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Abstract

Joint function is impaired by disuse, as well as overuse. However, the
underlying mechanisms remain unclear. Here, we elucidate the
mechanisms of synovial and cartilage changes using a minimized
mechanical stress (MMS) mouse model by combining knee joint
immobilization and unloading. In this model, synovitis appeared by
day 3, followed by subsequent fibrosis leading to joint contracture
within two weeks. In contrast, articular cartilage degeneration
developed gradually after the synovial alterations. Notably, synovial
changes were attenuated by discontinuation of joint immobilization,
while cartilage changes improved after discontinuation of joint
immobilization and loading. Bulk ENA sequencing (RNA-seq)
analyses supported the transcriptomic alterations for synovitis,
fibrosis, and cartilage degeneration, and identified ten cytokines
associated with cartilage changes. Single-cell RNA-seq (scRNA-seq)
further identified distinct subsets in the MMS synovium: Lrrcl5*
myofibroblasts and Mmp9* macrophages, expressing many of these
cytokines. Histological examination showed that MMS initially
induced macrophage proliferation, while macrophage depletion by
intra-articular administration of clodronate liposomes inhibited
MMS-induced synovitis, fibrosis and cartilage degeneration,
accompanied by a marked reduction in the MMS-distinct subsets.

Our findings identified MMS-induced alterations in synovial cells and



their roles in joint phenotype, suggesting that joint motion and

mechanical loading contribute to the regulation of joint homeostasis.



Introduction

Cartilage and the surrounding synovium are fundamental
components of articular joints. The synovium consists of various
types of fibroblasts, macrophages, and other immune cells. Synovitis,
triggered by these immune cells, is associated with joint diseases
such as rheumatoid arthritis (RA) and osteoarthritis (OA), the most
prevalent joint disorder worldwide. In knee OA, the severity of joint
pain is closely linked to the presence of synovitis!. Given that
synovitis is significantly associated with subsequent OA progression?,
the synovium likely plays an essential role in cartilage maintenance
in healthy joints, although the mechanisms of synovium-cartilage
interaction remain poorly understoocd.

Various factors, such as aging, obesity, joint instability,
trauma, and overuse, are associated with OA pathogenesis3 4.
Excessive mechanical loading on cartilage is considered a common
underlying factor for these pathogenic factors®. In addition, disuse
adversely affects joint function, leading to contracture and atrophy of
cartilage and bone, as observed in conditions resulting from
paralysis due to brain infarction or spinal cord injury, or
immobilization during fractures®8. This indicates that the absence of
mechanical forces, known to cause bone loss?, is also detrimental to
articular joints. Interestingly, joint motion exercise can alleviate OA

symptoms, including joint pain9-12, Although appropriate use



maintains the homeostasis of synovial joints, the underlying
mechanisms remain unidentified.

To investigate the effects of joint motion and loading on the
synovium and cartilage, we established a mouse model of immobility
and unloading through tail suspension and knee joint immobilization.
We then explored synovium-cartilage interactions and the alterations
caused by the loss of mechanical stress on joints. Comprehensive
analysis using RNA sequencing (RNA-seq) and single-cell technology
provided novel insights into how the loss of mechanical stress affects
cellular interactions between the synovium and cartilage and leads

to synovitis and cartilage degeneration.

Results

Synovitis and fibrosis precede cartilage degeneration by joint
immobilization and unloading.

To investigate the role of mobility and loading in joint integrity, we
developed a minimized mechanical stress (MMS) model by
combining knee joint immobilization with a plastic cylinder and
unloading via tail suspension (Fig. 1a-c). The range of passive knee
joint motion was significantly reduced at 2 weeks in the MMS model
(Supplementary Fig. 1a, b). Micro-computed tomography (uCT)
revealed a thinner femoral cortex and reduced trabeculae in the

femoral head, with bone morphometric parameters indicating MMS-



induced bone fragility (Supplementary Fig. 1c, d).

Histological examination showed progressive thickening of
the synovial lining layer in MMS joints, accompanied by
neovascularization and perivascular accumulation of inflammatory
cells (Fig. 1d, e, Supplementary Fig. 2). Masson’s trichrome staining
further demonstrated fibrosis in the sublining area (Supplementary
Fig. 2). These alterations were most obvious at 2 weeks (Fig. 1d, e)
and preceded cartilage degeneration, which was observed after 2
weeks and continued to progress until 6 weeks, with surface
irregularities and clefts (Fig. 1d, f). These findings indicate that the
synovial response to the loss of mechanical stress occurs much

earlier than cartilage degeneration

Joint motion restores the synovial alterations, and the
combination of joint motion and weight bearing attenuates
cartilage degeneration.

Next, we examined the reversibility of these changes using the
following re-mobilization and re-loading models: R1, where only joint
motion is resumed after a 2-week period, and R2, where both joint
motion and weight bearing are restored at 2 weeks (Fig. 1c).
Compared to the MMS mice at day (D) 14 or 28, synovitis
significantly improved in both R1 and R2 mice (Fig. 1d, e). Cartilage
degeneration was also reversed in both models, but more notably in

the R2 model (Fig. 1d, f). These results demonstrate that the



synovium is regulated by joint motion, while the cartilage is

regulated by both joint motion and weight bearing.

Immobilization, not unloading, leads synovium to express
genes related to fibrosis and cartilage degradation.

