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Highlights:

Shared IS and epilepsy genes, including IL10RA, CD2, and C3AR1,
were identified.

IL10RA, CD2, and C3AR1 had high diagnostic efficacy for IS and
epilepsy.

hsa-let-7b-5p was predicted as an upstream miRNA of C3ARI1.
C3AR1 may contribute to epilepsy via interaction with

acetylcholine.

Abstract

Background: This study aimed to identify shared genes between
ischemic stroke (IS) and epilepsy and explore underlying
mechanisms.

Methods: Transcriptomic datasets from the GEO database were
analyzed wusing differential expression and weighted gene

co-expression network analysis (WGCNA). Hub-shared genes were
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identified through protein-protein interaction networks, ROC
analysis, and expression validation. Upstream miRNAs were
predicted. Additionally, untargeted plasma metabolomics was
performed on children with epilepsy and healthy controls, followed
by differential metabolite analysis and metabolic pathway
construction.

Results: WGCNA revealed 594 epilepsy-related and 2,623
IS-related DEGs, with 38 shared DEGs identified, including IL10RA,
CD2, and C3AR1. These genes showed high diagnostic value, with
their AUC value > 0.66 in both training and validation datasets.
Additionally, hsa-let-7b-5p was predicted to target C3ARI1.
Metabolomics identified 139 differential metabolites, and C3AR1
was implicated in synaptic vesicle cycle, taste transduction, and
nicotine addiction pathways via acetylcholine.

Conclusions: The shared genes, especially C3AR1 may be a key
regulator in the development IS and epilepsy, showing potential as
a biomarker for both diseases. However, its diagnostic efficacy
requires further clinical validation. Given the complexity of these
diseases, future research may focus on identifying a panel of
biomarkers rather than relying on a single gene.
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Introduction

Stroke is a major cause of disability worldwide and seriously
affects living standards and quality of life. There are two types of
stroke: ischemic stroke (IS) and hemorrhagic stroke. IS is the most
common type of stroke and accounts for approximately 80% of all
strokes !. Cardioembolic stroke is a subtype in which cerebral
thromboembolic ischemia is caused by cardiogenic emboli, which
accounts for 14%-30% of IS and is more likely to cause disability 2.
Stroke is recognized as one of the most common causes of epilepsy,
with post-stroke epilepsy (PSE) accounting for 11% of all epilepsies
in the adult population 34. Epilepsy is a common neurological
disorder characterized by repeated seizures. It affects
approximately 65 million people worldwide and imposes a great
burden on individuals and health systems 26. To date, managing
PSE does not completely match the treatment of stroke and
epilepsy caused by other reasons, and neurologists lack guidance
on managing PSE, such as when and how to treat patients.
Therefore, investigating the pathogenesis and association between
stroke and epilepsy is necessary.

The risk of seizures is high in many post-stroke patients, and
the incidence of PSE has been increasing over the last decades 7.8.
Although its incidence after hemorrhagic stroke is higher than that
after IS, the overall seizure burden in the IS group is greater

because of the higher frequency of IS 9. Common



pathophysiological mechanisms are assumed to underlie stroke and
epilepsy 10. Following a stroke, various inflammatory mediators,
such as prostaglandins, cytokines, chemokines, damage-associated
molecular patterns (DAMPs), and complements are released to
repair brain damage. When sustained over time, neuroinflammation
causes neuronal and astroglial dysfunctions, resulting in altered
synaptic transmission, neuronal loss, hyperexcitability, and
abnormal neurogenesis 1!. These mechanisms contribute to
epilepsy development 12-14, Moreover, some less common factors
that may cause seizures, such as the central nervous system (CNS)
infections, systemic metabolic abnormalities, such as hypocalcemia
and hypo/hyperglycemia, and benzodiazepines and barbiturates,
may also coexist in patients with strokes, suggesting a similar
etiology of seizures and strokes 15, Furthermore, early PSE is
associated with high levels of the neural cell adhesion molecule and
low levels of tumor necrosis factor-R1 16, A recent study has
identified hub genes such as TPGS2, TMCC3, GADD45B, and
KCN]J2 as key players in both IS and epilepsy, suggesting that these
genes may play a key role in the co-pathogenesis of IS and epilepsy
17, Although a strong association exists between stroke and
epilepsy from the clinical and epidemiological perspectives, the
shared genetic and metabolic mechanisms in IS and epilepsy are
largely unknown.

