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ABSTRACT10

Robust control of natural-gas engines under unknown load disturbances remains challenging due to strong couplings and de-

lays in multi-input multi-output (MIMO) dynamics. This paper presents a control framework that integrates rate-based model

predictive control (MPC) with a gain-scheduling scheme driven by an adaptive Kalman filter to enhance performance under

unknown load disturbances. A novel adaptation mechanism enables the Kalman filter to rapidly track transient changes in

load torque while attenuating steady-state estimation noise. The online torque estimate is used to compute local equilibrium

operating points and generate a gain-scheduling parameter matrix that adaptively adjusts MPC behavior to improve transient

response. Experimental validation on a laboratory engine demonstrates that the estimator converges quickly during load

transients and maintains low steady-state noise; when combined with gain-scheduled MPC, the proposed controller signifi-

cantly reduces speed and air-fuel-ratio deviations and shortens settling time following step load changes. The results indicate

improved disturbance rejection and practical applicability for power-generation engines.

11

Introduction12

Due to increasingly stringent emission regulations, natural-gas engines–featuring lower carbon intensity and reduced pollutant13

emissions–are becoming attractive alternatives to conventional gasoline and diesel engines in industrial and power-generation14

applications1–3. This paper focuses on natural-gas engines coupled to synchronous generators for power generation, where en-15

gine speed directly determines the generated frequency and voltage. When used as distributed or stand-alone generation units,16

these engines must reject unknown load disturbances so as to maintain the target speed and to minimize speed deviation and17

recovery time; concurrently, the air-fuel ratio (AFR) must be kept close to its reference throughout operation to satisfy emis-18

sion limits. Good disturbance-rejection capability therefore shortens the time to restore frequency and voltage to acceptable19

levels and ensures reliable power supply. This work seeks a practical control solution that meets these requirements.20

Heavy-duty natural-gas engines employed in generator sets typically have many cylinders and large displacement. Com-21

pared with electronic fuel-injection (EFI) strategies4, premixed intake (pre-mixer) configurations5 are often preferred in22

such engines for lower cost and more uniform mixture formation; however, premixing introduces strong actuator-output23

couplings, producing a challenging multi-input multi-output (MIMO) control problem6.MPC is a promising approach for24

such strongly coupled MIMO systems because it coordinates multiple actuators through an explicit cost function. Prior work25

has applied MPC to various engine subsystems, including boost-pressure and exhaust gas recirculation (EGR) control for26

two-stage turbocharged engines7, nonlinear MPC for turbocharged SI engines with dual-loop EGR8, heavy-duty diesel con-27

trol9, and engine-speed regulation10,11, demonstrating MPC’s advantages in handling multivariable interactions. Engine28

dynamics are inherently nonlinear. While nonlinear MPC is conceptually attractive, practical deployment is challenged by29

the computational complexity of solving nonlinear optimal control problems on embedded hardware, which limits achiev-30

able prediction horizons6,12. A common alternative linearizes the nonlinear model at an operating point and employs linear31

parameter-varying or gain-scheduling MPC (LPV-MPC)13,14. To guarantee zero steady-state error under disturbances, lin-32

ear MPC variants have used integral state augmentation11, disturbance estimators that compensate model-plant mismatch15,33

or rate-based MPC formulations16. However, integrator augmentation risks windup and complicates constraint handling in34

MIMO settings; disturbance-state augmentation increases model order and implementation complexity. Rate-based MPC of-35

fers a practical compromise, but for the large and rapidly varying load disturbances considered here, rate-based MPC alone36

does not deliver the required transient performance. To address this, we combine rate-based MPC with a simple independent37
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load estimator and a gain-scheduling strategy.38

The load estimator is intentionally kept simple and aims solely to observe the external load torque; its output, together39

with the tracking references, drives the gain-scheduling mechanism. In practice, however, simple observers are sensitive to40

measurement noise and can inject irregular perturbations into throttle commands, degrading tracking performance. Thus a41

Kalman filter is introduced. While the extended Kalman filter (EKF) is commonly used17, its reliance on local linearization42

can incur significant linearization error and poor robustness to model uncertainty. The unscented Kalman filter (UKF) im-43

proves linearization accuracy via the unscented transform18 but incurs high computational cost that limits its applicability44

on embedded platforms. Hybrid Kalman filters (HKF)19,20, which retain key nonlinear terms, strike a balance by reducing45

linearization error with modest complexity. Motivated by HKF, this paper develops a compact second-order linear Kalman46

filter tailored for load-torque estimation and decoupled from the original fourth-order engine model.47

A fundamental trade-off for Kalman filters exists between noise suppression and tracking agility: filters tuned for strong48

noise rejection tend to track slowly. To overcome this, prior works have used adaptive tuning and strong-tracking modifications49

that adapt the estimator covariance according to an adaptive law21–23. Building on these ideas, we propose a load-detection-50

based adaptive strategy that rapidly increases estimator responsiveness during transients while preserving noise attenuation in51

steady state. The resulting adaptive Kalman filter provides fast, robust load-torque estimates that are suitable for online use in52

gain scheduling. The main contributions of this paper are:53

(1) A novel adaptive Kalman filter is presented with a mechanism for rapid tracking of transient load changes and attenua-54

tion of steady-state noise.55

(2) A hybrid control framework is developed that integrates predictive control of the rate-based model with a gain schedul-56

ing strategy driven by an adaptive Kalman filter, allowing enhanced rejection of unknown load disturbances in natural-gas57

generator sets.58

(3) Experimental implementation and validation are presented, demonstrating that the proposed adaptive MPC scheme59

effectively reduces engine speed and AFR fluctuations and shortens settling time under varying load conditions, confirming60

its superior transient performance and suitability for embedded implementation.61

Engine Model62

Engine Physical Model63
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Figure 1. Pre-mixed turbocharged CNG engine.

