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Risk identification and assessment for multitype safety events

under the coupling of environmental factors

Abstract: In high-risk industrial settings, the proliferation of sensor data provides crucial support for fundamental
research on safety events (SEs) and for precise risk analysis. However, existing data-driven methods struggle to
reveal the nonlinear couplings among multiple factors and lack a systematic framework to explain how these factors
jointly contribute to different types of SEs. To address these limitations, this study proposes a theory—data integrated
model for multitype SE risk identification and assessment. From a cross-scale emergence perspective, the study
elucidates that SEs arise from a chain-evolution process driven by the nonlinear coupling of diverse environmental
factors and constructs a theoretical framework describing hierarchical factor associations and cross-scale
interactions. Building upon this theoretical foundation, a data-driven risk identification and assessment model
(RIAM) is established. This model quantifies the contributions of measurable environmental factors (MEFs) that
significantly influence SEs through online learning. Experimental results demonstrate that the proposed model
effectively captures the cumulative risk effects arising from multi-factor coupling, thereby enhancing both event
identification accuracy and model interpretability. This study provides a novel perspective and methodological
foundation for SE prediction and integrated prevention in complex industrial environments.

Keywords: safety events; environmental factors; contribution; cross-scale emergence; risk assessment;
interpretability

1 Introduction

In complex production systems, heterogeneous safety events (SEs) often co-occur and interact, with their
emergence shaped by the nonlinear coupling and dynamic evolution of multiple environmental factors. A
comprehensive investigation of inter-factor interactions and inter-event coupling is therefore pivotal for accurate
SE identification and early-warning prediction [1]. With the advent of big-data technologies, multi-source
environmental datasets have opened new avenues for the study of SEs, while simultaneously posing new challenges
to conventional analytical approaches.

Safety theory models provide the theoretical foundation of the logical relations among factors in production
systems and the mechanisms by which events are triggered. Constrained by prevailing technological conditions,
traditional models often rely on limited samples and simplified assumptions [2,3]. These models typically adhere to
established paradigms and interpret causal mechanisms from a static, qualitative standpoint. Consequently, they
remain inadequate for characterizing inter-factor interactions and nonlinear coupling mechanisms in complex

systems when confronted with high-dimensional, dynamic, and multi-source environmental data [4]. Therefore, it



is essential to reframe safety theory from a new perspective that integrates systemic principles with data-driven
intelligence and captures the dynamic evolution of events in complex production systems.

The introduction of data has provided new paradigms and methodological foundations for theoretical research
in safety science. Scholars have attempted to model the causal mechanisms and evolutionary processes of SEs using
big data analytics. For instance, Huang et al. [2], Wang et al. [5,6], and Jin et al. [7,8] proposed big data—driven
frameworks for SE analysis, opening new perspectives for studying safety mechanisms in complex systems.
Nevertheless, current big data—based theories still fall short of elucidating how heterogeneous factors jointly
contribute to SE occurrence. One key reason is that many existing studies continue to treat risk factors as isolated
variables under static settings, thereby overlooking interdependencies among multiple threats and the influence of
dynamic response mechanisms [9]. This limitation constrains both the understanding of the intrinsic mechanisms
of SEs and the effective utilization of factor state data. In fact, the evolution of SEs essentially results from the
complex interactions among multiple factors. These factors continuously evolve across spatial and temporal
dimensions, and their state changes collectively drive the occurrence and evolution of SEs. Therefore, it is necessary
to further explore the interrelationships among these factors and their underlying causal mechanisms influencing
SEs, to better provide theoretical explanations and modeling pathways for nonlinear safety phenomena in complex
systems.

Similarly, the advancement of big data technoiogies has enabled the development of more refined and accurate
risk assessment models [10]. In complex production systems, different types of SEs often overlap and transform,
exhibiting coupling-induced disaster evolution characteristics [11,12]. Therefore, these SEs may share similar causal
factors and underlying principles. However, existing risk assessment methods are generally developed for individual
SEs in isolation [10,13,14]. Although such methods can perform risk analysis for specific SEs, they often fail to
account for the coupling effects among multiple factors and SEs. Consequently, their adaptability to complex
production environments remains limited. Moreover, such methods are often constrained to specific scenarios or
event types, which hinders the effective prevention and control of key influencing factors. To overcome these
limitations, it is necessary to fully leverage data-driven analytical approaches for comprehensive and systematic
data integration and analysis. To this end, deepening the understanding of the coupling relationships between factors
and utilizing these interconnections to construct an effective risk analysis model is important. Such a model is crucial
for automatically optimizing factors and for identifying and assessing SEs.

In summary, data have become an effective means to uncover the underlying mechanisms of SEs and are
increasingly demonstrating their core value in SE modeling. This study proposes an integrated risk analysis model
combining theoretical analysis and data-driven approaches for SEs. The model establishes a mechanism for the

cross-scale interactions between environmental factors and SEs. Focusing on cross-scale interactions, an



environmental factor correlation representation model is proposed, which establishes measurable environmental
factors (MEFs) that are related to SEs. The dynamic evolution trends of SEs over time are driven by the coupled
interactions of various environmental factors. Based on the above theory, a data-driven model for identifying and
assessing the risks of multiple types of SEs is established. This results in a new SE analysis model characterized by
causative tracing, factor prioritization, and comprehensive warning. Finally, considering the complexity, dynamics,
and frequent accident characteristics of coal mine production systems, this paper uses a coal mine production
environment as a case study to analyze and validate the proposed model, offering practical solutions for addressing
SEs in production environments.

2 Literature review

Research on risk identification and assessment for multitype SEs under the coupling of environmental factors
mainly encompasses two aspects: theoretical modeling and risk evaluation.
2.1 The theory of SE causation

The theory of SE causation aims to establish the causal logic between internal factors and events, providing a
theoretical support for understanding their evolutionary mechanisms[15]. Existing research has gradually developed
an evolutionary trajectory from structured causal models to dynamic nonlinear models.

Early studies mainly adopted a structured causal modeling framework. These studies demonstrated that in
production operations, the failure or sequential activation of protective mechanisms and causal chains under specific
conditions can ultimately lead to the occurrence of SEs. Recent reliability studies further indicate that protective
mechanisms may be conditionally triggered by multiple interacting factors, leading to diverse system outcomes
under disturbances [16]. For example, the domino theory [17] indicates that accidents result from a chain reaction
of causally linked events. The Swiss cheese model [18,19] posits that accidents occur due to the cumulative effects
of latent hazards and active conditions across multiple layers of defense, intersecting in both time and space.
Trajectory intersection theory [20] states that accidents arise from the coupling of unsafe human behaviors and
unsafe object conditions within a shared spatiotemporal context. Epidemiological theory [21] reveals that accidents
result from the interplay between human, environmental, and mediating factors. The system-theoretic accident
model and processes [22,23] posits that accidents occur due to the inadequacy of control at various system levels,
leading to ineffective regulation of the interactions between components. The 2—4 Model divides the causation of
SEs into two levels and four stages, revealing the hierarchical relationships between direct and indirect causes [24].
These theories provide a clear structural framework for understanding the causal mechanisms underlying SEs.
However, their reliance on qualitative reasoning and static analysis limits their ability to capture the dynamic

evolution and nonlinear coupling among multiple factors in complex production systems. Existing studies further



suggest that multi-factor dependencies may trigger cross-scale risk transfer, leading to cascading evolution patterns
of SEs [25,26].

