SCientiﬁc Reports https://doi.org/10.1038/s41598-026-39222-y
Article in Press

Adaptive multi mechanism integration in
the crested porcupine optimizer for global
optimization and engineering design problems

Received: 11 August 2025 Hairong Xie, Jia Mao, Xijun Wan & Yifei Bai
Accepted: 3 February 2026

Published online: 16 February 2026 We are providing an unedited version of this manuscript to give early access to its
findings. Before final publication, the manuscript will undergo further editing. Please
note there may be errors present which affect the content, and all legal disclaimers

Cite this article as: Xie H., Mao J.,
Wan X. et al. Adaptive multi mechanism

integration in the crested porcupine apply.
optimizer for global optimization If this paper is publishing under a Transparent Peer Review model then Peer
and engineering design problems. Sci Review reports will publish with the final article.

Rep (2026). https://doi.org/10.1038/
s41598-026-39222-y

©The Author(s) 2026. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do

not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.


https://doi.org/10.1038/s41598-026-39222-y
https://doi.org/10.1038/s41598-026-39222-y
https://doi.org/10.1038/s41598-026-39222-y
http://creativecommons.org/licenses/by-nc-nd/4.0

Adaptive multi mechanism integration in the Crested
Porcupine Optimizer for global optimization and
engineering design problems

Hairong Xiel ¢ Jia Maol* ¢ Xijun Wan! e Yifei Bail
1 School of Transportation, Jilin University, Changchun 130022, Jilin, China
[0 *Corresponding author: Jia Mao

maojia@jlu.edu.cn

Abstract

The Crested Porcupine Optimizer (CPO), an emerging intelligent
optimization algorithm, exhibits considerable potential {for addressing complex
engineering problems, yet its capabilities remain insufficiently investigated.
Nevertheless, the original CPO is susceptible to premature convergence and
suffers from insufficient population diversity. To effectively address these
limitations, this paper proposes a multi-mechanism enhanced Crested
Porcupine Optimizer (SDHCPO). Its core innovation lies in the integration of
four key strategies: a Sobc!-Opposition-Based Learning (Sobol-OBL)
initialization strategy, which ccmbines the Sobol sequence with opposition-
based learning to generate an initial population that is more uniformly
distributed in the high-dimensional search space; a cosine-annealing-based
dynamic adjustment strategy that replaces the original random weights and
substantially enhances convergence stability; the incorporation of the
DE/rand/1 strategy in the first defense phase to disrupt positional dependence
and prevent premature convergence; and a horizontal-vertical crossover
strategy employed in the second defense phase to eliminate dimensional
stagnation. Experimental results on two authoritative benchmark suites,
CEC2017 and CEC2022, demonstrate that the proposed algorithm
outperforms seven representative metaheuristic algorithms in terms of global
exploration capability, local exploitation accuracy, and convergence
robustness. Furthermore, empirical studies on five representative engineering
design optimization problems show that SDHCPO consistently attains either
the best-known solutions or highly competitive results reported in the
literature, thereby further confirming its effectiveness and broad application
potential for complex real-world engineering optimization tasks.

Keywords Metaheuristic algorithm - Crested Porcupine Optimizer - Sobol-
OBL initialization - Differential Evolution strategy - Horizontal-Vertical
crossover strategy - Cosine annealing dynamic adjustment strategy
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1 Introduction

Global optimization problems are widespread in modern complex systems
and engineering design, typically characterized by high nonlinearity,
multimodality, multiple constraints, and high dimensionality. These
characteristics pose significant computational challenges to traditional
optimization methods [1]. Classical deterministic algorithms, such as gradient-
based methods and dynamic programming, perform well in simple cases like
convex optimization but often prove insufficient when addressing complex
problems that are non-convex or non-differentiable. In contrast, intelligent
optimization algorithms (IOAs), which do not rely on gradient information and
employ population-based search mechanisms, have been widely applied to
complex global optimization and engineering design problems [2]. Extensive
studies have shown that such stochastic search algorithms exhibit superior
problem-solving capabilities in practical engineering challenges such as
mechanical structure design, parameter estimation, and signal processing [3].
In complex manufacturing environments, an efficient meta-heuristic with a
critical-path-based neighborhood search has been developed for the dual-
resource flexible job shop scheduling problem under production line
reconfiguration, illustrating how tailored intelligent optimization can
significantly enhance large-scale industrial scheduling performance[4].
However, as the scale and complexity of problems increase, the performance
of intelligent optimization algorithms can degrade significantly, necessitating
continuous development and improvement of new algorithms to meet these
escalating challenges [5].

Over the past decades, researchers have proposed numerous mainstream
intelligent optimization algorithms, encompassing various categories such as
evolutionary algorithms (EAs) and swarm intelligence algorithms (SIAs).
Typical representatives include Particle Swarm Optimization (PSO) [6],
Genetic Algorithm (GA) [7], Differential Evolution (DE) [8], Grey Wolf
Optimizer (GWO) [9], Whale Optimization Algorithm (WOA) [10], and Firefly
Algorithm (FA) [11]. These algorithms have been successfully applied in
various fields such as function optimization, scheduling, control, and machine
learning [12]. However, each algorithm also has its inherent limitations: For
example, Particle Swarm Optimization (PSO) is simple to implement and
converges quickly, but it is prone to premature convergence and getting
trapped in local optima [13]; GA possesses strong global search capability but
involves complex encoding and exhibits uncertainty in the convergence
process [14]; DE improves search efficiency through differential mutation, but
it may suffer from premature convergence or stagnation when dealing with
multimodal problems [15]; GWO simulates the social behavior of grey wolves
and features a simple algorithmic structure, yet it tends to exhibit low
convergence accuracy and local convergence issues in the fine-tuning phase
[16]; WOA performs global exploration by mimicking the foraging behavior of
whales, but in complex environments, it may suffer from poor optimization
accuracy and can get trapped in local optima during early iterations [17]; FA



conducts search through attractiveness-based movement among fireflies, but
the standard FA lacks sufficient exploration capability, which may lead to
premature convergence and reduced solution accuracy [18,19]. Overall, these
mainstream intelligent algorithms often encounter bottlenecks such as
premature convergence, entrapment in local optima, and slow convergence
speed when tackling complex problems. To address these issues, researchers
have introduced various enhancement strategies—such as memory
mechanisms, mutation operations, and elitism—into individual algorithms to
strengthen their global search capabilities [20,21]; On the other hand, hybrid
intelligent algorithms have been developed by integrating multiple
optimization strategies to balance global and local search capabilities. For
example, a hybrid biogeography-based optimization algorithm that combines a
hybrid migration operator with a feedback differential evolution mechanism
has shown competitive performance on high-dimensional benchmark functions
and several real-world engineering design problems [22]. According to the
"No Free Lunch" theorem, no single algorithm can perform optimally across
all optimization problems, which has further driven the continuous emergence
of novel intelligent optimization algorithms [23]. In line with this viewpoint, a
biogeography-based optimization variant that incorporates Lévy and Brownian
movements together with a steepest-descent local search has been proposed,
enabling efficient solution of large-scale global optimization and complex
engineering design problems and exemplifying the problem-specific tailoring
advocated by the theorem [24].

Against this background, collective behaviors in biological populations
have provided a rich source of inspiration for algorithm design. A notable
recent example is the Crested Porcupine Optimizer (CPO), a promising swarm
intelligence algorithm proposed in 2024 and inspired by the distinctive
defensive behavior of crested porcupines against predators. In real-world
scenarios, crested porcupines employ four primary defensive strategies—
visual intimidation, auditory deterrence, olfactory repulsion, and physical
attack—to protect themselves when threatened. Building on this behavioral
analogy, CPO divides the optimization process into exploration and
exploitation phases and sequentially simulates the four defensive behaviors of
crested porcupines during the iterative search. Initially, the algorithm
generates a group of “porcupine” individuals as candidate solutions, which are
randomly distributed across the global search space. During the exploration
phase, CPO then employs “visual defense” and “auditory defense”
mechanisms to guide individuals to probe in diverse directions, thereby
promoting population diversity and dispersion. In the exploitation phase, the
algorithm activates olfactory defense and physical attack strategies to guide
individuals toward the neighborhood of the current best solution, thereby
accelerating convergence. Notably, CPO incorporates a Cyclic Population
Reduction (CPR) mechanism, in which the population size is periodically
reduced as the iterations progress, mimicking the natural scenario in which
not all porcupines engage in defense simultaneously. This mechanism
enhances convergence efficiency while maintaining solution diversity.



Leveraging these bio-inspired strategies, CPO has demonstrated excellent
performance on several benchmark tests and engineering applications. In the
original study by Abdel-Basset et al., CPO outperformed methods such as
GWO, WOA, and SSA by achieving superior optimal solutions across multiple
engineering problems. Overall, the novel algorithmic framework of CPO,
which effectively balances exploration and exploitation, provides a promising
and powerful tool for engineering optimization [25].

Despite these advantages, subsequent studies have identified several
notable limitations of CPO when tackling complex optimization problems. First,
the original CPO is prone to becoming trapped in local optima when dealing
with high-dimensional, multimodal, or irregular functions, causing the
algorithm to stagnate near suboptimal solutions and hindering further
exploration of superior candidates. In addition, its global search capability—
particularly in the early search stage—is constrained by insufficient
population diversity, making it difficult to thoroughly explore the solution
space. Moreover, the convergence speed of CPO is suboptimal on certain
benchmark functions, where slow or even oscillatory convergence has been
observed, thereby reducing the overall efficiency of the algorithm [26]; At the
same time, its exploitation accuracy is limited, as it lacks an effective local
search mechanism in the fine-tuning phase, leading to final solutions that may
still deviate from the true optimum [27]. Therefore, enhancing CPO’s global
exploration capability and exploitation precision, while mitigating the risk of
entrapment in local optima, has become a critical focus of subsequent
research.

It is worth noting that the integration of multiple strategies has been
proven effective in enhancing optimization algorithms. For example, to
alleviate the premature convergence of the standard Firefly Algorithm,
Villaruz et al. introduced an additional search mechanism inspired by bee
colony scouting behavior, enabling fireflies trapped in local optima to perform
guided random walks. This modification effectively helped the algorithm
escape local optima and improved its convergence accuracy [28]. Similarly,
Zhang et al. proposed a feedback biogeography-based optimization algorithm
with steepest descent, in which a dynamic hybrid migration operator, a
feedback differential evolution mechanism, and a steepest-descent local
search are tightly integrated, achieving high solution accuracy and good
scalability on a variety of large-scale benchmark tests and constrained
engineering problems [29]. In the recently proposed Transient Search
Optimization (TSO) algorithm, chaotic maps are introduced to replace certain
random processes. Owing to the ergodicity and non-repetitiveness of chaotic
sequences, this enhancement effectively improves the algorithm’s ability to
avoid local optima and accelerates its convergence [30].

To this end, researchers have begun to explore the integration of various
effective strategies into CPO to develop enhanced algorithmic variants [27,31].
By embedding diverse search mechanisms and parameter control schemes
within the CPO framework, it is possible to substantially improve its global
optimization performance while preserving its inherent advantages.



Building on the above insights, this paper proposes an adaptive multi-
mechanism integrated Crested Porcupine Optimizer (SDHCPO), with the
following main contributions:

0 An improved CPO framework integrating four complementary mechanisms
is developed. The Sobol-OBL initialization strategy combines low-discrepancy
Sobol sequences with opposition-based learning to generate an initial
population that is more uniformly distributed and provides broader coverage
of the search space; a cosine-annealing-based dynamic adjustment strategy
replaces random weights with a time-varying nonlinear decay factor, enabling
a more controllable evolution of the search process between exploration and
exploitation. On this basis, a DE/rand/1 mutation operator is introduced to
intensify perturbations and reduce the risk of premature convergence, while a
horizontal-vertical crossover mechanism alleviates inter-dimensional coupling
and stagnation, thereby enhancing information recombination across
dimensions. These four strategies operate synergistically within a unified
framework, systematically improving the algorithm’s performance in terms of
global search breadth, local exploitation accuracy, and convergence
robustness.

0 A multi-level evaluation framework is established that jointly captures
external performance and internal search mechanisms. On the CEC2017 and
CEC2022 benchmark suites, SDHCPO attains the best mean objective values
on most test functions, and the Wilcoxoi rank-sum test indicates that it
achieves statistically significant superiority over the majority of competing
algorithms. Subsequent dimensionality-extension experiments further show
that the performance advantage of SDHCPO in terms of mean fitness becomes
more pronounced as the problem dimension increases. Meanwhile, qualitative
analyses from the perspectives of population distribution evolution and
convergence trajectories characterize the internal search dynamics of
SDHCPO, revealing its stage-wise dynamic adjustment of exploration intensity
and exploitation precision at the algorithmic mechanism level.

[0 The applicability of SDHCPO to multi-constrained engineering optimization
is validated through a series of engineering case studies. Several classical
structural and mechanical design benchmark problems are selected to
construct an engineering test suite spanning from low to high dimensionality.
The experimental results show that SDHCPO consistently yields competitive,
and in many cases best-known, design solutions with good stability across all
test cases. In particular, for the 72-bar spatial truss problem, SDHCPO
achieves significant weight reduction under multiple frequency constraints,
indicating that the proposed framework can effectively tackle large-scale,
highly constrained engineering optimization tasks and possesses strong
potential for extension to more complex real-world engineering scenarios.

2 Standard CPO

The Crested Porcupine Optimizer (CPO) [25] is inspired by the defensive
behavior of crested porcupines. When threatened, crested porcupines employ



multiple defense mechanisms, including four principal strategies: visual,
auditory, olfactory, and physical attack, which are activated in ascending
order of aggressiveness to deter predators. In CPO, the visual and auditory
defense mechanisms are used to model exploration behavior, whereas the
olfactory and physical attack mechanisms correspond to exploitation behavior.
The core of the algorithm lies in simulating how crested porcupines select
among these defensive strategies according to the type and intensity of
threats, thereby achieving a balance between exploration and exploitation
throughout the optimization process.

2.1 Initialization

In CPO, as in other metaheuristic algorithms, the initialization phase
employs Equation (1) to randomly generate solution vectors that are uniformly
distributed within the upper and lower bounds of the search space:

® ® ® ®
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where X; denotes the /th candidate solution; LZand U are the lower and
upper bound vectors of the search space, respectively; and r is a random
vector whose elements are uniformly distribuited on [0,1]. By applying the
above formula to all individuals in the population, the initialized population
can be expressed as:
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After initialization, the fitness of each individual is evaluated, and the one
with the best fitness value is selected as the current global best solution.

2.2 Search over the solution space

During the population search and position-update process, the procedure
is divided into two main phases: global exploration and local exploitation. The
selection between these two phases is determined by comparing two randomly
generated values, £; and ¢,:

2.2.1 Exploration

If t,3 t,, the global exploration phase is activated. In this phase, one of

(1)

(2)



two defense strategies is selected by further comparing two additional
random values, ¢, and ¢,.

When ¢,<t,, the first defense strategy 1is activated, which is
mathematically formulated by Equation (3):
o w
X=X+t (3)

7

i wi
Where X, denotes the best solution at evaluation step, and )/ is a vector

constructed between the current CP and a randomly selected CP from the
population and represents the predator’s position in iteration. ¢, is a random

variable following a normal distribution, and ¢, is a random variable uniformly

w

distributed in [0,1]. The generation of )/ is defined by the mathematical
expression in Equation (4):
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Where r is a random integer in the range [1,N]. When ¢,<¢,, the second
defense strategy is executed, whose mathemartical model is given by Equation

(5):

-
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Where U is a binary vector whose elements take values of either O or 1.
In this second defense strategy, the predator’s movement direction is

determined based on two randomly selected individuals, ¥, and X,.

2.2.2 Exploitation

When ¢;3 ¢,, local exploitation is performed, which is realized by adopting

either the third or the fourth defense strategy; the specific strategy is selected
by comparing two random values, ¢, and 7..