The structure of this engine is schematically shown in Figure 1. The air path consists of two main sections: the pre-mixer64

and the turbocharged engine section. The pre-mixer primarily includes a Venturi mixer and a fuel throttle. A zero-pressure65
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valve is installed upstream of the fuel throttle to maintain inlet pressure at atmospheric level. Natural gas is drawn into the66

Venturi mixer through orifices via the Venturi effect, with the fuel throttle opening β regulating the natural gas mass flow67

rate. The second section resembles a conventional turbocharged engine, where the mixture throttle opening α controls the68

mass flow of the mixed gas. Two temperature and manifold absolute pressure sensors (TMAP1 and TMAP2) are employed to69

monitor the temperature and pressure of the boosted mixture downstream of the compressor and the gas in the intake manifold,70

respectively. A crankshaft position sensor (CKPS) measures the crankshaft phase and rotational speed. An exhaust gas oxygen71

sensor (EGOS) is mounted on the exhaust pipe to determine the AFR.72

The engine model employed in this study is adopted from the authors’ prior work6 and is presented below:73







ω̇ =
1

J
[τe − kbω − τp − τL]

ξ̇ = Hm

ṁ f

ṁa

1

ξ + 1
− ξ

ξ + 1

ṗ2 =
RmT2

Vm
(ṁmt − ṁmc)

ṗ1 =
RmT1

Vt

(ṁc − ṁmt)

(1)

where74

τe = ηe
ξ (t − td)

ξ (t − td)+ 1
ṁmc (2)

td =
p1VT

RmT1

· 1

ṁmc

=
p1VT T2

ωVdηch p2T1

(3)

ṁmc =
ωVdηch p2

4πRmT2

(4)

Hm

ṁ f

ṁa

= Hm

C f Sthvm

CaSa

√

Ra

R f

[

1− cos

(
β π

180

)]

(5)

ṁmt =CmSm

[

1− cos
( απ

180

)] p1√
RmT1

Ψ

(
p2

p1

)

(6)

Ψ

(
p2

p1

)

=







κ
1
2

(
2

κ+1

) κ+1
2(κ−1) p2

p1
≤ κc

√

2κ
κ−1

[(
p2
p1

) 2
κ −

(
p2
p1

) κ+1
κ

]

p2
p1

> κc

(7)

Hm =

{

a1ṁ2
mt + a2ṁmt + a3 ṁmt ≤ mhc

1 ṁmt > mhc

(8)

This is a fourth-order nonlinear model with state variables of engine speed ω(rad/s), the fuel-air ratio ξ in the Venturi mixer,75

intake manifold pressure p2(Pa), and boost pressure p1(Pa). The state variable is chosen as the fuel-air ratio ξ rather than the76

AFR to avoid the fuel throttle opening β appearing in the denominator, which would introduce additional nonlinearities into77

the model dynamics. The first equation in Eq.1 describes the crankshaft rotation dynamics. Here, J is the rotational inertia, kb78

is the friction coefficient, τp is the mechanical and pumping loss torque, and τL is the unknown load torque disturbance. The79

indicated torque τe is defined by Eq.2, where ηe is the engine efficiency coefficient (obtained from look-up tables as a function80

of speed, AFR, and ignition angle). A significant AFR transport delay td , given by Eq.3, is incorporated into τe because the81

mixture ratio takes time to reach the cylinders. In Eq.3, VT is the pipe volume from the mixer to the cylinders, T1 is the boost82

temperature, and Rm is the gas constant of the mixed gas. The mass flow rate of the mixture into the cylinders ṁmc, is given83

by Eq.4, where Vd is the engine displacement, T2 is the intake manifold temperature, and ηch is the volumetric efficiency84

(obtained from look-up tables).85

The second equation in Eq.1 governs the natural gas and air mixing dynamics within the Venturi mixer. The term Hm
ṁ f

ṁa
86

is defined by Eq.5. Here, Hm is an empirical correction factor. Its primary role is to compensate for the deviation between87

the theoretical fuel-air flow ratio
ṁ f

ṁa
and the actual value, which arises from model simplifications, sensor inaccuracies, and88

actual flow characteristics. Introducing this coefficient can significantly improve the model’s predictive accuracy regarding89

the actual system behavior. The value of Hm is a function of the mixture throttle mass flow rate ṁmt . It is determined by90

identifying parameters from experimental data, and its specific expression is given by the piecewise function shown in Eq.8.91
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The third and fourth equations in Eq.1 describe the gas filling dynamics for the intake manifold pressure and boost pressure,92

respectively. The mass flow rate through the mixture throttle, ṁmt , is given by Eq.6, where Cm and Sm are constants, and the93

flow function Ψ(p2/p1) defined by Eq.7. The compressor mass flow rate is denoted by ṁc.94