Complex system and dynamic instability models focus on the transition of a system from a stable state to an
unstable state under disturbances, revealing the time-varying and abrupt characteristics of SEs. Johnson developed
the Change—Failure model, which posits that SEs originate from energy release and control failure [27]. The
Functional Resonance Analysis Method (FRAM) conceptualizes SEs as emergent phenomena arising from
nonlinear coupling and resonance among multiple functional modules within a system [28]. When the interactive
effects among these functions exceed a critical threshold, the system transitions abruptly from a stable to an unstable
state. Catastrophe theory [29] conceptualizes the occurrence of SEs as abrupt phase transitions of factor states in
the vicinity of critical points. Collectively, these theories elucidate the nonlinear and emergent characteristics of
SEs, providing an essential theoretical framework for interpreting the dynamic shift of production systems from
safety to instability.

In summary, the theory of SE causation has evolved from structured causal mechanisms toward nonlinear
coupling mechanisms, and from static structural descriptions to dynamic systeni modeling. Despite these advances,
existing studies still exhibit notable limitations: (1) most theoretical approaches remain primarily qualitative,
making it difficult to derive computable mappings from high-dimensional sensor data; and (2) quantitative
characterization and causal attribution of multi-facior coupling are inadequate, limiting deeper insights into its
influence on SE occurrence.

2.2 Risk analysis models for SEs

Risk analysis methods arc used to assess, identify and quantify the probability of SE occurrence. Existing
studies can be broadly categorized into two types: event-chain analysis methods and factor-driven approaches.

Risk analysis method based on the event-chain perspective focuses on modeling the interrelationships between
events. This type of approach aims to identify the root causes of critical events and calculate the associated risk
probabilities. Feng et al. [12] developed a dynamic risk analysis framework for industrial systems based on an event-
chain model, which reveals the evolutionary process of SEs across different stages. Li et al. [30] constructed a causal
path network using complex network theory to quantify the influence weights among nodes, thereby achieving risk
modeling of railway transportation systems. Li et al. [31] combined the fuzzy analytic hierarchy process and
Bayesian network methodologies to develop a Bayesian network model for assessing gas explosion risks in coal
mines. Zhang et al. [32] proposed a fuzzy Bayesian network-based safety risk analysis method for road construction
scenarios, which achieves full life cycle risk management through causal analysis, fuzzy reasoning and sensitivity
analysis. Feng et al. [33] proposed an event-chain-based dynamic risk analysis method that facilitates the assessment

of causal importance and the formulation of optimal risk reduction strategies.



Risk analysis methods from the factor-driven perspective assess risks by capturing and quantifying the complex
nonlinear relationships between factor states and SE occurrence probabilities. By monitoring and estimating the
fluctuation trends of the hazard factors associated with SEs, potential hazards can be identified, and multilevel early
warnings can be issued. Muduli et al. [13] employed fuzzy logic reasoning to assess spontaneous combustion risks
in coal mines in real time by setting fuzzy sensor thresholds. Zhang et al. [34] proposed an adaptive warning method
based on trend monitoring. Wang et al. [35] analyzed the variation patterns exhibited by electromagnetic radiation
during coal and gas outburst processes, establishing an early warning model based on these signals. However, these
methods are often affected by the complex coupling of factors and the ambiguity of critical conditions. To address
this issue, scholars have introduced advanced methods such as machine learning and deep learning to implement
more accurate risk assessments. Wang et al. [36] utilized big data technology to collect dynamic disaster parameters
in mining areas and employed the adaptive boosting (AdaBoost) classification algorithm to predict rock burst risks.
Li et al. [37] proposed a multisource information fusion warning model based on autoregressive integrated moving
average and the transferable belief model, enabling real-time dynamic warnings for gas outburst risks in coal mines.
Guo et al. [38] introduced a hybrid approach combining building information modeling and D-S evidence theory to
integrate, assess, and visualize risk factors in underground tunnels. Shen et al. [39] proposed a cloud model-based
risk assessment method for excavation and construction projecis that estimates risk statuses through multisource
data collection, model construction, and risk level determination.

Recently, extensive research has been conducted in the field of risk assessment. However, the following
problems still exist. (1) Each SE is modeled independently, leading to a large workload and poor model compatibility.
(2) Most methods focus on analyzing single SE with limited factors. The accuracy of the obtained results is
significantly affected by the selection and comprehensiveness of these factors. (3) Such models fail to adequately
consider the interrelationships between various factors and SEs. A unified analytical framework and an effective
integration mechanism for systematically incorporating and comparing different types of risk information are
lacking.

To address the limitations of the above research, this study makes the following contributions.

(1) This paper establishes a cross-scale mechanism governing the effects of environmental factors on SEs.
SEs are viewed as the results of multiple environmental factors interacting at the factor scale, which in turn produce
cross-scale emergent effects at the event scale.

@ At the factor scale, an environmental factor correlation model is established, and the MEFs related to SEs
are determined. At the event scale, a chain mechanism depicting the transformation and superposition of multiple
types of SEs is elucidated. Regarding cross-scale dynamics, the cross-scale emergence mechanism concerning the

effects of environmental factors on SEs is analyzed, with an emphasis on tracing the differential contributions of



these factors.

(3) Based on the proposed theoretical model, a data-driven risk identification and assessment model is
constructed for multitype SEs under the coupling of environmental factors. The interpretability of the model enables
the quantification of the relevance levels and contributions of environmental factors.

3 Theoretical foundation

3.1 Definitions of SEs and environmental factors

Events, as defined temporal and spatial occurrences, encompass both positive and negative aspects [40]. SEs
represent a subset of such events, denoting events that have adverse impacts on a production system. Environmental
factors are pivotal elements for understanding, identifying, and analyzing the occurrence of SEs. Therefore, SEs
and environmental factors belong to different scales with different portrayals and descriptions. Environmental
factors include those that characterize, quantify, and explain SEs. SEs arise as emergent properties from the
nonlinear interactions of various environmental factors.

Fig. 1 shows the cross-scale relationships between SEs and environimental factors. At the event scale, SEs
interact, constituting a directed chain network structure. As a special subset of the SE set, accidents gradually evolve
from related SEs. At the factor scale, the environmental factors exhibit a certain degree of hierarchical dynamic
correlation. State information is deeply integrated among the related environmental factors. A constellation of
environmental factors determines the cross-scale emergence of SEs. Under specific spatiotemporal conditions, the
state changes exhibited by these factors interact through nonlinear dynamics, resulting in emergent outcomes. In
general, the state changes undergone by environmental factors generate an intrinsic motivation for the dynamic
evolution of SEs. The dynamic evolution of an SE is the macroscopic manifestation of the state changes of
environmental factors. The mathematical representation of the relationship between SEs and environmental factors
is shown in Eq. (1).

sl,sz,---,sa=f(a1,a2,---,af) (1)

where J# is the emergence function concerning the effect of environmental factors on SEs, a. is an

1

environmental factor, A :{al,az,m,a /»} is a set of environmental factors, S; isan SE, and S={s,,s,,,5,} 15

a set of SEs.
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Fig. 1 The cross-scale relationships between SEs and environmental factors

The definitions of SEs and environmental factors are improved and supplemented.

Definition 1. Environmental factors refer to factors within a production environment that are actively
influenced by production activities, and status changes can directly affect the production environment, potentially
leading to SEs.

Definition 2. SEs refer to emergent outcomes that arise within a specific temporal and spatial context due to
state changes exhibited by the environmental factors within a production environment, potentially having adverse
impacts on the production system.