When ¢,<7,, the third defense strategy is activated, which is
mathematically defined in Equation (6):

i
-
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Here, r, denotes a random integer range [1, /V]; ¢, is a random number in
the interval [0,1]; ¢ is a direction control vector, g, is the defense factor, and
S is the scent dispersion factor. The corresponding calculation is defined as



follows:
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Where £(X) denotes the fitness value of the /th individual at iteration ¢,
and o is a small constant introduced to avoid division by zero. When ¢,,> 7,

the fourth defense strategy is activated, and its mathematical model is given
by Equation (10):

X=X Haw-e)+e) ("X - X)- & (10)
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Where a denotes the velocity convergence factor; ¢, and ¢, are random

W
numbers uniformly distributed in [01]; and F’ represents the inelastic

collision force generated by the individual when attacking the predator, which
is computed as follows:

=t," m"(#*- v) (12)
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Where ¢, is a random vector whose elements lie in [0,1]; " denotes a

u
randomly selected individual from the current population; and V refers to the
current individual.

2.3 Cyclic Population Reduction

After each iteration, the population size is gradually reduced to accelerate
convergence. Once it reaches a predefined minimum, the population size is
then progressively increased to restore diversity. This process is repeated
cyclically until the maximum number of iterations is reached. This dynamic



population adjustment constitutes a distinctive feature of the CPO algorithm.
The population size updating rule is given by:

T
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Where % denotes the modulo operator.



3 Adaptive Multi-Mechanism Integrated CPO

To overcome the inherent limitations of standard CPO, particularly the
uneven distribution of the initial population, its tendency toward premature
convergence, and the oscillatory behavior of its convergence trajectories, this
study proposes the SDHCPO algorithm. SDHCPO establishes a unified
cooperative optimization framework that aims to dynamically regulate the
balance between exploration and exploitation through the integration of four
strategies. This framework follows a clear functional logic: in the exploration-
dominated stage, the algorithm incorporates differential evolution and
horizontal-vertical crossover strategies, which proactively inject diversity and
break positional dependence, thereby expanding global search capability and
preventing the population from collapsing prematurely into local optima. As
the algorithm transitions to the exploitation-dominated stage, particularly in
the fourth defense mechanism, a cosine-annealing mechanism is introduced.
This strategy focuses on stabilizing the convergence trajectory by replacing
random fluctuations with a deterministic decay schedule, thereby eliminating
ineffective oscillatory jumps and enforcing precise convergence of the
population toward the global optimum. Within this framework, a staged
configuration that strengthens exploration in the early phase to expand the
search boundary and emphasizes exploitation in the later phase to refine
convergence accuracy, together with the complementary roles of each
mechanism in diversity injection and trejectory stabilization, achieves a
dynamically coordinated and finely balariced interaction between exploration
and exploitation. Meanwhile, the Sobol-OBL initialization ensures from the
outset a high-quality, uniforml!y distributed initial population in the search
space. The theoretical foundations of each strategy and their synergistic
effects are elaborated in the following sections.

3.1 Sobol-OBL Initialization

In swarm intelligence optimization algorithms, the diversity and
uniformity of the initial population directly influence the global search
capability and convergence speed. Although conventional random
initialization is easy to implement, it often leads to uneven individual
distribution and insufficient coverage in high-dimensional search spaces,
making the algorithm prone to becoming trapped in local optima. Low-
discrepancy sequences (LDS), owing to their uniform coverage properties,
have therefore been widely adopted in the initialization stage. Among them,
the Sobol sequence exhibits particularly good uniformity even in high-
dimensional spaces. Nevertheless, Sobol-based initialization alone still fails to
fully explore mutually opposite regions of the solution space. The Opposition-
Based Learning (OBL) [32] mechanism enhances population diversity and
enlarges the search range by generating symmetric opposite solutions of the
current candidates within the search space. On this basis, a high-dimensional
initialization strategy that combines the Sobol sequence with OBL (Sobol-OBL)
is proposed. The Sobol sequence ensures globally uniform coverage, while
OBL complements it by introducing solutions in symmetric regions. Together



with a fitness-based ranking and selection mechanism, this strategy provides
higher-quality initial solutions for subsequent iterations.

The Sobol sequence is a low-discrepancy quasi-random sequence that
distributes points as uniformly as possible within a & dimensional hypercube.
For a population of size N, the original value of the /th dimension of the /th

Sobol sequence point is denoted by .'S;,,. and can be expressed as:

ré A b(HA Aa, .t
5;7,/ =gg Q(/)Zk 51,/(' g’ k(/)Zk az,k’1/4’ gj %g (14)
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In this expression, §(/) denotes the kth bit in the binary representation of
/,a;, is the kth direction number for the /th dimension, and Mis the bit

length used in the binary representation. Subsequently, _'S;, s linearly mapped
onto the actual search interval [Z,{] to obtain the Sobol-initialized individual:

X =48 (U- 1), i=12Y,N (15)

To illustrate the superiority of the Sobol sequence, 100 points are
generated within the two-dimensional domain [G1]*, as shown in Figure 1.
Visually, the points generated by the Sobol sequence exhibit markedly better

uniformity and diversity compared with randomly generated points—an
advantage that extends to high-dimensional spaces.
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initialization

Next, the OBL mechanism is introduced. For each initial individual )'(,5"""’ ,
its opposite component in the /th dimension is defined as:

XP =L +U- X =12V, N

(16)



which maps the or1g1na1 value symmetrically with respect to the m1dp01nt
of the search space [L U] Equation (16) generates the opposite solution X"p

corresponding to X,.s"‘”’ ; the two typically appear as a pair, enabling

simultaneous exploration of opposite regions in the solution space and
enhancing the global diversity of the population.

After Sobol initialization, the fitness values of the NSobol individuals are

first evaluated. The median fitness is then used as an automatically
determined threshold to distinguish relatively good and poor solutions. For
those individuals whose fitness is not better than the median, their opposite
solutions are generated according to the OBL rule, and a replacement is
performed only if the opposite solution yields a lower fitness value. In this way,
opposition-based learning is selectively applied to the worse half of the initial
Sobol population, improving solution quality while preserving the diversity of

the better half. The resulting Nindividuals form the initialized population. The

mathematical expression is:

} ; i f(Xs"""’)Ermd{fX”‘” Y
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where rmd{f()l(j"’”’ ) fiudenotes the median of the fitness values of all Sobol-
initialized individuals, /'\’,."pis the opposite solution of /\’,.5"""’ defined in (16), and

)I(,.denotes the initialized individual obtained after the selective application of
OBL.

3.2 Differential Evolution

Building on the high-quality initialization, the algorithm then enters the
iterative search phase. In standard CPO, the first defense phase simulates the
defensive response to predators; however, the unidirectional movement
toward the current best solution can rapidly erode population diversity and
induce premature convergence. To counterbalance this attraction without
hindering convergence, the DE/rand/1 strategy [33] 1is specifically
incorporated into this phase. In contrast to the original mechanism, which
reinforces dependence on the current leader, the DE strategy introduces
mutation and crossover operators to perturb candidate solutions. This
perturbation mechanism breaks positional dependence, enabling the
population to maintain sufficient diversity to explore previously unvisited
regions, thereby continuously strengthening global search capability and
preventing entrapment in local optima during the early stages of evolution.
The steps of this strategy are as follows:

Stepl: Select three distinct individuals X ,X,, and X, from the

population( /1t /2 3! /); then generate the mutant vector V* using the
DE/rand/1 mutation strategy as follows:



=X 40V (- X) (18)

Where CV is the mutation factor, which controls the magnitude of the
perturbation.

Step2: Perform binomial crossover between the target individual X and

U U
the mutant vector V" to generate the trial individual ¢*, as shown in

Equation(18), where the crossover probability is governed by the parameter
CR.

(SO}
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Where / is the dimension index, CRI [01] is the crossover probability, and
/. denotes a randomly selected dimension.

Step 3: Apply a %mreedy selection mechanism by compariILlug the fitness of
the trial individual ¢*" with that of the target individual X, as shown in
Equation (20).
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3.3 Horizontal-Vertical Cressover Strategy

Although the Differential Evolution strategy effectively disrupts positional
dependence and mitigates early clustering, it treats individuals as holistic
vectors and may therefore overlook stagnation in specific dimensions.
Consequently, the second defense phase requires a dedicated mechanism to
explicitly address dimensional stagnation.

In this phase, the original position update equation may cause certain
dimensions of the solution vector to become inactive, thereby impeding
progress toward the global optimum. To effectively eliminate this stagnation
while preserving the enhanced global search capability achieved in the
preceding stage, the Horizontal-Vertical Crossover strategy is introduced [34].
This strategy operates through a dual mechanism: horizontal crossover
facilitates information exchange between distinct individuals to eliminate
search blind spots, whereas vertical crossover explicitly targets stagnant
dimensions, employing arithmetic crossover to enable them to escape local
extrema. The horizontal crossover is performed using the following formula
(21):

XA =h X +1-t,) X+ (- X) (1)

wi

Where X denotes a randomly selected individual with an index different



from /; A1 (0]) is a random number, and ¢ is a constant controlling the

contribution of dimensional differences. The newly generated individual is
then compared with the target individual, and the one with the smaller
objective function value is retained.

Vertical crossover is an arithmetic crossover operator acting on two
different dimensions of a single individual. In each crossover operation, only
one dimension of the individual is updated while the others remain unchanged,
thereby allowing stagnant dimensions to escape local optima without
perturbing dimensions that may have already approached the optimum. Let
two dimensions /1 and ;2 be randomly selected. Then, the /1th dimension of

the new individual is computed using the following formula (22):

U

-;]{l =h, x’{/l +(1- t7)x’¢,j2 (22)
Where A, is a uniformly distributed random number in the interval (0,1).

3.4 Cosine Annealing Dynamic Adjustment Strategy

Following the extensive exploration and dimensional adjustments in the
preceding phases, the algorithm must subsequently shift its focus toward
stabilization and precise convergence. However, in the fourth defense
strategy of the original CPO, the position update relies on random coefficients
t,. The stochastic fluctuations of these terms can destabilize the update

direction and lead to inconsistent convergence speed. In the improved CPO, a
time-dependent nonlinear decey mechanism is introduced, whereby the
original random terms are replaced with a deterministic weighting function.
The core of this mechanism is a tunable cosine-annealing function:

l' O
Mo =05" C1+cos§0 (23)

maxﬂ%

In this equation, the decay-rate control parameter g>0 governs the
nonlinear attenuation behavior, while the weighting function M(# adapts over
time according to the normalized iteration index ¢/ 7, . Its main advantage lies

in the exponent term, which provides precise control over the shape of the
decay curve: increasing g produces a gentler decay in the early iterations,
thereby preserving sufficient exploration in the initial phase; in the later
iterations, the function transitions to a more rapid decay, strengthening fine-
grained search around the vicinity of the optimum. As shown in Figure 2,
larger values of g lead to slower decay at the beginning and a steeper drop in
the final phase. Benchmark experiments further confirm that g=15 yields the
best overall performance in most cases. Consequently, at this stage, the high-
quality individuals generated by the preceding strategies are efficiently
exploited, and the focus of the search is gradually and deterministically
shifted from maintaining diversity to fine-grained solution refinement. This
unified decay trajectory prevents exploration and exploitation from being



treated as disjoint processes and instead enables their continuous
coordination over time. The position update formula for the fourth defense

strategy is given by:
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Fig. 2 Dynamic weight decay curves under different decay factors g



3.5 Pseudocode and Flowchart of SDHCPO

This section presents the pseudocode of SDHCPO together with its
corresponding flowchart. The overall workflow of the proposed algorithm is
summarized in Figure 3.



Algorithml T he pseudo-code of the SDHCPO algorithm.

Input: Parameters of CPO, suchas N, 7,

Output: The global best solution

1:Setparamtes V., N,.. T, 7., T, 9.

2:Applying Sobol-OBL Initialization per Equation (17) to generate the position matrix..
3:While(t<7 ) do

4: Evaluate the fitness of theinitial population and find the global best solution ( tz: ).
5. Equation (8) defines the update rulefor g,.
6] Equation (23) defines the update rule for W(t).
70  Update the population size according to Equation (13).
8: For /=1toN do
o Update parameters m, S, F, d.
10: Generate a random number, £, .
11 If A, <0.5// Exploration
12: Generate a sequence of random numbers, A,, A; and A;.
13: If /1, <0.5// First defense strategy
14: Carry out Algorithm2
15: Adopting greedy sdection strategy to optimize the population.
16: Else// Second defense strategy
17: If h,<0.5// Horizontal and Vertical I ntersaction
18: Carry out Algorithm3.
19: Else
20: The CP position is adjusted via Equation (5)
21 Endif
22: Endif
23: Else// Exploitation
24: Generate a random number, A, .
25: If A, <0.5// Third defense strategy
26: The CP position is adjusted via Equation (6)
27 Else// Fourth defense strategy
28: The CP positionis adjusted via Equation (24)
29: Endif
30: Endif
U W
s IF A(XE)> A x)
32: XA =Xt
33 Endif
34 t=t+1
35: End for
36:  Endwhile

37. Rewrn j(z:
38:  Output the global best solution




Algorithm2 DE /rand/1/bin

Selected three random donor vectors X, , X,, X, , where /11 21 /31 /.
Sdect randominteger / rand within [1, 4].
For /=0; j<d; j=/+1do
If ranal0,1) £ CRorj=/_,, then
3 =
Else
d; =X
Endif
End for

S8y SHN F

Algorithm3 Horizontal and Vertical I ntersection

If A,<0.5// Horizontal I ntersection

Randomly generate an individual fromthe population that is different from the current.
The position of CP is updated according to Equation(21).
Adopting greedy sd ection strategy to optimize the population.
Else// Vartical Intersection
Ifd32
Randomly sdect two different dimensions of the current soiution vector.
The position of CP is updated according to Equation(22).
Adopting greedy sd ection strategy to optimize the population.

VoUW RARWN H

10: End if
11: Endif
" N AN A Exploitation
| ‘.X,"|0'dt|0l‘l o~ I
Generate randorm 1 No I:
Strat number | =< 13 < 0.5 i »  Generate random number 77
i . (]
A | |
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No ¢ e : No
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Seti =1 i=i+1 =
Qutput i
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solution

Fig. 3 Flowchart of the SDHCPO algorithm



3.6 Time Complexity Analysis

Time complexity is a key metric for evaluating the performance of
optimization algorithms [35]. The time complexity of the SDHCPO algorithm is
primarily determined by the population initialization and iterative update
processes, with the main influencing factors being the maximum number of
iterations 7, the problem dimensionality ¢, and initial population size V. In
SDHCPO, population initialization combines the Sobol sequence with
opposition-based learning, yielding a time complexity of O(N’ a).The iterative
update process employs a hybrid strategy, which includes Differential
Evolution, Horizontal-Vertical Crossover, and cosine-annealing-based dynamic
adjustment. This process has a time complexity of A7, N’ d), where N is

dynamically adjusted through cyclic population reduction. In the best-case
scenario: AASDHCPO) =O(N”" d)+OT_, "N,  4d).
In the worst-case scenario: O\ SDHCPO) =ON" o) +OT_, N’ ad).



4 Benchmark Test Results and Analysis
4.1 Experimental Setup and Overall Evaluation Framework

This section conducts a multi-level evaluation of the proposed SDHCPO
algorithm, following a logical progression from overall performance, to
internal mechanisms, and finally to high-dimensional extensions. First,
SDHCPO is compared with several representative metaheuristic algorithms on
the CEC2017 and CEC2022 benchmark test suites, in order to assess its
overall competitiveness across different types of test functions; the CEC2017
suite is tested in 30 dimensions, whereas CEC2022 is evaluated in 20
dimensions. Second, a systematic ablation study and qualitative analysis on
CEC2017 are performed to characterize the exploration-exploitation balance
from an internal mechanism perspective and to clarify the roles and synergies
of the four integrated strategies. Finally, a 50-dimensional extension
experiment based on CEC2017 is carried out to examine the scalability and
robustness of SDHCPO in higher-dimensional scenarios.

