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Abstract. Motor impairment following stroke frequently leads to long-term16

disability, limiting independence and quality of life. Brain–Computer Interface (BCI)17

systems integrating motor imagery (MI) with virtual reality (VR) offer promising18

avenues for enhancing neuroplasticity and engagement through immersive, real-time,19

and proprioceptive feedback. Yet, identifying reliable electroencephalography (EEG)-20

based biomarkers that reflect or predict recovery remains challenging. This study21

investigated the relationship between event-related desynchronization (ERD) dynamics22

during MI–VR training and motor recovery in individuals with chronic stroke. Fourteen23

participants with stroke (9 experimental, 5 control) completed a 4-week VR–BCI24

intervention and were compared with a non-stroke reference cohort (N = 35). Linear25

mixed-effects models assessed ERD modulation across sessions and groups, and a26

two-stage regression evaluated the predictive value of ERD features for Fugl–Meyer27

Assessment (FMA) gains. Results showed no significant ERD change across sessions,28

but stroke participants exhibited significantly reduced ERD compared to controls.29

Baseline ERD amplitude predicted motor improvement, whereas ERD progression30

did not. Ipsilateral ERD showed a compensatory trend in ischemic stroke. These31

findings indicate that baseline ERD may serve as a stronger prognostic biomarker32

than short-term ERD dynamics, supporting the development of personalized VR–BCI33

rehabilitation strategies for chronic stroke recovery.34

Keywords: Brain-Computer Interfaces, Motor Imagery, Event-Related Desynchroniza-35

tion, Stroke Rehabilitation, Virtual Reality36
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1. Introduction37

Stroke continuous to be a leading cause of disability worldwide, often resulting in38

motor impairments that significantly affect patients’ quality of life [1]. Among these39

impairments, hemiparesis affecting the upper limb is particularly common [2], with many40

survivors experiencing chronic limitations despite receiving conventional rehabilitation41

therapies [3].42

Current stroke upper–limb rehabilitation combines traditional neurofacilitation43

methods, which remain widely used in clinical practice, with more contemporary task-44

specific approaches that emphasize movement re-education and functional training.45

These rehabilitation strategies are increasingly complemented by technology-based46

interventions such as functional electrical stimulation (FES), robotic-assisted therapy,47

and virtual reality (VR) [4, 5, 6].48

Evidence supports the use of Brain–Computer Interfaces (BCI) for post-stroke49

rehabilitation, especially for upper limb motor recovery, with numerous meta-analyses50

reporting moderate to large beneficial effect sizes [7, 8, 9, 10]. One of the earliest51

randomized controlled trials (RCT) providing direct evidence of BCI efficacy, showing52

significantly greater improvements in upper-limb motor function compared to motor53

imagery (MI) practice alone in subacute stroke patients [11]. Specifically, BCI54

training significantly improves clinical measures like the Fugl–Meyer Assessment–Upper55

Extremity (FMA-UE; MD = 3.69) and the Action Research Arm Test (ARAT) [12, 13],56

often demonstrating superior results compared to conventional rehabilitation [14, 15,57

12]. The interventions are widely considered safe for clinical use [16, 9, 13].58

The efficacy relies on the BCI’s ability to promote neuroplasticity by creating a59

closed-loop system linking the patient’s neural intent (e.g., motor imagery) with real-60

time sensory/motor feedback, which reinforces damaged motor circuits via Hebbian61

learning [17, 18, 12]. Specifically, MI and motor observation (MO) are commonly62

employed in electroencephalography (EEG)–based BCI protocols, as both processes63

are associated with the activation of the sensorimotor cortex and the mirror neuron64

system (MNS) [19]. These activities induce event-related desynchronization (ERD) in65

the Alpha (8-12 Hz) and Beta (12-30 Hz) bands, which are neural markers linked to66

motor planning, execution, and motor recovery [20].67

Specifically, enhanced ERD in stroke rehabilitation is consistently linked to68

improved BCI control and motor recovery, with stronger ipsilesional ERD indicating69

better neuroplastic adaptation [21, 22, 23, 24, 25]. Cortical lesions typically show70

greater reductions in ipsilesional alpha and beta ERD, while subcortical lesions display71

more variable, often bilateral patterns [23]. However, variability in study methodologies72

hampers synthesis and comparability [23]. Further, greater ERD lateralization toward73

the ipsilesional hemisphere generally predicts better motor outcomes [26, 21, 22, 27],74

and correlations between ERD metrics—such as the Laterality Coefficient—support its75

value as a predictive biomarker [27, 28]. Nonetheless, contralesional or bilateral ERD76

patterns in severe cases challenge the generalisation of ipsilesional dominance [29].77

ACCEPTED MANUSCRIPTARTICLE IN PRESS

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



Baseline Sensorimotor EEG and Its Longitudinal Change.

EEG–based BCIs are advantageous due to their non-invasive nature, portability,78

and cost-effectiveness. Recent reviews underscore the need for prognostic79

neurophysiological markers that can inform personalized rehabilitation strategies and80

improve patient stratification [30, 31]. However, the effectiveness of MI-BCI training81

varies widely across individuals, with factors such as lesion location, cognitive status, and82

MI ability contributing to this variability [32, 33, 34, 35]. Moreover, BCI performance83

often suffers from inadequate feedback or unstable EEG signals [36], thereby hindering84

effective learning [37] and reinforcing the value of co-adaptive or mutual learning85

paradigms [38]. Recent research has explored deep learning algorithms to adapt BCIs to86

individual neural signatures, though traditional machine learning methods often yield87

comparable results [39].88

Integrating VR into BCI training is a promising strategy to enhance motor89

rehabilitation. VR provides immersive, first-person experiences that can induce a sense90

of embodiment, allowing patients to visualize and experience virtual limb movements91

even without physical execution. Prior findings have been shown increased embodiment,92

higher sensorimotor brain activity, and improved accuracy of task execution in immersive93

VR environments compared to conventional screen feedback. Pilot studies indicated94

enhanced motivation, focus, and motor outcomes for stroke and healthy subjects [40, 41,95

42, 43, 44]. Further, employing a virtual therapist with augmented feedback within VR,96

have showed showed promising results in neuro–motor recovery [45]. VR environments97

also offer safe, engaging, and motivating settings for rehabilitation, with gamified tasks98

that have been shown to enhance engagement and adherence to therapy [6].99

Despite growing evidence supporting the use of VR–BCI systems for stroke100

rehabilitation, the relationship between brain activity modulation and clinical outcomes101

remains insufficiently understood. Specifically, the long-term effects of VR–BCI training102

on motor function and its correlation with neurophysiological changes, such as Alpha103

and Beta ERD patterns, require further investigation. This need is driven by high inter-104

and intra-subject variability in neural responses [46], which can arise from differences105

in stroke severity, location, and levels of engagement. Additionally, the variability106

in training protocols further complicates our understanding of how neurophysiological107

adaptation supports motor learning and recovery [36].108

While the clinical efficacy of VR-BCI system for post-stroke motor rehabilitation109

has been demonstrated in previous studies, this study aims to bridge existing110

knowledge gaps by identifying EEG-based neural features that may predict individual111

responsiveness to therapy. Building on previous work, this study ensures consistency112

of the experimental paradigm, feedback design, and analysis pipeline, addressing113

the persistent lack of standardization across BCI studies. By examining the114

interaction between motor recovery and neural activity, this work seeks to advance the115

development of more effective and personalized BCI–based neurorehabilitation strategies116

for individuals with chronic and severe motor impairments.117
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2. Methods118

2.1. Participants119

Fourteen individuals with stroke were recruited between August 2019 and December120

2023 and randomly allocated in two groups. Recruitment was disrupted by COVID-121