Taking gas explosion in coal mines as an example, the hierarchical linkage from environmental factors to safety
events is formally illustrated to clarify the cross-scale emergence mechanism.

Let gas concentration, oxygen concentration, and temperature be denoted as a, , g, , a, respectively. These
variables belong to the set of environmental factors, q,,a,,a, € A.

Let the environmental factor states at time ¢ be X'(q,), X'(a,), X'(a,). For each factor, an instability
domain is definedas Q,, Q,, Q,,respectively. When the factor state reaches or exceeds its instability domain,
the corresponding precursor safety event is triggered. Specifically, the precursor events are defined as:
5, ={t:X'(a1)te} .S, ={t:X’(a2)eQz} .S, ={t:X'(a3)eQ3} , with indicator functions
L, = I{X’ (a)€ Ql} 1, = I{X’(az) € Qz} s 1, = I{X‘(a3) € Q3} .Such conditions typically indicate high risk,
although they may not yet correspond to an actual accident outcome. They therefore fall within the scope of early-
warning safety events.

Gas concentration exceedance, sufficient oxygen availability, and abnormal temperature rise represent critical
transitions of environmental factors beyond their stability boundaries, leading to a significant degradation of system
safety. Let the emergent terminal safety event “gas explosion” be denoted as s,, where s, €S. The occurrence of
gas explosion is driven by the coupled effects of the three key environmental factors and can be expressed as a

cross-scale emergence result, ie., 5, =5, ns, Ns, 5 1 =lsm -1sz -lsp3



This example illustrates that factor-level instability states can interact and chain together, thereby giving rise
to an emergent event at the event scale. Explicitly distinguishing factor-level instabilities and event-level outcomes
provides a clearer basis for mechanism interpretation and quantitative risk assessment.

3.2 The scale characteristics of SEs and environmental factors
3.2.1 The correlations of environmental factors

In production systems, environmental factors do not exist in isolation from each other but rather in a situation
involving interdependence, influence and constraint. It is difficult to clarify the correlations among all
environmental factors. Instead, breaking down the complex issue of environmental factors influencing an entire
system into localized issues that are associated with specific SEs can serve as an effective strategy. By focusing on
SEs, specialized models can be developed to deepen the understanding of the dynamic correlations among various
environmental factors. Furthermore, this approach provides a structured and progressive method for enhancing the
comprehension of complex systems. Notably, relevance refers to the interdependence between environmental
factors. This dependence shows that a change in one environmental factor state may lead to a change in another
environmental factor state, and vice versa, exhibiting a two-way characteristic

Generally, only a few critical environmental factors play decisive roles in the occurrence of SEs. Other
environmental factors, though not directly causative, are iniricately linked to these core factors, indirectly
influencing SEs. For instance, gas outburst events are directly affected by the interplay among the coal structure,
ground stress, and gas occurrence of coal seam [41]. Additionally, factors such as coal rigidity and drilling cutting
weight also play a role in gas outbursts, albeit indirectly. These factors typically quantify and reflect the critical core
factors. For instance, coal rigidity represents the physical and mechanical properties of coal structure, while drilling
cutting weight indicates ground stress levels [42]. Therefore, the correlation mapping relationships of environmental
factors can be subdivided by taking SEs as the research objects, the occurrence mechanism as guidance, and relevant
research as the basis. On this basis, disaster-causing environmental factors, derived environmental factors, and
measurable environmental factors (MEFs) are established. Their definitions are as follows.

Definition 3. Disaster-causing environmental factors refer to the critical environmental elements that
significantly affect and jointly contribute to shaping the occurrence, evolution, and spread patterns of SEs under
specific conditions.

Definition 4. Derived environmental factors refer to subenvironmental elements that act as indicators for
characterizing disaster-causing environmental factors, the states of which are difficult to obtain directly without
specific technical support.

Definition 5. MEFs refer to those that can be quantitatively assessed and from which data or information can

be directly captured using current technological means.



Let the set of disaster-causing environmental factors be D, the set of derived environmental factors be H,
and the set of MEFs be V, where A ={]D),]HLV} . Disaster-causing environmental factors play a fundamental and
guiding role in mining derived environmental factors and MEFs. Due to the production environment and technology
limitations, it is difficult to determine the states of some disaster-causing environmental factors. In this case, the
derived environmental factors transmit and transform the state information of the disaster-causing environmental
factors and MEFs. The MEFs provide reliable data for the study of SEs. Notably, the derived environmental factors
and MEFs can be transformed into each other under the influence of different environmental and technical
conditions. For example, when the production environment is equipped with sensors for specific derivative
environmental factors, these derivative environmental factors can be measured and converted into measurable
factors. In contrast, if no corresponding support can be provided by sensing technology, the derived environmental
factors cannot be directly quantified and thus maintain their unmeasurable state. With the advancement of
measurement technology and the application of sensors, derivative environmental factors that were originally
difficult to measure directly will gradually be included in the measurable category. The relationships among the

three types of feature are DNH=C, HNV =, and DNV =, as shown in Fig. 2

Disaster-causing environmental factor set

D

Derived environimental factor set

H

Measurable environmental factor set

\Y%

Fig. 2 Relationships between sets of environmental factors

Fig. 3 illustrates the hierarchical associations of environmental factors, showing their bidirectional interactions.
Environmental factors are connected both across different levels and within the same level. When the state of an
environmental factor changes, this change can gradually influence the related environmental factors through their
connections. As a result, the related environmental factors receive change information and update their states
accordingly. The equation for the state transfer and aggregation process applied to associated environmental factors

are shown in Eq. (2).
g => g(X' (). X' (e(v)) @

where & is the state transfer and aggregation function, v, isan MEF, gf " is the state change information

received by v, at time #+1, X (v;) is the state of v, at time #, e(v,) is the factor associated with v,, and



X'(e(v)) is the state of the environmental factor associated with v, attime 7.

The state change information received at time #+1 is brought into Eq. (3) to update the state v, attime #+1:
1 1
X=X ;). 3)

where 77 is the state update function and Xf . (v;) is the state of v, at time #+1.
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Fig. 3 Hierarchical correlations of environmental factors

Based on the state transmission and update mechanism obeyed by associaied environmental factors, it can be
inferred that MEFs are fundamental for gathering complete state data related fo the associated environmental factors.
Therefore, the states of MEFs can represent the state information of disaster-causing environmental factors, thereby
providing reliable data inputs for SE studies.

3.2.2 Chain modeling between SEs

The chain relationships of SEs consists of a directed complex network formed by multiple SEs and their
evolutionary pathways. Within production systems, the occurrence of SEs is influenced by the state changes
exhibited by various environmental factors, as depicted in Fig. 4. As these environmental factors approach and fall
within the instability domain, the corresponding production system becomes inherently unstable, leading to the
dynamic spread and propagation of SEs. The nature of this propagation further poses a substantial threat to the
operational safety and stability of production systems.

The link strengths between different SEs vary significantly, resulting in varied degrees of interconnection and
diverse probabilities of neighboring SEs being triggered. Therefore, the occurrence of SEs is influenced not only by

their inherent probabilities but also by the interconnections within the network of neighboring SEs, as depicted in
Eq. (4).
P(sj)=P(R,(Sj),P(e(sj)),L(e(sj)—>Sj)) 4)
where P, (s ].) is the intrinsic probability of an SE §;, P(s j) is the occurrence probability of §;, e(s j)
is the neighbor SE of §;, P (e(sj)) is the occurrence probability of the neighbor SE, L is the link strength of

the neighbor SE triggering $;, and / is the probabilistic function for predicting the occurrence of the SE.



