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ABSTRACT

Robust control of natural-gas engines under unknown load disturbances remains challenging due to strong couplings and de-
lays in multi-input multi-output (MIMO) dynamics. This paper presents a control framework that integrates rate-based model
predictive control (MPC) with a gain-scheduling scheme driven by an adaptive Kalman filter to enhance performance under
unknown load disturbances. A novel adaptation mechanism enables the Kalman filter to rapidly track transient changes in
load torque while attenuating steady-state estimation noise. The online torque estimate is used to compute local equilibrium
operating points and generate a gain-scheduling parameter matrix that adaptively adjusts MPC behavior to improve transient
response. Experimental validation on a laboratory engine demonstrates that the estimator converges quickly during load
transients and maintains low steady-state noise; when combined with gain-scheduled MPC, the proposed controller signifi-
cantly reduces speed and air-fuel-ratio deviations and shortens settling tiriie following step load changes. The results indicate
improved disturbance rejection and practical applicability for power-generation engines.

Introduction

Due to increasingly stringent emission regulations, natural-gas engines—featuring lower carbon intensity and reduced pollutant
emissions—are becoming attractive alternatives to conventional gasoline and diesel engines in industrial and power-generation
applications'=. This paper focuses on natural-gas engines coupled to synchronous generators for power generation, where en-
gine speed directly determines the generated frequency and voltage. When used as distributed or stand-alone generation units,
these engines must reject unknown load disturbances so as to maintain the target speed and to minimize speed deviation and
recovery time; concurrently, the air-fuel ratio (AFR) must be kept close to its reference throughout operation to satisfy emis-
sion limits. Good disturbance-rejection capability therefore shortens the time to restore frequency and voltage to acceptable
levels and ensures reliable power supply. This work seeks a practical control solution that meets these requirements.
Heavy-duty natural-gas engines employed in generator sets typically have many cylinders and large displacement. Com-
pared with electronic fuel-injection (EFI) strategies*, premixed intake (pre-mixer) configurations® are often preferred in
such engines for lower cost and more uniform mixture formation; however, premixing introduces strong actuator-output
couplings, producing a challenging multi-input multi-output (MIMO) control problem® MPC is a promising approach for
such strongly coupled MIMO systems because it coordinates multiple actuators through an explicit cost function. Prior work
has applied MPC to various engine subsystems, including boost-pressure and exhaust gas recirculation (EGR) control for
two-stage turbocharged engines’, nonlinear MPC for turbocharged SI engines with dual-loop EGR?®, heavy-duty diesel con-
trol®, and engine-speed regulation'®!!, demonstrating MPC’s advantages in handling multivariable interactions. Engine
dynamics are inherently nonlinear. While nonlinear MPC is conceptually attractive, practical deployment is challenged by
the computational complexity of solving nonlinear optimal control problems on embedded hardware, which limits achiev-
able prediction horizons® 2. A common alternative linearizes the nonlinear model at an operating point and employs linear
parameter-varying or gain-scheduling MPC (LPV-MPC)!>!#_ To guarantee zero steady-state error under disturbances, lin-
ear MPC variants have used integral state augmentation'!, disturbance estimators that compensate model-plant mismatch'>,
or rate-based MPC formulations'®. However, integrator augmentation risks windup and complicates constraint handling in
MIMO settings; disturbance-state augmentation increases model order and implementation complexity. Rate-based MPC of-
fers a practical compromise, but for the large and rapidly varying load disturbances considered here, rate-based MPC alone
does not deliver the required transient performance. To address this, we combine rate-based MPC with a simple independent
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load estimator and a gain-scheduling strategy.

The load estimator is intentionally kept simple and aims solely to observe the external load torque; its output, together
with the tracking references, drives the gain-scheduling mechanism. In practice, however, simple observers are sensitive to
measurement noise and can inject irregular perturbations into throttle commands, degrading tracking performance. Thus a
Kalman filter is introduced. While the extended Kalman filter (EKF) is commonly used!”, its reliance on local linearization
can incur significant linearization error and poor robustness to model uncertainty. The unscented Kalman filter (UKF) im-
proves linearization accuracy via the unscented transform'® but incurs high computational cost that limits its applicability
on embedded platforms. Hybrid Kalman filters (HKF)!%2°, which retain key nonlinear terms, strike a balance by reducing
linearization error with modest complexity. Motivated by HKEF, this paper develops a compact second-order linear Kalman
filter tailored for load-torque estimation and decoupled from the original fourth-order engine model.

A fundamental trade-off for Kalman filters exists between noise suppression and tracking agility: filters tuned for strong
noise rejection tend to track slowly. To overcome this, prior works have used adaptive tuning and strong-tracking modifications
that adapt the estimator covariance according to an adaptive law>'~23. Building on these ideas, we propose a load-detection-
based adaptive strategy that rapidly increases estimator responsiveness during transients while preserving noise attenuation in
steady state. The resulting adaptive Kalman filter provides fast, robust load-torque estimates that are suitable for online use in
gain scheduling. The main contributions of this paper are:

(1) A novel adaptive Kalman filter is presented with a mechanism for rapid tracking of transient load changes and attenua-
tion of steady-state noise.

