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Risk identification and assessment for multitype safety events 

under the coupling of environmental factors 

Abstract: In high-risk industrial settings, the proliferation of sensor data provides crucial support for fundamental 

research on safety events (SEs) and for precise risk analysis. However, existing data-driven methods struggle to 

reveal the nonlinear couplings among multiple factors and lack a systematic framework to explain how these factors 

jointly contribute to different types of SEs. To address these limitations, this study proposes a theory–data integrated 

model for multitype SE risk identification and assessment. From a cross-scale emergence perspective, the study 

elucidates that SEs arise from a chain-evolution process driven by the nonlinear coupling of diverse environmental 

factors and constructs a theoretical framework describing hierarchical factor associations and cross-scale 

interactions. Building upon this theoretical foundation, a data-driven risk identification and assessment model 

(RIAM) is established. This model quantifies the contributions of measurable environmental factors (MEFs) that 

significantly influence SEs through online learning. Experimental results demonstrate that the proposed model 

effectively captures the cumulative risk effects arising from multi-factor coupling, thereby enhancing both event 

identification accuracy and model interpretability. This study provides a novel perspective and methodological 

foundation for SE prediction and integrated prevention in complex industrial environments. 

Keywords: safety events; environmental factors; contribution; cross-scale emergence; risk assessment; 

interpretability 

1 Introduction 

In complex production systems, heterogeneous safety events (SEs) often co-occur and interact, with their 

emergence shaped by the nonlinear coupling and dynamic evolution of multiple environmental factors. A 

comprehensive investigation of inter-factor interactions and inter-event coupling is therefore pivotal for accurate 

SE identification and early-warning prediction [1]. With the advent of big-data technologies, multi-source 

environmental datasets have opened new avenues for the study of SEs, while simultaneously posing new challenges 

to conventional analytical approaches. 

Safety theory models provide the theoretical foundation of the logical relations among factors in production 

systems and the mechanisms by which events are triggered. Constrained by prevailing technological conditions, 

traditional models often rely on limited samples and simplified assumptions [2,3]. These models typically adhere to 

established paradigms and interpret causal mechanisms from a static, qualitative standpoint. Consequently, they 

remain inadequate for characterizing inter-factor interactions and nonlinear coupling mechanisms in complex 

systems when confronted with high-dimensional, dynamic, and multi-source environmental data [4]. Therefore, it 
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is essential to reframe safety theory from a new perspective that integrates systemic principles with data-driven 

intelligence and captures the dynamic evolution of events in complex production systems. 

The introduction of data has provided new paradigms and methodological foundations for theoretical research 

in safety science. Scholars have attempted to model the causal mechanisms and evolutionary processes of SEs using 

big data analytics. For instance, Huang et al. [2], Wang et al. [5,6], and Jin et al. [7,8] proposed big data–driven 

frameworks for SE analysis, opening new perspectives for studying safety mechanisms in complex systems. 

Nevertheless, current big data–based theories still fall short of elucidating how heterogeneous factors jointly 

contribute to SE occurrence. One key reason is that many existing studies continue to treat risk factors as isolated 

variables under static settings, thereby overlooking interdependencies among multiple threats and the influence of 

dynamic response mechanisms [9]. This limitation constrains both the understanding of the intrinsic mechanisms 

of SEs and the effective utilization of factor state data. In fact, the evolution of SEs essentially results from the 

complex interactions among multiple factors. These factors continuously evolve across spatial and temporal 

dimensions, and their state changes collectively drive the occurrence and evolution of SEs. Therefore, it is necessary 

to further explore the interrelationships among these factors and their underlying causal mechanisms influencing 

SEs, to better provide theoretical explanations and modeling pathways for nonlinear safety phenomena in complex 

systems. 

Similarly, the advancement of big data technologies has enabled the development of more refined and accurate 

risk assessment models [10]. In complex production systems, different types of SEs often overlap and transform, 

exhibiting coupling-induced disaster evolution characteristics [11,12]. Therefore, these SEs may share similar causal 

factors and underlying principles. However, existing risk assessment methods are generally developed for individual 

SEs in isolation [10,13,14]. Although such methods can perform risk analysis for specific SEs, they often fail to 

account for the coupling effects among multiple factors and SEs. Consequently, their adaptability to complex 

production environments remains limited. Moreover, such methods are often constrained to specific scenarios or 

event types, which hinders the effective prevention and control of key influencing factors. To overcome these 

limitations, it is necessary to fully leverage data-driven analytical approaches for comprehensive and systematic 

data integration and analysis. To this end, deepening the understanding of the coupling relationships between factors 

and utilizing these interconnections to construct an effective risk analysis model is important. Such a model is crucial 

for automatically optimizing factors and for identifying and assessing SEs. 

In summary, data have become an effective means to uncover the underlying mechanisms of SEs and are 

increasingly demonstrating their core value in SE modeling. This study proposes an integrated risk analysis model 

combining theoretical analysis and data-driven approaches for SEs. The model establishes a mechanism for the 

cross-scale interactions between environmental factors and SEs. Focusing on cross-scale interactions, an 
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environmental factor correlation representation model is proposed, which establishes measurable environmental 

factors (MEFs) that are related to SEs. The dynamic evolution trends of SEs over time are driven by the coupled 

interactions of various environmental factors. Based on the above theory, a data-driven model for identifying and 

assessing the risks of multiple types of SEs is established. This results in a new SE analysis model characterized by 

causative tracing, factor prioritization, and comprehensive warning. Finally, considering the complexity, dynamics, 

and frequent accident characteristics of coal mine production systems, this paper uses a coal mine production 

environment as a case study to analyze and validate the proposed model, offering practical solutions for addressing 

SEs in production environments. 

2 Literature review 

Research on risk identification and assessment for multitype SEs under the coupling of environmental factors 

mainly encompasses two aspects: theoretical modeling and risk evaluation. 

2.1 The theory of SE causation  

The theory of SE causation aims to establish the causal logic between internal factors and events, providing a 

theoretical support for understanding their evolutionary mechanisms[15]. Existing research has gradually developed 

an evolutionary trajectory from structured causal models to dynamic nonlinear models. 

Early studies mainly adopted a structured causal modeling framework. These studies demonstrated that in 

production operations, the failure or sequential activation of protective mechanisms and causal chains under specific 

conditions can ultimately lead to the occurrence of SEs. Recent reliability studies further indicate that protective 

mechanisms may be conditionally triggered by multiple interacting factors, leading to diverse system outcomes 

under disturbances [16]. For example, the domino theory [17] indicates that accidents result from a chain reaction 

of causally linked events. The Swiss cheese model [18,19] posits that accidents occur due to the cumulative effects 

of latent hazards and active conditions across multiple layers of defense, intersecting in both time and space. 

Trajectory intersection theory [20] states that accidents arise from the coupling of unsafe human behaviors and 

unsafe object conditions within a shared spatiotemporal context. Epidemiological theory [21] reveals that accidents 

result from the interplay between human, environmental, and mediating factors. The system-theoretic accident 

model and processes [22,23] posits that accidents occur due to the inadequacy of control at various system levels, 

leading to ineffective regulation of the interactions between components. The 2–4 Model divides the causation of 

SEs into two levels and four stages, revealing the hierarchical relationships between direct and indirect causes [24]. 

These theories provide a clear structural framework for understanding the causal mechanisms underlying SEs. 

However, their reliance on qualitative reasoning and static analysis limits their ability to capture the dynamic 

evolution and nonlinear coupling among multiple factors in complex production systems. Existing studies further 
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suggest that multi-factor dependencies may trigger cross-scale risk transfer, leading to cascading evolution patterns 

of SEs [25,26]. 