In addition, shared environmental factors often underlie diverse SEs. Comprehensively analyzing multiple
types of SEs can be valuable for facilitating the identification of SEs, as well as for identifying and controlling the

critical environmental factors.

{:} Safety events ® Environmental factors

Fig. 4 The chain relationships of SEs

3.2.3 The cross-scale interactions between environmental factors and SEs

Fig. 5 illustrates the cross-scale interactions between environmental faciors and SEs. At the factor scale,
environmental factors exhibit a high degree of interconnectivity, resulting in the dynamic transmission and
continuous updating of state information. At the event scale, SEs rarely occur in isolation; instead, they often
propagate in a sequential or cascading manner. Through cross-scale interactions and influences, dynamic nonlinear
couplings among environmental factors accumulate and ultimately manifest in the occurrence of SEs. When an SE
occurs, the states of the environmental factors often exhibit fluctuating upward or downward trends. However, the
contributions of various environmental factors to SEs differ significantly. The variability in their contributions
reflects the relative importance of different environmental factors to SEs and influences the accuracy of the output
analysis results. Therefore, accurately capturing the dynamic state changes exhibited by environmental factors lays
the cornerstone for elucidating the intricate cross-scale emergence processes of SEs. The degree of contribution is

key to measuring the extent to which each environmental factor influences the occurrence of SEs.
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Fig. 5 The cross-scale interactions between environmental factors and SEs

For the set of SEs S, the corresponding set of disaster-causing environmental factors is D . A function

representing the cross-scale impact of disaster-causing environmental factors on SEs is established, as shown in Eq.

(5).
P=P£5£ﬂizm;)((df)n 5

where d, is a disaster-causing environmental factor, X (d,-) is the state of d,, & 1is the cross-scale
interaction function, f is the contribution matrix, and P is the probability matrix for the occurrence of an SE.

Due to production environment and technical condition limitations, obtaining the state change information of
some disaster-causing environmental factors is difficult. Based on Egs. (2)-(3), it can be inferred that MEFs can
significantly reflect the state change information of disaster-causing environmental factors. Thus, MEFs can serve
as a crucial data foundation for SE analyses. Moreover, constructing an inference mechanism for MEFs with respect
to SEs also aids in analyzing SEs.

Fig. 6 establishes the reasoning architecture of the MEFs for SEs. Let the set of MEFs be
V= {vl,vz,v3,~-~,vf} and the states of the MEFs be /l"z[X(Vl),X(VZ),X(V3),~~~,X(Vf)]. A mapping function
from MEFs to SEs is established as ¢:. 42— 2 First, we capture the key information contained in the MEF data.
Based on the data structures of S and ., a specific function C=C(X(v,),X (vj)|S) is constructed to capture

the correlations among the MEFs. On this basis, we utilize the formula =/ (C,/l’ ) to highlight the key



information contained in the data. Second, the cross-scale mapping driven by the contributions of the MEFs to SEs
is analyzed. A dimensionality reduction projection function EI =£ ( p.1, S) is established tomap 7 to the SEs.
Here, EI denotes the effective information extracted from 7 to the SEs. Subsequently, the SEs are identified
and assessed. The occurrence probability of the SEs is P =7 (EI ) Finally, in the SE feedback and optimization
phase, the parameters and weights of the inference process are adjusted and optimized through gradient reversal.
This series of inference steps aids in the optimal selection and adaptive matching of the MEFs, as well as the accurate
identification of the SEs.

Cross-scale mapping of MEFs to SEs
EI=<(D,I,S)

Feedback and optimization
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Fig. 6 The reasoiing architecture for mapping MEFs to SEs.
4 Risk identification and assessment model for multitype SEs

4.1 Problem description

Let V= {V1 ,vz,v3,-~~,vf} be asetof MEFs and S ={s,s,,,s,} beasetofSEs. The SE identification and
assessment task involves learning a function denoted as ¢q: ' — 2 from the training  set
(A W) 1<i<ng,} , which contains  Hgye  samples. For each sample (%,)) .
A =[X; (), X, (), X (v,)] € R/ represents  the  fdimensional MEF  input.  Furthermore,
X=[Y (51) (sz) - (sm )] €R"™ represents states of multitype SEs associated with .%#;, which is encoded as
a binary vector. If there exists an .¥; that leads to the occurrence of an SE §;, ¥, (s j) is 1; otherwise, it is 0. Let
{/l’;, [ 1< p<n,umeat denote the dataset of MEFs for which the corresponding SEs are unknown. This study aims
to learn the function ¢q:.t — 2 that predicts the set of potential SEs J{, CS to minimize the induced
predictive error. The overall formulation and dataset definition for the SE identification and assessment task are

summarized in Table 1. All notations and definitions are provided in the Supplementary Material (Table A1).



o :argmain %iL(q(/l’p;H),J/l’,) (6)
T

where L() is the loss functionand 6* and 6 are model parameters.

Table 1 Datasheet for SE identification and assessment tasks

4 Y (s1) Y(s2) ¥ (sm)
1 Xi(vi) Xi(v2) Xi(ve) 0 1 1
2 Xo(v1) Xa(v2) Xa(ve) 0 0 1

4.2 Overall framework

The multitype SE risk identification and assessment model (RIAM) consists of four main modules, i.e., a
feature embedding module for MEFs, a key information capture module for the MEFs, a cross-scale mapping
module from the MEFs to SEs, and a risk identification and assessment module for the SEs, as shown in Fig. 7. Fig.

8 illustrates the general framework of the model.
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Fig. 7 Module composition of the multitype SE risk identification and assessment model
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Fig. 8 The general framework of the RIAM



4.2.1 Feature embedding module for MEFs

The MEFs originate from multiple sources with diverse units, resulting in scale inconsistency if directly used
as model inputs. Therefore, the MEF state vector .t € R/ " is normalized feature-wise to remove unit-dependent
scale differences. Let A =[X,,X,, X f] eR’ . Each feature is standardized by z-score normalization:

Xi—w = = = ‘ .
X; ZT yyielding " =[X,,X,,-, X ,]eR’ . Where #; and O; arecomputed from the training set only
J

and then applied to the validation/test sets to avoid information leakage.

After preprocessing normalization, a feature embedding module is designed to achieve a unified representation
and effective feature extraction from heterogeneous inputs. Specifically, it applies linear transformation and Layer
Normalization (LN) to project the normalized MEF vector into a unified latent space of dimension d.

& =LN(W,F+b,) (7

Where W, R and b, e R/ denote the feature embedding matrix and bias term, respectively.
LN (-) denotes the Layer Normalization operation, and the output A R represents the feature embedding
of each MEF in the d-dimensional latent space.
4.2.2 Key information capture module for the MEFs

The key information capture module is designed to model latent couplings among MEFs. It employs an
adaptive mechanism to capture inter-factor dependencies and nonlinear interactions, thereby enabling the dynamic
representation of critical risk information. It comprises N, stacked layers, each involving correlation-weight learning
and representation update, followed by residual and Layer Normalization refinements.

Taking the MEF representation vector . *"'(k =1,2,---,N_) as input, it is divided into u parallel processing
units. Each unit performs a linear transformation to learn inter-factor correlations and adaptively update the

representations:

T
U" = soft max(——2-).%,
Jd, :

A0 = concat(U",U*,--- U W? (®)

A= IN(+ )

Where U”(n=1,2,---,u) denotes the output of the n-th processing unit, ./i’r] ,/i’;z ,./l~",,3 e R/ (dh =dl /M)
represents the linearly transformed representation of the input A concat(-) denotes the concatenation of the
results of each processing unit, and W e R“*% is a learnable parameter matrix.