The performance of the improved algorithm is evaluated on two widely
adopted benchmark test suites, CEC2017 [36] and CEC2022 [37]. CEC2017
comprises unimodal functions (UM: F1, F3; F2 has been officially removed),
multimodal functions (MM: F4-F10), hybrid functions (H: F11-F20), and
composition functions (C: F21-F30). CEC2022 includes unimodal functions
(UM: F1), multimodal functions (MM: F2-F5), hybrid functions (H: F6-F8), and
composition functions (C: F9-F12). To verify the effectiveness of SDHCPO,
seven algorithms are selected as baselines: the original CPO [25], CFOA [38],
PKO [39], CDO [40], MVO [41], HOCA [42], and WOA [10], all implemented with
the parameter settings recommmended in their original publications; see
Appendix A for details. Ainong them, CFOA, PKO, and CDO are recently
proposed metaheuristic algorithms that represent the state of the art in this
class of methods, whereas MVO, WOA, and HOA are classical swarm
intelligence algorithms that have been widely used in the literature and
frequently employed on CEC benchmarks and engineering optimization
problems. By simultaneously including both recently proposed algorithms and
classical representative methods, the competitiveness of SDHCPO can be
assessed more convincingly. For each test function, all algorithms are
independently run 30 times with a population size of 30 and a maximum of
500 iterations. All experiments are implemented in MATLAB R2022a on a
workstation equipped with an AMD Ryzen 7 4800U 1.80 GHz processor and
16 GB of RAM.

Unless otherwise specified, statistical tests are conducted using the
Wilcoxon rank-sum test [43] with SDHCPO as the reference method and a
significance level of 0.05. In the “—/=/+" notation used throughout the paper,
“—” indicates that SDHCPO is significantly inferior to the compared algorithm,
“=" denotes no statistically significant difference, and “+” indicates that
SDHCPO is significantly superior to the compared algorithm. The



corresponding counts are used to summarize the overall advantage of
SDHCPO relative to each competitor.

4.2 Results on the CEC2017 Benchmark Suite

In this subsection, the overall performance of SDHCPO is first compared
with that of seven representative algorithms on the more challenging 30-
dimensional CEC2017 test suite. Table 1 reports the mean, standard deviation,
and Friedman ranking [44] of each algorithm on all CEC2017 test functions,
with the smallest mean values highlighted in bold. It can be observed that
SDHCPO achieves clearly superior mean objective values on most test
functions and exhibits consistently stable performance across unimodal,
multimodal, hybrid, and composition functions, indicating strong overall
adaptability and cross-function robustness in the 30-dimensional benchmark

setting.

Table 1. Performance Metrics of SDHCPO and Other Algorithms on CEC2017

(d=30)
Index SDHCPO CPO CFOA PKO CDG MVO HOA
Std 8.826E+03 ©5.932E+05 8.389E+09 5.573E+06 2.743E+08 6.298E+05 7.917E+09 1.9
Mean 1.202E+04 7.377E+05 4.636E+10 5.510E+06 5.287E+10 2.041E+06 3.911E+10 5.5
Std 9.399E+03 1.390E+04 7.551E+04 3.835E+04 3.339E+03 1.009E+04 8.119E+03 6.2
Mean 4.103E+04 6.263E+04 2.307E+05 1.703E+05 9.235E+04 2.040E+04 7.058E+04 2.4
Std 1.489E+01 2.335E+01 3.158E+03 2.315E+01 9.701E+01 1.054E+01 1.760E+03 4.6
Mean ©5.058E+02 ©5.186E+02 1.070E+04 5.183E+02 5.570E+03 4.995E+02 7.802E+03 1.3
Std 2.196E+01 1.598E+01 4.181E+01 1.935E+01 1.631E+01 3.587E+01 3.028E+01 5.2
Mean 5.922E+02 6.944E+02 8.940E+02 5.928E+02 8.614E+02 6.175E+02 8.149E+02 8.5
Std 4.659E-02 7.423E-01 1.029E+01 3.351E+00 7.029E+00 1.479E+01 8.613E+00 9.8
Mean 6.001E+02 6.019E+02 6.832E+02 6.037E+02 6.752E+02 6.321E+02 6.657E+02 6.8
Std 2.053E+01 1.674E+901 1.402E+02 2.658E+01 1.776E+01 4.459E+01 6.224E+01 7.8
Mean 8.585E+02 9.398E+02 1.552E+03 8.752E+02 1.323E+03 8.830E+02 1.255E+03 1.2
Std 2.003E+01 1.412E+01 5.548E+01 2.229E+01 2.181E+01 3.477E+01 3.552E+01 4.0
Mean 8.883E+02 9.837E+02 1.135E+03 9.000E+02 1.110E+03 9.229E+02 1.060E+03 1.0
Std 4.930E+01 4.924E+02 3.457E+03 3.835E+02 6.634E+02 3.614E+03 1.806E+03 3.5
Mean 9.336E+02 1.315E+03 1.142E+04 1.261E+03 1.014E+04 6.879E+03 7.309E+03 1.2
Std 7.132E+02 4.159E+02 5.475E+02 5.968E+02 3.150E+02 6.698E+02 6.026E+02 9.1
Mean ©5.648E+03 7.539E+03 9.206E+03 5.303E+03 9.009E+03 4.912E+03 7.619E+03 7.4
Std  2.361E+01 2.969E+01 4.992E+03 1.035E+02 1.254E+04 7.215E+01 2.319E+03 3.8
Mean 1.226E+03 1.274E+03 1.469E+04 1.418E+03 2.801E+04 1.362E+03 6.413E+03 1.0
Std 3.686E+05 9.060E+05 3.457E+09 2.508E+06 1.162E+08 9.680E+06 1.880E+09 3.1
Mean 7.126E+05 1.306E+06 8.340E+09 2.529E+06 9.876E+09 1.296E+07 6.585E+09 5.5
Std 7.481E+03 1.024E+04 3.656E+09 1.415E+05 1.325E+08 1.070E+05 1.695E+09 1.7
Mean 1.394E+04 2.466E+04 ©5.387E+09 7.805E+04 2.494E+09 1.403E+05 3.068E+09 1.5
Std 2.432E+03 3.212E+02 4.833E+06 7.881E+04 1.652E+05 4.673E+04 1.099E+06 3.4
Mean 3.180E+03 1.944E+03 05.595E+06 1.017E+05 2.843E+06 4.968E+04 1.832E+06 2.5
Std  2.725E+03 2.950E+03 2.909E+08 1.583E+04 7.055E+07 3.870E+04 1.292E+08 2.2
Mean 4.219E+03 ©5.125E+03 3.019E+08 2.201E+04 6.392E+08 7.310E+04 1.514E+08 1.2
Std 2.027E+02 2.446E+02 6.112E+02 2.614E+02 2.430E+03 3.046E+02 ©5.549E+02 6.5
Mean 2.510E+03 3.079E+03 4.649E+03 2.528E+03 9.488E+03 2.914E+03 4.649E+03 4.2
_Std 1.279E+02 1.047E+02 9.196E+02 1.577E+02 1.783E+04 1.846E+02 3.690E+02 2.9




Mean L.879E+03 2.050E+03 3.577E+03 2.121E+03 2.071E+04 2.268E+03 2.858E+03 2.7
Std  8.039E+04 6.307E+04 2.957E+07 1.199E+06 1.653E+06 6.035E+05 1.536E+07 1.4
Mean 9.408E+04 1.167E+05 3.205E+07 1.354E+06 1.056E+07 7.455E+05 1.352E+07 1.2
Std  5.836E+03 4.334E+03 4.390E+08 2.231E+04 6.524E+06 1.780E+06 3.770E+07 1.8
Mean 5.566E+03 6.267E+03 5.421E+08 2.477E+04 1.434E+08 2.157E+06 3.055E+07 1.9
Std 1.255E+02 1.616E+02 2.236E+02 1.723E+02 2.045E+02 1.782E+02 2.073E+02 2.1
Mean 2.246E+03 2.441E+03 3.074E+03 2.428E+03 3.011E+03 2.554E+03 2.767E+403 2.0
Std  2.093E+01 1.421E+01 4.746E+01 2.135E+01 1.918E+01 3.179E+01 2.772E+01 5.6
Mean 2.390E+03 2.481E+03 2.696E+03 2.397E+03 2.644E+03 2.423E+03 2.618E+03 2.6
Std  3.541E+00 3.286E+00 1.660E+03 2.127E+03 1.028E+03 1.649E+03 1.102E+03 1.4
Mean 2.302E+03 2.309E+03 9.030E+03 5.143E+03 1.023E+04 5.700E+03 8.134E+03 8.2
Std  2.201E+01 1.540E+01 1.287E+02 2.609E+01 8.481E+01 4.938E+01 1.314E+02 1.2
Mean 2.742E+03 2.849E+03 3.209E+03 2.754E+03 3.773E+03 2.789E+03 3.502E+03 3.1
Std  2.625E+01 2.294E+01 8.506E+01 2.239E+01 4.401E+01 2.934E+01 1.578E+02 9.6
Mean 2.898E+03 3.020E+03 3.450E+03 2.911E+03 3.846E+03 2.927E+03 3.824E+03 3.3
Table 1 Cont.
Fun Index sngcp CPO CFOA  PKO CDO MVO HOA  WOA
g LOSOE 1827E+ 7A489E 1570E+ 3.044E+ 2.054E+ 2.122E B.017E
ros +01 01 +02 01 01 01 +02 +01
Mean 2-895E 2010E+ 5421E 2.916E+ 3.620E+ 2906E+ 3.833E  3.222E
+03 03 +03 03 03 03 +03 +03
oq 2912E+ B8.708E+ 0.246E 2.361E 3475E+ 6.543E+ B8.188E  8.084E
6 02 02 +02 ¥02 02 02 +02 +02
Mean 4721E+ 5.364E+ 1.037E  4.600E 9.049E+ 4.808E+ O.515E  8.765E
03 03 +04 +03 03 03 +03 +03
oiq B8985E 1347E+ 2247E 1058E+ 4.526E+ 2.201E+ 2.061E  1.521E
7 +00 01 +02 01 01 01 +02 +02
Mean 3-227E+ 3277E+ 3.905E 3.223E 3.699E+ 3.235E+ 4.194E  3.488E
03 03 +03 +03 03 03 +03 +03
giq 2-115E 2221F+ 8483E 2.752E+ 3.567E+ 3.863E+ 4.340E 3.401E
- +01 o1 +02 01 01 01 +02 +02
Mean 3-233E 32050+ 6.866E 3.291E+ 5.056E+ 3.259E+ 5.830E  3.920E
+03 03 +03 03 03 03 +03 +03
giq 1192E 1578E+ 1.091E 1462E+ 3.756E+ 2.169E+ 7.567E  6.425E
- +02 02 +03 02 02 02 +02 +02
Mean 3-662E 3.997E+ 6.717E 3.840E+ 6.574E+ 4.031E+ 6.288E 5.513E
+03 03 +03 03 03 03 +03 +03
giq L369E 7.121E+ 4.820E 1.676E+ B8.595E+ 3.913E+ 2704E 1111E
0 +04 04 +08 05 08 06 +08 +08
Mean 2-454E 1.160E+ 6.293E 1.087E+ 3.126E+ 4.939E+ 4.026E  9.166E
+04 05 +08 05 09 06 +08 +07
Std rank 1.93 2.10 7.34 3.31 4.59 4.38 6.07 6.28
Mean rank  1.24 2.97 7.45 2.79 6.93 3.10 5.93 5.55
Overall rank 1 2 8 3 5 4 7 §)

As shown by the numerical results in Table 1,

objective values,

with the reduction

SDHCPO achieves
noticeable improvements in both the mean and standard deviation of the

in the mean being particularly

pronounced. For several functions, such as F1, F9, F12, F18, and F30, the
mean objective values of SDHCPO are lower than those of the original CPO
and other metaheuristic algorithms by one or even multiple orders of
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magnitude. For the multimodal functions F4-F10, algorithms such as the
original CPO, CFOA, and CDO tend to become trapped in local minima within
the complex multimodal landscape as the dimensionality increases, leading to
generally higher mean objective values. In contrast, SDHCPO is able to escape
local optima while maintaining adequate exploration intensity, thereby
keeping the final mean values at a markedly lower level. This advantage is
further amplified on the hybrid functions F11-F20 and the composition
functions F21-F30. It can be observed that the mean values of most competing
algorithms deteriorate significantly on these two categories of functions, with
some objective values even reaching the order of 108-10°, whereas the mean
values of SDHCPO remain far below this range. These results indicate that,
compared with other competing algorithms, SDHCPO exhibits substantially
stronger global search capability and higher convergence accuracy.
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Fig. 4 Friedman Rank Evolution of SDHCPO vs. Competitors on CEC2017
Test Suite (d=30)

Figure 4 presenis the per-function ranking distribution of the eight
algorithms on the 30 test functions of CEC2017. It can be observed that
SDHCPO consistently ranks among the top methods on almost all test
functions, with only minor fluctuations on a few cases, which further
corroborates, from a ranking perspective, the high accuracy and robustness
indicated by the preceding statistical results.

Table 2. Wilcoxon Rank-Sum p-Values: SDHCPO vs. Algorithms on CEC2017
(d=30)

Fun CPO-p CFOA-p PKO-p CDO-p MVO-p HOA-p WOA-p

1 3.020E- 3.020E- 3.020E- 3.020E- 3.020E- 3.020E- 3.020E-

11 11 11 11 11 11 11

3 4.118E- 3.020E- 3.020E- 3.020E- 1.558E- 1.777E- 3.020E-
06 11 11 11 08 10 11

4 4.982E- 3.020E- 1.041E- 3.020E- 2.116E- 3.020E- 3.020E-
04 11 04 11 01 11 11

5 3.020E- 3.020E- 1.087E- 3.020E- 3.339E- 3.020E- 3.020E-
11 11 01 11 03 11 11

6 3.020E- 3.020E- 3.020E- 3.020E- 3.020E- 3.020E- 3.020E-
11 11 11 11 11 11 11




7 3.020E- 3.020E- 1.767E- 3.020E- 2.062E- 3.020E- 3.020E-

11 11 03 11 01 11 11
8 3.020E- 3.020E- 8.650E- 3.020E- 5.971E- 3.020E- 3.020E-
11 11 01 11 05 11 11
9 6.696E- 3.020E- 5.072E- 3.020E- 3.020E- 3.020E- 3.020E-
11 11 10 11 11 11 11
10 3.020E- 3.020E- 7.959E- 3.020E- 9.031E- 1.329E- 3.159E-
11 11 03 11 04 10 10
11 5.533E- 3.020E- 6.121E- 3.020E- 2.390E- 3.020E- 3.020E-
08 11 10 11 08 11 11
12 4.060E- 3.020E- 4.183E- 3.020E- 9.919E- 3.020E- 3.020E-
02 11 09 11 11 11 11
13 2.681E- 3.020E- 2.879E- 3.020E- 3.020E- 3.020E- 3.020E-
04 11 06 11 11 11 11
14 5.106E- 3.020E- 3.338E- 3.020E- 6.066E- 3.020E- 3.020E-
01 11 11 11 11 11 11
15 2.254E- 3.020E- 1.613E- 3.020E- 3.020E- 3.020E- 3.020E-
04 11 10 11 11 11 11
16 1.011E- 3.020E- 7.394E- 3.020E- 1.383E- 3.020E- 3.020E-
08 11 01 11 02 11 11
17 1.493E- 3.020E- 1.529E- 3.020E- 3.368E- 3.020E- 3.020E-
04 11 05 11 05 11 11
18 8.650E- 3.020E- 1.174E- 3.020E- 1.473E- 3.690E- 6.066E-
01 11 09 11 07 11 11
19 2.062E- 3.020E- 4.118E- 3.020E- 3.020E- 3.020E- 3.020E-
01 11 06 11 11 11 11
20 2.783E- 3.020E- 2.433E- 3.020E- 7.599E- 3.020E- 3.020E-
07 11 05 11 07 11 11
21 3.020E- 3.020E- 1.537E- 3.020E- 7.221E- 3.020E- 3.020E-
11 11 01 11 06 11 11
22 5.573E- 3.690E- 1.464E- 3.020E- 2.154E- 4.504E- 4.077E-
10 11 10 11 10 11 11
23 4.077E- 3.020E- 6.771E- 3.020E- 3.183E- 3.020E- 3.020E-
11 11 02 11 03 11 11
24 3.020E- 3.020E- 9.941E- 3.020E- 3.034E- 3.020E- 3.020E-
11 11 01 11 03 11 11
25 7.697E- 3.020E- 2.226E- 3.020E- 6.204E- 3.020E- 3.020E-
04 11 01 11 01 11 11
26 6.356E- 3.020E- 9.069E- 3.020E- 6.736E- 3.020E- 3.020E-
05 11 03 11 06 11 11
27 5.494E- 3.020E- 5.828E- 3.020E- 5.555E- 3.020E- 3.020E-
11 11 03 11 02 11 11
28 1.784E- 3.020E- 1.385E- 3.020E- 5.692E- 3.020E- 3.020E-
04 11 06 11 01 11 11
29 1.329E- 3.020E- 1.019E- 3.020E- 1.174E- 3.020E- 3.020E-
10 11 05 11 09 11 11
30 4.311E- 3.020E- 1.032E- 3.020E- 3.020E- 3.020E- 3.020E-
08 11 02 11 11 11 11

