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Abstract

The Crested Porcupine Optimizer (CPO), an emerging intelligent 
optimization algorithm, exhibits considerable potential for addressing complex 
engineering problems, yet its capabilities remain insufficiently investigated. 
Nevertheless, the original CPO is susceptible to premature convergence and 
suffers from insufficient population diversity. To effectively address these 
limitations, this paper proposes a multi-mechanism enhanced Crested 
Porcupine Optimizer (SDHCPO). Its core innovation lies in the integration of 
four key strategies: a Sobol-Opposition-Based Learning (Sobol-OBL) 
initialization strategy, which combines the Sobol sequence with opposition-
based learning to generate an initial population that is more uniformly 
distributed in the high-dimensional search space; a cosine-annealing-based 
dynamic adjustment strategy that replaces the original random weights and 
substantially enhances convergence stability; the incorporation of the 
DE/rand/1 strategy in the first defense phase to disrupt positional dependence 
and prevent premature convergence; and a horizontal-vertical crossover 
strategy employed in the second defense phase to eliminate dimensional 
stagnation. Experimental results on two authoritative benchmark suites, 
CEC2017 and CEC2022, demonstrate that the proposed algorithm 
outperforms seven representative metaheuristic algorithms in terms of global 
exploration capability, local exploitation accuracy, and convergence 
robustness. Furthermore, empirical studies on five representative engineering 
design optimization problems show that SDHCPO consistently attains either 
the best-known solutions or highly competitive results reported in the 
literature, thereby further confirming its effectiveness and broad application 
potential for complex real-world engineering optimization tasks.

Keywords Metaheuristic algorithm · Crested Porcupine Optimizer · Sobol-
OBL initialization · Differential Evolution strategy · Horizontal-Vertical 
crossover strategy · Cosine annealing dynamic adjustment strategy
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1 Introduction

Global optimization problems are widespread in modern complex systems 
and engineering design, typically characterized by high nonlinearity, 
multimodality, multiple constraints, and high dimensionality. These 
characteristics pose significant computational challenges to traditional 
optimization methods [1]. Classical deterministic algorithms, such as gradient-
based methods and dynamic programming, perform well in simple cases like 
convex optimization but often prove insufficient when addressing complex 
problems that are non-convex or non-differentiable. In contrast, intelligent 
optimization algorithms (IOAs), which do not rely on gradient information and 
employ population-based search mechanisms, have been widely applied to 
complex global optimization and engineering design problems [2]. Extensive 
studies have shown that such stochastic search algorithms exhibit superior 
problem-solving capabilities in practical engineering challenges such as 
mechanical structure design, parameter estimation, and signal processing [3]. 
In complex manufacturing environments, an efficient meta-heuristic with a 
critical-path-based neighborhood search has been developed for the dual-
resource flexible job shop scheduling problem under production line 
reconfiguration, illustrating how tailored intelligent optimization can 
significantly enhance large-scale industrial scheduling performance[4]. 
However, as the scale and complexity of problems increase, the performance 
of intelligent optimization algorithms can degrade significantly, necessitating 
continuous development and improvement of new algorithms to meet these 
escalating challenges [5].

Over the past decades, researchers have proposed numerous mainstream 
intelligent optimization algorithms, encompassing various categories such as 
evolutionary algorithms (EAs) and swarm intelligence algorithms (SIAs). 
Typical representatives include Particle Swarm Optimization (PSO) [6], 
Genetic Algorithm (GA) [7], Differential Evolution (DE) [8], Grey Wolf 
Optimizer (GWO) [9], Whale Optimization Algorithm (WOA) [10], and Firefly 
Algorithm (FA) [11]. These algorithms have been successfully applied in 
various fields such as function optimization, scheduling, control, and machine 
learning [12]. However, each algorithm also has its inherent limitations: For 
example, Particle Swarm Optimization (PSO) is simple to implement and 
converges quickly, but it is prone to premature convergence and getting 
trapped in local optima [13]; GA possesses strong global search capability but 
involves complex encoding and exhibits uncertainty in the convergence 
process [14]; DE improves search efficiency through differential mutation, but 
it may suffer from premature convergence or stagnation when dealing with 
multimodal problems [15]; GWO simulates the social behavior of grey wolves 
and features a simple algorithmic structure, yet it tends to exhibit low 
convergence accuracy and local convergence issues in the fine-tuning phase 
[16]; WOA performs global exploration by mimicking the foraging behavior of 
whales, but in complex environments, it may suffer from poor optimization 
accuracy and can get trapped in local optima during early iterations [17]; FA 
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conducts search through attractiveness-based movement among fireflies, but 
the standard FA lacks sufficient exploration capability, which may lead to 
premature convergence and reduced solution accuracy [18,19]. Overall, these 
mainstream intelligent algorithms often encounter bottlenecks such as 
premature convergence, entrapment in local optima, and slow convergence 
speed when tackling complex problems. To address these issues, researchers 
have introduced various enhancement strategies—such as memory 
mechanisms, mutation operations, and elitism—into individual algorithms to 
strengthen their global search capabilities [20,21]; On the other hand, hybrid 
intelligent algorithms have been developed by integrating multiple 
optimization strategies to balance global and local search capabilities. For 
example, a hybrid biogeography-based optimization algorithm that combines a 
hybrid migration operator with a feedback differential evolution mechanism 
has shown competitive performance on high-dimensional benchmark functions 
and several real-world engineering design problems [22]. According to the 
"No Free Lunch" theorem, no single algorithm can perform optimally across 
all optimization problems, which has further driven the continuous emergence 
of novel intelligent optimization algorithms [23]. In line with this viewpoint, a 
biogeography-based optimization variant that incorporates Lévy and Brownian 
movements together with a steepest-descent local search has been proposed, 
enabling efficient solution of large-scale global optimization and complex 
engineering design problems and exemplifying the problem-specific tailoring 
advocated by the theorem [24].

Against this background, collective behaviors in biological populations 
have provided a rich source of inspiration for algorithm design. A notable 
recent example is the Crested Porcupine Optimizer (CPO), a promising swarm 
intelligence algorithm proposed in 2024 and inspired by the distinctive 
defensive behavior of crested porcupines against predators. In real-world 
scenarios, crested porcupines employ four primary defensive strategies—
visual intimidation, auditory deterrence, olfactory repulsion, and physical 
attack—to protect themselves when threatened. Building on this behavioral 
analogy, CPO divides the optimization process into exploration and 
exploitation phases and sequentially simulates the four defensive behaviors of 
crested porcupines during the iterative search. Initially, the algorithm 
generates a group of “porcupine” individuals as candidate solutions, which are 
randomly distributed across the global search space. During the exploration 
phase, CPO then employs “visual defense” and “auditory defense” 
mechanisms to guide individuals to probe in diverse directions, thereby 
promoting population diversity and dispersion. In the exploitation phase, the 
algorithm activates olfactory defense and physical attack strategies to guide 
individuals toward the neighborhood of the current best solution, thereby 
accelerating convergence. Notably, CPO incorporates a Cyclic Population 
Reduction (CPR) mechanism, in which the population size is periodically 
reduced as the iterations progress, mimicking the natural scenario in which 
not all porcupines engage in defense simultaneously. This mechanism 
enhances convergence efficiency while maintaining solution diversity. 
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Leveraging these bio-inspired strategies, CPO has demonstrated excellent 
performance on several benchmark tests and engineering applications. In the 
original study by Abdel-Basset et al., CPO outperformed methods such as 
GWO, WOA, and SSA by achieving superior optimal solutions across multiple 
engineering problems. Overall, the novel algorithmic framework of CPO, 
which effectively balances exploration and exploitation, provides a promising 
and powerful tool for engineering optimization [25].

Despite these advantages, subsequent studies have identified several 
notable limitations of CPO when tackling complex optimization problems. First, 
the original CPO is prone to becoming trapped in local optima when dealing 
with high-dimensional, multimodal, or irregular functions, causing the 
algorithm to stagnate near suboptimal solutions and hindering further 
exploration of superior candidates. In addition, its global search capability—
particularly in the early search stage—is constrained by insufficient 
population diversity, making it difficult to thoroughly explore the solution 
space. Moreover, the convergence speed of CPO is suboptimal on certain 
benchmark functions, where slow or even oscillatory convergence has been 
observed, thereby reducing the overall efficiency of the algorithm [26]; At the 
same time, its exploitation accuracy is limited, as it lacks an effective local 
search mechanism in the fine-tuning phase, leading to final solutions that may 
still deviate from the true optimum [27]. Therefore, enhancing CPO’s global 
exploration capability and exploitation precision, while mitigating the risk of 
entrapment in local optima, has become a critical focus of subsequent 
research.

It is worth noting that the integration of multiple strategies has been 
proven effective in enhancing optimization algorithms. For example, to 
alleviate the premature convergence of the standard Firefly Algorithm, 
Villaruz et al. introduced an additional search mechanism inspired by bee 
colony scouting behavior, enabling fireflies trapped in local optima to perform 
guided random walks. This modification effectively helped the algorithm 
escape local optima and improved its convergence accuracy [28]. Similarly, 
Zhang et al. proposed a feedback biogeography-based optimization algorithm 
with steepest descent, in which a dynamic hybrid migration operator, a 
feedback differential evolution mechanism, and a steepest-descent local 
search are tightly integrated, achieving high solution accuracy and good 
scalability on a variety of large-scale benchmark tests and constrained 
engineering problems [29]. In the recently proposed Transient Search 
Optimization (TSO) algorithm, chaotic maps are introduced to replace certain 
random processes. Owing to the ergodicity and non-repetitiveness of chaotic 
sequences, this enhancement effectively improves the algorithm’s ability to 
avoid local optima and accelerates its convergence [30].

To this end, researchers have begun to explore the integration of various 
effective strategies into CPO to develop enhanced algorithmic variants [27,31]. 
By embedding diverse search mechanisms and parameter control schemes 
within the CPO framework, it is possible to substantially improve its global 
optimization performance while preserving its inherent advantages.
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Building on the above insights, this paper proposes an adaptive multi-
mechanism integrated Crested Porcupine Optimizer (SDHCPO), with the 
following main contributions: 
 An improved CPO framework integrating four complementary mechanisms 
is developed. The Sobol-OBL initialization strategy combines low-discrepancy 
Sobol sequences with opposition-based learning to generate an initial 
population that is more uniformly distributed and provides broader coverage 
of the search space; a cosine-annealing-based dynamic adjustment strategy 
replaces random weights with a time-varying nonlinear decay factor, enabling 
a more controllable evolution of the search process between exploration and 
exploitation. On this basis, a DE/rand/1 mutation operator is introduced to 
intensify perturbations and reduce the risk of premature convergence, while a 
horizontal-vertical crossover mechanism alleviates inter-dimensional coupling 
and stagnation, thereby enhancing information recombination across 
dimensions. These four strategies operate synergistically within a unified 
framework, systematically improving the algorithm’s performance in terms of 
global search breadth, local exploitation accuracy, and convergence 
robustness.
 A multi-level evaluation framework is established that jointly captures 
external performance and internal search mechanisms. On the CEC2017 and 
CEC2022 benchmark suites, SDHCPO attains the best mean objective values 
on most test functions, and the Wilcoxon rank-sum test indicates that it 
achieves statistically significant superiority over the majority of competing 
algorithms. Subsequent dimensionality-extension experiments further show 
that the performance advantage of SDHCPO in terms of mean fitness becomes 
more pronounced as the problem dimension increases. Meanwhile, qualitative 
analyses from the perspectives of population distribution evolution and 
convergence trajectories characterize the internal search dynamics of 
SDHCPO, revealing its stage-wise dynamic adjustment of exploration intensity 
and exploitation precision at the algorithmic mechanism level.
 The applicability of SDHCPO to multi-constrained engineering optimization 
is validated through a series of engineering case studies. Several classical 
structural and mechanical design benchmark problems are selected to 
construct an engineering test suite spanning from low to high dimensionality. 
The experimental results show that SDHCPO consistently yields competitive, 
and in many cases best-known, design solutions with good stability across all 
test cases. In particular, for the 72-bar spatial truss problem, SDHCPO 
achieves significant weight reduction under multiple frequency constraints, 
indicating that the proposed framework can effectively tackle large-scale, 
highly constrained engineering optimization tasks and possesses strong 
potential for extension to more complex real-world engineering scenarios.

2 Standard CPO

The Crested Porcupine Optimizer (CPO) [25] is inspired by the defensive 
behavior of crested porcupines. When threatened, crested porcupines employ 
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multiple defense mechanisms, including four principal strategies: visual, 
auditory, olfactory, and physical attack, which are activated in ascending 
order of aggressiveness to deter predators. In CPO, the visual and auditory 
defense mechanisms are used to model exploration behavior, whereas the 
olfactory and physical attack mechanisms correspond to exploitation behavior. 
The core of the algorithm lies in simulating how crested porcupines select 
among these defensive strategies according to the type and intensity of 
threats, thereby achieving a balance between exploration and exploitation 
throughout the optimization process.

2.1 Initialization

In CPO, as in other metaheuristic algorithms, the initialization phase 
employs Equation (1) to randomly generate solution vectors that are uniformly 
distributed within the upper and lower bounds of the search space:

( ), 1,2,...,iX L r U L i N
® ® ® ® ®

= + ´ - = (1)

where iX
®

 denotes the i th candidate solution; L
®

and U
®

 are the lower and 
upper bound vectors of the search space, respectively; and rr  is a random 
vector whose elements are uniformly distributed on [0,1]. By applying the 
above formula to all individuals in the population, the initialized population 
can be expressed as:

1,1 1,2 1, 1,1

2,1 2,2 2, 2,2

,1 ,2 , ,

,1 ,2 , ,

j d

j d

i i i j i di

N N N j N dN

x x x xX
x x x xX

X x x x xX

x x x xX

¼ ¼é ùé ù
ê úê ú ¼ ¼ê úê ú
ê úê ú= =ê úê ú ¼ ¼ê úê ú
ê úê ú
ê úê ú ¼ ¼ê ú ê úë û ë û

M M O M O MM

M M O M O MM

(2)

After initialization, the fitness of each individual is evaluated, and the one 
with the best fitness value is selected as the current global best solution.

2.2 Search over the solution space

During the population search and position-update process, the procedure 
is divided into two main phases: global exploration and local exploitation. The 
selection between these two phases is determined by comparing two randomly 
generated values, 8t  and 9t :

2.2.1 Exploration

If 8 9t t³ , the global exploration phase is activated. In this phase, one of 
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two defense strategies is selected by further comparing two additional 
random values, 6t  and 7t .

When 6t < 7t , the first defense strategy is activated, which is 
mathematically formulated by Equation (3):

1
1 22t t t t

i i CP ix x x yt t+ = + ´ ´ ´ -
uuur uur uuur uur

(3)

Where t
CPx

uuur
 denotes the best solution at evaluation step, and t

iy
uur

 is a vector 
constructed between the current CP and a randomly selected CP from the 
population and represents the predator’s position in iteration. 1t  is a random 
variable following a normal distribution, and 2t  is a random variable uniformly 

distributed in [0,1]. The generation of t
iy

uur
 is defined by the mathematical 

expression in Equation (4):

2
t t

t i r
i

x xy +=
uur uuruur

(4)

Where r  is a random integer in the range [1,N]. When 6t < 7t , the second 
defense strategy is executed, whose mathematical model is given by Equation 
(5):

( )( )1
1 1 3 1 2(1 )t t t

i i r rx U x U y x xt+ = - ´ + ´ + ´ -
uur uuruur ur ru ur ruu u u

(5)

Where 1U  is a binary vector whose elements take values of either 0 or 1. 
In this second defense strategy, the predator’s movement direction is 
determined based on two randomly selected individuals, 1

t
rx

uur
 and 2

t
rx

uur
.

2.2.2 Exploitation

When 8 9t t³ , local exploitation is performed, which is realized by adopting 
either the third or the fourth defense strategy; the specific strategy is selected 
by comparing two random values, 10t  and fT .