To better extract salient patterns and capture complex inter-factor dependencies, a nonlinear transformation
is applied, formulated as:

Prc Gelu(/i}k”V,A +b, )I’V’5 +b, 9



A = NI+ (10)

Where Gelu () is the activation function, W, and w, are the weight matrices and b, and b,.5 are the
deviations of the linear transformation, and A 1,/1* R/ (k=12,--,N,) denote the outputs of the (k-1)-th
and k-th layers of the key information capture module.

4.2.3 Cross-scale mapping module from the MEFs to SEs

Different safety events rely on different subsets of environmental factors. To capture such event-specific
dependencies, a cross-scale mapping module is developed to quantify the contribution of each measurable factor to
each event and to map environmental states into event-specific risk representations. For each SE, a learnable vector
0 € R™“ is defined. By constructing weighted interactions between MEFs and SEs, the module establishes a

cross-scale mapping that performs directional aggregation of environmental information toward each event:
f = soft max M
N (1)
S=pr

Where peR™/ denotes the contribution-weight distribution of MEFs to SEs, .t N is the Ni-th layer
output of the key information capture module, and § € R™ " represents the aggregated feature vector of SEs
obtained from all environmental-state information.
4.2.4 Risk identification and assessment module for SEs

For multi-type SE discrimination, the module employs independent classification heads for each event type
with parallel outputs, allowing the model to learn event-specific discriminative features in distinct subspaces.

For each event:

P =WS+b.j=12,m

. (12)
P, = Sigmoid(P;)

The overall output for multi-type safety events can be expressed as: P = [P, P, ,---, P, | . Areference threshold

0(0<6<1) yields the final decisions:

. 1 P>s
¥, - g (13)

Where sigmoid is an activation function, P ; is the predicted probability, and Y, ;; 1s the risk identification
and assessment result of an SE.
4.3 Loss function

Given the concurrent and interdependent nature of safety events, the RIAM model employs the

BCEWithLogitsLoss function to compute the multi-label prediction error and the Adam optimizer to update all



trainable parameters during training.

L(p“y)z—;

samples '

(W, 0 V)0 log(P)+(1— 2 )log(1—P) ]| - min (14)

Where n

amples  denotes the total number of samples, m represents the total number of safety event types, and

W, € R"™ is the weight vector assigned to each safety event type.

5 Case study

Coal and gas outburst is a typical high-disaster-risk scenario in deep coal mining operations. Its causation is
complex and highly destructive, often triggered by the combined effects of multiple geological and environmental
factors. In practical operations, several representative abnormal conditions—such as excessive initial gas velocity
in boreholes and abnormal gas desorption indices—are often regarded as precursor signals of disaster events.
Although these indicators do not constitute terminal events themselves, their over-threshold states usually indicate
that the system is approaching an unstable and hazardous condition, thus possessing significant value for risk
identification and intervention. When multiple factors simultaneously enter the instability domain, the overall risk
level rises sharply, and an outburst may even be triggered. Therefore, simiultaneously predicting both the occurrence
of catastrophic events and their preceding high-risk states is of great significance for the comprehensive judgment
capability of early warning systems.

To verify the performance and feasibility of the RIAM model in identifying different types of SEs under multi-
factor coupling conditions, this section employs nmulti-type SEs as output variables. Early warning events are used
to identify high-risk precursor signals, while the coal and gas outburst serves as the terminal SE. Through joint
learning, potential risks can be identified and corresponding preventive measures can be implemented. Let s,
represents the coal and gas outburst, s, denotes the initial velocity of borehole gas emission that exceeds the
imposed limit, and s, indicates the gas adsorption index of drilling cuttings exceeding the limit. The set of SEs to
be studied is S={S1,SZ,S3} .

5.1 Determination of MEFs

The model input consists of time-series data of MEFs obtained from coal mine production environments. The
hypothesis of integrated action identifies the disaster-causing factors of coal and gas outbursts: coal structure,
ground stress, and gas occurrence of coal seam. However, the ability to obtain data on these disaster-causing
environmental factors is influenced by the production environment and technical limitations. Table 2 presents the
correlation mappings of the environmental factors derived from established causal mechanisms, laboratory
experiments, research studies, and field observations. The identified MEFs include the initial velocity of borehole
gas emission (v), drilling cutting weight (1), gas adsorption index of drilling cuttings (v3), soft coal seam thickness

(v4), EMR intensity (vs), and EMR pulses (vs).



Table 2 The correlation mappings of environmental factors

MEF  Reflected disaster-causing environmental factors References
Vi coal structure, gas occurrence of coal seam Tang et al.[43]; Zhang et al.[44]
V2 ground stress, coal structure Li et al.[45]; Wang et al.[46]
V3 coal structure, gas occurrence of coal seam Xue et al.[47]; Wang et al.[48]
V4 coal structure Lama et al.[49]; Zhai et al.[50]
Vs coal structure, ground stress Wang et al.[51]; Qiu et al.[52]
V6 coal structure, ground stress Qiao et al.[53]; Zhang et al.[54]

5.2 Data source

The dataset utilized in this study was collected from field measurements conducted at the Jiulishan Coal Mine,
located in Henan Province, China [45]. Owing to the complex geological structure and dynamic gas environment,
this mine provides a representative underground scenario for investigating the coupling effects of multiple
environmental factors (MEFs) and the evolution of safety events (SEs) during tunneling operations. However,
effective labeled samples are limited due to the sporadic and unpredictable nature of gas outburst-related events and
their precursors, which may lead to insufficient coverage of rare conditions and increase the risk of model overfitting.

To address sample scarcity while maintaining the physical consistency of monitoring signals, a hybrid data
augmentation strategy was adopted. The strategy consists of (i) perturbation-based augmentation to emulate sensor
uncertainty and operational fluctuations, and (ii) conditional synthesis to expand feature-consistent samples under
label constraints. Specifically, all raw features were first normalized into the range [0, 1] using Min—Max scaling.

Then, Gaussian noise [55] injection was performed in the normalized feature space:

Y=xte e~ (0, 0'2) (15)

Where o was set to 0.03, and the perturbed values were clipped to [0, 1] to avoid invalid ranges. This
perturbation strategy increases sample diversity while maintaining local continuity of MEFs, and improves model
robustness to unavoidable sensor-level disturbances in underground environments.

To further capture nonlinear dependency structures among MEFs and enhance minority-condition coverage, a
conditional generative adversarial network (CGAN) was employed for label-conditional synthesis. The generator
maps latent noise z ~ .1 (0,7) into synthetic feature vectors conditioned on binary labels (safety status vs. gas
outburst), while the discriminator distinguishes real from synthetic samples under the same conditioning mechanism.
The CGAN was trained using the Adam optimizer (learning rate 0.0002, betas = (0.5,0.999)) for 100 epochs with
batch size 32 and latent dimension d_ = 6 . Synthetic samples were generated separately for each label to obtain a
more balanced training distribution across the two classes.

Importantly, to strictly avoid data leakage, the entire augmentation process was conducted after cross-
validation splitting and only within the training subset of each fold. That is, for each fold, the dataset was first split
into training and validation subsets; augmentation was applied exclusively to the training subset, while the validation

subset remained unchanged and was never used in CGAN training or sample generation.