Next, we investigated changes in the synovium transcriptome using
bulk RNA-seq at each time point. The expression patterns underwent
sequential alterations throughout the time course of the MMS model
and were subsequently reversed in the R1 and R2 models, returning
to levels comparable to those observed in the conirol group (Fig. 2a,
b). These alterations in gene expression in synovium aligned with the
histological changes observed in synovium (Fig. 1d, e€). Genes were
categorized into five modules according to their expression patterns,
and their characteristic Gene Ontology (GO) terms were extracted
(Fig. 2a, c). GO analysis indicated that genes in groups C and E,
which encompassed terms associated with the extracellular matrix,
were gradually upregulated in the MMS model and downregulated in
the R1 and R2 models (Fig. 2a, c). In contrast, expression of genes in
module A, which included terms related to the negative regulation of
fibroblasts and macrophages, was markedly downregulated in the
MMS model, particularly at D7 and 14 (Fig. 2a, c). We then
examined differentially expressed genes among extracellular matrix
or collagen-related genes. The expression of fibrosis-related genes

such as Sppl, Collal, Ibsp, CollaZ, and Postn that was upregulated



from D7 to 14 in the MMS synovium (Fig. 2d). Similarly, the
expression of cartilage degradation-related enzymes such as Mmpl13
and MmpJ9 increased after D7 in the MMS synovium (Fig. 2d). These
gene expression changes were reversed in the R1 and R2 models
(Fig. 2d). These data suggest that joint motion contributes to
attenuating the activation of synovial fibroblasts and macrophages,
thereby preventing synovial fibrosis and the secretion of factors that

promote articular cartilage degradation.

The combination of unloading and immobilization remarkably
decreases anabolic genes in cartilage.

We conducted analyses on cartilage samples throughout the duration
of the MMS model, similar to those performed on the synovium
mentioned above. The transcriptome profiles revealed that the
expression patterus altered sequentially throughout the progression
of the MMS model (Fig. 3a, b). These patterns partially approached
control levels when joint immobilization was discontinued (R1) and
nearly returned to control levels when both unloading and
immobilization were removed (R2) (Fig. 3b). These alterations in
gene expression in cartilage aligned with the histological changes
observed in articular cartilage (Fig. 1d, f). Genes were categorized
into five modules according to their expression patterns, and their
characteristic GO terms were extracted (Fig. 3a, c). Various terms

related to cartilage and chondrocytes in module E decreased from



D7 to 28, and most of these changes were reversed in the R2 model
(Fig. 3c). We then examined differentially expressed genes among
cartilage- or tissue remodeling-related genes. Cartilage matrix genes
such as Col2al, Colllal, ColllaZ, Acan, and Prg4, along with
essential transcription factors for chondrocyte differentiation and
cartilage matrix gene induction such as Sox9 and Sox5, decreased
due to MMS after D7 (Fig. 3d). In the R2 model, the expression
levels of these genes, except for Prg4, returned to levels comparable
to those observed in the control group, whereas in the R1 model,
they only partially reverted toward control levels (Fig. 3d). The
difference observed between R1 and R2 models suggests that both
joint motion and mechanical loading are required for maintaining
cartilage homeostasis through inducing the expression of

chondrogenic and cartilage matrix genes.

Synovium of immobilized joints expresses molecules
considered upstream regulators of cartilage degeneration.

The time-course analyses of histology and gene expression implied
that alterations in the synovium might lead to cartilage degeneration
in immobilized and unloaded joints. To investigate the synovium-
cartilage interactions responsible for cartilage degeneration, we first
examined the expression of genes encoding secreted molecules.
Immune-related cytokines and chemokines, such as 7/1b, 7111, CclZ2,

Osm, and Lif, began to increase at D3 (Fig. 4a), aligning with early



histological changes in the synovium. Subsequently, cytokines
related to extracellular matrix production, such as Spp1, Tgfb3, and
Tgfbl, were upregulated (Fig. 4a). In the cartilage, fewer cytokines
were detected (Fig. 4a). Interestingly, most of them were commonly
upregulated in both the MMS synovium and cartilage, including the
pain-related factor Ng#, the cartilage-protective factor 7imp1, and
the osteoclastogenesis-related 7nfsf11 (Fig. 4a). The alterations in
gene expression of these secreted molecules in both the synovium
and cartilage were reversible, returning to baseline levels once joint
mobility was restored (Fig. 4a).

We further performed ingenuity pathway analysis (IPA) to
infer potential upstream cytokines influencing cartilage gene
expression changes in the MMS model at D14 (Fig. 4b). Among the
46 candidates predicted by IPA, 10 genes were upregulated in the
MMS synovium (Fig. 4a-c), including 7gfb, 1/1b, Osm, Tnfsfl1, Sppl,
Lif 1111, and Cc/2. Only one gene (7nfsfl11)was upregulated in both
the MMS synovium and cartilage (Fig. 4a-c). In contrast, there were
no cartilage-specific genes among the 10 candidate genes (Fig. 4c).
These findings are consistent with the notion that synovial-derived
signals may be associated with cartilage gene expression changes in

immobilized joints, potentially through paracrine interactions.

Distinct fibroblast and macrophage subsets emerge in the

MMS synoviuin.