(2) A hybrid control framework is developed that integrates predictive control of the rate-based model with a gain schedul-
ing strategy driven by an adaptive Kalman filter, allowing enhanced rejection of unknown load disturbances in natural-gas
generator sets.

(3) Experimental implementation and validation are presented, demonstrating that the proposed adaptive MPC scheme
effectively reduces engine speed and AFR fluctuations and shortens settling time under varying load conditions, confirming
its superior transient performance and suitability for embedded implementation
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Figure 1. Pre-mixed turbocharged CNG engine.

The structure of this engine is schematically shown in Figure 1. The air path consists of two main sections: the pre-mixer
and the turbocharged engine section. The pre-mixer primarily includes a Venturi mixer and a fuel throttle. A zero-pressure
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valve is installed upstream of the fuel throttle to maintain inlet pressure at atmospheric level. Natural gas is drawn into the
Venturi mixer through orifices via the Venturi effect, with the fuel throttle opening 8 regulating the natural gas mass flow
rate. The second section resembles a conventional turbocharged engine, where the mixture throttle opening o controls the
mass flow of the mixed gas. Two temperature and manifold absolute pressure sensors (TMAP1 and TMAP2) are employed to
monitor the temperature and pressure of the boosted mixture downstream of the compressor and the gas in the intake manifold,
respectively. A crankshaft position sensor (CKPS) measures the crankshaft phase and rotational speed. An exhaust gas oxygen
sensor (EGOS) is mounted on the exhaust pipe to determine the AFR.
The engine model employed in this study is adopted from the authors’ prior work® and is presented below:
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This is a fourth-order nonlinear model with state variables of engine speed @(rad/s), the fuel-air ratio £ in the Venturi mixer,
intake manifold pressure p,(Pa), and boost pressure p(Pa). The state variable is chosen as the fuel-air ratio & rather than the
AFR to avoid the fuel throttle opening 8 appearing in the denominator, which would introduce additional nonlinearities into
the model dynamics. The first equation in Eq.1 describes the crankshaft rotation dynamics. Here, J is the rotational inertia, &,
is the friction coefficient, 7, is the mechanical and pumping loss torque, and 7, is the unknown load torque disturbance. The
indicated torque 7, is defined by Eq.2, where 1), is the engine efficiency coefficient (obtained from look-up tables as a function
of speed, AFR, and ignition angle). A significant AFR transport delay ?;, given by Eq.3, is incorporated into 7, because the
mixture ratio takes time to reach the cylinders. In Eq.3, V7 is the pipe volume from the mixer to the cylinders, 77 is the boost
temperature, and R, is the gas constant of the mixed gas. The mass flow rate of the mixture into the cylinders 7, is given
by Eq.4, where V; is the engine displacement, 7, is the intake manifold temperature, and 1), is the volumetric efficiency
(obtained from look-up tables).

The second equation in Eq.1 governs the natural gas and air mixing dynamics within the Venturi mixer. The term H,,,:Z—i
is defined by Eq.5. Here, H,, is an empirical correction factor. Its primary role is to compensate for the deviation between
the theoretical fuel-air flow ratio % and the actual value, which arises from model simplifications, sensor inaccuracies, and
actual flow characteristics. Introduacing this coefficient can significantly improve the model’s predictive accuracy regarding
the actual system behavior. The value of H,, is a function of the mixture throttle mass flow rate r,,. It is determined by
identifying parameters from experimental data, and its specific expression is given by the piecewise function shown in Eq.8.
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The third and fourth equations in Eq.1 describe the gas filling dynamics for the intake manifold pressure and boost pressure,
respectively. The mass flow rate through the mixture throttle, r,,, is given by Eq.6, where C,, and S,, are constants, and the
flow function ¥(p,/p1) defined by Eq.7. The compressor mass flow rate is denoted by .

As evident from the equations, this fourth-order model represents a dual-input, dual-output system. The control inputs are
the mixture throttle opening o and the fuel throttle opening 3, and the outputs are engine speed ® and fuel-air ratio . All
four state variables are measurable. A key characteristic is the strong coupling between inputs and outputs, as both @ and &
are simultaneously influenced by ¢ and f3.

Model Linearization and Discretization

The nonlinear engine model is linearized around various equilibrium points to facilitate controller design. Defining the state
vectorx=[w & po pi]’,controlinputsasu=[a B]7, disturbance as d = 77, and outputsasy = [@ &]7, the nonlinear
system described by Eq.1 can be expressed in compact form as:

x= f(x,u,d) )]
Consider an equilibrium point defined by x;s = [0 &s  pa,,  P1,,)! and steady-state inputs ug = [0 Bys]7, which
satisfy the equilibrium condition 0 = f (x5, 4ss,0). By introducing deviation variables 6x = x — x5, 6u = u — us, and applying
first-order Taylor series expansion, the system is linearized to obtain the linear time-invariant representation:

0x=A.86x+B.0u+ By.d
6y =C.0x (10)

where A., B, and Bj, represent the Jacobian matrices of f with respect to xg, it and d, respectively, evaluated at the
equilibrium point (xss, #s,0).