Fig. 9 compares the Kernel Density Estimation (KDE) distributions of six key precursor variables between the
original and augmented datasets. Overall, the density curves exhibit a high degree of alignment in peak locations
and distributional shapes, indicating that the augmentation process preserves the essential statistical characteristics
of the measured monitoring data. Meanwhile, slight enrichment in low-frequency regions can be observed for some
variables, suggesting that the introduced perturbations and CGAN-based synthesis provide additional sample
diversity while remaining consistent with the underlying data manifold.

In addition, t-distributed stochastic neighbor embedding (t-SNE) [56] was employed to project the combined
dataset into a low-dimensional space for visualization, where local neighborhood relations are approximately
preserved. As shown in Fig. 10, augmented samples remain coherent with the original data manifold and maintain
class-level separability, supporting that the generated samples are feature-consistent and label-conditional.

It should be emphasized that data augmentation in this work is introduced as a practical measure to improve

training stability and robustness under sample scarcity.

[ Augmented Data
[ Original Data

Initial velocity of borehole gas emission

Drilling cutting weight Gas adsorption index of drilling cuttings

Soft coal seam thickness EMR intensity EMR pulses

Fig. 9 Kernel density distributions of the augmented and original data
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Fig. 10 Reduced-dimensional distribution of the t-SNE composite data



5.3 Performance metrics

In a SE risk assessment task, traditional methods for evaluating single SEs often rely heavily on accuracy. This
metric is used as the primary evaluation criterion to gauge the precision of models in terms of accurately identifying
specific SEs. However, this singular evaluation strategy is inadequate for the comprehensive risk identification and
assessment of multiple types of SEs. This limitation becomes more pronounced under label imbalance, which is
evident in our dataset: the positive rates of s; and s3 are 20.55% and 19.18%, respectively, whereas s is an extremely
rare label with only 6.85% positive samples. Under these conditions, accuracy can be misleading, since a model
may obtain a high score by predominantly predicting negative labels while failing to detect rare but critical events.
Moreover, in multi-type SE classification settings, it is essential to examine not only the overall correctness but also
the patterns of misclassification and their potential inter-label dependencies, as these directly affect the reliability
of risk assessment. Therefore, three complementary metrics—accuracy, Hamming loss, and ranking loss—are
adopted to provide a more comprehensive evaluation of model performance under imbalanced multi-type SE
scenarios.

Accuracy is used as an overall metric to assess the overall classification performance of the model. The value
domain of the accuracy rate is [0,1]. Its formula is shown in Eq. (16).

Msamiples =

Accuracy(.)/',.)})z—1 — Z 1(,)}:,)/) (16)

samples =0

' and YV e {01 represent the true and predicted results for each sample,

Where YV e {0’1}"%,,/&-
respectively.
The Hamming loss (Hloss) comprehensively considers the misclassification of SEs, i.e., the degree of

inconsistency between the predicted and actual results for each SE. This metric provides insight into the

classification effectiveness of the tested model. The value domain of the Hamming loss is [0, 1].

n,

Hloss(,)/,,)}): - ! ili‘y&y‘ (17)
samples =0

Where A represents the symmetry difference between two sets, and m is the total number of SEs.
The ranking loss (Rloss) is used to assess the accuracy of the model when ranking the severity of SE

occurrences. The value domain of the ranking loss is [0, 1].

-1
samples 1

1
. - 1P, <P, YV = ) = 18
Rloss P— ; "J’z'"o (m— "-)/t’"o) {|(k,l) |Rk <PLXY, =1 0} (18)

n

5.4 Results and discussion

Most existing research focuses on analyzing individual events using models such as support vector machines



(SVMs), Bayesian methods, and logistic regression (LR). However, relatively few studies have developed
comprehensive models for analyzing multitype SEs. This section presents the results of performance analysis
experiments conducted on the RIAM for both single-type and multitype SEs. The first experiment evaluates the
performance of the RIAM in terms of assessing individual SE to validate the effectiveness of the model in isolated
event scenarios. The second experiment simultaneously considers multiple types of SEs to investigate the
applicability of the model to complex and diverse contexts. To ensure a fair and unbiased evaluation, all models

were trained and tested under the same 10-fold cross-validation protocol, as illustrated in Fig. 11.
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Fig. 11 Tentold cross-validation process

5.4.1 Comparative analysis of the individual SEs of 4 models

The SVM, LR, and naive Bayes (NB) methods are selected as baseline models to assess the risk of SEs. SVM
is a binary classification model that efficiently classifies data by maximizing the margin between the decision
boundary and support vectors [57]. LR is a probability-based classification method that uses a linear combination
of the input features and maps the output values to a probability space using a logistic function [45]. NB, based on
Bayes' theorem and the assumption of conditional independence concerning the features in different classes, offers

a simple yet effective classification approach [58]. The key parameters of each model are detailed in Table 3.



Table 3 The hyperparameters of the proposed method and the baselines

Model Hyperparameters Value
C 1
SVM Kernel Linear
max_iter 10000000
Penalty L2
LR C 1
Solver Ibfgs
NB var_smoothing le-9
Learning rate 0.001
Batch size 32
di 64
Max_epochs 200
Optimizer Adam
RIAM_Single Dropout rate 0.1
Input dimensions 6
Output dimensions 1
Activation function Sigmoid
U 2
Nx 2

To comprehensively evaluate the performance of the RIAM model in identifying single safety events (s1—s3),
this study reports the average performance (Mean+Std) of each model under a 10-fold cross-validation.

Furthermore, statistical significance tests are introduced to verify whether the peiformance improvements are
reliable and reproducible. Since the test results of different models on the samie fold form naturally paired samples
in the 10-fold cross-validation, the Wilcoxon signed-rank test is used to assess the significance of the differences
between RIAM and each baseline model (LR, NB, SVM). This test does not rely on the normality assumption of
the differences and is suitable for scenarios with small sample sizes (n=10) and potentially skewed performance
distributions. It evaluates whether the median difference in model performance is significantly greater than zero.

To avoid inflation of Type I errors due to multiple comparisons, Holm-Bonferroni correction is applied to
adjust the p-values, and the Holin-adjusted p-value (p_adj) is used as the criterion for statistical significance. In
addition to statistical significance, this study further reports two effect size metrics to avoid situations where a
“significant p-value” might correspond to negligible improvements:

Cohen’s dz: This is a standardized effect size for paired tests, defined as the mean difference in performance
across folds divided by the standard deviation of the differences. It measures the “stability and strength” of the
improvement.

Cliff’s 3: A non-parametric effect size that is independent of the distribution, it measures the degree of
"dominance" of RIAM over the baseline in fold-level performance. When & approaches 1, it indicates that RIAM
outperforms the comparison model on nearly every fold.

To maintain consistency in interpreting effect sizes, standard thresholds are used: for Cohen’s dz,adz = 0.8
is generally considered a large effect, while for Cliff” s 5, 6 > 0.474 is typically interpreted as a large effect [59,60].
The results show that RIAM consistently achieves dz values well above 0.8, with 3 values close to 1, indicating that

the performance improvements not only have statistical significance but also exhibit high consistency and stability



at the fold level. Therefore, categorizing the effect sizes as large is both reasonable and conservative.