In this study, we downloaded the IS- and epilepsy-related

datasets from the Gene Expression Omnibus (GEO) database and



analyzed the shared genes of the two diseases using differential
expression analysis and weighted gene co-expression network
analysis (WGCNA). We identified hub-shared genes via
protein-protein interaction (PPI) analysis, receiver-operating
characteristic (ROC) curve analysis, and differential expression
validation using validation datasets. Moreover, we predicted the
miRNAs upstream of the hub-shared genes. Furthermore, we
performed nontargeted metabolomics analysis of the plasma
samples from children with epilepsy and healthy controls, analyzed
key differential metabolites, and constructed a metabolic pathway
network of the hub-shared genes. A flowchart of the study is shown
in Supplementary Figure 1. Our study aimed to explore the shared
genetic and metabolic mechanisms between IS and epilepsy,
offering new insights for identifying potential targets that could be
useful in treating PSE.
Methods
Data acquisition and preprocessing

The IS-related gene expression profiles GSE58294 (training
dataset) and GSE16561 (validation dataset), as well as the
epilepsy-related gene expression profiles GSE143272 (training
dataset), GSE16969 (validation dataset) and GSE205661 (validation
dataset), were downloaded from the NCBI GEO database !8. The
detailed information of these datasets is listed in Table 1.

The mRNA probe expression matrix of each dataset and the

annotation file of the detection platform were downloaded. Probes



were individually converted into gene symbols. Probes that did not
match the gene symbols were removed, and the average expression
of multiple probes mapped to the same gene symbol was selected.
Differential expression analysis

Based on the training datasets (GSE143272 epilepsy dataset
and GSEL58294 IS dataset), the differentially expressed genes
(DEGSs) in the epilepsy and IS samples were compared with their
respective control samples using the R limma package (version
3.48.3) 19, The P value was adjusted by Benjamini-Hochberg
method. The adjusted P (P.adj) value < 0.05 and [log fold change
(FC)| > 0.263 (that was FC > 1.20 for upreqgulation and FC < 0.8
for downregulation)29 were set as the cutoff values for DEG
screening.
Identifying disease-related genes using WGCNA

The disease-related key modules and module genes were
selected by conducting WGCNA on the DEGs identified from
peripheral blood samples in the training datasets of two diseases to
construct gene co-expression modules using the R WGCNA package
(version 1.71) 21, Briefly, an appropriate soft-thresholding power
was selected to obtain a scale-free network. The Pearson

correlation coefficient between the two diseases is determined

1+cor(x;+vj)

Sij:' 2

through the use of formula 1: , where 7 and j are
the expression levels of the ith gene and the jth gene respectively.
Then, formula 2 and 3 are used to convert the gene expression

similarity matrix into an adjacency matrix, with the network type



being signed, where p is the soft threshold, which is the square of
the Pearson correlation coefficient S for each pair of genes. The
adjacency matrix is converted into a topology matrix, and the
topology overlap (Topological overlap measure, TOM) is used to
describe the degree of association between  genes:

_ |1+cor(xityy) B — Ly Tin O+
Ay = 2 and min (T ap XL, ap)+1-ay;

Gene co-expression modules were determined, and genes with
similar expression patterns were clustered.Using formula 4 for
clustering analysis, 1-TOM represents the degree of difference
between genes 7 and j. Genes are hierarchically clustered, followed
by module identification using dynamic cuttinng iree methods. The
most representative gene in each module is called a feature vector
gene, or ME for short. It represents the overall level of gene
expression within the module and is the first principal component

in each module. Here, / denotes the gene in module g, and /

denotes the chip sample in module ¢ : ME = princomp (xff )) .
Module Identity (MM) is used to measure the association

degree of a gene with a specific module. This is achieved by

calculating the Pearson correlation coefficient between the

expression profile of a gene in all samples and the eigenvector gene
ME? of module ¢. This process can be completed using formula
5: MM} = cor(x, ME?), Here, Xirepresents the expression

profile of the ith gene, ME? js the eigenvector gene expression

profile of module ¢, and MM is the Module Identity value of



gene jin module g. When MM} equals 0, it indicates that the

gene does not belong to module ¢qg ; if the value of

MM?approaches +1 or -1, it suggests that gene 7 has a stronger
correlation with module g. A positive sign indicates a positive
correlation between gene 7 and module g, while a negative sign
indicates a negative correlation.

Finally, it is analyzed and visualized. The cluster tree was cut
into branches to define the modules using a dynamic tree cut, and
each module was assigned a different color for visualization. Each
module contained at least 30 genes. The epilepsy- or IS-related key
modules were identified wusing hierarchical clustering and
correlation analysis of the module eigengene values and clinical
traits. Disease-related DEGs were identified from key epilepsy- and
IS-related modules.

Analyzing the shared genes of epilepsy and IS

The overlapping DEGs in the epilepsy- and IS-related key
modules were considered as the shared genes of two diseases and
were obtained using Venn diagram analysis using the R VennDetail
package (version 1.2.0).