Next, we performed single-cell RNA sequencing (scRNA-seq) analysis
using synovium-derived cells from control and MMS D14 samples.
Synovial tissues were collected from both knees of 10 control mice
(20 knees) and 10 MMS D14 mice (20 knees). Tissues from each
group were pooled prior to cell isolation and processed as a single
scRNA-seq library per group. A total of 7,898 cells were categorized
into 16 clusters based on their marker gene expression profiles: 9
fibroblast clusters, 4 macrophage clusters, and one each for
endothelial cells, smooth muscle cells, and lymphocytes (Fig. 5a, b).
Among fibroblast clusters, universal clusters highly expressing Pi16,
Dpp4, Penk, and Coll5al, as identified by Buechler et al'3, were
predominant in the control synovium (clusters 2, 3, 6, 13) (Fig. 5a-c).
The number of Pil16*" Dpp4* and Penk* fibroblasts (clusters 2, 3) was
markedly decreased in the MMS model (Fig. 5c). Lining fibroblasts
expressing Prg4 (Cluster 1) were more abundant in the MMS model,
corresponding with thickening of the lining layer (Fig. 1d, 5c).
Notably, the Lrrc15* subset (cluster 9), characterized as
myofibroblasts, was distinct in the MMS synovium (Fig. 5a-c). The
Lrrc15* fibroblasts strongly expressed multiple fibrosis-related
genes, including Cdhll1, Collal, Postn, Sppl, and Sparc (Fig. 5c).
Cells in the macrophage clusters were divided into four
subsets, clusters 4, 7, 8, and 10 (Fig. 5a, b). The Cx3cri* subset
(cluster 4) was characterized as tissue-resident lining macrophages,

while the major histocompatibility complex class II (MHCII)* subset



(cluster 8) was characterized as proliferating interstitial
macrophages!4 (Fig. 5a, b). In contrast to other macrophages
(clusters 4, 7, and 8), cells in cluster 10 expressed Mmp9, S100a9,
Cxcl2, I11b, and Osm (Fig. 5b). The Mmp9+ macrophage subset was
distinct in the MMS model, as well as the Lrrc15* fibroblasts (Fig.

5¢).

Estimation of synovial cell subsets associated with MMS.

To examine subsets associated with the MMS-induced synovitis, we
analyzed GO terms related to “inflammation” or “inflammatory” (Fig.
6a). As expected, the four macrophage subsets (clusters 4, 7, 8, and
10) were predominantly represented in these terms (Fig. 6a). Terms
such as “leukocyte migration involved in inflammatory response,”

n u

“chronic inflammatory response,” “positive regulation of cytokine
production involved in inflammatory response,” and “inflammatory
cell apoptotic process” were specifically upregulated in the Mmp9*
macrophages (Fig. 6a). Furthermore, in the Mmp9* macrophages,
terms such as “negative regulation of acute inflammatory response

7«

to antigenic stimulus,” “negative regulation of chronic inflammatory
response,” and “negative regulation of inflammatory response to
antigenic stimulus” were downregulated compared to other
macrophage subsets (Fig. 6a). Next, we analyzed GO terms related

to “mechano” or “mechanical” (Fig. 6b). GO terms including

“mechanical” were upregulated in sublining fibroblast clusters 2, 3,



5, 6, and 9, but not in Prg4~ lining fibroblasts, macrophages, and
lymphocytes (Fig. 6b). Among these fibroblasts, “detection of
mechanical stimulus” and “response to mechanical stimulus” were
the most prominent in the Lrrc15" myofibroblasts (Fig. 6b). These
findings suggest that macrophages, particularly the Mmp9*
macrophage subset, may be involved in MMS-induced synovitis,
while certain fibroblasts might be responsible for sensing motion and
mechanical loading on the joint.

We further analyzed the cellular origin of the ten synovium-
derived cytokines potentially contributing to cartilage changes.
Tgtb3, Sppl, and Pdgfc were mainly expressed in the Lrrc15*
myofibroblasts, while 77756 and Osm were predominantly expressed in
the Mmp9* macrophages (Fig. 6¢, d). The Lrrc15" myofibroblasts
also expressed Tnfsf17 and 111 (Fig. 6¢, d). Tgfbl was expressed in
various macrephages and fibroblasts (Fig. 6¢, d). These data suggest
that MMS-specific fibroblasts and macrophages may also play key

roles in MMS-induced cartilage changes.

Macrophages show an early response to MMS and are
responsible for MMS-induced alterations in the synovium and
cartilage.

We next investigated the time-course distribution of fibroblasts and
macrophages in the MMS synovium (Fig. 7a). Immunohistochemical

analysis revealed an initial increase in CD68* macrophages in the



lining layer on D3, followed by their expansion into the sublining
area (Fig. 7a, b). In contrast, a significant increase in fibroblasts,
determined by COL1A1l expression, was observed on D7 (Fig. 7a, b).

To examine the pathogenic role of macrophages in the MMS
model, we depleted synovial macrophages by intra-articular
administration of clodronate liposomes (CLNs) every two weeks (Fig.
7c). Quantitative analysis of CD68 immunostaining demonstrated
effective macrophage depletion by clodronate treatment. Compared
with MMS D14, CD68-positive cells were reduced by 84% in the
synovial lining layer and by 66% in the sublining region in the
CLN+MMS D14 group (Fig. 7b). In the CLN injection group,
fibroblast proliferation and the subsequent synovial fibrosis were
significantly reduced by D14 (Fig. 7a, b).

Furthermore, MIMS-induced cartilage degeneration was
significantly attenuated in the CLN injection group at both D28 and
42 (Fig. 7d, e). The marker genes for Lrrcl5" myofibroblasts were
upregulated in the MMS synovium; however, CLN treatment
markedly suppressed their expression, as well as that of Mmp9 (Fig.
7f). Collectively, these findings suggest that macrophages play a key
role in activating fibroblasts and promoting subsequent cartilage

degradation in response to MMS.