For 51, RIAM-Single achieves 0.9890+0.0056, outperforming LR (0.9313+0.0134), NB (0.9042+0.0105), and
SVM (0.9198+0.0058), with gains of A=+0.0578, +0.0848, and +0.0693, respectively. Wilcoxon signed-rank tests
with Holm correction confirm statistically significant differences between RIAM and each baseline model, with
large effects, indicating highly reproducible improvements.

For 52, RIAM-Single obtains 0.9710+0.0113, with the most pronounced improvement over LR (A=+0.1322),
while also exceeding NB and SVM by A=+0.0390 and A=+0.0530, respectively. All comparisons remain significant
after Holm adjustment (p_adj<c0.00293) with large effect sizes, suggesting that RIAM-Single provides more robust
discrimination for this rare label.

For s3, RTAM-Single reaches 0.9908+0.0044, significantly outperforming LR and NB (p_adj=0.01855).
Although the margin over SVM is smaller (A=+0.0071), it remains statistically significant (p_adj=0.01855) with a
medium effect size (dz=0.789; 6=0.46), indicating that SVM is already competitive on this label while RIAM-Single

still provides stable gains.

Table 4 Statistical significance testing of RIAM against baseline models (10-fold CV)

label Comparison RIAM Baseline AMean  Holin-adjustedp Cohen’sdz  Cliff’s Effect
(Mean=£Std) (Mean=£Std) d

S1 RIAM vs LR 0.9890+0.0056  0.9313+0.0134  0.0572 0.00293 (**) 4.74 1 large
S1 RIAM vs NB 0.9890+0.0056  0.9042+0.0105 ~ 0.0843 0.00195 (**) 9.008 1 large
S1 RIAM vs SVM  0.9890+0.0056  0.9198+0.0058  0.0693 0.00098 (***) 8.838 1 large
52 RIAM vs LR 0.9710+0.0113  0.8388+0.0274  0.1322 0.00293 (**) 4.5 1 large
52 RIAM vs NB 0.9710+0.0113  0.9320+0.0114 0.039 0.00195 (**) 3.479 0.98 large
52 RIAM vs SVM  0.9710+0.0113  0.9180+0.0011 0.053 0.00098 (***) 4.617 1 large
53 RIAM vs LR 0.9908+0.0044  0.9376+0.0108  0.0532 0.01855 (*) 3.905 1 large
53 RIAM vs NB 0.9908+0.0044  (0.8811+0.0107  0.1098 0.01855 (*) 9.595 1 large
53 RIAM vs SVM  0.9908::0.0044  0.9837+0.0086  0.0071 0.01855 (*) 0.789 0.46 medium

Beyond accuracy, Fig. 12 iilustrates the overall performance from an accuracy—deviation trade-off perspective.
RIAM-Single consistently falls into a favorable region with high accuracy and low-to-moderate deviation,
indicating that the performance improvement is achieved without introducing excessive fold-to-fold variability. By
contrast, baseline models either suffer from reduced accuracy or exhibit larger deviation fluctuations across labels,
implying higher sensitivity to data splits and weaker robustness. Taken together, Table 4 and Fig. 12 provide strong
evidence that RIAM-Single delivers statistically significant, reproducible, and robust improvements in individual

SE identification.
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Fig. 12 Accuracy and deviation comparison of SE risk assessment across models

5.4.2 Comprehensive risk analysis of multiple types of SEs

In practical coal mine safety scenarios, multiple types of SEs may co-occur under the same environmental
conditions and exhibit coupled behaviors. However, many conventional risk assessment approaches implicitly
assume mutual exclusivity among different SE types, which limits their applicability in real-world underground
safety systems. To address this issue, the comprehensive risk analysis problemi is formulated as a multi-label
classification task, where each sample may be associated with multiple SE labels, enabling concurrent identification
and joint evaluation of heterogeneous SE risks.

To validate the effectiveness of RIAM Multi in comprehensive multi-type SE identification, four
representative multi-label baselines are selected:

Classifier Chain (CC): a classic multi-label strategy that models label dependencies sequentially. While it
captures conditional correlations across labels, it is sensitive to chain order and may suffer from error propagation.

Extremely Randomized Trees (ExtraTrees): an ensemble-based nonlinear classifier with strong robustness and
fitting capability, serving as a competitive traditional machine learning baseline.

Multi-gate Mixture-of-Experts (MMOE): a typical multi-task/multi-label architecture that combines shared
experts and gated task-specific fusion, widely adopted for multi-label prediction.

Multi-layer Perceptron (MLP): a standard deep feed-forward network used to evaluate the gain brought by
nonlinear representation learning and provide a lightweight deep learning baseline.

These baselines cover major paradigms in multi-label learning, including sequential label-dependency
modeling, ensemble-based nonlinear learning, mixture-of-experts architectures, and standard deep feed-forward
modeling. The compared models and hyperparameter settings are summarized in Table 5. All methods were trained

and evaluated under the same cross-validation protocol and data preprocessing pipeline to ensure fair comparison.



Table 5 Compared models and hyperparameter settings for multi-label SE identification.

Model Hyperparameters Value
C 1
Solver liblinear
CC Class weight balanced
Max_iter 2000
Chain order random (order=None)
n_estimators 500
max_depth None
ExtraTrees min_samples_split 2
min_samples_leaf 1
max_features sqrt
Learning rate 0.001
Batch size 32
Max_epochs 100
Optimizer Adam
Dropout 0.1
MMoE
Num experts 4
Expert out dim 32
Expert hidden dim 64
Tower hidden dim 64
Activation functions ReLU (experts/towers), Sigmoid (output)
Learning rate X 0.001
Batch size 64
Hidden dim 64
MLP Max_epochs 150
Optimizer Adam
Dropout 0.2
Activation functions GELU (backbone), Sigmoid (output)
Learning rate 0.001
Batch size 32
dl 64
Max_epochs 200
Optimizer Adam
RIAM_Multi Dropout 0.1
Input dimensions 6
Output dimensions 3
Activation functions Sigmoid
U 2
Nx 2

Fig. 13 compares the fold-wise performance distributions of the compared models under 10-fold cross-



validation, including accuracy, Hamming loss, and ranking loss. RIAM exhibits consistently superior and stable
performance, achieving the highest accuracy and simultaneously yielding the lowest Hamming loss, while
maintaining a near-zero ranking loss. The compact violin distributions further indicate reduced inter-fold variance,
suggesting enhanced generalization and reliability under data-scarce and imbalanced SE scenarios. In particular, the
near-zero ranking loss indicates that RIAM can provide reliable risk ordering, which is critical for prioritizing early-
warning responses when multiple SEs co-occur. In contrast, CC presents noticeable performance degradation with
larger fluctuations, while ExtraTrees, MMOE, and MLP remain competitive but are overall outperformed by RIAM.
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Fig. 13 Performance distribution comparison of multi-label SE risk identification under 10-fold cross-validation.

As summarized in Table 6, RIAM_Multi achicves the best overall performance across the SE set, obtaining an
accuracy of 0.9554+0.0129 and the lowest Hamming loss of 0.0162+0.0049. Compared with CC, ExtraTrees,
MMOE, and MLP, RTAM_Multi vields consistent improvements in accuracy (A=+0.1459, +0.0690, +0.0519, and
+0.0260, respectively), while simultaneously reducing per-label misclassification rate. These results confirm that
RIAM_Multi is capable of accurately identifying co-occurring SEs in an imbalanced multi-event setting.

