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Highlights:

Shared IS and epilepsy genes, including IL10RA, CD2, and C3AR1, 

were identified.

IL10RA, CD2, and C3AR1 had high diagnostic efficacy for IS and 

epilepsy.

hsa-let-7b-5p was predicted as an upstream miRNA of C3AR1.

C3AR1 may contribute to epilepsy via interaction with 

acetylcholine.

Abstract

Background: This study aimed to identify shared genes between 

ischemic stroke (IS) and epilepsy and explore underlying 

mechanisms.

Methods: Transcriptomic datasets from the GEO database were 

analyzed using differential expression and weighted gene 

co-expression network analysis (WGCNA). Hub-shared genes were 
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identified through protein-protein interaction networks, ROC 

analysis, and expression validation. Upstream miRNAs were 

predicted. Additionally, untargeted plasma metabolomics was 

performed on children with epilepsy and healthy controls, followed 

by differential metabolite analysis and metabolic pathway 

construction.

Results: WGCNA revealed 594 epilepsy-related and 2,623 

IS-related DEGs, with 38 shared DEGs identified, including IL10RA, 

CD2, and C3AR1. These genes showed high diagnostic value, with 

their AUC value > 0.66 in both training and validation datasets. 

Additionally, hsa-let-7b-5p was predicted to target C3AR1. 

Metabolomics identified 139 differential metabolites, and C3AR1 

was implicated in synaptic vesicle cycle, taste transduction, and 

nicotine addiction pathways via acetylcholine.

Conclusions: The shared genes, especially C3AR1 may be a key 

regulator in the development IS and epilepsy, showing potential as 

a biomarker for both diseases. However, its diagnostic efficacy 

requires further clinical validation. Given the complexity of these 

diseases, future research may focus on identifying a panel of 

biomarkers rather than relying on a single gene. 

Keywords: ischemic stroke; epilepsy; shared genes; microRNA; 

metabolites
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Introduction
Stroke is a major cause of disability worldwide and seriously 

affects living standards and quality of life. There are two types of 

stroke: ischemic stroke (IS) and hemorrhagic stroke. IS is the most 

common type of stroke and accounts for approximately 80% of all 

strokes 1. Cardioembolic stroke is a subtype in which cerebral 

thromboembolic ischemia is caused by cardiogenic emboli, which 

accounts for 14%–30% of IS and is more likely to cause disability 2. 

Stroke is recognized as one of the most common causes of epilepsy, 

with post-stroke epilepsy (PSE) accounting for 11% of all epilepsies 

in the adult population 3,4. Epilepsy is a common neurological 

disorder characterized by repeated seizures. It affects 

approximately 65 million people worldwide and imposes a great 

burden on individuals and health systems 5,6. To date, managing 

PSE does not completely match the treatment of stroke and 

epilepsy caused by other reasons, and neurologists lack guidance 

on managing PSE, such as when and how to treat patients. 

Therefore, investigating the pathogenesis and association between 

stroke and epilepsy is necessary. 

The risk of seizures is high in many post-stroke patients, and 

the incidence of PSE has been increasing over the last decades 7,8. 

Although its incidence after hemorrhagic stroke is higher than that 

after IS, the overall seizure burden in the IS group is greater 

because of the higher frequency of IS 9. Common 
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pathophysiological mechanisms are assumed to underlie stroke and 

epilepsy 10. Following a stroke, various inflammatory mediators, 

such as prostaglandins, cytokines, chemokines, damage-associated 

molecular patterns (DAMPs), and complements are released to 

repair brain damage. When sustained over time, neuroinflammation 

causes neuronal and astroglial dysfunctions, resulting in altered 

synaptic transmission, neuronal loss, hyperexcitability, and 

abnormal neurogenesis 11. These mechanisms contribute to 

epilepsy development 12-14. Moreover, some less common factors 

that may cause seizures, such as the central nervous system (CNS) 

infections, systemic metabolic abnormalities, such as hypocalcemia 

and hypo/hyperglycemia, and benzodiazepines and barbiturates, 

may also coexist in patients with strokes, suggesting a similar 

etiology of seizures and strokes 15. Furthermore, early PSE is 

associated with high levels of the neural cell adhesion molecule and 

low levels of tumor necrosis factor-R1 16. A recent study has 

identified hub genes such as TPGS2, TMCC3, GADD45B, and 

KCNJ2 as key players in both IS and epilepsy, suggesting that these 

genes may play a key role in the co-pathogenesis of IS and epilepsy 

17. Although a strong association exists between stroke and 

epilepsy from the clinical and epidemiological perspectives, the 

shared genetic and metabolic mechanisms in IS and epilepsy are 

largely unknown.