Discussion



Our study demonstrated that the disruption of joint homeostasis
occurred following the removal of mechanical stress from joints,
through tail suspension and joint immobilization (MMS).
Inflammation and fibrosis progressively developed in the synovium
under MMS conditions, leading to cartilage degeneration. These
histological changes were partially reversible, with the observed
transitions and reversibility corresponding to time-course alterations
in gene expression profiles of the synovium and cartilage, as
revealed by RNA-seq analysis. In the synovium, the expression of
extracellular matrix, fibrosis-, and immune-relaied genes showed
increased expression in the MMS model. In the cartilage, the
expression of extracellular matrix and chondrogenic genes
progressively declined in the MMS model. Ten genes, identified as
potential upstream secreted molecules responsible for cartilage
changes, were upregulated in the MMS synovium. Among the
fibroblast and immune cell subsets determined by scRNA-seq,
Lrrc15% myofibroblasts and Mmp9+ macrophages were distinct in
the MMS model compared to the control. The ten candidate cytokine
genes potentially responsible for MMS-induced cartilage changes
were predominantly expressed in these MMS-distinct clusters.
Histological analysis indicated that macrophage proliferation
preceded fibroblast activation. Macrophage depletion via intra-
articular administration of CLN prevented fibroblast proliferation,

synovial fibrosis, and subsequent cartilage degeneration. These



findings imply that the loss of joint motion and/or mechanical loading
in the MMS model impair joint homeostasis through complex
mechanisms, highlighting the necessity of appropriate joint motion
and/or mechanical loading for maintaining normal synovium and
cartilage.

Macrophages appear to play a major role in the synovitis and
cartilage degeneration caused by MMS, based on the observations
that 1) macrophage proliferation was initially observed in response
to MMS, and 2) macrophage depletion inhibited the MMS-induced
changes (Fig. 7a-e). The Mmp9*t macrophages in the MMS synovium
exhibited strong proinflammatory features. Cxc/2, I11b, Osm, and
S§100a9, which are characteristic of Mmp9+" macrophages (Fig. 5b),
are also highly expressed in inflammatory macrophages under other
pathological conditioiis, such as Crohn’s disease and
atherosclerosis!® 1. In synovial macrophages of patients with RA,
S100A9 expression is positively correlated with disease activityl”. In
human OA, inflammatory macrophages and monocytes express high
levels of IL1B18. 19, In addition to these cytokines and chemokines,
MMP9 is a well-known catabolic enzyme associated with the activity
or severity of OA20-22. MMP9 is a target gene of nuclear factor kappa
B (NF-kB)23, a key transcription factor involved in the pathogenesis
of OA24, In addition, MMP9 activates various cellular processes
through proteolytic shedding, including transforming growth factor

(TGF)-B25, a potent fibroblast activator crucial for the conversion of



fibroblasts to myofibroblasts26. IL-1B and MMP9 also promote
myofibroblast activation through upregulation of TGF-p27.28, Thus,
the molecules expressed in the Mmp9* macrophages are likely
involved in the activation and proliferation of myofibroblasts.

The immobility and unloading significantly decreased the
number of universal fibroblasts and increased the number of Lrrc15*
myofibroblasts in the synovium (Fig. 5c). A recent cross-tissue
fibroblast atlas identified universal pan-tissue Pi716* and Coll5al*
fibroblast subsets in healthy mice, while Lrrc15* myofibroblasts
were specifically detected in pathological conditions such as arthritic
joints, fibrotic organs, and wounds in mice'3. Based on the current
gene expression data of various fibrosis-related genes, including
Collal, Sppl, Cdhll1, Tgfh5, Fmod, and Sparc (Fig. bb), the Lrrcl5*
myofibroblast cluster appears to be a key cell subset contributing to
synovial fibrosis i1 MMS joints.

Mechanical stress-related GO terms were markedly enriched
in five sublining fibroblast clusters: Pi16* Dpp4*, Penk*, Fap*, and
Collb5al* fibroblasts (clusters 2, 3, 5, 6) and Lrrc15* myofibroblasts
(cluster 9) (Fig. 6b). These GO terms were also detected in other
fibroblasts (clusters 12-14), endothelial cells (cluster 0), and
vascular smooth muscle cells (cluster 11). In contrast, they were
downregulated in all macrophage clusters (clusters 4, 7, 8, 10) and
lymphocytes (cluster 15) (Fig. 6b). Histological analysis further

demonstrated that macrophage proliferation preceded fibroblast



activation (Fig. 7a, b). These findings suggest that mechanical stress
on the synovium may initially be sensed by synovial fibroblasts and
vascular cells, which subsequently stimulate macrophages,
ultimately leading to the induction of the Lrrc5* myofibroblasts. At
present, there are no reports indicating that synovial macrophages
are altered by joint disuse; however, mechanosensitivity of
macrophages has been reported in primary culture and in several
non-articular tissues, such as the lung, liver, and central nervous
system?29.30, Although the mechanosensing system of synovial cells
could not be experimentally determined in the present study, the
reciprocal interactions between fibroblasts and macrophages appear
to accelerate synovitis, fibrosis, and cartilage degeneration under the
MMS condition.