Complex system and dynamic instability models focus on the transition of a system from a stable state to an 

unstable state under disturbances, revealing the time-varying and abrupt characteristics of SEs. Johnson developed 

the Change–Failure model, which posits that SEs originate from energy release and control failure [27]. The 

Functional Resonance Analysis Method (FRAM) conceptualizes SEs as emergent phenomena arising from 

nonlinear coupling and resonance among multiple functional modules within a system [28]. When the interactive 

effects among these functions exceed a critical threshold, the system transitions abruptly from a stable to an unstable 

state. Catastrophe theory [29] conceptualizes the occurrence of SEs as abrupt phase transitions of factor states in 

the vicinity of critical points. Collectively, these theories elucidate the nonlinear and emergent characteristics of 

SEs, providing an essential theoretical framework for interpreting the dynamic shift of production systems from 

safety to instability. 

In summary, the theory of SE causation has evolved from structured causal mechanisms toward nonlinear 

coupling mechanisms, and from static structural descriptions to dynamic system modeling. Despite these advances, 

existing studies still exhibit notable limitations: (1) most theoretical approaches remain primarily qualitative, 

making it difficult to derive computable mappings from high-dimensional sensor data; and (2) quantitative 

characterization and causal attribution of multi-factor coupling are inadequate, limiting deeper insights into its 

influence on SE occurrence. 

2.2 Risk analysis models for SEs 

Risk analysis methods are used to assess, identify and quantify the probability of SE occurrence. Existing 

studies can be broadly categorized into two types: event-chain analysis methods and factor-driven approaches. 

Risk analysis method based on the event-chain perspective focuses on modeling the interrelationships between 

events. This type of approach aims to identify the root causes of critical events and calculate the associated risk 

probabilities. Feng et al. [12] developed a dynamic risk analysis framework for industrial systems based on an event-

chain model, which reveals the evolutionary process of SEs across different stages. Li et al. [30] constructed a causal 

path network using complex network theory to quantify the influence weights among nodes, thereby achieving risk 

modeling of railway transportation systems. Li et al. [31] combined the fuzzy analytic hierarchy process and 

Bayesian network methodologies to develop a Bayesian network model for assessing gas explosion risks in coal 

mines. Zhang et al. [32] proposed a fuzzy Bayesian network-based safety risk analysis method for road construction 

scenarios, which achieves full life cycle risk management through causal analysis, fuzzy reasoning and sensitivity 

analysis. Feng et al. [33] proposed an event-chain-based dynamic risk analysis method that facilitates the assessment 

of causal importance and the formulation of optimal risk reduction strategies. 
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Risk analysis methods from the factor-driven perspective assess risks by capturing and quantifying the complex 

nonlinear relationships between factor states and SE occurrence probabilities. By monitoring and estimating the 

fluctuation trends of the hazard factors associated with SEs, potential hazards can be identified, and multilevel early 

warnings can be issued. Muduli et al. [13] employed fuzzy logic reasoning to assess spontaneous combustion risks 

in coal mines in real time by setting fuzzy sensor thresholds. Zhang et al. [34] proposed an adaptive warning method 

based on trend monitoring. Wang et al. [35] analyzed the variation patterns exhibited by electromagnetic radiation 

during coal and gas outburst processes, establishing an early warning model based on these signals. However, these 

methods are often affected by the complex coupling of factors and the ambiguity of critical conditions. To address 

this issue, scholars have introduced advanced methods such as machine learning and deep learning to implement 

more accurate risk assessments. Wang et al. [36] utilized big data technology to collect dynamic disaster parameters 

in mining areas and employed the adaptive boosting (AdaBoost) classification algorithm to predict rock burst risks. 

Li et al. [37] proposed a multisource information fusion warning model based on autoregressive integrated moving 

average and the transferable belief model, enabling real-time dynamic warnings for gas outburst risks in coal mines. 

Guo et al. [38] introduced a hybrid approach combining building information modeling and D-S evidence theory to 

integrate, assess, and visualize risk factors in underground tunnels. Shen et al. [39] proposed a cloud model-based 

risk assessment method for excavation and construction projects that estimates risk statuses through multisource 

data collection, model construction, and risk level determination. 

Recently, extensive research has been conducted in the field of risk assessment. However, the following 

problems still exist. ① Each SE is modeled independently, leading to a large workload and poor model compatibility. 

② Most methods focus on analyzing single SE with limited factors. The accuracy of the obtained results is 

significantly affected by the selection and comprehensiveness of these factors. ③ Such models fail to adequately 

consider the interrelationships between various factors and SEs. A unified analytical framework and an effective 

integration mechanism for systematically incorporating and comparing different types of risk information are 

lacking. 

To address the limitations of the above research, this study makes the following contributions. 

① This paper establishes a cross-scale mechanism governing the effects of environmental factors on SEs. 

SEs are viewed as the results of multiple environmental factors interacting at the factor scale, which in turn produce 

cross-scale emergent effects at the event scale. 

② At the factor scale, an environmental factor correlation model is established, and the MEFs related to SEs 

are determined. At the event scale, a chain mechanism depicting the transformation and superposition of multiple 

types of SEs is elucidated. Regarding cross-scale dynamics, the cross-scale emergence mechanism concerning the 

effects of environmental factors on SEs is analyzed, with an emphasis on tracing the differential contributions of 
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these factors. 

③ Based on the proposed theoretical model, a data-driven risk identification and assessment model is 

constructed for multitype SEs under the coupling of environmental factors. The interpretability of the model enables 

the quantification of the relevance levels and contributions of environmental factors. 

3 Theoretical foundation 

3.1 Definitions of SEs and environmental factors 

Events, as defined temporal and spatial occurrences, encompass both positive and negative aspects [40]. SEs 

represent a subset of such events, denoting events that have adverse impacts on a production system. Environmental 

factors are pivotal elements for understanding, identifying, and analyzing the occurrence of SEs. Therefore, SEs 

and environmental factors belong to different scales with different portrayals and descriptions. Environmental 

factors include those that characterize, quantify, and explain SEs. SEs arise as emergent properties from the 

nonlinear interactions of various environmental factors. 

Fig. 1 shows the cross-scale relationships between SEs and environmental factors. At the event scale, SEs 

interact, constituting a directed chain network structure. As a special subset of the SE set, accidents gradually evolve 

from related SEs. At the factor scale, the environmental factors exhibit a certain degree of hierarchical dynamic 

correlation. State information is deeply integrated among the related environmental factors. A constellation of 

environmental factors determines the cross-scale emergence of SEs. Under specific spatiotemporal conditions, the 

state changes exhibited by these factors interact through nonlinear dynamics, resulting in emergent outcomes. In 

general, the state changes undergone by environmental factors generate an intrinsic motivation for the dynamic 

evolution of SEs. The dynamic evolution of an SE is the macroscopic manifestation of the state changes of 

environmental factors. The mathematical representation of the relationship between SEs and environmental factors 

is shown in Eq. (1). 

  1 2 1 2, , , , , ,o fs s s a a a    (1) 

where   is the emergence function concerning the effect of environmental factors on SEs, ia  is an 

environmental factor,  1 2, , , fa a a   is a set of environmental factors, js  is an SE, and 1 2{ , , , }ms s s   is 

a set of SEs. 
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Fig. 1 The cross-scale relationships between SEs and environmental factors 

The definitions of SEs and environmental factors are improved and supplemented. 

Definition 1. Environmental factors refer to factors within a production environment that are actively 

influenced by production activities, and status changes can directly affect the production environment, potentially 

leading to SEs. 

Definition 2. SEs refer to emergent outcomes that arise within a specific temporal and spatial context due to 

state changes exhibited by the environmental factors within a production environment, potentially having adverse 

impacts on the production system. 

Taking gas explosion in coal mines as an example, the hierarchical linkage from environmental factors to safety 

events is formally illustrated to clarify the cross-scale emergence mechanism. 

