ischemic Subcortical 181.5 Left 40 17 40 T 28 22 26 -6
P05 Experimental M 61 Ischemic Mixed 79.1 Left 58 58 58 0 26 26 30 0
P08 Experimental M 58 Ischemic Mixed 11.3 Left 13 21 20 8* 19 23 24 4
P03 Experimental F 64 Hemorrhagic Mixed 17 Left 42 58 59 16*% 10 12 19 2
P21 Experimental M 59 Ischemic Brainstem 9 Right 62 62 62 0 22 24 26 2
P24 Experimental M 65 Hemorrhagic Mixed 8 Right 50 52 57 2 15 15 15 0
P40 Experimental F 54 Ischemic - 21 Left 50 52 - 2 - - -
Cco1 Control M 56 Ischemic Mixed 64.5 Left 15 21 20 6* 23 26 25 3
Cco2 Control M 54 Hemorrhagic  Disperse small vessel disease 5.4 Right 43 51 53 8* 22 25 20 3
Co3 Control F 54 Ischemic Mixed 1.9 Left 12 16 21 4* 19 18 22 -1
Co4 Control M 51 Ischemic Subcortical 26.2 Right 29 43 48 14* 27 27 30 0

Co5 Control M 58 Ischemic Mixed 168.1 Right 39 36 - 3013 16

w
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2.1.1. Participants with Stroke: Individuals with stroke (N = 14) in the chronic phase
(two enrolled at 4.9 and 5.4 months but started > 6 months post-stroke) were recruited
at the Central Hospital of Funchal. Mean age was 58 years (SD = 6), 65% male
and 35% female, with 4 participants presenting with hemorrhagic stroke and 10 with
ischemic stroke (Table 1). The study was originally registered with an expected sample
size of 20 participants based on practical considerations rather than a formal power
calculation; however, achieving this target proved challenging due to strict eligibility
criteria, resulting in an unbalanced final sample (9 experimental, 5 control) following
participant dropouts (Figure 1(a)).

The inclusion criteria for participation required upper limb paresis, defined by
FME-UE score < 47, with lesion characteristics confirmed via neuroimaging (magnetic
resonance imaging or an equivalent modality). Additionally, participants must have
experienced a first stroke episode with no documented lasting effects from previous
events, possess sufficient cognitive capacity to execute the required tasks. have a
minimum of 2 years of formal education. The minimum education requirement reflects
local clinical standards for literacy and task comprehension rather than academic
attainment. While the clinical trial registration speciiied an age range of 18 to 80
years, the study protocol included all eligible participaiits aged > 18 years.

Exclusion criteria included a history of cognitive impairment prior to the stroke and
severe aphasia, perceptual, or cognitive deficits that would interfere with task execution
or communication. Clinical thresholds for exclusion were set for hemispatial neglect,
defined as a score > 6 on the Bells Test, and clinically significant depression, defined
as a Beck Depression Inventory (BDI) score > 28 (Portuguese version by Vaz Serra &
Pio Abreu, 1973)). Notably, the BDI was utilized as a cross-sectional screening tool at
baseline in place of the registered Geriatric Depression Scale (GDS) [47] to better suit
the adult population’s profile. Participants were also excluded if they presented with
other neurological, neuromuscular, or orthopedic conditions affecting motor capacity,
severe visual impairment, claustrophobia, or the presence of ferromagnetic material in
the body. While muscle tone was systematically assessed using the Modified Ashworth
Scale (MAS), spasticity was not a formal exclusion criterion; baseline motor function
was evaluated using the FME-UE.

One participant (P39) completed the full intervention and is presented in this study
for reference; however, as he did not meet the stroke chronicity criteria (< 6 months),
his data were excluded from this analysis.

2.1.2.  Participants without Stroke: Participants without stroke (N = 35) were
individuals with no history of neurological or other clinically significant medical
conditions. The data were obtained from our previous laboratory studies [48, 49, 50],
where the experimental setup and protocol were identical to those used for the stroke
group (Figure 1(b)). The first group from [50] included 19 participants (mean age
= 24.79 years, SD = 3.54), with 13 males and 6 females. Similarly, [48| included
11 participants (mean age = 27.29 years, SD = 4.31), consisting of 8 males and 3
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females. Further, [49] included 5 participants (mean age = 51 years, SD = 5.5), 4 of
whom were female. Finally, the non-stroke cohort was not age-matched to the stroke
cohort. However, in an independent study using the same NeuRow VR-BCI protocol, no
significant association between age and MI-BCI performance and no differences between
age groups were observed, suggesting minimal age effects within the 20-50 year range
typical of our non-stroke datasets [48].

(a) (b)

Stroke patients assessed for Data from 3 d
cligibility (n = 20) ata from 3 datasets
Excluded (n=5) * Excluded from analysis E ‘ Tnclusion Criteria:
© Did not meet inclusion Enrolled and consented (n-1) ! Non-stroke participants e Same VR-BCI paradigm (NeuRow)
la— —>1 i >
criteria (n=15) ® Sub acute stroke (<6 H (n=35) e Same EEG montage and EEG
® Declined participation months)(P39) 1 analysis
' |
I
Enrolled Randomized 1
I
(n=14) '
' Young adults Age-matched
| ' (n=30) @=5)
Experimental Group: (‘oncvoel:ltlriizfl?::';py
VR-BCI (n =9) (s
Completed Intervention Completed Intervention
(n=9) (n=5)

Figure 1: Study flowchart. (a) Flow diagram of participant recruitment, allocation,
exclusions, and inclusion in analyses for the prospective stroke cohort. Fifteen
individuals with stroke were enrolled; one participant was excluded from analysis for
not meeting chronicity criteria (< 6 months post-stroke). Fourteen participants were
randomized to either a VR-BCI intervention group or a conventional therapy control
group and were included in the final analyses. (b) Flow diagram of the non-stroke
reference cohort, pooled from three previously completed studies using the same VR-
BCI paradigm and EEG protocol. This cohort (N = 35) was included exclusively for
neurophysiological (ERD) reference and was not used for clinical inference.

2.2. Clinical Outcome Measures

The primary clinical outcome measures included the FMA-UE and the Montreal
Cognitive Assessment (MoCA). Participants with stroke were assessed pre- and post-
intervention, with most undergoing an additional follow-up assessment one month after
completing the experimental protocol. Cognitive capacity was not operationalized using
a fixed MoCA cut-off, instead, eligibility was determined by rehabilitation specialists
based on clinical judgment, consistent with routine clinical practice, while cognitive
screening through MoCA was used descriptively and for exploratory analyses.

The FMA is a standardized Likert-scale assessment widely used to evaluate motor
function recovery following stroke-induced hemiplegia. It assesses multiple domains,
including motor function, sensation, range of motion, and joint pain. The upper-
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extremity subsection of the FMA (FMA-UE) has a maximum score of 66 points [51]. A
minimal clinically meaningful improvement following treatment is typically defined as
an increase of +4 to 47 points [52]. The MoCA is a widely used cognitive screening tool
designed to assess cognitive impairment. Scores range from 0 to 30, with a score above
26 considered indicative of normal cognitive function [53]. MoCA was administered
primarily as a screening tool to ensure that participants were cognitively apt to engage
with the VR-BCI training. In addition, given evidence that motor rehabilitation may
sometimes be accompanied by secondary cognitive improvements, MoCA scores were
also monitored as an exploratory outcome. Finally, data for participants P40 and C05
are incomplete (Table 1) due to protocol modifications implemented for the final batch
of patients, resulting in the absence of follow-up assessments for both the FMA and

MoCA.

2.2.1. Study Design and Protocol Deviations: Randomization used a simple procedure
without stratification or blocking. The sequence was generated by one team member
and was not concealed; personnel enrolling participants had access, while participants
did not. Although the initial trial registration specified single-blinding for the outcomes
assessor, no blinding was ultimately implemented due to the nature of the interventions.
Furthermore, the Kinesthetic and Visual Imagery Questionnaire (KVIQ) [54] was
omitted from the final protocol to reduce participant fatigue. The MoCA and MAS
remained the primary longitudinal measures, assessed at baseline, final (4 weeks), and
1-month follow-up.

2.3. Experimental Design

2.3.1. Experimental protocol: The experimental protocol for this study consisted of a 4-
week intervention, including a total of 12 VR-BCI training sessions for the experimental
group, except for participant P05 with 10 sessions, and participant P40 with 11
sessions. The participants in the control group did not follow the VR-BCI experimental
intervention but instead engaged in additional hours of conventional therapy. Clinical
evaluations and functional brain imaging assessments were conducted at three distinct
time points: (1) before the intervention (pre); (2) immediately after completing the
intervention (post); and (3) one month following the intervention (follow-up). Both
the BCI training and brain imaging with functional Magnetic Resonance (fMRI) for
participants with stroke were carried out at the Central Hospital of Funchal. fMRI data
were acquired as part of a parallel investigation and are not reported here, as they fall
outside the scope of the present EEG-focused analysis.

For the participants without stroke, a single MI-BCI session was used for this
analysis. These sessions took place in a lab environment, in two different physical
locations. At the NeurorehabLab of University of Madeira, and the NeuroLab of the
Evolutionary Systems and Biomedical Engineering Lab (LaSEEB) /Institute of Systems
and Robotics in Lisbon.
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2.3.2. EEG and VR equipment: For participants with stroke, EEG data was acquired
using the g.Nautilus wireless EEG amplifier (g.tec, Graz, Austria) with 32 channels
(Figure 2A), a sampling rate of 500 Hz, and 24-bit resolution. Electrodes were placed
according to the 10-10 system, and data was transmitted wirelessly via a 2.4 GHz
ISM band to a desktop computer for real-time processing. For participants without
stroke, EEG data was recorded using both the g.Nautilus and the Liveamp 32 EEG
amplifier (Brain Products GmbH, Munich, Germany), maintaining the same 32-channel
setup and 500 Hz sampling rate as the stroke group. Both devices have similar
specifications and are functionally equivalent in terms of data acquisition performance
and noise characteristics. The main difference lies in the brand rather than technology
or configuration. This makes a systematic hardware bias unlikely.

Visual feedback was delivered through the Oculus Rift CV1 (Resolution: 1080x1200
per-eye; Refresh Rate: 90 Hz; field of view (FoV): 87° horizontal, 88° vertical; 6 degrees
of freedom (DoF') motion tracking) and the Oculus Quest 2 (Resolution: 1832x1920 per-
eye; Refresh Rate: 120 Hz; field of view (FoV): 97° horizontal, 93° vertical; 6 degrees
of freedom (DoF) motion tracking) systems (Figure 2B). Additionally, vibro-tactile
feedback was provided through two Oculus Touch controllers (Figure 2C) modified with
a custom support base for patient comfort (Figure 2D).