19–related hospital restrictions. Ultimately, nine were allocated to the experimental122

group (four female), and five (one female) served as a control group (Table 1). The123

final sample was unbalanced due to participant dropouts over the course of the124

study. Participants provided their written informed consent in accordance with the125

Declaration of Helsinki. This study was approved by Scientific and Ethic Committees126

of the Central Hospital of Funchal, Portugal - approval: 21/2019 with a clinical trial127

registration number: NCT04376138. No interim analyses were planned; however, all128

study sessions were conducted at the hospital, allowing prompt response in case of129

medical need and enabling standardized stopping guidelines if necessary. The control130

group received standard care. All participants continued their usual therapy; no131

additional rehabilitation was provided. Harms were defined as any adverse events132

or unintended effects related to study procedures (e.g., discomfort, dizziness, anxiety,133

technical intolerance) and were monitored non-systematically through self-report and134

investigator observation. No adverse events were reported in either group. Further, data135

from 35 individuals without stroke were used as a reference cohort. This diverse dataset136

provides a baseline for comparing neurophysiological responses observed in individuals137

with stroke. These participants followed the same VR-BCI protocol and experimental138

setup as the stroke group, ensuring methodological consistency across cohorts.139

Table 1: Demographic and Clinical Profile of Participants with Stroke. Participants
are divided into two groups: experimental and control. MPS refers to Months Post-
Stroke. FMA refers to the Fugl-Meyer Assessment for the upper limb (maximum value
= 66). ∆FMA is the change between pre- and post-FMA scores, with * indicating
minimal clinically important difference (MCID). MoCA refers to the Montreal Cognitive
Assessment (maximum score = 30). ∆MoCA is the difference between pre- and post-
MoCA scores. Follow-up assessment was performed a month after they finished the
intervention.

Participant ID Group Gender Age (years) Stroke Type Lesion Type MPS (months) Affected Side FMA MoCA

Pre Post Follow-up ∆ Pre Post Follow-up ∆

P01 Experimental F 48 Hemorrhagic Mixed 11.3 Right 22 19 19 -3 25 21 25 -4
P02 Experimental F 63 Ischemic Subcortical 181.5 Left 40 47 40 7* 28 22 26 -6
P05 Experimental M 61 Ischemic Mixed 79.1 Left 58 58 58 0 26 26 30 0
P08 Experimental M 58 Ischemic Mixed 11.3 Left 13 21 20 8* 19 23 24 4
P03 Experimental F 64 Hemorrhagic Mixed 17 Left 42 58 59 16* 10 12 19 2
P21 Experimental M 59 Ischemic Brainstem 9 Right 62 62 62 0 22 24 26 2
P24 Experimental M 65 Hemorrhagic Mixed 8 Right 50 52 57 2 15 15 15 0
P40 Experimental F 54 Ischemic - 21 Left 50 52 - 2 - - - -
C01 Control M 56 Ischemic Mixed 64.5 Left 15 21 20 6* 23 26 25 3
C02 Control M 54 Hemorrhagic Disperse small vessel disease 5.4 Right 43 51 53 8* 22 25 20 3
C03 Control F 54 Ischemic Mixed 4.9 Left 12 16 21 4* 19 18 22 -1
C04 Control M 51 Ischemic Subcortical 26.2 Right 29 43 48 14* 27 27 30 0
C05 Control M 58 Ischemic Mixed 168.1 Right 39 36 - -3 13 16 - 3
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2.1.1. Participants with Stroke: Individuals with stroke (N = 14) in the chronic phase140

(two enrolled at 4.9 and 5.4 months but started > 6 months post-stroke) were recruited141

at the Central Hospital of Funchal. Mean age was 58 years (SD = 6), 65% male142

and 35% female, with 4 participants presenting with hemorrhagic stroke and 10 with143

ischemic stroke (Table 1). The study was originally registered with an expected sample144

size of 20 participants based on practical considerations rather than a formal power145

calculation; however, achieving this target proved challenging due to strict eligibility146

criteria, resulting in an unbalanced final sample (9 experimental, 5 control) following147

participant dropouts (Figure 1(a)).148

The inclusion criteria for participation required upper limb paresis, defined by149

FME-UE score ≤ 47, with lesion characteristics confirmed via neuroimaging (magnetic150

resonance imaging or an equivalent modality). Additionally, participants must have151

experienced a first stroke episode with no documented lasting effects from previous152

events, possess sufficient cognitive capacity to execute the required tasks. have a153

minimum of 2 years of formal education. The minimum education requirement reflects154

local clinical standards for literacy and task comprehension rather than academic155

attainment. While the clinical trial registration specified an age range of 18 to 80156

years, the study protocol included all eligible participants aged ≥ 18 years.157

Exclusion criteria included a history of cognitive impairment prior to the stroke and158

severe aphasia, perceptual, or cognitive deficits that would interfere with task execution159

or communication. Clinical thresholds for exclusion were set for hemispatial neglect,160

defined as a score > 6 on the Bells Test, and clinically significant depression, defined161

as a Beck Depression Inventory (BDI) score > 28 (Portuguese version by Vaz Serra &162

Pio Abreu, 1973)). Notably, the BDI was utilized as a cross-sectional screening tool at163

baseline in place of the registered Geriatric Depression Scale (GDS) [47] to better suit164

the adult population’s profile. Participants were also excluded if they presented with165

other neurological, neuromuscular, or orthopedic conditions affecting motor capacity,166

severe visual impairment, claustrophobia, or the presence of ferromagnetic material in167

the body. While muscle tone was systematically assessed using the Modified Ashworth168

Scale (MAS), spasticity was not a formal exclusion criterion; baseline motor function169

was evaluated using the FME-UE.170

One participant (P39) completed the full intervention and is presented in this study171

for reference; however, as he did not meet the stroke chronicity criteria (< 6 months),172

his data were excluded from this analysis.173

2.1.2. Participants without Stroke: Participants without stroke (N = 35) were174

individuals with no history of neurological or other clinically significant medical175

conditions. The data were obtained from our previous laboratory studies [48, 49, 50],176

where the experimental setup and protocol were identical to those used for the stroke177

group (Figure 1(b)). The first group from [50] included 19 participants (mean age178

= 24.79 years, SD = 3.54), with 13 males and 6 females. Similarly, [48] included179

11 participants (mean age = 27.29 years, SD = 4.31), consisting of 8 males and 3180

ACCEPTED MANUSCRIPTARTICLE IN PRESS

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



Baseline Sensorimotor EEG and Its Longitudinal Change.

females. Further, [49] included 5 participants (mean age = 51 years, SD = 5.5), 4 of181

whom were female. Finally, the non-stroke cohort was not age-matched to the stroke182

cohort. However, in an independent study using the same NeuRow VR-BCI protocol, no183

significant association between age and MI-BCI performance and no differences between184

age groups were observed, suggesting minimal age effects within the 20–50 year range185

typical of our non-stroke datasets [48].186

Figure 1: Study flowchart. (a) Flow diagram of participant recruitment, allocation,
exclusions, and inclusion in analyses for the prospective stroke cohort. Fifteen
individuals with stroke were enrolled; one participant was excluded from analysis for
not meeting chronicity criteria (< 6 months post-stroke). Fourteen participants were
randomized to either a VR–BCI intervention group or a conventional therapy control
group and were included in the final analyses. (b) Flow diagram of the non-stroke
reference cohort, pooled from three previously completed studies using the same VR–
BCI paradigm and EEG protocol. This cohort (N = 35) was included exclusively for
neurophysiological (ERD) reference and was not used for clinical inference.