Let gas concentration, oxygen concentration, and temperature be denoted as 1a , 2a , 3a respectively. These 

variables belong to the set of environmental factors, 1 2 3, ,a a a  . 

Let the environmental factor states at time t be 
1( )tX a , 

2( )tX a , 
3( )tX a . For each factor, an instability 

domain is defined as 1 , 2 , 3 , respectively. When the factor state reaches or exceeds its instability domain, 

the corresponding precursor safety event is triggered. Specifically, the precursor events are defined as: 

 
1 1 1: ( )t

ps t X a  ,  
2 2 2: ( )t

ps t X a  ,  
3 3 3: ( )t

ps t X a  , with indicator functions 

 
1

1 11 1 ( )
p

t
s X a  ,  

2
2 21 1 ( )

p

t
s X a  ,  

3
3 31 1 ( )

p

t
s X a  .Such conditions typically indicate high risk, 

although they may not yet correspond to an actual accident outcome. They therefore fall within the scope of early-

warning safety events. 

Gas concentration exceedance, sufficient oxygen availability, and abnormal temperature rise represent critical 

transitions of environmental factors beyond their stability boundaries, leading to a significant degradation of system 

safety. Let the emergent terminal safety event “gas explosion” be denoted as 1s , where 1s  . The occurrence of 

gas explosion is driven by the coupled effects of the three key environmental factors and can be expressed as a 

cross-scale emergence result, i.e., 
1 2 31 p p ps s s s   ,  

1 1 2 3
1 1 1 1

p p ps s s s   .  
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This example illustrates that factor-level instability states can interact and chain together, thereby giving rise 

to an emergent event at the event scale. Explicitly distinguishing factor-level instabilities and event-level outcomes 

provides a clearer basis for mechanism interpretation and quantitative risk assessment. 

3.2 The scale characteristics of SEs and environmental factors 

3.2.1 The correlations of environmental factors 

In production systems, environmental factors do not exist in isolation from each other but rather in a situation 

involving interdependence, influence and constraint. It is difficult to clarify the correlations among all 

environmental factors. Instead, breaking down the complex issue of environmental factors influencing an entire 

system into localized issues that are associated with specific SEs can serve as an effective strategy. By focusing on 

SEs, specialized models can be developed to deepen the understanding of the dynamic correlations among various 

environmental factors. Furthermore, this approach provides a structured and progressive method for enhancing the 

comprehension of complex systems. Notably, relevance refers to the interdependence between environmental 

factors. This dependence shows that a change in one environmental factor state may lead to a change in another 

environmental factor state, and vice versa, exhibiting a two-way characteristic. 

Generally, only a few critical environmental factors play decisive roles in the occurrence of SEs. Other 

environmental factors, though not directly causative, are intricately linked to these core factors, indirectly 

influencing SEs. For instance, gas outburst events are directly affected by the interplay among the coal structure, 

ground stress, and gas occurrence of coal seam [41]. Additionally, factors such as coal rigidity and drilling cutting 

weight also play a role in gas outbursts, albeit indirectly. These factors typically quantify and reflect the critical core 

factors. For instance, coal rigidity represents the physical and mechanical properties of coal structure, while drilling 

cutting weight indicates ground stress levels [42]. Therefore, the correlation mapping relationships of environmental 

factors can be subdivided by taking SEs as the research objects, the occurrence mechanism as guidance, and relevant 

research as the basis. On this basis, disaster-causing environmental factors, derived environmental factors, and 

measurable environmental factors (MEFs) are established. Their definitions are as follows. 

Definition 3. Disaster-causing environmental factors refer to the critical environmental elements that 

significantly affect and jointly contribute to shaping the occurrence, evolution, and spread patterns of SEs under 

specific conditions. 

Definition 4. Derived environmental factors refer to subenvironmental elements that act as indicators for 

characterizing disaster-causing environmental factors, the states of which are difficult to obtain directly without 

specific technical support. 

Definition 5. MEFs refer to those that can be quantitatively assessed and from which data or information can 

be directly captured using current technological means. 
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Let the set of disaster-causing environmental factors be  , the set of derived environmental factors be  , 

and the set of MEFs be , where  , ,    . Disaster-causing environmental factors play a fundamental and 

guiding role in mining derived environmental factors and MEFs. Due to the production environment and technology 

limitations, it is difficult to determine the states of some disaster-causing environmental factors. In this case, the 

derived environmental factors transmit and transform the state information of the disaster-causing environmental 

factors and MEFs. The MEFs provide reliable data for the study of SEs. Notably, the derived environmental factors 

and MEFs can be transformed into each other under the influence of different environmental and technical 

conditions. For example, when the production environment is equipped with sensors for specific derivative 

environmental factors, these derivative environmental factors can be measured and converted into measurable 

factors. In contrast, if no corresponding support can be provided by sensing technology, the derived environmental 

factors cannot be directly quantified and thus maintain their unmeasurable state. With the advancement of 

measurement technology and the application of sensors, derivative environmental factors that were originally 

difficult to measure directly will gradually be included in the measurable category. The relationships among the 

three types of feature are    ,    , and    , as shown in Fig. 2 

 
Fig. 2 Relationships between sets of environmental factors 

Fig. 3 illustrates the hierarchical associations of environmental factors, showing their bidirectional interactions. 

Environmental factors are connected both across different levels and within the same level. When the state of an 

environmental factor changes, this change can gradually influence the related environmental factors through their 

connections. As a result, the related environmental factors receive change information and update their states 

accordingly. The equation for the state transfer and aggregation process applied to associated environmental factors 

are shown in Eq. (2). 

 1 ( ( ), ( ( ))t t t
i i ig X v X e v   (2) 

where   is the state transfer and aggregation function, iv  is an MEF, 
1t

ig 
 is the state change information 

received by iv  at time t+1, ( )t
iX v  is the state of iv  at time t, ( )ie v  is the factor associated with iv , and 
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( ( ))t
iX e v  is the state of the environmental factor associated with iv  at time t. 

The state change information received at time t+1 is brought into Eq. (3) to update the state iv  at time t+1: 

 
1 1( ) ( ( ), )t t t

i i i i iX v X v g   (3) 

where   is the state update function and 
1( )t

i iX v
 is the state of iv  at time t+1. 

 
Fig. 3 Hierarchical correlations of environmental factors 

Based on the state transmission and update mechanism obeyed by associated environmental factors, it can be 

inferred that MEFs are fundamental for gathering complete state data related to the associated environmental factors. 

Therefore, the states of MEFs can represent the state information of disaster-causing environmental factors, thereby 

providing reliable data inputs for SE studies. 

3.2.2 Chain modeling between SEs 

The chain relationships of SEs consists of a directed complex network formed by multiple SEs and their 

evolutionary pathways. Within production systems, the occurrence of SEs is influenced by the state changes 

exhibited by various environmental factors, as depicted in Fig. 4. As these environmental factors approach and fall 

within the instability domain, the corresponding production system becomes inherently unstable, leading to the 

dynamic spread and propagation of SEs. The nature of this propagation further poses a substantial threat to the 

operational safety and stability of production systems. 

The link strengths between different SEs vary significantly, resulting in varied degrees of interconnection and 

diverse probabilities of neighboring SEs being triggered. Therefore, the occurrence of SEs is influenced not only by 

their inherent probabilities but also by the interconnections within the network of neighboring SEs, as depicted in 

Eq. (4). 

           0 , ,j j j j jP s P s P e s L e s s   (4) 

where  0 jP s  is the intrinsic probability of an SE js ,  jP s  is the occurrence probability of js ,  je s  

is the neighbor SE of js ,   jP e s  is the occurrence probability of the neighbor SE, L  is the link strength of 

the neighbor SE triggering js , and   is the probabilistic function for predicting the occurrence of the SE. 

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



 

 

In addition, shared environmental factors often underlie diverse SEs. Comprehensively analyzing multiple 

types of SEs can be valuable for facilitating the identification of SEs, as well as for identifying and controlling the 

critical environmental factors. 