- 0/3/26  0/0/29  1/7/21  0/0/29  2/5722  0/0/29  0/0/29
I=1+

Table 2 reports the p-values of SDHCPO against the seven comparison
algorithms on each test function, together with the overall “—/=/+" counts. It
can be seen that the vast majority of p-values are far below 0.05, indicating
that SDHCPO exhibits statistically significant superiority over the competing



algorithms on almost all functions. It is worth emphasizing that the Wilcoxon-
based significance results are highly consistent with the aforementioned
“order-of-magnitude gap” in the mean values: for functions where the mean
objective value of SDHCPO is much lower than that of the competitors, the
corresponding p-values typically shrink to the order of 108 or even 1011,
implying that the performance gap cannot be attributed to random
fluctuations. By contrast, the few cases with slightly larger p-values or an
“=" outcome mostly correspond to functions on which all algorithms have
already approached the theoretical optimum. In such situations, the standard
deviation and p-values are no longer the primary focus of comparison and do
not alter the conclusion that SDHCPO holds a clear overall advantage.
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F3

10%

._.
2w

Fitness value
Fitness value

1<

<R -

0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration

F4

Fitness value
Fitness value

0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration



Fitness value

100 200 300 400 500
Iteration

Fitness value

0 100 200 300 400 500
Iteration

Fig. 5 SDHCPO vs. algorithms: CEC2017 convergence curves (F1, F3-F7)
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Fig. 6 SDHCPO vs. algorithms: CEC2017
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Fig. 7 SDHCPO vs. algorithms: CEC2017
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Fig. 9 SDHCPO vs. algorithms: CEC2017 convergence curves (F26-F30)

The convergence behavior on CEC2017 is illustrated in Figures 5-9. By
analyzing the convergence curves for the F1-F30 test functions, SDHCPO
exhibits a pronounced overall advantage in both convergence speed and
convergence accuracy. In most cases, its convergence curves remain at the
lowest level among all algorithms, and, in particular, the fitness values of
SDHCPO show the steepest decline during the early iterations. This indicates
that SDHCPO possesses highly efficient glsbhal search capability and can
rapidly approach the vicinity of the optimal solution. As the iterations proceed,
SDHCPO continues to improve the solutions and effectively avoids being
trapped in local optima, ultimately converging to fitness values that are
clearly superior to those of the competing algorithms, for example on
functions F1, F9, F12, F18, and F30. These results provide strong evidence of
its superiority in obtaining high-precision solutions and the stability of its
search process.

4.3 Results on the CEC2022 Benchmark Suite

To further evaluate the generalization capability of SDHCPO across
different function classes, this subsection compares SDHCPO with the same
set of competing algorithms on the 20-dimensional CEC2022 test suite. Table
3 reports the mean and standard deviation of the best objective values
obtained on the 12 test functions. It can be observed that SDHCPO achieves
the smallest mean fitness on 10 out of the 12 functions and ranks second on
the remaining two, while also attaining the best average Friedman rank.
These results indicate that, on the new benchmark suite, SDHCPO maintains
an overall performance advantage consistent with that observed on CEC2017.

Table 3. Performance Metrics of SDHCPO and Other Algorithms on CEC2022
Index SDHCPO CPO CFOA PKO CDO MVO HOA
Std 2.015E+03 3.810E+03 3.407E+04 1.250E+04 2.452E+03 1.203E+01 6.987E+03 9.(
Mean 7.059E+03 1.297E+04 8.376E+04 3.490E+04 2.971E+04 3.180E+02 3.175E+04 3.t
_Std  1.110E+01 1.211E+01 4.769E+02 1.109E+01 4.478E+01 1.582E+01 3.153E+02 6.4




Mean
Std
Mean
Std
Mean
Std
Mean
Std
Mean
Std
Mean
Std
Mean
Std
Mean
Std
Mean
Std
Mean
Std
Mean

ank
rank
| rank

4.560E+02 4.620E+02 1.914E+03 4.561E+02 2.087E+03 4.488E+02 1.386E+03
6.167E-03 2.149E-01 1.358E+01 7.955E-01 5.362E+00 1.349E+01 8.986E+00
6.000E+02 6.003E+02 6.734E+02 6.008E+02 6.663E+02 6.204E+02 6.539E+02
1.022E+01 1.488E+01 2.027E+01 1.552E+01 9.692E+00 2.634E+01 1.673E+01
8.335E+02 9.032E+02 9.749E+02 8.400E+02 9.555E+02 8.753E+02 9.254E+02
9.416E-01 2.371E+01 1.637E+03 3.821E+01 2.482E+02 1.490E+03 5.482E+02
9.005E+02 9.121E+02 4.260E+03 9.304E+02 3.502E+03 2.353E+03 2.688E+03
1.461E+03 1.825E+04 5.336E+08 9.770E+04 9.034E+08 6.507E+03 5.120E+08
3.655E+03 2.208E+04 7.031E+08 6.943E+04 5.670E+09 1.150E+04 6.341E+08
7.363E+00 1.024E+01 7.736E+01 2.218E+01 3.442E+01 8.206E+01 6.253E+01
2.039E+03 2.064E+03 2.231E+03 2.071E+03 2.353E+03 2.143E+03 2.203E+03
1.337E+00 2.163E+00 2.928E+02 4.422E+00 1.166E+01 9.548E+01 9.250E+01
2.227E+03 2.232E+03 2.515E+03 2.231E+03 2.256E+03 2.316E+03 2.338E+03
1.315E-01 3.537E-01 2.091E+02 3.671E-01 1.046E+02 4.737E-01 1.803E+02
2.481E+03 2.482E+03 2.932E+03 2.481E+03 3.469E+03 2.482E+03 3.021E+03
3.451E+01 8.076E+01 1.747E+03 1.013E+03 9.556E+02 7.934E+02 1.384E+03
2.510E+03 2.540E+03 5.297E+03 3.759E+03 6.068E+03 3.880E+03 4.938E+03
1.018E-01 3.727E+01 1.733E+04 1.483E+01 3.424E+01 1.177E+01 1.083E+03
2.900E+03 2.915E+03 4.567E+04 2.920E+03 8.544E+03 2.982E+03 7.203E+03
5.716E+00 1.147E+01 1.259E+02 6.412E+00 5.178E+01 3.332E+01 1.984E+02
2.944E+03 2.987E+03 3.310E+03 2.949E+03 3.592E+03 2.974E+03 3.716E+03
1.333 2.750 7.417 3.417 4.250 4.500 6.000
1.167 2.833 7.250 2.917 6.833 3.250 5.917
1 2 8 3 7 4 6

WP, WWkFL,DNO
Ny Ty e Ny

At the level of individual functions, the improvements achieved by

SDHCPO on multimodal, hybrid, and composition functions are particularly
pronounced. For the multimodal functions F2-F5, SDHCPO ranks second on
F2—slightly inferior to MVO yet still competitive—while achieving the smallest
mean objective values among all algorithms on F3-F5. In contrast, the mean
values of CFOA, CDO, HOA, and WOA are often several times, or even several
orders of magnitude, higher. This indicates that SDHCPO possesses stronger
global optimization capability and greater resistance to premature
convergence when dealing with complex landscapes featuring multiple local
minima. For the hybrid functions F6-F8, the performance gains are even more
striking. In particular, on F6, SDHCPO reduces the mean objective value to
the order of 103, whereas MVO remains above 104, and CPO together with the
other algorithms perform several orders of magnitude worse. For the
composition functions F9-F12, SDHCPO performs on par with PKO on F9,
while on F10-F12 it is markedly superior to all competing algorithms,
indicating that it can also effectively avoid entrapment in local optima in
complex composite landscapes. SDHCPO likewise exhibits a clear advantage
in convergence stability on the vast majority of functions. Except for F1 and
F4, SDHCPO attains the smallest standard deviation among all algorithms on
the remaining 10 functions, with particularly small fluctuation magnitudes on
F3, F5, Fo6, and F9-F12. This demonstrates highly reproducible convergence
behavior across repeated runs.

Std-based Friedman Ranks Mean-based Friedman Ranks

8 1 Algorithms Algorithms
—-@- SDHCPO 8 { —@— SDHCPO
7 cPo cPo
CFOA 7 CFOA
PKO PKO

6

cpo 6 cpo



Fig. 10 Friedman Rank Evolution of SDHCPO vs. Competitors on CEC2022
Test Suite

Figure 10 presents the per-function ranking distribution of the eight
algorithms on the 12 test functions of the 20-dimensional CEC2022 suite. It
can be observed that SDHCPO ranks among the top methods on almost all
functions, reflecting stable and consistently strong ranking performance
across different function types. These results indicate that, on the CEC2022
test set, SDHCPO achieves a clearly superior overail solving capability and
robustness.

Table 4. Wilcoxon Rank-Sum p-Values: SDHCPO vs. Algorithms on CEC2022

Fu CPO-p CFOA-p PKO-p CDO-p MVO-p HOA-p WOA-p
n

1 2.195E- 3.020E- 3.020E- 3.020E- 3.020E- 3.020E- 3.020E-

08 11 11 11 11 11 11

2 1.058E- 3.020E 3.478E- 3.020E- 9.031E- 3.020E- 3.020E-
03 11 01 11 04 11 11

3 3.020E- 3.020E- 3.020E- 3.020E- 3.020E- 3.020E- 3.020E-
11 11 11 11 11 11 11

4 3.690E- 3.020E- 1.120E- 3.020E- 6.518E- 3.020E- 3.020E-
11 11 01 11 09 11 11

5 1.174E- 3.020E- 3.497E- 3.020E- 3.338E- 3.020E- 3.020E-
09 11 09 11 11 11 11

6 6.722E- 3.020E- 8.891E- 3.020E- 1.174E- 3.020E- 3.020E-
10 11 10 11 09 11 11

7 2.610E- 3.020E- 1.698E- 3.020E- 1.464E- 3.020E- 3.020E-
10 11 08 11 10 11 11

8 5.072E- 3.020E- 3.592E- 3.020E- 1.070E- 3.020E- 3.020E-
10 11 05 11 09 11 11

9 6.066E- 3.020E- 3.147E- 3.020E- 2.872E- 3.020E- 3.020E-
11 11 02 11 10 11 11

Table 4.Cont.

Fun CPO-p CFOA-p PKO-p CDO-p MVO-p HOA-p WOA-p

10 6.669E- 7.389E- 2.879E- 3.020E- 2.015E- 6.696E- 1.777E-

03 11 06 11 08 11 10
11 3.020E- 3.020E- 3.020E- 3.020E- 3.020E- 3.020E- 3.020E-
11 11 11 11 11 11 11

12 1.094E- 3.020E- 5.264E- 3.020E- 4.459E- 3.020E- 3.020E-




10 11 04 11 04 11 11
- 0/0/12 0/0/12 0/2/10 0/0/12 1/0/11 0/0/12 0/0/12
[=/+

These findings are further corroborated by the Wilcoxon rank-sum test. As
shown in Table 4, the p-values of SDHCPO against most competing algorithms
are substantially below 0.05, and the corresponding “—/=/+" statistics are
dominated by “+”, indicating that, on the CEC2022 test set, SDHCPO is
overall statistically superior to the vast majority of comparison methods.
Overall, the CEC2022 experimental results are highly consistent with the
conclusions drawn from CEC2017: SDHCPO maintains a leading Friedman
ranking and statistically significant advantages across different dimensions
and benchmark suites, with its strengths particularly pronounced on
structurally complex multimodal, hybrid, and composition functions. This
indicates that the four enhancement strategies proposed in this paper do not
merely overfit a specific benchmark set, but can effectively improve the
accuracy, stability, and cross-problem robustness of the algorithm over a
broader family of problems, thereby providing further support for the
subsequent ablation studies and high-dimensional extension analysis.

4.4 Melting Experiment Results

The comparisons with multiple metaheuristic algorithms show that
SDHCPO already achieves substantially better overall performance than the
original CPO and other representative methods on both benchmark suites.
However, numerical results alone are insufficient to disentangle the individual
contributions of the four enhancement strategies or to determine whether the
observed performance gains primarily stem from a particular mechanism or
from their synergistic interaction. To this end, two groups of ablation
experiments are designed on the 30-dimensional CEC2017 test set, centered
on the four key strategies. In the first group, the original CPO is used as the
baseline, and only one strategy is activated at a time, yielding the variants
SCPO, DCPO, HCPO, and CCPO, which are used to characterize the
independent effect of each individual strategy. In the second group, the fully
integrated SDHCPO serves as the baseline, and one strategy is deactivated at
a time to construct the variants w/o C, w/o H, w/o D, and w/o S, thereby
examining the necessity of each strategy from the opposite perspective. The
configurations of all variants are encoded using a binary switch scheme,
where 1 indicates that the corresponding strategy is enabled and O indicates
that it is disabled, providing an intuitive representation of the differences
among variants along the four strategy dimensions, as summarized in Table 5.

Table 5. Variants of CPO constructed from four strategies.

H: C: Cosine
S: Sobol- D: Horizontal- Annealin
Algorithm OBL Differential . ng
crs 75 _as . Vertical Dynamic
Initialization Evolution

Crossover Adjustment




SDHCPO(all strategies

CPO 0 0 0
SCPO 1 0 0
DCPO 0 1 0
HCPO 0 0 1
CCPO 0 0 0

1 1 1

enabled)

_ POO0OO0OO0O

The ablation results for individual strategies are reported in Table 6.
Overall, SCPO, DCPO, HCPO, and CCPO achieve varying degrees of
improvement over CPO in terms of mean and/or standard deviation on most
test functions, indicating that each of the four strategies can yield substantial
benefits when applied in isolation. On unimodal functions, the effect of the
differential evolution mutation is particularly pronounced, significantly

enhancing the search efficiency and solution stability for single-peak problems.

For functions such as F4 and F6, DCPO achieves lower mean and standard
deviation than CPO, indicating that DE mutation can effectively strengthen
global search and suppress premature convergence. HCPO substantially
reduces the final mean on multimodal or complex functions such as F5, F8,
F10, and F16, yielding higher-precision solutions than CPO. CCPO exhibits
more stable performance on medium- and high-index functions and provides
the smallest or near-smallest mean among the single-strategy variants on
many hybrid and composition functions, with clear improvements over CPO on
F21-F29.