As evident from the equations, this fourth-order model represents a dual-input, dual-output system. The control inputs are95

the mixture throttle opening α and the fuel throttle opening β , and the outputs are engine speed ω and fuel-air ratio ξ . All96

four state variables are measurable. A key characteristic is the strong coupling between inputs and outputs, as both ω and ξ97

are simultaneously influenced by α and β .98

Model Linearization and Discretization99

The nonlinear engine model is linearized around various equilibrium points to facilitate controller design. Defining the state100

vector x= [ω ξ p2 p1]
T , control inputs as u= [α β ]T , disturbance as d = τL, and outputs as y= [ω ξ ]T , the nonlinear101

system described by Eq.1 can be expressed in compact form as:102

ẋ = f (x,u,d) (9)

Consider an equilibrium point defined by xss = [ωss ξss p2ss p1ss ]
T and steady-state inputs uss = [αss βss]

T , which103

satisfy the equilibrium condition 0 = f (xss,uss,0). By introducing deviation variables δx = x−xss, δu = u−uss, and applying104

first-order Taylor series expansion, the system is linearized to obtain the linear time-invariant representation:105

δ ẋ = Acδx+B1cδu+B2cd

δy =Ccδx (10)

where Ac, B1c and B2c represent the Jacobian matrices of f with respect to xss, uss and d, respectively, evaluated at the106

equilibrium point (xss,uss,0).107

The continuous-time linear model in Eq.10 is then discretized using a sampling period of ts1 = 50ms, yielding the discrete-108

time state-space representation:109

δx(k+ 1) = Adδx(k)+B1dδu(k)+B2dd(k)

δy(k) =Cdδx(k) (11)

where the discrete-time matrices are computed as:110

Ad = eActs1 ;Bid =

(∫ ts1

0
eActs1 dt

)

Bic,(i = 1,2);Cd =Cc

Time Delay Prediction111

In the engine model described by Eq.1, the second equation characterizes the mixing dynamics at the Venturi mixer. However,112

the mixed gas must traverse the turbocharger, intercooler, and intake manifold before reaching the cylinders: a process that113

introduces a significant transport delay. This delay, denoted td , must be accounted for in the fuel-air ratio variable ξ . As given114

by Eq.3, td varies with engine operating conditions, specifically speed ω and intake manifold pressure p2. Let td = ndts1,115

where ts1 = 50ms is the sampling period. The fuel-air ratio measured at the Venturi mixer only be observed at the EGOS after116

nd sampling intervals. To predict the current state affected by this delay, past state variables are utilized. Define a delayed117

state vector δx′(k− nd) = [δω(k− nd) δξ (k) δ p2(k− nd) δ p1(k− nd)]
T , where ξ (k) is the fuel-air ratio measured at118

the EGOS at time k, which corresponds to the ratio at the Venturi mixer at time k− nd . Using the discrete-time model Eq.11,119

the current state can be iteratively predicted as:120

δx′(k) =Ad
nd δx′(k− nd)+

nd

∑
i=1

Ad
nd−iB1dδu(k− (nd − i+ 1))+

nd

∑
i=1

Ad
nd−iB2dd(k− (nd − i+ 1)) (12)

The second element of δx′(k), denoted δξ ′(k), represents the predicted fuel-air ratio at the Venturi mixer at the current time121

k. By replacing all instances of ξ (t − td) in Eq.1 with ξ ′(k), a new state vector xp(k) = [δω(k) δξ ′(k) δ p2(k) δ p1(k)]
T

122

is obtained, which is used for subsequent controller design.123

A common alternative for handling delays in MPC is to incorporate the delay directly into the model, forming an aug-124

mented system11. However, this approach increases model dimension proportionally to the number of delay steps. Given the125

large and variable delay in our application, the augmentation method becomes impractical. Instead, the proposed prediction-126

based iteration offers a more efficient solution, wherein variations in td only affect the number of prediction steps nd , without127

altering the controller structure.128
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MPC Controller Design129

Linear MPC Design130

The reference signal is defined as r(k) = [ωr(k) ξr(k)]
T , which is treated as constant over the prediction horizon. Con-131

ventional MPC for reference tracking typically minimizes a quadratic cost function based on the difference between pre-132

dicted outputs and target values. While this approach using Eq.11 can theoretically achieve zero steady-state error when133

there is perfect model-plant match, such ideal conditions are rarely attainable in practice. To address this limitation, this134

paper employs a rate-based MPC formulation with a difference-scheme augmented model. Define the incremental variables:135

∆xp(k) = δxp(k)− δxp(k− 1), ∆u(k) = δu(k)− δu(k− 1), ∆d(k) = d(k)− d(k− 1), and ∆y(k) = δy(k)− δy(k− 1). The136

discrete-time model from Eq.11 can be reformulated as:137

∆xp(k+ 1) = Ad∆xp(k)+B1d∆u(k)+B2d∆d(k)

∆y(k) =Cd∆x(k) (13)

A new state vector is constructed as xm(k) = [∆xp(k)
T δy(k)T ]T , yielding the augmented state-space model:138

[
∆xp(k+ 1)
δy(k+ 1)

]

︸ ︷︷ ︸

xm(k+1)

=

[
Ad 0

CdAd I

]

︸ ︷︷ ︸

A

[
∆xp(k)
δy(k)