 
Fig. 4 The chain relationships of SEs 

3.2.3 The cross-scale interactions between environmental factors and SEs 

Fig. 5 illustrates the cross-scale interactions between environmental factors and SEs. At the factor scale, 

environmental factors exhibit a high degree of interconnectivity, resulting in the dynamic transmission and 

continuous updating of state information. At the event scale, SEs rarely occur in isolation; instead, they often 

propagate in a sequential or cascading manner. Through cross-scale interactions and influences, dynamic nonlinear 

couplings among environmental factors accumulate and ultimately manifest in the occurrence of SEs. When an SE 

occurs, the states of the environmental factors often exhibit fluctuating upward or downward trends. However, the 

contributions of various environmental factors to SEs differ significantly. The variability in their contributions 

reflects the relative importance of different environmental factors to SEs and influences the accuracy of the output 

analysis results. Therefore, accurately capturing the dynamic state changes exhibited by environmental factors lays 

the cornerstone for elucidating the intricate cross-scale emergence processes of SEs. The degree of contribution is 

key to measuring the extent to which each environmental factor influences the occurrence of SEs. 
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Fig. 5 The cross-scale interactions between environmental factors and SEs 

For the set of SEs  , the corresponding set of disaster-causing environmental factors is  . A function 

representing the cross-scale impact of disaster-causing environmental factors on SEs is established, as shown in Eq. 

(5). 

  
1

m

i
i

X d


  
       

P β   (5) 

where id  is a disaster-causing environmental factor,  iX d  is the state of id ,   is the cross-scale 

interaction function, β  is the contribution matrix, and P  is the probability matrix for the occurrence of an SE. 

Due to production environment and technical condition limitations, obtaining the state change information of 

some disaster-causing environmental factors is difficult. Based on Eqs. (2)-(3), it can be inferred that MEFs can 

significantly reflect the state change information of disaster-causing environmental factors. Thus, MEFs can serve 

as a crucial data foundation for SE analyses. Moreover, constructing an inference mechanism for MEFs with respect 

to SEs also aids in analyzing SEs. 

Fig. 6 establishes the reasoning architecture of the MEFs for SEs. Let the set of MEFs be 

 1 2 3, , , , fv v v v   and the states of the MEFs be 1 2 3[ ( ), ( ), ( ), , ( )]fv v v v X X X X  . A mapping function 

from MEFs to SEs is established as : 2q  
. First, we capture the key information contained in the MEF data. 

Based on the data structures of   and  , a specific function ( ( ), ( ) )i jv vC X X   is constructed to capture 

the correlations among the MEFs. On this basis, we utilize the formula  ,I C  to highlight the key 
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information contained in the data. Second, the cross-scale mapping driven by the contributions of the MEFs to SEs 

is analyzed. A dimensionality reduction projection function  , ,EI β I   is established to map I  to the SEs. 

Here, EI  denotes the effective information extracted from I  to the SEs. Subsequently, the SEs are identified 

and assessed. The occurrence probability of the SEs is  P EI . Finally, in the SE feedback and optimization 

phase, the parameters and weights of the inference process are adjusted and optimized through gradient reversal. 

This series of inference steps aids in the optimal selection and adaptive matching of the MEFs, as well as the accurate 

identification of the SEs. 

 
Fig. 6 The reasoning architecture for mapping MEFs to SEs. 

4 Risk identification and assessment model for multitype SEs 

4.1 Problem description 

Let  1 2 3, , , , fv v v v   be a set of MEFs and 1 2{ , , , }ms s s   be a set of SEs. The SE identification and 

assessment task involves learning a function denoted as : 2q  
 from the training set 

samples{( , ) |1 }i i i n   , which contains samplesn  samples. For each sample ( , )i i  , 

1 2[ ( ), ( ), , ( )] f
i i i i fX v X v X v    represents the f-dimensional MEF input. Furthermore, 

     1 2[ , , , ] m
i i i i mY s Y s Y s    represents states of multitype SEs associated with i , which is encoded as 

a binary vector. If there exists an i  that leads to the occurrence of an SE js ,  i jY s  is 1; otherwise, it is 0. Let 

{ |1 }p unlearnedp n   denote the dataset of MEFs for which the corresponding SEs are unknown. This study aims 

to learn the function : 2q  
 that predicts the set of potential SEs p    to minimize the induced 

predictive error. The overall formulation and dataset definition for the SE identification and assessment task are 

summarized in Table 1. All notations and definitions are provided in the Supplementary Material (Table A1). 
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   
1

1
arg min ; ,

m

p pL q
m

   
  

  
    (6) 

where  L   is the loss function and    and   are model parameters. 
Table 1 Datasheet for SE identification and assessment tasks 

t   1Y s   2Y s     mY s  
1 X1(v1) X1(v2)   X1(vf) 0 1   1 

2 X2(v1) X2(v2)   X2(vf) 0 0   1 

                  

4.2 Overall framework 

The multitype SE risk identification and assessment model (RIAM) consists of four main modules, i.e., a 

feature embedding module for MEFs, a key information capture module for the MEFs, a cross-scale mapping 

module from the MEFs to SEs, and a risk identification and assessment module for the SEs, as shown in Fig. 7. Fig. 

8 illustrates the general framework of the model. 

 

Fig. 7 Module composition of the multitype SE risk identification and assessment model 

 
Fig. 8 The general framework of the RIAM 
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4.2.1 Feature embedding module for MEFs 
The MEFs originate from multiple sources with diverse units, resulting in scale inconsistency if directly used 

as model inputs. Therefore, the MEF state vector f  is normalized feature-wise to remove unit-dependent 

scale differences. Let 1 2[ , , , ] f
fX X X   . Each feature is standardized by z-score normalization: 

j j
j

j

X
X





 , yielding 1 2[ , , , ] f
fX X X     . Where j  and j  are computed from the training set only 

and then applied to the validation/test sets to avoid information leakage. 

After preprocessing normalization, a feature embedding module is designed to achieve a unified representation 

and effective feature extraction from heterogeneous inputs. Specifically, it applies linear transformation and Layer 

Normalization (LN) to project the normalized MEF vector into a unified latent space of dimension d. 

  0
hhLN W b＋   (7) 

Where lf d
h

W   and lf d
h

b   denote the feature embedding matrix and bias term, respectively. 

 LN   denotes the Layer Normalization operation, and the output 0 lf d  represents the feature embedding 

of each MEF in the d-dimensional latent space. 

4.2.2 Key information capture module for the MEFs 

The key information capture module is designed to model latent couplings among MEFs. It employs an 

adaptive mechanism to capture inter-factor dependencies and nonlinear interactions, thereby enabling the dynamic 

representation of critical risk information. It comprises Nx stacked layers, each involving correlation-weight learning 

and representation update, followed by residual and Layer Normalization refinements. 

Taking the MEF representation vector 1 ( 1, 2, , )k
xk N － as input, it is divided into u  parallel processing 

units. Each unit performs a linear transformation to learn inter-factor correlations and adaptively update the 

representations: 

  

 

1 2

3

1 1 2

11

max( )

( , , , )

( )

T
r rn

r

h

k u O

kk k

soft
d

concat

LN 

 




 


 

U

U U U W

 


 

 

，

，＋

 




  

 (8) 

Where ( 1, 2, , )n n uU   denotes the output of the n-th processing unit, 
1 2 3
, , hf d

r r r
      ( /h ld d u ) 

represents the linearly transformed representation of the input 1k－ , ( )concat   denotes the concatenation of the 

results of each processing unit, and l ld dO W   is a learnable parameter matrix. 