In this study, we downloaded the IS- and epilepsy-related 

datasets from the Gene Expression Omnibus (GEO) database and 

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



analyzed the shared genes of the two diseases using differential 

expression analysis and weighted gene co-expression network 

analysis (WGCNA). We identified hub-shared genes via 

protein-protein interaction (PPI) analysis, receiver-operating 

characteristic (ROC) curve analysis, and differential expression 

validation using validation datasets. Moreover, we predicted the 

miRNAs upstream of the hub-shared genes. Furthermore, we 

performed nontargeted metabolomics analysis of the plasma 

samples from children with epilepsy and healthy controls, analyzed 

key differential metabolites, and constructed a metabolic pathway 

network of the hub-shared genes. A flowchart of the study is shown 

in Supplementary Figure 1. Our study aimed to explore the shared 

genetic and metabolic mechanisms between IS and epilepsy, 

offering new insights for identifying potential targets that could be 

useful in treating PSE.

Methods

Data acquisition and preprocessing

The IS-related gene expression profiles GSE58294 (training 

dataset) and GSE16561 (validation dataset), as well as the 

epilepsy-related gene expression profiles GSE143272 (training 

dataset), GSE16969 (validation dataset) and GSE205661 (validation 

dataset), were downloaded from the NCBI GEO database 18. The 

detailed information of these datasets is listed in Table 1.

The mRNA probe expression matrix of each dataset and the 

annotation file of the detection platform were downloaded. Probes 
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were individually converted into gene symbols. Probes that did not 

match the gene symbols were removed, and the average expression 

of multiple probes mapped to the same gene symbol was selected.

Differential expression analysis

Based on the training datasets (GSE143272 epilepsy dataset 

and GSE58294 IS dataset), the differentially expressed genes 

(DEGs) in the epilepsy and IS samples were compared with their 

respective control samples using the R limma package (version 

3.48.3) 19. The P value was adjusted by Benjamini-Hochberg 

method. The adjusted P (P.adj) value < 0.05 and |log fold change 

(FC)| > 0.263 (that was FC > 1.20 for upregulation and FC < 0.8 

for downregulation)20 were set as the cutoff values for DEG 

screening.

Identifying disease-related genes using WGCNA

The disease-related key modules and module genes were 

selected by conducting WGCNA on the DEGs identified from 

peripheral blood samples in the training datasets of two diseases to 

construct gene co-expression modules using the R WGCNA package 

(version 1.71) 21. Briefly, an appropriate soft-thresholding power 

was selected to obtain a scale-free network. The Pearson 

correlation coefficient between the two diseases is determined 

through the use of formula 1:  , where i and j are 

the expression levels of the i-th gene and the j-th gene respectively.

Then, formula 2 and 3 are used to convert the gene expression 

similarity matrix into an adjacency matrix, with the network type 

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



being signed, where β is the soft threshold, which is the square of 

the Pearson correlation coefficient β for each pair of genes. The 

adjacency matrix is converted into a topology matrix, and the 

topology overlap (Topological overlap measure, TOM) is used to 

describe the degree of association between genes: 

 and  .

Gene co-expression modules were determined, and genes with 

similar expression patterns were clustered.Using formula 4 for 

clustering analysis, 1-TOM represents the degree of difference 

between genes i and j. Genes are hierarchically clustered, followed 

by module identification using dynamic cutting tree methods. The 

most representative gene in each module is called a feature vector 

gene, or ME for short. It represents the overall level of gene 

expression within the module and is the first principal component 

in each module. Here, i denotes the gene in module q, and l 

denotes the chip sample in module q :  .

Module Identity (MM) is used to measure the association 

degree of a gene with a specific module. This is achieved by 

calculating the Pearson correlation coefficient between the 

expression profile of a gene in all samples and the eigenvector gene 

 of module q. This process can be completed using formula 

5: . Here, represents the expression 

profile of the i-th gene,  is the eigenvector gene expression 

profile of module q, and  is the Module Identity value of 
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gene i in module q. When  equals 0, it indicates that the 

gene does not belong to module q ; if the value of 

approaches +1 or -1, it suggests that gene i has a stronger 

correlation with module q. A positive sign indicates a positive 

correlation between gene i and module q, while a negative sign 

indicates a negative correlation.

Finally, it is analyzed and visualized. The cluster tree was cut 

into branches to define the modules using a dynamic tree cut, and 

each module was assigned a different color for visualization. Each 

module contained at least 30 genes. The epilepsy- or IS-related key 

modules were identified using hierarchical clustering and 

correlation analysis of the module eigengene values and clinical 

traits. Disease-related DEGs were identified from key epilepsy- and 

IS-related modules.

Analyzing the shared genes of epilepsy and IS

The overlapping DEGs in the epilepsy- and IS-related key 

modules were considered as the shared genes of two diseases and 

were obtained using Venn diagram analysis using the R VennDetail 

package (version 1.2.0).