When 10t < fT , the third defense strategy is activated, which is 
mathematically defined in Equation (6):

( )( )3
1

1 1 1 2 3(1 )
i

t t tt
r r r

t t
i i i tx U x U SxSx x t d g+ = - ´ + ´ + ´ - - ´ ´ ´

uuur uuruur ur uur urruu uur
(6)

Here, 3r  denotes a random integer range [1, ]N ; 3t  is a random number in 
the interval [0,1] ; d  is a direction control vector, tg  is the defense factor, and 

t
iS  is the scent dispersion factor. The corresponding calculation is defined as 
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follows:

1, if rand 0.5
1, else

d ì + £ï=í -ïî

uuuurur
(7)

max

max
2 rand 1

t
t

t
t

tg æ ö= ´ ´ -ç ÷è ø
(8)

1

( )exp
( )

t
t i
i N

t
k

k

f xS
f x

=

æ ö
ç ÷
ç ÷=
ç ÷+ç ÷è øå ò

(9)

Where ( )t
if x  denotes the fitness value of the i th individual at iteration t, 

and ò is a small constant introduced to avoid division by zero. When 10t > fT , 
the fourth defense strategy is activated, and its mathematical model is given 
by Equation (10):

( ) ( )1
4 4(1 )

CP CP
t t t t
i ix x x x Ka t t d+ = + - + ´ ´ - -

uuur uuur uuur uur
(10)

5
t

t iK Ft d g´ ´ ´=
uur

(11)

Where a  denotes the velocity convergence factor; 4t  and 5t  are random 
numbers uniformly distributed in [0,1] ; and t

iF
uur

 represents the inelastic 
collision force generated by the individual when attacking the predator, which 
is computed as follows:

( )1
6

t t t
i i i iF m v vt += ´ ´ -

uur uuur uruur
(12)

Where 6t  is a random vector whose elements lie in [0,1] ; 1t
iv+

uuur
 denotes a 

randomly selected individual from the current population; and t
iv

ur
 refers to the 

current individual.

2.3 Cyclic Population Reduction

After each iteration, the population size is gradually reduced to accelerate 
convergence. Once it reaches a predefined minimum, the population size is 
then progressively increased to restore diversity. This process is repeated 
cyclically until the maximum number of iterations is reached. This dynamic 
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population adjustment constitutes a distinctive feature of the CPO algorithm. 
The population size updating rule is given by:

( )
max

min max min
max

%
1

Tt TN N N N T
T

æ öæ öç ÷ç ÷= + - ´ -ç ÷ç ÷
ç ÷ç ÷ç ÷è øè ø

(13)

Where % denotes the modulo operator.
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3 Adaptive Multi-Mechanism Integrated CPO

To overcome the inherent limitations of standard CPO, particularly the 
uneven distribution of the initial population, its tendency toward premature 
convergence, and the oscillatory behavior of its convergence trajectories, this 
study proposes the SDHCPO algorithm. SDHCPO establishes a unified 
cooperative optimization framework that aims to dynamically regulate the 
balance between exploration and exploitation through the integration of four 
strategies. This framework follows a clear functional logic: in the exploration-
dominated stage, the algorithm incorporates differential evolution and 
horizontal-vertical crossover strategies, which proactively inject diversity and 
break positional dependence, thereby expanding global search capability and 
preventing the population from collapsing prematurely into local optima. As 
the algorithm transitions to the exploitation-dominated stage, particularly in 
the fourth defense mechanism, a cosine-annealing mechanism is introduced. 
This strategy focuses on stabilizing the convergence trajectory by replacing 
random fluctuations with a deterministic decay schedule, thereby eliminating 
ineffective oscillatory jumps and enforcing precise convergence of the 
population toward the global optimum. Within this framework, a staged 
configuration that strengthens exploration in the early phase to expand the 
search boundary and emphasizes exploitation in the later phase to refine 
convergence accuracy, together with the complementary roles of each 
mechanism in diversity injection and trajectory stabilization, achieves a 
dynamically coordinated and finely balanced interaction between exploration 
and exploitation. Meanwhile, the Sobol-OBL initialization ensures from the 
outset a high-quality, uniformly distributed initial population in the search 
space. The theoretical foundations of each strategy and their synergistic 
effects are elaborated in the following sections.

3.1 Sobol-OBL Initialization

In swarm intelligence optimization algorithms, the diversity and 
uniformity of the initial population directly influence the global search 
capability and convergence speed. Although conventional random 
initialization is easy to implement, it often leads to uneven individual 
distribution and insufficient coverage in high-dimensional search spaces, 
making the algorithm prone to becoming trapped in local optima. Low-
discrepancy sequences (LDS), owing to their uniform coverage properties, 
have therefore been widely adopted in the initialization stage. Among them, 
the Sobol sequence exhibits particularly good uniformity even in high-
dimensional spaces. Nevertheless, Sobol-based initialization alone still fails to 
fully explore mutually opposite regions of the solution space. The Opposition-
Based Learning (OBL) [32] mechanism enhances population diversity and 
enlarges the search range by generating symmetric opposite solutions of the 
current candidates within the search space. On this basis, a high-dimensional 
initialization strategy that combines the Sobol sequence with OBL (Sobol-OBL) 
is proposed. The Sobol sequence ensures globally uniform coverage, while 
OBL complements it by introducing solutions in symmetric regions. Together 
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with a fitness-based ranking and selection mechanism, this strategy provides 
higher-quality initial solutions for subsequent iterations.

The Sobol sequence is a low-discrepancy quasi-random sequence that 
distributes points as uniformly as possible within a d  dimensional hypercube. 
For a population of size N , the original value of the j th dimension of the i th 
Sobol sequence point is denoted by ,q iSr  and can be expressed as:

1, 2, ,
,

1 1 1

( ) ( ) ( ), , ,2 2 2
M M M

k k k k k d k
q i k k k

k k k

b i b i b iS a a a
= = =

Å Å Åé ù= ¼ê úë ûå å år
(14)

In this expression, ( )kb i  denotes the kth bit in the binary representation of 
i , ,j ka  is the kth direction number for the j th dimension, and M is the bit 
length used in the binary representation. Subsequently, ,q iSr is linearly mapped 
onto the actual search interval [ , ]L U  to obtain the Sobol-initialized individual:

sobol
, ( ), 1,2, ,i q iX L S U L i N´= + - = ¼

rr r r r
(15)

To illustrate the superiority of the Sobol sequence, 100 points are 
generated within the two-dimensional domain 2[0,1] , as shown in Figure 1. 
Visually, the points generated by the Sobol sequence exhibit markedly better 
uniformity and diversity compared with randomly generated points—an 
advantage that extends to high-dimensional spaces.

Fig. 1 Comparison of distribution between Sobol sequence and random 
initialization

Next, the OBL mechanism is introduced. For each initial individual sobol
iXr , 

its opposite component in the j th dimension is defined as:

op sobol , 1,2, ,i iX L U X i N= + - = ¼r r r r
(16)
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which maps the original value symmetrically with respect to the midpoint 
of the search space [ , ]L Uur ur

. Equation (16) generates the opposite solution op
iXr

corresponding to sobol
iXr ; the two typically appear as a pair, enabling 

simultaneous exploration of opposite regions in the solution space and 
enhancing the global diversity of the population.

After Sobol initialization, the fitness values of the NSobol individuals are 

first evaluated. The median fitness is then used as an automatically 
determined threshold to distinguish relatively good and poor solutions. For 
those individuals whose fitness is not better than the median, their opposite 
solutions are generated according to the OBL rule, and a replacement is 
performed only if the opposite solution yields a lower fitness value. In this way, 
opposition-based learning is selectively applied to the worse half of the initial 
Sobol population, improving solution quality while preserving the diversity of 

the better half. The resulting Nindividuals form the initialized population. The 

mathematical expression is:

{ ,

1

}

, med ( ) ,
1, ,arg min ( ), ,

( ) { }
sobol
i i

op

sobol sobol sobol N
i i k k

i
Z X X

X f X f XX i Nf Z otherwise
=

Î

ì £ï= = ¼í
ïî ur r r

r r r
r r (17)

where 1med ( ){ }sobol N
k kf X =

r
denotes the median of the fitness values of all Sobol-

initialized individuals, op
iXr is the opposite solution of sobol

iXr defined in (16), and 

iXr denotes the initialized individual obtained after the selective application of 
OBL.

3.2 Differential Evolution

Building on the high-quality initialization, the algorithm then enters the 
iterative search phase. In standard CPO, the first defense phase simulates the 
defensive response to predators; however, the unidirectional movement 
toward the current best solution can rapidly erode population diversity and 
induce premature convergence. To counterbalance this attraction without 
hindering convergence, the DE/rand/1 strategy [33] is specifically 
incorporated into this phase. In contrast to the original mechanism, which 
reinforces dependence on the current leader, the DE strategy introduces 
mutation and crossover operators to perturb candidate solutions. This 
perturbation mechanism breaks positional dependence, enabling the 
population to maintain sufficient diversity to explore previously unvisited 
regions, thereby continuously strengthening global search capability and 
preventing entrapment in local optima during the early stages of evolution. 
The steps of this strategy are as follows:

Step1: Select three distinct individuals 1
t
rx

uur
, 2

t
rx

uur
, and 3

t
rx

uur
 from the 

population( 1 2 3r r r i¹ ¹ ¹ ); then generate the mutant vector 1t
iv+

uuur
 using the 

DE/rand/1 mutation strategy as follows:
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1
1 2 3( )t t t t

i r r rv x CV x x+ = + ´ -
uuur uur uur uur

(18)

Where CV  is the mutation factor, which controls the magnitude of the 
perturbation.

Step2: Perform binomial crossover between the target individual t
ix

uur
 and 

the mutant vector 1t
iv+

uuur
 to generate the trial individual 1t

iu +
uuur

, as shown in 
Equation(18), where the crossover probability is governed by the parameter 
CR .

1
,1

,
,

, if (0,1)  
,

t
i j randt

i j t
i j

rv CR j ju and or
otherwisex

+
+

ì £ =ï=í
ïî

r
uu uuurr

uu
u

u (19)

Where j  is the dimension index, [0,1]CRÎ  is the crossover probability, and 
randj  denotes a randomly selected dimension.

Step 3: Apply a greedy selection mechanism by comparing the fitness of 
the trial individual 1t

iu +
uuur

 with that of the target individual t
ix

uur
, as shown in 

Equation (20).

1 1
1 , if  ( ) ( )

,

tt t
i i

i
i

t
i

t u ux
otherwis

f x f
ex

+ +
+

ì >ï=í
ïî

uuur uuuruuu ur ur
uur (20)

3.3 Horizontal-Vertical Crossover Strategy

Although the Differential Evolution strategy effectively disrupts positional 
dependence and mitigates early clustering, it treats individuals as holistic 
vectors and may therefore overlook stagnation in specific dimensions. 
Consequently, the second defense phase requires a dedicated mechanism to 
explicitly address dimensional stagnation.

In this phase, the original position update equation may cause certain 
dimensions of the solution vector to become inactive, thereby impeding 
progress toward the global optimum. To effectively eliminate this stagnation 
while preserving the enhanced global search capability achieved in the 
preceding stage, the Horizontal-Vertical Crossover strategy is introduced [34]. 
This strategy operates through a dual mechanism: horizontal crossover 
facilitates information exchange between distinct individuals to eliminate 
search blind spots, whereas vertical crossover explicitly targets stagnant 
dimensions, employing arithmetic crossover to enable them to escape local 
extrema. The horizontal crossover is performed using the following formula 
(21):

1
1 6(1 ) ( )t t t t t

i i r i rx x x c x xh t+ = ´ + - ´ + ´ -
uuur uur uur uur uur

(21)

Where t
rx

uur
 denotes a randomly selected individual with an index different 
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from i ; 1 (0,1)h Î  is a random number, and c is a constant controlling the 
contribution of dimensional differences. The newly generated individual is 
then compared with the target individual, and the one with the smaller 
objective function value is retained.

Vertical crossover is an arithmetic crossover operator acting on two 
different dimensions of a single individual. In each crossover operation, only 
one dimension of the individual is updated while the others remain unchanged, 
thereby allowing stagnant dimensions to escape local optima without 
perturbing dimensions that may have already approached the optimum. Let 
two dimensions 1j  and 2j  be randomly selected. Then, the 1j th dimension of 
the new individual is computed using the following formula (22):

1
, 1 2 , 1 7 , 2(1 )t t t

i j i j i jx x xh t+ = × + - ×
uuur uuur uuuur

(22)

Where 2h  is a uniformly distributed random number in the interval (0,1).

3.4 Cosine Annealing Dynamic Adjustment Strategy

Following the extensive exploration and dimensional adjustments in the 
preceding phases, the algorithm must subsequently shift its focus toward 
stabilization and precise convergence. However, in the fourth defense 
strategy of the original CPO, the position update relies on random coefficients

4t . The stochastic fluctuations of these terms can destabilize the update 
direction and lead to inconsistent convergence speed. In the improved CPO, a 
time-dependent nonlinear decay mechanism is introduced, whereby the 
original random terms are replaced with a deterministic weighting function. 
The core of this mechanism is a tunable cosine-annealing function:

max
( ) 0.5 1 cos tW t T

g

p
æ öæ öæ öç ÷ç ÷= ´ + ´ç ÷ç ÷ç ÷è øè øè ø

(23)

In this equation, the decay-rate control parameter 0g >  governs the 
nonlinear attenuation behavior, while the weighting function ( )W t  adapts over 
time according to the normalized iteration index max/t T . Its main advantage lies 
in the exponent term, which provides precise control over the shape of the 
decay curve: increasing g produces a gentler decay in the early iterations, 
thereby preserving sufficient exploration in the initial phase; in the later 
iterations, the function transitions to a more rapid decay, strengthening fine-
grained search around the vicinity of the optimum. As shown in Figure 2, 
larger values of g lead to slower decay at the beginning and a steeper drop in 
the final phase. Benchmark experiments further confirm that 1.5g=  yields the 
best overall performance in most cases. Consequently, at this stage, the high-
quality individuals generated by the preceding strategies are efficiently 
exploited, and the focus of the search is gradually and deterministically 
shifted from maintaining diversity to fine-grained solution refinement. This 
unified decay trajectory prevents exploration and exploitation from being 
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treated as disjoint processes and instead enables their continuous 
coordination over time. The position update formula for the fourth defense 
strategy is given by:

( )1
5

max

( )

0.5 1 cos
CP CP

t t t t t
i i t i

W t

tx x x x FT
g

p d t d g+
æ öæ öæ öç ÷ç ÷= + ´ + ´ ´ ´ - - ´ ´ ´ç ÷ç ÷ç ÷è øè øè ø

uuur uuur uuur uur uur

1 4 4 4 442 4 4 4 4 43
(24)

Fig. 2 Dynamic weight decay curves under different decay factors g
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3.5 Pseudocode and Flowchart of SDHCPO

This section presents the pseudocode of SDHCPO together with its 
corresponding flowchart. The overall workflow of the proposed algorithm is 
summarized in Figure 3.
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Algorithm1The pseudo-code of the SDHCPO algorithm.
Input: Parameters of CPO, such as maxN , maxT
Output: The global best solution
1:Set parameters maxN , minN , T, fT , maxT , g.
2:Applying Sobol-OBL Initialization per Equation (17) to generate the position matrix..
3:While(t< maxT ) do
4: Evaluate the fitness of the initial population and find the global best solution ( t

CPx
uuur

).
5: Equation (8) defines the update rule for tg .
6： Equation (23) defines the update rule for W(t).
7： Update the population size according to Equation (13).
8: For i =1 to N do
9: Update parameters m, S, F, d .
10: Generate a random number, 3h .
11: If 3h <0.5 // Exploration
12: Generate a sequence of random numbers, 4h , 5h and 6h .
13: If 4h <0.5 // First defense strategy
14: Carry out Algorithm2.
15: Adopting greedy selection strategy to optimize the population.
16: Else// Second defense strategy
17: If 5h < 0.5 // Horizontal and Vertical Intersection
18: Carry out Algorithm3.
19: Else
20: The CP position is adjusted via Equation (5)
21: End if
22: End if
23: Else// Exploitation
24: Generate a random number, 7h .
25: If 7h < 0.5 // Third defense strategy
26: The CP position is adjusted via Equation (6)
27: Else// Fourth defense strategy
28: The CP position is adjusted via Equation (24)
29: End if
30: End if
31: If ( ) ( )1t t

i if X f X+ >
uuuur uur

32: 1t t
i iX X+ =

uuuur uur

33: End if
34: 1t t= +
35: End for
36: End while
37: Return t

CPX
uuuur

38: Output the global best solution
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Fig. 3 Flowchart of the SDHCPO algorithm

Algorithm2 DE/rand/1/bin
1: Selected three random donor vectors 1

t
rx

uur
, 2

t
rx

uur
, 3

t
rx

uur
, where 1 2 3r r r i¹ ¹ ¹ .