The continuous-time linear model in Eq.10 is then discretized using a sampling period of #;; = 50ms, yielding the discrete-
time state-space representation:

Ox(k+1) =A;0x(k) + B1g0u(k) + Bayd(k)
Oy(k) = C,0x(k) (11

where the discrete-time matrices are computed as:
t BUAd \ .
Ag =" By = / e dt ) Bie, (i =1,2):C4 = Ce
0 /

Time Delay Prediction

In the engine model described by Eq.1, the second equation characterizes the mixing dynamics at the Venturi mixer. However,
the mixed gas must traverse the turbocharger, intercooler, and intake manifold before reaching the cylinders: a process that
introduces a significant transport delay. This delay, denoted ¢;, must be accounted for in the fuel-air ratio variable . As given
by Eq.3, #; varies with engine operating conditions, specifically speed @ and intake manifold pressure p,. Let t; = ngt,,
where t;) = 50ms is the sampling period. The fuel-air ratio measured at the Venturi mixer only be observed at the EGOS after
ng sampling intervals. To predict the current state affected by this delay, past state variables are utilized. Define a delayed
state vector 8x'(k —ng) = [Sw(k—ny) S8E(k) Spa(k—ng) Spi(k—ng)]T, where & (k) is the fuel-air ratio measured at
the EGOS at time k, which corresponds to the ratio at the Venturi mixer at time k — ng. Using the discrete-time model Eq.11,
the current state can be iteratively predicted as:

ng . g A
Sx’(k) :Ad”/le(k — nd) + ZAdndﬂBldﬁu(k — (nd —i+ 1)) + ZAd”d*lBde(k - (nd —i+ 1)) (12)
i=1 i=1

= =

The second element of 8’ (k), denoted 6&’(k), represents the predicted fuel-air ratio at the Venturi mixer at the current time
k. By replacing all instances of & (t —14) in Eq.1 with ' (k), a new state vector x, (k) = [w(k) 8&'(k) Spa(k) pi(k)]"
is obtained, which is used for subsequent controller design.

A common alternative for handling delays in MPC is to incorporate the delay directly into the model, forming an aug-
mented system''. However, this approach increases model dimension proportionally to the number of delay steps. Given the
large and variable delay in our application, the augmentation method becomes impractical. Instead, the proposed prediction-
based iteration offers a more efficient solution, wherein variations in #; only affect the number of prediction steps n,, without
altering the controller structure.
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MPC Controller Design

Linear MPC Design

The reference signal is defined as r(k) = [@,(k) &.(k)]”, which is treated as constant over the prediction horizon. Con-
ventional MPC for reference tracking typically minimizes a quadratic cost function based on the difference between pre-
dicted outputs and target values. While this approach using Eq.11 can theoretically achieve zero steady-state error when
there is perfect model-plant match, such ideal conditions are rarely attainable in practice. To address this limitation, this
paper employs a rate-based MPC formulation with a difference-scheme augmented model. Define the incremental variables:
Axp(k) = 6xp(k) — Oxp(k—1), Au(k) = du(k) — du(k— 1), Ad(k) = d(k) —d(k— 1), and Ay(k) = 8y(k) — Sy(k—1). The
discrete-time model from Eq.11 can be reformulated as:

Axp(k+1) = AgAxp (k) + B1gAu(k) + BagAd (k)
Ay(k) = CyAx(k) (13)

A new state vector is constructed as x,, (k) = [Ax, (k)T S8y(k)T]7, yielding the augmented state-space model:

[Axp<k+1>} _ [ Aq 0] [AXPU“)} +[ Bia ]Au(k)-i- [ Baa ]Ad(k)

Oy(k+1) CqAq I | 6y(k) CaB1a4 CaB2q
—— S—— ——
Xn (k+1) A X (k) By B,
Ax (k)]
oy(k)| =10 I P 14
[6y(k)] = [0 1] [Sy(k) (14)
ym (k) c '(k>

This augmented formulation offers two significant advantages. First, by selecting the equilibrium point to coincide with
the reference signal (i.e., yss = r(k)), the control objective simplifies to driving the output of Eq.14 to zero at steady state.
This eliminates the need for explicit reference tracking terms in the cost function. Second, the incremental state formulation
inherently ensures zero steady-state tracking error without requiring additional integrator states>*

The prediction model is constructed as follows. Since the disturbance d(k) is unknown and assumed constant over the
prediction horizon, the term B>Ad (k) is omitted from predictionis:

Y = Fxp (k) + @AU (15)
where
:[ym(k+1|k) ym(k+2|k\T' 'ym(\lf"i_HP'k)T]T
— [u(k)” Au(k+1)" - Au(k+Ho— 1))

( T CAZ "'./CI‘HP)T]T
C31 0 0
CA31 CB, 0
AHP 1B, CA"»—2B, ... CAMp—Hep,

Here, H,, and H. denote the prediction and control horizons, respectively. The cost function weights the output and control
increments:
min  J=YTQY +AUTRAU (16)

where Q and R diagonal weighting matrices. The optimization variable AU contains the sequence of control increments, with
the actual control input computed as:

k
u(k) = ugs + 8u(k) = ugs + Y Au(i) (17)
i=0

where Au(k) represents the first element of the optimal AU sequence. Practical constraints are implemented as follows. Rate
constraints prevent excessive throttle movements that could destabilize the Venturi mixer flow or cause turbocharger surge:

A pin SAu(k) < Auyax
umin —u(k — 1) <Au(k) < gy —u(k—1) (18)

These constraints apply to all elements in the AU sequence over the control horizon.
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Optimization Problem Solution

The optimization problem defined by Eq.16 is commonly solved by converting it into a standard quadratic programming (QP)
formulation, for which efficient and numerically reliable solvers are available. Substituting the prediction model from Eq.15
into the cost function, and treating the state vector x,,,(k) as known over the prediction horizon at each control instant, the
constrained optimization problem can be rewritten as:

, 1
A Jor =5 [AUT 27 Q@ + 2R)AU| 4 2AU T &7 QF x,,, (k) + xL (k) FT QF x,y (k)s.t.  ZAU <W (19)

This constitutes a typical QP problem. The constraint matrices Z and W are readily constructed from the rate and amplitude
limits given in Eq.18. Since the weighting matrices Q and R are diagonal with positive entries, the Hessian matrix 2(®7 Q® +
R) is symmetric positive definite. Therefore, the optimization problem in Eq.19 is strictly convex and can be solved efficiently
online using active-set methods?>. The solution yields the optimal sequence AU, from which only the first element Au(k) is
applied to the plant via Eq.17; the remaining elements are discarded in accordance with the receding horizon principle.

A key observation is that the QP formulation depends solely on x,, (k), F, and ®. Since x,, (k) is measurable or computable
online, and both F' and ® are functions only of the linearized engine model at a given equilibrium point, these matrices can
be precomputed offline for a set of operating conditions and stored in look-up tables. As a result, the online computational
burden of the MPC reduces essentially to solving a QP problem at each sampling instant, making the strategy suitable for
embedded implementation.

Adaptive Kalman Filter and Gain Scheduling Strategy

While the previous section completed the design of an MPC controller for a single equilibrium point, and prior work'® has
demonstrated that rate-based MPC can compensate for certain model-plant mismatches, treating the load torque purely as a
model mismatch reveals limitations. Although the controller can eventually regulaie the system back to the target operating
point, its inherent compensation capability is insufficient to meet the stringent requirements for speed and AFR fluctuation
ranges in power generation applications. Therefore, an alternative method to enihance load response performance is necessary.

A conventional approach involves treating the load torque as an additional state variable, constructing a fifth-order state-
space model and observer. However, this method significantly increases model complexity. Re-examining the control design
context, the natural gas engine studied herein operates primarily at a single nominal working point: 1500 rpm engine speed
with a stoichiometric AFR. Although this suggests a single equilibrium point, the engine’s internal state actually shifts under
load variations. While the controlled outputs @ and ¢ return to their references in steady state following a load change, the
pressures pp and p; settle at new values. This indicates that the equilibrium point itself moves with the load.

Consequently, the linearized mode! corresponding to the new operating point must be updated, and the MPC controller
should be adjusted accordingly, affecting the incremental control signals Au and Su. Furthermore, referring to Eq.17, the shift
in the equilibrium point also changes the steady-state input ug,. This implies that during each control interval, in addition to
the corrective action du(k) compuied by the MPC, an additional feedforward compensation Aug, can be applied based on the
updated equilibrium point. This adjustment, which actively accounts for the changing operating condition, is referred to as the
gain scheduling strategy in this paper. The subsequent challenge, therefore, is to accurately estimate the load torque in order
to detect and respond to these equilibrium point movements.

Simple Form of Load Estimator Based on Kalman Filter

In practical applications, engine systems are inevitably subject to measurement noise, which can degrade throttle control
accuracy, induce throttle jitter, and reduce actuator longevity. To address this issue, a Kalman filter is employed as a load
torque estimator.