Functional enrichment analysis for shared genes

The shared genes of two diseases were imported for Gene
Ontology (GO) functions and Kyoto Encyclopedia of Genes and
Genomes (KEGG)2224 pathway enrichment analyses using the R
clusterProfiler package (version 4.44) 25, GO describes the

overrepresented biological functions from three aspects: molecular



function (MF), cellular component (CC), and biological processes
(BP).
PPI network analysis and hub gene identification

The PPI relationships of the shared genes of two diseases were
analyzed using the STRING (version 11.0) database 26, followed by
the construction of a PPI network using Cytoscape (version 3.9.2) 27,
The interaction score was set to 0.15. The top five hub genes were
analyzed using the cytoHubba plug-in 28, and four topological
analysis algorithms, including the maximal neighborhood
component (MNC), maximal clique centrality (MCC), degree, and
edge-percolated component (EPC). MCC calculaied the importance
of nodes by identifying the maximal cliques in the network MNC
evaluated node importance based on the strength of interactions
with neighboring nodes. Degree assessed node importance by
calculating its number of connections. EPC identified key edges and
nodes in the network through edge percolation. These algorithms
were widely utilized for selecting hub genes from PPI networks 2930,
The intersecting genes of the top five genes from each topological
analysis algorithm were considered candidate hub genes for the
two diseases.
Diagnostic efficacy evaluation of the hub-shared genes

To evaluate the diagnostic efficacy of the candidate hub-shared
gene, ROC curves were plotted using the R pROC package (version
1.18.0) 31 based on the expression data of the hub-shared genes in

all the enrolled datasets. The higher the value of the area under the



curve (AUC), the stronger the diagnostic efficacy was.
Validating the differential expression of the candidate hub-shared
genes

Using the validation datasets of IS (GSE16561) and epilepsy
(GSE16969 and GSE205661), the differential expression of the
candidate hub-shared genes in the two diseases was validated.
Differential expression analysis of the candidate hub-shared genes
was performed using Student’s t-test. Genes with the same
expression trends in the disease samples in the training and
validation datasets were considered the hub-shared genes.
PPI network of the hub-shared genes

The possible mechanisms of the hub-shared genes were further
studied by performing its PPI analysis with 20 interacting genes
using the GeneMANIA database 32. Thus, their co-localization,
shared protein domains, co-expression, and pathways were
explored.
Prediction of the upstream miRNAs of the hub-shared genes

The common miRNAs associated with the two diseases were
identified using the Human microRNA Disease Database (HMDD) 33,
Moreover, miRNAs upstream of hub-shared genes were predicted
using the miRWalk database, and an miRNA-gene network was
established. Disease-related miRNAs of the hub-shared genes were
identified using the intersection analysis of the disease-related
miRNAs and upstream miRNAs of the hub-shared genes.

Collection of clinical samples for nontargeted metabolomics



analysis

Fourteen plasma samples from children with epilepsy and 20
plasma samples from healthy controls were collected from Weifang
Maternal and Child Health Hospital. All patients with epilepsy met
the diagnostic criteria for epilepsy. Exclusion criteria included: 1)
other neurological diseases or genetic disorders; 2) somatic or
psychiatric diseases that could potentially affect metabolism; 3)
factors such as infections or immune deficiencies that significantly
impact metabolism. All children in this study had not used any
antiepileptic drugs, central nervous system medications, or
immunosuppressants during the treatment process. The study was
approved by Weifang Maternal and Chiid Health Hospital, and the
guardians of children signed written informed consent.
Nontargeted metabolomics analysis and differential metabolite
Identification

Metabolomics analyses were conducted using ultra-high
performance liquid chromatography (1290 Infinity LC, Agilent
Technologies) coupled to a quadrupole time-of-flight (AB Sciex
TripleTOF 6600) at Beijing Allwegene Technology Co., Ltd. (Beijing,
China). In detail, the samples were added to cold
methanol/acetonitrile/H,O (2:2:1) solution, shaken and extracted
for 30 min. Then, the samples were centrifuged at 14000 g at 4°C
for 20 min, and the supernatant were subjected to vacuum drying.
The residue was dissolved in 100 pL acetonitrile solution and