Functional enrichment analysis for shared genes

The shared genes of two diseases were imported for Gene 

Ontology (GO) functions and Kyoto Encyclopedia of Genes and 

Genomes (KEGG)22-24 pathway enrichment analyses using the R 

clusterProfiler package (version 4.44) 25. GO describes the 

overrepresented biological functions from three aspects: molecular 
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function (MF), cellular component (CC), and biological processes 

(BP).

PPI network analysis and hub gene identification 

The PPI relationships of the shared genes of two diseases were 

analyzed using the STRING (version 11.0) database 26, followed by 

the construction of a PPI network using Cytoscape (version 3.9.2) 27. 

The interaction score was set to 0.15. The top five hub genes were 

analyzed using the cytoHubba plug-in 28, and four topological 

analysis algorithms, including the maximal neighborhood 

component (MNC), maximal clique centrality (MCC), degree, and 

edge-percolated component (EPC). MCC calculated the importance 

of nodes by identifying the maximal cliques in the network MNC 

evaluated node importance based on the strength of interactions 

with neighboring nodes. Degree assessed node importance by 

calculating its number of connections. EPC identified key edges and 

nodes in the network through edge percolation. These algorithms 

were widely utilized for selecting hub genes from PPI networks 29,30. 

The intersecting genes of the top five genes from each topological 

analysis algorithm were considered candidate hub genes for the 

two diseases.

Diagnostic efficacy evaluation of the hub-shared genes

To evaluate the diagnostic efficacy of the candidate hub-shared 

gene, ROC curves were plotted using the R pROC package (version 

1.18.0) 31 based on the expression data of the hub-shared genes in 

all the enrolled datasets. The higher the value of the area under the 
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curve (AUC), the stronger the diagnostic efficacy was.

Validating the differential expression of the candidate hub-shared 

genes

Using the validation datasets of IS (GSE16561) and epilepsy 

(GSE16969 and GSE205661), the differential expression of the 

candidate hub-shared genes in the two diseases was validated. 

Differential expression analysis of the candidate hub-shared genes 

was performed using Student’s t-test. Genes with the same 

expression trends in the disease samples in the training and 

validation datasets were considered the hub-shared genes.

PPI network of the hub-shared genes

The possible mechanisms of the hub-shared genes were further 

studied by performing its PPI analysis with 20 interacting genes 

using the GeneMANIA database 32. Thus, their co-localization, 

shared protein domains, co-expression, and pathways were 

explored.

Prediction of the upstream miRNAs of the hub-shared genes

The common miRNAs associated with the two diseases were 

identified using the Human microRNA Disease Database (HMDD) 33. 

Moreover, miRNAs upstream of hub-shared genes were predicted 

using the miRWalk database, and an miRNA-gene network was 

established. Disease-related miRNAs of the hub-shared genes were 

identified using the intersection analysis of the disease-related 

miRNAs and upstream miRNAs of the hub-shared genes.

Collection of clinical samples for nontargeted metabolomics 
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analysis

Fourteen plasma samples from children with epilepsy and 20 

plasma samples from healthy controls were collected from Weifang 

Maternal and Child Health Hospital. All patients with epilepsy met 

the diagnostic criteria for epilepsy. Exclusion criteria included: 1) 

other neurological diseases or genetic disorders; 2) somatic or 

psychiatric diseases that could potentially affect metabolism; 3) 

factors such as infections or immune deficiencies that significantly 

impact metabolism. All children in this study had not used any 

antiepileptic drugs, central nervous system medications, or 

immunosuppressants during the treatment process. The study was 

approved by Weifang Maternal and Child Health Hospital, and the 

guardians of children signed written informed consent.

Nontargeted metabolomics analysis and differential metabolite 

identification 

Metabolomics analyses were conducted using ultra-high 

performance liquid chromatography (1290 Infinity LC, Agilent 

Technologies) coupled to a quadrupole time-of-flight (AB Sciex 

TripleTOF 6600) at Beijing Allwegene Technology Co., Ltd. (Beijing, 

China). In detail, the samples were added to cold 

methanol/acetonitrile/H2O (2:2:1) solution, shaken and extracted 

for 30 min. Then, the samples were centrifuged at 14000 g at 4℃ 

for 20 min, and the supernatant were subjected to vacuum drying. 