Reexamining the original engine model in Eq.1, the load torque 7;, appears only in the speed dynamics. Since all four state
variables are measurable and the remaining three differential equations are independent of 7, only the speed dynamics equa-
tion is utilized for estimator design. By treating 7 as an additional state variable and incorporating process and measurement
noise, a second-order system is formulated as follows:

1
o= 7[Te—kbw—fp—TL—|—D,]
T =y (20

where v, and v represent mutually independent, zero-mean Gaussian noise terms associated with the reconstructed engine
torque and the load torque derivative, respectively?®. By defining u, = 1, — Tp as an input, the nonlinearities in 7, are avoided,
resulting in a simple second-order linear model. This formulation is physically justified since the net torque (engine output
minus load) determines the rotational acceleration.
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Discretizing the system with a sampling period 7y, yields the discrete-time state-space model:

Ue

Xe(k+1) Ae xe (k) B, L Y(k)
_ (k)
yE(k) - [1 0} |:TL(]€):| +€ (21)
H S

xe (k)

where € is the zero-mean speed measurement noise. Since this model is independent of the controller, and this paper has high
requirements for the fast tracking ability of the estimator, the control period of this model can be shorter than the controller,
and it is set to be #;, = 10ms. Then the linear Kalman filter can be given by?’

%, (k) =A%, (k—1) + Bt
P~ (k) =AP" (k— 1Al + M

K(k) =P (k )HT(HP ()H" +N)~!

&(k) =o(k) — H%, (k)

£, (k) =%, (k)+ ( )e(k)
P (k) =(I - K(k)H)P~ (k) (22)

where

K (k) : Kalman filter gain matrix

£, (k),&F (k): a priori and a posteriori state vector

P~ (k),P"(k): apriori and a posteriori state estimation error covariarice matrices

M: Covariance matrix of T

N: Variance of €

€(k): a priori prediction error

Since u, = T, — T, is readily available at each control instant, and the output matrix H is scalar-valued, the matrix inversion
in the gain update reduces to a scalar division. This structure allows for efficient embedded implementation without requiring
the full nonlinear engine model.

Adaptation Mechanism of Kalman Filter
When employing a Kalman filter as an estimator, a well-known trade-off exists between its noise suppression capability and
fast tracking performance, it is difficult to achieve both optimally simultaneously. However, in the context of this study, the
estimator is required to possess a fast convergence speed to promptly detect load variations and trigger equilibrium point
switching, while also maintaining excellent noise attenuation in steady state to ensure accurate and stable throttle opening
tracking. To address these competing requirements, this paper introduces an adaptive tuning strategy.

In Eq.22, since A.,B, and H are constants, the covariance matrix M and the noise variance N become the primary tuning
parameters of the Kalman filter. These are defined as:

my 0:|

N=[ne] ; M—{O my;

According to references?!-?’-28, the parameter N significantly influences the convergence performance, while M affects
the convergence rate. In particular, increasing the element m,; in M enhances the response speed of the corresponding state
variable 7. Thus, the core idea of the adaptation strategy is to increase m;; during load transients to accelerate load torque
tracking, and reduce it after convergence to restore steady-state noise suppression.

To detect load changes, the sliding-window average of the a priori prediction error & (k) is used>’:

8 (K) = %(é(k)+é(k—1)+---+é(k—n+1)) (23)

When &(k) resembles white noise, &, (k) remains close to zero at steady state. A load change causes &, (k) to deviate from
zero, enabling the detection of loading/unloading events. As illustrated in Figure 2, the absolute value |&,, (k)| is fed into a
hysteresis comparator. When |&;,, (k)| exceeds an upper threshold &, the comparator outputs 1, triggering an increase in m;;
when it falls below a lower threshold g,,,,, he output becomes 0, and m;; is reset to its initial value.

Furthermore, the following specific and feasible parameter tuning methods are provided:
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Figure 2. Block diagram of Load change detection adaptation mechanism

* References®*?! indicate that a sufficient condition for Kalman filter convergence is N > HP*(k)H. However, an

excessively large N may reduce the Kalman gain K (k) and slow down convergence. Thus, N is determined as N =
HP*(k)HT + £, where { is appropriately chosen.

* Both m; and my; can be set to small values at steady state. Upon detecting a load change, only m,; is increased to ensure
fast convergence of the load torque estimate. Once convergence is achieved (&, (k)| < €4y), My is reduced back to its
initial value.

The effectiveness of this parameter tuning strategy is validated experimentally in the subsequent section.

Gain Scheduling Strategy

The primary objective of gain scheduling is to linearize a nonlinear model at various equilibrium points, thereby generating
a family of linear models, each associated with a specific operating condition. A corresponding linear controller is then
designed for each equilibrium point. When the operating point shifts, the controller is accordingly switched?. In this study,
the equilibrium point depends on the load torque, which is considered an unknown disturbance. Thanks to the adaptive
Kalman filter proposed in the previous section, an accurate and rapid estimate of the load torque 7y, can be obtained, enabling
fast switching of the equilibriuni point and completing the basic gain scheduling framework.