2.2. Clinical Outcome Measures187

The primary clinical outcome measures included the FMA-UE and the Montreal188

Cognitive Assessment (MoCA). Participants with stroke were assessed pre- and post-189

intervention, with most undergoing an additional follow-up assessment one month after190

completing the experimental protocol. Cognitive capacity was not operationalized using191

a fixed MoCA cut-off, instead, eligibility was determined by rehabilitation specialists192

based on clinical judgment, consistent with routine clinical practice, while cognitive193

screening through MoCA was used descriptively and for exploratory analyses.194

The FMA is a standardized Likert-scale assessment widely used to evaluate motor195

function recovery following stroke-induced hemiplegia. It assesses multiple domains,196

including motor function, sensation, range of motion, and joint pain. The upper-197
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extremity subsection of the FMA (FMA-UE) has a maximum score of 66 points [51]. A198

minimal clinically meaningful improvement following treatment is typically defined as199

an increase of +4 to +7 points [52]. The MoCA is a widely used cognitive screening tool200

designed to assess cognitive impairment. Scores range from 0 to 30, with a score above201

26 considered indicative of normal cognitive function [53]. MoCA was administered202

primarily as a screening tool to ensure that participants were cognitively apt to engage203

with the VR–BCI training. In addition, given evidence that motor rehabilitation may204

sometimes be accompanied by secondary cognitive improvements, MoCA scores were205

also monitored as an exploratory outcome. Finally, data for participants P40 and C05206

are incomplete (Table 1) due to protocol modifications implemented for the final batch207

of patients, resulting in the absence of follow-up assessments for both the FMA and208

MoCA.209

2.2.1. Study Design and Protocol Deviations: Randomization used a simple procedure210

without stratification or blocking. The sequence was generated by one team member211

and was not concealed; personnel enrolling participants had access, while participants212

did not. Although the initial trial registration specified single-blinding for the outcomes213

assessor, no blinding was ultimately implemented due to the nature of the interventions.214

Furthermore, the Kinesthetic and Visual Imagery Questionnaire (KVIQ) [54] was215

omitted from the final protocol to reduce participant fatigue. The MoCA and MAS216

remained the primary longitudinal measures, assessed at baseline, final (4 weeks), and217

1-month follow-up.218

2.3. Experimental Design219

2.3.1. Experimental protocol: The experimental protocol for this study consisted of a 4-220

week intervention, including a total of 12 VR-BCI training sessions for the experimental221

group, except for participant P05 with 10 sessions, and participant P40 with 11222

sessions. The participants in the control group did not follow the VR-BCI experimental223

intervention but instead engaged in additional hours of conventional therapy. Clinical224

evaluations and functional brain imaging assessments were conducted at three distinct225

time points: (1) before the intervention (pre); (2) immediately after completing the226

intervention (post); and (3) one month following the intervention (follow-up). Both227

the BCI training and brain imaging with functional Magnetic Resonance (fMRI) for228

participants with stroke were carried out at the Central Hospital of Funchal. fMRI data229

were acquired as part of a parallel investigation and are not reported here, as they fall230

outside the scope of the present EEG-focused analysis.231

For the participants without stroke, a single MI-BCI session was used for this232

analysis. These sessions took place in a lab environment, in two different physical233

locations. At the NeurorehabLab of University of Madeira, and the NeuroLab of the234

Evolutionary Systems and Biomedical Engineering Lab (LaSEEB)/Institute of Systems235

and Robotics in Lisbon.236
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2.3.2. EEG and VR equipment: For participants with stroke, EEG data was acquired237

using the g.Nautilus wireless EEG amplifier (g.tec, Graz, Austria) with 32 channels238

(Figure 2A), a sampling rate of 500 Hz, and 24-bit resolution. Electrodes were placed239

according to the 10–10 system, and data was transmitted wirelessly via a 2.4 GHz240

ISM band to a desktop computer for real-time processing. For participants without241

stroke, EEG data was recorded using both the g.Nautilus and the Liveamp 32 EEG242

amplifier (Brain Products GmbH, Munich, Germany), maintaining the same 32-channel243

setup and 500 Hz sampling rate as the stroke group. Both devices have similar244

specifications and are functionally equivalent in terms of data acquisition performance245

and noise characteristics. The main difference lies in the brand rather than technology246

or configuration. This makes a systematic hardware bias unlikely.247

Visual feedback was delivered through the Oculus Rift CV1 (Resolution: 1080x1200248

per-eye; Refresh Rate: 90 Hz; field of view (FoV): 87° horizontal, 88° vertical; 6 degrees249

of freedom (DoF) motion tracking) and the Oculus Quest 2 (Resolution: 1832x1920 per-250

eye; Refresh Rate: 120 Hz; field of view (FoV): 97° horizontal, 93° vertical; 6 degrees251

of freedom (DoF) motion tracking) systems (Figure 2B). Additionally, vibro-tactile252

feedback was provided through two Oculus Touch controllers (Figure 2C) modified with253

a custom support base for patient comfort (Figure 2D).254

Figure 2: VR-BCI Experimental Setup: A. EEG System with 32 electrodes; B. HMD
for VR feedback; C. Controllers for vibrotactile feedback; D. Custom controller support;
E. MI protocol illustrating the epoch size and visual feedback through NeuRow.

2.3.3. VR-BCI training paradigm and protocol: The VR-BCI training task utilized255

NeuRow [55], a first-person upper-limb MI and MO paradigm in immersive VR. The256
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protocol involved MI-MO training through embodied feedback, rendered through a257

Head-Mounted Display (HMD), with vibro-tactile feedback. Participants were seated in258

a virtual boat and instructed to perform MI and MO of proximal, rowing movements,259

guided by an on-screen directional cue (left or right arrow). The avatar’s two arms were260

always visible to preserve ecological context, but only the cued side was to be imagined261

at each trial. Multimodal feedback was provided: visual feedback depicted the avatar’s262

arm movement in the cued direction; auditory feedback delivered ambient and event-263

specific sounds (e.g., water splashes, scoring) via the HMD headphones; and vibro-264

tactile feedback produced brief hand vibrations through the Oculus Touch controller265

corresponding to the cued side.266

The training procedure comprised two phases: (1) Calibration — participants267

performed cued left- vs right-hand MI synchronized with avatar rowing actions and268

vibro–tactile cues. Each session included 20 randomized trials per hand, with 2 s269

of baseline and 4 s of MI (Figure 2E). A randomized inter-trial interval (1.25–1.5 s)270

was applied to prevent stimulus anticipation and carryover effects. EEG data from271

calibration were used to extract spatial and spectral features through a common spatial272

patterns (CSP) filter (4 filters used, in the frequency band of 8 - 30 Hz), which trained273

a linear discriminant analysis (LDA) classifier, a widely adopted approach for MI-based274

BCIs [56]. (2) Online training — the trained model then classified MI patterns in real275

time, enabling participants to control the virtual boat through MI of the cued arm,276

with the same trial number and duration as in training, and as implemented in previous277

studies using similar protocols [57]. The same protocol was applied to both stroke and278

healthy participants.279

2.3.4. Design rationale of the NeuRow VR paradigm: NeuRow employs a bimanual280

design to engage bilateral sensorimotor networks and promote interhemispheric281

rebalance after stroke by enhancing ipsilesional recruitment, reducing contralesional282

inhibition, and enabling repetitive, error-reduced practice [58, 59, 60]. To further283

increase sensorimotor activation, NeuRow combines motor imagery and observation284

(MIMO), leveraging the mirror neuron and action-observation networks [61, 62, 63],285

which enhance premotor and parietal activation when imagery and observation are286

integrated [64, 65]. MIMO-based VR paradigms have shown stronger ERD responses287

than MI alone [66, 50]. Brain-contingent feedback advances the virtual boat and288

delivers a co-timed vibrotactile pulse, reinforcing associative (Hebbian) learning and289

sensorimotor coupling through precise temporal synchronization of visual and tactile290

feedback with motor intention [67, 68, 69].291

2.4. EEG Data Analysis292

For the post-hoc analysis, EEG signals were processed using MATLAB R2023a (The293