Left | Right Rest
i 1

1
\Inter-trial
| interval

Baseline Motor Imagery (Ml) Task | L
-2 -1 0 1 2 3 4
Time (sec)

2 X 20 €pOChs --orvrmmmmsmrmemmera e §

Figure 2: VR-BCI Experimental Setup: A. EEG System with 32 electrodes; B. HMD
for VR feedback; C. Controllers for vibrotactile feedback; D. Custom controller support;
E. MI protocol illustrating the epoch size and visual feedback through NeuRow.

2.3.3. VR-BCI training paradigm and protocol: The VR-BCI training task utilized
NeuRow [55], a first-person upper-limb MI and MO paradigm in immersive VR. The
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protocol involved MI-MO training through embodied feedback, rendered through a
Head-Mounted Display (HMD), with vibro-tactile feedback. Participants were seated in
a virtual boat and instructed to perform MI and MO of proximal, rowing movements,
guided by an on-screen directional cue (left or right arrow). The avatar’s two arms were
always visible to preserve ecological context, but only the cued side was to be imagined
at each trial. Multimodal feedback was provided: visual feedback depicted the avatar’s
arm movement in the cued direction; auditory feedback delivered ambient and event-
specific sounds (e.g., water splashes, scoring) via the HMD headphones; and vibro-
tactile feedback produced brief hand vibrations through the Oculus Touch controller
corresponding to the cued side.

The training procedure comprised two phases: (1) Calibration — participants
performed cued left- vs right-hand MI synchronized with avatar rowing actions and
vibro-tactile cues. Each session included 20 randomized trials per hand, with 2 s
of baseline and 4 s of MI (Figure 2E). A randomized inter-trial interval (1.25-1.5 s)
was applied to prevent stimulus anticipation and carryover effects. EEG data from
calibration were used to extract spatial and spectral features throngh a common spatial
patterns (CSP) filter (4 filters used, in the frequency band of § - 30 Hz), which trained
a linear discriminant analysis (LDA) classifier, a widely adopted approach for MI-based
BCIs [56]. (2) Online training — the trained mode! then classified MI patterns in real
time, enabling participants to control the virtual boat through MI of the cued arm,
with the same trial number and duration as in training, and as implemented in previous
studies using similar protocols [57]. The same protocol was applied to both stroke and
healthy participants.

2.3.4. Design rationale of the NeuRow VR paradigm: NeuRow employs a bimanual
design to engage bilateral sensorimotor networks and promote interhemispheric
rebalance after stroke by enhancing ipsilesional recruitment, reducing contralesional
inhibition, and enabling repetitive, error-reduced practice [58, 59, 60|. To further
increase sensorimotor activation, NeuRow combines motor imagery and observation
(MIMO), leveraging the mirror neuron and action-observation networks [61, 62, 63],
which enhance premotor and parietal activation when imagery and observation are
integrated [64, 65]. MIMO-based VR paradigms have shown stronger ERD responses
than MI alone [66, 50]. Brain-contingent feedback advances the virtual boat and
delivers a co-timed vibrotactile pulse, reinforcing associative (Hebbian) learning and
sensorimotor coupling through precise temporal synchronization of visual and tactile
feedback with motor intention [67, 68, 69].

2.4. EEG Data Analysis

For the post-hoc analysis, EEG signals were processed using MATLAB R2023a (The
MathWorks, MA, United States) and the EEGLAB toolbox v2023.1 [70].
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2.4.1. EEG Pre-Processing Optimization in Clinical Settings: Given that our stroke
data were recorded in a hospital setting, a naturally higher-noise environment, and
involved individuals with brain lesions, we anticipated an increased level of noise
compared to standard laboratory conditions. Consequently, EEG pre-processing was
a critical aspect of our methodology, requiring careful investigation to ensure optimal
signal quality. To address this, we explored and compared multiple pre-processing
pipelines, ranging from basic filtering approaches to more robust and aggressive artifact
removal methods. The final pipeline was selected based on a systematic evaluation
of performance, as outlined in the schematic presented in Figure 3, while the code is
available onlinel

The selection of the optimal pre-processing pipeline was based on a two-fold
evaluation: first, assessing ERD values obtained after applying each pipeline, and
second, conducting a manual inspection to ensure effective artifact removal. Given
the high prevalence of artifacts in the stroke cohort, Pipeline § was identified as the
most suitable approach (Figure 3).

For the non-stroke population, the same comparative analvsis was conducted across
different pre-processing pipelines. As the data exhibited lower levels of noise, Pipeline
6 was selected as the most appropriate method.

2.4.2. Pre-processing: For both groups, the EKG data pre-processing from the training
session involved band-pass filtering between 1 and 40 Hz; then for correct continuous
noisy data and for rejecting bad channels we applied Artifact Subspace Reconstruction
(ASR) method [71], in two steps, first to identify and interpolate bad channels, with the
following parameters: ‘FlatlineCriterion’=10, ‘ChannelCriterion’=0.8, ‘LineNoiseCri-
terion’=5, ‘Highpass’="off’, ‘BurstCriterion’="off’, ‘WindowC'ritetion’="off’, ‘BurstRe-
jection’="off’, ‘Distance’=’Fuclidian’, and then to reject bad segments, with the fol-
lowing parameters: ‘FlatlineCriterion’="off’, ‘ChannelCriterion’="off’, ‘LineNoiseCri-
terion’="off’, ‘Highpass’="off’, ‘BurstCriterion’=20, ‘WindowCritetion’=0.5, ‘BurstRe-
gection’="on’, ‘Distance’="Fuclidian’, ‘WindowCriterionTolerances’=[-Inf 8]. ASR is
considered the most effective EEG artifact correction and signal reconstruction algo-
rithm available, ensuring minimal information loss [72]. EEG data were subsequently
downsampled using the EEGLAB function pop_resample(), which applies a built-in
anti-aliasing FIR low-pass filter (cutoff just below the new Nyquist frequency) before
resampling, ensuring that higher-frequency components were removed and signal in-
tegrity preserved. An Independent Component Analysis (ICA) [73] was also performed
to remove remaining artifactual components in the EEG signals. ICA was computed
on data after rejecting bad segments, and the resulting weights were applied to the
data before segment rejection (Figure 3). We used the ICLabel [74] method, which
labels components as one of seven categories (brain, muscle, eye, heart, line noise,

I https://github.com/LaSEEB/NeurAugVR/tree/master/preprocessings. Note: For our analyses,
the order of two preprocessing steps—re-referencing and ICA—was adjusted relative to the original
pipeline.
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channel noise, or other), based on the probability values of each category for a spe-
cific component. In our case, we only removed automatically any component classi-
fied as "muscle" or "eye" artifact, if the probability values were at least 90%. After
this, we used a full-rank re-referencing to common average. Then, in the case of the
data from the participants with stroke, we proceeded to bad segment removal, again
running ASR to the data, with the parameters: FlatlineCriterion’= off’, ‘ChannelCri-
terion’="off’, ‘LineNoiseCriterion’="off’, ‘Highpass’=’off’, ‘BurstCriterion’=20, ‘Win-
dowCritetion’="off’, ‘BurstRejection’="off’, ‘Distance’="Fuclidian’, and for the data of
the participants without stroke, we rejected bad trials. Finally, the data were seg-
mented into epochs corresponding to left-hand and right-hand trials before performing
time-frequency analysis.

1 EEG = Resample = Bandpass =) Re-reference — EEG

2 EEG = Resample = Bandpass =3  Full-rank re-reference =3 EEG

Interpolate bad

3 EEG — Resample —» Bandpass — channels

=3 Full-rank re-reference =—» EEG

Interpolate bad

hannels |7 Full-rank ICA  —y/ Pruning |—3{ Full-rank re-reference w3y EEG
cl

4 EEG = Resample /=3 Bandpass =

5 EEG — Resample — Bandpass —» lmi’ﬁ;’rl]anflgad | Full-rank ICA —{ Pruning ‘=3 Full-rank re-reference (" Reject bad trials }—»EEGepoched

Interpolate bad Reject bad

6 EEG = Resample —» Bandpass =) channels

—3 Full-rank ICA

segments
| _ | 5(Pruning )—3/ Full-rank re-reference |—3 Rejteric;:ad —>EEGepoched

Interpolate bad

7 EEG = Resample = Bandpass =) channéls

~-( Full-rank trial ICA  ==3( Pruning }—{ Full-rank re-reference =3/ Reject bad trials —»EEGepoched

\lerpolate bad

I Reject bad
8 EEG = Resample —» Bandpass = channels -r

segments -3 Full-rank ICA
Interpolate bad

segments

l 9 Pruning =3 Full-rank re-reference |—3 —EEG

Figure 3: EEG Pre-Processing Pipelines. This schematic illustrates the various EEG
processing pipelines tested in the study, ranging from the simplest approach (1) to the
most complex method (8). The red arrow in Pipelines 6 and 8 indicates a transfer of
weights.

2.4.3. FEvent-Related Desynchronization (ERD) computation: The ERD values were
calculated based on the event-related spectral perturbation (ERSP) values computed
using EEGLAB with fixed-window, zero-padded Fast-Fourier Transformations (FFTs)
with Hanning taper. The ERSP values are the relative power in decibels (relative to
baseline). To transform these values into a percentage decrease, as is normal in the
analysis of ERD, we used the following formula:

ERD(%) = (10FR9P/10 _ 1) % 100% (1)

Given the variability of ERD values across individuals and even between sessions of
the same individual, the use of individualized ERD frequency bands was computed
in order to enhance the sensitivity of the ERD analysis to inter-individual neural
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dynamics, accounting for post-stroke variability in oscillatory features and frequency
shifts that may accompany recovery [68|. Instead of using the conventional 8 — 12 Hz
broadband to analyze Alpha oscillations, we determined an individualized frequency
band for each participant, electrode, task, and trial. This process began by defining an
initial broad frequency range of 6 — 14 Hz. Within the 6-14 Hz range, the spectrum
was systematically divided into overlapping frequency bands with a bandwidth of 0.5
Hz (e.g., 6-6.5 Hz, 6.5-7 Hz, etc.). To ensure comprehensive coverage, the segmentation
process was repeated with a shifted starting frequency (e.g., beginning at 6.5 Hz instead
of 6 Hz), thereby exploring all possible frequency intervals within the target range.
For each frequency band, the ERSP was computed, and the mean power value was
extracted for subsequent analysis. Finally, we compared the mean power values across
all bands and selected the frequency band that yielded the lowest ERSP value. This
band was identified as the individualized ERD for the specific participant, electrode, and
trial. This can be visualized in Figure 4, and the pseudo-code describing this method
is presented in Listing 1, in the Supplementary material. The implementation of this

method is available online §.
v
. Snift startin,
Segment into frequency angd
overlapping 8.5 I- ~ repeat

Define frequenﬁy Qutput
B Hz bands segmentation :,r:ﬁlz“lz
ERD band

( Ar FREQUENCY BAND ANALYSIS

Compare mean
power values
across all bands

Select band
with lowest
ERSP

Sompute ERSP
for band

Extract mean
power value

For each
frequency band

Figure 4: Individualized ERD Computation Flow.