2： Select random integer j rand within [1, ]d .
3： For 0j = ; j d< ; 1j j= + do
4： If (0,1) randrand C jr joR£ = then
5： 1 1

, ,
t t
i j i ju v+ +=

uuur uuur

6： Else
7： 1

,
t t
i j iu x+ =

uuur uur

8： End if
9： End for

Algorithm3Horizontal and Vertical Intersection
1: If 6h < 0.5 // Horizontal Intersection
2: Randomly generate an individual from the population that is different from the current.
3: The position of CP is updated according to Equation(21).
4: Adopting greedy selection strategy to optimize the population.
5: Else// Vertical Intersection
6: Ifd ³ 2 
7: Randomly select two different dimensions of the current solution vector.
8: The position of CP is updated according to Equation(22).
9: Adopting greedy selection strategy to optimize the population.
10: End if
11: Endif
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3.6 Time Complexity Analysis

Time complexity is a key metric for evaluating the performance of 
optimization algorithms [35]. The time complexity of the SDHCPO algorithm is 
primarily determined by the population initialization and iterative update 
processes, with the main influencing factors being the maximum number of 
iterations maxT , the problem dimensionality d , and initial population size N . In 
SDHCPO, population initialization combines the Sobol sequence with 
opposition-based learning, yielding a time complexity of ( )O N d´ .The iterative 
update process employs a hybrid strategy, which includes Differential 
Evolution, Horizontal-Vertical Crossover, and cosine-annealing-based dynamic 
adjustment. This process has a time complexity of max( )O T N d´ ´ , where N  is 
dynamically adjusted through cyclic population reduction. In the best-case 
scenario: max min( ) ( ) ( )O SDHCPO O N d O T N d= ´ + ´ ´ .

In the worst-case scenario: max( ) ( ) ( )O SDHCPO O N d O T N d= ´ + ´ ´ .
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4 Benchmark Test Results and Analysis

4.1 Experimental Setup and Overall Evaluation Framework

This section conducts a multi-level evaluation of the proposed SDHCPO 
algorithm, following a logical progression from overall performance, to 
internal mechanisms, and finally to high-dimensional extensions. First, 
SDHCPO is compared with several representative metaheuristic algorithms on 
the CEC2017 and CEC2022 benchmark test suites, in order to assess its 
overall competitiveness across different types of test functions; the CEC2017 
suite is tested in 30 dimensions, whereas CEC2022 is evaluated in 20 
dimensions. Second, a systematic ablation study and qualitative analysis on 
CEC2017 are performed to characterize the exploration-exploitation balance 
from an internal mechanism perspective and to clarify the roles and synergies 
of the four integrated strategies. Finally, a 50-dimensional extension 
experiment based on CEC2017 is carried out to examine the scalability and 
robustness of SDHCPO in higher-dimensional scenarios.

The performance of the improved algorithm is evaluated on two widely 
adopted benchmark test suites, CEC2017 [36] and CEC2022 [37]. CEC2017 
comprises unimodal functions (UM: F1, F3; F2 has been officially removed), 
multimodal functions (MM: F4-F10), hybrid functions (H: F11-F20), and 
composition functions (C: F21-F30). CEC2022 includes unimodal functions 
(UM: F1), multimodal functions (MM: F2-F5), hybrid functions (H: F6-F8), and 
composition functions (C: F9-F12). To verify the effectiveness of SDHCPO, 
seven algorithms are selected as baselines: the original CPO [25], CFOA [38], 
PKO [39], CDO [40], MVO [41], HOA [42], and WOA [10], all implemented with 
the parameter settings recommended in their original publications; see 
Appendix A for details. Among them, CFOA, PKO, and CDO are recently 
proposed metaheuristic algorithms that represent the state of the art in this 
class of methods, whereas MVO, WOA, and HOA are classical swarm 
intelligence algorithms that have been widely used in the literature and 
frequently employed on CEC benchmarks and engineering optimization 
problems. By simultaneously including both recently proposed algorithms and 
classical representative methods, the competitiveness of SDHCPO can be 
assessed more convincingly. For each test function, all algorithms are 
independently run 30 times with a population size of 30 and a maximum of 
500 iterations. All experiments are implemented in MATLAB R2022a on a 
workstation equipped with an AMD Ryzen 7 4800U 1.80 GHz processor and 
16 GB of RAM.

Unless otherwise specified, statistical tests are conducted using the 
Wilcoxon rank-sum test [43] with SDHCPO as the reference method and a 
significance level of 0.05. In the “−/=/+” notation used throughout the paper, 
“−” indicates that SDHCPO is significantly inferior to the compared algorithm, 
“=” denotes no statistically significant difference, and “+” indicates that 
SDHCPO is significantly superior to the compared algorithm. The 
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corresponding counts are used to summarize the overall advantage of 
SDHCPO relative to each competitor.

4.2 Results on the CEC2017 Benchmark Suite

In this subsection, the overall performance of SDHCPO is first compared 
with that of seven representative algorithms on the more challenging 30-
dimensional CEC2017 test suite. Table 1 reports the mean, standard deviation, 
and Friedman ranking [44] of each algorithm on all CEC2017 test functions, 
with the smallest mean values highlighted in bold. It can be observed that 
SDHCPO achieves clearly superior mean objective values on most test 
functions and exhibits consistently stable performance across unimodal, 
multimodal, hybrid, and composition functions, indicating strong overall 
adaptability and cross-function robustness in the 30-dimensional benchmark 
setting.

Table 1. Performance Metrics of SDHCPO and Other Algorithms on CEC2017 
(d=30)

Fun Index SDHCPO CPO CFOA PKO CDO MVO HOA WOA
Std 8.826E+03 5.932E+05 8.389E+09 5.573E+06 2.743E+08 6.298E+05 7.917E+09 1.979E+09F1 Mean 1.202E+04 7.377E+05 4.636E+10 5.510E+06 5.287E+10 2.041E+06 3.911E+10 5.576E+09
Std 9.399E+03 1.390E+04 7.551E+04 3.835E+04 3.339E+03 1.059E+04 8.119E+03 6.241E+04F3 Mean 4.103E+04 6.263E+04 2.307E+05 1.703E+05 9.235E+04 2.040E+04 7.058E+04 2.494E+05
Std 1.489E+01 2.335E+01 3.158E+03 2.315E+01 9.701E+01 1.054E+01 1.760E+03 4.629E+02F4 Mean 5.058E+02 5.186E+02 1.070E+04 5.188E+02 5.570E+03 4.995E+02 7.802E+03 1.371E+03
Std 2.196E+01 1.598E+01 4.181E+01 1.935E+01 1.631E+01 3.587E+01 3.028E+01 5.266E+01F5 Mean 5.922E+02 6.944E+02 8.940E+02 5.928E+02 8.614E+02 6.175E+02 8.149E+02 8.581E+02
Std 4.659E-02 7.423E-01 1.029E+01 3.351E+00 7.029E+00 1.479E+01 8.613E+00 9.838E+00F6 Mean 6.001E+02 6.019E+02 6.832E+02 6.037E+02 6.752E+02 6.321E+02 6.657E+02 6.831E+02
Std 2.053E+01 1.674E+01 1.402E+02 2.658E+01 1.776E+01 4.459E+01 6.224E+01 7.800E+01F7 Mean 8.585E+02 9.398E+02 1.552E+03 8.752E+02 1.323E+03 8.830E+02 1.255E+03 1.298E+03
Std 2.003E+01 1.412E+01 5.548E+01 2.229E+01 2.181E+01 3.477E+01 3.552E+01 4.052E+01F8 Mean 8.883E+02 9.837E+02 1.135E+03 9.000E+02 1.110E+03 9.229E+02 1.060E+03 1.063E+03
Std 4.930E+01 4.924E+02 3.457E+03 3.835E+02 6.634E+02 3.614E+03 1.806E+03 3.580E+03F9 Mean 9.336E+02 1.315E+03 1.142E+04 1.261E+03 1.014E+04 6.879E+03 7.309E+03 1.208E+04
Std 7.132E+02 4.159E+02 5.475E+02 5.968E+02 3.150E+02 6.698E+02 6.026E+02 9.123E+02F10 Mean 5.648E+03 7.539E+03 9.206E+03 5.303E+03 9.009E+03 4.912E+03 7.619E+03 7.407E+03
Std 2.361E+01 2.969E+01 4.992E+03 1.035E+02 1.254E+04 7.215E+01 2.319E+03 3.884E+03F11 Mean 1.226E+03 1.274E+03 1.469E+04 1.418E+03 2.801E+04 1.362E+03 6.413E+03 1.075E+04
Std 3.686E+05 9.060E+05 3.457E+09 2.508E+06 1.162E+08 9.680E+06 1.880E+09 3.125E+08F12 Mean 7.126E+05 1.306E+06 8.340E+09 2.529E+06 9.876E+09 1.296E+07 6.585E+09 5.547E+08
Std 7.481E+03 1.024E+04 3.656E+09 1.415E+05 1.325E+08 1.070E+05 1.695E+09 1.737E+07F13 Mean 1.394E+04 2.466E+04 5.387E+09 7.805E+04 2.494E+09 1.403E+05 3.068E+09 1.589E+07
Std 2.432E+03 3.212E+02 4.833E+06 7.881E+04 1.652E+05 4.673E+04 1.099E+06 3.476E+06F14 Mean 3.180E+03 1.944E+03 5.595E+06 1.017E+05 2.843E+06 4.968E+04 1.832E+06 2.585E+06
Std 2.725E+03 2.950E+03 2.909E+08 1.583E+04 7.055E+07 3.870E+04 1.292E+08 2.224E+07F15 Mean 4.219E+03 5.125E+03 3.019E+08 2.201E+04 6.392E+08 7.310E+04 1.514E+08 1.292E+07
Std 2.527E+02 2.446E+02 6.112E+02 2.614E+02 2.430E+03 3.046E+02 5.549E+02 6.559E+02F16 Mean 2.510E+03 3.079E+03 4.649E+03 2.528E+03 9.488E+03 2.914E+03 4.649E+03 4.283E+03

F17 Std 1.279E+02 1.047E+02 9.196E+02 1.577E+02 1.783E+04 1.846E+02 3.690E+02 2.967E+02
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Mean 1.879E+03 2.050E+03 3.577E+03 2.121E+03 2.071E+04 2.268E+03 2.858E+03 2.760E+03
Std 8.039E+04 6.307E+04 2.957E+07 1.199E+06 1.653E+06 6.035E+05 1.536E+07 1.408E+07F18 Mean 9.408E+04 1.167E+05 3.295E+07 1.354E+06 1.056E+07 7.455E+05 1.352E+07 1.278E+07
Std 5.836E+03 4.334E+03 4.390E+08 2.231E+04 6.524E+06 1.780E+06 3.770E+07 1.842E+07F19 Mean 5.566E+03 6.267E+03 5.421E+08 2.477E+04 1.434E+08 2.157E+06 3.055E+07 1.982E+07
Std 1.255E+02 1.616E+02 2.236E+02 1.723E+02 2.045E+02 1.782E+02 2.073E+02 2.191E+02F20 Mean 2.246E+03 2.441E+03 3.074E+03 2.428E+03 3.011E+03 2.554E+03 2.767E+03 2.942E+03
Std 2.093E+01 1.421E+01 4.746E+01 2.135E+01 1.918E+01 3.179E+01 2.772E+01 5.636E+01F21 Mean 2.390E+03 2.481E+03 2.696E+03 2.397E+03 2.644E+03 2.423E+03 2.618E+03 2.643E+03
Std 3.541E+00 3.286E+00 1.660E+03 2.127E+03 1.028E+03 1.649E+03 1.102E+03 1.403E+03F22 Mean 2.302E+03 2.309E+03 9.030E+03 5.143E+03 1.023E+04 5.700E+03 8.134E+03 8.265E+03
Std 2.201E+01 1.540E+01 1.287E+02 2.609E+01 8.481E+01 4.938E+01 1.314E+02 1.239E+02F23 Mean 2.742E+03 2.849E+03 3.299E+03 2.754E+03 3.773E+03 2.789E+03 3.502E+03 3.151E+03
Std 2.625E+01 2.294E+01 8.506E+01 2.239E+01 4.401E+01 2.934E+01 1.578E+02 9.674E+01F24 Mean 2.898E+03 3.020E+03 3.450E+03 2.911E+03 3.846E+03 2.927E+03 3.824E+03 3.304E+03

Table 1 Cont.

Fun Index SDHCP
O CPO CFOA PKO CDO MVO HOA WOA

Std 1.050E
+01

1.827E+
01

7.489E
+02

1.570E+
01

3.044E+
01

2.054E+
01

2.122E
+02

8.017E
+01F25

Mean 2.895E
+03

2.910E+
03

5.421E
+03

2.916E+
03

3.620E+
03

2.906E+
03

3.833E
+03

3.222E
+03

Std 2.912E+
02

8.708E+
02

9.246E
+02

2.361E
+02

3.475E+
02

6.543E+
02

8.188E
+02

8.084E
+02F26

Mean 4.721E+
03

5.364E+
03

1.037E
+04

4.600E
+03

9.049E+
03

4.808E+
03

9.515E
+03

8.765E
+03

Std 8.985E
+00

1.347E+
01

2.247E
+02

1.058E+
01

4.526E+
01

2.201E+
01

2.061E
+02

1.521E
+02F27

Mean 3.227E+
03

3.277E+
03

3.905E
+03

3.223E
+03

3.699E+
03

3.235E+
03

4.194E
+03

3.488E
+03

Std 2.115E
+01

2.221E+
01

8.483E
+02

2.752E+
01

3.567E+
01

3.863E+
01

4.340E
+02

3.401E
+02F28

Mean 3.253E
+03

3.285E+
03

6.866E
+03

3.291E+
03

5.056E+
03

3.259E+
03

5.830E
+03

3.920E
+03

Std 1.192E
+02

1.578E+
02

1.091E
+03

1.462E+
02

3.756E+
02

2.169E+
02

7.567E
+02

6.425E
+02F29

Mean 3.662E
+03

3.997E+
03

6.717E
+03

3.840E+
03

6.574E+
03

4.031E+
03

6.288E
+03

5.513E
+03

Std 1.369E
+04

7.121E+
04

4.820E
+08

1.676E+
05

8.595E+
08

3.913E+
06

2.704E
+08

1.111E
+08F30

Mean 2.454E
+04

1.160E+
05

6.293E
+08

1.087E+
05

3.126E+
09

4.939E+
06

4.026E
+08

9.166E
+07

Std rank 1.93 2.10 7.34 3.31 4.59 4.38 6.07 6.28
Mean rank 1.24 2.97 7.45 2.79 6.93 3.10 5.93 5.55

Overall rank 1 2 8 3 5 4 7 6

As shown by the numerical results in Table 1, SDHCPO achieves 
noticeable improvements in both the mean and standard deviation of the 
objective values, with the reduction in the mean being particularly 
pronounced. For several functions, such as F1, F9, F12, F18, and F30, the 
mean objective values of SDHCPO are lower than those of the original CPO 
and other metaheuristic algorithms by one or even multiple orders of 
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magnitude. For the multimodal functions F4-F10, algorithms such as the 
original CPO, CFOA, and CDO tend to become trapped in local minima within 
the complex multimodal landscape as the dimensionality increases, leading to 
generally higher mean objective values. In contrast, SDHCPO is able to escape 
local optima while maintaining adequate exploration intensity, thereby 
keeping the final mean values at a markedly lower level. This advantage is 
further amplified on the hybrid functions F11-F20 and the composition 
functions F21-F30. It can be observed that the mean values of most competing 
algorithms deteriorate significantly on these two categories of functions, with 
some objective values even reaching the order of 108-109, whereas the mean 
values of SDHCPO remain far below this range. These results indicate that, 
compared with other competing algorithms, SDHCPO exhibits substantially 
stronger global search capability and higher convergence accuracy.

Fig. 4 Friedman Rank Evolution of SDHCPO vs. Competitors on CEC2017 
Test Suite (d=30)

Figure 4 presents the per-function ranking distribution of the eight 
algorithms on the 30 test functions of CEC2017. It can be observed that 
SDHCPO consistently ranks among the top methods on almost all test 
functions, with only minor fluctuations on a few cases, which further 
corroborates, from a ranking perspective, the high accuracy and robustness 
indicated by the preceding statistical results.