MathWorks, MA, United States) and the EEGLAB toolbox v2023.1 [70].294
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2.4.1. EEG Pre-Processing Optimization in Clinical Settings: Given that our stroke295

data were recorded in a hospital setting, a naturally higher-noise environment, and296

involved individuals with brain lesions, we anticipated an increased level of noise297

compared to standard laboratory conditions. Consequently, EEG pre-processing was298

a critical aspect of our methodology, requiring careful investigation to ensure optimal299

signal quality. To address this, we explored and compared multiple pre-processing300

pipelines, ranging from basic filtering approaches to more robust and aggressive artifact301

removal methods. The final pipeline was selected based on a systematic evaluation302

of performance, as outlined in the schematic presented in Figure 3, while the code is303

available online‡304

The selection of the optimal pre-processing pipeline was based on a two-fold305

evaluation: first, assessing ERD values obtained after applying each pipeline, and306

second, conducting a manual inspection to ensure effective artifact removal. Given307

the high prevalence of artifacts in the stroke cohort, Pipeline 8 was identified as the308

most suitable approach (Figure 3).309

For the non-stroke population, the same comparative analysis was conducted across310

different pre-processing pipelines. As the data exhibited lower levels of noise, Pipeline311

6 was selected as the most appropriate method.312

2.4.2. Pre-processing: For both groups, the EEG data pre-processing from the training313

session involved band-pass filtering between 1 and 40 Hz; then for correct continuous314

noisy data and for rejecting bad channels we applied Artifact Subspace Reconstruction315

(ASR) method [71], in two steps, first to identify and interpolate bad channels, with the316

following parameters: ‘FlatlineCriterion’=10, ‘ChannelCriterion’=0.8, ‘LineNoiseCri-317

terion’=5, ‘Highpass’=’off’, ‘BurstCriterion’=’off’, ‘WindowCritetion’=’off’, ‘BurstRe-318

jection’=’off’, ‘Distance’=’Euclidian’, and then to reject bad segments, with the fol-319

lowing parameters: ‘FlatlineCriterion’=’off’, ‘ChannelCriterion’=’off’, ‘LineNoiseCri-320

terion’=’off’, ‘Highpass’=’off’, ‘BurstCriterion’=20, ‘WindowCritetion’=0.5, ‘BurstRe-321

jection’=’on’, ‘Distance’=’Euclidian’, ‘WindowCriterionTolerances’=[-Inf 8]. ASR is322

considered the most effective EEG artifact correction and signal reconstruction algo-323

rithm available, ensuring minimal information loss [72]. EEG data were subsequently324

downsampled using the EEGLAB function pop_resample(), which applies a built-in325

anti-aliasing FIR low-pass filter (cutoff just below the new Nyquist frequency) before326

resampling, ensuring that higher-frequency components were removed and signal in-327

tegrity preserved. An Independent Component Analysis (ICA) [73] was also performed328

to remove remaining artifactual components in the EEG signals. ICA was computed329

on data after rejecting bad segments, and the resulting weights were applied to the330

data before segment rejection (Figure 3). We used the ICLabel [74] method, which331

labels components as one of seven categories (brain, muscle, eye, heart, line noise,332

‡ https://github.com/LaSEEB/NeurAugVR/tree/master/preprocessings. Note: For our analyses,
the order of two preprocessing steps—re-referencing and ICA—was adjusted relative to the original
pipeline.
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channel noise, or other), based on the probability values of each category for a spe-333

cific component. In our case, we only removed automatically any component classi-334

fied as "muscle" or "eye" artifact, if the probability values were at least 90%. After335

this, we used a full-rank re-referencing to common average. Then, in the case of the336

data from the participants with stroke, we proceeded to bad segment removal, again337

running ASR to the data, with the parameters: FlatlineCriterion’=’off’, ‘ChannelCri-338

terion’=’off’, ‘LineNoiseCriterion’=’off’, ‘Highpass’=’off’, ‘BurstCriterion’=20, ‘Win-339

dowCritetion’=’off’, ‘BurstRejection’=’off’, ‘Distance’=’Euclidian’, and for the data of340

the participants without stroke, we rejected bad trials. Finally, the data were seg-341

mented into epochs corresponding to left-hand and right-hand trials before performing342

time-frequency analysis.343

Figure 3: EEG Pre-Processing Pipelines. This schematic illustrates the various EEG
processing pipelines tested in the study, ranging from the simplest approach (1) to the
most complex method (8). The red arrow in Pipelines 6 and 8 indicates a transfer of
weights.

2.4.3. Event-Related Desynchronization (ERD) computation: The ERD values were344

calculated based on the event-related spectral perturbation (ERSP) values computed345

using EEGLAB with fixed-window, zero-padded Fast-Fourier Transformations (FFTs)346

with Hanning taper. The ERSP values are the relative power in decibels (relative to347

baseline). To transform these values into a percentage decrease, as is normal in the348

analysis of ERD, we used the following formula:349

ERD(%) = (10ERSP/10 − 1)× 100% (1)350

Given the variability of ERD values across individuals and even between sessions of351

the same individual, the use of individualized ERD frequency bands was computed352

in order to enhance the sensitivity of the ERD analysis to inter-individual neural353
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dynamics, accounting for post-stroke variability in oscillatory features and frequency354

shifts that may accompany recovery [68]. Instead of using the conventional 8 – 12 Hz355

broadband to analyze Alpha oscillations, we determined an individualized frequency356

band for each participant, electrode, task, and trial. This process began by defining an357

initial broad frequency range of 6 – 14 Hz. Within the 6–14 Hz range, the spectrum358

was systematically divided into overlapping frequency bands with a bandwidth of 0.5359

Hz (e.g., 6–6.5 Hz, 6.5–7 Hz, etc.). To ensure comprehensive coverage, the segmentation360

process was repeated with a shifted starting frequency (e.g., beginning at 6.5 Hz instead361

of 6 Hz), thereby exploring all possible frequency intervals within the target range.362

For each frequency band, the ERSP was computed, and the mean power value was363

extracted for subsequent analysis. Finally, we compared the mean power values across364

all bands and selected the frequency band that yielded the lowest ERSP value. This365

band was identified as the individualized ERD for the specific participant, electrode, and366

trial. This can be visualized in Figure 4, and the pseudo-code describing this method367

is presented in Listing 1, in the Supplementary material. The implementation of this368

method is available online §.369

Figure 4: Individualized ERD Computation Flow.

The ERD was extracted from all 32 electrodes, using the same method. Our370

analysis focused primarily on C3 and C4, as they are positioned over the motor and371

somatosensory cortices [75]. These electrodes are also the most commonly analyzed in372

the literature, facilitating comparisons with previous studies [69, 76, 68].373

2.4.4. Lateralization Metrics: To quantify interhemispheric asymmetry of sensorimotor374

activation during motor imagery, two complementary indices were computed: the375

Lateralization Index (LI) and the Laterality Coefficient (LC).376

§ https://github.com/LaSEEB/Individualized-ERD
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Lateralization Index (LI). The LI was calculated to provide a symmetrical measure of377

hemispheric differences across left- and right-hand trials [77]. The LI was defined as:378

LI =
(ERDC3(L)− ERDC4(L)) + (ERDC4(R)− ERDC3(R))

2
, (2)379

where ERDC3(L) and ERDC4(L) correspond to the ERD values recorded during left-380

hand motor imagery, and ERDC3(R) and ERDC4(R) during right-hand imagery. In381

this formulation, positive LI values indicate stronger right-hemisphere activation, while382

negative values reflect stronger left-hemisphere activation. However, in participants383

with stroke, the directionality of LI depends on lesion side, which can obscure group-384

level effects.385

Laterality Coefficient (LC). We additionally computed the LC [27, 78], which expresses386

hemispheric dominance relative to the affected (contralateral) hand:387

LC =
C − I

|C + I|
(3)388

where C and I denote the mean contralateral and ipsilateral ERD values, respectively,389

with respect to the lesioned hemisphere. For each participant with stroke, these values390

were obtained from electrodes C3 and C4 across left- and right-hand trials. For example,391

for participants with right-hemisphere lesions:392

393

C = mean[ERD(right-hand trial, C3) + ERD(left-hand trial, C3)]394

395

I = mean[ERD(right-hand trial, C4) + ERD(left-hand trial, C4)]396

397

The LC provides a normalized measure of contralateral dominance, allowing direct398

comparison across lesion sides. Higher LC values reflect stronger contralateral ERD399