The ERD was extracted from all 32 electrodes, using the same method. Our
analysis focused primarily on C3 and C4, as they are positioned over the motor and
somatosensory cortices [75]. These electrodes are also the most commonly analyzed in
the literature, facilitating comparisons with previous studies [69, 76, 68|.

2.4.4. Lateralization Metrics: 'To quantify interhemispheric asymmetry of sensorimotor
activation during motor imagery, two complementary indices were computed: the
Lateralization Index (LI) and the Laterality Coefficient (LC).

§ https://github.com/LaSEEB/Individualized-ERD
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Lateralization Index (LI). The LI was calculated to provide a symmetrical measure of
hemispheric differences across left- and right-hand trials [77]. The LI was defined as:

I — (ERDc3(L) — ERDcy(L)) "2‘ (ERDcy(R) — ERDC:;UI{))7 (2)

where ERD¢s(L) and ERD¢y(L) correspond to the ERD values recorded during left-
hand motor imagery, and FRDc3(R) and FRDcy(R) during right-hand imagery. In
this formulation, positive LI values indicate stronger right-hemisphere activation, while
negative values reflect stronger left-hemisphere activation. However, in participants
with stroke, the directionality of LI depends on lesion side, which can obscure group-
level effects.

Laterality Coefficient (LC). We additionally computed the LC |27, 78], which expresses
hemispheric dominance relative to the affected (contralateral) hand:

Cc -1
|C' + I (3)

where C' and [ denote the mean contralateral and ipsilateral ERD values, respectively,

LC =

with respect to the lesioned hemisphere. For each participant with stroke, these values
were obtained from electrodes C3 and C4 across left- and right-hand trials. For example,
for participants with right-hemisphere lesions:

C = mean|ERD(right-hand trial, C3) + ERD(left-hand trial, C3)]
I = mean|ERD(right-hand trial, C4) + ERD(left-hand trial, C4)]

The LC provides a normalized measure of contralateral dominance, allowing direct
comparison across lesion sides. Higher LC values reflect stronger contralateral ERD
(typical in healthy controls), whereas lower or negative values indicate reduced or
reversed lateralization (often observed after stroke).

2.5. Statistical Analyses

All analyses were performed in MATLAB R2023a (The MathWorks, MA, United States)
using the Statistics and Machine Learning Toolbox. Linear mixed-effects models (LMEs)
were used for both clinical and neurophysiological data to account for repeated measures
and inter-individual variability, including random intercepts per participant. Model
assumptions were verified using formal statistical tests. Normality was assessed visually
through Q-Q plots and formally with the Jarque-Bera test, while homoscedasticity
was evaluated using Breusch—Pagan and Levene tests confirming that the residuals met
model criteria. Statistical significance was set at two-tailed p < 0.05, and all post-hoc
pairwise comparisons were Bonferroni-corrected to control for multiple testing within
each analysis family. No data imputation was performed; all analyses used available
data from participants who completed each assessment.
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Given the sample size and the absence of stratified randomization, potential group
differences in demographic and clinical characteristics were addressed analytically.
Baseline motor impairment was controlled for by including baseline FMA score as a
covariate in clinical outcome models, and stroke type (ischemic vs. hemorrhagic) was
included as a fixed effect in ERD-related LME models.

2.5.1. Clinical comparisons: An LME was fitted to the data to evaluate the effects of
assessment time (Pre, Post, Follow-up) and group (Experimental vs. Control) on FMA
scores, while accounting for within-subject variability and baseline motor impairment.
The model included Baseline FMA as a covariate and an interaction between Time and
Group:

FMA _Score ~ 1 4 Baseline 4+ Time % Group + (1 | ID) (4)

This controls for initial differences in FMA between groups, providing baseline-
adjusted estimates of time and group effects.

2.5.2. Analysis of ERD: To compare ERD values between participants with stroke and
those without stroke, two analytical approaches were employed. (1) A Mann—Whitney
U test was used to compare ERD values between the stroke and non-stroke (reference)
groups. This non-parametric test was selected due to the small sample sizes and non-
normal distribution of the data. The analvsis was conducted separately for each session
and across all EEG channels. (2) An LME model was used to account for individual
variability and to examine RD differences across sessions.

For the LME, we¢ modeled ERD as a function of training sessions, group
(participants with stroke vs. non-stroke), and trial type (Left vs. Right-hand
movement), while accounting for individual variability through a random intercept and
slope per subject. The model included an interaction term between session progression
and trial type to assess whether ERD changes differed based on movement laterality:

mean_erd ~ 1+group-+sessionsx trial+(1+group | subjects)+(1+sessions

Finally, Analysis of variance (ANOVA) analysis was used after LME to test the
significance of fixed effects.

2.5.8. Analysis of affected side ERD: To further account for the potential confounding
effect of lesion laterality, an additional analysis was performed for each participant with
stroke relative to the affected side. An LME was fitted exclusively to the stroke cohort
to investigate the effects of session progression and hand condition on ERD:

mean__erd ~ 1+ sessions X af fected _side+ (1+ sessions | subjects)(6)

where sessions represented training session number, affected_ side distinguished
paretic from non-paretic trials, and random intercepts and slopes were included per
subject.

| subjects)(5)
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2.5.4. Analysis of Lateralization Metrics: To examine changes in lateralization over
time and their relationship to group differences, we modeled LI and LC as a function
of session (representing progression over time) and group (stroke vs. non-stroke
participants). Individual variability was accounted for by including random intercepts
and slopes for each subject:

li ~ 1+sessions+group+(1+group | subjects)+(1+sessions | subjects)(7)
lc ~ 14sessions+group+(1+4group | subjects)+(1+sessions | subjects)(8)

This allowed us to examine whether laterality changed over time (sessions), whether
differences existed between groups (participants with stroke vs. non-stroke), and
whether these effects varied between individuals.

2.5.5. Two-Stage Linear Modeling of ERD to Predict Motor Recovery: To examine the
relationship between longitudinal predictors (ERD progression across training sessions)
and cross-sectional clinical outcomes (AFM A), we implemented a two-stage modeling
approach, following methods used in previous studies [68, 79]. LME models were selected
because they provide robust regression estimates while accounting for subject-specific
variability [80].

In the first stage, an LME model was fitted to estimate individual ERD trajectories
(from the affected side) over the intervention period using the following formula:

mean _erd ~ sessions x stroke type + (sessions | subjects) (9)

This model included time (sessions) and subjects as random effects, allowing
patient-specific variability in both initial/baseline ERD values (intercept) and their
progression over time (slope). The intercept and slope extracted represent the baseline
ERD level of each participant and their rate of change in ERD throughout the
intervention.

In the second stage, the extracted ERD intercepts and slopes were then incorporated
into a linear regression model to predict clinical motor recovery, measured by AF M A:

delta_fma ~ slope X intercept (10)

3. Results

3.1. Clinical Outcome

The baseline-adjusted LME was used to assess the effects of time (Pre, Post, Follow-
up) and group (Experimental vs. Control) on motor recovery, measured by the FMA
(Figure 5). This model included baseline FMA (centered) as a covariate to control for
initial differences between groups and a random intercept for each participant to account
for within-subject variability.

The analysis revealed a significant main effect of Time on FMA scores. Participants
showed clear motor improvements from Pre to Post (5 = 5.80, p = 0.017) and from Pre
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to Follow-up (5 = 10.11, p < 0.001), indicating sustained functional gains beyond the
intervention period. Baseline FMA was a strong positive predictor of overall scores
(6 =0.98, p <0.001). In contrast, the main effect of Group (Experimental vs. Control;
B =0.33, p=0.91) and the Time x Group interactions were not statistically significant,
although the Follow-up x Group interaction approached significance (8 = —6.20,
p = 0.056).

Between-group contrasts confirmed no significant difference at Post (p = 0.61) and
a trend at Follow-up (p = 0.06). These findings indicate that both groups demonstrated
comparable improvement trajectories after accounting for baseline differences in motor
function (Table 2).

Table 2: Fixed and random effects estimates from the Linear Mixed-Effects Model
(LME) analyzing FMA scores (baseline-adjusted). The model included baseline FMA
(centered) as a covariate and an interaction between Time and Group. The 95%
confidence intervals (CIs) provide a measure of estimate uncertainty.

Fixed Effects Estimate (5) 95% CI (Lower, Upper) t-Stat p-Value
Tntercept 35.02 3152, 40.31] 1670 < 0.001
Time: Post vs. Pre 5.80 [1.11, 10.49] 2.53 0.017
Time: Follow-up vs. Pre 10.11 [5.06, 15.16] 4.09 < 0.001
Group (Experimental vs. Control) 0.33 [-5.43, 6.09] 0.12 0.91
Baseline FMA (centered) 0.98 [0.84, 1.12] 14.42 < 0.001
Time (Post) x Group (Experimental) -1.80 [-7.77, 4.17] -0.62 0.54
Time (Follow-up) x Group (Experimental) -6.20 [-12.56, 0.16] -1.99 0.056
Random Effects Variance (o?) 95% CI (Lower, Upper)

Subjects (Intercept) - [1.56, 5.34]

Residual Error ) [2.74, 4.81]
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Figure 5: FMA Scores. Individual trajectories for each participant are displayed, with
solid lines representing the experimental group and daslied lines representing the control
group. Colors distinguish participants, and lesion type (hemorrhagic or ischemic) is
indicated by different markers. Patient P40 does not have a follow-up value, since this
was not acquired.