   To better extract salient patterns and capture complex inter-factor dependencies, a nonlinear transformation 

is applied, formulated as: 

 
4 4 5 5

(2) ( )k k
r r r rGelu  W b W b，   (9) 
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 2( )kk kLN ，
＋    (10) 

Where  Gelu   is the activation function, 
4rW  and 

5r
W  are the weight matrices and 

4rb  and 
5r

b  are the 

deviations of the linear transformation, and 
1, ( 1,2, , )lf dk k

xk N －     denote the outputs of the (k-1)-th 

and k-th layers of the key information capture module. 

4.2.3 Cross-scale mapping module from the MEFs to SEs 

Different safety events rely on different subsets of environmental factors. To capture such event-specific 

dependencies, a cross-scale mapping module is developed to quantify the contribution of each measurable factor to 

each event and to map environmental states into event-specific risk representations. For each SE, a learnable vector 

lm dQ   is defined. By constructing weighted interactions between MEFs and SEs, the module establishes a 

cross-scale mapping that performs directional aggregation of environmental information toward each event: 

 
 

max
x

x

TN

l

N

soft
d

        
 

β

βS

Q 



 (11) 

Where m fβ   denotes the contribution-weight distribution of MEFs to SEs, xN  is the Nx-th layer 

output of the key information capture module, and lm dS   represents the aggregated feature vector of SEs 

obtained from all environmental-state information. 

4.2.4 Risk identification and assessment module for SEs 

For multi-type SE discrimination, the module employs independent classification heads for each event type 

with parallel outputs, allowing the model to learn event-specific discriminative features in distinct subspaces. 

For each event: 

 
ˆ

ˆ( )

, 1, 2, ,j j j

j j

j

Sigmoid

j m



P W

P

bS

P

＋
 (12) 

The overall output for multi-type safety events can be expressed as:  1 2, , , mP P P P . A reference threshold 

(0 1)    yields the final decisions: 

 
1

ˆ
0

ij
ij

ij





  

P
Y

P
 (13) 

Where sigmoid  is an activation function, jP  is the predicted probability, and îjY  is the risk identification 

and assessment result of an SE. 

4.3 Loss function 

Given the concurrent and interdependent nature of safety events, the RIAM model employs the 

BCEWithLogitsLoss function to compute the multi-label prediction error and the Adam optimizer to update all 
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trainable parameters during training.  

          
samples

1
, log 1 log 1 minposL

n m
   

P W P P － ＋ － －    (14) 

Where samplesn  denotes the total number of samples, m represents the total number of safety event types, and 

m
pos W   is the weight vector assigned to each safety event type. 

5 Case study 

Coal and gas outburst is a typical high-disaster-risk scenario in deep coal mining operations. Its causation is 

complex and highly destructive, often triggered by the combined effects of multiple geological and environmental 

factors. In practical operations, several representative abnormal conditions—such as excessive initial gas velocity 

in boreholes and abnormal gas desorption indices—are often regarded as precursor signals of disaster events. 

Although these indicators do not constitute terminal events themselves, their over-threshold states usually indicate 

that the system is approaching an unstable and hazardous condition, thus possessing significant value for risk 

identification and intervention. When multiple factors simultaneously enter the instability domain, the overall risk 

level rises sharply, and an outburst may even be triggered. Therefore, simultaneously predicting both the occurrence 

of catastrophic events and their preceding high-risk states is of great significance for the comprehensive judgment 

capability of early warning systems. 

To verify the performance and feasibility of the RIAM model in identifying different types of SEs under multi-

factor coupling conditions, this section employs multi-type SEs as output variables. Early warning events are used 

to identify high-risk precursor signals, while the coal and gas outburst serves as the terminal SE. Through joint 

learning, potential risks can be identified and corresponding preventive measures can be implemented. Let 1s  

represents the coal and gas outburst, 2s  denotes the initial velocity of borehole gas emission that exceeds the 

imposed limit, and 3s  indicates the gas adsorption index of drilling cuttings exceeding the limit. The set of SEs to 

be studied is  1 2 3, ,s s s . 

5.1 Determination of MEFs 

The model input consists of time-series data of MEFs obtained from coal mine production environments. The 

hypothesis of integrated action identifies the disaster-causing factors of coal and gas outbursts: coal structure, 

ground stress, and gas occurrence of coal seam. However, the ability to obtain data on these disaster-causing 

environmental factors is influenced by the production environment and technical limitations. Table 2 presents the 

correlation mappings of the environmental factors derived from established causal mechanisms, laboratory 

experiments, research studies, and field observations. The identified MEFs include the initial velocity of borehole 

gas emission (v1), drilling cutting weight (v2), gas adsorption index of drilling cuttings (v3), soft coal seam thickness 

(v4), EMR intensity (v5), and EMR pulses (v6). 
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Table 2 The correlation mappings of environmental factors 
MEF Reflected disaster-causing environmental factors  References 

v1 coal structure, gas occurrence of coal seam Tang et al.[43]; Zhang et al.[44] 
v2 ground stress, coal structure Li et al.[45]; Wang et al.[46] 
v3 coal structure, gas occurrence of coal seam Xue et al.[47]; Wang et al.[48] 
v4 coal structure Lama et al.[49]; Zhai et al.[50] 
v5 coal structure, ground stress Wang et al.[51]; Qiu et al.[52] 
v6 coal structure¸ ground stress Qiao et al.[53]; Zhang et al.[54] 

5.2 Data source 

The dataset utilized in this study was collected from field measurements conducted at the Jiulishan Coal Mine, 

located in Henan Province, China [45]. Owing to the complex geological structure and dynamic gas environment, 

this mine provides a representative underground scenario for investigating the coupling effects of multiple 

environmental factors (MEFs) and the evolution of safety events (SEs) during tunneling operations. However, 

effective labeled samples are limited due to the sporadic and unpredictable nature of gas outburst-related events and 

their precursors, which may lead to insufficient coverage of rare conditions and increase the risk of model overfitting. 

To address sample scarcity while maintaining the physical consistency of monitoring signals, a hybrid data 

augmentation strategy was adopted. The strategy consists of (i) perturbation-based augmentation to emulate sensor 

uncertainty and operational fluctuations, and (ii) conditional synthesis to expand feature-consistent samples under 

label constraints. Specifically, all raw features were first normalized into the range [0, 1] using Min–Max scaling. 

Then, Gaussian noise [55] injection was performed in the normalized feature space: 

  2~ 0x x    ＋ ， ,  (15) 

Where   was set to 0.03, and the perturbed values were clipped to [0, 1] to avoid invalid ranges. This 

perturbation strategy increases sample diversity while maintaining local continuity of MEFs, and improves model 

robustness to unavoidable sensor-level disturbances in underground environments. 

To further capture nonlinear dependency structures among MEFs and enhance minority-condition coverage, a 

conditional generative adversarial network (CGAN) was employed for label-conditional synthesis. The generator 

maps latent noise  ~ 0z I ,  into synthetic feature vectors conditioned on binary labels (safety status vs. gas 

outburst), while the discriminator distinguishes real from synthetic samples under the same conditioning mechanism. 

The CGAN was trained using the Adam optimizer (learning rate 0.0002, betas = (0.5,0.999)) for 100 epochs with 

batch size 32 and latent dimension 6zd  . Synthetic samples were generated separately for each label to obtain a 

more balanced training distribution across the two classes.  

Importantly, to strictly avoid data leakage, the entire augmentation process was conducted after cross-

validation splitting and only within the training subset of each fold. That is, for each fold, the dataset was first split 

into training and validation subsets; augmentation was applied exclusively to the training subset, while the validation 

subset remained unchanged and was never used in CGAN training or sample generation. 
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Fig. 9 compares the Kernel Density Estimation (KDE) distributions of six key precursor variables between the 

original and augmented datasets. Overall, the density curves exhibit a high degree of alignment in peak locations 

and distributional shapes, indicating that the augmentation process preserves the essential statistical characteristics 

of the measured monitoring data. Meanwhile, slight enrichment in low-frequency regions can be observed for some 

variables, suggesting that the introduced perturbations and CGAN-based synthesis provide additional sample 

diversity while remaining consistent with the underlying data manifold. 