centrifuged at 14000 g at 4°C for 10 min, and the supernatant was



collected for liquid chromatography-mass spectrometry (LC-MS)
analysis. The LC conditions were as follows: the Vanquish
ultrahigh-performance liquid chromatograph (UHPLC) (Thermo)
with Waters, ACQUITY UPLC BEH Amide 1.7 pm, 2.1 mm X 100
mm column was used, with the column temperature of 25°C, flow
rate of 0.3 mL/min, and sample size of 2 pL. Mobile phase A
consisted of H,0O, 25 mM ammonium acetate, and 25 mM ammonia
water. Mobile phase B was acetonitrile. The solvent gradient was
set as follows: 98% B, 1.5 min; 98-2% B, 12 min; 2% B, 14 min;
2-98% B, 14.1 min; 98% B, 17 min. The samples were placed in a
4°C automatic injector during the entire analysis process. The
quality control (QC) samples were inserted into the sample queue
to monitor and evaluate the stability of the system and the
reliability of the experimental data. Using the QExactive mass
spectrometer, the primary and secondary spectra of samples were
collected. This mass spectrometer provided electrospray ionization
(ESI) positive and negative ion detection modes. ESI source
conditions were as follows: the ion source gas 1: 60, ion source gas
2: 60, curtain gas (CUR): 30 psi, source temperature: 600°C; ion
spray voltage floating (ISVF): = 5500 V, primary mass-charge ratio
detection range: 80-1200 Da, resolution: 60000, accumulation time:
100 ms, scanning range of secondary stage: 70-1200 Da, resolution:
30000, scan accumulation time: 50 ms, and dynamic exclusion time:
4 s. The raw data were subjected to peak alignment, retention time

correction and peak area extraction using XCMS software.



Multivariate statistical analyses were performed. Subsequently, the
differential metabolites were identified with the cutoff values of p <
0.05 (Student’s t-test), FC > 1.5 or < 0.67 3435 and variable
importance in the projection (the first principal component of
orthogonal partial least squares discriminant analysis) > 1.
Pathway enrichment analysis for the hub-shared genes and
differential metabolites

To clarify the biological significance of the hub-shared genes
and differential metabolites, the pathways significantly enriched by
the hub-shared genes and differential metabolites were analyzed
using the IMPaLA 36 tool with the background of the KEGG
database. The screening parameters were set as follows:
pathway source, KEGG; num overlapping metabolites/genes > O0;
and p joint < 0.05.
Metabolic pathway enrichment analysis

To further understand the overall affected pathways and
corresponding differential metabolites, metabolic pathway
enrichment analysis was performed to map a metabolic pathway
network using FELLA, an R package to perform a network-based
enrichment of a list of affected metabolites 37. Enrichment was
calculated based on the KEGG pathways using the diffusion method.
According to the results of the pathway enrichment analysis, with
the KEGG graph as a large background, a metabolite pathway
background network was constructed, containing pathways,

metabolites, reactions, enzymes, and modules. Using the diffusion



algorithm, heat was forced to flow from a given node (the
metabolites in the significantly enriched pathway) and pass
through the metabolite pathway background network, leading to
the changes in the score of each node in the background network
until the final rest. The temperatures (diffusion scores) were
calculated as follows:

T =-KI-1 x G.

G is the heat generation vector (1 is the differential metabolite
and O otherwise); KI is the conductance matrix, where KI = L + B,
L is the unnormalized graph Laplacian, B is the diagonal adjacency
matrix with Bii = 1 if node i is a pathway, and Bii = 0 otherwise.
Matrix B ensures that the flow leaves the graph through the nodes
of the pathways.

The p-value was obtained using a permutation test according to
the diffusion scores. The network nodes were sorted according to
the p-value, and nodes with p-value < 0.05 were screened to
construct the metabolic pathway network.

Results
Identification of DEGs in epilepsy and IS

We performed a differential expression analysis to identify
DEGs in epilepsy and IS. A total of 549 upregulated and 739
downregulated DEGs between the epilepsy and control samples
were identified based on the GSE143272 epilepsy dataset
(Supplementary Table 1), and the volcano plot of these DEGs is

shown in Figure 1A. In addition, 3593 upregulated and 1410



downregulated DEGs between the IS and control samples were
screened based on the GSE58294 IS dataset (Supplementary Table
2). The volcano plot of these DEGs is shown in Figure 1B.
Analysis of the co-expression module and identification of the
disease-related genes

To identify the disease-related genes, gene co-expression
modules associated with epilepsy and IS were analyzed using the
WGCNA of the DEGs. In this analysis, DEGs with similar
expression patterns were assigned to the same module. Based on
the GSE143272 epilepsy dataset, a power of 12 (scale-free R2 =
0.85) was chosen to ensure a scale-free network (Figure 2A), and
three modules were obtained, with each color representing each
module (Figure 2B). Subsequent correlation analysis revealed that
two modules (MEblack and MEblue) were positively correlated
with epilepsy (r > 0.8; p < 0.001) (Figure 2C) and were considered
the epilepsy-related key modules containing 594 DEGs. Similarly,
based on the GSE58294 IS dataset, a power of 10 (scale-free
R2 = 0.85) was selected to ensure a scale-free network (Figure 2D),
and seven modules were identified (Figure 2E). The MEDblack
module was positively correlated with IS (r = 0.88, p = 2e—14)
(Figure 2F) and was considered an IS-related key module. A total
of 2623 DEGs were included in this module.
Analysis of the shared genes of epilepsy and IS