(typical in healthy controls), whereas lower or negative values indicate reduced or400

reversed lateralization (often observed after stroke).401

2.5. Statistical Analyses402

All analyses were performed in MATLAB R2023a (The MathWorks, MA, United States)403

using the Statistics and Machine Learning Toolbox. Linear mixed-effects models (LMEs)404

were used for both clinical and neurophysiological data to account for repeated measures405

and inter-individual variability, including random intercepts per participant. Model406

assumptions were verified using formal statistical tests. Normality was assessed visually407

through Q–Q plots and formally with the Jarque–Bera test, while homoscedasticity408

was evaluated using Breusch–Pagan and Levene tests confirming that the residuals met409

model criteria. Statistical significance was set at two-tailed p < 0.05, and all post-hoc410

pairwise comparisons were Bonferroni-corrected to control for multiple testing within411

each analysis family. No data imputation was performed; all analyses used available412

data from participants who completed each assessment.413
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Given the sample size and the absence of stratified randomization, potential group414

differences in demographic and clinical characteristics were addressed analytically.415

Baseline motor impairment was controlled for by including baseline FMA score as a416

covariate in clinical outcome models, and stroke type (ischemic vs. hemorrhagic) was417

included as a fixed effect in ERD-related LME models.418

2.5.1. Clinical comparisons: An LME was fitted to the data to evaluate the effects of419

assessment time (Pre, Post, Follow-up) and group (Experimental vs. Control) on FMA420

scores, while accounting for within-subject variability and baseline motor impairment.421

The model included Baseline FMA as a covariate and an interaction between Time and422

Group:423

FMA_Score ∼ 1 + Baseline + Time ∗ Group + (1 | ID) (4)424

This controls for initial differences in FMA between groups, providing baseline-425

adjusted estimates of time and group effects.426

2.5.2. Analysis of ERD: To compare ERD values between participants with stroke and427

those without stroke, two analytical approaches were employed. (1) A Mann–Whitney428

U test was used to compare ERD values between the stroke and non-stroke (reference)429

groups. This non-parametric test was selected due to the small sample sizes and non-430

normal distribution of the data. The analysis was conducted separately for each session431

and across all EEG channels. (2) An LME model was used to account for individual432

variability and to examine ERD differences across sessions.433

For the LME, we modeled ERD as a function of training sessions, group434

(participants with stroke vs. non-stroke), and trial type (Left vs. Right-hand435

movement), while accounting for individual variability through a random intercept and436

slope per subject. The model included an interaction term between session progression437

and trial type to assess whether ERD changes differed based on movement laterality:438

mean_erd ∼ 1+group+sessions×trial+(1+group | subjects)+(1+sessions | subjects)(5)439

Finally, Analysis of variance (ANOVA) analysis was used after LME to test the440

significance of fixed effects.441

2.5.3. Analysis of affected side ERD: To further account for the potential confounding442

effect of lesion laterality, an additional analysis was performed for each participant with443

stroke relative to the affected side. An LME was fitted exclusively to the stroke cohort444

to investigate the effects of session progression and hand condition on ERD:445

mean_erd ∼ 1+sessions×affected_side+(1+sessions | subjects)(6)446

where sessions represented training session number, affected_side distinguished447

paretic from non-paretic trials, and random intercepts and slopes were included per448

subject.449
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2.5.4. Analysis of Lateralization Metrics: To examine changes in lateralization over450

time and their relationship to group differences, we modeled LI and LC as a function451

of session (representing progression over time) and group (stroke vs. non-stroke452

participants). Individual variability was accounted for by including random intercepts453

and slopes for each subject:454

li ∼ 1+sessions+group+(1+group | subjects)+(1+sessions | subjects)(7)455

lc ∼ 1+sessions+group+(1+group | subjects)+(1+sessions | subjects)(8)456

This allowed us to examine whether laterality changed over time (sessions), whether457

differences existed between groups (participants with stroke vs. non-stroke), and458

whether these effects varied between individuals.459

2.5.5. Two-Stage Linear Modeling of ERD to Predict Motor Recovery: To examine the460

relationship between longitudinal predictors (ERD progression across training sessions)461

and cross-sectional clinical outcomes (∆FMA), we implemented a two-stage modeling462

approach, following methods used in previous studies [68, 79]. LME models were selected463

because they provide robust regression estimates while accounting for subject-specific464

variability [80].465

In the first stage, an LME model was fitted to estimate individual ERD trajectories466

(from the affected side) over the intervention period using the following formula:467

mean_erd ∼ sessions × stroke_type + (sessions | subjects) (9)468

This model included time (sessions) and subjects as random effects, allowing469

patient-specific variability in both initial/baseline ERD values (intercept) and their470

progression over time (slope). The intercept and slope extracted represent the baseline471

ERD level of each participant and their rate of change in ERD throughout the472

intervention.473

In the second stage, the extracted ERD intercepts and slopes were then incorporated474

into a linear regression model to predict clinical motor recovery, measured by ∆FMA:475

delta_fma ∼ slope × intercept (10)476

3. Results477

3.1. Clinical Outcome478

The baseline-adjusted LME was used to assess the effects of time (Pre, Post, Follow-479

up) and group (Experimental vs. Control) on motor recovery, measured by the FMA480

(Figure 5). This model included baseline FMA (centered) as a covariate to control for481

initial differences between groups and a random intercept for each participant to account482

for within-subject variability.483

The analysis revealed a significant main effect of Time on FMA scores. Participants484

showed clear motor improvements from Pre to Post (β = 5.80, p = 0.017) and from Pre485
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to Follow-up (β = 10.11, p < 0.001), indicating sustained functional gains beyond the486

intervention period. Baseline FMA was a strong positive predictor of overall scores487

(β = 0.98, p < 0.001). In contrast, the main effect of Group (Experimental vs. Control;488

β = 0.33, p = 0.91) and the Time × Group interactions were not statistically significant,489

although the Follow-up × Group interaction approached significance (β = −6.20,490

p = 0.056).491

Between-group contrasts confirmed no significant difference at Post (p = 0.61) and492

a trend at Follow-up (p = 0.06). These findings indicate that both groups demonstrated493

comparable improvement trajectories after accounting for baseline differences in motor494

function (Table 2).495

Table 2: Fixed and random effects estimates from the Linear Mixed-Effects Model
(LME) analyzing FMA scores (baseline-adjusted). The model included baseline FMA
(centered) as a covariate and an interaction between Time and Group. The 95%
confidence intervals (CIs) provide a measure of estimate uncertainty.

Fixed Effects Estimate (β) 95% CI (Lower, Upper) t-Stat p-Value
Intercept 35.92 [31.52, 40.31] 16.70 < 0.001
Time: Post vs. Pre 5.80 [1.11, 10.49] 2.53 0.017
Time: Follow-up vs. Pre 10.11 [5.06, 15.16] 4.09 < 0.001
Group (Experimental vs. Control) 0.33 [–5.43, 6.09] 0.12 0.91
Baseline FMA (centered) 0.98 [0.84, 1.12] 14.42 < 0.001
Time (Post) × Group (Experimental) –1.80 [–7.77, 4.17] –0.62 0.54
Time (Follow-up) × Group (Experimental) –6.20 [–12.56, 0.16] –1.99 0.056
Random Effects Variance (σ2) 95% CI (Lower, Upper)
Subjects (Intercept) [1.56, 5.34]
Residual Error [2.74, 4.81]
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Figure 5: FMA Scores. Individual trajectories for each participant are displayed, with
solid lines representing the experimental group and dashed lines representing the control
group. Colors distinguish participants, and lesion type (hemorrhagic or ischemic) is
indicated by different markers. Patient P40 does not have a follow-up value, since this
was not acquired.