3.2. Neurophysiological Ouicomes

3.2.1. Comparison of FRD Spatial Distribution: The ERD responses of participants
with stroke were compared to those of the non-stroke group, which served as a reference
cohort, to assess differences in neural activity patterns. Figure 6 illustrates the spatial
distribution of the mean ERD, including aggregated ERD values across all sessions for
participants with stroke, divided into the participants with paretic hand and non-paretic
hand relevant to the specific trial (right- or left-hand), and the mean ERD of the non-
stroke group. The Mann-Whitney U-test revealed significant differences in ERD between
groups for Left-hand trials: if the paretic hand was the right, then it was significant
at five electrode sites: C3 (U = 1647, p = 0.00178), C4 (U = 1663, p = 0.000799),
CP1 (U = 1064, p = 0.0321), CP2 (U = 1087, p = 0.0173), and P3 (U = 1264,
p = 0.009); if the paretic hand was the left, then it was significant at three electrode
sites: C4 (U = 3136, p = 0.0031), T8 (U = 3017, p = 0.0127), and CP6 (U = 2604,
p = 0.0433). For Right-hand trials: if the paretic hand was the right, a significant
difference was observed at four electrode sites: C3 (U = 1659, p = 0.000978), CP5
(U =949, p = 0.00644), CP1 (U = 1073, p = 0.0201), and P3 (U = 1258, p = 0.0132);
if the paretic hand was the left there was no significant difference observed.
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(i)  Left Paretic Hand (ii) Right Paretic Hand
Left-hand MI Trials Right-hand MI Trials

Left-hand MI Trials Right-hand MI Trials

S
Stroke

(b)

Non-stroke

(€)

Non-stroke > Stroke

Figure 6: Comparison of ERD topographies betweecn participants with stroke and non-
stroke controls. Panels (a) and (b) show the spatial distribution of mean ERD during
left- and right-hand motor imagery (MI) trials for participants with stroke (a) and the
non-stroke reference cohort (b). The data are organized by the side of the paretic hand:
(i) left paretic hand and (ii) right paretic hand. Warm colors indicate stronger ERD
(greater desynchronization), while cool colors indicate weaker ERD. Panel (c) displays
the Mann—Whitney U-test p-value maps comparing the two groups (contrast: non-stroke
> stroke), with darker areas representing significant differences (p < 0.05, Bonferroni
corrected for multiple comparisons).

3.2.2. Modeling ERD Dynamics: Initially, the LME analysis revealed that participants
with stroke exhibited significantly reduced ERD compared to the non-stroke group
(8 = —6.63, p = 0.022). However, no significant change in ERD was observed over time
(8 = —0.13, p = 0.721), indicating that ERD remained relatively stable throughout
the training period (Figure 7 and Figure 8). Furthermore, analysis of hemispheric
lateralization revealed no significant changes across sessions for either the LI or the
LC. However, a significant group effect was found for LI (5 = 8.93, p = 0.020), with
participants with stroke showing greater variability and reduced lateralization stability
compared to the non-stroke group (Table 5). The LC showed a similar but non-
significant trend toward lower values in the stroke cohort (5 = —0.11, p = 0.066),
suggesting weaker contralateral dominance relative to healthy controls (Table 6).
Finally, the ANOVA results confirmed a significant main effect of group (F = 5.29,
p = 0.032), reinforcing that ERD differences between stroke and non-stroke participants
were consistent. However, session progression (F' = 0.13, p = 0.726), trial type
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(F = 0.34, p = 0.560), and their interaction (F' = 0.30, p = 0.583) did not reach
statistical significance, indicating that ERD changes were not systematically influenced

by time or movement laterality (Table 3).

Table 3: Fixed and random effects estimates from the Linear Mixed-Effects Model
(LME) analyzing ERD progression. The table reports estimated coefficients (3) for
fixed effects, standard errors (SE), 95% confidence intervals (Cls), t¢-statistics, and
corresponding p-values. Variance components (02) for random effects are also presented.

Fixed Effects Estimate (3) 95% CI (Lower, Upper) t-Stat p-Value
Intercept -18.42 [-23.41, -13.43] 727 467 x 10712
Sessions -0.13 [-0.85, 0.59] -0.49 0.721
Group (Stroke vs. Control) -6.63 [-12.32, -0.95] -2.30 0.022
Trial (Right vs. Left) -1.18 [-5.18, 2.81] -0.58 0.560
Sessions x Trial -0.18 [-0.83, 0.47] -0.55 0.583
Random Effects Variance (0?) 95% CI (Lower, Upper)

Patient ID (Intercept) 3.91 -

Group Variance 9.94 —

Session Variance 0.68

Residual Error Variance 9.88
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Figure 7: Left-trials ERD from participants with stroke across sessions vs non-stroke
participants, contralateral analysis (C4). The figure is divided into (a) ERD from stroke
participants, in which the paretic side is the left; and (b) ERD from stroke participants
which the non-paretic side is the left. In both plots, we show two lines for each of the
ERD median and fitted lines, for hemorrhagic stroke (blue) and ischemic stroke (red);
in yellow, we plotted the median of the non-stroke participants for easier comparison.
For each session, the participants with stroke are identified as hemorrhagic (blue) and

ischemic (red).
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Figure 8: Right-trials ERD from participants with stroke across sessions vs non-stroke
participants, contralateral analysis (C3). The figure is divided into (a) ERD from stroke
participants, in which the paretic side is the right, and (b) ERD from stroke participants
which the non-paretic side is the right. In both plots, we show two lines for each of the
ERD median and fitted lines, for hemorrhagic stroke (blue) and ischemic stroke (red);
in yellow, we plotted the median of the non-stroke participants for easier comparison.
For each session, the participants with stroke are identified as hemorrhagic (blue) and
ischemic (red).
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3.2.3. ERD Analysis Aligned to the Affected Hand: To account for differences between
affected and unaffected hemispheres, ERD data were re-aligned according to each stroke
participant’s affected hand. The LME model revealed no significant main effect of
session (F'(1,14.29) = 1.29, p = 0.27), nor of hand condition (F(1,170.42) = 0.005,
p = 0.95), and the interaction between session and hand condition was also non-
significant (F(1,170.42) = 1.84, p = 0.18). Model fit indices indicated adequate
convergence (AIC = 1525.1, BIC' = 1550.9). These results suggest that ERD amplitude
remained stable across sessions and did not differ significantly between paretic and non-
paretic hands (Table 4).

Table 4: Linear Mixed-Effects Model results for ERD aligned to the affected (paretic)
hand in stroke participants.

Fixed Effect Estimate (8) SE t DF p-Value 95% CI (Lower, Upper)
Intercept -27.67 417 -6.64 182 < 0.001 [-35.89, -19.45]
Sessions -0.66 0.58 -1.14 182 0.257 [-1.80, 0.49]
Paretic hand 0.27 4.05 0.07 182 0.946 [-7.71, 8.26]
Sessions x Paretic hand 0.76 0.56 1.35 182 0.177 [-0.35, 1.88]
Model fit: AIC = 1525.1, BIC = 1550.9, Log-likelihood = -754.57, Deviance = 1509.1

3.2.4. Modeling Lateralization Dynamics: In terms of LI, the model demonstrated
good overall fit (AIC = 1014, BIC = 1042.5). No significant main effect of session
was observed (5 = 0.042, p = 0.904), indicating that LI remained stable across the 12
training sessions. However, a significant group effect emerged (5 = 8.93, p = 0.020),
with stroke participants showing higher LI variability compared to the non-stroke group
(Figure 9). This suggests that while interhemispheric balance remained relatively
constant over time, stroke participants exhibited overall reduced lateralization stability,
consistent with altered hemispheric activation following stroke. Random effects analysis

indicated moderate inter-individual variability in baseline LI values (07, 0pcopr = 1.33)
(Table 5).

Table 5: Linear Mixed-Effects Model results for Lateralization Index (LI).

Fixed Effect = Estimate (5) SE t DF p-Value 95% CI (Lower, Upper)

Intercept 2.873 2219 129 125 0.198 [-1.519, 7.266]
Sessions 0.042 0.349 0.12 125 0.904 [-0.648, 0.732]
Group (control) 8.932 3.776  2.37 125 0.020 [1.459, 16.406]

Model fit: AIC = 1014, BIC = 1042.5, Log-likelihood = -497.00, Deviance = 993.99
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Figure 9: Lateralization Index of participants across sessions. We distinguish
participants with stroke between type of stroke: hemorrhagic (blue) and ischemic (red).
In the plot, we also show a line connecting thie median of the participants with stroke
for all sessions (dashed black) and a fitted line for the same median (dashed red).

In terms of LC, no significant effect of session was found (8 = 0.003, p = 0.701),
indicating that LC remained stable throughout the 12 training sessions. The group
effect approached significance (8 = —0.111, p = 0.066), suggesting a trend toward lower
LC values in participants with stroke compared to controls, consistent with reduced
contralateral dominance (Figure 10). Random effects analysis showed minimal between-
subject variance, indicating that individual LC trajectories were relatively homogeneous
across participants (Table 6).

Table 6: Linear Mixed-Effects Model results for Laterality Coefficient (LC).

Fixed Effect Estimate (3) SE t DF p-Value 95% CI (Lower, Upper)

Intercept 0.0479 0.0515 0.93 125  0.354 [-0.054, 0.150]
Sessions 0.0031 0.0080 0.39 125 0.701 [-0.013, 0.019]
Group (control) -0.1112 0.0599 -1.86 125 0.066 [-0.230, 0.007]

Model fit: AIC = 14.06, BIC = 42.58, Log-likelihood = 2.97, Deviance = -5.94
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Figure 10: LC of participants across sessions. We distinguish participants with stroke
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show a line connecting the median of the participants with stroke for all sessions (dashed
black) and a fitted line for the same median (dashed red). In yellow, we plotted the
median of the non-stroke participants.

3.3. Relationship Between ERD Progression and Motor Recovery

The LME analysis revealed a significantly negative intercept (8 = —24.692, p < 0.001),
indicating that ERD was strongly suppressed across participants. Neither session
progression (f = —0.573, p = 0.371) nor stroke type (5 = —7.653, p = 0.235) showed
significant main effects, suggesting stable ERD patterns over time and similar overall
levels between ischemic and hemorrhagic stroke participants. The interaction between
session and stroke type was also non-significant (5 = 1.925, p = 0.061), though it
suggested a potential trend toward distinct ERD trajectories across stroke subtypes.

Random effects indicated notable between-subject variability in baseline ERD
(0% = 4.213), while session-related variability (o2 = 0.890) was smaller, suggesting that
inter-individual differences contributed more strongly to ERD variability than session-
to-session changes (Table 7). Overall, ERD remained stable across training, with a
tendency for stroke type to influence its temporal evolution.
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Table 7: Fixed and random effects estimates from the Linear Mixed-Effects Model
(LME) analyzing ERD progression over sessions and stroke types.