]

︸ ︷︷ ︸

xm(k)

+

[
B1d

CdB1d

]

︸ ︷︷ ︸

B1

∆u(k)+

[
B2d

CdB2d

]

︸ ︷︷ ︸

B2

∆d(k)

[
δy(k)

]

︸ ︷︷ ︸

ym(k)

=
[
0 I

]

︸ ︷︷ ︸

C

[
∆xp(k)
δy(k)

]

︸ ︷︷ ︸

xm(k)

(14)

This augmented formulation offers two significant advantages. First, by selecting the equilibrium point to coincide with139

the reference signal (i.e., yss = r(k)), the control objective simplifies to driving the output of Eq.14 to zero at steady state.140

This eliminates the need for explicit reference tracking terms in the cost function. Second, the incremental state formulation141

inherently ensures zero steady-state tracking error without requiring additional integrator states24.142

The prediction model is constructed as follows. Since the disturbance d(k) is unknown and assumed constant over the143

prediction horizon, the term B2∆d(k) is omitted from predictions:144

Y = Fxm(k)+Φ∆U (15)

where145

Y = [ym(k+ 1|k)T ym(k+ 2|k)T · · ·ym(k+Hp|k)T ]T

∆U = [∆u(k)T ∆u(k+ 1)T · · ·∆u(k+Hc− 1)T ]T

F = [(CA)T (CA2)T · · · (CAHp)T ]T

Φ =








CB1 0 · · · 0

CAB1 CB1 · · · 0
...

CAHp−1B1 CAHp−2B1 · · · CAHp−Hc B1








Here, Hp and Hc denote the prediction and control horizons, respectively. The cost function weights the output and control146

increments:147

min J = Y T QY +∆UT R∆U (16)

where Q and R diagonal weighting matrices. The optimization variable ∆U contains the sequence of control increments, with148

the actual control input computed as:149

u(k) = uss + δu(k) = uss +
k

∑
i=0

∆u(i) (17)

where ∆u(k) represents the first element of the optimal ∆U sequence. Practical constraints are implemented as follows. Rate150

constraints prevent excessive throttle movements that could destabilize the Venturi mixer flow or cause turbocharger surge:151

∆umin ≤∆u(k)≤ ∆umax

umin − u(k− 1)≤∆u(k)≤ umax − u(k− 1) (18)

These constraints apply to all elements in the ∆U sequence over the control horizon.152
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Optimization Problem Solution153

The optimization problem defined by Eq.16 is commonly solved by converting it into a standard quadratic programming (QP)154

formulation, for which efficient and numerically reliable solvers are available. Substituting the prediction model from Eq.15155

into the cost function, and treating the state vector xm(k) as known over the prediction horizon at each control instant, the156

constrained optimization problem can be rewritten as:157

min
∆U JQP =

1

2
[∆UT (2ΦT QΦ+ 2R)∆U ]+ 2∆UTΦT QFxm(k)+ xT

m(k)F
T QFxm(k)s.t. Z∆U ≤W (19)

This constitutes a typical QP problem. The constraint matrices Z and W are readily constructed from the rate and amplitude158

limits given in Eq.18. Since the weighting matrices Q and R are diagonal with positive entries, the Hessian matrix 2(ΦT QΦ+159

R) is symmetric positive definite. Therefore, the optimization problem in Eq.19 is strictly convex and can be solved efficiently160

online using active-set methods25. The solution yields the optimal sequence ∆U , from which only the first element ∆u(k) is161

applied to the plant via Eq.17; the remaining elements are discarded in accordance with the receding horizon principle.162

A key observation is that the QP formulation depends solely on xm(k), F , and Φ. Since xm(k) is measurable or computable163

online, and both F and Φ are functions only of the linearized engine model at a given equilibrium point, these matrices can164

be precomputed offline for a set of operating conditions and stored in look-up tables. As a result, the online computational165

burden of the MPC reduces essentially to solving a QP problem at each sampling instant, making the strategy suitable for166

embedded implementation.167

Adaptive Kalman Filter and Gain Scheduling Strategy168

While the previous section completed the design of an MPC controller for a single equilibrium point, and prior work16 has169

demonstrated that rate-based MPC can compensate for certain model-plant mismatches, treating the load torque purely as a170

model mismatch reveals limitations. Although the controller can eventually regulate the system back to the target operating171

point, its inherent compensation capability is insufficient to meet the stringent requirements for speed and AFR fluctuation172

ranges in power generation applications. Therefore, an alternative method to enhance load response performance is necessary.173

A conventional approach involves treating the load torque as an additional state variable, constructing a fifth-order state-174

space model and observer. However, this method significantly increases model complexity. Re-examining the control design175

context, the natural gas engine studied herein operates primarily at a single nominal working point: 1500 rpm engine speed176

with a stoichiometric AFR. Although this suggests a single equilibrium point, the engine’s internal state actually shifts under177

load variations. While the controlled outputs ω and ξ return to their references in steady state following a load change, the178

pressures p2 and p1 settle at new values. This indicates that the equilibrium point itself moves with the load.179