3.2. Neurophysiological Outcomes496

3.2.1. Comparison of ERD Spatial Distribution: The ERD responses of participants497

with stroke were compared to those of the non-stroke group, which served as a reference498

cohort, to assess differences in neural activity patterns. Figure 6 illustrates the spatial499

distribution of the mean ERD, including aggregated ERD values across all sessions for500

participants with stroke, divided into the participants with paretic hand and non-paretic501

hand relevant to the specific trial (right- or left-hand), and the mean ERD of the non-502

stroke group. The Mann-Whitney U-test revealed significant differences in ERD between503

groups for Left-hand trials: if the paretic hand was the right, then it was significant504

at five electrode sites: C3 (U = 1647, p = 0.00178), C4 (U = 1663, p = 0.000799),505

CP1 (U = 1064, p = 0.0321), CP2 (U = 1087, p = 0.0173), and P3 (U = 1264,506

p = 0.009); if the paretic hand was the left, then it was significant at three electrode507

sites: C4 (U = 3136, p = 0.0031), T8 (U = 3017, p = 0.0127), and CP6 (U = 2604,508

p = 0.0433). For Right-hand trials: if the paretic hand was the right, a significant509

difference was observed at four electrode sites: C3 (U = 1659, p = 0.000978), CP5510

(U = 949, p = 0.00644), CP1 (U = 1073, p = 0.0201), and P3 (U = 1258, p = 0.0132);511

if the paretic hand was the left there was no significant difference observed.512
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Figure 6: Comparison of ERD topographies between participants with stroke and non-
stroke controls. Panels (a) and (b) show the spatial distribution of mean ERD during
left- and right-hand motor imagery (MI) trials for participants with stroke (a) and the
non-stroke reference cohort (b). The data are organized by the side of the paretic hand:
(i) left paretic hand and (ii) right paretic hand. Warm colors indicate stronger ERD
(greater desynchronization), while cool colors indicate weaker ERD. Panel (c) displays
the Mann–Whitney U-test p-value maps comparing the two groups (contrast: non-stroke
> stroke), with darker areas representing significant differences (p < 0.05, Bonferroni
corrected for multiple comparisons).

3.2.2. Modeling ERD Dynamics: Initially, the LME analysis revealed that participants513

with stroke exhibited significantly reduced ERD compared to the non-stroke group514

(β = −6.63, p = 0.022). However, no significant change in ERD was observed over time515

(β = −0.13, p = 0.721), indicating that ERD remained relatively stable throughout516

the training period (Figure 7 and Figure 8). Furthermore, analysis of hemispheric517

lateralization revealed no significant changes across sessions for either the LI or the518

LC. However, a significant group effect was found for LI (β = 8.93, p = 0.020), with519

participants with stroke showing greater variability and reduced lateralization stability520

compared to the non-stroke group (Table 5). The LC showed a similar but non-521

significant trend toward lower values in the stroke cohort (β = −0.11, p = 0.066),522

suggesting weaker contralateral dominance relative to healthy controls (Table 6).523

Finally, the ANOVA results confirmed a significant main effect of group (F = 5.29,524

p = 0.032), reinforcing that ERD differences between stroke and non-stroke participants525

were consistent. However, session progression (F = 0.13, p = 0.726), trial type526
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(F = 0.34, p = 0.560), and their interaction (F = 0.30, p = 0.583) did not reach527

statistical significance, indicating that ERD changes were not systematically influenced528

by time or movement laterality (Table 3).529

Table 3: Fixed and random effects estimates from the Linear Mixed-Effects Model
(LME) analyzing ERD progression. The table reports estimated coefficients (β) for
fixed effects, standard errors (SE), 95% confidence intervals (CIs), t-statistics, and
corresponding p-values. Variance components (σ2) for random effects are also presented.

Fixed Effects Estimate (β) 95% CI (Lower, Upper) t-Stat p-Value

Intercept -18.42 [-23.41, -13.43] -7.27 4.67× 10−12

Sessions -0.13 [-0.85, 0.59] -0.49 0.721
Group (Stroke vs. Control) -6.63 [-12.32, -0.95] -2.30 0.022
Trial (Right vs. Left) -1.18 [-5.18, 2.81] -0.58 0.560
Sessions × Trial -0.18 [-0.83, 0.47] -0.55 0.583

Random Effects Variance (σ2) 95% CI (Lower, Upper)

Patient ID (Intercept) 3.91 –
Group Variance 9.94 –
Session Variance 0.68 –
Residual Error Variance 9.88 –
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(a) Paretic Side.

(b) Non-paretic Side.

Figure 7: Left-trials ERD from participants with stroke across sessions vs non-stroke
participants, contralateral analysis (C4). The figure is divided into (a) ERD from stroke
participants, in which the paretic side is the left; and (b) ERD from stroke participants
which the non-paretic side is the left. In both plots, we show two lines for each of the
ERD median and fitted lines, for hemorrhagic stroke (blue) and ischemic stroke (red);
in yellow, we plotted the median of the non-stroke participants for easier comparison.
For each session, the participants with stroke are identified as hemorrhagic (blue) and
ischemic (red).
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(a) Paretic Side.

(b) Non-paretic Side.

Figure 8: Right-trials ERD from participants with stroke across sessions vs non-stroke
participants, contralateral analysis (C3). The figure is divided into (a) ERD from stroke
participants, in which the paretic side is the right, and (b) ERD from stroke participants
which the non-paretic side is the right. In both plots, we show two lines for each of the
ERD median and fitted lines, for hemorrhagic stroke (blue) and ischemic stroke (red);
in yellow, we plotted the median of the non-stroke participants for easier comparison.
For each session, the participants with stroke are identified as hemorrhagic (blue) and
ischemic (red).
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3.2.3. ERD Analysis Aligned to the Affected Hand: To account for differences between530

affected and unaffected hemispheres, ERD data were re-aligned according to each stroke531

participant’s affected hand. The LME model revealed no significant main effect of532

session (F (1, 14.29) = 1.29, p = 0.27), nor of hand condition (F (1, 170.42) = 0.005,533

p = 0.95), and the interaction between session and hand condition was also non-534

significant (F (1, 170.42) = 1.84, p = 0.18). Model fit indices indicated adequate535

convergence (AIC = 1525.1, BIC = 1550.9). These results suggest that ERD amplitude536

remained stable across sessions and did not differ significantly between paretic and non-537

paretic hands (Table 4).538

Table 4: Linear Mixed-Effects Model results for ERD aligned to the affected (paretic)
hand in stroke participants.

Fixed Effect Estimate (β) SE t DF p-Value 95% CI (Lower, Upper)

Intercept -27.67 4.17 -6.64 182 < 0.001 [-35.89, -19.45]
Sessions -0.66 0.58 -1.14 182 0.257 [-1.80, 0.49]
Paretic hand 0.27 4.05 0.07 182 0.946 [-7.71, 8.26]
Sessions × Paretic hand 0.76 0.56 1.35 182 0.177 [-0.35, 1.88]

Model fit: AIC = 1525.1, BIC = 1550.9, Log-likelihood = -754.57, Deviance = 1509.1

3.2.4. Modeling Lateralization Dynamics: In terms of LI, the model demonstrated539

good overall fit (AIC = 1014, BIC = 1042.5). No significant main effect of session540

was observed (β = 0.042, p = 0.904), indicating that LI remained stable across the 12541

training sessions. However, a significant group effect emerged (β = 8.93, p = 0.020),542

with stroke participants showing higher LI variability compared to the non-stroke group543

(Figure 9). This suggests that while interhemispheric balance remained relatively544

constant over time, stroke participants exhibited overall reduced lateralization stability,545

consistent with altered hemispheric activation following stroke. Random effects analysis546

indicated moderate inter-individual variability in baseline LI values (σ2
intercept = 1.33)547

(Table 5).548

Table 5: Linear Mixed-Effects Model results for Lateralization Index (LI).