In addition, t-distributed stochastic neighbor embedding (t-SNE) [56] was employed to project the combined 

dataset into a low-dimensional space for visualization, where local neighborhood relations are approximately 

preserved. As shown in Fig. 10, augmented samples remain coherent with the original data manifold and maintain 

class-level separability, supporting that the generated samples are feature-consistent and label-conditional. 

It should be emphasized that data augmentation in this work is introduced as a practical measure to improve 

training stability and robustness under sample scarcity. 

 
Fig. 9 Kernel density distributions of the augmented and original data 

 
Fig. 10 Reduced-dimensional distribution of the t-SNE composite data 
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5.3 Performance metrics 

In a SE risk assessment task, traditional methods for evaluating single SEs often rely heavily on accuracy. This 

metric is used as the primary evaluation criterion to gauge the precision of models in terms of accurately identifying 

specific SEs. However, this singular evaluation strategy is inadequate for the comprehensive risk identification and 

assessment of multiple types of SEs. This limitation becomes more pronounced under label imbalance, which is 

evident in our dataset: the positive rates of s1 and s3 are 20.55% and 19.18%, respectively, whereas s2 is an extremely 

rare label with only 6.85% positive samples. Under these conditions, accuracy can be misleading, since a model 

may obtain a high score by predominantly predicting negative labels while failing to detect rare but critical events. 

Moreover, in multi-type SE classification settings, it is essential to examine not only the overall correctness but also 

the patterns of misclassification and their potential inter-label dependencies, as these directly affect the reliability 

of risk assessment. Therefore, three complementary metrics—accuracy, Hamming loss, and ranking loss—are 

adopted to provide a more comprehensive evaluation of model performance under imbalanced multi-type SE 

scenarios. 

Accuracy is used as an overall metric to assess the overall classification performance of the model. The value 

domain of the accuracy rate is [0,1]. Its formula is shown in Eq. (16). 

  
samples -1

samples 0

1ˆ ˆccuracy , 1( )
n

i

A
n 

      (16) 

Where {0,1} samplesn m  and ˆ {0,1} samplesn m  represent the true and predicted results for each sample, 

respectively. 

The Hamming loss (Hloss) comprehensively considers the misclassification of SEs, i.e., the degree of 

inconsistency between the predicted and actual results for each SE. This metric provides insight into the 

classification effectiveness of the tested model. The value domain of the Hamming loss is [0, 1]. 

  
samples 1

samples 0

1 1ˆ ˆ,
n

i

Hloss
n m





      (17) 

Where   represents the symmetry difference between two sets, and m is the total number of SEs. 

The ranking loss (Rloss) is used to assess the accuracy of the model when ranking the severity of SE 

occurrences. The value domain of the ranking loss is [0, 1]. 

   
samples 1

samples 0 0 0

1 1
, : , 1, 0
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ik il ik il
i ii

Rloss k l
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



   
 P P  

 
 (18) 

5.4 Results and discussion 

Most existing research focuses on analyzing individual events using models such as support vector machines 
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(SVMs), Bayesian methods, and logistic regression (LR). However, relatively few studies have developed 

comprehensive models for analyzing multitype SEs. This section presents the results of performance analysis 

experiments conducted on the RIAM for both single-type and multitype SEs. The first experiment evaluates the 

performance of the RIAM in terms of assessing individual SE to validate the effectiveness of the model in isolated 

event scenarios. The second experiment simultaneously considers multiple types of SEs to investigate the 

applicability of the model to complex and diverse contexts. To ensure a fair and unbiased evaluation, all models 

were trained and tested under the same 10-fold cross-validation protocol, as illustrated in Fig. 11. 

 
Fig. 11 Tenfold cross-validation process 

5.4.1 Comparative analysis of the individual SEs of 4 models 

The SVM, LR, and naive Bayes (NB) methods are selected as baseline models to assess the risk of SEs. SVM 

is a binary classification model that efficiently classifies data by maximizing the margin between the decision 

boundary and support vectors [57]. LR is a probability-based classification method that uses a linear combination 

of the input features and maps the output values to a probability space using a logistic function [45]. NB, based on 

Bayes' theorem and the assumption of conditional independence concerning the features in different classes, offers 

a simple yet effective classification approach [58]. The key parameters of each model are detailed in Table 3. 
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Table 3 The hyperparameters of the proposed method and the baselines 
Model Hyperparameters Value 

SVM 
C 1 

Kernel Linear 
max_iter 10000000 

LR 
Penalty L2 

C 1 
Solver lbfgs 

NB var_smoothing 1e-9 

RIAM_Single 

Learning rate 0.001 
Batch size 32 

dl 64 
Max_epochs 200 

Optimizer Adam 
Dropout rate 0.1 

Input dimensions 6 
Output dimensions 1 
Activation function Sigmoid 

U 2 
Nx 2 

To comprehensively evaluate the performance of the RIAM model in identifying single safety events (s1–s3), 

this study reports the average performance (Mean±Std) of each model under a 10-fold cross-validation.  

Furthermore, statistical significance tests are introduced to verify whether the performance improvements are 

reliable and reproducible. Since the test results of different models on the same fold form naturally paired samples 

in the 10-fold cross-validation, the Wilcoxon signed-rank test is used to assess the significance of the differences 

between RIAM and each baseline model (LR, NB, SVM). This test does not rely on the normality assumption of 

the differences and is suitable for scenarios with small sample sizes (n=10) and potentially skewed performance 

distributions. It evaluates whether the median difference in model performance is significantly greater than zero. 

To avoid inflation of Type I errors due to multiple comparisons, Holm-Bonferroni correction is applied to 

adjust the p-values, and the Holm-adjusted p-value (p_adj) is used as the criterion for statistical significance. In 

addition to statistical significance, this study further reports two effect size metrics to avoid situations where a 

“significant p-value” might correspond to negligible improvements: 

Cohen’s dz: This is a standardized effect size for paired tests, defined as the mean difference in performance 

across folds divided by the standard deviation of the differences. It measures the “stability and strength” of the 

improvement. 

Cliff’s δ: A non-parametric effect size that is independent of the distribution, it measures the degree of 

"dominance" of RIAM over the baseline in fold-level performance. When δ approaches 1, it indicates that RIAM 

outperforms the comparison model on nearly every fold. 

To maintain consistency in interpreting effect sizes, standard thresholds are used: for Cohen’s dz, a dz ≥ 0.8 

is generally considered a large effect, while for Cliff’ s δ, δ > 0.474 is typically interpreted as a large effect [59,60]. 

The results show that RIAM consistently achieves dz values well above 0.8, with δ values close to 1, indicating that 

the performance improvements not only have statistical significance but also exhibit high consistency and stability 
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at the fold level. Therefore, categorizing the effect sizes as large is both reasonable and conservative. 

For s1, RIAM-Single achieves 0.9890±0.0056, outperforming LR (0.9313±0.0134), NB (0.9042±0.0105), and 

SVM (0.9198±0.0058), with gains of Δ=+0.0578, +0.0848, and +0.0693, respectively. Wilcoxon signed-rank tests 

with Holm correction confirm statistically significant differences between RIAM and each baseline model, with 

large effects, indicating highly reproducible improvements. 

For s2, RIAM-Single obtains 0.9710±0.0113, with the most pronounced improvement over LR (Δ=+0.1322), 

while also exceeding NB and SVM by Δ=+0.0390 and Δ=+0.0530, respectively. All comparisons remain significant 

after Holm adjustment (p_adj≤0.00293) with large effect sizes, suggesting that RIAM-Single provides more robust 

discrimination for this rare label. 