Table 2. Wilcoxon Rank-Sum p-Values: SDHCPO vs. Algorithms on CEC2017 
(d=30)
Fun CPO-p CFOA-p PKO-p CDO-p MVO-p HOA-p WOA-p

1 3.020E-
11

3.020E-
11

3.020E-
11

3.020E-
11

3.020E-
11

3.020E-
11

3.020E-
11

3 4.118E-
06

3.020E-
11

3.020E-
11

3.020E-
11

1.558E-
08

1.777E-
10

3.020E-
11

4 4.982E-
04

3.020E-
11

1.041E-
04

3.020E-
11

2.116E-
01

3.020E-
11

3.020E-
11

5 3.020E-
11

3.020E-
11

1.087E-
01

3.020E-
11

3.339E-
03

3.020E-
11

3.020E-
11

6 3.020E-
11

3.020E-
11

3.020E-
11

3.020E-
11

3.020E-
11

3.020E-
11

3.020E-
11
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7 3.020E-
11

3.020E-
11

1.767E-
03

3.020E-
11

2.062E-
01

3.020E-
11

3.020E-
11

8 3.020E-
11

3.020E-
11

8.650E-
01

3.020E-
11

5.971E-
05

3.020E-
11

3.020E-
11

9 6.696E-
11

3.020E-
11

5.072E-
10

3.020E-
11

3.020E-
11

3.020E-
11

3.020E-
11

10 3.020E-
11

3.020E-
11

7.959E-
03

3.020E-
11

9.031E-
04

1.329E-
10

3.159E-
10

11 5.533E-
08

3.020E-
11

6.121E-
10

3.020E-
11

2.390E-
08

3.020E-
11

3.020E-
11

12 4.060E-
02

3.020E-
11

4.183E-
09

3.020E-
11

9.919E-
11

3.020E-
11

3.020E-
11

13 2.681E-
04

3.020E-
11

2.879E-
06

3.020E-
11

3.020E-
11

3.020E-
11

3.020E-
11

14 5.106E-
01

3.020E-
11

3.338E-
11

3.020E-
11

6.066E-
11

3.020E-
11

3.020E-
11

15 2.254E-
04

3.020E-
11

1.613E-
10

3.020E-
11

3.020E-
11

3.020E-
11

3.020E-
11

16 1.011E-
08

3.020E-
11

7.394E-
01

3.020E-
11

1.383E-
02

3.020E-
11

3.020E-
11

17 1.493E-
04

3.020E-
11

1.529E-
05

3.020E-
11

3.368E-
05

3.020E-
11

3.020E-
11

18 8.650E-
01

3.020E-
11

1.174E-
09

3.020E-
11

1.473E-
07

3.690E-
11

6.066E-
11

19 2.062E-
01

3.020E-
11

4.118E-
06

3.020E-
11

3.020E-
11

3.020E-
11

3.020E-
11

20 2.783E-
07

3.020E-
11

2.433E-
05

3.020E-
11

7.599E-
07

3.020E-
11

3.020E-
11

21 3.020E-
11

3.020E-
11

1.537E-
01

3.020E-
11

7.221E-
06

3.020E-
11

3.020E-
11

22 5.573E-
10

3.690E-
11

1.464E-
10

3.020E-
11

2.154E-
10

4.504E-
11

4.077E-
11

23 4.077E-
11

3.020E-
11

8.771E-
02

3.020E-
11

3.183E-
03

3.020E-
11

3.020E-
11

24 3.020E-
11

3.020E-
11

9.941E-
01

3.020E-
11

3.034E-
03

3.020E-
11

3.020E-
11

25 7.697E-
04

3.020E-
11

2.226E-
01

3.020E-
11

6.204E-
01

3.020E-
11

3.020E-
11

26 6.356E-
05

3.020E-
11

9.069E-
03

3.020E-
11

6.736E-
06

3.020E-
11

3.020E-
11

27 5.494E-
11

3.020E-
11

5.828E-
03

3.020E-
11

5.555E-
02

3.020E-
11

3.020E-
11

28 1.784E-
04

3.020E-
11

1.385E-
06

3.020E-
11

5.692E-
01

3.020E-
11

3.020E-
11

29 1.329E-
10

3.020E-
11

1.019E-
05

3.020E-
11

1.174E-
09

3.020E-
11

3.020E-
11

30 4.311E-
08

3.020E-
11

1.032E-
02

3.020E-
11

3.020E-
11

3.020E-
11

3.020E-
11

-
/=/+

0/3/26 0/0/29 1/7/21 0/0/29 2/5/22 0/0/29 0/0/29

Table 2 reports the p-values of SDHCPO against the seven comparison 
algorithms on each test function, together with the overall “−/=/+” counts. It 
can be seen that the vast majority of p-values are far below 0.05, indicating 
that SDHCPO exhibits statistically significant superiority over the competing 
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algorithms on almost all functions. It is worth emphasizing that the Wilcoxon-
based significance results are highly consistent with the aforementioned 
“order-of-magnitude gap” in the mean values: for functions where the mean 
objective value of SDHCPO is much lower than that of the competitors, the 
corresponding p-values typically shrink to the order of 10-8 or even 10-11, 
implying that the performance gap cannot be attributed to random 
fluctuations. By contrast, the few cases with slightly larger p-values or an 
“=“ outcome mostly correspond to functions on which all algorithms have 
already approached the theoretical optimum. In such situations, the standard 
deviation and p-values are no longer the primary focus of comparison and do 
not alter the conclusion that SDHCPO holds a clear overall advantage.
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Fig. 5 SDHCPO vs. algorithms: CEC2017 convergence curves (F1, F3-F7)
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Fig. 6 SDHCPO vs. algorithms: CEC2017 convergence curves (F8-F13)
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Fig. 7 SDHCPO vs. algorithms: CEC2017 convergence curves (F14-F19)
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Fig. 8 SDHCPO vs. algorithms: CEC2017 convergence curves (F20-F25)
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Fig. 9 SDHCPO vs. algorithms: CEC2017 convergence curves (F26-F30)

The convergence behavior on CEC2017 is illustrated in Figures 5-9. By 
analyzing the convergence curves for the F1-F30 test functions, SDHCPO 
exhibits a pronounced overall advantage in both convergence speed and 
convergence accuracy. In most cases, its convergence curves remain at the 
lowest level among all algorithms, and, in particular, the fitness values of 
SDHCPO show the steepest decline during the early iterations. This indicates 
that SDHCPO possesses highly efficient global search capability and can 
rapidly approach the vicinity of the optimal solution. As the iterations proceed, 
SDHCPO continues to improve the solutions and effectively avoids being 
trapped in local optima, ultimately converging to fitness values that are 
clearly superior to those of the competing algorithms, for example on 
functions F1, F9, F12, F18, and F30. These results provide strong evidence of 
its superiority in obtaining high-precision solutions and the stability of its 
search process.

4.3 Results on the CEC2022 Benchmark Suite

To further evaluate the generalization capability of SDHCPO across 
different function classes, this subsection compares SDHCPO with the same 
set of competing algorithms on the 20-dimensional CEC2022 test suite. Table 
3 reports the mean and standard deviation of the best objective values 
obtained on the 12 test functions. It can be observed that SDHCPO achieves 
the smallest mean fitness on 10 out of the 12 functions and ranks second on 
the remaining two, while also attaining the best average Friedman rank. 
These results indicate that, on the new benchmark suite, SDHCPO maintains 
an overall performance advantage consistent with that observed on CEC2017.

Table 3. Performance Metrics of SDHCPO and Other Algorithms on CEC2022
Fun Index SDHCPO CPO CFOA PKO CDO MVO HOA WOA

Std 2.515E+03 3.810E+03 3.407E+04 1.250E+04 2.452E+03 1.205E+01 6.987E+03 9.034E+03F1
Mean 7.059E+03 1.297E+04 8.376E+04 3.490E+04 2.971E+04 3.180E+02 3.175E+04 3.589E+04

F2 Std 1.110E+01 1.211E+01 4.769E+02 1.109E+01 4.478E+01 1.582E+01 3.153E+02 6.443E+01

0 100 200 300 400 500
Iteration

104

106

108

1010

Fi
tn

es
s 

va
lu

e

F30

ACCEPTED MANUSCRIPTARTICLE IN PRESS

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



Mean 4.560E+02 4.620E+02 1.914E+03 4.561E+02 2.087E+03 4.488E+02 1.386E+03 6.187E+02
Std 6.167E-03 2.149E-01 1.358E+01 7.955E-01 5.362E+00 1.349E+01 8.986E+00 1.348E+01F3

Mean 6.000E+02 6.003E+02 6.734E+02 6.008E+02 6.663E+02 6.204E+02 6.539E+02 6.658E+02
Std 1.022E+01 1.488E+01 2.027E+01 1.552E+01 9.692E+00 2.634E+01 1.673E+01 3.802E+01F4

Mean 8.335E+02 9.032E+02 9.749E+02 8.400E+02 9.555E+02 8.753E+02 9.254E+02 9.467E+02
Std 9.416E-01 2.371E+01 1.637E+03 3.821E+01 2.482E+02 1.490E+03 5.482E+02 1.760E+03F5

Mean 9.005E+02 9.121E+02 4.260E+03 9.304E+02 3.502E+03 2.353E+03 2.688E+03 4.306E+03
Std 1.461E+03 1.825E+04 5.336E+08 9.770E+04 9.034E+08 6.507E+03 5.120E+08 4.192E+06F6

Mean 3.655E+03 2.208E+04 7.031E+08 6.943E+04 5.670E+09 1.150E+04 6.341E+08 4.103E+06
Std 7.363E+00 1.024E+01 7.736E+01 2.218E+01 3.442E+01 8.206E+01 6.253E+01 7.681E+01F7

Mean 2.039E+03 2.064E+03 2.231E+03 2.071E+03 2.353E+03 2.143E+03 2.203E+03 2.230E+03
Std 1.337E+00 2.163E+00 2.928E+02 4.422E+00 1.166E+01 9.548E+01 9.250E+01 1.001E+02F8

Mean 2.227E+03 2.232E+03 2.515E+03 2.231E+03 2.256E+03 2.316E+03 2.338E+03 2.310E+03
Std 1.315E-01 3.537E-01 2.091E+02 3.671E-01 1.046E+02 4.737E-01 1.803E+02 5.287E+01F9

Mean 2.481E+03 2.482E+03 2.932E+03 2.481E+03 3.469E+03 2.482E+03 3.021E+03 2.601E+03
Std 3.451E+01 8.076E+01 1.747E+03 1.013E+03 9.556E+02 7.934E+02 1.384E+03 1.312E+03F10

Mean 2.510E+03 2.540E+03 5.297E+03 3.759E+03 6.068E+03 3.880E+03 4.938E+03 4.758E+03
Std 1.018E-01 3.727E+01 1.733E+04 1.483E+01 3.424E+01 1.177E+01 1.083E+03 3.740E+02F11

Mean 2.900E+03 2.915E+03 4.567E+04 2.920E+03 8.544E+03 2.982E+03 7.203E+03 3.958E+03
Std 5.716E+00 1.147E+01 1.259E+02 6.412E+00 5.178E+01 3.332E+01 1.984E+02 1.276E+02F12

Mean 2.944E+03 2.987E+03 3.310E+03 2.949E+03 3.592E+03 2.974E+03 3.716E+03 3.115E+03
Std rank 1.333 2.750 7.417 3.417 4.250 4.500 6.000 6.333

Mean rank 1.167 2.833 7.250 2.917 6.833 3.250 5.917 5.667
Overall rank 1 2 8 3 7 4 6 5

At the level of individual functions, the improvements achieved by 
SDHCPO on multimodal, hybrid, and composition functions are particularly 
pronounced. For the multimodal functions F2-F5, SDHCPO ranks second on 
F2—slightly inferior to MVO yet still competitive—while achieving the smallest 
mean objective values among all algorithms on F3-F5. In contrast, the mean 
values of CFOA, CDO, HOA, and WOA are often several times, or even several 
orders of magnitude, higher. This indicates that SDHCPO possesses stronger 
global optimization capability and greater resistance to premature 
convergence when dealing with complex landscapes featuring multiple local 
minima. For the hybrid functions F6-F8, the performance gains are even more 
striking. In particular, on F6, SDHCPO reduces the mean objective value to 
the order of 103, whereas MVO remains above 104, and CPO together with the 
other algorithms perform several orders of magnitude worse. For the 
composition functions F9-F12, SDHCPO performs on par with PKO on F9, 
while on F10-F12 it is markedly superior to all competing algorithms, 
indicating that it can also effectively avoid entrapment in local optima in 
complex composite landscapes. SDHCPO likewise exhibits a clear advantage 
in convergence stability on the vast majority of functions. Except for F1 and 
F4, SDHCPO attains the smallest standard deviation among all algorithms on 
the remaining 10 functions, with particularly small fluctuation magnitudes on 
F3, F5, F6, and F9-F12. This demonstrates highly reproducible convergence 
behavior across repeated runs.
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Fig. 10 Friedman Rank Evolution of SDHCPO vs. Competitors on CEC2022 
Test Suite

Figure 10 presents the per-function ranking distribution of the eight 
algorithms on the 12 test functions of the 20-dimensional CEC2022 suite. It 
can be observed that SDHCPO ranks among the top methods on almost all 
functions, reflecting stable and consistently strong ranking performance 
across different function types. These results indicate that, on the CEC2022 
test set, SDHCPO achieves a clearly superior overall solving capability and 
robustness.

Table 4. Wilcoxon Rank-Sum p-Values: SDHCPO vs. Algorithms on CEC2022
Fu
n

CPO-p CFOA-p PKO-p CDO-p MVO-p HOA-p WOA-p

1 2.195E-
08

3.020E-
11

3.020E-
11

3.020E-
11

3.020E-
11

3.020E-
11

3.020E-
11

2 1.058E-
03

3.020E-
11

3.478E-
01

3.020E-
11

9.031E-
04

3.020E-
11

3.020E-
11

3 3.020E-
11

3.020E-
11

3.020E-
11

3.020E-
11

3.020E-
11

3.020E-
11

3.020E-
11

4 3.690E-
11

3.020E-
11

1.120E-
01

3.020E-
11

6.518E-
09

3.020E-
11

3.020E-
11

5 1.174E-
09

3.020E-
11

3.497E-
09

3.020E-
11

3.338E-
11

3.020E-
11

3.020E-
11

6 6.722E-
10

3.020E-
11

8.891E-
10

3.020E-
11

1.174E-
09

3.020E-
11

3.020E-
11

7 2.610E-
10

3.020E-
11

1.698E-
08

3.020E-
11

1.464E-
10

3.020E-
11

3.020E-
11

8 5.072E-
10

3.020E-
11

3.592E-
05

3.020E-
11

1.070E-
09

3.020E-
11

3.020E-
11

9 6.066E-
11

3.020E-
11

3.147E-
02

3.020E-
11

2.872E-
10

3.020E-
11

3.020E-
11

Table 4.Cont.
Fun CPO-p CFOA-p PKO-p CDO-p MVO-p HOA-p WOA-p
10 6.669E-

03
7.389E-

11
2.879E-

06
3.020E-

11
2.015E-

08
6.696E-

11
1.777E-

10
11 3.020E-

11
3.020E-

11
3.020E-

11
3.020E-

11
3.020E-

11
3.020E-

11
3.020E-

11
12 1.094E- 3.020E- 5.264E- 3.020E- 4.459E- 3.020E- 3.020E-
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10 11 04 11 04 11 11
-

/=/+
0/0/12 0/0/12 0/2/10 0/0/12 1/0/11 0/0/12 0/0/12

These findings are further corroborated by the Wilcoxon rank-sum test. As 
shown in Table 4, the p-values of SDHCPO against most competing algorithms 
are substantially below 0.05, and the corresponding “−/=/+” statistics are 
dominated by “+”, indicating that, on the CEC2022 test set, SDHCPO is 
overall statistically superior to the vast majority of comparison methods. 
Overall, the CEC2022 experimental results are highly consistent with the 
conclusions drawn from CEC2017: SDHCPO maintains a leading Friedman 
ranking and statistically significant advantages across different dimensions 
and benchmark suites, with its strengths particularly pronounced on 
structurally complex multimodal, hybrid, and composition functions. This 
indicates that the four enhancement strategies proposed in this paper do not 
merely overfit a specific benchmark set, but can effectively improve the 
accuracy, stability, and cross-problem robustness of the algorithm over a 
broader family of problems, thereby providing further support for the 
subsequent ablation studies and high-dimensional extension analysis.

4.4 Melting Experiment Results

The comparisons with multiple metaheuristic algorithms show that 
SDHCPO already achieves substantially better overall performance than the 
original CPO and other representative methods on both benchmark suites. 
However, numerical results alone are insufficient to disentangle the individual 
contributions of the four enhancement strategies or to determine whether the 
observed performance gains primarily stem from a particular mechanism or 
from their synergistic interaction. To this end, two groups of ablation 
experiments are designed on the 30-dimensional CEC2017 test set, centered 
on the four key strategies. In the first group, the original CPO is used as the 
baseline, and only one strategy is activated at a time, yielding the variants 
SCPO, DCPO, HCPO, and CCPO, which are used to characterize the 
independent effect of each individual strategy. In the second group, the fully 
integrated SDHCPO serves as the baseline, and one strategy is deactivated at 
a time to construct the variants w/o C, w/o H, w/o D, and w/o S, thereby 
examining the necessity of each strategy from the opposite perspective. The 
configurations of all variants are encoded using a binary switch scheme, 
where 1 indicates that the corresponding strategy is enabled and 0 indicates 
that it is disabled, providing an intuitive representation of the differences 
among variants along the four strategy dimensions, as summarized in Table 5.

Table 5. Variants of CPO constructed from four strategies.