Fixed Effects Estimate (3) 95% CI (Lower, Upper) t-Stat p-Value
Intercept -24.692 [-32.586, -16.798| -6.215  1.614 x 1078
Sessions -0.575 [-1.845, 0.696] -0.899 0.371
Stroke Type -7.653 [-20.379, 5.073] -1.195 0.235
Sessions x Stroke Type 1.925 [-0.092, 3.941] 1.897 0.061
Random Effects Variance (02) 95% CI (Lower, Upper)

Subjects (Intercept) 4.213 [0.405, 43.824]

Sessions (Slope) 0.890 [0.251, 3.155]

Residual Error 12.37 [10.558, 14.493|

The second-stage linear regression model tested whether ERD progression (slope)
and baseline ERD (intercept) predicted motor recovery (AFMA). The model explained
86.8% of the variance in motor recovery (R? = 0.868, adjusted R* = 0.769), with a
significant overall model fit (F = 8.78,p = 0.0311) (Figure 11). These results are
summarized in Table 8.

Table 8: Fixed and random effects estimates from the second-stage regression model,
linking ERD slopes to FMA score.

Fixed Effects Estimate (B)_ 95% CI (Lower, Upper) t-Stat p-Value
Intercept -36.563 - -1.3166  0.25833
Slope 62.172 - 2.404  0.074031
Intercept (Baseline ERD) -1.6006 - -1.4881  0.21094
Slope x Intercept 2.446 - 2.4985 0.066875
Model Performance R? p-Value
All Participants 0.868 0.0311

When analyzing stroke subtypes separately, the relationship between ERD
progression and motor improvement differed (Figure 11). Across all participants, the
relationship was negative but not statistically significant (R = —0.680, p = 0.063).
For hemorrhagic stroke participants, the relationship was stronger but remained non-
significant (R = —0.926, p = 0.246). For ischemic stroke participants, no meaningful
relationship was found (R = 0.441, p = 0.457).
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Figure 11: Linear model predicting the clinical improvement (AFM A) on the lesioned
(a) and healthy hemispheres (b) of all participants with stroke. We show the relationship
between the ERD slope (ERD progression) and the motor function improvement
(AFMA). Blue dots correspond to hemorrhagic stroke, and red to ischemic stroke. For
each graph we show the linear fit of all stroke types (black line), of only the hemorrhagic
stroke (blue line), and of only the ischemic stroke (red liue).

4. Discussion

4.1. Clinical Implications of VR-BCI Intervention

The baseline-adjusted LME model confirmed significant improvements in motor function
over time for both the experimental (VR-BCI) and control groups. After controlling for
initial FMA differences, no significant group effect or Time x Group interaction was
found, indicating that both groups exhibited comparable recovery trajectories. The
trend toward a greater improvement in the experimental group at follow-up (p = 0.06)
suggests a possible longer-term benefit that warrants investigation in a larger, balanced
sample.

Although both groups demonstrated significant improvement in motor outcomes
over time, the absence of a statistically significant group effect indicates that these
changes likely reflect general rehabilitation-related recovery processes. This finding is
consistent with previous studies showing that motor recovery can continue at chronic
stages through repetitive and intensive training, regardless of the feedback modality [4,
81].

MoCA scores showed minor decreases in some participants post-intervention. These
variations were not clinically meaningful and are most likely attributable to test—retest
variability, fatigue, or unrelated individual factors.

The random effects analysis revealed substantial inter-individual variability,
emphasizing that some participants responded more favorably to training than others.
This variability is expected in stroke neurorehabilitation, where multiple factors,
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including lesion location, stroke chronicity, and baseline motor function, may influence
recovery trajectories.

4.2. Neurophysiological Findings

When ERD patterns were compared between participants with stroke and the non-
stroke reference group, distinct group differences emerged at specific sensorimotor and
parietal electrodes. For participants with stroke whose paretic hand was on the right,
significant ERD reductions relative to controls were observed over contralateral and
bilateral sensorimotor areas (C3, C4, CP1, CP2, and P3) during left-hand trials, and at
C3, CP5, CP1, and P3 during right-hand trials. In contrast, when the paretic hand was
on the left, significant differences were restricted to electrodes over the contralesional
hemisphere (C4, T8, and CP6) during left-hand trials, with no significant effects during
right-hand trials. These results indicate that ERD suppression was generally weaker
and more spatially diffuse in stroke participants compared to non-stroke, particularly
over central and parietal regions contralateral to the paretic hand

LME analysis revealed no significant main effect of session progression, suggesting
that ERD remained stable throughout the intervention. This contrasts with previous
studies indicating progressive ERD suppression with motor learning [35], potentially due
to individual variability in response to BCI training or the limited number of sessions.
However, the group effect approached statistical significance, suggesting a trend whereby
participants with stroke exhibited reduced ERD compared to non-stroke individuals.
This aligns with previous findings indicating that stroke-related disruptions in motor
networks may reduce ERD magnitude, although this effect is highly variable across
individuals |76, 82].

Further, when ERD was re-aligned to each participant’s affected hand, the analysis
similarly revealed no significant differences between paretic and non-paretic trials, nor
any significant interaction with session progression. This indicates that the absence
of ERD modulation was not driven by inconsistencies related to lesion laterality or
anatomical side labeling. Instead, ERD patterns appeared stable across training sessions
regardless of the affected side, suggesting that neural engagement during VR-BCI
training was broadly bilateral.

Regarding hemispheric asymmetry, the laterality analyses revealed complementary
insights. The LI model showed no significant effect of session but a significant
group effect, with participants with stroke exhibiting higher LI variability and overall
reduced lateralization stability compared to the control group. This indicates altered
interhemispheric dynamics and weaker contralateral dominance in the stroke cohort.
Consistent with this, the LC, which normalizes contralateral and ipsilateral ERD
relative to the affected hand, did not change significantly across sessions but showed
a trend toward lower LC values in the stroke group. This pattern suggests diminished
contralateral ERD dominance relative to non-stroke participants, aligning with cortical
reorganization mechanisms previously described after stroke |78, 28].  Together,
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these findings point to a stable but weakened interhemispheric balance in the stroke
population, possibly reflecting compensatory or bilateral recruitment of sensorimotor
areas.

The observed variability across participants may be partly explained by differences
in lesion location and chronicity. For example, prior work has shown that individuals
with subcortical strokes exhibit less pronounced ERD asymmetry, reflecting preserved
cortical structures but altered network-level connectivity [82, 23|. Given that most
participants in the present study presented with mixed cortical-subcortical lesions, the
reduced lateralization likely reflects these broader network-level disruptions rather than
purely cortical deficits. While increased contralesional activation could be interpreted as
maladaptive plasticity [83], the overall absence of strong asymmetry and limited motor
improvement in this cohort do not support this interpretation.

Overall, the absence of significant ERD modulation across sessions and the weak
laterality effects should be interpreted with caution. Beyond inter-individual variability
and limited training duration, these results may also reflect intrinsic characteristics of
the NeuRow VR paradigm. The bimanual and visually immersive design likely promotes
distributed, bilateral cortical activation that enhances cngagement but may reduce
the measurable unimanual ERD modulation typically

o

reported in simpler paradigms.
Furthermore, while the LI and LC provide comiplementary perspectives on hemispheric
asymmetry, their stability across sessions may reflect a broader pattern of bilateral
cortical engagement during immersive VR-BCI training.

4.3. ERD Dynamics and Motor Recovery

To investigate the relationship between ERD dynamics and motor recovery, we employed
a two-stage modeling approach, following previous studies [68, 79].

The regression analysis identified a significant negative intercept, indicating that
baseline ERD levels were predictive of motor recovery. While ERD slope was not
significantly associated with FMA change, exploratory trends suggest that reductions
in ERD over time may be linked to clinical improvement. This suggests that motor
recovery may be linked to progressive ERD suppression, a pattern commonly observed
in successful motor learning and stroke recovery [35, 68|.

Importantly, stroke subtype analyses revealed distinct trends. In the hemorrhagic
stroke subgroup, a negative relationship between ERD slope and AF M A was observed,
whereas in the ischemic stroke subgroup, no clear relationship emerged. Trends suggest
that stroke pathology may influence ERD evolution, though statistical significance was
not reached. This indicates that other factors, such as lesion location or training
intensity, may contribute more significantly to ERD changes. Therefore, further
investigation is needed to determine whether different rehabilitation strategies should
be tailored based on lesion type.

Finally, when analyzing ERD from the ipsilateral hemisphere (non-lesioned side),
an inverse relationship emerged, where greater clinical improvement correlated with



681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

Baseline Sensorimotor EEG and Its Longitudinal Change.

increasing ipsilateral ERD. Notably, this trend became statistically significant in the
ischemic stroke group, suggesting that ipsilateral motor cortex activity may play a
compensatory role in recovery for this population. These findings support previous
studies demonstrating the importance of ipsilateral cortical recruitment in stroke
recovery, particularly for individuals with extensive contralateral damage [68].

4.4. Limitations and Future Directions

The findings of this study must be interpreted in light of several limitations. First, the
sample size was small, limiting statistical power and the ability to generalize findings.
Although the statistical model controlled for baseline FMA to mitigate initial between-
group differences, the small and unbalanced sample size limits statistical power and
generalization. Future studies with larger cohorts should further validate whether the
observed follow-up trend reflects a meaningful treatment effect. Further, the observed
trends in ERD progression and motor recovery may become statistically significant in
larger cohorts, warranting replication in future studies.

Further, stroke severity, lesion characteristics, and post-stroke duration varied
across participants, introducing heterogeneity that may have influenced results. Future
research should incorporate detailed neuroimaging assessments to better classify lesion
locations and network-level disruptions affecting ERD generation.

Moreover, the study’s intervention period (12 sessions) may have been too short to
capture long-term neural reorganization. Given that ERD changes can take weeks or
months to consolidate, longer-duration studies are needed to assess whether progressive
ERD modulation translates to sustained functional improvements.

Finally, the EEG data were acquired using two high-quality systems with
comparable specifications and active electrodes, while hardware-related effects are
unlikely, this potential source of variability cannot be entirely excluded.

5. Conclusion

This study provides valuable insights into the dynamics of ERD and their relationship
with motor recovery following immersive VR-BCI training in individuals with chronic
stroke. Although ERD did not significantly change across sessions, participants with
stroke exhibited reduced ERD compared to the non-stroke group. Importantly, baseline
ERD levels predicted subsequent motor improvement, suggesting their potential as EEG
biomarkers of recovery capacity. Furthermore, ipsilateral ERD may play a compensatory
role, particularly in individuals with ischemic stroke.