However, directly switching the entire controller in practical applications is often overly complex. Since different equi-
librium points require distinct controllers, this approach demands substantial data storage and interpolation within lookup
tables. To mitigate this, the present work adopts a "low complexity gain scheduling strategy"*3. This method employs a
single linearized model—designed specifically at a nominal equilibrium point—to construct a single MPC. The key idea is
to compute a gain variation of the model induced by the equilibrium point shift, which is then used to correct the output of
the MPC, making it suitable for the model at the new operating point. Specifically, the nominal equilibrium point is set at
1500rpm engine speed, stoichiometric AFR, and no-load condition. The transfer function linearized at this point is denoted
as Py(z). When the operating point changes, the model at other equilibrium points is represented by Py (z), where the schedul-
ing parameter { corresponds to the estimated load torque. Under nominal conditions, the controller output acts directly on
the plant Py(z). When the equilibrium point shifts, a gain scheduling matrix Gy, is introduced such that the corrected plant
GuPy (z) approximates Py(z), allowing the same controller to be applied. In this paper, Gy is selected to match the DC gain
of the off-nominal model to that of the nominal model:

Gy = Ry(1)P; (1) 24)

Figure 3(a) and (b) illustrate the control block diagrams under the nominal and off-nominal equilibrium points, respectively.
The nominal case is straightforward: the steady-state input ug is known, and the state x(k) is measurable, leading to a simple
controller implementation. In the off-nominal case (Fig. 3(b)), a Kalman filter quickly provides the load torque estimate,

enabling the equilibrium point to be updated. Using the nominal model Py(z), the DC gain is computed to determine Gy. The
MPC remains designed based on the nominal linearized model, and its output is corrected via Gys. The incremental control Su
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Figure 3. (a) Block diagram under the nominal equilibrium point. (b)Block diagram of gain scheduling under other
equilibrium points.

is obtained through integration, and the final control «(k) is formed by adding du to updated u,, which acts as a feedforward
term. This approach only requires storing the G;; matrix for each load condition, while the controller itself remains unchanged,
significantly reducing the need for interpolation and storage. For the dual-input dual-output system considered here, Gy a
2 x 2 matrix, further alleviating the computational burden.

Experimental Validatior

The experimental investigation was performed on a natural gas engine-generator set, as shown in Figure 4. The system
comprised an engine directly coupled to a three-phase synchronous generator, which supplied power to a programmable load
cabinet for precise load control. The engine had a rated power of 155 kW, a rated speed of 1500rpm, and a maximum torque
of 1000Nm. To maintain a stable grid frequency of 50 Hz, the engine speed was controlled at 1500rpm, while the AFR was
maintained near the stoichiometric ratio for optimal combustion.

Adaptive Kalman Filter Verification

As previously discussed, the Kalman filter operates independently from the fourth-order nonlinear model and MPC controller,
allowing it to utilize a shorter sampling period (f;, = 10ms) for enhanced response speed. This study compares three Kalman
filter configurations: a low-speed response Kalman filter (L-KF), a high-speed response Kalman filter (H-KF), and the pro-
posed adaptive Kalman filter (A-KF). Both L-KF and H-KF employ fixed parameters, where m, and m,; remain constant
throughout operation. The L-KF utilizes small values for both parameters, while the H-KF employs a significantly larger m,;
value (with m;; maintained at the same small value as L-KF) to improve load torque tracking performance. In contrast, the
A-KF dynamically adjusts m,; based on the load change detection mechanism: it increases m,; during loading/unloading tran-
sients and decreases it once convergence is achieved. The parameter N is identical across all three filters. The sliding window
length is carefully selected to balance detection sensitivity and noise immunity—excessively long windows delay load change
detection, while overly short windows introduce more white noise into the averaged signal.

The specific parameter configurations for each filter are as follows:
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* L-KF:
N=HP"(k)HT +¢ ¢ =20(rad/s)?
m; =25(N-m)? my = 100(N - m)?
* H-KF:
N=HP"(kH" +¢ £ =20(rad/s)?
m; =25(N-m)? my =5 x 104N -m)?
* A-KF:
N=HP"(k)HT +¢ ¢ =20(rad/s)?
m; =25(N-m)?
Load change state: my =5 x 104N -m)?
steady state: my = 100(N - m)?

The MPC controller operates with a 50ms sampling period in the embedded system. The prediction horizon and control
horizon are set to 6 and 2 steps, respectively. The different sampling periods for the MPC (#;; = 50ms) and the Kalman filter
(t;» = 10ms) were chosen deliberately to achieve an optimal balance between computational feasibility and estimation/control
performance. The MPC algorithm involves computationally intensive online optimization (solving a QP problem). A longer
sampling period is necessary to provide sufficient time for the embedded processor to reliably compute the optimal control
moves within each cycle, ensuring real-time implementation stability. The Kalman filter is a relatively simple second-order
linear observer. Its low computational cost permits a much faster sampling rate. This is crucial for achieving the primary
design goal of the estimator: to rapidly track transient load torque changes. A faster update rate allows for quicker detection
of load steps and more timely adaptation of the gain-scheduling strategy, which directly enhances the transient performance
of the overall control system.