Using Venn diagram analysis, 38 overlapping DEGs in the

epilepsy- and IS-related key modules were obtained, which were



considered as the shared genes of two diseases.
Functional enrichment analysis for the shared genes of epilepsy
and IS

Functional enrichment analyses were performed to elucidate
the potential functions of the shared genes in the two diseases. The
shared genes were remarkably enriched in 189 GO BP terms such
as neutrophil activation, 20 GO CC terms such as ficolin-1-rich
granule lumen, 17 GO MF terms such as hydrolase activity, and 9
KEGG pathways such as purine metabolism (Figure 3).
PPI network analysis and hub gene identification

Based on the information obtained from the STRING database,
we constructed a PPI network including 26 shared genes of two
diseases (Figure 4A). The top five genes were respectively
identified based on four topological analysis algorithms, including
MNC, MCC, degree, and EPC. Intersection analysis of the top five
genes from each topological analysis algorithm identified three
overlapping genes as candidate hub genes for the two diseases
(Figure 4B), including interleukin 10 receptor subunit alpha
(IL10RA), CD2 molecule (CD2), and complement C3a receptor 1
(C3AR1).
Candidate hub-shared genes had high diagnostic efficacy for
epilepsy and IS

The diagnostic efficacies of three candidate hub-shared genes,
including L10RA, CD2, and C3AR1 were evaluated based on the

gene expression data from all the datasets. The results showed that



the AUC value of all these genes in training and validation datasets
was > 0.66 (Figure 4C). Therefore, all these genes had high
diagnostic efficacies for epilepsy and IS.
Validating the differential expression of the candidate hub-shared
genes

We first extracted the expression of candidate hub-shared
genes from the epilepsy and IS samples based on the training
datasets of epilepsy (GSE143272) and IS (GSE58294). Compared to
the respective control samples, the expression of ILI0RA, CD2, and
C3AR1 was upregulated in epilepsy and IS samples (Figure 5A).
Subsequently, we analyzed the differential expression of the
candidate hub-shared genes based on the validation datasets of
epilepsy (GSE16969 and GSE205661) and IS (GSE16561). The
results showed that only C2ZAR1 expression was upregulated in the
epilepsy and IS samples based on the validation datasets (Figure
5B), which was similar to the results obtained from the training
datasets. Thus, C3AR1 was recognized as a hub-shared gene in the
two diseases.
Construction of the PPI network of C3AR1

To explore the potential mechanisms of C3AR1 in the two
diseases, a PPI network of C3AR1 was constructed using the
GeneMANIA database (Figure 6A). In this network, 20 cooperators
of C3AR1, including the complement C3 (C3), complement C4A
(C4A), and complement C5a receptor 1 (C5AR1) were identified.

Analysis of the upstream miRNAs of C3AR1



Using the HMDD, we identified 32 miRNAs associated with
epilepsy and 40 miRNAs associated with IS. Subsequently, 10
common miRNAs associated with two diseases were identified.
Moreover, 125 upstream miRNAs of C3AR1 were predicted using
the miRWalk database, and an upstream miRNA-C3AR1 network
was constructed (Figure 6B). Notably, among the miRNAs
upstream of C3AR1, only hsa-let-7b-5p was common in both
diseases.

Demographic data of clinical participants

This study included 34 participants: 14 children with epilepsy
(7 girls and 7 boys) and 20 healthy controls {13 girls and 7 boys).
No significant age differences were observed between the epilepsy
and healthy control groups (mean age: 4.0 £ 1.5 years vs. 3.4 = 0.8
years, p > 0.05), minimizing the impact of age as a confounding
factor.

Analysis of difierential metabolites and pathway enrichment
analysis

Using nontargeted metabolomics analysis, 51 upregulated and
88 downregulated differential metabolites were identified between
the plasma samples from children with epilepsy and healthy
controls (Figure 7A). Pathway enrichment analysis was performed
to clarify the biological significance of C3AR1 and its metabolites. A
total of 22 significantly enriched pathways containing 20
metabolites were identified (Figure 7B).