Algorithm
S: Sobol-
OBL 

Initialization

D: 
Differential 
Evolution

H: 
Horizontal-

Vertical 
Crossover

C: Cosine 
Annealing 
Dynamic 

Adjustment
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CPO 0 0 0 0
SCPO 1 0 0 0
DCPO 0 1 0 0
HCPO 0 0 1 0
CCPO 0 0 0 1

SDHCPO(all strategies 
enabled) 1 1 1 1

The ablation results for individual strategies are reported in Table 6. 
Overall, SCPO, DCPO, HCPO, and CCPO achieve varying degrees of 
improvement over CPO in terms of mean and/or standard deviation on most 
test functions, indicating that each of the four strategies can yield substantial 
benefits when applied in isolation. On unimodal functions, the effect of the 
differential evolution mutation is particularly pronounced, significantly 
enhancing the search efficiency and solution stability for single-peak problems. 
For functions such as F4 and F6, DCPO achieves lower mean and standard 
deviation than CPO, indicating that DE mutation can effectively strengthen 
global search and suppress premature convergence. HCPO substantially 
reduces the final mean on multimodal or complex functions such as F5, F8, 
F10, and F16, yielding higher-precision solutions than CPO. CCPO exhibits 
more stable performance on medium- and high-index functions and provides 
the smallest or near-smallest mean among the single-strategy variants on 
many hybrid and composition functions, with clear improvements over CPO on 
F21-F29.

Table 6. Performance Metrics of CPO and Single-Strategy Variants on 
CEC2017
Fun Inde

x
CPO SCPO DCPO HCPO CCPO SDHCPO

Std 5.932E+0
5

4.280E+0
5

1.108E+0
4

4.840E+0
6

4.536E+0
5

8.826E+
03

F1

Mean 7.377E+0
5

6.020E+0
5

8.484E+
03

5.829E+0
6

6.930E+0
5

1.202E+0
4

Std 1.390E+0
4

1.304E+0
4

1.004E+0
4

1.612E+0
4

7.969E+
03

9.399E+0
3

F3

Mean 6.263E+0
4

6.191E+0
4

6.388E+0
4

5.062E+0
4

5.862E+0
4

4.103E+
04

Std 2.335E+0
1

2.150E+0
1

1.883E+0
1

1.653E+0
1

1.693E+0
1

1.489E+
01

F4

Mean 5.186E+0
2

5.158E+0
2

5.064E+0
2

5.297E+0
2

5.246E+0
2

5.058E+
02

Std 1.598E+0
1

1.529E+0
1

1.390E+
01

2.900E+0
1

2.512E+0
1

2.196E+0
1

F5

Mean 6.944E+0
2

6.672E+0
2

6.841E+0
2

6.286E+0
2

6.454E+0
2

5.922E+
02

Std 7.423E-
01

6.706E-
01

6.953E-
02

2.251E+0
0

5.900E-
01

4.659E-
02

F6

Mean 6.019E+0
2

6.018E+0
2

6.001E+
02

6.048E+0
2

6.018E+0
2

6.001E+
02

Std 1.674E+0
1

1.663E+0
1

1.507E+
01

4.640E+0
1

2.685E+0
1

2.053E+0
1

F7

Mean 9.398E+0 9.234E+0 9.297E+0 9.249E+0 8.902E+0 8.585E+

ACCEPTED MANUSCRIPTARTICLE IN PRESS

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



2 2 2 2 2 02
Std 1.412E+

01
1.478E+0

1
1.739E+0

1
2.950E+0

1
2.060E+0

1
2.003E+0

1
F8

Mean 9.837E+0
2

9.821E+0
2

9.770E+0
2

9.187E+0
2

9.231E+0
2

8.883E+
02

Std 4.924E+0
2

2.308E+0
2

7.038E+0
1

7.523E+0
2

1.335E+0
2

4.930E+
01

F9

Mean 1.315E+0
3

1.197E+0
3

9.431E+0
2

2.189E+0
3

1.099E+0
3

9.336E+
02

Std 4.159E+0
2

3.552E+0
2

3.409E+
02

4.057E+0
2

5.891E+0
2

7.132E+0
2

F10

Mean 7.539E+0
3

7.462E+0
3

7.789E+0
3

6.406E+0
3

6.040E+0
3

5.648E+
03

Std 2.969E+0
1

2.729E+0
1

1.953E+
01

6.698E+0
1

2.678E+0
1

2.361E+0
1

F11

Mean 1.274E+0
3

1.270E+0
3

1.256E+0
3

1.261E+0
3

1.263E+0
3

1.226E+
03

Std 9.060E+0
5

7.954E+0
5

7.489E+0
5

1.391E+0
6

6.439E+0
5

3.686E+
05

F12

Mean 1.306E+0
6

9.918E+0
5

8.830E+0
5

2.136E+0
6

1.262E+0
6

7.126E+
05

Std 1.024E+0
4

8.785E+0
3

8.673E+0
3

7.815E+0
3

8.433E+0
3

7.481E+
03

F13

Mean 2.466E+0
4

1.781E+0
4

1.487E+0
4

8.952E+
03

1.930E+0
4

1.394E+0
4

Std 3.212E+
02

2.924E+0
3

1.497E+0
3

1.283E+0
4

1.659E+0
3

2.432E+0
3

F14

Mean 1.944E+
03

2.685E+0
3

2.730E+0
3

8.658E+0
3

2.575E+0
3

3.180E+0
3

Std 2.950E+0
3

2.723E+0
3

2.040E+0
3

5.550E+0
3

1.705E+
03

2.725E+0
3

F15

Mean 5.125E+0
3

4.924E+0
3

4.387E+0
3

5.309E+0
3

4.411E+0
3

4.219E+
03

Std 2.446E+0
2

1.741E+
02

1.759E+0
2

2.495E+0
2

2.528E+0
2

2.527E+0
2

F16

Mean 3.079E+0
3

3.020E+0
3

3.090E+0
3

2.643E+0
3

2.642E+0
3

2.510E+
03

Std 1.047E+
02

1.466E+0
2

1.294E+0
2

1.366E+0
2

1.229E+0
2

1.279E+0
2

F17

Mean 2.050E+0
3

2.042E+0
3

2.044E+0
3

1.952E+0
3

1.966E+0
3

1.879E+
03

Std 6.307E+
04

1.164E+0
5

2.453E+0
5

2.956E+0
5

6.733E+0
4

8.039E+0
4

F18

Mean 1.167E+0
5

1.057E+0
5

1.316E+0
5

2.458E+0
5

1.110E+0
5

9.408E+
04

Table 6. Cont.
Fun Inde

x
CPO SCPO DCPO HCPO CCPO SDHCPO

Std 4.334E+0
3

3.619E+
03

6.374E+0
3

4.587E+0
3

4.259E+
03

5.836E+0
3

F19

Mean 6.267E+0
3

5.969E+0
3

7.292E+0
3

6.730E+0
3

6.679E+
03

5.566E+
03

F20 Std 1.616E+0
2

9.667E+
01

1.462E+0
2

1.307E+0
2

1.265E+
02

1.255E+0
2
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Mean 2.441E+0
3

2.415E+0
3

2.475E+0
3

2.312E+0
3

2.320E+
03

2.246E+
03

Std 1.421E+
01

1.770E+0
1

1.495E+0
1

2.751E+0
1

2.029E+
01

2.093E+0
1

F21

Mean 2.481E+0
3

2.441E+0
3

2.471E+0
3

2.427E+0
3

2.424E+
03

2.390E+
03

Std 3.286E+0
0

3.001E+0
0

2.155E+
00

9.620E+0
2

4.703E+
00

3.541E+0
0

F22

Mean 2.309E+0
3

2.305E+0
3

2.303E+0
3

2.494E+0
3

2.303E+
03

2.302E+
03

Std 1.540E+
01

1.834E+0
1

2.310E+0
1

3.812E+0
1

2.003E+
01

2.201E+0
1

F23

Mean 2.849E+0
3

2.845E+0
3

2.836E+0
3

2.782E+0
3

2.809E+
03

2.742E+
03

Std 2.294E+0
1

1.893E+0
1

1.487E+
01

3.081E+0
1

2.609E+
01

2.625E+0
1

F24

Mean 3.020E+0
3

2.992E+0
3

3.009E+0
3

2.935E+0
3

2.965E+
03

2.898E+
03

Std 1.827E+0
1

1.681E+0
1

1.370E+0
1

2.518E+0
1

1.294E+
01

1.050E+
01

F25

Mean 2.910E+0
3

2.915E+0
3

2.901E+0
3

2.928E+0
3

2.907E+
03

2.895E+
03

Std 8.708E+0
2

8.430E+0
2

8.268E+0
2

1.117E+0
3

8.183E+
02

2.912E+
02

F26

Mean 5.364E+0
3

5.196E+0
3

5.256E+0
3

4.407E+
03

4.807E+
03

4.721E+0
3

Std 1.347E+0
1

1.275E+0
1

1.235E+0
1

1.462E+0
1

1.291E+
01

8.985E+
00

F27

Mean 3.277E+0
3

3.261E+0
3

3.244E+0
3

3.255E+0
3

3.265E+
03

3.227E+
03

Std 2.221E+0
1

2.191E+0
1

2.305E+0
1

3.179E+0
1

2.256E+
01

2.115E+
01

F28

Mean 3.285E+0
3

3.262E+0
3

3.256E+0
3

3.309E+0
3

3.283E+
03

3.253E+
03

Std 1.578E+0
2

1.462E+0
2

1.314E+0
2

1.873E+0
2

1.718E+
02

1.192E+
02

F29

Mean 3.997E+0
3

3.991E+0
3

3.987E+0
3

3.776E+0
3

3.801E+
03

3.662E+
03

Std 7.121E+0
4

6.867E+0
4

5.487E+0
4

6.338E+0
4

7.631E+
04

1.369E+
04

F30

Mean 1.160E+0
5

1.001E+0
5

6.268E+0
4

6.711E+0
4

1.289E+
05

2.454E+
04

The Friedman statistics in Table 7 show that, in terms of the mean 
objective value, SDHCPO attains an average rank of 1.241, which is 
substantially lower than that of all single-strategy variants, followed in order 
by CCPO, DCPO, HCPO, and SCPO. For the standard deviation, SDHCPO 
likewise achieves the lowest average rank, only slightly higher than a few 
single-strategy configurations that behave more conservatively on individual 
functions. These results indicate that the four strategies do not simply stack 
within a single framework, but rather exhibit complementary effects at 
different stages and on different function types, enabling SDHCPO to further 
reduce the objective values while maintaining stability. The Wilcoxon test 
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results against SDHCPO further show that, although some single-strategy 
variants can approach SDHCPO on a small number of functions, SDHCPO still 
significantly outperforms them on roughly twenty functions, indicating that no 
single strategy can reproduce the overall advantage of the fully integrated 
framework.

Table 7. Friedman/Wilcoxon statistics of CPO and single-strategy variants on 
CEC2017

Algorithm Avg Rank 
(Std)

Avg Rank 
(Mean)

Overall Rank -/=/+ (Mean)

CPO 3.724 5.103 5 0/3/26
SCPO 3.138 3.793 4 0/4/25
DCPO 2.724 3.655 2 1/8/20
HCPO 5.276 3.828 6 2/4/23
CCPO 3.448 3.276 3 0/4/25

SDHCPO 2.690 1.241 1 -/-/-

After analyzing the configurations with single strategies enabled, a 
complementary set of experiments is designed to further assess the necessity 
of each enhancement module from the opposite perspective. Using SDHCPO 
as the baseline, four variants are constructed by selectively disabling one 
strategy at a time. Specifically, by turning off the Sobol-based initialization, 
Differential Evolution mutation, Horizontal-Vertical Crossover, and cosine-
annealing-based dynamic adjustment, the variants w/o S, w/o D, w/o H, and 
w/o C are obtained, respectively. The corresponding 0-1 configurations are 
summarized in Table 8.

Table 8. Strategy configurations of SDHCPO and disabled-strategy variants.

Algorithm
S: Sobol-
OBL 

Initialization

D: 
Differential 
Evolution

H: 
Horizontal-

Vertical 
Crossover

C: Cosine 
Annealing 
Dynamic 

Adjustment
SDHCPO(all strategies 

enabled) 1 1 1 1
w/o C 1 1 1 0
w/o H 1 1 0 1
w/o D 1 0 1 1
w/o S 0 1 1 1
CPO 0 0 0 0

The ablation results for the configurations with individual strategies 
disabled are reported in Table 9. Overall, removing any single strategy from 
SDHCPO leads to varying degrees of performance degradation on a 
considerable number of benchmark functions, with the effect being 
particularly pronounced on high-dimensional multimodal, hybrid, and 
composition functions. Compared with the fully integrated SDHCPO, all four 
variants exhibit generally higher mean fitness values and slightly larger 
standard deviations, indicating that none of the modules is a redundant add-
on; instead, they jointly underpin the algorithm’s global search capability and 
convergence stability in complex search spaces.
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Table 9. Performance Metrics of SDHCPO and Single-Strategy-Disabled 
Variants on CEC2017