The absence of significant session effects underscores the complexity of post-
stroke neural reorganization and highlights the need for larger-scale, individualized
rehabilitation studies. Importantly, this work builds upon more than a decade of
continuous research using one of the first clinically implemented immersive VR-BCI
systems. By maintaining a consistent experimental paradigm, feedback design, and
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710 analysis pipeline, this research line addresses the well-known lack of methodological
720 homogeneity across BCI studies, ensuring reproducibility and comparability of results
721 Over time.

722 Future research should extend these findings by employing longer and more
723 intensive interventions, integrating multimodal neuroimaging to elucidate the
724 mechanistic role of ERD in motor recovery, and validating predictive EEG biomarkers in
725 larger cohorts. Despite current limitations, this study contributes to the growing body
726 of evidence supporting the use of EEG-based neural features to monitor and personalize
72z neurorehabilitation strategies in stroke recovery.

728  Acknowledgments

720 This work is supported by the LARSyS - FCT Project (DOI: 10.54499/LA /P /0083/2020,
730 10.54499/UIDP /50009/2020, and 10.54499/UIDB/50009/2020), the NeurAugVR
7 (PTDC/CCI-COM/31485/2017), the NOISyS project (DOI: 10.54499/2022.02283.PTDC),
722 the NOVA LINCS (DOI: 10.54499/UIDB/04516,/2020 and 10.54499 /UIDP /04516,/2020)
733 with the financial support of FCT.IP (2021.05646.BD) and the Recovery and Resilience
73 Plan under the application n® 761 submitted to the mcasure Polos de Inovagao Digital
735 (DIH) under the terms of AAC n® 03/C16 i03/2022. Finally, we would like to ac-
736 knowledge Audrey Aldridge, Carolina Jorge, Diego Andres Blanco-Mora, Sofia Ferreira,
737 Monica Rosa, and Sidonio Fernandes for assisting with the patient’s preparation and
738 data acquisition at the hospital.

730 Ethics approval and consent to participate

720 This study was performed in accordance with the Declaration of Helsinki. This
71 human study was approved by Scientific and Ethic Committees of the Central Hospital
722 of Funchal, Portugal - approval: 21/2019. The study’s clinical trial registration
723 number is NCT04376138 registered with https://clinicaltrials.gov/study /NCT04376138.
724 Participant registration took place from Aug-2019 to Dec-2023. All adult participants
745 provided written informed consent to participate in this study.

6 Consent for publication

77 All participants provided written informed consent for the publication of anonymized
72 data included in this manuscript.

720 Availability of data and materials

70 All participants were anonymized by assigning a unique study code. De-identified
751 participant data, the corresponding data dictionary, and statistical code used for
752 analyses are available upon reasonable request from the corresponding author.



754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

REFERENCES

Competing interests

We declare that the authors have no competing interests as defined by BMC, or other
interests that might be perceived to influence the results and/or discussion reported in
this paper.

Funding

This work is supported financially by FCT through the LARSyS - FCT Project (DOI:
10.54499 /LA /P /0083,/2020, 10.54499/UIDP /50009,/2020, and 10.54499/UIDB /50009 /2020),
the NeurAugVR (PTDC/CCI-COM/31485/2017), the NOISyS project (DOI:
10.54499/2022.02283.PTDC), the FCT grant: 10.54499,/2021.05646.BD, the NOVA
LINCS (DOI: 10.54499/UIDB/04516/2020 and 10.54499/UIDP /04516/2020) with the
financial support of FCT.IP (2021.05646.BD) and the Recovery and Resilience Plan
under the application n® 761 submitted to the measure Polos de Inovagao Digital (DIH)
under the terms of AAC n®. 03/C16 i03/2022.

Authors’ contributions

MV contributed to data curation, formal analysis, investigation, visualization,
and drafting of the manuscript. DB and JC-F contributed to data curation,
investigation, validation, and critical manuscript review and editing. SBB contributed
to conceptualization, funding acquisition, project administration, provision of resources,
investigation, and critical manuscript review and editing. PF contributed to
conceptualization, funding acquisition, supervision, validation, provision of resources,
investigation, and critical manuscript review and editing. AV contributed to
conceptualization, investigation, methodology development, software implementation,
supervision, validation, provision of resources, and critical manuscript review and
editing. All authors read and approved the final manuscript.

References

1. Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, Fisher M,
Pandian J, and Lindsay P. World Stroke Organization (WSO): Global Stroke Fact
Sheet 2022. International Journal of Stroke 2022; 17. PMID: 34986727:18-29. DOTI:
10.1177/17474930211065917

2. Cioni G, Sgandurra G, Muzzini S, Paolicelli PB, and Ferrari A. Forms of
Hemiplegia. The Spastic Forms of Cerebral Palsy: A Guide to the Assessment of
Adaptive Functions. Milano: Springer Milan, 2010 :331-56. DOI: 10.1007 /978~
88-470-1478-7_16

3. Bonita R and Beaglehole R. Recovery of motor function after stroke. Stroke 1988;
19:1497-500. DOI: 10.1161/01.STR.19.12.1497



788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

REFERENCES

4.

10.

11.

12.

13.

Dobkin BH. Strategies for stroke rehabilitation. The Lancet Neurology 2004;
3:528-36. DOL: https://doi.org/10.1016/31474-4422(04)00851-8

Cuccurullo SJ. Physical medicine and rehabilitation board review. Springer
Publishing Company, 2019

Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Chapman M, and Crotty
M. Virtual reality for stroke rehabilitation. Cochrane database of systematic
reviews 2025. Available from: https://doi.org//10.1002/14651858.CD008349.
pubb

Cervera MA, Soekadar SR, Ushiba J, Millan JDR, Liu M, Birbaumer N, and
Garipelli G. Brain-computer interfaces for post-stroke motor rehabilitation: a meta-
analysis. Annals of Clinical and Translational Neurology. 2018 May; 5:651-63.
DOI: 10.1002/acn3.544. Available from: https://onlinelibrary.wiley.com/
doi/10.1002/acn3.544 [Accessed on: 2025 Oct 29|

Yang W, Zhang X, Li Z, Zhang Q, Xue C, and Huai Y. The Effect of
Brain-Computer Interface Training on Rehabilitation of Upper Limb Dysfunction
After Stroke: A Meta-Analysis of Randomized Controlled Trials. Frontiers in
Neuroscience. 2022 Feb 7; 15:766879. DOI: 10 . 3389 / fnins . 2021 . 766879.
Available from: https://www.frontiersin.org/articles/10.3389/fnins.
2021.766879/full [Accessed on: 2025 Oct 29|

Tonin A, Semprini M, Kiper P, and Mantini D. Brain-Computer Interfaces for
Stroke Motor Rehabilitatioii. Bioengineering. 2025 Jul 30; 12:820. DOI: 10 .
3390/bioengineering12080820. Available from: https://www.mdpi.com/2306-
5354/12/8/820 |Accessed on: 2025 Oct 29|

Leeb R and Pérez-Marcos D. Brain-computer interfaces and virtual reality for
neurorehabilitation. Handbook of clinical neurology 2020; 168:183-97

Pichiorri F, Morone G, Petti M, Toppi J, Pisotta I, Molinari M, Paolucci S,
Inghilleri M, Astolfi L, Cincotti F, et al. Brain—computer interface boosts motor
imagery practice during stroke recovery. Annals of neurology 2015; 77:851-65

LiD, LiR, Song Y, Qin W, Sun G, Liu Y, Bao Y, Liu L, and Jin L. Effects of brain-
computer interface based training on post-stroke upper-limb rehabilitation: a meta-
analysis. Journal of NeuroEngineering and Rehabilitation. 2025 Mar 3; 22:44.
DOI: 10.1186/s12984-025-01588-x. Available from: https://jneuroengrehab.
biomedcentral .com/articles/10.1186/s12984-025-01588-x |[Accessed on:
2025 Oct 29|

Alashram AR, Padua E, and Annino G. Effects of Brain-Computer Interface
Controlled Functional Electrical Stimulation on Motor Recovery in Stroke
Survivors: a Systematic Review. Current Physical Medicine and Rehabilitation
Reports. 2022 Sep 14; 10:299-310. DOI: 10.1007/s40141-022-00369-0. Available
from: https://link.springer.com/10.1007/s40141-022-00369-0 [Accessed
on: 2025 Oct 29|



828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

REFERENCES

14.

15.

16.

17.

18.

19.

20.

21.

Liu J, Li Y, Zhao D, Zhong L., Wang Y, Hao M, and Ma J. Efficacy and safety
of brain—computer interface for stroke rehabilitation: an overview of systematic
review. Frontiers in Human Neuroscience. 2025 Mar 6; 19:1525293. DOI: 10.
3389/ fnhum. 2025 . 1525293. Available from: https://www.frontiersin.org/
articles/10.3389/fnhum.2025.1525293/full [Accessed on: 2025 Oct 29|

Ren C, Li X, Gao Q, Pan M, Wang J, Yang F, Duan Z, Guo P, and Zhang Y.
The effect of brain-computer interface controlled functional electrical stimulation
training on rehabilitation of upper limb after stroke: a systematic review and
meta-analysis. Frontiers in Human Neuroscience. 2024 Sep 26; 18:1438095. DOI:
10.3389/fnhum. 2024 .1438095. Available from: https://www.frontiersin.org/
articles/10.3389/fnhum.2024.1438095/full [Accessed on: 2025 Oct 29|

Zhang M, Zhu F, Jia F, Wu Y, Wang B, Gao L, Chu F, and Tang W. Efficacy of
brain-computer interfaces on upper extremity motor function rehabilitation after
stroke: A systematic review and meta-analysis. NeuroRehabilitation. 2024 Mar
11; 54:199-212. DOI: 10.3233/NRE-230215. Available from: https://journals.
sagepub.com/doi/full/10.3233/NRE-230215 [Accessed on: 2025 Oct 29|

Ma Yn, Karako K, Song P, Hu X, and Xia Y. Integrative neurorehabilitation
using brain-computer interface: From motor furction to mental health after stroke.
BioScience Trends. 2025 Jun 30; 19:243-51. DOI: 10.5582/bst . 2025.01109.
Available from: https://www. jstage.jst.go.jp/article/bst/19/3/19_2025.
01109/_article [Accessed on: 2025 Oct 29|

Lopez-Larraz E, Sarasola-Sanz A, Irastorza-Landa N, Birbaumer N, and Ramos-
Murguialday A. Brain-machine interfaces for rehabilitation in stroke: A review.
NeuroRehabilitation. 2018 Jul 24; 43. Ed. by Harvey RL:77-97. poI: 10.3233/
NRE-172394. Available from: https://journals. sagepub.com/doi/full/10.
3233/NRE-172394 [Accessed on: 2025 Oct 29|

Neuper C, Scherer R, Wriessnegger S, and Pfurtscheller G. Motor imagery and
action observation: Modulation of sensorimotor brain rhythms during mental
control of a brain—computer interface. Clinical Neurophysiology 2009; 120:239-
47. DOL: https://doi.org/10.1016/j.clinph.2008.11.015

Pfurtscheller G and Aranibar A. Event-related cortical desynchronization detected
by power measurements of scalp EEG. Electroencephalography and Clinical
Neurophysiology 1977; 42:817-26. DOIL: https://doi.org/10.1016 /0013 -
4694(77)90235-8

Ray AM, Figueiredo TDC, Lopez-Larraz E, Birbaumer N, and Ramos-Murguialday
A. Brain oscillatory activity as a biomarker of motor recovery in chronic stroke.
Human Brain Mapping. 2020 Apr; 41:1296-308. DOI: 10 . 1002/ hbm . 24876.
Available from: https://onlinelibrary.wiley.com/doi/10.1002/hbm. 24876
[Accessed on: 2025 Oct 23]



867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

REFERENCES

22.