Metabolic pathway network analysis



We identified 22 significantly enriched pathways from the
KEGG database. A metabolite pathway background network was
constructed including 11391 nodes, 33332 edges, and 17
metabolites. The diffusion scores of the nodes were calculated
using a diffusion algorithm. Subsequently, a metabolic pathway
network was constructed using nodes with p < 0.05. The metabolic
pathway network included 81 nodes, 85 edges, and 12 metabolites
(Figure 7C). Based on the diffusion algorithm, heat was believed to
flow from the 12 differential metabolites and pass through the
metabolite pathway background network. At rest, six pathways
were identified: hsa04721, synaptic vesicie cycle; hsa04725,
cholinergic synapses; hsa04742, taste transduction; hsa04913,
ovarian steroidogenesis; hsa049225, aldosterone synthesis and
secretion; and hsa05033, nicotine addiction. C3AR1 was involved in
three pathways (hsa(04721, hsa04742, and hsa05033) through
interactions with the differential metabolite C01996 (acetylcholine).
Acetylcholine was downregulated in the plasma samples from
children with epilepsy.

Discussion

IS has been identified as an important cause of epilepsy 38. PSE
is a common complication of IS that adversely affects the patients’
prognosis. Currently, the risk of PSE cannot be predicted
adequately using clinical and radiological parameters 39. Therefore,
elucidating the common mechanisms underlying IS and epilepsy is

necessary to uncover the underlying mechanisms and potential



biomarkers of PSE. In this study, we investigated the shared genes
of IS and epilepsy and explored their related mechanisms. The
findings will improve our understanding of the common
mechanisms underlying IS and epilepsy.

Using microarray technology, the expression data of thousands
of genes for multiple diseases can be rapidly obtained, making it
possible to elucidate the common pathogenesis of multiple diseases
at the gene level 4041, WGCNA is a useful tool for discovering
gene-gene and gene-disease relationships and has been widely
applied to construct gene co-expression networks and identify key
genes in disease-related networks 4244, In this study, we performed
WGCNA and identified two epilepsy-related key modules containing
594 DEGs and an IS-related key module containing 2623 DEGs. PPI
network analysis identified thiree candidate hub-shared genes from
the 38 overlapping DEGs in the epilepsy- and IS-related key
modules, including IL10RA, CD2, and C3AR1. These data suggest
that these shared genes may be involved in the development of IS
and epilepsy.

IL-10 is a multifunctional anti-inflammatory cytokine that plays
a neuroprotective role in the brain 446, It can inhibit IL-1B
production and suppress inflammasome activation of microglia in
epileptic seizures 47. IL-1B can also predict seizure recurrence after
the first epileptic seizure among IS patients and may serve as a
promising prognostic biomarker for PSE 4849 Moreover, IL-10 is

positively associated with the risk of stroke 5051, IL-10 activates



downstream signaling by binding to the IL-10 receptors (IL-10RA
and IL10RB) 52, Polymorphisms in IL10, IL10RA, and IL10RB genes
are associated with IS in terms of hypertension 3. CD2 belongs to
the immunoglobulin superfamily and plays a key role in mediating
T and natural killer (NK) cell activation °%. Cluster of differentiation
8 (CD8+), cluster of differentiation 4 (CD4+), and NK T cells are
recruited within 24 h of IS and play a crucial role in regulating the
inflammatory response after injury °5. T-cell numbers are
associated with neuronal loss in medial temporal lobe epilepsy °.
These findings suggest that CD2 contributes to epilepsy and IS by
affecting T and NK cell activation. C3AR1 is a key regulator of
neuronal tau pathogenesis and has been implicated in the immune
network of the CNS 57, Tau protein hyperphosphorylation has been
observed in animal modeis of epilepsy %8 and in patients with
epilepsy °9. Tau protein aiso contributes to brain damage following
stroke as seen in an animal model of stroke 60 and has been
suggested as a potential therapeutic target for IS 61, Moreover, Tau
protein is reported to have a sensitivity of 100% and a specificity of
73% for predicting PSE 39 These data suggest that C3ARI1
contributes to epilepsy and IS by regulating the pathogenesis of the
neuronal tau protein. In our study, ROC analysis revealed that the
diagnostic efficacy of L10RA, CD2, and C3AR1 was high, with AUC
values > 0.66 in the training and validation datasets. Therefore,
these genes may serve as promising biomarkers for the diagnosis of

IS and epilepsy. However, differential expression validation showed



that only the expression trend of C3AR1 was consistent in both the
training and validation datasets. The differential expression and
diagnostic value of L1I0RA, CD2, and C3AR1 need to be validated
using additional datasets or clinical cohorts.

miRNAs are small noncoding RNA molecules of 22 nucleotides
in length. Accumulating evidence has confirmed that miRNAs are
key regulators of IS 62, epilepsy 63, and PSE 64, In this study, we
found that hsa-let-7b-5p is a common miRNA in epilepsy and IS and
can target C3AR1. A previous study has shown that knockdown of
let-7b-5p reverses the effect of repetitive transcranial magnetic
stimulation on microglia phenotype, and play a key role in
neurological recovery and preventing ischemic stroke 6. Combined
analyses of Fas and hsa-let-7b-5p expression have revealed them to
be promising biomarkers for predicting poor neurological outcomes
in patients with IS patients 66. Although the role of hsa-let-7b-5p in
epilepsy has not been reported, our results imply that
hsa-let-7b-5p-C3AR1 axis may be a potential common regulatory
mechanism mediating IS and epilepsy.