Table 6. Performance Metrics of CPO and Single-Strategy Variants on
CEC2017

Fun Inde CPO SCPU DCPO HCPO CCPO SDHCPO
X
F1 Std  5.932E+0 4.280E+0 1.108E+0 4.840E+0 4.536E+0 8.826E+
) 5 4 6 5 03
Mean 7.377E+0 6.020E+0 8.484E+ 5.829E+0 6.930E+0 1.202E+0
5 5 03 6 5 4
F3 Std 1.390E+0 1.304E+0 1.004E+0 1.612E+0 7.969E+ 9.399E+0
4 4 4 4 03 3
Mean 6.263E+0 6.191E+0 6.388E+0 5.062E+0 5.862E+0 4.103E+
4 4 4 4 4 04
F4 Std 2.335E+0 2.150E+0 1.883E+0 1.653E+0 1.693E+0 1.489E+
1 1 1 1 1 01
Mean 5.186E+0 5.158E+0 5.064E+0 5.297E+0 5.246E+0 5.058E+
2 2 2 2 2 02
F5 Std 1.598E+0 1.529E+0 1.390E+ 2.900E+0 2.512E+0 2.196E+0
1 1 01 1 1 1
Mean 6.944E+0 6.672E+0 6.841E+0 6.286E+0 6.454E+0 5.922E+
2 2 2 2 2 02
Fo6 Std 7.423E- 6.706E- 6.953E- 2.251E+0 5.900E- 4.659E-
01 01 02 0 01 02
Mean 6.019E+0 6.018E+0 6.001E+ 6.048E+0 6.018E+0 6.001E+
2 2 02 2 2 02
F7 Std 1.674E+0 1.663E+0 1.5307E+ 4.640E+0 2.685E+0 2.053E+0
1 1 01 1 1 1

Mean 9.398E+0 9.234E+0 9.297E+0 9.249E+0 8.902E+0 8.585E+




2 2 2 2 2 02

F8 Std 1.412E+ 1.478E+4+0 1.739E+4+0 2.950E+4+0 2.060E+0 2.003E+0
01 1 1 1 1 1

Mean 9.837E+0 9.821E+0 9.770E+0 9.187E+0 9.231E+0 8.883E+
2 2 2 2 2 02

F9 Std 4.924E+4+0 2.308E+0 7.038E+0 7.523E+0 1.335E+0 4.930E+
2 2 1 2 2 01

Mean 1.315E+4+0 1.197E+0 9.431E+0 2.189E+0 1.099E+0 9.336E+
3 3 2 3 3 02

F10 Std 4.159E+4+0 3.552E+0 3.409E+ 4.057E+0 5.891E+0 7.132E+0
2 2 02 2 2 2

Mean 7.539E+0 7.462E+0 7.789E+0 6.406E+0 6.040E+0 5.648E+
3 3 3 3 3 03

F11 Std 2.969E+0 2.729E+0 1.953E+ 6.698E+0 2.678E+0 2.361E+0
1 1 01 1 1 1

Mean 1.274E+4+0 1.270E+0 1.256E+0 1.261E+0 1.263E+0 1.226E+
3 3 3 3 3 03

F12 Std 9.060E+0 7.954E+0 7.489E+0 1.391E+0 6.439E+0 3.686E+
5 5 5 6 5 05

Mean 1.306E+0 9.918E+0 8.830E+0 2.136E+0 1.262E+0 7.126E+
6 5 5 6 6 05

F13 Std 1.024E+0 8.785E+0 8.673E+0 7.815E+0 8.433E+0 7.481E+
4 3 3 3 3 03

Mean 2.466E+0 1.781E+0 1.487E+0 8.952E+ 1.930E+0 1.394E+0
4 4 4 02 4 4

F14 Std 3.212E+ 2.924E+4+0 1.497E+0G 1.283E+0 1.659E+0 2.432E+0
02 3 3 4 3 3

Mean 1.944E+ 2.685E+0 2.730E+0 8.658E+0 2.575E+4+0 3.180E+0
03 3 3 3 3 3

F15 Std 2.950E+0 2.723E+0 2.040E+0 5.550E+0 1.703E+ 2.725E+0
3 3 3 3 03 3

Mean b5.125E+4+0 4.924FE+0 4.387E+0 5.309E+0 4.411E+4+0 4.219E+
3 3 3 3 3 03

F16 Std 2.446E+0 1.741E+ 1.759E+0 2.495E+0 2.528E+0 2.527E+0
2 02 2 2 2 2

Mean 3.079E+0 3.020E+0 3.090E+0 2.643E+0 2.642E+0 2.510E+
3 3 3 3 3 03

F17 Std 1.047E+ 1.466E+0 1.294E+0 1.366E+0 1.229E+0 1.279E+0
02 2 2 2 2 2

Mean 2.050E+0 2.042E+0 2.044E+0 1.952E+0 1.966E+0 1.879E+
3 3 3 3 3 03

F18 Std 6.307E+ 1.164E+0 2.453E+0 2.956E+0 6.733E+0 8.039E+0
04 5 5 5 4 4

Mean 1.167E+0 1.057E+0 1.316E+0 2.458E+0 1.110E+0 9.408E+
5 5 5 5 5 04

Table 6. Cont.
Fun Inde CPO SCPO DCPO HCPO CcCPO SDHCPO
X

F19 Std 4.334E+0 3.619E+ 6.374E+0 4.587E+0 4.259E+ 5.836E+0
3 03 3 3 03 3

Mean 6.267E+0 5.969E+0 7.292E+0 6.730E+0 6.679E+ 5.566E+
3 3 3 3 03 03

F20 Std 1.616E+0 9.667E+ 1.462E+0 1.307E+0 1.265E+ 1.255E+0
2 01 2 2 02 2




F21

F22

F23

F24

F25

F26

F27

F28

F29

F30

Mean
Std
Mean
Std
Mean
Std
Mean
Std
Mean
Std
Mean
Std
Mean
Std
Mean
Std
Mean
Std
Mean
Std

Mean

2.441E+0
3
1.421E+
01
2.481E+0
3
3.286E+0
0
2.309E+0
3
1.540E+
01
2.849E+0
3
2.294E+0
1
3.020E+0
3
1.827E+0
1
2.910E+0
3
8.708E+0
2
5.364E+0
3
1.347E+0
1
3.277E+0
3
2.221E+0
1
3.285E+0
3
1.573E+0

2
3.997E+0
3
7.121E+0
4
1.160E+0
5

2.415E+0
3
1.770E+0
1
2.441E+0
3
3.001E+0
0
2.305E+0
3
1.834E+0
1
2.845E+0
3
1.893E+0
1
2.992E+0
3
1.681E+0
1
2.915E+0
3
8.430E+0
2
5.196E+0
3
1.275E+0
1
3.261E+0
3
2.191E+0
1
3.262E+0
3
1.462E+0
2
3.991E+0
3
6.867E+0
4
1.001E+0
5

2.475E+0
3
1.495E+0
1
2.471E+0
3
2.155E+
00
2.303E+0
3
2.310E+0
1
2.836E+0
3
1.487E+
01
3.009E+0
3
1.370E+0
1
2.901E+0
3
8.268E+0
2
5.256E+0
3
1.235E+0
1

3.244E+0
3
2.305E+0
1
3.256E+0
3
1.314E+0
2
3.987E+0
3
5.487E+0
4
6.268E+0
4

2.312E+0
3
2.751E+0
1
2.427E+0
3
9.620E+0
2
2.494E+0
3
3.812E+0
1
2.782E+0
3
3.081E+0
1
2.935E+0
3
2.518E+0
1
2.928E+0
3
1.117E+0
3
4.407E+
03
1.462E+0
1
3.255E+0
3
3.179E+0
1
3.309E+0
3
1.873E+0
2
3.776E+0
3
6.338E+0
4
6.711E+0
4

2.320E+
03
2.029E+
01
2.424E+
03
4.703E+
00
2.303E+
03
2.003E+
01
2.809E+
03
2.609E+
01
2.9650E+
03
1.294E+
01
2.907E+
03
8.183E+
02
4.807E+
03
1.291E+
01
3.2650E+
03
2.256E+
01
3.283E+
03
1.718E+
02
3.801E+
03
7.631E+
04
1.289E+
05

2.246E+
03
2.093E+0
1
2.390E+
03
3.541E+0
0
2.302E+
03
2.201E+0
1
2.742E+
03
2.625E+0
1
2.898E+
03
1.050E+
01
2.895E+
03
2.912E+
02
4.721E+0
3
8.985E+
00
3.227E+
03
2.115E+
01
3.253E+
03
1.192E+
02
3.662E+
03
1.369E+
04
2.454E+
04

The Friedman statistics in Table 7 show that, in terms of the mean

objective value, SDHCPO attains an average rank of 1.241,

which is

substantially lower than that of all single-strategy variants, followed in order
by CCPO, DCPO, HCPO, and SCPO. For the standard deviation, SDHCPO
likewise achieves the lowest average rank, only slightly higher than a few
single-strategy configurations that behave more conservatively on individual
functions. These results indicate that the four strategies do not simply stack
within a single framework, but rather exhibit complementary effects at
different stages and on different function types, enabling SDHCPO to further
reduce the objective values while maintaining stability. The Wilcoxon test



results against SDHCPO further show that, although some single-strategy
variants can approach SDHCPO on a small number of functions, SDHCPO still
significantly outperforms them on roughly twenty functions, indicating that no
single strategy can reproduce the overall advantage of the fully integrated
framework.

Table 7. Friedman/Wilcoxon statistics of CPO and single-strategy variants on
CEC2017

Algorithm Avg Rank Avg Rank Overall Rank -/=/+ (Mean)
(Std) (Mean)

CPO 3.724 5.103 5 0/3/26
SCPO 3.138 3.793 4 0/4/25
DCPO 2.724 3.655 2 1/8/20
HCPO 5.276 3.828 6 2/4/23
CCPO 3.448 3.276 3 0/4/25

SDHCPO 2.690 1.241 1 -/-/-

After analyzing the configurations with single strategies enabled, a
complementary set of experiments is designed to further assess the necessity
of each enhancement module from the opposite perspective. Using SDHCPO
as the baseline, four variants are constructed by selectively disabling one
strategy at a time. Specifically, by turning off the Sobol-based initialization,
Differential Evolution mutation, Horizontal-Vertical Crossover, and cosine-
annealing-based dynamic adjustment, the variants w/o S, w/o D, w/o H, and
w/o C are obtained, respectively. The corresponding 0-1 configurations are
summarized in Table 8.

Table 8. Strategy configurations of SDHCPO and disabled-strategy variants.

H: C: Cosine
S: Sobol- D: Horizontal- Annealin
Algorithm OBL Differential . ng
crs 1o as . Vertical Dynamic
Initialization Evolution .
Crossover Adjustment
SDHCPO(all strategies
1 1 1 1
enabled)
w/o C 1 1 1 0
w/o H 1 1 0 1
w/o D 1 0 1 1
w/o S 0 1 1 1
CPO 0 0 0 0

The ablation results for the configurations with individual strategies
disabled are reported in Table 9. Overall, removing any single strategy from
SDHCPO leads to varying degrees of performance degradation on a
considerable number of benchmark functions, with the effect being
particularly pronounced on high-dimensional multimodal, hybrid, and
composition functions. Compared with the fully integrated SDHCPO, all four
variants exhibit generally higher mean fitness values and slightly larger
standard deviations, indicating that none of the modules is a redundant add-
on; instead, they jointly underpin the algorithm’s global search capability and
convergence stability in complex search spaces.



Table 9. Performance
Variants on CEC2017

Metrics of SDHCPO

and Single-Strategy-Disabled

Fun I“fe SDHCPO  w/o C w/o H wioD  w/oS CPO
Siq BB20E+0 6.443E+0 6.80BE+ 3.424E+ 1.081E+ 5.032E+0
1 3 4 03 06 04 5
Mean 1:202E40 7.225E+0 7.593E+ 5.360E+ 1.287E+ 7.377E+0
4 4 03 06 04 5
g 9-399E+ 1.075E+0 1.124E+0 1.057E+ 1.021E+ 1.390E+0
. 03 4 4 04 04 4
Mean 4103E+ 4.643E+0 5.938E+0 4.554E+ 4.177E+ 6.263E+0
04 4 4 04 04 4
1.489E+0 1.310E+ 1.695E+0 1.942E+ 2.015E+ 2.335E+0
Std
4 1 01 1 01 01 1
Mean 5-038E+ 5.120E+0 5.078E+0 5.331E+ 5.113E+ 5.186E+0
02 2 2 02 02 2
2.196E40 2.757E+0 2.637E+0 2.152E+ 2.336E+ 1.598E+
Std
o 1 1 1 01 01 01
Mean 3-922E+ 6.205E+0 6.114E+0 6.097E+ 5.995E+ 6.944E+0
02 2 2 02 02 2
Std  4.659E-02 7.320E-02 4'1072513' 1'288E+ 5‘3(?21E' 7.423E-01
F6 Mean 6-001E+ 6.002E+0 6.002E+0 6.034E+ 6.004E+ 6.019E+0
02 2 2 02 02 2
2.053E4+0 3.255E+0 2.319E+0 3.213E+ 2.306E+ 1.674E+
Std
- 1 1 1 01 01 01
Monn 8:585E+ 8.927E+0 8.719E+0 B8.859E+ B8.604E+ 9.398E+0
02 2 B 02 02 2
2.003E40 2.999E+0 1.808E+0 1.858E+ 2.062E+ 1.412E+
Std
rg 1 1 1 01 01 01
Mean 8883E+ 0.0430+0 9.061E+0 8.992E+ B8.908E+ 9.837E+0
02 2 2 02 02 2
4.930E40 3.101E+0 4.734E+ 4.401E+ 5.753E+ 4.924E+0
Std C
o ; 2 01 02 01 2
Mean 9-33SE+ 1170E+0 9.360E+0 1.538E+ 0.379E+ 1.315E+0
02 3 2 03 02 3
7.132E40 7.440E4+0 7.691E+0 4.974E+ 6.607E+ 4.159E+
Std
10 2 2 2 02 02 02
Mean 5-648E+ 6.174E+0 5.956E+0 5.797E+ 5.688E+ 7.539E+0
03 3 3 03 03 3
2.361E+ 2.448E+0 2.617E+0 6.054E+ 3.058E+ 2.969E+0
Std
. 01 1 1 01 01 1
Mean 1-226E+0 L211E+ 1232E+0 1.259E+ 1.231E+ 1.274E+0
3 03 3 03 03 3
3.686E+ 8.801E+0 4.309E+0 9.400E+ 4.373E+ 9.060E+0
Std
1 05 5 5 05 05 5
Mean 7-126E40 1.046E+0 6.764E+ 1899E+ 7.501E+ 1.306E+0
5 6 05 06 05 6
Table 9. Cont.
Fun I“;e SDHCPO  w/o C w/o H w/o D w/o S CPO
7481E+0 1.002E+0 1.264E+0 7.075E+ 8.215E+0 1.024E+0
Std
13 3 4 4 03 3 4
Menn 1-394E40 LOL0E+ 1.761E+0 1.044E+0 1.891E+0 2.466E+0
4 04 4 4 4 4




F14

F15

Fl6

F17

F18

F19

F20

F21

F22

F23

F24

F25

F26

F27

Std
Mean
Std
Mean
Std
Mean
Std
Mean
Std
Mean
Std
Mean
Std
Mean
Std
Mean
Std
Mean
Std
Mean
Std
Mean
Std
Mean
Std
Mean
Std

Mean

2.432E+0
3
3.180E+0
3
2.725E+0
3
4.219E+
03
2.527E+0
2
2.510E+
03
1.279E+0
2
1.879E+
03
8.039E+0
4
9.408E+
04
5.836E+0
3
5.566E+
03
1.255E+0
2
2.246E+
03
2.093E+0
1
2.390E+
03
3.541E+0C
0
2.302E+
03
2.201E+0
1
2.742E+0
3
2.625E+0
1
2.898E+
03
1.050E+
01
2.895E+
03
2.912E+0
2
4.721E+0
3
8.985E+0
0
3.227E+
03

1.319E+0
4
8.973E+0
3
2.827E+0
3
6.106E+0
3
3.367E+0
2
2.628E+0
3
1.314E+0
2
1.965E+0
3
1.311E+0
5
1.853E+0
5
7.452E+0
3
7.958E+0
3
1.230E+0
2
2.274E+0
3
3.754E+0
1
2.393E+0
3
1.423E+0
3
2.676E+0
3
2.790E+0
1
2.736E+
03
2.796E+0
1
2.908E+0
3
1.769E+0
1
2.913E+0
3
7.101E+0
2
4.021E+
03
1.167E+0
1
3.229E+0
3

9.620E+0
2
2.132E+0
3
2.942E+0
3
4.868E+0
3
2.655E+0
2
2.735E+0
3
1.116E+0
2
1.930E+0
3
1.571E+0
5
1.873E+0
5
3.149E+
03
5.617E+0
3
1.228E+0
2
2.304E+0

2.166E+0
1
2.418E+0
3
7.698E+0
2
2.442E+0
3
2.272E+0
1
2.779E+0
3
2.969E+0
1
2.944E+0
3
1.153E+0
1
2.897E+0
3
2.366E+
02
4.811E+0
3
8.361E+0
0
3.231E+0
3