Consequently, the linearized model corresponding to the new operating point must be updated, and the MPC controller180

should be adjusted accordingly, affecting the incremental control signals ∆u and δu. Furthermore, referring to Eq.17, the shift181

in the equilibrium point also changes the steady-state input uss. This implies that during each control interval, in addition to182

the corrective action δu(k) computed by the MPC, an additional feedforward compensation ∆uss can be applied based on the183

updated equilibrium point. This adjustment, which actively accounts for the changing operating condition, is referred to as the184

gain scheduling strategy in this paper. The subsequent challenge, therefore, is to accurately estimate the load torque in order185

to detect and respond to these equilibrium point movements.186

Simple Form of Load Estimator Based on Kalman Filter187

In practical applications, engine systems are inevitably subject to measurement noise, which can degrade throttle control188

accuracy, induce throttle jitter, and reduce actuator longevity. To address this issue, a Kalman filter is employed as a load189

torque estimator.190

Reexamining the original engine model in Eq.1, the load torque τL appears only in the speed dynamics. Since all four state191

variables are measurable and the remaining three differential equations are independent of τL, only the speed dynamics equa-192

tion is utilized for estimator design. By treating τL as an additional state variable and incorporating process and measurement193

noise, a second-order system is formulated as follows:194

ω̇ =
1

J
[τe − kbω − τp − τL +υt ]

τ̇L = υtl (20)

where υt and υtl represent mutually independent, zero-mean Gaussian noise terms associated with the reconstructed engine195

torque and the load torque derivative, respectively26. By defining ue = τe − τp as an input, the nonlinearities in τe are avoided,196

resulting in a simple second-order linear model. This formulation is physically justified since the net torque (engine output197

minus load) determines the rotational acceleration.198
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Discretizing the system with a sampling period ts2 yields the discrete-time state-space model:199

[
ω(k+ 1)
τL(k+ 1)

]

︸ ︷︷ ︸

xe(k+1)

=

[

1− ts2kb
J

− ts2
J

0 1

]

︸ ︷︷ ︸

Ae

[
ω(k)
τL(k)

]

︸ ︷︷ ︸

xe(k)

+

[
ts2
J

0

]

︸︷︷︸

Be

(τe(k)− τp)
︸ ︷︷ ︸

ue

+

[
ts2
J

0

0 ts2

]

︸ ︷︷ ︸

L

[
υt(k)
υtl(k)

]

︸ ︷︷ ︸

ϒ(k)

ye(k) =
[
1 0

]

︸ ︷︷ ︸

H

[
ω(k)
τL(k)

]

︸ ︷︷ ︸

xe(k)

+ε (21)

where ε is the zero-mean speed measurement noise. Since this model is independent of the controller, and this paper has high200

requirements for the fast tracking ability of the estimator, the control period of this model can be shorter than the controller,201

and it is set to be ts2 = 10ms. Then the linear Kalman filter can be given by27:202

x̂−e (k) =Aex̂+e (k− 1)+Beue

P−(k) =AeP+(k− 1)AT
e +M

K(k) =P−(k)HT (HP−(k)HT +N)−1

ε̂(k) =ω(k)−Hx̂−e (k)

x̂+e (k) =x̂−e (k)+K(k)ε(k)

P+(k) =(I −K(k)H)P−(k) (22)

where203

K(k) : Kalman filter gain matrix204

x̂−e (k), x̂
+
e (k): a priori and a posteriori state vector205

P−(k),P+(k): a priori and a posteriori state estimation error covariance matrices206

M: Covariance matrix of ϒ207

N: Variance of ε208

ε̂(k): a priori prediction error209

Since ue = τe−τp is readily available at each control instant, and the output matrix H is scalar-valued, the matrix inversion210

in the gain update reduces to a scalar division. This structure allows for efficient embedded implementation without requiring211

the full nonlinear engine model.212

Adaptation Mechanism of Kalman Filter213

When employing a Kalman filter as an estimator, a well-known trade-off exists between its noise suppression capability and214

fast tracking performance, it is difficult to achieve both optimally simultaneously. However, in the context of this study, the215

estimator is required to possess a fast convergence speed to promptly detect load variations and trigger equilibrium point216

switching, while also maintaining excellent noise attenuation in steady state to ensure accurate and stable throttle opening217

tracking. To address these competing requirements, this paper introduces an adaptive tuning strategy.218

In Eq.22, since Ae,Be and H are constants, the covariance matrix M and the noise variance N become the primary tuning219

parameters of the Kalman filter. These are defined as:220

N = [nω ] ; M =

[
mt 0

0 mtl

]

According to references21,27,28, the parameter N significantly influences the convergence performance, while M affects221

the convergence rate. In particular, increasing the element mtl in M enhances the response speed of the corresponding state222

variable τL. Thus, the core idea of the adaptation strategy is to increase mtl during load transients to accelerate load torque223

tracking, and reduce it after convergence to restore steady-state noise suppression.224

To detect load changes, the sliding-window average of the a priori prediction error ε̂(k) is used29:225

ε̂sw(k) =
1

n
(ε̂(k)+ ε̂(k− 1)+ · · ·+ ε̂(k− n+ 1)) (23)

When ε̂(k) resembles white noise, ε̂sw(k) remains close to zero at steady state. A load change causes ε̂sw(k) to deviate from226

zero, enabling the detection of loading/unloading events. As illustrated in Figure 2, the absolute value |ε̂sw(k)| is fed into a227

hysteresis comparator. When |ε̂sw(k)| exceeds an upper threshold εup, the comparator outputs 1, triggering an increase in mtl ;228

when it falls below a lower threshold εlow, he output becomes 0, and mtl is reset to its initial value.229