Both joint motion and mechanical loading are required for
articular cartilage homeostasis (Fig. 1d, ). Joint motion influences
articular cartilage through two mechanisms: direct effects of
mechanical stress on the articular cartilage itself and indirect effects
mediated by the synovium. Regarding direct effects, previous studies
reported that mechanical loading enhances the production of
extracellular matrix3!l. Consistent with this, expression levels of
various cartilage matrix genes, such as Prg4, are decreased by MMS
(Fig. 3d). Lubricin, an essential extracellular matrix protein encoded
by the proteoglycan 4 (Prg4) gene, is produced by chondrocytes in

the superficial articular cartilage and by fibroblasts in the synovial



lining layer. Its loss of function leads to juvenile idiopathic arthritis
in both humans and mice32 33, Interestingly, lubricin is induced by
shear stress on the articular cartilage surface34. We previously
reported that lubricin contributes to joint homeostasis by modulating
the differentiation of superficial zone cells as a signaling molecule
and inhibiting the NF-kB-MMP9-TGF-B pathway36. Regarding
indirect effects mediated by the synovium, ten secreted molecules
upregulated in the MMS synovium are potential upstream regulators
of cartilage degeneration (Fig. 4c). Among these, receptor activator
of nuclear factor kappa B ligand (RANKL), encoded by Tnfsfl1, is
required for osteoclastogenesis and reguiates bone resorption in RA
and subchondral bone remodeling in OA36-38, TGF-B1, which
regulates fibrosis, osteophyte formation, and subchondral bone
remodeling39-4!, was widely expressed in immune cells and
myofibroblasts (Fig. 5b). Osteopontin (Sppl), a fibrosis-related factor
in various organs#*3, was specifically expressed in myofibroblasts
(Fig. 5b). Interleukin (IL)-1B, CCL2, and oncostatin M (OSM) are
representative proinflammatory cytokines associated with RA and OA
pathogenesis!8 44. 45 J/7h and Osm were predominantly expressed in
Mmp9*+ macrophages, while Cc/2 was expressed in other
macrophages (Fig. 6¢, d). These results suggest that Lrrc15%
myofibroblast and Mmp9* macrophage subsets play major roles in
cartilage changes caused by MMS.

This study has several limitations that should be



acknowledged. First, in the present model, immobilization and
unloading cannot be completely separated. Although our re-
mobilization paradigms (R1 and R2) provide insight into the
differential contributions of joint motion and mechanical loading,
dedicated groups involving immobilization alone or unloading alone
would be required to fully disentangle these effects. Second,
although integrated transcriptomic analyses and IPA offer valuable
insights into potential signaling pathways linking synovial
inflammation and cartilage degeneration, the identified upstream
regulators should be interpreted as bioinformatically inferred
candidates rather than definitive causal drivers. Accordingly, the
proposed synovium-cartilage signaling axis represents a working
hypothesis that requires targeted functional validation in future
studies. Third, while cur time-course analysis suggests that synovial
macrophage expaiision precedes fibroblast activation, the temporal
resolution of the current study is inherently limited by the selection
of discrete observational time points, which may not fully capture the
optimal timing of cellular dynamics. Therefore, the proposed
sequence should be interpreted as a temporal association rather
than definitive proof of causality. Fourth, because the scRNA-seq
experiments were performed using pooled samples per condition,
differences in cell cluster proportions and gene expression patterns
should be interpreted as exploratory. Independent biological

replication will be required in future studies to statistically validate



these findings. Finally, although macrophage depletion was
substantial, it was incomplete, and pharmacological depletion
approaches inherently lack absolute cellular specificity. These
limitations should be considered when interpreting the functional
contribution of synovial macrophages to joint pathology.

Overall, our study reveals the changes and roles of synovial
immune cells in joints subjected to immobilization and unloading,
highlighting the crucial impact of mechanical stress on joint
homeostasis. Further insights into the synovial macrophage-
fibroblast axis may lead to the development of disease-modifying

therapeutics for joint disorders.

Methods

Mice

C57BL/6] wild-type male mice were purchased from Sankyo Labo
Service Corporation (Tokyo, Japan). Among them, mice aged 8 to 14
weeks were used as controls. Both control and MMS model mice
were housed in plastic cages with ALPHA-dri bedding (Shepherd
Specialty Papers) in a specific pathogen-free facility. The room had a
12-h light/dark cycle and was maintained at a constant temperature
(18-22°C). All mice were euthanized by CO2 inhalation at the time of
sacrifice. For this experiment, no inclusion or exclusion criteria were

set.



MMS model

MMS model mice were suspended by their tails at 8 weeks of age.
First, adhesive tape was applied to their tails. Their knee joints were
then kept immobilized using plastic cylinders#6. Their feet were also
taped to prevent the plastic cylinders from sliding off. Additional
adhesive tape was applied between the rear limbs so that the mice
could not bite the tape around their tail. Following joint fixation,
their tails were suspended by attaching a spring clip to the adhesive
tape. The spring clip was connected to piano wire attached to the
cage lid, allowing the mice to move within their cages. Food was left
on the floor, and a water bottle was fixed to the wall with double-
sided tape for easy access.

The time points used in this study were selected based on
preliminary experiments indicating that synovial inflammatory
responses begin to emerge within the first 1-2 weeks after joint
immobilization, whereas fibrotic remodeling and cartilage
degeneration develop more gradually over several weeks. To capture
the early initiation of synovial inflammation, we included an
additional early intermediate time point at day 3, which allowed
assessment of initial transcriptional and histological changes
preceding overt tissue remodeling. Accordingly, early (D3-D14) and
later (4-6 weeks) time points were chosen to capture both the

initiation and progression phases of MMS-induced joint pathology,



while balancing animal numbers and experimental complexity.