The residue was dissolved in 100 μL acetonitrile solution and 

centrifuged at 14000 g at 4°C for 10 min, and the supernatant was 
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collected for liquid chromatography–mass spectrometry (LC–MS) 

analysis. The LC conditions were as follows: the Vanquish 

ultrahigh-performance liquid chromatograph (UHPLC) (Thermo) 

with Waters, ACQUITY UPLC BEH Amide 1.7 μm, 2.1 mm × 100 

mm column was used, with the column temperature of 25°C, flow 

rate of 0.3 mL/min, and sample size of 2 μL. Mobile phase A 

consisted of H2O, 25 mM ammonium acetate, and 25 mM ammonia 

water. Mobile phase B was acetonitrile. The solvent gradient was 

set as follows: 98% B, 1.5 min; 98–2% B, 12 min; 2% B, 14 min; 

2–98% B, 14.1 min; 98% B, 17 min. The samples were placed in a 

4°C automatic injector during the entire analysis process. The 

quality control (QC) samples were inserted into the sample queue 

to monitor and evaluate the stability of the system and the 

reliability of the experimental data. Using the QExactive mass 

spectrometer, the primary and secondary spectra of samples were 

collected. This mass spectrometer provided electrospray ionization 

(ESI) positive and negative ion detection modes. ESI source 

conditions were as follows: the ion source gas 1: 60, ion source gas 

2: 60, curtain gas (CUR): 30 psi, source temperature: 600°C; ion 

spray voltage floating (ISVF): ± 5500 V, primary mass-charge ratio 

detection range: 80-1200 Da, resolution: 60000, accumulation time: 

100 ms, scanning range of secondary stage: 70-1200 Da, resolution: 

30000, scan accumulation time: 50 ms, and dynamic exclusion time: 

4 s. The raw data were subjected to peak alignment, retention time 

correction and peak area extraction using XCMS software. 
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Multivariate statistical analyses were performed. Subsequently, the 

differential metabolites were identified with the cutoff values of p < 

0.05 (Student’s t-test), FC > 1.5 or < 0.67 34,35, and variable 

importance in the projection (the first principal component of 

orthogonal partial least squares discriminant analysis) > 1.

Pathway enrichment analysis for the hub-shared genes and 

differential metabolites

To clarify the biological significance of the hub-shared genes 

and differential metabolites, the pathways significantly enriched by 

the hub-shared genes and differential metabolites were analyzed 

using the IMPaLA 36 tool with the background of the KEGG 

database. The screening parameters were set as follows: 

pathway_source, KEGG; num_overlapping_metabolites/genes > 0; 

and p_joint < 0.05.

Metabolic pathway enrichment analysis

To further understand the overall affected pathways and 

corresponding differential metabolites, metabolic pathway 

enrichment analysis was performed to map a metabolic pathway 

network using FELLA, an R package to perform a network-based 

enrichment of a list of affected metabolites 37. Enrichment was 

calculated based on the KEGG pathways using the diffusion method. 

According to the results of the pathway enrichment analysis, with 

the KEGG graph as a large background, a metabolite pathway 

background network was constructed, containing pathways, 

metabolites, reactions, enzymes, and modules. Using the diffusion 
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algorithm, heat was forced to flow from a given node (the 

metabolites in the significantly enriched pathway) and pass 

through the metabolite pathway background network, leading to 

the changes in the score of each node in the background network 

until the final rest. The temperatures (diffusion scores) were 

calculated as follows: 

T = −KI−1 × G.

G is the heat generation vector (1 is the differential metabolite 

and 0 otherwise); KI is the conductance matrix, where KI = L + B, 

L is the unnormalized graph Laplacian, B is the diagonal adjacency 

matrix with Bii = 1 if node i is a pathway, and Bii = 0 otherwise. 

Matrix B ensures that the flow leaves the graph through the nodes 

of the pathways.

The p-value was obtained using a permutation test according to 

the diffusion scores. The network nodes were sorted according to 

the p-value, and nodes with p-value < 0.05 were screened to 

construct the metabolic pathway network.

Results

Identification of DEGs in epilepsy and IS

We performed a differential expression analysis to identify 

DEGs in epilepsy and IS. A total of 549 upregulated and 739 

downregulated DEGs between the epilepsy and control samples 

were identified based on the GSE143272 epilepsy dataset 

(Supplementary Table 1), and the volcano plot of these DEGs is 

shown in Figure 1A. In addition, 3593 upregulated and 1410 
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downregulated DEGs between the IS and control samples were 

screened based on the GSE58294 IS dataset (Supplementary Table 

2). The volcano plot of these DEGs is shown in Figure 1B.

Analysis of the co-expression module and identification of the 

disease-related genes

To identify the disease-related genes, gene co-expression 

modules associated with epilepsy and IS were analyzed using the 

WGCNA of the DEGs. In this analysis, DEGs with similar 

expression patterns were assigned to the same module. Based on 

the GSE143272 epilepsy dataset, a power of 12 (scale-free R2 = 

0.85) was chosen to ensure a scale-free network (Figure 2A), and 

three modules were obtained, with each color representing each 

module (Figure 2B). Subsequent correlation analysis revealed that 

two modules (MEblack and MEblue) were positively correlated 

with epilepsy (r > 0.8; p < 0.001) (Figure 2C) and were considered 

the epilepsy-related key modules containing 594 DEGs. Similarly, 

based on the GSE58294 IS dataset, a power of 10 (scale-free 

R2  = 0.85) was selected to ensure a scale-free network (Figure 2D), 

and seven modules were identified (Figure 2E). The MEblack 

module was positively correlated with IS (r = 0.88, p = 2e−14) 

(Figure 2F) and was considered an IS-related key module. A total 

of 2623 DEGs were included in this module.