An equilibrium point lookup table, predetermined from experimental data, enables the proposed gain scheduling strategy
to achieve effective speed and AFR tracking control. Notably, the MPC controller configuration remains identical across all

0 4 0 2y
The relatively small values of qand rreflect the normalization of state variables to comparable orders of magnitude (p, and
p1 in kPa, & scaled by 1000). Experimental results are presented in Figures 5-8, focusing on the critical first-loading scenario
where the generator set transitions from no-load to 30% of maximum load before unloading. The excess air coefficient A, a
normalized value defined as the ratio of the actual AFR to the stoichiometric AFR, is used in the experimental results.

three Kalman filter implementations, with consistent weighting matrices: g = [5 0] , r= {2 o,
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As shown in Figure 5, both H-KF and A-KF achieve rapid load torque tracking, converging within approximately 400ms,
significantly outperforming L-KF. The H-KF’s immediate convergence stems from its large, fixed my; value. The A-KF
exhibits a slight delay relative to H-KF due to the detection mechanism’s response time — approximately 60ms after the load
change, | &, (k)| exceeds the upper threshold &,),, triggering the switch to high m,; and accelerated convergence. When |&, (k)|
falls below the lower threshold g,,, around 400ms, m;; reverts to its low value to ensure steady-state noise suppression. Both
H-KF and A-KF provide sufficiently fast load estimates to enable rapid updates of the gain-scheduling matrix and equilibrium
input ugg.

Figures 6 and 7 demonstrate that o and S, for H-KF and A-KF respond promptly after loading (at 5s), resulting in sharp
increases in the final control inputs a(k) and (k). In contrast, L-KF’s slow load estimation causes gradual changes in 0,
and fss, making the final inputs predominantly determined by the MPC outputs d (k) and 63 (k). Consequently, as evident
in Figure 8, L-KF exhibits substantial speed and AFR deviations following load changes, with speed excursions exceeding
+200rpm and prolonged AFR settling times. H-KF and A-KF, however, limit speed fluctuations to approximately +150rpm
through prompt input adjustments. (For reference, typical generator sets permit speed fluctuations around £10% of nominal
speed.)

Regarding noise suppression, H-KF exhibits significant steady-state estimation noise due to its large m,;, which propagates
to ugs and ultimately to the throttle commands, causing irregular fluctuations detrimental to precise throttle control. Both L-KF
and A-KF demonstrate superior noise suppression. Analysis of the final control variables (¢t (k) and 3 (k)), reveals that noise
primarily originates from the equilibrium inputs ( @, and S;), while the MPC outputs (8 & (k) and d 8 (k)) contribute minimal
noise across all configurations.

Olgs Sa a Bss oB | B
H-KF | 0.0647 | 0.0212 | 0.1238 | 0.0312 0.0117._[ 0.0757
A-KF | 0.0013 | 0.0189 | 0.0262 | 0.0003 04@9o\_| 0.0145

Table 1. Comparison of steady-state variance of input variables in H-KF and A-KF (unit:degree?)

Table 1 compares the steady-state variances of input variables for H-KF and A-KF during 10-15s (L-KF is excluded as its
parameters match A-KF’s steady-state values but with inferior dynamic performance). The variances of o, @, B and B are
substantially larger in H-KF than in A-KF. Specifically, H-KF’s « fluctuates within nearly -1 degree, while A-KF maintains
fluctuations within £0.5 degree.

These results confirm the necessity of the adaptive A-KF strategy. While conventional Kalman filters can be tuned to
balance tracking speed and noise rejection’’, static parameter tuning cannot simultaneously satisfy both requirements in this
application. H-KF achieves acceptable transient performance but introduces excessive steady-state noise, whereas conserva-
tive (low-gain) tuning suppresses noise but fails to track rapid load disturbances. This trade-off is critical in practice since the
filter output serves as the refercince for throttle positioning — noisy references induce sustained throttle jitter, accelerate actua-
tor wear, and may compromise system stability. The A-KF successfully reconciles these conflicting objectives by enhancing
estimator responsiveness during transients while maintaining strong noise attenuation in steady state, thereby ensuring both
performance and operational safety.

Comparative Experimental Evaluation
The proposed MPC framework with adaptive Kalman filter (AFK-MPC) was experimentally compared against two baseline
methods: a conventional PI control strategy and the standard rate-based MPC without adaptation.

The conventional PI control method employs two decoupled PI controllers to regulate engine speed and AFR, respectively.
For speed control, the PI controller directly computes the mixture throttle opening based on the error between the actual and
target speed. The AFR control loop is more complex: to address the significant transport delay, a feedforward term based
on intake manifold pressure (p») is incorporated, as suggested in*. In each control cycle, a base fuel throttle opening is
determined from a p;, lookup table. A PI controller then acts on the deviation between the measured AFR and its target, and
its output is added to the base opening to yield the final fuel throttle command. This approach is referred to as Double-PI
(D-PI) control. The final tuned parameters are: ks, = 1.3,ky; = 0.03 for the speed PI controller, and k,, = —5,k,; = —4 for
the AFR PI controller.