Measurement of the range of motion of the knee joint

Mice were anesthetized with isoflurane, induced at a concentration
of 4-5% and maintained at 2-3%, and a push/pull tension gauge
(Teclock) was attached to their foot. The range of motion of the knee

joint was measured using a push/pull force of 0.05 N.

pCT

pCT images were obtained using an inspeXio SMX-100CT (Shimadzu
Corporation). The proximal part of the femur was used to assess
bone structure. The imaging conditions were as follows: voltage, 75
kV; current, 140 pA; voxel size, 0.012 mm/voxel; image size, 512 X
512 pixels; and slice thickness, 0.02 mm. The original three-
dimensional images were displayed, and the following parameters
were calculated using bone microstructure software (TRI/3D-BON-
FCS64, RATOC System Engineering): the ratio of bone volume to
total callus volume (BV/TV), the star volume of the bone marrow
space (V*m space), and the structure model index?’. These
parameters were evaluated at the femoral head without involving the

epiphyseal line under specified conditions.

Histological analyses and immunostaining

Tissue samples were fixed with 4% paraformaldehyde in phosphate-



buffered saline (pH 7.4) and then delipidated with 100% methanol at
room temperature. Specimens were decalcified with 10%
ethylenediaminetetraacetic acid (pH 7.4) at 4°C for 4 to 5 days with
stirring and then embedded in paraffin. The knee joints were
sectioned sagittally, and 5-pm-thick sections were prepared for
histological evaluation. Synovial pathology was evaluated in the
intercondylar area, whereas cartilage degeneration was assessed in
the medial compartment. These analyses were performed using
samples from eight mice (n = 8 knees) per group. For each knee,
three sections spaced 60 pym apart were selected for evaluation. In
each section, histological scoring was pertormed at three randomly
selected fields, and the median value of these fields was used as the
representative score for that section. The final histological score for
each knee was calculated as the mean of the scores obtained from
the three sections. Synovial inflammation was graded using the
synovitis score based on hematoxylin and eosin-stained sections?#,
whereas cartilage degeneration was assessed using the
Osteoarthritis Research Society International-modified Mankin score
based on safranin O-stained sections*9. Hematoxylin and eosin
staining and safranin O staining were performed according to
standard protocols. For Masson’s trichrome staining, deparaffinized
sections were mordanted with Bouin’s solution (Muto Pure
Chemicals) and stained with freshly prepared iron hematoxylin. After

brief differentiation with a second mordant, sections were treated



with 1% acetic acid and stained sequentially with Orange G,
Masson’s staining solution B, phosphotungstic acid, and aniline blue
(all from Muto Pure Chemicals).

For immunohistochemistry, deparaffinized sections were treated
with 0.3% hydrogen peroxide in methanol to quench endogenous
peroxidase activity, followed by protease-based antigen retrieval.
Non-specific binding was blocked by incubation with Blocking One
Histo (Nacalai Tesque) for 10 min at room temperature. Sections
were then incubated with antibodies against COL1A1 (1:500;
ab6308, Abcam) or CD68 (1:1,000; ab125212, Abcam) for 60 min at
room temperature. After reacting with horseradish peroxidase-
conjugated antibodies for 30 min at room temperature, positive
signals were visualized with diaminobenzidine (DAB). Images of all
slides were captured using a NanoZoomer S60 (Hamamatsu
Photonics). Positive areas for DAB were quantified using Aperio
ImageScope software (Leica Microsystems)>Y. Immunohistochemical
analyses were performed using knee joints from five mice (n = 5
knees) per group. All histological evaluations were performed in a

blinded manner.

Quantitative reverse transcription-polymerase chain reaction
(qRT-PCR)
For qRT-PCR analysis, synovial tissue was collected from mouse knee

joints using the same surgical procedures as described for bulk RNA-



seq. Tissues from both knees of a single mouse were pooled and
treated as one biological sample. Total RNA was purified using a
Direct-zol RNA MicroPrep Kit (Zymo Research). Total RNA (0.5-1 pg)
was reverse transcribed using ReverTraAce qPCR RT Master Mix
without gDNA Remover (Toyobo). Each polymerase chain reaction
(PCR) reaction contained 1 x THUNDERBIRD SYBR qPCR Mix
(Toyobo), 0.3 uM specific primers, and 20 ng of cDNA. mRNA levels
of target genes were normalized to those of B-actin. Expression levels
for each target gene were calculated using the AACt quantification
method. All reactions were run in triplicate on a Thermal Cycler Dice
instrument (Takara Bio). The primer sequences used are listed in

Supplementary Table 1.

Preparation for bulk RNA-seq

For tissue collection, mice were shaved and a midline longitudinal
skin incision was made over the knee joint. The joint was exposed
using a medial parapatellar approach, and the patella was gently
dislocated laterally. Synovial tissue within the joint cavity was
carefully excised using micro forceps and micro scissors under a
stereomicroscope, avoiding contamination from surrounding
ligaments or adipose tissue. For cartilage collection, the femur and
tibia were separated, and articular cartilage was selectively
harvested from the femoral and tibial joint surfaces using a sharp