1.941E+0
4
1.084E+0
4
2.542E+0
3
4.290E+0
3
2.247E+
02
2.518E+0
3
9.676E+
01
1.933E+0
3
1.848E+0
5
1.679E+0
5
6.898E+0
3
8.341E+0
3
9.508E+
01
2.285E+0
3
2.298E+0
1
2.404E+0
3
4.716E+0
0
2.321E+0
3
2.708E+0
1
2.764E+0
3
2.191E+
01
2.933E+0
3
2.124E+0
1
2.925E+0
3
7.406E+0
2
4 510E+0
3
1.717E+0
1
3.255E+0
3

2.714E+0
3
2.557E+0
3
2.300E+
03
4.499E+0
3
2.508E+0
2
2.515E+0
3
1.155E+0
2
1.907E+0
3
9.263E+0
4
1.293E+0
5
4.003E+0
3
5.572E+0
3
1.128E+0
2
2.284E+0
3
2.278E+0
1
2.391E+0
3
8.314E+0
2
2.453E+0
3
2.525E+0
1
2.760E+0
3
2.836E+0
1
2.910E+0
3
1.197E+0
1
2.897E+0
3
5.233E+0
2
4.454E+0
3
6.648E+
00
3.227E+0
3

3.212E+
02
1.944E+
03
2.950E+0
3
5.125E+0
3
2.446E+0
2
3.079E+0
3
1.047E+0
2
2.050E+0
3
6.307E+
04
1.167E+0
5
4.334E+0
3
6.267E+0
3
1.616E+0
2
2.441E+0
3
1.421E+
01
2.481E+0
3
3.286E+
00
2.309E+0
3
1.540E+
01
2.849E+0
3
2.294E+0
1
3.020E+0
3
1.827E+0
1
2.910E+0
3
8.708E+0
2
5.364E+0
3
1.347E+0
1
3.277E+0
3




2.115E+0 2.213E+0 2.081E+ 2.228E+0 2.180E+0 2.221E+0

- Std 1 1 01 1 1 1
Moan 3203E+ 3.264E+0 3.258E+0 3.205E+0 3.255E+0 3.285E+0
03 3 3 3 3 3
1.192E+ 1.428E+0 1.428E+0 1.643E4+0 1.476E+0 1.578E+0
Std
0 02 2 2 2 2 2
Menn 3-662E+ 3.679E+0 3.773E+0 3.693E+0 3.669E+0 3.997E+0
03 3 3 3 3 3
1.369E+ 1.461E+0 4.242E40 3.690E+0 1.844E+0 7.121E+0
Std
F30 04 4 4 4 4 4
Moan 2-454E+0 2.266E+ 7.642E+0 4.690E+0 2.825E+0 1.160E+0
4 04 4 4 4 5

These conclusions are systematically corroborated by the Friedman
rankings and the Wilcoxon “—/=/+" statistics. As shown in Table 10, SDHCPO
attains by far the lowest average Friedman rank in terms of the mean
objective value, followed in order by w/o S, w/o C, w/o H, w/o D, and CPO,
indicating that disabling any single strategy leads to a certain degree of
overall performance degradation, with the deterioration caused by removing
Differential Evolution or Horizontal-Vertical Crossover being particularly
pronounced;For the standard deviation, SDHCPO likewise achieves the lowest
average rank, whereas all other variants and the original CPO exhibit
substantially higher ranks, indicating that {the complete SDHCPO
configuration offers superior convergernice accuracy and stability. The
Wilcoxon tests with SDHCPO as the baseline lead to the same conclusion:
relative to w/o C, w/o H, w/o D, and w/o S, SDHCPO is marked with “+” on
most functions, while “—” outcomes are very rare and mainly concentrated on
relatively simple functions. From a statistical perspective, this further
confirms that removing any single module degrades the overall performance
of SDHCPO.

Table 10. Friedman/Wilcoxon statistics of SDHCPO and disabled-strategy
variants on CEC2017

Algorithm Avg Rank Avg Rank Overall Rank -/=/+ (Mean)
(Std) (Mean)

SDHCPO 2.448 1.448 1 -/-/-
w/o C 4.379 3.586 4 3/8/18
w/o H 3.172 3.724 3 1/12/16
w/o D 4.069 4.310 5 0/10/19
w/o S 3.310 2.655 2 0/17/12
CPO 3.586 5.172 6 0/3/24

Taken together with the single-strategy ablation results, these findings
indicate that all four strategies are individually effective while also exhibiting
strong synergy within the fully integrated framework. There is neither a single
strategy that alone accounts for all performance gains nor any redundant
module that fails to contribute to the overall behavior. Instead, both
structurally and statistically, the four components jointly underpin the
superior performance of SDHCPO.
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4.5 Qualitative Analysis of Search Dynamics

To further elucidate the internal mechanisms of SDHCPO, this section
selects representative unimodal and multimodal functions from CEC2017 and
conducts a series of visualization analyses of its iterative behavior, including
population diversity evolution, convergence curves, mean best fitness, 1-

Dimensional Search Path, and search-history distributions,

in order to

investigate the exploration-exploitation balance achieved through the synergy

of the four integrated strategies
visualizations are provided in Figure 11.

Search space

x10"®
4
=
=2
0
-100 100
0 0
X, 100 100
x10°
2
1
=
0
100 100
0 0
X, 100 100 Lo
3000
2000
=
*= 1000
0
=100 100
0 0
X, 100 100,
650

f(x)
o o N
g8 8 8

=

-100 100

X4

80

Diversity
N - -2}
(=] o o

o

Diversity
N &~ [=2] (-]
o o o o

e

o

Diversity
N &~ [-2] [
o o o o

r

o

Diversity
N B (=] [--]
=] o =] o

//’

o

Diversity

A

50 100 150 200 250
Iterations

1
50 100 150 200 250
Iterations

|
50 100 150 200 250
Iterations

L
50 100 150 200 250
Iterations

2t

L
50 100 150 200 250
Iterations

4

50 100 150 200 250
Iterations

Best fitness

Convergence Curve

108

Best fitness
=
L

-
=1
>

-
o
N

50 100 150 200 250
Iterations

Best fitness
g 8 8
o =] S

w
pet
o

\

w
=3
=]

50 100 150 200 250
Iterations

400.2

400.15

400.1

400.05

50 100 150 200 250
Iterations

g

Best fitness
w
g

8

|

50 100 150 200 250
Iterations

g

Best fitness

610

605 \\

50 100 150 200 250
Iterations

Best fitness
~ ~ ~
g & 8

8

50 100 150 200 250
Iterations

Average fitness history
1010 ——m

@ 1
0 .
0
£ s
= ' 1
g‘ |‘ 1
£ o108 ! i
(7] L}
> - r
< ' i
~ ll‘
ALl
50 100 150 200 250
Iterations
108
@
8
£10°
& ' 1
o 3 1
=] 1 H
ol i |
E 10 .‘ |
i
NN
10? P ———
50 100 150 200 250
Iterations
650
n
% 600
£
= 550
&
® 500
S
<C 450
N
' \
50 100 150 200 250
Iterations
530
"]
0
@ "
g520
(-] [
-3 '
S50
< \
\
500 ——=—=
50 100 150 200 250
Iterations
» 750
]
@
£
= 700
(-] 1
-3 i
$ 650,
< 1
A
.
50 100 150 200 250
Iterations
750
&
@ 740
£
: 730 h
-3 '
57200
E 1
710"
St

50 100 150 200 250
Iterations

Trajectory in 1st dimension
-50

-60

-70

-

-80
50 100 150 200 250

Iterations
-54
56 lr*
-
-58
-60
50 100 150 200 250
Iterations
40
35
-
30
25

50 100 150 200 250

lterations
20
0
X =201
-40
-60
50 100 150 200 250
Iterations
95
90
85
-
80
75
50 100 150 200 250
Iterations
20
0 r—'
x -20
-40

50 100 150 200 250
Iterations

[25]. The resulting search dynamics

Search history

-100 0 100



Search space Diversity Convergence Curve Average fitness history Trajectory in 1st dimension Search history
80 60
840

50
b
40
- ~
x x

M 30
2]
1 -

\ 20
"y

@

o
-]
8

Diversity
'y
o
Best fitness
o
8

=]

S
Average fitness
o
X
(=]

3
=3
]
R
™
iy
=]

-~ 10
50 100 150 200 250 50 100 150 200 250 50 100 150 200 250 50 100 150 200 250

Iterations Iterations Iterations Iterations

o
=]
2
@
g

-20

©

=

=)
2
=3

-22
- =24 l o~

-26

L 28
1 h .3

0
50 100 150 200 250 50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
Iterations Iterations Iterations Iterations

©
8

8
5

0w ©w
B
Average fitness
8
(=]

g
o

Diversity
'S
o
Best fitness

n
=3

g
5]

o
w0
2

20

-]
o

1200 2 1500 10

@
o

v x
i

. 10
=100 ~. // 100 1050 < 1100 M
0\\//’3 f\ — “a_ & -

-20
100 -100 F10 50 100 150 200 250 50 100 150 200 250 6100 150 260 250 50 100 150 200 250
1 Iterations Iterations lterations Iterations X,

Fig. 11 Search Dynamics of SDHCPO

Diversity
'S
o
Best fitness

s @

o o
ge
8
(=]

=

8

o
3
=3

First, considering the population diversity curves in the second column, it
can be observed that, for unimodal functions, diversity remains at a relatively
high level in the initial stage and then decreases steadily with the number of
iterations, eventually stabilizing. This indicates that the algorithm performs
sufficiently extensive global exploration at the outset and can rapidly achieve
a transition from broad exploration to fine-grained exploitation. For
multimodal functions, by contrast, the decline in diversity is noticeably slower,
and the curves maintain a relatively wide fluctuation range in the early and
middle stages, suggesting that the algorithm conducts thorough global
exploration and effectively avoids premature convergence to local optima.

The column of convergence curves provides a more direct illustration of
the dynamic switching mechanism between exploration and exploitation in
SDHCPO. For unimodal functions, the curves generally exhibit a fast-then-
slow descending pattern: SDHCPO rapidly locks onto a region near the global
optimum, after which the curves descend more gradually with almost no large
oscillations, indicating stable and fine-grained convergence. For multimodal
functions, the convergence curves display a more typical piecewise monotonic
behavior: over several iteration intervals, the best fitness remains nearly
unchanged, followed by a pronounced drop and the formation of a new
plateau. This pattern clearly demonstrates the ability of SDHCPO to escape
local optima.

The mean fitness history curves further show that SDHCPO exhibits small



jumps in the middle iterations. This indicates that the algorithm does not
simply pursue monotonically accelerated convergence; instead, once local
exploitation within a region has progressed to a certain extent, SDHCPO
deliberately expands the search radius and re-enhances population diversity.
In doing so, it temporarily sacrifices mean fitness to gain more thorough
global exploration capability, thereby achieving a more effective overall
balance between exploration and exploitation.

The 1-Dimensional Search Path in the fifth column show that, for unimodal
functions, the trajectories undergo large positional changes over a wide
domain in the early iterations, after which the search interval gradually
shrinks and eventually stabilizes in the vicinity of the global optimum. For
multimodal functions, the trajectories maintain large-range transitions over a
considerable number of iterations, frequently crossing the boundaries of
different attraction basins, which reflects a pronounced cross-basin global
exploration capability. As the algorithm enters the late iterations, the activity
range of the trajectories contracts markedly and becomes essentially confined
to the neighborhood of a single attraction basin, indicating that the search
focus has gradually shifted from exploration to exploitation in this stage.

The search-history scatter plots in the sixth columin further illustrate the
behavior of SDHCPO from a spatial distribution perspective. For unimodal
functions, the individual trajectories are widely and diffusely distributed
within the objective region in the early iterations, covering most of the
feasible domain. As the iterations progress, the scatter points gradually
contract toward the region containing tiie global optimum and form a high-
density cluster in its neighborhood, thereby achieving a smooth transition
from global exploration to local exploitation. For multimodal functions, the
scatter points are widely distributed across multiple competing regions in the
early iterations, indicating that the population is concurrently evaluating
different peak-valley structures. As the algorithm enters the middle and late
stages, the scatter cloud gradually recedes from suboptimal regions and
concentrates in a few dominant areas, eventually forming a more compact
cluster near the global optimum. This process provides a direct visualization
of SDHCPO'’s ability to coordinate global exploration and local exploitation in
complex energy landscapes.

4.6 High-Dimensional Testing Results

Building on the preceding 30-dimensional experiments, this section
increases the problem dimensionality to 50 and performs extended tests on
the same set of comparison algorithms. Overall, as the dimensionality
increases, the optimization difficulty rises for all methods; however, the
advantage of SDHCPO is not only preserved but becomes even more
pronounced in high-dimensional settings. The performance metrics of all
algorithms on CEC2017 for the 50-dimensional case are summarized in Table
11.



Table 11. Performance Metrics of SDHCPO and Other Algorithms on CEC2017

(d=50)
Index SDHCPO CPO CFOA PKO CDO MVO HOA
Std  8.423E4+06 9.516E+07 1.210E+10 1.626E+08 1.123E+09 4.466E+06 8.301E+00 4
Mean 1.452E+07 1.883E+08 1.020E+11 2.095E+08 8.056E+10 1.786E+07 8.790E+10 2
Std  2.381E+04 2.172E+04 1.146E+05 1.019E+05 1.647E+04 3.369E+04 1.034E+04 1
Mean 1.379E+05 1.801E+05 4.532E+05 4.136E+05 1.967E+05 1.477E+05 1.597E+05 3
Std  4.842E+01 4.893E+01 5.989E+03 7.442E+01 3.620E+02 3.788E+01 4.847E+03 1
Mean 6.489E+02 7.148E+02 3.093E+04 6.980E+02 2.278E+04 6.006E+02 2.341E+04 5
Std  2.694E+01 2.491E+01 4.186E+01 5.231E+01 2.694E+01 7.471E+01 3.898E+01 6
Mean 7.470E+02 9.260E+02 1.218E+03 7.772E+02 1.117E+03 7.959E+02 1.074E403 1
Std  6.105E-01 2.221E+00 6.886E+00 8.526E+00 4.823E+00 1.207E+01 5.984E+00 1
Mean 6.017E+02 6.105E+02 6.997E+02 6.130E+02 6.947E+02 6.541E+02 6.823E+02 6
Std  3.529E401 5.244E+01 1.712E+02 6.258E+01 3.059E+01 8.165E+01 8.336E+01 1
Mean 1.093E+03 1.251E+03 2.410E+03 1.144E+03 1.820E+03 1.197E+03 1.823E+403 1
Std  3.704E401 2.671E+01 6.292E+01 4.516E+01 2.807E+01 7.025E+01 3.672E+01 7
Mean 1.063E+03 1.217E+03 1.504E+03 1.062E+03 1.507E+03 1.086E+03 1.414E+03 1
Std  1.226E+03 2.584E+03 8.774E+03 2.603E+03 3.258E+03 1.118E+04 4.739E+03 7
Mean 2.819E+03 8.375E+03 4.396E+04 5094E+03 3.412E+04 2.343E+04 2.669E+04 3
Table 11. Cont.
Fun I;‘: SD(})ICP CPO CFOA PKO CBG MVO  HOA  WOA
oiq BB49E+ 4.544E  O001E 0.453E+ 51508+ 1.121E+ B.736E+ 8.630E
10 02 +02 +02 02 02 03 02 +02
Mea 1.059E+ 1.352E+ 1.542E 9.607F+ 1.566E+ 8.072E 1.334E+ 1.334E
n 04 04 +04 03 04 +03 04 +04
giq L139E 2.146E+ 1543F 2.642E+ B.049E+ 1.235E+ 2.762E+ 1.919E
o1 +02 02 +04 03 02 02 03 +03
Mea 1.597E 1.832E+ 4.278E 4.844FE+ 1.978E+ 1.696E+ 1.905E+ 8.431E
n +03 03 104 03 04 03 04 +03
giq A-B90E 1001E+ 1.176E 2.900E+ 4.510E+ 5.301E+ 1.236E+ 1.391E
1 +06 07 +10 07 08 07 10 +09
Mea 8.926E 2.054E+ 5457E 4.265E+ 5.635E+ O.778E+ 5.254E+ 4.568E
n +06 07 +10 07 10 07 10 +09
giq L998E 3.790E+ B8506E 5.186E+ 1.245E+ 1.424E+ 9.338E+ 3.097E
13 +03 04 +09 05 09 05 09 +08
Mea 4.484E 2.390E+ 2.602E 4.070E+ 4.737E+ 3.559E+ 2.799E+ 5.282E
n +03 04 +10 05 10 05 10 +08
giq OO0AE 2209E+ 3.120E 7.754E+ 5.741E+ 2.561E+ 3.333E+ 4.813E
1 +04 05 +07 05 06 05 07 +06
Mea 1.157E 1.563E+ 3.883E 1.135E+ 7.361E+ 3.653E+ 5.112E+ 6.809E
n +05 05 +07 06 07 05 07 +06
giq 3599E 1262E+ 2249E 8.172E+ 2.847E+ 8.831E+ 2.257E+ B8.688E
. +03 04 +09 04 08 04 09 +07
Mea 6.693E 1.668E+ 4.196E 8.441E+ 1.574E+ 1.393E+ 4.171E+ 9.271E
n +03 04 +09 04 10 05 09 +07
giq 3322E 4.369E+ 1.123E 4.785E+ 4.735E+ 3.787E+ 1.133E+ 1.129E
16 +02 02 +03 02 02 02 03 +03
Mea 3.257E 4.525E+ 7.660E 3.716E+ 9.680E+ 3.507E+ 6.970E+ 6.611E
n +03 03 +03 03 03 03 03 +03
giq 2-420E+ 2198E 1.130E 3.103E+ 2.655E+ 3.938E+ 9.255E+ 6.577E
17 02 +02 +04 02 02 02 02 +02
Mea 2.958E 3.491E+ 1.301E 3.201E+ 8.642E+ 3.327E+ 4.891E+ 4.709E
n +03 03 +04 03 03 03 03 +03
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1.323E
+06
1.440E
+06
6.109E
+03
1.670E
+04
2.487E+
02
2.994E
+03
3.296E+
01
2.538E
+03
2.137E+
03
1.188E+
04
5.159E+
01
3.021E+
03
5.598E+
01
3.167E+
03
3.996E+
01
3.163E+
03
5.468E+
02
6.814E+
03
6.635E
+01
3.500E+
03
6.871E+
01
3.538E+
03
2.927E+
02
4.397E
+03
6.020E
+05
2.381E
+06
2.14
1.52
1