Fun Inde
x SDHCPO w/o C w/o H w/o D w/o S CPO

Std 8.826E+0
3

6.443E+0
4

6.808E+
03

3.424E+
06

1.081E+
04

5.932E+0
5F1

Mean 1.202E+0
4

7.225E+0
4

7.593E+
03

5.360E+
06

1.287E+
04

7.377E+0
5

Std 9.399E+
03

1.075E+0
4

1.124E+0
4

1.057E+
04

1.021E+
04

1.390E+0
4F3

Mean 4.103E+
04

4.643E+0
4

5.938E+0
4

4.554E+
04

4.177E+
04

6.263E+0
4

Std 1.489E+0
1

1.310E+
01

1.695E+0
1

1.942E+
01

2.015E+
01

2.335E+0
1F4

Mean 5.058E+
02

5.129E+0
2

5.078E+0
2

5.331E+
02

5.113E+
02

5.186E+0
2

Std 2.196E+0
1

2.757E+0
1

2.637E+0
1

2.152E+
01

2.336E+
01

1.598E+
01F5

Mean 5.922E+
02

6.205E+0
2

6.114E+0
2

6.097E+
02

5.995E+
02

6.944E+0
2

Std 4.659E-02 7.320E-02 4.175E-
02

1.205E+
00

5.381E-
02 7.423E-01

F6
Mean 6.001E+

02
6.002E+0

2
6.002E+0

2
6.034E+

02
6.004E+

02
6.019E+0

2
Std 2.053E+0

1
3.255E+0

1
2.319E+0

1
3.213E+

01
2.306E+

01
1.674E+

01F7
Mean 8.585E+

02
8.927E+0

2
8.719E+0

2
8.859E+

02
8.604E+

02
9.398E+0

2
Std 2.003E+0

1
2.999E+0

1
1.808E+0

1
1.858E+

01
2.062E+

01
1.412E+

01F8
Mean 8.883E+

02
9.043E+0

2
9.061E+0

2
8.992E+

02
8.908E+

02
9.837E+0

2
Std 4.930E+0

1
3.101E+0

2
4.734E+

01
4.401E+

02
5.753E+

01
4.924E+0

2F9
Mean 9.336E+

02
1.170E+0

3
9.360E+0

2
1.538E+

03
9.379E+

02
1.315E+0

3
Std 7.132E+0

2
7.440E+0

2
7.691E+0

2
4.974E+

02
6.607E+

02
4.159E+

02F10
Mean 5.648E+

03
6.174E+0

3
5.956E+0

3
5.797E+

03
5.688E+

03
7.539E+0

3
Std 2.361E+

01
2.448E+0

1
2.617E+0

1
6.054E+

01
3.058E+

01
2.969E+0

1F11
Mean 1.226E+0

3
1.211E+

03
1.232E+0

3
1.259E+

03
1.231E+

03
1.274E+0

3
Std 3.686E+

05
8.891E+0

5
4.309E+0

5
9.400E+

05
4.373E+

05
9.060E+0

5F12
Mean 7.126E+0

5
1.046E+0

6
6.764E+

05
1.899E+

06
7.501E+

05
1.306E+0

6
Table 9. Cont.

Fun Inde
x SDHCPO w/o C w/o H w/o D w/o S CPO

Std 7.481E+0
3

1.002E+0
4

1.264E+0
4

7.075E+
03

8.215E+0
3

1.024E+0
4F13

Mean 1.394E+0
4

1.010E+
04

1.761E+0
4

1.044E+0
4

1.891E+0
4

2.466E+0
4
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Std 2.432E+0
3

1.319E+0
4

9.620E+0
2

1.941E+0
4

2.714E+0
3

3.212E+
02F14

Mean 3.180E+0
3

8.973E+0
3

2.132E+0
3

1.084E+0
4

2.557E+0
3

1.944E+
03

Std 2.725E+0
3

2.827E+0
3

2.942E+0
3

2.542E+0
3

2.300E+
03

2.950E+0
3F15

Mean 4.219E+
03

6.106E+0
3

4.868E+0
3

4.290E+0
3

4.499E+0
3

5.125E+0
3

Std 2.527E+0
2

3.367E+0
2

2.655E+0
2

2.247E+
02

2.508E+0
2

2.446E+0
2F16

Mean 2.510E+
03

2.628E+0
3

2.735E+0
3

2.518E+0
3

2.515E+0
3

3.079E+0
3

Std 1.279E+0
2

1.314E+0
2

1.116E+0
2

9.676E+
01

1.155E+0
2

1.047E+0
2F17

Mean 1.879E+
03

1.965E+0
3

1.930E+0
3

1.933E+0
3

1.907E+0
3

2.050E+0
3

Std 8.039E+0
4

1.311E+0
5

1.571E+0
5

1.848E+0
5

9.263E+0
4

6.307E+
04F18

Mean 9.408E+
04

1.853E+0
5

1.873E+0
5

1.679E+0
5

1.293E+0
5

1.167E+0
5

Std 5.836E+0
3

7.452E+0
3

3.149E+
03

6.898E+0
3

4.003E+0
3

4.334E+0
3F19

Mean 5.566E+
03

7.958E+0
3

5.617E+0
3

8.341E+0
3

5.572E+0
3

6.267E+0
3

Std 1.255E+0
2

1.230E+0
2

1.228E+0
2

9.908E+
01

1.128E+0
2

1.616E+0
2F20

Mean 2.246E+
03

2.274E+0
3

2.304E+0
3

2.285E+0
3

2.284E+0
3

2.441E+0
3

Std 2.093E+0
1

3.754E+0
1

2.166E+0
1

2.298E+0
1

2.278E+0
1

1.421E+
01F21

Mean 2.390E+
03

2.393E+0
3

2.418E+0
3

2.404E+0
3

2.391E+0
3

2.481E+0
3

Std 3.541E+0
0

1.423E+0
3

7.698E+0
2

4.716E+0
0

8.314E+0
2

3.286E+
00F22

Mean 2.302E+
03

2.676E+0
3

2.442E+0
3

2.321E+0
3

2.453E+0
3

2.309E+0
3

Std 2.201E+0
1

2.790E+0
1

2.272E+0
1

2.708E+0
1

2.525E+0
1

1.540E+
01F23

Mean 2.742E+0
3

2.736E+
03

2.779E+0
3

2.764E+0
3

2.760E+0
3

2.849E+0
3

Std 2.625E+0
1

2.796E+0
1

2.969E+0
1

2.191E+
01

2.836E+0
1

2.294E+0
1F24

Mean 2.898E+
03

2.908E+0
3

2.944E+0
3

2.933E+0
3

2.910E+0
3

3.020E+0
3

Std 1.050E+
01

1.769E+0
1

1.153E+0
1

2.124E+0
1

1.197E+0
1

1.827E+0
1F25

Mean 2.895E+
03

2.913E+0
3

2.897E+0
3

2.925E+0
3

2.897E+0
3

2.910E+0
3

Std 2.912E+0
2

7.101E+0
2

2.366E+
02

7.406E+0
2

5.233E+0
2

8.708E+0
2F26

Mean 4.721E+0
3

4.021E+
03

4.811E+0
3

4.510E+0
3

4.454E+0
3

5.364E+0
3

Std 8.985E+0
0

1.167E+0
1

8.361E+0
0

1.717E+0
1

6.648E+
00

1.347E+0
1F27

Mean 3.227E+
03

3.229E+0
3

3.231E+0
3

3.255E+0
3

3.227E+0
3

3.277E+0
3
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Std 2.115E+0
1

2.213E+0
1

2.081E+
01

2.228E+0
1

2.180E+0
1

2.221E+0
1F28

Mean 3.253E+
03

3.264E+0
3

3.258E+0
3

3.295E+0
3

3.255E+0
3

3.285E+0
3

Std 1.192E+
02

1.428E+0
2

1.428E+0
2

1.643E+0
2

1.476E+0
2

1.578E+0
2F29

Mean 3.662E+
03

3.679E+0
3

3.773E+0
3

3.693E+0
3

3.669E+0
3

3.997E+0
3

Std 1.369E+
04

1.461E+0
4

4.242E+0
4

3.690E+0
4

1.844E+0
4

7.121E+0
4F30

Mean 2.454E+0
4

2.266E+
04

7.642E+0
4

4.690E+0
4

2.825E+0
4

1.160E+0
5

These conclusions are systematically corroborated by the Friedman 
rankings and the Wilcoxon “−/=/+” statistics. As shown in Table 10, SDHCPO 
attains by far the lowest average Friedman rank in terms of the mean 
objective value, followed in order by w/o S, w/o C, w/o H, w/o D, and CPO, 
indicating that disabling any single strategy leads to a certain degree of 
overall performance degradation, with the deterioration caused by removing 
Differential Evolution or Horizontal-Vertical Crossover being particularly 
pronounced;For the standard deviation, SDHCPO likewise achieves the lowest 
average rank, whereas all other variants and the original CPO exhibit 
substantially higher ranks, indicating that the complete SDHCPO 
configuration offers superior convergence accuracy and stability. The 
Wilcoxon tests with SDHCPO as the baseline lead to the same conclusion: 
relative to w/o C, w/o H, w/o D, and w/o S, SDHCPO is marked with “+” on 
most functions, while “−” outcomes are very rare and mainly concentrated on 
relatively simple functions. From a statistical perspective, this further 
confirms that removing any single module degrades the overall performance 
of SDHCPO.

Table 10. Friedman/Wilcoxon statistics of SDHCPO and disabled-strategy 
variants on CEC2017

Algorithm Avg Rank 
(Std)

Avg Rank 
(Mean)

Overall Rank -/=/+ (Mean)

SDHCPO 2.448 1.448 1 -/-/-
w/o C 4.379 3.586 4 3/8/18
w/o H 3.172 3.724 3 1/12/16
w/o D 4.069 4.310 5 0/10/19
w/o S 3.310 2.655 2 0/17/12
CPO  3.586 5.172 6 0/3/24

Taken together with the single-strategy ablation results, these findings 
indicate that all four strategies are individually effective while also exhibiting 
strong synergy within the fully integrated framework. There is neither a single 
strategy that alone accounts for all performance gains nor any redundant 
module that fails to contribute to the overall behavior. Instead, both 
structurally and statistically, the four components jointly underpin the 
superior performance of SDHCPO.
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4.5 Qualitative Analysis of Search Dynamics

To further elucidate the internal mechanisms of SDHCPO, this section 
selects representative unimodal and multimodal functions from CEC2017 and 
conducts a series of visualization analyses of its iterative behavior, including 
population diversity evolution, convergence curves, mean best fitness, 1-
Dimensional Search Path, and search-history distributions, in order to 
investigate the exploration-exploitation balance achieved through the synergy 
of the four integrated strategies [25]. The resulting search dynamics 
visualizations are provided in Figure 11.
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Fig. 11 Search Dynamics of SDHCPO

First, considering the population diversity curves in the second column, it 
can be observed that, for unimodal functions, diversity remains at a relatively 
high level in the initial stage and then decreases steadily with the number of 
iterations, eventually stabilizing. This indicates that the algorithm performs 
sufficiently extensive global exploration at the outset and can rapidly achieve 
a transition from broad exploration to fine-grained exploitation. For 
multimodal functions, by contrast, the decline in diversity is noticeably slower, 
and the curves maintain a relatively wide fluctuation range in the early and 
middle stages, suggesting that the algorithm conducts thorough global 
exploration and effectively avoids premature convergence to local optima.

The column of convergence curves provides a more direct illustration of 
the dynamic switching mechanism between exploration and exploitation in 
SDHCPO. For unimodal functions, the curves generally exhibit a fast-then-
slow descending pattern: SDHCPO rapidly locks onto a region near the global 
optimum, after which the curves descend more gradually with almost no large 
oscillations, indicating stable and fine-grained convergence. For multimodal 
functions, the convergence curves display a more typical piecewise monotonic 
behavior: over several iteration intervals, the best fitness remains nearly 
unchanged, followed by a pronounced drop and the formation of a new 
plateau. This pattern clearly demonstrates the ability of SDHCPO to escape 
local optima.

The mean fitness history curves further show that SDHCPO exhibits small 
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jumps in the middle iterations. This indicates that the algorithm does not 
simply pursue monotonically accelerated convergence; instead, once local 
exploitation within a region has progressed to a certain extent, SDHCPO 
deliberately expands the search radius and re-enhances population diversity. 
In doing so, it temporarily sacrifices mean fitness to gain more thorough 
global exploration capability, thereby achieving a more effective overall 
balance between exploration and exploitation.

The 1-Dimensional Search Path in the fifth column show that, for unimodal 
functions, the trajectories undergo large positional changes over a wide 
domain in the early iterations, after which the search interval gradually 
shrinks and eventually stabilizes in the vicinity of the global optimum. For 
multimodal functions, the trajectories maintain large-range transitions over a 
considerable number of iterations, frequently crossing the boundaries of 
different attraction basins, which reflects a pronounced cross-basin global 
exploration capability. As the algorithm enters the late iterations, the activity 
range of the trajectories contracts markedly and becomes essentially confined 
to the neighborhood of a single attraction basin, indicating that the search 
focus has gradually shifted from exploration to exploitation in this stage.

The search-history scatter plots in the sixth column further illustrate the 
behavior of SDHCPO from a spatial distribution perspective. For unimodal 
functions, the individual trajectories are widely and diffusely distributed 
within the objective region in the early iterations, covering most of the 
feasible domain. As the iterations progress, the scatter points gradually 
contract toward the region containing the global optimum and form a high-
density cluster in its neighborhood, thereby achieving a smooth transition 
from global exploration to local exploitation. For multimodal functions, the 
scatter points are widely distributed across multiple competing regions in the 
early iterations, indicating that the population is concurrently evaluating 
different peak-valley structures. As the algorithm enters the middle and late 
stages, the scatter cloud gradually recedes from suboptimal regions and 
concentrates in a few dominant areas, eventually forming a more compact 
cluster near the global optimum. This process provides a direct visualization 
of SDHCPO’s ability to coordinate global exploration and local exploitation in 
complex energy landscapes.

4.6 High-Dimensional Testing Results

Building on the preceding 30-dimensional experiments, this section 
increases the problem dimensionality to 50 and performs extended tests on 
the same set of comparison algorithms. Overall, as the dimensionality 
increases, the optimization difficulty rises for all methods; however, the 
advantage of SDHCPO is not only preserved but becomes even more 
pronounced in high-dimensional settings. The performance metrics of all 
algorithms on CEC2017 for the 50-dimensional case are summarized in Table 
11.
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Table 11. Performance Metrics of SDHCPO and Other Algorithms on CEC2017 
(d=50)

Fun Index SDHCPO CPO CFOA PKO CDO MVO HOA WOA
Std 8.423E+06 9.516E+07 1.210E+10 1.626E+08 1.123E+09 4.466E+06 8.301E+09 4.708E+09F1 Mean 1.452E+07 1.883E+08 1.029E+11 2.095E+08 8.056E+10 1.786E+07 8.790E+10 2.198E+10
Std 2.381E+04 2.172E+04 1.146E+05 1.019E+05 1.647E+04 3.369E+04 1.034E+04 1.050E+05F3 Mean 1.379E+05 1.801E+05 4.532E+05 4.136E+05 1.967E+05 1.477E+05 1.597E+05 3.070E+05
Std 4.842E+01 4.893E+01 5.989E+03 7.442E+01 3.629E+02 3.788E+01 4.847E+03 1.395E+03F4 Mean 6.489E+02 7.148E+02 3.093E+04 6.980E+02 2.278E+04 6.006E+02 2.341E+04 5.026E+03
Std 2.694E+01 2.491E+01 4.186E+01 5.231E+01 2.694E+01 7.471E+01 3.898E+01 6.272E+01F5 Mean 7.470E+02 9.260E+02 1.218E+03 7.772E+02 1.117E+03 7.959E+02 1.074E+03 1.093E+03
Std 6.105E-01 2.221E+00 6.886E+00 8.526E+00 4.823E+00 1.207E+01 5.984E+00 1.051E+01F6 Mean 6.017E+02 6.105E+02 6.997E+02 6.130E+02 6.947E+02 6.541E+02 6.823E+02 6.965E+02
Std 3.529E+01 5.244E+01 1.712E+02 6.258E+01 3.059E+01 8.165E+01 8.336E+01 1.155E+02F7 Mean 1.093E+03 1.251E+03 2.410E+03 1.144E+03 1.829E+03 1.197E+03 1.823E+03 1.918E+03
Std 3.704E+01 2.671E+01 6.292E+01 4.516E+01 2.807E+01 7.025E+01 3.672E+01 7.480E+01F8 Mean 1.063E+03 1.217E+03 1.504E+03 1.062E+03 1.507E+03 1.086E+03 1.414E+03 1.394E+03
Std 1.226E+03 2.584E+03 8.774E+03 2.603E+03 3.258E+03 1.118E+04 4.739E+03 7.751E+03F9 Mean 2.819E+03 8.375E+03 4.396E+04 5.094E+03 3.412E+04 2.343E+04 2.669E+04 3.838E+04

Table 11. Cont.