Furthermore, the following specific and feasible parameter tuning methods are provided:230
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Figure 2. Block diagram of Load change detection adaptation mechanism

• References30,31 indicate that a sufficient condition for Kalman filter convergence is N > HP+(k)HT . However, an231

excessively large N may reduce the Kalman gain K(k) and slow down convergence. Thus, N is determined as N =232

HP+(k)HT + ζ , where ζ is appropriately chosen.233

• Both mt and mtl can be set to small values at steady state. Upon detecting a load change, only mtl is increased to ensure234

fast convergence of the load torque estimate. Once convergence is achieved (|ε̂sw(k)|< εlow), mtl is reduced back to its235

initial value.236

The effectiveness of this parameter tuning strategy is validated experimentally in the subsequent section.237

Gain Scheduling Strategy238

The primary objective of gain scheduling is to linearize a nonlinear model at various equilibrium points, thereby generating239

a family of linear models, each associated with a specific operating condition. A corresponding linear controller is then240

designed for each equilibrium point. When the operating point shifts, the controller is accordingly switched32. In this study,241

the equilibrium point depends on the load torque, which is considered an unknown disturbance. Thanks to the adaptive242

Kalman filter proposed in the previous section, an accurate and rapid estimate of the load torque τ̂L can be obtained, enabling243

fast switching of the equilibrium point and completing the basic gain scheduling framework.244

However, directly switching the entire controller in practical applications is often overly complex. Since different equi-245

librium points require distinct controllers, this approach demands substantial data storage and interpolation within lookup246

tables. To mitigate this, the present work adopts a "low complexity gain scheduling strategy"33. This method employs a247

single linearized model—designed specifically at a nominal equilibrium point—to construct a single MPC. The key idea is248

to compute a gain variation of the model induced by the equilibrium point shift, which is then used to correct the output of249

the MPC, making it suitable for the model at the new operating point. Specifically, the nominal equilibrium point is set at250

1500rpm engine speed, stoichiometric AFR, and no-load condition. The transfer function linearized at this point is denoted251

as P0(z). When the operating point changes, the model at other equilibrium points is represented by Pζ (z), where the schedul-252

ing parameter ζ corresponds to the estimated load torque. Under nominal conditions, the controller output acts directly on253

the plant P0(z). When the equilibrium point shifts, a gain scheduling matrix GM is introduced such that the corrected plant254

GMPζ (z) approximates P0(z), allowing the same controller to be applied. In this paper, GM is selected to match the DC gain255

of the off-nominal model to that of the nominal model:256

GM = P0(1)P
−1
ζ

(1) (24)

Figure 3(a) and (b) illustrate the control block diagrams under the nominal and off-nominal equilibrium points, respectively.257

The nominal case is straightforward: the steady-state input uss is known, and the state x(k) is measurable, leading to a simple258

controller implementation. In the off-nominal case (Fig. 3(b)), a Kalman filter quickly provides the load torque estimate,259

enabling the equilibrium point to be updated. Using the nominal model P0(z), the DC gain is computed to determine GM. The260

MPC remains designed based on the nominal linearized model, and its output is corrected via GM . The incremental control δu261
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Figure 3. (a) Block diagram under the nominal equilibrium point. (b)Block diagram of gain scheduling under other

equilibrium points.

is obtained through integration, and the final control u(k) is formed by adding δu to updated uss, which acts as a feedforward262

term. This approach only requires storing the GM matrix for each load condition, while the controller itself remains unchanged,263

significantly reducing the need for interpolation and storage. For the dual-input dual-output system considered here, GM a264

2× 2 matrix, further alleviating the computational burden.265

Experimental Validation266

The experimental investigation was performed on a natural gas engine-generator set, as shown in Figure 4. The system267

comprised an engine directly coupled to a three-phase synchronous generator, which supplied power to a programmable load268

cabinet for precise load control. The engine had a rated power of 155 kW, a rated speed of 1500rpm, and a maximum torque269

of 1000Nm. To maintain a stable grid frequency of 50 Hz, the engine speed was controlled at 1500rpm, while the AFR was270

maintained near the stoichiometric ratio for optimal combustion.271

272

Adaptive Kalman Filter Verification273

As previously discussed, the Kalman filter operates independently from the fourth-order nonlinear model and MPC controller,274

allowing it to utilize a shorter sampling period (ts2 = 10ms) for enhanced response speed. This study compares three Kalman275

filter configurations: a low-speed response Kalman filter (L-KF), a high-speed response Kalman filter (H-KF), and the pro-276

posed adaptive Kalman filter (A-KF). Both L-KF and H-KF employ fixed parameters, where mt and mtl remain constant277

throughout operation. The L-KF utilizes small values for both parameters, while the H-KF employs a significantly larger mtl278

value (with mtl maintained at the same small value as L-KF) to improve load torque tracking performance. In contrast, the279

A-KF dynamically adjusts mtl based on the load change detection mechanism: it increases mtl during loading/unloading tran-280

sients and decreases it once convergence is achieved. The parameter N is identical across all three filters. The sliding window281

length is carefully selected to balance detection sensitivity and noise immunity—excessively long windows delay load change282

detection, while overly short windows introduce more white noise into the averaged signal.283