The rate-based MPC controller follows the design detailed in Section "MPC Controller Design", with its control block
diagram identical to that shown in Fig.3(a). It utilizes the same parameter matrix as the AKF-MPC controller, which is derived
from the A-KF configuration. As this approach employs a linear MPC formulation, it is referred to as LMPC throughout this
paper.

Figures 9 - 11 present a comparative analysis of the load response performance among the AFK-MPC, LMPC, and PI
controllers. The test sequence involved applying 30% of the maximum load at 10s, followed by an additional 200Nm at 30s,



1800

— — —Reference
D-PI
LMPC
AKF-MPC

i

o

a

o
T

Speed(rpm)
&
8

1350
1200 :
1.2 T T T T T T ™|— — — Reference
D-PI
11F LMPC
AKF-MPC

< 1
0.9
0.8
0 10 20 30 40 50 60 70 80 90
Time (s)

Figure 9. Comparison of engine speed and AFR responses for D-PI, LMPC, and AFK-MPC controllers.

40 T T T T T T

D-PI
LMPC

AKF-MPC
30 7
@
20
ol ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 80 90

Time(s)

Figure 10. Comparison of control inputs for D-PI, LMPC, and AFK-MPC controllers

600
500 [ — — —Actual 7 | -
= 400 F A-KF
g
© 300
Z
3 200
&
100
0
1.5 T T
N Ea(k)
B4 —— =€y
< = Elow
g 0B VT
T e e e e i
W 1
-1.5
0 10 20 30 40 50 60 70 80 90

Time(s)

Figure 11. Comparison of the estimated load torque and its sliding-window average for the AFK-MPC.



354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

Table 2. Quantitative comparison of controller performance during loading and unloading transients

Index D-PI | LMPC | AFK-MPC
Average of speed settling time (+2%) [s] | 6.875 | 7.943 5.146
-167 -281 -138

Max deviation of speed [rpm] +155 4269 +149

Average of A settling time (+2%) [s] 12.95 11.26 12.136
-0.2 | -0.098 -0.086
+0.11 | +0.052 +0.084

Max deviation of A

with sequential unloading thereafter. Table 2 summarizes quantitative metrics for these loading and unloading processes.

In terms of speed control performance, the tuned D-PI controller achieves a level close to the power generation require-
ments. However, the LMPC, which relies solely on the rate-based MPC without load torque information, exhibits significantly
degraded speed performance, similar to the L-KF results observed earlier. In contrast, the AFK-MPC, benefiting from the gain-
scheduling parameter matrix and feedforward term u,, demonstrates markedly improved speed response, outperforming D-PI.
The speed fluctuation of AFK-MPC remains within +150rpm, satisfying practical generation demands, and its settling time
is significantly shorter than those of D-PI and LMPC.

Regarding AFR control, both LMPC and AFK-MPC show substantially smaller AFR fluctuations compared to D-PI. This
improvement stems from the ability of MPC to coordinate multiple inputs in MIMO systems, whereas D-PI lacks inherent
decoupling capability. Although the settling times for AFR are comparable across controllers, the overall AFR performance
of LMPC and AFK-MPC is superior.

Based on these results, the AFK-MPC strategy delivers the best comprehensive peiformance: speed fluctuations remain
within the required range, settling time is short, and AFR variations are minimal.

In practical applications, the adaptive load detection mechanism is typicaily triggered during transients. If not activated
immediately upon loading, the controller’s initial response is slower, leading to rapid speed deviation. This causes | &, (k)|to
exceed the upper threshold &, activating the adaptation. Only when the load is small enough that the rate-based MPC alone
can quickly restore speed will the detection remain inactive, ini such cases, speed deviation is negligible.

Conclusion

The main contribution of this paper lies in the proposal of a control method that integrates an adaptive Kalman estimator
with a gain scheduling strategy, combined withi rate-based model predictive control (MPC), which significantly enhances the
system’s anti-disturbance performance under unknown load variations. The paper elaborates on the design process of the
MPC controller and the adaptive Kalian filter: by introducing an adaptive strategy and a load variation detection mechanism,
the Kalman filter achieves rapid tracking of load torque changes under transient conditions while effectively suppressing
estimation noise in steady-state operation, thereby balancing dynamic response speed and steady-state accuracy.

The proposed method exhibits strong engineering applicability. Since model linearization, discretization, and prediction
model computations can be performed offline, the online computational burden of MPC is reduced to solving a QP problem,
significantly lowering the computational load. Moreover, the Kalman filter features a simple structure with minimal online
computational requirements, making it suitable for implementation in embedded systems. Experimental results demonstrate
that the control framework effectively suppresses speed and AFR fluctuations caused by step load changes, shortens the settling
time, and provides a feasible solution for improving the load adaptability of natural gas engines used in power generation.
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