1.459E+
06
2.310E+
06
7.865E+
03
1.950E+
04
1.886E
+02
3.678E+
03
2.188E+
01
2.702E+
03
5.557E+
03
1.230E+
04
3.305E
+01
3.183E+
03
2.693E
+01
3.345E+
03
5.946E+
01
3.243E+
03
2.030E+
03
7.859E+
03
8.286E+
01
3.726E+
03
8.010E+
01
3.747E+
03
2.722E
+02
5.173E+
03
6.063E+
06
1.190E+
07
2.45
3.41
2

8.887E
+07
1.438E
+08
1.031E
+09
2.071E
+09
3.782E
+02
4.467E
+03
8.515E
+01
3.123E
+03
1.009E
+03
1.711E
+04
1.740E
+02
4.125E
+03
2.041E
+02
4.298E
+03
3.073E
+03
1.564E
+04
1.667E
+03
1.810E
+04
5.809E
+02
5.651E
+03
1.535E
+03
1.184E
+04
3.791E
+04
3.793E
+04
1.967E
+09
4.604E
+09
6.86
7.41
8

2.706E+
06
4.710E+
06
5.689E+
04
4.778E+
04
3.914E+
02
3.195E+
03
5.547E+
01
2.540E+
03
1.698E+
03
1.060E+
04
5.327E+
01
3.006E
+03
4.656E+
01
3.134E
+03
7.149E+
01
3.236E+
03
3.934E+
02
6.348E
+03
7.180E+
01
3.497E+
03
2.124E+
02
3.792E+
03
4.613E+
02
5.166E+
03
1.135E+
07
1.008E+
07
4.28
2.72
4

2.990E+
06
2.071E+
08
2.856E+
07
1.916E+
09
2.784E+
02
4.209E+
03
2.085E
+01
3.000E+
03
4.579E
+02
1.684E+
04
2.852E+
02
4.958E+
03
1.009E+
02
4.616E+
03
1.998E+
02
7.443E+
03
2.527E
+02
1.642E+
04
9.625E+
02
8.76 7E+
03
1.365E+
02
9.376E+
03
2.216E+
03
2.458E+
04
2.768E+
08
5.471E+
09
4.14
7.03
5

2.061E+
06
2.860E+
06
4.511E+
06
6.663E+
06
3.154E+
02
3.260E+
03
6.122E+
01
2.571E+
03
1.112E+
03
9.863E
+03
6.224E+
01
3.025E+
03
7.014E+
01
3.148E+
03
3.349E
+01
3.072E
+03
6.064E+
02
6.583E+
03
8.342E+
01
3.472E
+03
3.367E
+01
3.332E
+03
4.528E+
02
5.075E+
03
2.969E+
07
9.066E+
07
4.14
2.55
3

4.725E+
07
8.806E+
07
7.379E+
08
1.409E+
09
2.355E+
02
3.713E+
03
6.630E+
01
2.976E+
03
8.627E+
02
1.504E+
04
2.738E+
02
4.502E+
03
2.162E+
02
5.001E+
03
1.295E+
03
1.155E+
04
7.439E+
02
1.588E+
04
7.707E+
02
7.038E+
03
8.940E+
02
1.046E+
04
1.021E+
04
2.252E+
04
1.462E+
09
3.055E+
09
6.00
5.97
7

2.942E
+07
5.222E
+07
1.792E
+07
2.070E
+07
3.515E
+02
3.947E
+03
1.330E
+02
3.101E
+03
1.183E
+03
1.452E
+04
1.755E
+02
3.866E
+03
1.560E
+02
3.960E
+03
7.021E
+02
5.438E
+03
1.840E
+03
1.493E
+04
6.086E
+02
4.933E
+03
6.619E
+02
6.072E
+03
1.929E
+03
9.495E
+03
1.170E
+08
3.154E
+08
5.97
5.34
6




Rank

High-dimensional experimental results show that, on the 50-dimensional
CEC2017 benchmark, SDHCPO still attains the best or near-best mean
objective values on the vast majority of functions, and its average Friedman
rank remains markedly superior to those of the other algorithms, with an
overall ordering consistent with the 30-dimensional case. In contrast, although
the original CPO can still produce reasonably good best-so-far values on
several functions, its mean performance deteriorates significantly at 50
dimensions, a phenomenon that is particularly pronounced on the hybrid and
composition functions. In other words, while the mean ranking of CPO is still
acceptable at 30 dimensions, the performance gap in terms of average
behavior between SDHCPO and CPO becomes further amplified in the 50-
dimensional setting.

In terms of standard deviation, the fluctuation level of all algorithms
increases as the dimensionality rises. However, the growth in SDHCPO'’s
standard deviation is relatively moderate, and its overall variability remains at
a low-to-medium level without exhibiting any pronounced numerical instability.
On some functions, the improvement in standard deviation is less marked than
that in the mean, but at least comparable stability to the 30-dimensional case
is maintained. This indicates that, in high-dimensioral spaces, SDHCPO can
significantly reduce the objective value without incurring a substantial loss of
robustness.

Std-based Friedman Ranks Mean-based Friedman Ranks

7 Algorithms |
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Fig. 12 Friedman Rank Evolution of SDHCPO vs. Competitors on CEC2017
Test Suite (d=50)

Figure 12 depicts the per-function ranking distribution of all algorithms on
the 50-dimensional CEC2017 test set. It can be observed that SDHCPO
consistently ranks among the top methods on most functions.

Table 12. Wilcoxon Rank-Sum p-Values: SDHCPO vs. Algorithms on CEC2017
(d=50)

Fu CPO-p CFOA-p PKO-p CDO-p MVO-p HOA-p WOA-p
n

1 3.020E-  3.020E- 1.777E- 3.020E- 1.784E-04 3.020E-  3.020E-
11 11 10 11 11 11

3 1.167E- 3.020E- 3.020E- 3.338E- 8.236E- 7.697E-  3.020E-
05 11 11 11 02 04 11




4 9.063E- 3.020E- 2.006E- 3.020E- 2.510E-02 3.020E- 3.020E-
08 11 04 11 11 11

5 3.020E- 3.020E- 3.265E- 3.020E- 1.765E-02 3.020E- 3.020E-
11 11 02 11 11 11

6 3.020E- 3.020E- 6.696E- 3.020E- 3.020E-11 3.020E- 3.020E-
11 11 11 11 11 11

7 3.020E- 3.020E- 4.444E- 3.020E- 1.407E-04 3.020E- 3.020E-
11 11 07 11 11 11

8 3.020E- 3.020E- 2.416E- 3.020E- 4.637E-03 3.020E- 3.020E-
11 11 02 11 11 11

9 2.034E- 3.020E- 2.499E- 3.020E- 3.020E-11 3.020E- 3.020E-
09 11 03 11 11 11

10  4.504E- 3.338E- 9.514E- 3.020E- 4.975E-11 1.287E- 3.497E-
11 11 06 11 09 09

11 7.043E- 3.020E- 4.975E- 3.020E- 3.778E-02 3.020E- 3.020E-
07 11 11 11 11 11

12 4.686E- 3.020E- 2.670E- 3.020E- 3.020E-11 3.020E- 3.020E-
08 11 09 11 11 11

13 5.494E- 3.020E- 3.020E- 3.020E- 3.020E-11 3.020E- 3.020E-
11 11 11 11 11 11

14  2.282E- 3.020E- 3.020E- 3.020E- 6.765E-05 3.020E- 3.020E-
01 11 11 11 11 11

15 2.891E- 3.020E- 2.133E- 3.020E- 3.020E-11 3.020E- 3.020E-
03 11 05 11 11 11

16 4.504E- 3.020E- 3.147E- 3.020E- 2.8911E-03 3.020E- 3.020E-
11 11 02 11 11 11

Table 12. Cont.

Fun CPO-p CFOA-p PKO-p CDO-p MVO-p HOA-p WOA-p

17 7.773E- 3.020E- 3.339E- 3.020E- 6.528E- 4.077E- 3.020E-
09 11 03 11 08 11 11

18 1.629E- 3.020E- 6.010E- 3.020E- 1.767E- 3.020E- 3.020E-
02 11 08 11 03 11 11

19 1.076E- 3.020E- 4.637E- 3.020E- 3.020E- 3.020E- 3.020E-
02 11 03 11 11 11 11

20 7.389E- 3.020E- 4.459E- 3.020E- 2.813E- 1.359E- 3.820E-
11 11 04 11 02 07 10

21 3.020E- 3.020E- 8.073E- 3.020E- 3.778E- 3.020E- 3.020E-
11 11 01 11 02 11 11

29 8.564E- 3.338E- 4.676E- 3.020E- 6.283E- 8.993E- 1.613E-
04 11 02 11 06 11 10

23 3.020E- 3.020E- 6.414E- 3.020E- 1.958E- 3.020E- 3.020E-
11 11 01 11 01 11 11

24 3.020E- 3.020E- 6.567E- 3.020E- 9.049E- 3.020E- 3.020E-
11 11 02 11 02 11 11

25 5.859E- 3.020E- 1.058E- 3.020E- 4.200E- 3.020E- 3.020E-
06 11 03 11 10 11 11

26 1.108E- 3.020E- 1.761E- 3.020E- 1.624E- 3.020E- 3.020E-
06 11 01 11 01 11 11

27 4.077E- 3.020E- 1.501E- 3.020E- 2.519E- 3.020E- 3.020E-
11 11 02 11 01 11 11

28 3.338E- 3.020E- 1.857E- 3.020E- 3.020E- 3.020E- 3.020E-
11 11 09 11 11 11 11

29 1.957E- 3.020E- 3.352E- 3.020E- 3.497E- 3.020E- 3.020E-
10 11 08 11 09 11 11




30 3.020E- 3.020E- 3.520E- 3.020E- 3.020E- 3.020E- 3.020E-
11 11 07 11 11 11 11
/=_/+ 0/0/29 0/0/29 1/4/25 0/0/29 5/4/20 0/0/29 0/0/29

Table 12 reports the Wilcoxon rank-sum test results for SDHCPO against
each comparison algorithm on the high-dimensional CEC2017 set. It can be
seen that, relative to CPO, CFOA, CDO, HOA, and WOA, SDHCPO is
significantly superior on all 29 functions (0/0/29). Against PKO, the result is
1/4/25, and against MVO it is 5/4/20, indicating that in the high-dimensional
setting SDHCPO still enjoys statistically significant advantages on the vast
majority of functions, and is only comparable to or slightly inferior on a small
subset of cases when compared with these two stronger algorithms.
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Fig. 17 CEC2017 boxplots: SDHCPO vs. algorithms (d=50, F22-F27)
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Fig. 18 CEC2017 boxplots: SDHCPO vs. algorithms (d=50, F28-F30)

The boxplots in Figures 13-18 further demonstrate that SDHCPO exhibits
marked advantages in solution accuracy, stability, and robustness. For almost
all test functions, the boxes corresponding to SDHCPO lie in the lowest
fitness-value region, indicating not only the best median performance but also
that at least three quarters of its runs outperform even the best results of the
competing algorithms. At the same time, the boxes of SDHCPO are generally
short, with relatively narrow whiskers, especially in comparison with
algorithms such as PKO, CFOA, and WOA. This reflects the outstanding
stability and consistency of SDHCPO across multiple independent runs, with
very low performance variability and little susceptibility to random
perturbations. Only on a few functions, such as F4, F14, F25, and F28, do the
boxplots of CPO or MVO appear numerically comparable to those of SDHCPO.
Overall, however, SDHCPO delivers the best comprehensive performance and
robustness on the 50-dimensional CEC2017 test set.

Taken together, the 30 and 50-dimensional results show that, compared
with the original CPO and other competing algorithms, SDHCPO exhibits a
more pronounced average performance advantage in 50 dimensions,
particularly on high-dimensional hybrid and composition functions, thereby
demonstrating strong scalability with respect to dimensionality. Although the
overall standard deviation increases, the fluctuation level of SDHCPO remains
competitive relative to the other algorithms, and no high-dimensional
degradation or divergence is observed. This indicates that the four strategies
designed in this study continue to function synergistically in the 50-
dimensional setting and effectively alleviate the search difficulties caused by
the curse of dimensionality.



5 Application Validation of SDHCPO in Engineering Optimization
Problems

To assess the effectiveness and robustness of SDHCPO in real-world
engineering optimization, this section considers five representative
engineering design problems: welded beam design, tension/compression
spring design, pressure vessel design, three-bar truss design, and 72-bar
spatial truss design. These problems share the common characteristic of
requiring the optimization of multiple design parameters under various
constraints, with objectives such as minimizing structural weight or reducing
material cost. To ensure the fairness and comparability of the experimental
results, all tests are conducted under consistent settings: a population size of
30, a maximum of 500 iterations, and 30 independent runs for each problem.

5.1 Welded Beam Design Problem

The welded beam design problem is a constrained optimization task aimed
at minimizing the weight of the beam [45]. The design variables comprise four
geometric parameters: weld thickness 4, beam length /, beam thickness ¢,
and weld width b. The objective function evaluates the heam weight based on
these geometric relationships. At the same time, the problem is subject to
seven constraints, including limits on shear siress ¢(X), bending stress s(x),
and deflection d(x), as well as geometric and stress-equilibrium constraints, to
ensure the structural safety and feasibility of the design. The problem
configuration is depicted in Figure 19.

As shown in Table 13, SDHCPO achieves superior performance on the
welded beam design problem, as indicated by the bolded optimal value, mean,
and standard deviation. The corresponding optimal solution is given by: weld
thickness A=0.2057, weld length /=3.4704, beam width £=9.0366, and beam
height 6=0.2507.