The specific parameter configurations for each filter are as follows:284
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Figure 4. Natural gas engine test bench

• L-KF:285

N = HP+(k)HT + ζ ζ = 20(rad/s)2

mt = 25(N ·m)2 mtl = 100(N ·m)2

286

• H-KF:287

N = HP+(k)HT + ζ ζ = 20(rad/s)2

mt = 25(N ·m)2 mtl = 5× 104(N ·m)2

• A-KF:288

N = HP+(k)HT + ζ ζ = 20(rad/s)2

mt = 25(N ·m)2

Load change state: mtl = 5× 104(N ·m)2

steady state: mtl = 100(N ·m)2

The MPC controller operates with a 50ms sampling period in the embedded system. The prediction horizon and control289

horizon are set to 6 and 2 steps, respectively. The different sampling periods for the MPC (ts1 = 50ms) and the Kalman filter290

(ts2 = 10ms) were chosen deliberately to achieve an optimal balance between computational feasibility and estimation/control291

performance. The MPC algorithm involves computationally intensive online optimization (solving a QP problem). A longer292

sampling period is necessary to provide sufficient time for the embedded processor to reliably compute the optimal control293

moves within each cycle, ensuring real-time implementation stability. The Kalman filter is a relatively simple second-order294

linear observer. Its low computational cost permits a much faster sampling rate. This is crucial for achieving the primary295

design goal of the estimator: to rapidly track transient load torque changes. A faster update rate allows for quicker detection296

of load steps and more timely adaptation of the gain-scheduling strategy, which directly enhances the transient performance297

of the overall control system.298

An equilibrium point lookup table, predetermined from experimental data, enables the proposed gain scheduling strategy299

to achieve effective speed and AFR tracking control. Notably, the MPC controller configuration remains identical across all300

three Kalman filter implementations, with consistent weighting matrices: q =

[
5 0

0 4

]

, r =

[
2 0

0 2

]

;301

The relatively small values of qand rreflect the normalization of state variables to comparable orders of magnitude (p2 and302

p1 in kPa, ξ scaled by 1000). Experimental results are presented in Figures 5-8, focusing on the critical first-loading scenario303

where the generator set transitions from no-load to 30% of maximum load before unloading. The excess air coefficient λ , a304

normalized value defined as the ratio of the actual AFR to the stoichiometric AFR, is used in the experimental results.305
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As shown in Figure 5, both H-KF and A-KF achieve rapid load torque tracking, converging within approximately 400ms,306

significantly outperforming L-KF. The H-KF’s immediate convergence stems from its large, fixed mtl value. The A-KF307

exhibits a slight delay relative to H-KF due to the detection mechanism’s response time – approximately 60ms after the load308

change, |ε̂sw(k)| exceeds the upper threshold εup, triggering the switch to high mtl and accelerated convergence. When |ε̂sw(k)|309

falls below the lower threshold εlow around 400ms, mtl reverts to its low value to ensure steady-state noise suppression. Both310

H-KF and A-KF provide sufficiently fast load estimates to enable rapid updates of the gain-scheduling matrix and equilibrium311

input uss.312

Figures 6 and 7 demonstrate that αss and βss for H-KF and A-KF respond promptly after loading (at 5s), resulting in sharp313

increases in the final control inputs α(k) and β (k). In contrast, L-KF’s slow load estimation causes gradual changes in αss314

and βss, making the final inputs predominantly determined by the MPC outputs δα(k) and δβ (k). Consequently, as evident315

in Figure 8, L-KF exhibits substantial speed and AFR deviations following load changes, with speed excursions exceeding316

±200rpm and prolonged AFR settling times. H-KF and A-KF, however, limit speed fluctuations to approximately ±150rpm317

through prompt input adjustments. (For reference, typical generator sets permit speed fluctuations around ±10% of nominal318

speed.)319

Regarding noise suppression, H-KF exhibits significant steady-state estimation noise due to its large mtl , which propagates320

to uss and ultimately to the throttle commands, causing irregular fluctuations detrimental to precise throttle control. Both L-KF321

and A-KF demonstrate superior noise suppression. Analysis of the final control variables (α(k) and β (k)), reveals that noise322

primarily originates from the equilibrium inputs ( αss and βss), while the MPC outputs (δα(k) and δβ (k)) contribute minimal323

noise across all configurations.324

αss δα α βss δβ β
H-KF 0.0647 0.0212 0.1238 0.0312 0.0112 0.0757

A-KF 0.0013 0.0189 0.0262 0.0003 0.0098 0.0145

Table 1. Comparison of steady-state variance of input variables in H-KF and A-KF (unit:degree2)