Fixed Effect Estimate (β) SE t DF p-Value 95% CI (Lower, Upper)

Intercept 2.873 2.219 1.29 125 0.198 [-1.519, 7.266]
Sessions 0.042 0.349 0.12 125 0.904 [-0.648, 0.732]
Group (control) 8.932 3.776 2.37 125 0.020 [1.459, 16.406]

Model fit: AIC = 1014, BIC = 1042.5, Log-likelihood = -497.00, Deviance = 993.99
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Figure 9: Lateralization Index of participants across sessions. We distinguish
participants with stroke between type of stroke: hemorrhagic (blue) and ischemic (red).
In the plot, we also show a line connecting the median of the participants with stroke
for all sessions (dashed black) and a fitted line for the same median (dashed red).

In terms of LC, no significant effect of session was found (β = 0.003, p = 0.701),549

indicating that LC remained stable throughout the 12 training sessions. The group550

effect approached significance (β = −0.111, p = 0.066), suggesting a trend toward lower551

LC values in participants with stroke compared to controls, consistent with reduced552

contralateral dominance (Figure 10). Random effects analysis showed minimal between-553

subject variance, indicating that individual LC trajectories were relatively homogeneous554

across participants (Table 6).555

Table 6: Linear Mixed-Effects Model results for Laterality Coefficient (LC).

Fixed Effect Estimate (β) SE t DF p-Value 95% CI (Lower, Upper)

Intercept 0.0479 0.0515 0.93 125 0.354 [-0.054, 0.150]
Sessions 0.0031 0.0080 0.39 125 0.701 [-0.013, 0.019]
Group (control) -0.1112 0.0599 -1.86 125 0.066 [-0.230, 0.007]

Model fit: AIC = 14.06, BIC = 42.58, Log-likelihood = 2.97, Deviance = -5.94
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Figure 10: LC of participants across sessions. We distinguish participants with stroke
between type of stroke: hemorrhagic (blue) and ischemic (red). In the plot, we also
show a line connecting the median of the participants with stroke for all sessions (dashed
black) and a fitted line for the same median (dashed red). In yellow, we plotted the
median of the non-stroke participants.

3.3. Relationship Between ERD Progression and Motor Recovery556

The LME analysis revealed a significantly negative intercept (β = −24.692, p < 0.001),557

indicating that ERD was strongly suppressed across participants. Neither session558

progression (β = −0.575, p = 0.371) nor stroke type (β = −7.653, p = 0.235) showed559

significant main effects, suggesting stable ERD patterns over time and similar overall560

levels between ischemic and hemorrhagic stroke participants. The interaction between561

session and stroke type was also non-significant (β = 1.925, p = 0.061), though it562

suggested a potential trend toward distinct ERD trajectories across stroke subtypes.563

Random effects indicated notable between-subject variability in baseline ERD564

(σ2 = 4.213), while session-related variability (σ2 = 0.890) was smaller, suggesting that565

inter-individual differences contributed more strongly to ERD variability than session-566

to-session changes (Table 7). Overall, ERD remained stable across training, with a567

tendency for stroke type to influence its temporal evolution.568
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Table 7: Fixed and random effects estimates from the Linear Mixed-Effects Model
(LME) analyzing ERD progression over sessions and stroke types.

Fixed Effects Estimate (β) 95% CI (Lower, Upper) t-Stat p-Value

Intercept -24.692 [-32.586, -16.798] -6.215 1.614× 10−8

Sessions -0.575 [-1.845, 0.696] -0.899 0.371
Stroke Type -7.653 [-20.379, 5.073] -1.195 0.235
Sessions × Stroke Type 1.925 [-0.092, 3.941] 1.897 0.061

Random Effects Variance (σ2) 95% CI (Lower, Upper)

Subjects (Intercept) 4.213 [0.405, 43.824]
Sessions (Slope) 0.890 [0.251, 3.155]
Residual Error 12.37 [10.558, 14.493]

The second-stage linear regression model tested whether ERD progression (slope)569

and baseline ERD (intercept) predicted motor recovery (∆FMA). The model explained570

86.8% of the variance in motor recovery (R2 = 0.868, adjusted R2 = 0.769), with a571

significant overall model fit (F = 8.78, p = 0.0311) (Figure 11). These results are572

summarized in Table 8.573

Table 8: Fixed and random effects estimates from the second-stage regression model,
linking ERD slopes to FMA score.

Fixed Effects Estimate (β) 95% CI (Lower, Upper) t-Stat p-Value

Intercept -36.563 – -1.3166 0.25833
Slope 62.172 – 2.404 0.074031
Intercept (Baseline ERD) -1.6006 – -1.4881 0.21094
Slope × Intercept 2.446 – 2.4985 0.066875

Model Performance R2 p-Value

All Participants 0.868 0.0311

When analyzing stroke subtypes separately, the relationship between ERD574

progression and motor improvement differed (Figure 11). Across all participants, the575

relationship was negative but not statistically significant (R = −0.680, p = 0.063).576

For hemorrhagic stroke participants, the relationship was stronger but remained non-577

significant (R = −0.926, p = 0.246). For ischemic stroke participants, no meaningful578

relationship was found (R = 0.441, p = 0.457).579
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(a) (b)

Figure 11: Linear model predicting the clinical improvement (∆FMA) on the lesioned
(a) and healthy hemispheres (b) of all participants with stroke. We show the relationship
between the ERD slope (ERD progression) and the motor function improvement
(∆FMA). Blue dots correspond to hemorrhagic stroke, and red to ischemic stroke. For
each graph we show the linear fit of all stroke types (black line), of only the hemorrhagic
stroke (blue line), and of only the ischemic stroke (red line).

4. Discussion580

4.1. Clinical Implications of VR-BCI Intervention581

The baseline-adjusted LME model confirmed significant improvements in motor function582

over time for both the experimental (VR-BCI) and control groups. After controlling for583

initial FMA differences, no significant group effect or Time × Group interaction was584

found, indicating that both groups exhibited comparable recovery trajectories. The585

trend toward a greater improvement in the experimental group at follow-up (p ≈ 0.06)586

suggests a possible longer-term benefit that warrants investigation in a larger, balanced587

sample.588

Although both groups demonstrated significant improvement in motor outcomes589

over time, the absence of a statistically significant group effect indicates that these590

changes likely reflect general rehabilitation-related recovery processes. This finding is591

consistent with previous studies showing that motor recovery can continue at chronic592

stages through repetitive and intensive training, regardless of the feedback modality [4,593

81].594

MoCA scores showed minor decreases in some participants post-intervention. These595

variations were not clinically meaningful and are most likely attributable to test–retest596

variability, fatigue, or unrelated individual factors.597

The random effects analysis revealed substantial inter-individual variability,598

emphasizing that some participants responded more favorably to training than others.599

This variability is expected in stroke neurorehabilitation, where multiple factors,600
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including lesion location, stroke chronicity, and baseline motor function, may influence601

recovery trajectories.602

4.2. Neurophysiological Findings603

When ERD patterns were compared between participants with stroke and the non-604

stroke reference group, distinct group differences emerged at specific sensorimotor and605

parietal electrodes. For participants with stroke whose paretic hand was on the right,606

significant ERD reductions relative to controls were observed over contralateral and607

bilateral sensorimotor areas (C3, C4, CP1, CP2, and P3) during left-hand trials, and at608