Analysis of the shared genes of epilepsy and IS

Using Venn diagram analysis, 38 overlapping DEGs in the 

epilepsy- and IS-related key modules were obtained, which were 
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considered as the shared genes of two diseases.

Functional enrichment analysis for the shared genes of epilepsy 

and IS

Functional enrichment analyses were performed to elucidate 

the potential functions of the shared genes in the two diseases. The 

shared genes were remarkably enriched in 189 GO BP terms such 

as neutrophil activation, 20 GO CC terms such as ficolin-1-rich 

granule lumen, 17 GO MF terms such as hydrolase activity, and 9 

KEGG pathways such as purine metabolism (Figure 3).

PPI network analysis and hub gene identification

Based on the information obtained from the STRING database, 

we constructed a PPI network including 26 shared genes of two 

diseases (Figure 4A). The top five genes were respectively 

identified based on four topological analysis algorithms, including 

MNC, MCC, degree, and EPC. Intersection analysis of the top five 

genes from each topological analysis algorithm identified three 

overlapping genes as candidate hub genes for the two diseases 

(Figure 4B), including interleukin 10 receptor subunit alpha 

(IL10RA), CD2 molecule (CD2), and complement C3a receptor 1 

(C3AR1).

Candidate hub-shared genes had high diagnostic efficacy for 

epilepsy and IS

The diagnostic efficacies of three candidate hub-shared genes, 

including L10RA, CD2, and C3AR1 were evaluated based on the 

gene expression data from all the datasets. The results showed that 
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the AUC value of all these genes in training and validation datasets 

was > 0.66 (Figure 4C). Therefore, all these genes had high 

diagnostic efficacies for epilepsy and IS.

Validating the differential expression of the candidate hub-shared 

genes

We first extracted the expression of candidate hub-shared 

genes from the epilepsy and IS samples based on the training 

datasets of epilepsy (GSE143272) and IS (GSE58294). Compared to 

the respective control samples, the expression of IL10RA, CD2, and 

C3AR1 was upregulated in epilepsy and IS samples (Figure 5A). 

Subsequently, we analyzed the differential expression of the 

candidate hub-shared genes based on the validation datasets of 

epilepsy (GSE16969 and GSE205661) and IS (GSE16561). The 

results showed that only C3AR1 expression was upregulated in the 

epilepsy and IS samples based on the validation datasets (Figure 

5B), which was similar to the results obtained from the training 

datasets. Thus, C3AR1 was recognized as a hub-shared gene in the 

two diseases.

Construction of the PPI network of C3AR1

To explore the potential mechanisms of C3AR1 in the two 

diseases, a PPI network of C3AR1 was constructed using the 

GeneMANIA database (Figure 6A). In this network, 20 cooperators 

of C3AR1, including the complement C3 (C3), complement C4A 

(C4A), and complement C5a receptor 1 (C5AR1) were identified.

Analysis of the upstream miRNAs of C3AR1
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Using the HMDD, we identified 32 miRNAs associated with 

epilepsy and 40 miRNAs associated with IS. Subsequently, 10 

common miRNAs associated with two diseases were identified. 

Moreover, 125 upstream miRNAs of C3AR1 were predicted using 

the miRWalk database, and an upstream miRNA-C3AR1 network 

was constructed (Figure 6B). Notably, among the miRNAs 

upstream of C3AR1, only hsa-let-7b-5p was common in both 

diseases.

Demographic data of clinical participants 

This study included 34 participants: 14 children with epilepsy 

(7 girls and 7 boys) and 20 healthy controls (13 girls and 7 boys). 

No significant age differences were observed between the epilepsy 

and healthy control groups (mean age: 4.0 ± 1.5 years vs. 3.4 ± 0.8 

years, p > 0.05), minimizing the impact of age as a confounding 

factor.

Analysis of differential metabolites and pathway enrichment 

analysis

Using nontargeted metabolomics analysis, 51 upregulated and 

88 downregulated differential metabolites were identified between 

the plasma samples from children with epilepsy and healthy 

controls (Figure 7A). Pathway enrichment analysis was performed 

to clarify the biological significance of C3AR1 and its metabolites. A 

total of 22 significantly enriched pathways containing 20 

metabolites were identified (Figure 7B).