Fun Ind
ex

SDHCP
O CPO CFOA PKO CDO MVO HOA WOA

Std 8.849E+
02

4.544E
+02

9.001E
+02

9.453E+
02

5.159E+
02

1.121E+
03

8.736E+
02

8.636E
+02F10 Mea

n
1.059E+

04
1.352E+

04
1.542E

+04
9.607E+

03
1.566E+

04
8.072E

+03
1.334E+

04
1.334E

+04
Std 1.139E

+02
2.146E+

02
1.543E

+04
2.642E+

03
8.049E+

02
1.235E+

02
2.762E+

03
1.919E

+03F11 Mea
n

1.597E
+03

1.832E+
03

4.278E
+04

4.844E+
03

1.978E+
04

1.696E+
03

1.905E+
04

8.431E
+03

Std 4.890E
+06

1.001E+
07

1.176E
+10

2.900E+
07

4.510E+
08

5.301E+
07

1.236E+
10

1.391E
+09F12 Mea

n
8.926E

+06
2.054E+

07
5.457E

+10
4.265E+

07
5.635E+

10
9.778E+

07
5.254E+

10
4.568E

+09
Std 1.998E

+03
3.790E+

04
8.506E

+09
5.186E+

05
1.245E+

09
1.424E+

05
9.338E+

09
3.097E

+08F13 Mea
n

4.484E
+03

2.390E+
04

2.602E
+10

4.070E+
05

4.737E+
10

3.559E+
05

2.799E+
10

5.282E
+08

Std 9.004E
+04

2.209E+
05

3.120E
+07

7.754E+
05

5.741E+
06

2.561E+
05

3.333E+
07

4.813E
+06F14 Mea

n
1.157E

+05
1.563E+

05
3.883E

+07
1.135E+

06
7.361E+

07
3.653E+

05
5.112E+

07
6.809E

+06
Std 3.599E

+03
1.262E+

04
2.249E

+09
8.172E+

04
2.847E+

08
8.831E+

04
2.257E+

09
8.688E

+07F15 Mea
n

6.693E
+03

1.668E+
04

4.196E
+09

8.441E+
04

1.574E+
10

1.393E+
05

4.171E+
09

9.271E
+07

Std 3.322E
+02

4.369E+
02

1.123E
+03

4.785E+
02

4.735E+
02

3.787E+
02

1.133E+
03

1.129E
+03F16 Mea

n
3.257E

+03
4.525E+

03
7.660E

+03
3.716E+

03
9.680E+

03
3.507E+

03
6.970E+

03
6.611E

+03
Std 2.420E+

02
2.198E

+02
1.130E

+04
3.103E+

02
2.655E+

02
3.938E+

02
9.255E+

02
6.577E

+02F17 Mea
n

2.958E
+03

3.491E+
03

1.301E
+04

3.201E+
03

8.642E+
03

3.327E+
03

4.891E+
03

4.709E
+03
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Std 1.323E
+06

1.459E+
06

8.887E
+07

2.706E+
06

2.990E+
06

2.061E+
06

4.725E+
07

2.942E
+07F18 Mea

n
1.440E

+06
2.310E+

06
1.438E

+08
4.710E+

06
2.071E+

08
2.860E+

06
8.806E+

07
5.222E

+07
Std 6.109E

+03
7.865E+

03
1.031E

+09
5.689E+

04
2.856E+

07
4.511E+

06
7.379E+

08
1.792E

+07F19 Mea
n

1.670E
+04

1.950E+
04

2.071E
+09

4.778E+
04

1.916E+
09

6.663E+
06

1.409E+
09

2.070E
+07

Std 2.487E+
02

1.886E
+02

3.782E
+02

3.914E+
02

2.784E+
02

3.154E+
02

2.355E+
02

3.515E
+02F20 Mea

n
2.994E

+03
3.678E+

03
4.467E

+03
3.195E+

03
4.209E+

03
3.260E+

03
3.713E+

03
3.947E

+03
Std 3.296E+

01
2.188E+

01
8.515E

+01
5.547E+

01
2.085E

+01
6.122E+

01
6.630E+

01
1.330E

+02F21 Mea
n

2.538E
+03

2.702E+
03

3.123E
+03

2.540E+
03

3.000E+
03

2.571E+
03

2.976E+
03

3.101E
+03

Std 2.137E+
03

5.557E+
03

1.009E
+03

1.698E+
03

4.579E
+02

1.112E+
03

8.627E+
02

1.183E
+03F22 Mea

n
1.188E+

04
1.230E+

04
1.711E

+04
1.060E+

04
1.684E+

04
9.863E

+03
1.504E+

04
1.452E

+04
Std 5.159E+

01
3.305E

+01
1.740E

+02
5.327E+

01
2.852E+

02
6.224E+

01
2.738E+

02
1.755E

+02F23 Mea
n

3.021E+
03

3.183E+
03

4.125E
+03

3.006E
+03

4.958E+
03

3.025E+
03

4.502E+
03

3.866E
+03

Std 5.598E+
01

2.693E
+01

2.041E
+02

4.656E+
01

1.009E+
02

7.014E+
01

2.162E+
02

1.560E
+02F24 Mea

n
3.167E+

03
3.345E+

03
4.298E

+03
3.134E

+03
4.616E+

03
3.148E+

03
5.001E+

03
3.960E

+03
Std 3.996E+

01
5.946E+

01
3.073E

+03
7.149E+

01
1.998E+

02
3.349E

+01
1.295E+

03
7.021E

+02F25 Mea
n

3.163E+
03

3.243E+
03

1.564E
+04

3.236E+
03

7.443E+
03

3.072E
+03

1.155E+
04

5.438E
+03

Std 5.468E+
02

2.030E+
03

1.667E
+03

3.934E+
02

2.527E
+02

6.064E+
02

7.439E+
02

1.840E
+03F26 Mea

n
6.814E+

03
7.859E+

03
1.810E

+04
6.348E

+03
1.642E+

04
6.583E+

03
1.588E+

04
1.493E

+04
Std 6.635E

+01
8.286E+

01
5.809E

+02
7.180E+

01
9.625E+

02
8.342E+

01
7.707E+

02
6.086E

+02F27 Mea
n

3.500E+
03

3.726E+
03

5.651E
+03

3.497E+
03

8.767E+
03

3.472E
+03

7.038E+
03

4.933E
+03

Std 6.871E+
01

8.010E+
01

1.535E
+03

2.124E+
02

1.365E+
02

3.367E
+01

8.940E+
02

6.619E
+02F28 Mea

n
3.538E+

03
3.747E+

03
1.184E

+04
3.792E+

03
9.376E+

03
3.332E

+03
1.046E+

04
6.072E

+03
Std 2.927E+

02
2.722E

+02
3.791E

+04
4.613E+

02
2.216E+

03
4.528E+

02
1.021E+

04
1.929E

+03F29 Mea
n

4.397E
+03

5.173E+
03

3.793E
+04

5.166E+
03

2.458E+
04

5.075E+
03

2.252E+
04

9.495E
+03

Std 6.020E
+05

6.063E+
06

1.967E
+09

1.135E+
07

2.768E+
08

2.969E+
07

1.462E+
09

1.170E
+08F30 Mea

n
2.381E

+06
1.190E+

07
4.604E

+09
1.008E+

07
5.471E+

09
9.066E+

07
3.055E+

09
3.154E

+08
Std rank 2.14 2.45 6.86 4.28 4.14 4.14 6.00 5.97

Mean rank 1.52 3.41 7.41 2.72 7.03 2.55 5.97 5.34
Overall rank 1 2 8 4 5 3 7 6
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High-dimensional experimental results show that, on the 50-dimensional 
CEC2017 benchmark, SDHCPO still attains the best or near-best mean 
objective values on the vast majority of functions, and its average Friedman 
rank remains markedly superior to those of the other algorithms, with an 
overall ordering consistent with the 30-dimensional case. In contrast, although 
the original CPO can still produce reasonably good best-so-far values on 
several functions, its mean performance deteriorates significantly at 50 
dimensions, a phenomenon that is particularly pronounced on the hybrid and 
composition functions. In other words, while the mean ranking of CPO is still 
acceptable at 30 dimensions, the performance gap in terms of average 
behavior between SDHCPO and CPO becomes further amplified in the 50-
dimensional setting.

In terms of standard deviation, the fluctuation level of all algorithms 
increases as the dimensionality rises. However, the growth in SDHCPO’s 
standard deviation is relatively moderate, and its overall variability remains at 
a low-to-medium level without exhibiting any pronounced numerical instability. 
On some functions, the improvement in standard deviation is less marked than 
that in the mean, but at least comparable stability to the 30-dimensional case 
is maintained. This indicates that, in high-dimensional spaces, SDHCPO can 
significantly reduce the objective value without incurring a substantial loss of 
robustness.

Fig. 12 Friedman Rank Evolution of SDHCPO vs. Competitors on CEC2017 
Test Suite (d=50)

Figure 12 depicts the per-function ranking distribution of all algorithms on 
the 50-dimensional CEC2017 test set. It can be observed that SDHCPO 
consistently ranks among the top methods on most functions.

Table 12. Wilcoxon Rank-Sum p-Values: SDHCPO vs. Algorithms on CEC2017 
(d=50)
Fu
n

CPO-p CFOA-p PKO-p CDO-p MVO-p HOA-p WOA-p

1 3.020E-
11

3.020E-
11

1.777E-
10

3.020E-
11

1.784E-04 3.020E-
11

3.020E-
11

3 1.167E-
05

3.020E-
11

3.020E-
11

3.338E-
11

8.236E-
02

7.697E-
04

3.020E-
11
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4 9.063E-
08

3.020E-
11

2.006E-
04

3.020E-
11

2.510E-02 3.020E-
11

3.020E-
11

5 3.020E-
11

3.020E-
11

3.265E-
02

3.020E-
11

1.765E-02 3.020E-
11

3.020E-
11

6 3.020E-
11

3.020E-
11

6.696E-
11

3.020E-
11

3.020E-11 3.020E-
11

3.020E-
11

7 3.020E-
11

3.020E-
11

4.444E-
07

3.020E-
11

1.407E-04 3.020E-
11

3.020E-
11

8 3.020E-
11

3.020E-
11

2.416E-
02

3.020E-
11

4.637E-03 3.020E-
11

3.020E-
11

9 2.034E-
09

3.020E-
11

2.499E-
03

3.020E-
11

3.020E-11 3.020E-
11

3.020E-
11

10 4.504E-
11

3.338E-
11

9.514E-
06

3.020E-
11

4.975E-11 1.287E-
09

3.497E-
09

11 7.043E-
07

3.020E-
11

4.975E-
11

3.020E-
11

3.778E-02 3.020E-
11

3.020E-
11

12 4.686E-
08

3.020E-
11

2.670E-
09

3.020E-
11

3.020E-11 3.020E-
11

3.020E-
11

13 5.494E-
11

3.020E-
11

3.020E-
11

3.020E-
11

3.020E-11 3.020E-
11

3.020E-
11

14 2.282E-
01

3.020E-
11

3.020E-
11

3.020E-
11

6.765E-05 3.020E-
11

3.020E-
11

15 2.891E-
03

3.020E-
11

2.133E-
05

3.020E-
11

3.020E-11 3.020E-
11

3.020E-
11

16 4.504E-
11

3.020E-
11

3.147E-
02

3.020E-
11

2.891E-03 3.020E-
11

3.020E-
11

Table 12. Cont.
Fun CPO-p CFOA-p PKO-p CDO-p MVO-p HOA-p WOA-p
17 7.773E-

09
3.020E-

11
3.339E-

03
3.020E-

11
6.528E-

08
4.077E-

11
3.020E-

11
18 1.629E-

02
3.020E-

11
6.010E-

08
3.020E-

11
1.767E-

03
3.020E-

11
3.020E-

11
19 1.076E-

02
3.020E-

11
4.637E-

03
3.020E-

11
3.020E-

11
3.020E-

11
3.020E-

11
20 7.389E-

11
3.020E-

11
4.459E-

04
3.020E-

11
2.813E-

02
1.359E-

07
3.820E-

10
21 3.020E-

11
3.020E-

11
8.073E-

01
3.020E-

11
3.778E-

02
3.020E-

11
3.020E-

11
22 8.564E-

04
3.338E-

11
4.676E-

02
3.020E-

11
6.283E-

06
8.993E-

11
1.613E-

10
23 3.020E-

11
3.020E-

11
6.414E-

01
3.020E-

11
1.958E-

01
3.020E-

11
3.020E-

11
24 3.020E-

11
3.020E-

11
6.567E-

02
3.020E-

11
9.049E-

02
3.020E-

11
3.020E-

11
25 5.859E-

06
3.020E-

11
1.058E-

03
3.020E-

11
4.200E-

10
3.020E-

11
3.020E-

11
26 1.108E-

06
3.020E-

11
1.761E-

01
3.020E-

11
1.624E-

01
3.020E-

11
3.020E-

11
27 4.077E-

11
3.020E-

11
1.501E-

02
3.020E-

11
2.519E-

01
3.020E-

11
3.020E-

11
28 3.338E-

11
3.020E-

11
1.857E-

09
3.020E-

11
3.020E-

11
3.020E-

11
3.020E-

11
29 1.957E-

10
3.020E-

11
3.352E-

08
3.020E-

11
3.497E-

09
3.020E-

11
3.020E-

11
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30 3.020E-
11

3.020E-
11

3.520E-
07

3.020E-
11

3.020E-
11

3.020E-
11

3.020E-
11

-
/=/+ 0/0/29 0/0/29 1/4/25 0/0/29 5/4/20 0/0/29 0/0/29

Table 12 reports the Wilcoxon rank-sum test results for SDHCPO against 
each comparison algorithm on the high-dimensional CEC2017 set. It can be 
seen that, relative to CPO, CFOA, CDO, HOA, and WOA, SDHCPO is 
significantly superior on all 29 functions (0/0/29). Against PKO, the result is 
1/4/25, and against MVO it is 5/4/20, indicating that in the high-dimensional 
setting SDHCPO still enjoys statistically significant advantages on the vast 
majority of functions, and is only comparable to or slightly inferior on a small 
subset of cases when compared with these two stronger algorithms.

Fig. 13 CEC2017 boxplots: SDHCPO vs. algorithms (d=50, F1, F3)
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Fig. 14 CEC2017 boxplots: SDHCPO vs. algorithms (d=50, F4-F9)
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Fig. 15 CEC2017 boxplots: SDHCPO vs. algorithms (d=50, F10-F15)
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Fig. 16 CEC2017 boxplots: SDHCPO vs. algorithms (d=50, F16-F21)
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Fig. 17 CEC2017 boxplots: SDHCPO vs. algorithms (d=50, F22-F27)
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Fig. 18 CEC2017 boxplots: SDHCPO vs. algorithms (d=50, F28-F30)

The boxplots in Figures 13-18 further demonstrate that SDHCPO exhibits 
marked advantages in solution accuracy, stability, and robustness. For almost 
all test functions, the boxes corresponding to SDHCPO lie in the lowest 
fitness-value region, indicating not only the best median performance but also 
that at least three quarters of its runs outperform even the best results of the 
competing algorithms. At the same time, the boxes of SDHCPO are generally 
short, with relatively narrow whiskers, especially in comparison with 
algorithms such as PKO, CFOA, and WOA. This reflects the outstanding 
stability and consistency of SDHCPO across multiple independent runs, with 
very low performance variability and little susceptibility to random 
perturbations. Only on a few functions, such as F4, F14, F25, and F28, do the 
boxplots of CPO or MVO appear numerically comparable to those of SDHCPO. 
Overall, however, SDHCPO delivers the best comprehensive performance and 
robustness on the 50-dimensional CEC2017 test set.

Taken together, the 30 and 50-dimensional results show that, compared 
with the original CPO and other competing algorithms, SDHCPO exhibits a 
more pronounced average performance advantage in 50 dimensions, 
particularly on high-dimensional hybrid and composition functions, thereby 
demonstrating strong scalability with respect to dimensionality. Although the 
overall standard deviation increases, the fluctuation level of SDHCPO remains 
competitive relative to the other algorithms, and no high-dimensional 
degradation or divergence is observed. This indicates that the four strategies 
designed in this study continue to function synergistically in the 50-
dimensional setting and effectively alleviate the search difficulties caused by 
the curse of dimensionality.
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5 Application Validation of SDHCPO in Engineering Optimization 
Problems

To assess the effectiveness and robustness of SDHCPO in real-world 
engineering optimization, this section considers five representative 
engineering design problems: welded beam design, tension/compression 
spring design, pressure vessel design, three-bar truss design, and 72-bar 
spatial truss design. These problems share the common characteristic of 
requiring the optimization of multiple design parameters under various 
constraints, with objectives such as minimizing structural weight or reducing 
material cost. To ensure the fairness and comparability of the experimental 
results, all tests are conducted under consistent settings: a population size of 
30, a maximum of 500 iterations, and 30 independent runs for each problem.

5.1 Welded Beam Design Problem

The welded beam design problem is a constrained optimization task aimed 
at minimizing the weight of the beam [45]. The design variables comprise four 
geometric parameters: weld thickness h, beam length l , beam thickness t, 
and weld width b. The objective function evaluates the beam weight based on 
these geometric relationships. At the same time, the problem is subject to 
seven constraints, including limits on shear stress ( )xt , bending stress ( )xs , 
and deflection ( )xd , as well as geometric and stress-equilibrium constraints, to 
ensure the structural safety and feasibility of the design. The problem 
configuration is depicted in Figure 19.

As shown in Table 13, SDHCPO achieves superior performance on the 
welded beam design problem, as indicated by the bolded optimal value, mean, 
and standard deviation. The corresponding optimal solution is given by: weld 
thickness h=0.2057, weld length l =3.4704, beam width t=9.0366, and beam 
height b=0.2507.

Consider variable 1, 2 3 4[ , , ] [ , , , ]X x x x x h l t b= =

Minimize 2
1 2 3 4 2( ) 1.10471 0.04811 (14.0 )f x x x x x x= + +

Subject to

1 max

2 max

3 max

4 1 4

5

6 1
2

7 1 3 4 2

( ) ( ) 0
( ) ( ) 0
( ) ( ) 0
( ) 0
( ) ( ) 0
( ) 0.125 0

( ) 1.10471 0.04811 (14.0 ) 5.0 0

c

g X x
g X x
g X x
g X x x
g X P P x
g X x

g X x x x x

t t
s s
d d

= - £
= - £
= - £
= - £
= - £
= - £

= + + - £
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Variable range 1, 4

2 3

0.1 2
0.1 , 10

x x
x x

£ £
£ £

Where

2 22

1 2

2

22
1 32

22
1 32

1 2

2 6
2 4

3
2

3

2 3
4 2 3 4

( ) ( ) 2 ( )2
,

2

2

4 2

2 2 12 2

4.013 36( ) 1 2 4
6 4( ) , ( )

6000 lb,

c

xx R
p MR

Jxx
xM P L

x xxR

x xxJ xx

x xE x EP x L L G
PL PLx xx x Ex x

P

t t t t t

t t

s d

¢ ¢¢¢ ¢¢= + +

¢ ¢¢= =

æ ö= +ç ÷è ø
+æ ö= +ç ÷è ø

æ öæ ö+æ ö= ç + ÷ç ÷ç ÷ç ÷ç ÷è øè øè ø

æ ö= -ç ÷ç ÷è ø
= =

= 6

6
14 in, 0.25 in, 30 10  psi

12 10  psi, 13600 psi, 30000 psi
max

max max

L E
G

d
t s

= = = ´
= ´ = =

Fig.19 Schematic diagram of cantilever beam

Table 13. Results of All Algorithms on the Welded Beam Design Problem
Optimal Values for VariablesAlgorithm h l t b

Optimal 
Weight

Average 
Value

Standard 
Deviation
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SDHCPO 0.20573
58

3.47035
69

9.03662
43

0.205729
6 1.7248478 1.724850

3 0.0000046

CPO 0.20572
80

3.47050
97

9.03669
74

0.205732
5 1.7248870 1.7253144 0.0005242

CFOA 0.19902
93

3.95775
08

8.72239
31

0.224104
7 1.8619768 2.7454742 0.8181638

PKO 0.20573
01

3.47047
67

9.03665
92

0.205730
0 1.7248600 1.7251203 0.0003491

CDO 0.20428
92

3.50064
86

9.22975
72

0.208456
3 1.7813186 1.8457670 0.0321628

Table 13. Cont.
Optimal Values for VariablesAlgorithm h l t b

Optimal 
Weight

Average 
Value

Standard 
Deviation

SDHCPO 0.20573
58

3.47035
69

9.03662
43

0.205729
6 1.7248478 1.724850

3 0.0000046

MVO 0.20483
28

3.49853
44

9.03741
70

0.205949
7 1.7290605 1.7539214 0.0341230

HOA 0.22099
76

3.84319
75

7.55973
02

0.308665
3 2.2104538 3.1764949 0.4571604

WOA 0.15771
81

4.60013
61

9.61902
87

0.202995
8 1.8737189 2.6543622 0.5600200

5.2 Pressure Vessel Design Problem

The pressure vessel design problem seeks to minimize the structural 
material weight [46]. It involves four design variables: shell thickness sT  , head 
thickness hT , inner radius R , and cylindrical shell length L , collectively 
denoted as 1 2 3 4[ , , , ]y y y y . The design is constrained by four inequalities: 1g  and 

2g  impose minimum thickness requirements on the shell and head to prevent 
structural failure caused by insufficient material; 3g  limits the stress level; 
and 4g  specifies an upper bound on the cylindrical shell length. The design 
variables are bounded within engineeringly feasible ranges, with 1 2, [0,99]y y Î , 
and 3 4, [10,200]y y Î . The corresponding structural schematic is illustrated in 
Figure 20.