Consider variable X=lxx,xx1=[hltb

Minimize () =1.10471% x, +0.04811x X, (14.0 +x)

t(X-t., £0

s(X-s5.,£0

axX-d., £0

X-x£0

X)=P- P(Q£0
g(X)=0125- x£0

9,(X) =1.10471% +0.04811x.x,(14.0+x)- 50£0
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Fig.19 Schematic diagram of cantilever beam
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Table 13. Results of All Algorithms on the Welded Beam Design Problem
Algorithm

1

Optimal
b

Average
Weight

Standard
Value

Deviation




Sprcpo 020573 347035 0.03662 0205720 5 ~ooonoo 1724850 o oo
58 69 43 6 3
CPO (L%§§72 :&45950 ‘l9;269 (1225732 1.7248870 1.7253144  0.0005242
CFOA 0J§§02 393g75 873339 022§104 1.8619768 2.7454742  0.8181638
PKO (1%8573 :&4g$47 Elq;§65 ‘122§730 1.7248600 1.7251203  0.0003491
cpo  0-20428 3.50064 9.22975 0.208456 | ;393186 1.8457670 0.0321628
92 86 72 3
Table 13. Cont.

Algorithm Optimal Values for Variables Optimal Average Standard
g h 1 t b Weight Value Deviation
SpHopo 020573 3.47035 0.03662 0.205720 4 —oiar-o 1724850 o o000

58 69 43 6 3
MVO 023383 342253 Sl9%541 (129$949 1.7290605 1.7539214  0.0341230
HOA 023g99 :13%319 '153373 (139§665 2.2104538 3.1764949  0.4571604
WOA 013371 ‘*6gf13 ‘16§$02 0205995 1.8737189 2.6543622  0.5600200

5.2 Pressure Vessel Design Problem

The pressure vessel design problem seeks to minimize the structural
material weight [46]. It involves four design variables: shell thickness 7 , head

thickness 7, inner radius R, and cylindrical shell length [, collectively
denoted asly, 5. )5, J4]. The design is constrained by four inequalities: g and
@ impose minimum thickness requirements on the shell and head to prevent
structural failure caused by insufficient material; g, limits the stress level;
and g, specifies an upper bound on the cylindrical shell length. The design
variables are bounded within engineeringly feasible ranges, with y, ;1 [0,99],
and ), ;1 [10,200]. The corresponding structural schematic is illustrated in

Figure 20.

SDHCPO attains the minimum weight of 5734.913157 for the pressure
vessel design problem, with the corresponding design variables reported in
Table 14. This value is the best among all compared algorithms, and the
standard deviation over 30 runs is markedly lower than that of the other
methods.

Consider variable Y=[x 3. % %1=lT,T,R L]

Minimize f()) =0.6224 y y; 3, +L.7781)5 )% +3.1661)f y; +19.84 ) )4
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Variable range

Fig.20 Schematic diagram of pressure vessel
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Table 14. Results of All Algorithms on the Pressure Vessel Design Problem

Algorith Optimal Values for Variables Optimal Average Standard
m Ts Th R L Weight Value Deviation
SDHCP 0.74243 0.37019 40.3196 5734.9131 5734.9132
0 36 61 187 200 570 223  0.0001859
0.74242 0.37007 40.3196 199.9998 5734.91511 5735.27397
CPO 16 74 324 095 70 90 1.6779232
CFOA 0.76780 0.38670 41.5987 186.5353 5865.92611 40789.5180 50282.0649
84 46 812 308 29 883 233
0.74243 0.37019 40.3196 5734.91316 5750.21908
PKO 56 42 187 200 34 17 47.0773456
0.72165 0.35544 40.4484 5856.00918 6012.43158
CDO 61 38 786 200 56 385 97.0115631
MVO 0.84072 0.40580 44.6692 147.3116 5926.21258 6591.08093 427.130147
24 78 450 683 62 50 0
HOA 1.01051 0.48658 53.6884 74.20608 6458.65634 7689.63785 704.941477
48 22 007 90 12 19 3
WOA 0.73623 0.41610 40.6854 194.9697 5871.77640 13133.0184 16126.1868
95 56 150 617 90 431 194

5.3 Tension/Compression Spring Design Problem



The tension/compression spring design problem [47] involves three
variables: z represents the wire diameter d, z the mean coil diameter D,
and z the number of active coils N. The objective is to minimize the spring
weight, subject to four constraints. The schematic of this problem is shown in
Figure 21.

The comparison results reported in Table 15 show that SDHCPO identifies
the best set of design parameters, achieving a minimum objective value of
0.0135672 and a mean value of 0.0135777, ranking first among all algorithms.
This confirms the effectiveness of SDHCPO in solving the spring design
problem.

Consider variable Z=z,2,z]1=ld D, N]
Minimize Ad=Z2zz+22z
Zz
=1- —232_£0
HA =V Z7ee2
4Z - zz 1 .
(2= 2 2 ——-1£0
Subject to 12566047 - Z) ] QK
(2 =1- 140454 £
44
a(=2"%.1£0
15
Variable range 0.05£z£2 025f£z£13 2£zf£15

ﬁ.‘ d|.ﬁ

Fig.21 Schematic diagram of tension/compression spring

Table 15. Results of All Algorithms on the Tension/Compression Spring Design
Problem

Algorith Optimal Values for Variables Optimal Average Standard

d D N Weight Value Deviation




spHCpo -0°2987 0.997416 10.29906 ¢ 0135672 0.0135777  0.0000170
cpo 0052957 0390676 1019640 00135684  0.0135824 0.0000220
croa 0092707 0.399454 1052351 90135844 0.0229571 0.0135615
pko 002998 0397688 1019581 00135674 0.0136130 0.0000559
cpo  0:009055 0.328058 1485129 6 0138123 0.0139953 0.0003072
Myo 0020000 0325760 14983310 0138255  0.0178244 0.0015443
Hoa ~ (0-092°08 0.982402 10.87094 ¢ 0136412 0.0150239 0.0013185
woa 0053333 0.406028 9.749185 g 0135603 0.0143547 0.0011676

5.4 Three-Bar Truss Design Problem

The three-bar truss design optimization problem aims to minimize the
structural material volume, thereby indirectly reducing the weight [48]. It
involves two design variables: 4 and A, the cross-sectional area of the two

diagonal members, and A, the cross-sectional area of the vertical member.

The objective function is determined by the member lengths and cross-
sectional areas, with a base length parameter /=100cm. The design must
satisfy three stress-related constralms A schematic of the three-bar truss is
provided in Figure 22.

As shown in Table 16, SDHCPO, CPO, and PKO all perform well on this
problem, each obtaining the same optimal solution with a standard deviation

of 0.

Consider variable

X=X, x1=[A,A]

Minimize AN =1" (22X +x)
2x+x
P-5,0
4 \/_)f +2Xx
SUbjeCt to %(X) =mp' 5,,0
(X)=——+—P-5,0
% )g+\/—

Variable range

Of xx£1



Where

/=100cm, P=2KN/cn?, s =2KN/cn?

P

Fig.22 Schematic diagram of three-bar truss

Table 16. Results of All Algorithms on the Three-Bar Truss Design Problem

Optimal Values for

ogrin, _ OPRERT ™ optm A gt

SDHCP 7584152 04081138 203-80231 263.852346 o
CPO  0.7884152 0.408113g 20383234 203.552346 0
CFOA  0.7882057 0.4087165 202022985 264775298 4 4950354
PKO  0.7884152 0.408113g 20383234 263.552346 0
CDO  0.7885754 0.4077093 203822496 263.995726 4 gg64609
MVO  0.7884444 0.4080303 203022347 263.892435 4 4001067
HOA  0.7884503 0.4079891 203852347 263.898175 ¢ 40937500
WOA  0.7887717 0.4071060 263.852439 265.160821  3.2927772
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5.5 72-Bar Spatial Truss Optimization Problem

Distinct from the foregoing classical benchmarks that involve only a small
number of design variables, this subsection introduces a 72-bar spatial truss
optimization problem with 16 design variables and multiple frequency
constraints, in order to further assess the potential and practical applicability
of the algorithm for high-dimensional, complex, and constrained real-world
engineering problems [49].

This structure consists of 20 nodes and 72 members. To preserve
structural symmetry, the 72 members are partitioned into 16 design groups
according to their geometric locations, and all members within the same
group share an identical cross-sectional area, resulting in 16 continuous
design variables. The detailed grouping scheme is provided in Table 17.

Table 17. Member grouping scheme for the 72-bar spatial truss.

Group number (k) Member type Member indices (e)
Level 1
1 Columns 1,2,3,4
2 Face diagonals 5,6,7,8,9, 10, 11, 12
3 Horizontals 13, 14, 15, 16
4 Internal diagonals 17,18
Level 2
5 Columns 19, 20, 21, 22
6 Face diagonals 23, 24, 25, 26, 27, 28, 29, 30
7 Horizontals 31, 32, 33, 34
8 Internal diagonals 35, 36
Level 3
9 Columns 37, 38, 39, 40
10 Face diagonals 41, 42, 43, 44, 45, 46, 47, 48
11 Horizontals 49, 50, 51, 52
12 Internal diagonals 53, 54
Level 4
13 Columns 55, 56, 57, 58
14 Face diagonals 59, 60, 61, 62, 63, 64, 65, 66
15 Horizontals 67, 68, 69, 70
16 Internal diagonals 71, 72

The truss is made of aluminum alloy with elastic modulus £»6.9"10° N/ 7
and mass density 7 » 2770kg/ ni. A nonstructural lumped mass of 2270 kg is
attached to each of the top-layer nodes 1-4. The design variables are the 16
grouped cross-sectional areas x, which form the design vector
x=(X,%,%,X%;) .The kth variable X, controls the cross-sectional areas of all

members belonging to the kth group. The cross-sectional area of the eth
member is denoted by A.(x),determined by the corresponding group variable

X, and its length is denoted by L..
The optimization objective is to minimize the self-weight of the structure



subject to multiple frequency constraints, with the objective function
determined jointly by the material density 7, the cross-sectional areas A.(x),

and the lengths £, of all members. The structural self-weight, together with
the lumped masses at the top nodes, forms the global mass matrix M(x),
which, combined with the global stiffness matrix K(x) determined by the

design variables, defines a generalized eigenvalue problem. By solving this
eigenvalue problem under fixed boundary conditions at the four bottom nodes,
the eigenvalues /,.(x) and mode shapes f, are obtained, from which the first

three natural frequencies 7(x) are computed.

In this problem, constraints are imposed on the first three natural
frequencies: the first and second frequencies must not be lower than 4Hz, and
the third must not be lower than 6Hz. Under these constraints, the design
vector x is adjusted to obtain a 72-bar spatial truss configuration with
minimum mass.

Consider variable x=(Xx,%,%, X)’

Minimize min, £(x) =r§ AX) L,
el
KX, =/ .(x)M(x)f,, r=L23
Subject to £(3) =“/—/"('(), r=123
2p
£(x)2 4Hz, £(x)3 4Hz, £(x)3 6Hz

A £xEA., k=1Y%,16
A, =6.45"10°n7 » 0.645cn7
A_. =50"103n7 » 50an?

Variable range

Table 18. Results of All Algorithms on the 72-Bar Spatial Truss Design
Problem

Algorith _Optimal Values for Variables Optimal Average Standard

m 4 4 £ Weight Value Deviation
SDHCPO 4.0000 4.0001 5.1900 116.6002 116.7921 0.1158
CPO 3.9997 4.0091 5.2730 117.7778 118.8341 0.5758

CFOA 4.7858 5.7236 7.8279 490.0387 ©658.3237 111.3120
PKO 3.9999 4.00006 5.2066 116.5697 116.8338 0.1850
CDO 4.0020 4.0238 5.2280 119.7953 122.6835 1.9200
MVO 4.0012 4.0141 5.2258 117.9871 131.2249 10.7874
HOA 4.0260 4.0294 5.3867 130.4777 145.4744 8.2826
WOA 4.0000 4.0632 5.3168 163.4465 261.8906 62.5870




According to the statistical results in Table 18, SDHCPO exhibits superior
overall performance on this high-dimensional problem, achieving an average
structural weight of 116.7921 and a standard deviation of 0.1158, both of
which are the best among all compared algorithms. This outcome provides
strong evidence that, as the search space expands sharply with increasing
dimensionality, SDHCPO attains higher solution accuracy and robustness than
CPO, PKO, and other competitors, effectively escaping local optima and stably
converging to high-quality solutions.

Conclusion

This paper proposes a multi-mechanism integrated Crested Porcupine
Optimizer (SDHCPO) that enhances the original CPO by incorporating four
innovative strategies, among which the Sobol-OBL initialization and cosine-
annealing-based dynamic adjustment are core components introduced for the
first time. The Sobol-OBL initialization combines the low-discrepancy Sobol
sequence with opposition-based learning to produce an initial population that
is uniformly distributed across the solution space, effectively alleviating
population clustering and reducing unexplored regions caused by purely
random initialization, thereby laying a solid foundation for global search. The
cosine-annealing-based dynamic adjustment strategy replaces random weights
with a time-dependent nonlinear decay factor, substantially improving the
stability of position updates in the fourth defense phase and enhancing the
consistency of convergence. On this basis, the integration of Differential
Evolution and the Horizontal-Vertical Crossover strategy further breaks
positional dependence and eliminates dimensional stagnation, thereby jointly
strengthening the algorithm’s exploration capability and exploitation accuracy.

In the numerica! experiments, SDHCPO is first compared with seven
representative metaheuristic algorithms on the CEC2017 and CEC2022
benchmark functions. The results show that SDHCPO attains markedly lower
mean fitness values on most test functions and achieves the best overall
Friedman ranking. Moreover, the Wilcoxon rank-sum tests with SDHCPO as
the reference method indicate that, for the vast majority of functions, the
significance comparisons consistently support the statistical superiority of
SDHCPO over the competing algorithms. Further ablation studies show that
each of the four strategies yields varying degrees of performance
improvement when activated individually, while their fully integrated
configuration produces a pronounced synergistic effect, with particularly
substantial reductions in the mean objective values on high-dimensional
multimodal, hybrid, and composition functions. Together with qualitative
analyses of population diversity evolution, fitness history, and one-dimensional
search trajectories, the results show that SDHCPO maintains strong global
exploration capability in the early iterations and then achieves a smooth
transition to fine-grained local exploitation in the middle and late stages. This
provides a mechanistic explanation for its convergence behavior across
different function classes and clarifies the sources of its performance



advantages. High-dimensional extension experiments further demonstrate
that, on the 50-dimensional CEC2017 tests, SDHCPO achieves order-of-
magnitude reductions in mean fitness compared with the original CPO and,
even when the improvement in standard deviation is relatively modest, still
maintains stable global optimization capability under this more demanding
dimensional setting.

In terms of engineering applications, SDHCPO is validated on several
classical engineering case studies, including traditional low-dimensional
problems such as welded beam design and pressure vessel design, as well as a
high-dimensional frequency-constrained optimization problem for a 72-bar
spatial truss. The numerical results show that SDHCPO generally attains
better objective values and smaller variability across these engineering
examples. In particular, for large-scale, highly constrained structural
optimization problems such as the 72-bar truss, SDHCPO still maintains high-
quality convergence and strong solution robustness.

Despite the strong competitiveness of SDHCPO on both benchmark tests
and engineering applications, several aspects remain open for improvement.
For example, the coordination between exploration and exploitation on certain
high-dimensional composition functions still has room for optimization, and
the parameter sensitivity and computational overhead of some integrated
strategies on specific problem types merit further investigation. Future work
will focus on complex urban traffic signal tiininig as a key application scenario
to further extend and validate SDHCPO. In multi-intersection coordinated
control problems, a unified optimization model can be formulated by
integrating multiple performance indicators—such as average delay, queue
length, and emission levels—under traffic safety and signal control constraints,
with SDHCPO serving as the core solver to systematically assess its
convergence efficiency and robustness in large-scale road networks. Building
on this foundation, future research will target multi-objective traffic control
problems and integrate SDHCPO into decomposed or hierarchical control
frameworks, thereby strengthening its optimization capability with respect to
multiple dimensions such as traffic efficiency, equity, and environmental
benefits. In this way, SDHCPO is expected to evolve into an engineering-
feasible intelligent optimization tool for high-dimensional, strongly
constrained, and multi-criteria-coupled urban traffic systems.
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