Metabolic pathway network analysis
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We identified 22 significantly enriched pathways from the 

KEGG database. A metabolite pathway background network was 

constructed including 11391 nodes, 33332 edges, and 17 

metabolites. The diffusion scores of the nodes were calculated 

using a diffusion algorithm. Subsequently, a metabolic pathway 

network was constructed using nodes with p < 0.05. The metabolic 

pathway network included 81 nodes, 85 edges, and 12 metabolites 

(Figure 7C). Based on the diffusion algorithm, heat was believed to 

flow from the 12 differential metabolites and pass through the 

metabolite pathway background network. At rest, six pathways 

were identified: hsa04721, synaptic vesicle cycle; hsa04725, 

cholinergic synapses; hsa04742, taste transduction; hsa04913, 

ovarian steroidogenesis; hsa04925, aldosterone synthesis and 

secretion; and hsa05033, nicotine addiction. C3AR1 was involved in 

three pathways (hsa04721, hsa04742, and hsa05033) through 

interactions with the differential metabolite C01996 (acetylcholine). 

Acetylcholine was downregulated in the plasma samples from 

children with epilepsy.

Discussion

IS has been identified as an important cause of epilepsy 38. PSE 

is a common complication of IS that adversely affects the patients’ 

prognosis. Currently, the risk of PSE cannot be predicted 

adequately using clinical and radiological parameters 39. Therefore, 

elucidating the common mechanisms underlying IS and epilepsy is 

necessary to uncover the underlying mechanisms and potential 

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



biomarkers of PSE. In this study, we investigated the shared genes 

of IS and epilepsy and explored their related mechanisms. The 

findings will improve our understanding of the common 

mechanisms underlying IS and epilepsy. 

Using microarray technology, the expression data of thousands 

of genes for multiple diseases can be rapidly obtained, making it 

possible to elucidate the common pathogenesis of multiple diseases 

at the gene level 40,41. WGCNA is a useful tool for discovering 

gene–gene and gene–disease relationships and has been widely 

applied to construct gene co-expression networks and identify key 

genes in disease-related networks 42-44. In this study, we performed 

WGCNA and identified two epilepsy-related key modules containing 

594 DEGs and an IS-related key module containing 2623 DEGs. PPI 

network analysis identified three candidate hub-shared genes from 

the 38 overlapping DEGs in the epilepsy- and IS-related key 

modules, including IL10RA, CD2, and C3AR1. These data suggest 

that these shared genes may be involved in the development of IS 

and epilepsy.

IL-10 is a multifunctional anti-inflammatory cytokine that plays 

a neuroprotective role in the brain 45,46. It can inhibit IL-1β 

production and suppress inflammasome activation of microglia in 

epileptic seizures 47. IL-1β can also predict seizure recurrence after 

the first epileptic seizure among IS patients and may serve as a 

promising prognostic biomarker for PSE 48,49. Moreover, IL-10 is 

positively associated with the risk of stroke 50,51. IL-10 activates 
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downstream signaling by binding to the IL-10 receptors (IL-10RA 

and IL10RB) 52. Polymorphisms in IL10, IL10RA, and IL10RB genes 

are associated with IS in terms of hypertension 53. CD2 belongs to 

the immunoglobulin superfamily and plays a key role in mediating 

T and natural killer (NK) cell activation 54. Cluster of differentiation 

8 (CD8+), cluster of differentiation 4 (CD4+), and NK T cells are 

recruited within 24 h of IS and play a crucial role in regulating the 

inflammatory response after injury 55. T-cell numbers are 

associated with neuronal loss in medial temporal lobe epilepsy 56. 

These findings suggest that CD2 contributes to epilepsy and IS by 

affecting T and NK cell activation. C3AR1 is a key regulator of 

neuronal tau pathogenesis and has been implicated in the immune 

network of the CNS 57. Tau protein hyperphosphorylation has been 

observed in animal models of epilepsy 58 and in patients with 

epilepsy 59. Tau protein also contributes to brain damage following 

stroke as seen in an animal model of stroke 60 and has been 

suggested as a potential therapeutic target for IS 61. Moreover, Tau 

protein is reported to have a sensitivity of 100% and a specificity of 

73% for predicting PSE 39. These data suggest that C3AR1 

contributes to epilepsy and IS by regulating the pathogenesis of the 

neuronal tau protein. In our study, ROC analysis revealed that the 

diagnostic efficacy of L10RA, CD2, and C3AR1 was high, with AUC 

values > 0.66 in the training and validation datasets. Therefore, 

these genes may serve as promising biomarkers for the diagnosis of 

IS and epilepsy. However, differential expression validation showed 
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that only the expression trend of C3AR1 was consistent in both the 

training and validation datasets. The differential expression and 

diagnostic value of L10RA, CD2, and C3AR1 need to be validated 

using additional datasets or clinical cohorts.

miRNAs are small noncoding RNA molecules of 22 nucleotides 

in length. Accumulating evidence has confirmed that miRNAs are 

key regulators of IS 62, epilepsy 63, and PSE 64. In this study, we 

found that hsa-let-7b-5p is a common miRNA in epilepsy and IS and 

can target C3AR1. A previous study has shown that knockdown of 

let-7b-5p reverses the effect of repetitive transcranial magnetic 

stimulation on microglia phenotype, and play a key role in 

neurological recovery and preventing ischemic stroke 65. Combined 

analyses of Fas and hsa-let-7b-5p expression have revealed them to 

be promising biomarkers for predicting poor neurological outcomes 

in patients with IS patients 66. Although the role of hsa-let-7b-5p in 

epilepsy has not been reported, our results imply that 

hsa-let-7b-5p-C3AR1 axis may be a potential common regulatory 

mechanism mediating IS and epilepsy.