For s3, RIAM-Single reaches 0.9908±0.0044, significantly outperforming LR and NB (p_adj=0.01855). 

Although the margin over SVM is smaller (Δ=+0.0071), it remains statistically significant (p_adj=0.01855) with a 

medium effect size (dz=0.789; δ=0.46), indicating that SVM is already competitive on this label while RIAM-Single 

still provides stable gains. 

Table 4 Statistical significance testing of RIAM against baseline models (10-fold CV) 
label Comparison RIAM 

(Mean±Std) 
Baseline 

(Mean±Std) 
ΔMean Holm-adjusted p Cohen’s dz Cliff’s 

δ 
Effect 

s1 RIAM vs LR 0.9890±0.0056 0.9313±0.0134 0.0578 0.00293 (**) 4.74 1 large 
s1 RIAM vs NB 0.9890±0.0056 0.9042±0.0105 0.0848 0.00195 (**) 9.008 1 large 
s1 RIAM vs SVM 0.9890±0.0056 0.9198±0.0058 0.0693 0.00098 (***) 8.838 1 large 
s2 RIAM vs LR 0.9710±0.0113 0.8388±0.0274 0.1322 0.00293 (**) 4.5 1 large 
s2 RIAM vs NB 0.9710±0.0113 0.9320±0.0114 0.039 0.00195 (**) 3.479 0.98 large 
s2 RIAM vs SVM 0.9710±0.0113 0.9180±0.0011 0.053 0.00098 (***) 4.617 1 large 
s3 RIAM vs LR 0.9908±0.0044 0.9376±0.0108 0.0532 0.01855 (*) 3.905 1 large 
s3 RIAM vs NB 0.9908±0.0044 0.8811±0.0107 0.1098 0.01855 (*) 9.595 1 large 
s3 RIAM vs SVM 0.9908±0.0044 0.9837±0.0086 0.0071 0.01855 (*) 0.789 0.46 medium 

Beyond accuracy, Fig. 12 illustrates the overall performance from an accuracy–deviation trade-off perspective. 

RIAM-Single consistently falls into a favorable region with high accuracy and low-to-moderate deviation, 

indicating that the performance improvement is achieved without introducing excessive fold-to-fold variability. By 

contrast, baseline models either suffer from reduced accuracy or exhibit larger deviation fluctuations across labels, 

implying higher sensitivity to data splits and weaker robustness. Taken together, Table 4 and Fig. 12 provide strong 

evidence that RIAM-Single delivers statistically significant, reproducible, and robust improvements in individual 

SE identification. 
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Fig. 12 Accuracy and deviation comparison of SE risk assessment across models 

5.4.2 Comprehensive risk analysis of multiple types of SEs 

In practical coal mine safety scenarios, multiple types of SEs may co-occur under the same environmental 

conditions and exhibit coupled behaviors. However, many conventional risk assessment approaches implicitly 

assume mutual exclusivity among different SE types, which limits their applicability in real-world underground 

safety systems. To address this issue, the comprehensive risk analysis problem is formulated as a multi-label 

classification task, where each sample may be associated with multiple SE labels, enabling concurrent identification 

and joint evaluation of heterogeneous SE risks. 

To validate the effectiveness of RIAM_Multi in comprehensive multi-type SE identification, four 

representative multi-label baselines are selected:  

Classifier Chain (CC): a classic multi-label strategy that models label dependencies sequentially. While it 

captures conditional correlations across labels, it is sensitive to chain order and may suffer from error propagation. 

Extremely Randomized Trees (ExtraTrees): an ensemble-based nonlinear classifier with strong robustness and 

fitting capability, serving as a competitive traditional machine learning baseline. 

Multi-gate Mixture-of-Experts (MMOE): a typical multi-task/multi-label architecture that combines shared 

experts and gated task-specific fusion, widely adopted for multi-label prediction. 

Multi-layer Perceptron (MLP): a standard deep feed-forward network used to evaluate the gain brought by 

nonlinear representation learning and provide a lightweight deep learning baseline. 

These baselines cover major paradigms in multi-label learning, including sequential label-dependency 

modeling, ensemble-based nonlinear learning, mixture-of-experts architectures, and standard deep feed-forward 

modeling. The compared models and hyperparameter settings are summarized in Table 5. All methods were trained 

and evaluated under the same cross-validation protocol and data preprocessing pipeline to ensure fair comparison. 
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Table 5 Compared models and hyperparameter settings for multi-label SE identification. 

Model Hyperparameters Value 

CC 

C 1 

Solver liblinear 

Class weight balanced 

Max_iter 2000 

Chain order random (order=None) 

ExtraTrees 

n_estimators 500 

max_depth None 

min_samples_split 2 

min_samples_leaf 1 

max_features sqrt 

MMoE 

Learning rate 0.001 

Batch size 32 

Max_epochs 100 

Optimizer Adam 

Dropout 0.1 

Num experts 4 

Expert out dim 32 

Expert hidden dim 64 

Tower hidden dim 64 

Activation functions ReLU (experts/towers), Sigmoid (output) 

MLP 

Learning rate 0.001 

Batch size 64 

Hidden dim 64 

Max_epochs 150 

Optimizer Adam 

Dropout 0.2 

Activation functions GELU (backbone), Sigmoid (output) 

RIAM_Multi 

Learning rate 0.001 

Batch size 32 

dl 64 

Max_epochs 200 

Optimizer Adam 

Dropout 0.1 

Input dimensions 6 

Output dimensions 3 

Activation functions Sigmoid 

U 2 

Nx 2 

Fig. 13 compares the fold-wise performance distributions of the compared models under 10-fold cross-
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validation, including accuracy, Hamming loss, and ranking loss. RIAM exhibits consistently superior and stable 

performance, achieving the highest accuracy and simultaneously yielding the lowest Hamming loss, while 

maintaining a near-zero ranking loss. The compact violin distributions further indicate reduced inter-fold variance, 

suggesting enhanced generalization and reliability under data-scarce and imbalanced SE scenarios. In particular, the 

near-zero ranking loss indicates that RIAM can provide reliable risk ordering, which is critical for prioritizing early-

warning responses when multiple SEs co-occur. In contrast, CC presents noticeable performance degradation with 

larger fluctuations, while ExtraTrees, MMOE, and MLP remain competitive but are overall outperformed by RIAM. 

 
Fig. 13 Performance distribution comparison of multi-label SE risk identification under 10-fold cross-validation. 

As summarized in Table 6, RIAM_Multi achieves the best overall performance across the SE set, obtaining an 

accuracy of 0.9554±0.0129 and the lowest Hamming loss of 0.0162±0.0049. Compared with CC, ExtraTrees, 

MMOE, and MLP, RIAM_Multi yields consistent improvements in accuracy (Δ=+0.1459, +0.0690, +0.0519, and 

+0.0260, respectively), while simultaneously reducing per-label misclassification rate. These results confirm that 

RIAM_Multi is capable of accurately identifying co-occurring SEs in an imbalanced multi-event setting. 

To further ensure that the observed improvements are not attributable to random data splits, paired Wilcoxon 

signed-rank tests with Holm correction were conducted on the two primary metrics (accuracy and Hamming loss). 

Statistically significant improvements are observed across all comparisons (p_adj ≤ 0.0049). Moreover, the 

improvements are accompanied by large effect sizes (Cohen’s dz ≥ 1.14, Cliff’s δ ≥ 0.83), indicating that RIAM not 

only improves average performance but also maintains consistent superiority across folds. Notably, δ values 

approaching 1.0 suggest that RIAM outperforms competing methods in nearly all folds, demonstrating strong 

robustness under co-occurring and imbalanced SE conditions. 
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Table 6 Performance comparison between RIAM and baseline models (10-fold cross-validation). 