SDHCPO attains the minimum weight of 5734.913157 for the pressure 
vessel design problem, with the corresponding design variables reported in 
Table 14. This value is the best among all compared algorithms, and the 
standard deviation over 30 runs is markedly lower than that of the other 
methods.

Consider variable 1 2 3 4[ , , , ] [ , , , ]s hY y y y y T T R L= =

Minimize 2 2 2
1 3 4 2 3 1 4 1 3( ) 0.6224 1.7781 3.1661 19.84f y y y y y y y y y y= + + +
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Subject to

1 1 2

2 2 3

2 3
3 2 3 4 3

4 4

( ) 0.0193 0
( ) 0.00954 0

4( ) 1296000 03
( ) 240 0

g Y y y
g Y y y

g Y y y y y
g Y y

p p

=- + £
=- + £

=- - + £
= - £

Variable range 1 2

3 4

0 , 99
10 , 200

y y
y y

£ £
£ £

Fig.20 Schematic diagram of pressure vessel

Table 14. Results of All Algorithms on the Pressure Vessel Design Problem
Optimal Values for VariablesAlgorith

m Ts Th R L
Optimal 
Weight

Average 
Value

Standard 
Deviation

SDHCP
O

0.74243
36

0.37019
61

40.3196
187 200 5734.9131

570
5734.9132

223 0.0001859

CPO 0.74242
16

0.37007
74

40.3196
324

199.9998
095

5734.91511
70

5735.27397
90 1.6779232

CFOA 0.76780
84

0.38670
46

41.5987
812

186.5353
308

5865.92611
29

40789.5180
883

50282.0649
233

PKO 0.74243
56

0.37019
42

40.3196
187 200 5734.91316

34
5750.21908

17 47.0773456

CDO 0.72165
61

0.35544
38

40.4484
786 200 5856.00918

56
6012.43158

85 97.0115631

MVO 0.84072
24

0.40580
78

44.6692
450

147.3116
683

5926.21258
62

6591.08093
50

427.130147
0

HOA 1.01051
48

0.48658
22

53.6884
007

74.20608
90

6458.65634
12

7689.63785
19

704.941477
3

WOA 0.73623
95

0.41610
56

40.6854
150

194.9697
617

5871.77640
90

13133.0184
431

16126.1868
194

5.3 Tension/Compression Spring Design Problem
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The tension/compression spring design problem [47] involves three 
variables: 1z  represents the wire diameter d , 2z  the mean coil diameter D , 
and 3z  the number of active coils N . The objective is to minimize the spring 
weight, subject to four constraints. The schematic of this problem is shown in 
Figure 21.

The comparison results reported in Table 15 show that SDHCPO identifies 
the best set of design parameters, achieving a minimum objective value of 
0.0135672 and a mean value of 0.0135777, ranking first among all algorithms. 
This confirms the effectiveness of SDHCPO in solving the spring design 
problem.

Consider variable 1 32[ , ] [ , , ],Z z z dz D N= =

Minimize 2 2
1 2 3 1 2( ) 2f zz zz zz= +

Subject to

2
2 3

1 2
1

2
2 1 2

2 2 3 2
1 2 1 1

1
3 2

2 3

1 2
4

( ) 1 071785
4 1( ) 1 012566( ) 5108

140.45( ) 1 0

( ) 1 01.5

g z z

z
z

z z
z

Z z
z zg Z z z z

zg Z

zg Z

= - £

-= + - £-

= - £

+= - £

Variable range 1 2 30.05 2, 0.25 1.3 2 15z z z£ £ £ £ £ £

Fig.21 Schematic diagram of tension/compression spring

Table 15. Results of All Algorithms on the Tension/Compression Spring Design 
Problem

Optimal Values for VariablesAlgorith
m d D N

Optimal 
Weight

Average 
Value

Standard 
Deviation
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SDHCPO 0.052987
3

0.397416
1

10.15906
73 0.0135672 0.0135777 0.0000170

CPO 0.052957
8

0.396676
6

10.19640
45 0.0135684 0.0135824 0.0000220

CFOA 0.052707
5

0.390454
8

10.52351
12 0.0135844 0.0229571 0.0135615

PKO 0.052998
4

0.397688
5

10.14581
26 0.0135674 0.0136130 0.0000559

CDO 0.000055
9

0.328058
8

14.84129
48 0.0138123 0.0139953 0.0003072

MVO 0.050000
0

0.326780
2

14.92331
95 0.0138255 0.0178244 0.0015443

HOA 0.052508
3

0.384402
5

10.87094
35 0.0136412 0.0150239 0.0013185

WOA 0.053333
1

0.406028
1

9.749185
9 0.0135693 0.0143547 0.0011676

5.4 Three-Bar Truss Design Problem

The three-bar truss design optimization problem aims to minimize the 
structural material volume, thereby indirectly reducing the weight [48]. It 
involves two design variables: 1A  and 3A , the cross-sectional area of the two 
diagonal members, and 2A , the cross-sectional area of the vertical member. 
The objective function is determined by the member lengths and cross-
sectional areas, with a base length parameter l=100cm. The design must 
satisfy three stress-related constraints. A schematic of the three-bar truss is 
provided in Figure 22.

As shown in Table 16, SDHCPO, CPO, and PKO all perform well on this 
problem, each obtaining the same optimal solution with a standard deviation 
of 0.

Consider variable 1 2 1 2[ , ] [ , ]X x x A A= =

Minimize ( )21( ) 2 2f x l x x= ´ +

Subject to

1

1 2
1

2

1
2

3

2
1 2

1 2

2
1 2

2( ) 0

( ) 0

( ) 0

2 2

2 2
1

2

x xg X P

g
x xx

x
x xx

x

X P

g X Px

s

s

s
+

+ -

= -

=
+

+

-

„

„

„

Variable range 1, 20 1x x£ £
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Where 2 2100cm, 2KN/cm , 2KN/cml P s= = =

Fig.22 Schematic diagram of three-bar truss

Table 16. Results of All Algorithms on the Three-Bar Truss Design Problem
Optimal Values for 

VariablesAlgorith
m A1 A2

Optimal 
Weight

Average 
Value

Standard 
Deviation

SDHCP
O 0.7884152 0.4081138 263.85234

64
263.852346

4 0

CPO 0.7884152 0.4081138 263.85234
64

263.852346
4 0

CFOA 0.7882057 0.4087165 263.852385
0

264.775298
0 1.4950354

PKO 0.7884152 0.4081138 263.85234
64

263.852346
4 0

CDO 0.7885754 0.4077093 263.852496
7

263.935726
8 0.0864609

MVO 0.7884444 0.4080303 263.852347
1

263.852435
2 0.0001067

HOA 0.7884593 0.4079891 263.852347
9

263.898173
0 0.1027500

WOA 0.7887717 0.4071060 263.852439 265.160821 3.2927772
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8 6

5.5 72-Bar Spatial Truss Optimization Problem

Distinct from the foregoing classical benchmarks that involve only a small 
number of design variables, this subsection introduces a 72-bar spatial truss 
optimization problem with 16 design variables and multiple frequency 
constraints, in order to further assess the potential and practical applicability 
of the algorithm for high-dimensional, complex, and constrained real-world 
engineering problems [49].

This structure consists of 20 nodes and 72 members. To preserve 
structural symmetry, the 72 members are partitioned into 16 design groups 
according to their geometric locations, and all members within the same 
group share an identical cross-sectional area, resulting in 16 continuous 
design variables. The detailed grouping scheme is provided in Table 17.

Table 17. Member grouping scheme for the 72-bar spatial truss.
Group number (k) Member type Member indices (e)

Level 1
1 Columns 1, 2, 3, 4
2 Face diagonals 5, 6, 7, 8, 9, 10, 11, 12
3 Horizontals 13, 14, 15, 16
4 Internal diagonals 17, 18

Level 2
5 Columns 19, 20, 21, 22
6 Face diagonals 23, 24, 25, 26, 27, 28, 29, 30
7 Horizontals 31, 32, 33, 34
8 Internal diagonals 35, 36

Level 3
9 Columns 37, 38, 39, 40

10 Face diagonals 41, 42, 43, 44, 45, 46, 47, 48
11 Horizontals 49, 50, 51, 52
12 Internal diagonals 53, 54

Level 4
13 Columns 55, 56, 57, 58
14 Face diagonals 59, 60, 61, 62, 63, 64, 65, 66
15 Horizontals 67, 68, 69, 70
16 Internal diagonals 71, 72

The truss is made of aluminum alloy with elastic modulus 10 26.9 10 /E N m» ´  
and mass density 32770 /kg mr » . A nonstructural lumped mass of 2270 kg is 
attached to each of the top-layer nodes 1-4. The design variables are the 16 
grouped cross-sectional areas kx , which form the design vector 

1 2 16( , , , )x x x= ¼x • .The kth variable kx  controls the cross-sectional areas of all 
members belonging to the kth group. The cross-sectional area of the eth 
member is denoted by ( )eA x ,determined by the corresponding group variable 

kx , and its length is denoted by eL .
The optimization objective is to minimize the self-weight of the structure 
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subject to multiple frequency constraints, with the objective function 
determined jointly by the material density r , the cross-sectional areas ( )eA x , 
and the lengths eL  of all members. The structural self-weight, together with 
the lumped masses at the top nodes, forms the global mass matrix ( )M x , 
which, combined with the global stiffness matrix ( )K x  determined by the 
design variables, defines a generalized eigenvalue problem. By solving this 
eigenvalue problem under fixed boundary conditions at the four bottom nodes, 
the eigenvalues ( )rl x  and mode shapes rf  are obtained, from which the first 
three natural frequencies ( )rf x  are computed.

In this problem, constraints are imposed on the first three natural 
frequencies: the first and second frequencies must not be lower than 4Hz, and 
the third must not be lower than 6Hz. Under these constraints, the design 
vector x is adjusted to obtain a 72-bar spatial truss configuration with 
minimum mass.

Consider variable 1 2 16( , , , )x x x= ¼x •

Minimize
72

1
min ( ) ( )e e

e
f A Lr

=
= åx x x

Subject to

1 2 3

( ) ( ) ( ) , 1,2,3
( )( ) , 1,2,32

( ) 4Hz, ( ) 4Hz, ( ) 6Hz

r r r

r
r

K M r

f r
f f f

f l f
l

p

= =

= =
³ ³ ³

x x x
xx

x x x
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min max

5 2 2
min

3 2 2
max

, 1, ,16
6.45 10 m 0.645cm
5.0 10 m 50cm

kA x A k
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Table 18. Results of All Algorithms on the 72-Bar Spatial Truss Design 
Problem

Optimal Values for VariablesAlgorith
m 1f 2f 3f

Optimal 
Weight

Average 
Value

Standard 
Deviation

SDHCPO 4.0000 4.0001 5.1900 116.6002 116.7921 0.1158
CPO 3.9997 4.0091 5.2730 117.7778 118.8341 0.5758

CFOA 4.7858 5.7236 7.8279 490.0387 658.3237 111.3120
PKO 3.9999 4.0006 5.2066 116.5697 116.8338 0.1850
CDO 4.0020 4.0238 5.2280 119.7953 122.6835 1.9200
MVO 4.0012 4.0141 5.2258 117.9871 131.2249 10.7874
HOA 4.0260 4.0294 5.3867 130.4777 145.4744 8.2826
WOA 4.0000 4.0632 5.3168 163.4465 261.8906 62.5870
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According to the statistical results in Table 18, SDHCPO exhibits superior 
overall performance on this high-dimensional problem, achieving an average 
structural weight of 116.7921 and a standard deviation of 0.1158, both of 
which are the best among all compared algorithms. This outcome provides 
strong evidence that, as the search space expands sharply with increasing 
dimensionality, SDHCPO attains higher solution accuracy and robustness than 
CPO, PKO, and other competitors, effectively escaping local optima and stably 
converging to high-quality solutions.

Conclusion

This paper proposes a multi-mechanism integrated Crested Porcupine 
Optimizer (SDHCPO) that enhances the original CPO by incorporating four 
innovative strategies, among which the Sobol-OBL initialization and cosine-
annealing-based dynamic adjustment are core components introduced for the 
first time. The Sobol-OBL initialization combines the low-discrepancy Sobol 
sequence with opposition-based learning to produce an initial population that 
is uniformly distributed across the solution space, effectively alleviating 
population clustering and reducing unexplored regions caused by purely 
random initialization, thereby laying a solid foundation for global search. The 
cosine-annealing-based dynamic adjustment strategy replaces random weights 
with a time-dependent nonlinear decay factor, substantially improving the 
stability of position updates in the fourth defense phase and enhancing the 
consistency of convergence. On this basis, the integration of Differential 
Evolution and the Horizontal-Vertical Crossover strategy further breaks 
positional dependence and eliminates dimensional stagnation, thereby jointly 
strengthening the algorithm’s exploration capability and exploitation accuracy.

In the numerical experiments, SDHCPO is first compared with seven 
representative metaheuristic algorithms on the CEC2017 and CEC2022 
benchmark functions. The results show that SDHCPO attains markedly lower 
mean fitness values on most test functions and achieves the best overall 
Friedman ranking. Moreover, the Wilcoxon rank-sum tests with SDHCPO as 
the reference method indicate that, for the vast majority of functions, the 
significance comparisons consistently support the statistical superiority of 
SDHCPO over the competing algorithms. Further ablation studies show that 
each of the four strategies yields varying degrees of performance 
improvement when activated individually, while their fully integrated 
configuration produces a pronounced synergistic effect, with particularly 
substantial reductions in the mean objective values on high-dimensional 
multimodal, hybrid, and composition functions. Together with qualitative 
analyses of population diversity evolution, fitness history, and one-dimensional 
search trajectories, the results show that SDHCPO maintains strong global 
exploration capability in the early iterations and then achieves a smooth 
transition to fine-grained local exploitation in the middle and late stages. This 
provides a mechanistic explanation for its convergence behavior across 
different function classes and clarifies the sources of its performance 
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advantages. High-dimensional extension experiments further demonstrate 
that, on the 50-dimensional CEC2017 tests, SDHCPO achieves order-of-
magnitude reductions in mean fitness compared with the original CPO and, 
even when the improvement in standard deviation is relatively modest, still 
maintains stable global optimization capability under this more demanding 
dimensional setting.

In terms of engineering applications, SDHCPO is validated on several 
classical engineering case studies, including traditional low-dimensional 
problems such as welded beam design and pressure vessel design, as well as a 
high-dimensional frequency-constrained optimization problem for a 72-bar 
spatial truss. The numerical results show that SDHCPO generally attains 
better objective values and smaller variability across these engineering 
examples. In particular, for large-scale, highly constrained structural 
optimization problems such as the 72-bar truss, SDHCPO still maintains high-
quality convergence and strong solution robustness.

Despite the strong competitiveness of SDHCPO on both benchmark tests 
and engineering applications, several aspects remain open for improvement. 
For example, the coordination between exploration and exploitation on certain 
high-dimensional composition functions still has room for optimization, and 
the parameter sensitivity and computational overhead of some integrated 
strategies on specific problem types merit further investigation. Future work 
will focus on complex urban traffic signal timing as a key application scenario 
to further extend and validate SDHCPO. In multi-intersection coordinated 
control problems, a unified optimization model can be formulated by 
integrating multiple performance indicators—such as average delay, queue 
length, and emission levels—under traffic safety and signal control constraints, 
with SDHCPO serving as the core solver to systematically assess its 
convergence efficiency and robustness in large-scale road networks. Building 
on this foundation, future research will target multi-objective traffic control 
problems and integrate SDHCPO into decomposed or hierarchical control 
frameworks, thereby strengthening its optimization capability with respect to 
multiple dimensions such as traffic efficiency, equity, and environmental 
benefits. In this way, SDHCPO is expected to evolve into an engineering-
feasible intelligent optimization tool for high-dimensional, strongly 
constrained, and multi-criteria-coupled urban traffic systems.
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