Several metabolites like lactate, glutamate, and citrate as well
as metabolic pathways such as glycine, serine, and threonine
metabolism were recently shown to be involved in epilepsy,
providing a novel perspective for exploring promising biomarkers
and therapeutic targets for epilepsy ¢7. Thus, we conducted a
nontargeted metabolomics analysis to identify differential

metabolites in the plasma samples of children with epilepsy and



subsequently analyzed the key metabolites that may be regulated
by C3AR1. We found that acetylcholine was downregulated in the
plasma samples of children with epilepsy and that C3AR1 was
involved in three pathways (hsa04721, synaptic vesicle cycle;
hsa04742, taste transduction; and hsa05033, nicotine addiction)
through interaction with acetylcholine. Acetylcholine is the main
stimulant of the autonomic nervous system and plays a key role in
signal transmission via the cholinergic and nicotinic receptors.
Increasing evidence has highlighted the role of acetylcholine and
cholinergic neurotransmission in the pathogenesis of epilepsy 68-70,
Moreover, the synaptic vesicle cycle controls neurotransmitter
release and is implicated in epilepsy progression 7!. Nicotine
addiction is also an important pathway that mediates the role of
drugs in treating epilepsy 7%, suggesting a potential role of nicotine
addiction in epilepsy. Overall, our data suggest that C3AR1 may
contribute to PSE development by regulating acetylcholine and
related pathways such as the synaptic vesicle cycle and nicotine
addiction.

Several limitations should be considered when interpreting the
findings of this study. Firstly, the hub-shared genes such as C3AR1
and its related miRNAs like hsa-let-7b-5p were obtained from
bioinformatics analyses of publicly available datasets, and their
expression was not validated in clinical samples. Validating their
expression and investigating how C3AR1 interacts with other

relevant molecules and its specific mechanisms in disease
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pathology is crucial for understanding its potential as a diagnostic
biomarker. Secondly, the functions of hub-shared genes, especially
C3AR1 were not explored in depth. Further functional studies, such
as gene knockout or overexpression experiments, are required to
investigate the role of in epilepsy and ischemic stroke. Thirdly,
fourteen plasma samples from children with epilepsy were used in
this study. The sample size was small, which may reduce the
statistical power. Lastly, this study only validated changes in
metabolites in plasma samples from epilepsy patients, without
assessing metabolite alterations in IS. Future studies should be
conducted to investigate metabolic changes in IS patients as well to
help clarify the similarities and differences between epilepsy and IS
at the metabolic level, further supporting the potential of shared
genes as biomarkers for both conditions. Furthermore, given the
complexity of these diseases, future research may focus on
identifying a panel of biomarkers rather than relying on a single
gene.
Conclusions

Our findings reveal that the key shared genes, especially C3AR1,
may be implicated in the development of IS and epilepsy and could
serve as potential diagnostic biomarkers for both diseases.
Furthermore, C3AR1 may contribute to PSE development by
interacting with hsa-let-7b-5p and acetylcholine. These findings
may aid in the precise diagnosis and treatment of IS and epilepsy.
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Figure 1 Volcano plots of DEGs associated with epilepsy and IS. A:
Volcano plot of DEGs between epilepsy and control samples based
on the GSE143272 dataset. B: Volcano plot of DEGs between IS
and control samples based on the GSE58294 dataset. The
horizontal axis is —logl0 (pValue), and the vertical axis indicates
log2 (FC). Each node represents a gene. The red nodes indicate
upregulated genes, the green nodes indicate downregulated genes
and the gray nodes indicate genes without significant differences.
IS: ischemic stroke; DEGs: differentially expressed genes; FC: fold

change
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Figure 2 Analyzing epilepsy- and [S-related gene coexpression
modules using WGCNA based on GSE143272 and GSE58294
datasets, respectively. A: Analysis of scale independence and mean
connectivity to determine soft-thresholding power in WGCNA based
on the GSE143272 dataset. B: Clustering dendrograms of
co-expression genes in epilepsy. Genes were divided into various
modules through hierarchical clustering, and different colors
represent different modules. The gene that cannot be classified into
any module by default is indicated in grey. C: The heat map of
epilepsy-related module-trait relationships. D: Analysis of scale
independence and mean connectivity based on the GSE58294
dataset. E: Clustering dendrograms of co-expression genes in IS. F:
The heat map of IS-related module-trait relationships. IS: ischemic

stroke; WGCNA: weighted gene co-expression network analysis.
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Figure 3 GO and KEGG pathway enrichment analysis for shared

genes of epilepsy and IS. IS: ischemic stroke; GO: Gene Ontology;