Table 1 compares the steady-state variances of input variables for H-KF and A-KF during 10-15s (L-KF is excluded as its325

parameters match A-KF’s steady-state values but with inferior dynamic performance). The variances of αss, α , βss and β are326

substantially larger in H-KF than in A-KF. Specifically, H-KF’s α fluctuates within nearly ±1 degree, while A-KF maintains327

fluctuations within ±0.5 degree.328

These results confirm the necessity of the adaptive A-KF strategy. While conventional Kalman filters can be tuned to329

balance tracking speed and noise rejection27, static parameter tuning cannot simultaneously satisfy both requirements in this330

application. H-KF achieves acceptable transient performance but introduces excessive steady-state noise, whereas conserva-331

tive (low-gain) tuning suppresses noise but fails to track rapid load disturbances. This trade-off is critical in practice since the332

filter output serves as the reference for throttle positioning – noisy references induce sustained throttle jitter, accelerate actua-333

tor wear, and may compromise system stability. The A-KF successfully reconciles these conflicting objectives by enhancing334

estimator responsiveness during transients while maintaining strong noise attenuation in steady state, thereby ensuring both335

performance and operational safety.336

Comparative Experimental Evaluation337

The proposed MPC framework with adaptive Kalman filter (AFK-MPC) was experimentally compared against two baseline338

methods: a conventional PI control strategy and the standard rate-based MPC without adaptation.339

The conventional PI control method employs two decoupled PI controllers to regulate engine speed and AFR, respectively.340

For speed control, the PI controller directly computes the mixture throttle opening based on the error between the actual and341

target speed. The AFR control loop is more complex: to address the significant transport delay, a feedforward term based342

on intake manifold pressure (p2) is incorporated, as suggested in34. In each control cycle, a base fuel throttle opening is343

determined from a p2 lookup table. A PI controller then acts on the deviation between the measured AFR and its target, and344

its output is added to the base opening to yield the final fuel throttle command. This approach is referred to as Double-PI345

(D-PI) control. The final tuned parameters are: ksp = 1.3,ksi = 0.03 for the speed PI controller, and kap = −5,kai = −4 for346

the AFR PI controller.347

The rate-based MPC controller follows the design detailed in Section "MPC Controller Design", with its control block348

diagram identical to that shown in Fig.3(a). It utilizes the same parameter matrix as the AKF-MPC controller, which is derived349

from the A-KF configuration. As this approach employs a linear MPC formulation, it is referred to as LMPC throughout this350

paper.351

Figures 9 - 11 present a comparative analysis of the load response performance among the AFK-MPC, LMPC, and PI352

controllers. The test sequence involved applying 30% of the maximum load at 10s, followed by an additional 200Nm at 30s,353
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Table 2. Quantitative comparison of controller performance during loading and unloading transients

Index D-PI LMPC AFK-MPC

Average of speed settling time (±2%) [s] 6.875 7.943 5.146

Max deviation of speed [rpm]
-167

+155

-281

+269

-138

+149

Average of λ settling time (±2%) [s] 12.95 11.26 12.136

Max deviation of λ
-0.2

+0.11

-0.098

+0.052

-0.086

+0.084

with sequential unloading thereafter. Table 2 summarizes quantitative metrics for these loading and unloading processes.354

In terms of speed control performance, the tuned D-PI controller achieves a level close to the power generation require-355

ments. However, the LMPC, which relies solely on the rate-based MPC without load torque information, exhibits significantly356

degraded speed performance, similar to the L-KF results observed earlier. In contrast, the AFK-MPC, benefiting from the gain-357

scheduling parameter matrix and feedforward term uss, demonstrates markedly improved speed response, outperforming D-PI.358

The speed fluctuation of AFK-MPC remains within ±150rpm, satisfying practical generation demands, and its settling time359

is significantly shorter than those of D-PI and LMPC.360

Regarding AFR control, both LMPC and AFK-MPC show substantially smaller AFR fluctuations compared to D-PI. This361

improvement stems from the ability of MPC to coordinate multiple inputs in MIMO systems, whereas D-PI lacks inherent362

decoupling capability. Although the settling times for AFR are comparable across controllers, the overall AFR performance363

of LMPC and AFK-MPC is superior.364

Based on these results, the AFK-MPC strategy delivers the best comprehensive performance: speed fluctuations remain365

within the required range, settling time is short, and AFR variations are minimal.366

In practical applications, the adaptive load detection mechanism is typically triggered during transients. If not activated367

immediately upon loading, the controller’s initial response is slower, leading to rapid speed deviation. This causes |ε̂sw(k)|to368

exceed the upper threshold εup, activating the adaptation. Only when the load is small enough that the rate-based MPC alone369

can quickly restore speed will the detection remain inactive, in such cases, speed deviation is negligible.370

Conclusion371

The main contribution of this paper lies in the proposal of a control method that integrates an adaptive Kalman estimator372

with a gain scheduling strategy, combined with rate-based model predictive control (MPC), which significantly enhances the373

system’s anti-disturbance performance under unknown load variations. The paper elaborates on the design process of the374

MPC controller and the adaptive Kalman filter: by introducing an adaptive strategy and a load variation detection mechanism,375

the Kalman filter achieves rapid tracking of load torque changes under transient conditions while effectively suppressing376

estimation noise in steady-state operation, thereby balancing dynamic response speed and steady-state accuracy.377

The proposed method exhibits strong engineering applicability. Since model linearization, discretization, and prediction378

model computations can be performed offline, the online computational burden of MPC is reduced to solving a QP problem,379

significantly lowering the computational load. Moreover, the Kalman filter features a simple structure with minimal online380

computational requirements, making it suitable for implementation in embedded systems. Experimental results demonstrate381

that the control framework effectively suppresses speed and AFR fluctuations caused by step load changes, shortens the settling382

time, and provides a feasible solution for improving the load adaptability of natural gas engines used in power generation.383
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