Several metabolites like lactate, glutamate, and citrate as well 

as metabolic pathways such as glycine, serine, and threonine 

metabolism were recently shown to be involved in epilepsy, 

providing a novel perspective for exploring promising biomarkers 

and therapeutic targets for epilepsy 67. Thus, we conducted a 

nontargeted metabolomics analysis to identify differential 

metabolites in the plasma samples of children with epilepsy and 
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subsequently analyzed the key metabolites that may be regulated 

by C3AR1. We found that acetylcholine was downregulated in the 

plasma samples of children with epilepsy and that C3AR1 was 

involved in three pathways (hsa04721, synaptic vesicle cycle; 

hsa04742, taste transduction; and hsa05033, nicotine addiction) 

through interaction with acetylcholine. Acetylcholine is the main 

stimulant of the autonomic nervous system and plays a key role in 

signal transmission via the cholinergic and nicotinic receptors. 

Increasing evidence has highlighted the role of acetylcholine and 

cholinergic neurotransmission in the pathogenesis of epilepsy 68-70. 

Moreover, the synaptic vesicle cycle controls neurotransmitter 

release and is implicated in epilepsy progression 71. Nicotine 

addiction is also an important pathway that mediates the role of 

drugs in treating epilepsy 72, suggesting a potential role of nicotine 

addiction in epilepsy. Overall, our data suggest that C3AR1 may 

contribute to PSE development by regulating acetylcholine and 

related pathways such as the synaptic vesicle cycle and nicotine 

addiction.

Several limitations should be considered when interpreting the 

findings of this study. Firstly, the hub-shared genes such as C3AR1 

and its related miRNAs like hsa-let-7b-5p were obtained from 

bioinformatics analyses of publicly available datasets, and their 

expression was not validated in clinical samples. Validating their 

expression and investigating how C3AR1 interacts with other 

relevant molecules and its specific mechanisms in disease 
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pathology is crucial for understanding its potential as a diagnostic 

biomarker. Secondly, the functions of hub-shared genes, especially 

C3AR1 were not explored in depth. Further functional studies, such 

as gene knockout or overexpression experiments, are required to 

investigate the role of in epilepsy and ischemic stroke. Thirdly, 

fourteen plasma samples from children with epilepsy were used in 

this study. The sample size was small, which may reduce the 

statistical power. Lastly, this study only validated changes in 

metabolites in plasma samples from epilepsy patients, without 

assessing metabolite alterations in IS. Future studies should be 

conducted to investigate metabolic changes in IS patients as well to 

help clarify the similarities and differences between epilepsy and IS 

at the metabolic level, further supporting the potential of shared 

genes as biomarkers for both conditions. Furthermore, given the 

complexity of these diseases, future research may focus on 

identifying a panel of biomarkers rather than relying on a single 

gene.

Conclusions

Our findings reveal that the key shared genes, especially C3AR1, 

may be implicated in the development of IS and epilepsy and could 

serve as potential diagnostic biomarkers for both diseases. 

Furthermore, C3AR1 may contribute to PSE development by 

interacting with hsa-let-7b-5p and acetylcholine. These findings 

may aid in the precise diagnosis and treatment of IS and epilepsy.
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IS: ischemic stroke; IL10RA: Interleukin 10 Receptor Subunit Alpha; 

CD2: cluster of differentiation 2; C3AR1: complement component 

3a receptor 1; GEO: Gene Expression Omnibus; WGCNA: weighted 

gene co-expression network analysis; PPI: Protein–protein 

interaction; ROC: receiver-operating characteristic; DEG: 

differentially expressed genes; PSE: post-stroke epilepsy; DAMP: 

damage-associated molecular patterns; CNS: central nervous 

system; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes 

and Genomes; MF: molecular function; CC: cellular component; BP: 

biological processes; MNC; maximal neighborhood component; 

MCC: maximal clique centrality; EPC: edge-percolated component; 

AUC: Area under the curve; HMDD: Human microRNA Disease 

Database; NK: natural killer; CD8: cluster of differentiation 8; CD4: 

cluster of differentiation 4; CD2: cluster of differentiation 2
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Figure 1 Volcano plots of DEGs associated with epilepsy and IS. A: 

Volcano plot of DEGs between epilepsy and control samples based 

on the GSE143272 dataset. B: Volcano plot of DEGs between IS 

and control samples based on the GSE58294 dataset. The 

horizontal axis is −log10 (pValue), and the vertical axis indicates 

log2 (FC). Each node represents a gene. The red nodes indicate 

upregulated genes, the green nodes indicate downregulated genes 

and the gray nodes indicate genes without significant differences. 