scalpel. All tissue dissections were performed under microscopic



visualization to ensure precise isolation of synovial tissue and
articular cartilage. For each biological replicate, tissues from both
knees of a single mouse were pooled and treated as one independent
sample (n = 1 mouse). For synovial tissue, bulk RNA-seq was
performed using independent samples from n = 3 mice per group,
whereas for articular cartilage, independent samples from n = 2
mice per group were analyzed. Each sample was processed and
sequenced independently without pooling across animals. These
tissues were homogenized, and total RNA was extracted using TRI
Reagent (Molecular Research Center, Inc.). Subsequently, total RNA
was purified using a Direct-zol RNA MicroPrep Kit (Zymo Research)
and analyzed in bulk per group. RNA integrity was assessed using an
Agilent Bioanalyzer 2100 (Agilent Technologies), and only samples
with an RNA integrity number (RIN) = 7 were used for RNA-seq
analysis. RNA library preparation and sequencing were performed by
BGI using their standard bulk mRNA-seq library construction
protocols. Sequencing was performed with a 50-bp single-end
strategy using the BGISEQ-500 platform or a 100-bp paired-end
strategy using the DNBSEQ platform, yielding approximately 4.4 Gb
of clean data (~44 million reads) per sample on average. Differential
gene expression analysis for bulk RNA-seq was performed using the
PoissonDis method as implemented by the sequencing service
provider. P-values were corrected for multiple testing, and false

discovery rates (FDRs) were calculated. Genes with a fold change =



2.0 and FDR = 0.001 were defined as differentially expressed.

Bulk RNA-seq in silico analysis

Reads were mapped to the reference mouse genome (mm10). A web-
based transcriptomic analysis platform, iDEP (version 0.91), was
used to analyze differential gene expression and compare the data at
different time points®!. The application was also used to generate
heatmaps, conduct principal component analyses (PCAs), and
calculate values for Pearson’s correlation matrix.

For the synovium, we employed a fragments per kilobase of
exon per million mapped fragments (FPKM) cutoff value of > 1 and a
fold change (MMS D14/control) cutoff of < 0.67 or > 1.5. As a result,
1,178 genes were included. For the cartilage, we employed an FPKM
cutoff value of > 1 and a fold change (MMS D28/control) cutoff of <
0.67 or > 1.5. As aresult, 1,606 genes were included.

Data visualization was performed using R 4.4.152 and
ggplot2°3. Heatmaps were drawn using ComplexHeatmap©°%. As
shown in Fig. 2a and 3a, hierarchical clustering was performed in
both the gene and sample directions. Scaling was performed in the
direction of the gene. Genes were divided into five modules. PCA of
gene expression was conducted using the prcomp function in stats.
The correlation matrix of gene expression was constructed using the
corrr package®?. Gene sets in each module were annotated

considering the composed genes in GO terms from the latest



mSigDB56 (m5.all.v2023.2.Mm.symbols.gmt), including
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{“inflammation,” “mechano,” “fibroblast,” “extracellular,” “chondro,’
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“cartilage,” “macrophage,” “immune”}.

IPA57 was performed to infer potential upstream cytokines
associated with cartilage gene expression changes. We used
cartilage data from the MMS D14. We selected 2,401 genes that met
the following criteria: FPKM > 1 and a fold change compared with

the control of > 1.5 or < 0.67. The upstream cytokines predicted by

IPA, along with their P-values and Z-scores, are shown in Fig. 4b.

Single cell isolation

Synovial tissues were collected from both knees of 10 control mice
(20 knees) and 10 MMS D14 mice (20 knees), respectively, pooled
within each group, and processed as a single sample for analysis.
These tissues were minced with scissors, and transferred into RPMI-
1640 (Nacalai Tesque) containing 0.2 mg/ml Liberase TL (Sigma-
Aldrich) and 0.1 mg/ml DNase I (Roche) at 37°C for 20 min, with
intermittent syringe homogenization. Cells were filtered through
100- and 40-pm cell strainers, and a 40-pm Flowmi cell strainer

(Sigma-Aldrich).

Generation of droplet-based scRNA-seq data
For each synovium sample, single-cell RNA libraries were generated

using the 10x Genomics Chromium platform. Single-cell suspensions



were loaded onto the Chromium Single Cell System, v3.1 (Chromium
Next GEM Single Cell 3" Reagent Kit v3.1). Cells were diluted to a
concentration of 1,000-1,500 cells/ul. Approximately 16,000 cells per
sample were loaded into the Chromium chip, according to the Cell
Suspension Volume Calculator Table, to capture transcripts from
approximately 10,000 cells. We performed 13 cycles of cDNA
amplification. The quality and quantity of the libraries were verified
using a High-Sensitivity DNA Kit (Agilent Technologies) on a 2100
Bioanalyzer (Agilent Technologies). The libraries were sequenced on

the NovaSeq 6000 platform (Illumina).

scRNA-seq in silico analysis

The protocol was summarized in our previous paper®8. Fastq files
were mapped onto the CENCODE mm39 primary assembly genome
reference using STARsolo>9. Cells were filtered with the following
cutoff values (>1,000 genes/cell, %mt genes <10) and resulted in the
following numbers of cells (5,677 control and 3,186 MMS cells,
shown in Fig. 5 and 6. The data were integrated using scanpy®® and
scvi-tools®! on Python, considering the batch effect including cell
cycle, %mt, %ribo, and sampling timing. GO analysis was conducted
using decouplerf? with reference to the mSigDB database
(m5.all.v2023.2.Mm.symbols.gmt). For the scRNA-seq analyses,
differential gene expression was assessed in a pairwise manner

within predefined comparisons.



Different genome assemblies were used for bulk RNA-seq
(mm10) and scRNA-seq (mm39) analyses, reflecting the reference
standards employed at the time of data generation and analysis. As
downstream analyses were performed at the gene symbol level, this

difference does not affect biological interpretation.