Metric Comparison 
RIAM 

(Mean±Std) 

Baseline 

(Mean±Std) 
ΔMean Holm-adj. p Cohen’s dz Cliff’s δ Effect

Accuracy 

(+) 

RIAM vs Classifier Chain 0.9554±0.0129 0.8095±0.0185 0.1459 0.0039(**) 6.9715 1 Large 

RIAM vs ExtraTrees 0.9554±0.0129 0.8864±0.0101 0.069 0.0039(**) 5.4329 1 Large 

RIAM vs MMOE 0.9554±0.0129 0.9035±0.0141 0.0519 0.0039(**) 3.7383 1 Large 

RIAM vs MLP 0.9554±0.0129 0.9295±0.0174 0.026 0.0049(**) 1.142 0.83 Large 

Hloss (-) 

RIAM vs Classifier Chain 0.0162±0.0049 0.0772±0.0094 -0.061 0.0039(**) 6.3099 1 Large 

RIAM vs ExtraTrees 0.0162±0.0049 0.0450±0.0057 -0.0288 0.0039(**) 4.7617 1 Large 

RIAM vs MMOE 0.0162±0.0049 0.0352±0.0054 -0.019 0.0039(**) 3.2565 1 Large 

RIAM vs MLP 0.0162±0.0049 0.0263±0.0059 -0.0101 0.0049(**) 1.1945 0.83 Large 

To evaluate the reliability of RIAM_Multi at the level of individual SE types, the confusion matrices for each 

SE are further reported in Fig. 14. A clear dominance of diagonal entries can be observed, indicating high agreement 

between the predicted labels and ground-truth outcomes. This result suggests that RIAM_Multi preserves stable 

discriminative capability for each SE type, even under multi-label co-occurrence conditions. 

 

Fig. 14 The confusion matrix produced by the RIAM for each SE classification task 

Overall, RIAM achieves improved accuracy in risk identification and assessment tasks, while providing a 

comprehensive evaluation for multiple SE types under co-occurrence conditions. The advantages of RIAM 

primarily originate from two aspects. First, the model explicitly considers the correlations among multiple 

environmental factors (MEFs), which helps capture coupled risk patterns in underground environments. Second, 

RIAM differentiates the contributions of MEFs to SEs, enabling a more faithful representation of factor-driven 

mechanisms and improving the interpretability of identification outcomes. In addition, RIAM exhibits limited 

dependence on specific production conditions (e.g., ventilation modes), demonstrating robustness in similar 
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engineering contexts and supporting its applicability and generalization in real-world coal mine scenarios. 

5.4.3 Interpretability analysis 

The proposed model demonstrates high stability and reliability in the integrated identification of multiple SEs. 

This performance can be largely attributed to its strong interpretability, which facilitates understanding of internal 

mechanisms and integration of key information related to SEs. The interpretability analysis is conducted from two 

complementary perspectives: 

(1) Correlation between MEFs 

By modeling the correlations among MEFs, the proposed model identifies latent coupling relationships and 

synergistic patterns across multiple data sources. Specifically, the key information capture module learns inter-factor 

interactions through correlation-weight learning (Eq. (8)), resulting in informative MEF embeddings. Let 

x lN f d   denote the Nx-th layer output of the key information capture module, where x lN d
i    represents 

the embedding vector of the i-th MEF. To visualize the learned dependency structure, the MEF correlation matrix 

is computed based on the absolute cosine similarity between MEF embeddings: 

 
ˆ
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x x

x x

N N
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


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 
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As illustrated in Fig.15, the resulting correlation matrix reveals distinct interrelationships among environmental 

parameters, exhibiting clear variations in coupling strengths across different MEFs. Overall, these results 

demonstrate that the proposed model can effectively uncover complex multi-factor dependency structures and 

coevolutionary patterns within the mine environment, providing interpretability support for subsequent MEF–SE 

contribution analysis. 

 
Fig. 15 Inter-factor Correlation Matrix among MEFs 
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(2) Contribution of MEFs to SEs 

To further interpret how different MEFs contribute to the occurrence of multiple SEs, the MEF-SE mapping 

weights learned by the cross-scale mapping module are analyzed. Specifically, the module constructs an event-

aware contribution matrix m fβ  , where m and f denote the number of SE types and MEFs, respectively. Each 

element jkβ  quantifies the relative contribution of the j-th MEF to the k-th safety event. The computation of β  

follows Eq. (11). It is row-normalized by design, satisfying: 

 
1

1, 1, 2, ,
f

jk
j

k m


  β   (20) 

Different SEs correspond to distinct coupling pathways among MEFs. To characterize such differences, the 

cross-scale mapping module provides event-specific contribution distributions, thereby enabling differentiated 

interpretation for each event type. The resulting contribution degrees are shown in Figs. 16-18. For 1s , the 

contribution ranking of MEFs is: 31 51 61 41 41 11    β β β β β β . For 2s , the contribution ranking is: 

12 52 62 42 22 32    β β β β β β  . For 3s , the contribution ranking is: 33 23 43 53 13 63    β β β β β β . These results 

verify the model’s capability for differentiated identification within a multi-event integrated recognition framework, 

indicating that the model can effectively separate the characteristic representations of different SEs. 

 

Fig. 16 MEFs contribution Map for s1 
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Fig. 17 MEFs contribution Map for s2 

 
Fig. 18 MEFs contribution Map for s3 

The quantified contribution scores are further used to dynamically weight MEF feature representations, 

enabling the model to emphasize influential factors while reducing the impact of less relevant ones. This mechanism 

allows the model to achieve differentiated identification of multiple SEs and to prioritize key influencing factors. 

The model’s interpretability improves prediction accuracy, strengthens the utilization of critical information, and 

enhances the stability, reliability, and transparency of decision-making. 

6 Conclusions 

In this study, a theoretical model based on the occurrence mechanism of safety events (SEs) is used as a 

fundamental framework and is deeply integrated with the data-driven risk identification and analysis model (RIAM), 
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to establish a theoretically and practically integrated analysis model. At the theoretical level, a cross-scale emergent 

mechanism for mapping environmental factors to SEs is established. Accordingly, a data-driven RIAM is 

constructed. Thus, an intelligent SE analysis model is proposed, providing causative tracing, environmental factor 

preference identification, and comprehensive analytical capability. The main conclusions are as follows. 

① SEs demonstrate cross-level and cross-scale emergence due to the nonlinear coupling of environmental 

factors. At the factor scale, the states of the associated environmental factors exhibit dynamic, interactive influences 

and updating mechanisms. As the underlying environmental factors that can be obtained, measurable environmental 

factors (MEFs) provide reliable data support for SE analysis tasks. At the event scale, SEs interact in a dynamic 

chain, intertwining and superimposing on one another. With respect to the cross-scale emergence mechanism for 

mapping MEFs to SEs, the contributions of MEFs to SEs vary. This variation not only enables the identification of 

the key environmental factors but also affects the precision of SE analyses. 

② The proposed RIAM is grounded in theoretical research and can comprehensively identify and evaluate 

multitype SE risks. Compared to LR, SVM, and NB, the RIAM significantly enhances the accuracy of its SE 

analysis results while ensuring high risk analysis accuracy on an SE set. Moreover, the interpretability of the model 

allows for learning the contributions of the MEFs to the SEs online, enhancing its practical applicability in dynamic 

environments. 

The theoretical model and the mathematical risk analysis model constructed in this study form a 

complementary analytical framework. However, this study has several limitations. Although the RIAM possesses 

certain self-learning capabilities, its performance is highly dependent on the quality and quantity of the available 

data. When the input data are incomplete or insufficient, the accuracy of the analysis results may be adversely 

affected. To address this limitation, future research should consider integrating prior SE link relationship knowledge 

as auxiliary information into the RIAM. This approach can provide additional guidance and constraints for the 

model, thereby partially mitigating the issues related to insufficient or poor-quality data. 
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