IS: ischemic stroke; DEGs: differentially expressed genes; FC: fold 

change
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Figure 2 Analyzing epilepsy- and IS-related gene coexpression 

modules using WGCNA based on GSE143272 and GSE58294 

datasets, respectively. A: Analysis of scale independence and mean 

connectivity to determine soft-thresholding power in WGCNA based 

on the GSE143272 dataset. B: Clustering dendrograms of 

co-expression genes in epilepsy. Genes were divided into various 

modules through hierarchical clustering, and different colors 

represent different modules. The gene that cannot be classified into 

any module by default is indicated in grey. C: The heat map of 

epilepsy-related module–trait relationships. D: Analysis of scale 

independence and mean connectivity based on the GSE58294 

dataset. E: Clustering dendrograms of co-expression genes in IS. F: 

The heat map of IS-related module–trait relationships. IS: ischemic 

stroke; WGCNA: weighted gene co-expression network analysis.
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Figure 3 GO and KEGG pathway enrichment analysis for shared 

genes of epilepsy and IS. IS: ischemic stroke; GO: Gene Ontology; 

KEGG: Kyoto Encyclopedia of Genes and Genomes.
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Figure 4 PPI network analysis and evaluating diagnostic efficacy of 

candidate hub-shared genes for epilepsy and IS. A: PPI network 

constructed by the shared genes of two diseases. B: Venn diagram 

shows the number of overlapping top genes in the PPI network 
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based on four topological properties (MCC, MNC, degree, and EPC). 

C: Evaluation of diagnostic efficacy of candidate hub-shared genes 

by ROC based on four datasets. IS: ischemic stroke; PPI: 

protein-protein interaction; MNC: maximal neighborhood 

component; MCC: maximal clique centrality; EPC: edge percolated 

component (EPC); ROC: receiver-operating characteristic; AUC: 

area under the curve.
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Figure 5 Validating the differential expression of the shared genes 

of epilepsy and IS. A: Analysis of the expression of hub-shared 

genes using training datasets (the GSE143272 epilepsy dataset and 

GSE58294 IS dataset). B: Analysis of the expression of hub-shared 

genes using validation datasets (the GSE16969 and GSE205661 

epilepsy datasets and GSE16561 IS dataset). * p < 0.05, ** p < 0.01, 

and *** p < 0.001. IS: ischemic stroke; TLE+HS: temporal lobe 

epilepsy with hippocampal sclerosis.
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Figure 6 The PPI network of C3AR1 and upstream miRNA-C3AR1 

network. A: The PPI network of C3AR1 and its 20 cooperators was 

constructed using GeneMANIA. B: The upstream miRNA-C3AR1 

network. In this network, the red circle node is the hub-shared 

gene, the green square node is the miRNA, and the yellow square 

node is the common miRNA of the two diseases.
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Figure 7 Identifying the differential metabolites, pathway 

enrichment analysis, and metabolic pathway network analysis. A: 

Volcano plot of differential metabolites between the plasma 

samples from children with epilepsy and healthy controls. B: 

Pathway enrichment analysis for differential metabolites. C: 

Metabolic pathway network of C3AR1. In this network, the green 

hexagon node is the pathway, the blue triangle node is the module, 

the pink diamond node is the enzyme, the purple inverted triangle 

node is the reaction, the yellow square node is the differential 

metabolite, and the red circle node is the hub-shared gene.
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Table

Table 1 The detail information about datasets
Disease Datasets Disease 

samples
Control 
samples

Platform

IS GSE58294 Training 21 
cardioembolic 
stroke (time 
after stroke: 3 
h)

20 
control

GPL570 
[HG-U133_Plus_2] 
Affymetrix Human 
Genome U133 Plus 2.0 
Array

GSE16561 Validation 39 IS 24 
control

GPL6883 Illumina 
HumanRef-8 v3.0 
expression bead chip

Epilepsy GSE143272 Training 12 epilepsy (4 
idiopathic, 4 
symptomatic 
and 4 
cryptogenic 
epilepsy)

4 control GPL570 
[HG-U133_Plus_2] 
Affymetrix Human 
Genome U133 Plus 2.0 
Array 

GSE16969 Validation 4 epilepsy 4 control GPL570 
[HG-U133_Plus_2] 
Affymetrix Human 
Genome U133 Plus 2.0 
Array

GSE205661 Validation 6 temporal lobe 
epilepsy with 
hippocampal 
sclerosis 
(TLE+HS)

9 control GPL19072 
Agilent-052909 
CBC_lncRNAmRNA_V3 
(Probe Name version)
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Supplement Figure 1 Research flow chart
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