C3, CP5, CP1, and P3 during right-hand trials. In contrast, when the paretic hand was609

on the left, significant differences were restricted to electrodes over the contralesional610

hemisphere (C4, T8, and CP6) during left-hand trials, with no significant effects during611

right-hand trials. These results indicate that ERD suppression was generally weaker612

and more spatially diffuse in stroke participants compared to non-stroke, particularly613

over central and parietal regions contralateral to the paretic hand.614

LME analysis revealed no significant main effect of session progression, suggesting615

that ERD remained stable throughout the intervention. This contrasts with previous616

studies indicating progressive ERD suppression with motor learning [35], potentially due617

to individual variability in response to BCI training or the limited number of sessions.618

However, the group effect approached statistical significance, suggesting a trend whereby619

participants with stroke exhibited reduced ERD compared to non-stroke individuals.620

This aligns with previous findings indicating that stroke-related disruptions in motor621

networks may reduce ERD magnitude, although this effect is highly variable across622

individuals [76, 82].623

Further, when ERD was re-aligned to each participant’s affected hand, the analysis624

similarly revealed no significant differences between paretic and non-paretic trials, nor625

any significant interaction with session progression. This indicates that the absence626

of ERD modulation was not driven by inconsistencies related to lesion laterality or627

anatomical side labeling. Instead, ERD patterns appeared stable across training sessions628

regardless of the affected side, suggesting that neural engagement during VR–BCI629

training was broadly bilateral.630

Regarding hemispheric asymmetry, the laterality analyses revealed complementary631

insights. The LI model showed no significant effect of session but a significant632

group effect, with participants with stroke exhibiting higher LI variability and overall633

reduced lateralization stability compared to the control group. This indicates altered634

interhemispheric dynamics and weaker contralateral dominance in the stroke cohort.635

Consistent with this, the LC, which normalizes contralateral and ipsilateral ERD636

relative to the affected hand, did not change significantly across sessions but showed637

a trend toward lower LC values in the stroke group. This pattern suggests diminished638

contralateral ERD dominance relative to non-stroke participants, aligning with cortical639

reorganization mechanisms previously described after stroke [78, 28]. Together,640
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these findings point to a stable but weakened interhemispheric balance in the stroke641

population, possibly reflecting compensatory or bilateral recruitment of sensorimotor642

areas.643

The observed variability across participants may be partly explained by differences644

in lesion location and chronicity. For example, prior work has shown that individuals645

with subcortical strokes exhibit less pronounced ERD asymmetry, reflecting preserved646

cortical structures but altered network-level connectivity [82, 23]. Given that most647

participants in the present study presented with mixed cortical–subcortical lesions, the648

reduced lateralization likely reflects these broader network-level disruptions rather than649

purely cortical deficits. While increased contralesional activation could be interpreted as650

maladaptive plasticity [83], the overall absence of strong asymmetry and limited motor651

improvement in this cohort do not support this interpretation.652

Overall, the absence of significant ERD modulation across sessions and the weak653

laterality effects should be interpreted with caution. Beyond inter-individual variability654

and limited training duration, these results may also reflect intrinsic characteristics of655

the NeuRow VR paradigm. The bimanual and visually immersive design likely promotes656

distributed, bilateral cortical activation that enhances engagement but may reduce657

the measurable unimanual ERD modulation typically reported in simpler paradigms.658

Furthermore, while the LI and LC provide complementary perspectives on hemispheric659

asymmetry, their stability across sessions may reflect a broader pattern of bilateral660

cortical engagement during immersive VR–BCI training.661

4.3. ERD Dynamics and Motor Recovery662

To investigate the relationship between ERD dynamics and motor recovery, we employed663

a two-stage modeling approach, following previous studies [68, 79].664

The regression analysis identified a significant negative intercept, indicating that665

baseline ERD levels were predictive of motor recovery. While ERD slope was not666

significantly associated with FMA change, exploratory trends suggest that reductions667

in ERD over time may be linked to clinical improvement. This suggests that motor668

recovery may be linked to progressive ERD suppression, a pattern commonly observed669

in successful motor learning and stroke recovery [35, 68].670

Importantly, stroke subtype analyses revealed distinct trends. In the hemorrhagic671

stroke subgroup, a negative relationship between ERD slope and ∆FMA was observed,672

whereas in the ischemic stroke subgroup, no clear relationship emerged. Trends suggest673

that stroke pathology may influence ERD evolution, though statistical significance was674

not reached. This indicates that other factors, such as lesion location or training675

intensity, may contribute more significantly to ERD changes. Therefore, further676

investigation is needed to determine whether different rehabilitation strategies should677

be tailored based on lesion type.678

Finally, when analyzing ERD from the ipsilateral hemisphere (non-lesioned side),679

an inverse relationship emerged, where greater clinical improvement correlated with680
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increasing ipsilateral ERD. Notably, this trend became statistically significant in the681

ischemic stroke group, suggesting that ipsilateral motor cortex activity may play a682

compensatory role in recovery for this population. These findings support previous683

studies demonstrating the importance of ipsilateral cortical recruitment in stroke684

recovery, particularly for individuals with extensive contralateral damage [68].685

4.4. Limitations and Future Directions686

The findings of this study must be interpreted in light of several limitations. First, the687

sample size was small, limiting statistical power and the ability to generalize findings.688

Although the statistical model controlled for baseline FMA to mitigate initial between-689

group differences, the small and unbalanced sample size limits statistical power and690

generalization. Future studies with larger cohorts should further validate whether the691

observed follow-up trend reflects a meaningful treatment effect. Further, the observed692

trends in ERD progression and motor recovery may become statistically significant in693

larger cohorts, warranting replication in future studies.694

Further, stroke severity, lesion characteristics, and post-stroke duration varied695

across participants, introducing heterogeneity that may have influenced results. Future696

research should incorporate detailed neuroimaging assessments to better classify lesion697

locations and network-level disruptions affecting ERD generation.698

Moreover, the study’s intervention period (12 sessions) may have been too short to699

capture long-term neural reorganization. Given that ERD changes can take weeks or700

months to consolidate, longer-duration studies are needed to assess whether progressive701

ERD modulation translates to sustained functional improvements.702

Finally, the EEG data were acquired using two high-quality systems with703

comparable specifications and active electrodes, while hardware-related effects are704

unlikely, this potential source of variability cannot be entirely excluded.705

5. Conclusion706

This study provides valuable insights into the dynamics of ERD and their relationship707

with motor recovery following immersive VR-BCI training in individuals with chronic708

stroke. Although ERD did not significantly change across sessions, participants with709

stroke exhibited reduced ERD compared to the non-stroke group. Importantly, baseline710

ERD levels predicted subsequent motor improvement, suggesting their potential as EEG711

biomarkers of recovery capacity. Furthermore, ipsilateral ERD may play a compensatory712

role, particularly in individuals with ischemic stroke.713

The absence of significant session effects underscores the complexity of post-714

stroke neural reorganization and highlights the need for larger-scale, individualized715

rehabilitation studies. Importantly, this work builds upon more than a decade of716

continuous research using one of the first clinically implemented immersive VR-BCI717

systems. By maintaining a consistent experimental paradigm, feedback design, and718
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analysis pipeline, this research line addresses the well-known lack of methodological719

homogeneity across BCI studies, ensuring reproducibility and comparability of results720

over time.721

Future research should extend these findings by employing longer and more722

intensive interventions, integrating multimodal neuroimaging to elucidate the723

mechanistic role of ERD in motor recovery, and validating predictive EEG biomarkers in724

larger cohorts. Despite current limitations, this study contributes to the growing body725

of evidence supporting the use of EEG-based neural features to monitor and personalize726

neurorehabilitation strategies in stroke recovery.727
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