KEGG: Kyoto Encyclopedia of Genes and Genomes.
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Figure 4 PPI network analysis and evaluating diagnostic efficacy of
candidate hub-shared genes for epilepsy and IS. A: PPI network
constructed by the shared genes of two diseases. B: Venn diagram

shows the number of overlapping top genes in the PPI network



based on four topological properties (MCC, MNC, degree, and EPC).
C: Evaluation of diagnostic efficacy of candidate hub-shared genes
by ROC based on four datasets. IS: ischemic stroke; PPI:
protein-protein  interaction; MNC: maximal neighborhood
component; MCC: maximal clique centrality; EPC: edge percolated
component (EPC); ROC: receiver-operating characteristic; AUC:

area under the curve.
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Figure 5 Validating the differential expression of the shared genes
of epilepsy and IS. A: Analysis of the expression of hub-shared
genes using training datasets (the GSE143272 epilepsy dataset and
GSES58294 IS dataset). B: Analysis of the expression of hub-shared
genes using validation datasets (the GSE16969 and GSE205661
epilepsy datasets and GSE16561 IS dataset). * p < 0.05, ** p < 0.01,
and *** p < 0.001. IS: ischemic stroke; TLE+HS: temporal lobe

epilepsy with hippocampal sclerosis.
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Figure 6 The PPI network of C3AR1 and upstream ImiRNA-CSARl
network. A: The PPI network of C3AR1 and its 20 cooperators was
constructed using GeneMANIA. B: The upstream miRNA-C3AR1
network. In this network, the red circle node is the hub-shared
gene, the green square node is the miRNA, and the yellow square

node is the common miRNA of the two diseases.
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Figure 7 Identifying the differential metabolites, pathway
enrichment analysis, and metabolic pathway network analysis. A:
Volcano plot of differential metabolites between the plasma
samples from children with epilepsy and healthy controls. B:
Pathway enrichment analysis for differential metabolites. C:
Metabolic pathway network of C3AR1. In this network, the green
hexagon node is the pathway, the blue triangle node is the module,
the pink diamond node is the enzyme, the purple inverted triangle
node is the reaction, the yellow square node is the differential

metabolite, and the red circle node is the hub-shared gene.



Table

Table 1 The detail information about datasets

Disease Datasets Disease Control Platform
samples samples
IS GSE58294  Training 21 20 GPL570
cardioembolic control [HG-U133 Plus 2]
stroke (time Affymetrix Human
after stroke: 3 Genome U133 Plus 2.0
h) Array
GSE16561  Validation 39 IS 24 GPL6883 NNlumina
control HumanRef-8 v3.0
expression bead chip
Epilepsy GSE143272 Training 12 epilepsy (4 4 control GPL570
idiopathic, 4 [HG-U133 Plus 2]
symptomatic Affymetrix Human
and 4 Genome U133 Plus 2.0
cryptogenic Array
epilepsy)
GSE16969  Validation 4 epilepsy 4 control GPL570
[HG-U133 Plus 2]
Affymetrix Human
Genome U133 Plus 2.0
Array
GSE205661 Validation 6 temporal lobe 9 control GPL19072
epilepsy  with Agilent-052909
hippocampal CBC IncRNAmRNA V3
sclerosis (Probe Name version)

(TLE+HS)




Supplement Figure 1 Research flow chart
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Table 1 The detail information about datasets

Disease Datasets Disease Control Platform
samples samples
IS GSE58294  Training 21 20 GPL570
cardioembolic control [HG-U133 Plus 2]
stroke (time Affymetrix Human
after stroke: 3 Genome U133 Plus 2.0
h) Array
GSE16561  Validation 391S 24 GPL6883 Nlumina
control HumanRef-8 v3.0
expression bead chip
Epilepsy GSE143272 Training 12 epilepsy (4 4 control GPL570
idiopathic, 4 [HG-U133 Plus 2]
symptomatic Affymetrix Human
and 4 Genome U133 Plus 2.0
cryptogenic Array
epilepsy)
GSE16969  Validation 4 epilepsy 4 control GPL570
[HG-U133 Plus 2]
Affymetrix Human
Genome U133 Plus 2.0
Array
GSE205661 Validation 6 temporal lobe 9 control GPL19072

epilepsy  with
hippocampal
sclerosis

(TLE+HS)

Agilent-052909
CBC IncRNAmRNA V3
(Probe Name version)