CLN injection

Intra-articular injections of 5 ul of CLNs (Hygieia Bioscience) were
performed to deplete macrophages. Under anesthesia with
isoflurane, CLNs were administered percutaneousiy using a
Hamilton syringe with a 30 G needle. The initial injection was
performed immediately prior to the initiation of tail suspension, and
subsequent injections were administered every two weeks thereafter.

Control liposomes were administered to control mice.

Statistical analyses

Statistical analyses were performed as described in each figure
legend, using BellCurve for Excel ver. 3.20 (SSRI). Specifically,
comparisons of two group means were analyzed using the two-tailed
Mann-Whitney U test. For multiple comparisons, the Kruskal-Wallis
test followed by the Steel-Dwass test was used. P < 0.05 was
considered statistically significant for all tests. Bar charts in the data

are presented as means * standard deviation.
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Fig. 1. Synovitis and cartilage degeneration induced by joint
immobilization and unloading. (a) Schema of the minimized
mechanical stress (MMS) model. Knee joints were immobilized by
small plastic cylinders and kept in a non-weight-bearing condition by



tail suspension. (b) Actual setting of the MMS model. The mice could
freely move around in the cage, eat, and drink. (c¢) Time course of the
MMS model. The mice were evaluated at several time points. In
addition to the standard MMS group, two groups were added: R1,
where joint immobilization only was canceled at Day (D)14, while tail
suspension was continued for an additional 14 days; R2, where both
joint motion and weight bearing were allowed at D14. (d)
Representative hematoxylin and eosin and safranin O staining of
synovium and cartilage in the sagittal plane. Inset boxes in the upper
panels indicate the location of the enlarged images below. Scale
bars: 100 ym. (e, f) Synovitis score (e) and modified Mankin score (f)
at each time point (n = 8 mice). Statistics: Kruskal-Wallis test
followed by Steel-Dwass multiple comparison (e, f).
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Fig. 2. Bulk RNA sequencing (RNA-seq) analyses of MMS
synovium. (a, b) Heatmap (a) and principal component analysis
(PCA) (b) of the top variable genes in each synovium sample (n = 3
mice). (c) Top 10 Gene Ontology (GO) terms enriched in five gene



modules. The analysis was performed based on genes related to
terms including “fibroblast,” “extracellular,” “chondro,” “cartilage,”
“inflammation,” “immune,” “macrophage,” or “mechano.” (d)
Expression of representative genes related to GO terms including

“extracellular matrix” or “collagen” in the synovium.
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Fig. 3. Bulk RNA-seq analyses of MMS cartilage. (a, b) Heatmap
(a) and PCA (b) of the variable genes in each cartilage sample (n = 2
mice). (c) Top 10 GO terms enriched in five gene modules. The
analysis was performed based on genes related to terms including
“fibroblast,” “extracellular,” “chondro,” “cartilage,” “inflammation,”
“immune,” “macrophage,” or “mechano.”. (d) Expression of
representative genes related to GO terms including “cartilage” or

“tissue remodeling” in the cartilage.
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Fig. 4. MMS synovium expresses secreted proinflammatory
cytokines, possible upstream regulators for cartilage
degeneration. (a) Heatmap of representative cytokine expression
that increased in MMS synovium and cartilage from the bulk RNA-
seq data. (b) Candidate secreted molecules identified as upstream
regulators of cartilage gene expression alterations by ingenuity
pathway analysis (IPA) (c) Narrowing-down of candidates common
between the results of the bulk RNA-seq and the IPA estimation.
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Fig. 5. Distinct fibroblast and macrophage subsets emerge in



MMS synovium. (a) Uniform manifold approximation and projection
(UMAP) of synovial cells obtained from control and MMS mice,
classified into 16 clusters. Synovial tissues were collected from both
knees of 10 control mice (20 knees) and 10 MMS mice (20 knees).
The mice were analyzed at D14. Twenty knees were used for each
group. (b) Dot plot of marker genes for synovial fibroblasts and
immune cells in the 16 clusters. (c) UMAP of synovial cells,
indicating control or MMS groups. The graph below indicates the
ratios of control and MMS in each cluster.
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Fig. 6. Association of synovial cell clusters with MMS
phenotypes. (a, b) Dot plots of representative GO terms related to
“inflammatory” (a) and “mechano” (b) in the 16 clusters of control
and MMS synovium. (c, d) Dot plot (c) and feature plots (d) of ten
cytokine genes estimated as upstream regulators of MMS-induced
cartilage changes (Fig. 4c).
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Fig. 7. Macrophages contribute to MMS phenotypes. (a)
Representative immunohistochemistry of CD68 and COL1A1. Inset
boxes in the upper panels indicate the location of the enlarged lining
and sublining layer images in the lower panels. (b) Positive cell rates
of CD68 in lining and sublining layers and the positive area of
COL1ALl. (c) Time course of clodronate liposome (CLN) injection. We
intra-articularly administered 5 pl of CLN every 2 weeks. (d, e)
Representative safranin O staining (d) and modified Mankin score (e)
of cartilage in each group. Scale bars: 100 pm. (f) mRNA levels of
marker genes for Lrrc157 fibroblasts and Mmp9 in the synovium of
each group: control, vehicle + MMS D14, and CLN + MMS D14.
Statistics: Kruskal-Wallis test followed by Steel-Dwass multiple
comparison (b, f). Two-tailed Mann-Whitney U test for comparison
between MMS D14 and CLN + MMS D14 (b) and (e).
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