23.

24.

25.

26.

27.

28.

Remsik AB, Gjini K, Williams L, Van Kan PLE, Gloe S, Bjorklund E, Rivera
CA, Romero S, Young BM, Nair VA, Caldera KE, Williams JC, and Prabhakaran
V. Ipsilesional Mu Rhythm Desynchronization Correlates With Improvements in
Affected Hand Grip Strength and Functional Connectivity in Sensorimotor Cortices
Following BCI-FES Intervention for Upper Extremity in Stroke Survivors. Frontiers
in Human Neuroscience. 2021 Oct 28; 15:725645. DOI: 10.3389/fnhum. 2021 .
725645. Available from: https://www.frontiersin.org/articles/10.3389/
fnhum.2021.725645/full [Accessed on: 2025 Oct 23]

Kancheva I, Van Der Salm SMA, Ramsey NF, and Vansteensel MJ. Association
between lesion location and sensorimotor rhythms in stroke — a systematic review
with narrative synthesis. Neurological Sciences. 2023 Dec; 44:4263-89. DOI: 10.
1007/s10072-023-06982-8. Available from: https://link.springer.com/10.
1007/s10072-023-06982-8 [Accessed on: 2025 Oct 23]

Rustamov N, Souders L, Sheehan L, Carter A, and Leuthardt EC. IpsiHand Brain-
Computer Interface Therapy Induces Broad Upper Extremity Motor Recovery in
Chronic Stroke. 2023 Aug 28. DOI: 10.1101/2023.08.26.23294320. Available
from: http://medrxiv. org/lookup/doi/10.1101/2023.08 .26 .23294320
[Accessed on: 2025 Oct 23]

Gangadharan SK, Ramakrishnan S, Pack A, Ravindran A, Prasad VA, and Vidal
JLC. Characterization of Event Related Desynchronization in Chronic Stroke Using
Motor Imagery Based Brain Comiputer Interface for Upper Limb Rehabilitation.
Annals of Indian Academy of Neurology. 2024 Jun 5. DOI: 10.4103/aian.aian_
1056 _23. Available from: https://journals.lww.com/10.4103/aian.aian_
1056_23 [Accessed on: 2025 Oct 23]

Vourvopoulos A, Blanco-Mora D, Aldridge A, Jorge C, Fernandes JC, Figueiredo
P, and Badia SBI. Influence of VR-based Brain-Computer Interfaces Training in
Brain Activity and Clinical Outcome in Chronic Stroke: A Longitudinal Study of
Single Cases. 2022 Oct 27. DOI: 10.21203/rs.3.rs-2193322/v1. Available
from: https://www.researchsquare.com/article/rs-2193322/v1l [Accessed
on: 2025 Oct 23]

Sebastian-Romagosa M, Ortner R, Udina-Bonet E, Dinares-Ferran J, Mayr K,
Cao F, and Guger C. Laterality Coefficient: An EEG parameter related with
the functional improvement in stroke patients. 2019 IEEE EMBS International
Conference on Biomedical € Health Informatics (BHI). 2019 IEEE EMBS
International Conference on Biomedical & Health Informatics (BHI). Chicago, IL,
USA: IEEE, 2019 May :1-4. DOI: 10.1109/BHI.2019.8834472. Available from:
https://ieeexplore.ieee.org/document/8834472/ |[Accessed on: 2025 Oct
23]

Sebastian-Romagosa M, Udina E, Ortner R, Dinarés-Ferran J, Cho W, Murovec N,
Matencio-Peralba C, Sieghartsleitner S, Allison BZ, and Guger C. EEG biomarkers



907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

REFERENCES

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

related with the functional state of stroke patients. Frontiers in neuroscience 2020;
14:582

Mansour S, Giles J, Ang KK, Nair KPS, Phua KS, and Arvaneh M. Exploring
the ability of stroke survivors in using the contralesional hemisphere to control
a brain—computer interface. Scientific Reports. 2022 Sep 28; 12:16223. DOTI:
10.1038/s41598 - 022 -20345 - x. Available from: https://www.nature. com/
articles/s41598-022-20345-x [Accessed on: 2025 Oct 23|

Liu XY, Wang WL, Liu M, Chen MY, Pereira T, Doda DY, Ke YF, Wang SY, Wen
D, Tong XG, et al. Recent applications of EEG-based brain-computer-interface in
the medical field. Military Medical Research 2025; 12:14

Chen S, Chen M, Wang X, Liu X, Liu B, and Ming D. Brain—computer interfaces
in 2023-2024. Brain-X 2025; 3:70024

Heruti RJ, Lusky A, Dankner R, Ring H, Dolgopiat M, Barell V, Levenkrohn S, and
Adunsky A. Rehabilitation outcome of elderly patients after a first stroke: Effect
of cognitive status at admission on the functional outcome. Archives of Physical
Medicine and Rehabilitation 2002; 83:742-9. DOI: https://doi.org/10.1053/
apmr.2002.32739

Bagg S, Pombo AP, and Hopman W. Effect of Age on Functional Outcomes After
Stroke Rehabilitation. Stroke 2002; 33:179-85. DOI: 10.1161/hs0102.101224

Ramos-Murguialday A, Broetz D, Rea M, Lier L, Yilmaz O, Brasil FL, Liberati G,
Curado MR, Garcia-Cossio b, Vvziotis A, Cho W, Agostini M, Soares E, Soekadar
S, Caria A, Cohen LG, and Birbaumer N. Brain—machine interface in chronic
stroke rehabilitation: A controlled study. Annals of Neurology 2013; 74:100-8.
DOI: https://doi.org/10.1002/ana.23879

Pollok B, Latz D, Krause V, Butz M, and Schnitzler A. Changes of motor-cortical
oscillations associated with motor learning. Neuroscience 2014; 275:47-53

Lotte F, Larrue F, and Miihl C. Flaws in current human training protocols for
spontaneous Brain-Computer Interfaces: lessons learned from instructional design.
Frontiers in Human Neuroscience 2013; 7

Jeunet C, Jahanpour E, and Lotte F. Why standard brain-computer interface
(BCI) training protocols should be changed: an experimental study. Journal of
neural engineering 2016; 13:036024

Perdikis S and Millan JdR. Brain-machine interfaces: a tale of two learners. IEEE
Systems, Man, and Cybernetics Magazine 2020; 6:12-9

Vavoulis A, Figueiredo P, and Vourvopoulos A. A Review of Online Classification
Performance in Motor Imagery-Based Brain-Computer Interfaces for Stroke
Neurorehabilitation. Signals 2023; 4:73-86. DOI: 10.3390/signals4010004



944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

REFERENCES

40.

41.

42.

43.

44.

45.

Vourvopoulos A and Badia SBI. Usability and Cost-effectiveness in Brain-
Computer Interaction: Is it User Throughput or Technology Related? Proceedings
of the Tth Augmented Human International Conference 2016. AH '16: Augmented
Human International Conference 2016. Geneva Switzerland: ACM, 2016 Feb 25:1—
8. DOI: 10.1145/2875194.2875244. Available from: https://dl.acm.org/doi/
10.1145/2875194.2875244 [Accessed on: 2025 Oct 29|

Vourvopoulos A, Ferreira A, and Badia SBI. NeuRow: An Immersive VR
Environment for Motor-Imagery Training with the Use of Brain-Computer
Interfaces and Vibrotactile Feedback: Proceedings of the 3rd International
Conference on Physiological Computing Systems. 3rd International Conference
on Physiological Computing Systems. Lisbon, Portugal: SCITEPRESS - Science
and Technology Publications, 2016 :43-53. DOI: 10.5220/0005939400430053.
Available from: http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=
10.5220/0005939400430053 [Accessed on: 2025 Oct 29|

Vourvopoulos A and Bermiidez I Badia S. Motor priming in virtual reality can
augment motor-imagery training efficacy in restorative brain-computer interaction:
a within-subject analysis. Journal of NeuroEngincering and Rehabilitation. 2016
Dec; 13:69. DOI: 10 . 1186 /512984 - 016 - 0172 - 2. Available from: http: //
jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-016-0173-2
[Accessed on: 2025 Oct 29|

Vourvopoulos A, Marin-Pardo O, Neureither M, Saldana D, Jahng E, and Liew SL.
Multimodal Head-Mounted Virtual-Reality Brain-Computer Interface for Stroke
Rehabilitation: A Chinical Case Study with REINVENT. Virtual, Augmented
and Mized Reality. Multimodal Interaction. Ed. by Chen JY and Fragomeni G.
Vol. 11574. Series Title: Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2019 :165-79. DOI: 10.1007/978-3-030-21607-8_13.
Available from: https://link.springer.com/10.1007/978-3-030-21607-8_13
[Accessed on: 2025 Oct 29|

Vourvopoulos A, Pardo OM, Lefebvre S, Neureither M, Saldana D, Jahng E,
and Liew SL. Effects of a Brain-Computer Interface With Virtual Reality (VR)
Neurofeedback: A Pilot Study in Chronic Stroke Patients. Frontiers in Human
Neuroscience. 2019 Jun 19; 13:210. DOI: 10.3389/fnhum.2019.00210. Available
from: https://www.frontiersin.org/article/10.3389/fnhum.2019.00210/
full [Accessed on: 2025 Oct 29|

Lupu RG, Irimia DC, Ungureanu F, Poboroniuc MS, and Moldoveanu A.
BCI and FES Based Therapy for Stroke Rehabilitation Using VR Facilities.
Wireless Communications and Mobile Computing. 2018 Jan; 2018. Ed. by
Konstantinidis EI:4798359. DOI: 10.1155/2018/4798359. Available from: https:
//onlinelibrary.wiley.com/doi/10.1155/2018/4798359 |[Accessed on: 2025
Oct 29|



984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

REFERENCES

46.

47.

48.

49.

50.

o1.

52.

93.

o4.

95.

96.

Brain EBS. Intra-and Inter-subject Variability in. Inter-and Intra-subject
Variability in Brain Imaging and Decoding 2022 :8722

Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, and Leirer VO.
Development and validation of a geriatric depression screening scale: a preliminary
report. Journal of psychiatric research 1982; 17:37-49

Blanco-Mora D, Aldridge A, Jorge C, Vourvopoulos A, Figueiredo P, and Bermudez
I Badia S. Impact of age, VR, immersion, and spatial resolution on classifier
performance for a MI-based BCI. Brain-Computer Interfaces 2022; 9:169-78
Vourvopoulos A, Blanco-Mora DA, Aldridge A, Jorge C, Figueiredo P, and Badia
SB i. Enhancing motor-imagery brain-computer interface training with embodied
virtual reality: a pilot study with older adults. 2022 IEEE International Conference
on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering
(MetroXRAINE). IEEE. 2022 :157-62

Batista D, Caetano G, Fleury M, Figueiredo P, and Vourvopoulos A. Effect of head-
mounted virtual reality and vibrotactile feedback in ERD during motor imagery
Brain—computer interface training. Brain-Computer Interfaces 2024; 11:11-20
Gladstone DJ, Danells CJ, and Black SE. The Fugl-Meyer Assessment of
Motor Recovery after Stroke: A Critical Review of Its Measurement Properties.
Neurorehabilitation and Neural Repair 2002; 16. PMID: 12234086:232-40. DOI:
10.1177/154596802401105171

Page SJ, Fulk GD, and Boyne P. Chinically Important Differences for the Upper-
Extremity Fugl-Meyer Scale in People With Minimal to Moderate Impairment Due
to Chronic Stroke. Physical Therapy 2012 Jun; 92:791-8. DOI: 10.2522/ptj .
20110009

Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin
I, Cummings JL, and Chertkow H. The Montreal Cognitive Assessment, MoCA:
A Brief Screening Tool For Mild Cognitive Impairment. Journal of the American
Geriatrics Society 2005; 53:695-9. DOI: https://doi.org/10.1111/j.1532-
5415.2005.53221 .x

Malouin F, Richards CL, Jackson PL, Lafleur MF, Durand A, and Doyon J. The
Kinesthetic and Visual Imagery Questionnaire (KVIQ) for assessing motor imagery
in persons with physical disabilities: a reliability and construct validity study.
Journal of neurologic physical therapy 2007; 31:20-9

Vourvopoulos A, Ferreira A, and Badia SB i. NeuRow: an immersive VR
environment for motor-imagery training with the use of brain-computer interfaces
and vibrotactile feedback. International Conference on Physiological Computing
Systems. Vol. 2. SciTePress. 2016 :43-53. DOI: 10.5220/0005939400430053
Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A,
and Yger F. A review of classification algorithms for EEG-based brain—computer
interfaces: a 10 year update. Journal of Neural Engineering 2018 Apr; 15:031005.
DOI: 10.1088/1741-2552/aab2f2



1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

REFERENCES

o7.

o8.

99.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Vourvopoulos A, Fleury M, Blanco-Mora DA, Fernandes JC, Figueiredo P1, and
Bermudez i Badia S. Brain imaging and clinical outcome of embodied VR-BCI
training in chronic stroke patients: a longitudinal pilot study. Brain-Computer
Interfaces 2024; 11:193-209

Cauraugh JH and Summers JJ. Neural plasticity and bilateral movements: A
rehabilitation approach for chronic stroke. Progress in Neurobiology 2005; 75:309—
20

Palmer JA, Wheaton LA, Gray WA, Saltao da Silva MA, Wolf SL, and Borich
MR. Role of interhemispheric cortical interactions in poststroke motor function.
Neurorehabilitation and Neural Repair 2019; 33:762-74

Summers JJ, Kagerer FA, Garry MI, Hiraga CY, Loftus A, and Cauraugh JH.
Bilateral and unilateral movement training on upper limb function in chronic stroke
patients: A TMS study. Journal of the Neurological Sciences 2007; 252:76-82

Rizzolatti G and Craighero L. The mirror-neuron system. Annual Review of
Neuroscience 2004; 27:169-92

Garrison KA, Winstein CJ, and Aziz-Zadeh L. The mirror neuron system: A neural
substrate for methods in stroke rehabilitation. Neurorehabilitation and Neural
Repair 2010; 24:404-12

Ertelt D, Small S, Solodkin A, Dettmers C, McNamara A, Binkofski F', and Buccino

G. Action observation has a positive impact on rehabilitation of motor deficits after
stroke. Neurolmage 2007; 56:T164-T173

Neuper C and Pfurtscheller G. Event-related dynamics of cortical rhythms:
frequency-specific features and functional correlates. International journal of
psychophysiology 2001; 43:41-58

Pineda JA. Sensorimotor cortex as a critical component of an’extended’mirror
neuron system: Does it solve the development, correspondence, and control
problems in mirroring? Behavioral and Brain Functions 2008; 4:47

Nunes JD, Vourvopoulos A, Blanco-Mora DA, Jorge C, Fernandes JC, Bermudez
i Badia S, and Figueiredo P. Brain activation by a VR-based motor imagery and
observation task: An fMRI study. Plos one 2023; 18:€0291528

Pfurtscheller G, Neuper C, Brunner C, and Da Silva FL. Beta rebound after
different types of motor imagery in man. Neuroscience letters 2005; 378:156-9

Ray A, Figueiredo T, Lopez-Larraz E, Birbaumer N, Ramos-Murguialday A,
Lopez-Larraz E, and Ramos-Murguialday A. Brain oscillatory activity as a
biomarker of motor recovery in chronic stroke. English. Human Brain Mapping
2020 Apr; 41. Publisher Copyright: (C) 2019 The Authors. Human Brain Mapping
published by Wiley Periodicals, Inc.:1296-308. DOI: 10.1002/hbm. 24876



1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

REFERENCES

69.

70.

71.

72.

73.

74.

75.

76.

77,

78.

79.

Biasiucci A, Leeb R, Iturrate I, Perdikis S, Al-Khodairy A, Corbet T, Schnider
A, Schmidlin T, Zhang H, Bassolino M, et al. Brain-actuated functional electrical
stimulation elicits lasting arm motor recovery after stroke. Nature communications
2018; 9:2421

Delorme A and Makeig S. EEGLAB: an open source toolbox for analysis of
single-trial EEG dynamics including independent component analysis. Journal of
Neuroscience Methods 2004; 134:9-21. DOIL: https://doi.org/10.1016/].
jneumeth.2003.10.009

Kothe C and Jung T. Artifact removal techniques with signal reconstruction. US
Patent App. 14/895,440. 2016

Plechawska-Wojcik M, Kaczorowska M, and Zapala D. The artifact subspace
reconstruction (ASR) for EEG signal correction. A comparative study. Information
systems architecture and technology: proceedings of 39th international conference
on information systems architecture and technology—ISAT 2018: part II. Springer.
2019 :125-35

Makeig S, Bell A, Jung TP, and Sejnowski TJ. Independent Component Analysis
of Electroencephalographic Data. Advances in Newral Information Processing
Systems. Ed. by Touretzky D, Mozer M, and Hasselmo M. Vol. 8. MIT Press,
1995

Pion-Tonachini L, Kreutz-Delgado K, and Makeig S. ICLabel: An automated
electroencephalographic independent component classifier, dataset, and website.
Neurolmage 2019; 198:181 -97. DOI: https://doi.org/10.1016/j.neuroimage.
2019.05.026

Pfurtscheller G and Lopes da Silva F. Event-related EEG/MEG synchronization
and desynchronization: basic principles. Clinical Neurophysiology 1999; 110:1842—
57. DOI: https://doi.org/10.1016/S1388-2457(99)00141-8

Medvedeva A, Syrov N, Yakovlev L, Alieva YA, Petrova D, Ivanova G, Lebedev
M, and Kaplan AY. Event-related desynchronization of eeg sensorimotor rhythms
in hemiparesis post-stroke patients. Journal of Evolutionary Biochemistry and
Physiology 2024; 60:2058-71

Doyle LM, Yarrow K, and Brown P. Lateralization of event-related beta
desynchronization in the EEG during pre-cued reaction time tasks. Clinical
Neurophysiology 2005; 116:1879-88. DOI: https://doi.org/10.1016/j.clinph.
2005.03.017

Kaiser V, Daly I, Pichiorri F, Mattia D, Miiller-Putz GR, and Neuper C.
Relationship between electrical brain responses to motor imagery and motor
impairment in stroke. Stroke 2012; 43:2735-40

Afonso M, Sanchez-Cuesta F, Gonzélez-Zamorano Y, Romero Munoz JP, and
Vourvopoulos A. Investigating the synergistic neuromodulation effect of bilateral

rTMS and VR brain-computer interfaces training in chronic stroke patients.
Journal of Neural Engineering 2024 Oct; 21. DOI: 10.1088/1741-2552/ad8836



1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

REFERENCES

80.

81.

82.

83.

Shetty V, Morrell CH, and Najjar SS. Modeling a cross-sectional response variable
with longitudinal predictors: an example of pulse pressure and pulse wave velocity.
Journal of applied statistics 2009; 36:611-9

Langhorne P, Bernhardt J, and Kwakkel G. Stroke rehabilitation. The Lancet
2011; 377:1693-702

Stepieri M, Conradi J, Waterstraat G, Hohlefeld FU, Curio G, and Nikulin VV.
Event-related desynchronization of sensorimotor EEG rhythms in hemiparetic

patients with acute stroke. Neuroscience letters 2011; 488:17-21

Takeuchi N and Izumi SI. Maladaptive plasticity for motor recovery after stroke:
mechanisms and approaches. Neural plasticity 2012; 2012:359728