To further ensure that the observed improvements are not attributable to random data splits, paired Wilcoxon
signed-rank tests with Holm correction were conducted on the two primary metrics (accuracy and Hamming loss).
Statistically significant improvements are observed across all comparisons (p_adj < 0.0049). Moreover, the
improvements are accompanied by large effect sizes (Cohen’s dz > 1.14, Cliff’s & > 0.83), indicating that RIAM not
only improves average performance but also maintains consistent superiority across folds. Notably, & values
approaching 1.0 suggest that RIAM outperforms competing methods in nearly all folds, demonstrating strong

robustness under co-occurring and imbalanced SE conditions.



Table 6 Performance comparison between RIAM and baseline models (10-fold cross-validation).

RIAM Baseline

Metric Comparison AMean Holm-adj.p Cohen’sdz Cliff’s 8 Effect
(Mean=Std) (Mean=Std)

RIAM vs Classifier Chain 0.9554+0.0129 0.8095+0.0185 0.1459  0.0039(**) 6.9715 1 Large
AccuracyRIAM vs ExtraTrees 0.9554+0.0129 0.8864+0.0101 0.069  0.0039(**) 5.4329 1 Large
*

RIAM vs MMOE 0.9554+0.0129 0.9035+£0.0141 0.0519  0.0039(**) 3.7383 1 Large

RIAM vs MLP 0.9554+0.0129 0.9295+0.0174 0.026  0.0049(**) 1.142 0.83 Large

RIAM vs Classifier Chain 0.0162+0.0049 0.0772+£0.0094 -0.061  0.0039(*%*) 6.3099 1 Large

RIAM vs ExtraTrees 0.0162+0.0049 0.0450+0.0057 -0.0288 0.0039(**) 4.7617 1 Large
Hloss (-)

RIAM vs MMOE 0.0162+0.0049 0.0352+0.0054 -0.019  0.0039(**) 3.2565 1 Large

RIAM vs MLP 0.0162+0.0049 0.0263+£0.0059 -0.0101 0.0049(**) 1.1945 0.83 Large

To evaluate the reliability of RIAM_Multi at the level of individual SE types, the confusion matrices for each
SE are further reported in Fig. 14. A clear dominance of diagonal entries can be observed, indicating high agreement
between the predicted labels and ground-truth outcomes. This result suggests that RIAM_Multi preserves stable

discriminative capability for each SE type, even under multi-label co-occurrence conditions.
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Fig. 14 The confusion matrix produced by the RIAM for each SE classification task

Overall, RIAM achieves improved accuracy in risk identification and assessment tasks, while providing a
comprehensive evaluation for multiple SE types under co-occurrence conditions. The advantages of RIAM
primarily originate from two aspects. First, the model explicitly considers the correlations among multiple
environmental factors (MEFs), which helps capture coupled risk patterns in underground environments. Second,
RIAM differentiates the contributions of MEFs to SEs, enabling a more faithful representation of factor-driven
mechanisms and improving the interpretability of identification outcomes. In addition, RIAM exhibits limited

dependence on specific production conditions (e.g., ventilation modes), demonstrating robustness in similar



engineering contexts and supporting its applicability and generalization in real-world coal mine scenarios.
5.4.3 Interpretability analysis

The proposed model demonstrates high stability and reliability in the integrated identification of multiple SEs.
This performance can be largely attributed to its strong interpretability, which facilitates understanding of internal
mechanisms and integration of key information related to SEs. The interpretability analysis is conducted from two
complementary perspectives:

(1) Correlation between MEFs

By modeling the correlations among MEFs, the proposed model identifies latent coupling relationships and
synergistic patterns across multiple data sources. Specifically, the key information capture module learns inter-factor
interactions through correlation-weight learning (Eq. (8)), resulting in informative MEF embeddings. Let
AN eR™ denote the Ny-th layer output of the key information capture module, where .+ "+ e [0 “ represents
the embedding vector of the i-th MEF. To visualize the learned dependency structure, the MEF correlation matrix

is computed based on the absolute cosine similarity between MEF embeddings:

N, N,
N AR 7

ij:‘

N N
2l

(19)
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As illustrated in Fig.15, the resulting correlation matrix reveals distinct interrelationships among environmental
parameters, exhibiting clear variations in coupling strengths across different MEFs. Overall, these results
demonstrate that the proposed model can effectively uncover complex multi-factor dependency structures and
coevolutionary patterns within the mine environment, providing interpretability support for subsequent MEF—SE

contribution analysis.
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Fig. 15 Inter-factor Correlation Matrix among MEFs



(2) Contribution of MEFs to SEs

To further interpret how different MEFs contribute to the occurrence of multiple SEs, the MEF-SE mapping
weights learned by the cross-scale mapping module are analyzed. Specifically, the module constructs an event-
aware contribution matrix g e R"/, where m and f denote the number of SE types and MEFs, respectively. Each
element ﬂjk quantifies the relative contribution of the j-th MEF to the k-th safety event. The computation of S

follows Eq. (11). It is row-normalized by design, satisfying:

VA
zﬁjkzlokzlaz’”'sm (20)
=

Different SEs correspond to distinct coupling pathways among MEFs. To characterize such differences, the
cross-scale mapping module provides event-specific contribution distributions, thereby enabling differentiated
interpretation for each event type. The resulting contribution degrees are shown in Figs. 16-18. For s, the
contribution ranking of MEFs is: g, > g, > B, > B, > p., > B, - For s, , the contribution ranking is:
B, > Bs, > P, > iy > By > By, - For sy, the contribution ranking is: g, > #,, > B, > B, > p,; > B, - These results
verify the model’s capability for differentiated identification within a multi-event integrated recognition framework,
indicating that the model can effectively separate the characteristic iepicsentations of different SEs.
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The quantified contribution scores are further used to dynamically weight MEF feature representations,
enabling the model to emphasize influential factors while reducing the impact of less relevant ones. This mechanism
allows the model to achieve differentiated identification of multiple SEs and to prioritize key influencing factors.
The model’s interpretability improves prediction accuracy, strengthens the utilization of critical information, and
enhances the stability, reliability, and transparency of decision-making.

6 Conclusions

In this study, a theoretical model based on the occurrence mechanism of safety events (SEs) is used as a

fundamental framework and is deeply integrated with the data-driven risk identification and analysis model (RIAM),



to establish a theoretically and practically integrated analysis model. At the theoretical level, a cross-scale emergent
mechanism for mapping environmental factors to SEs is established. Accordingly, a data-driven RIAM is
constructed. Thus, an intelligent SE analysis model is proposed, providing causative tracing, environmental factor
preference identification, and comprehensive analytical capability. The main conclusions are as follows.

(1) SEs demonstrate cross-level and cross-scale emergence due to the nonlinear coupling of environmental
factors. At the factor scale, the states of the associated environmental factors exhibit dynamic, interactive influences
and updating mechanisms. As the underlying environmental factors that can be obtained, measurable environmental
factors (MEFs) provide reliable data support for SE analysis tasks. At the event scale, SEs interact in a dynamic
chain, intertwining and superimposing on one another. With respect to the cross-scale emergence mechanism for
mapping MEFs to SEs, the contributions of MEFs to SEs vary. This variation not only enables the identification of
the key environmental factors but also affects the precision of SE analyses.

(2) The proposed RIAM is grounded in theoretical research and can comprehensively identify and evaluate
multitype SE risks. Compared to LR, SVM, and NB, the RIAM significantly enhauces the accuracy of its SE
analysis results while ensuring high risk analysis accuracy on an SE set. Moreover, the interpretability of the model
allows for learning the contributions of the MEFs to the SEs online, enhancing its practical applicability in dynamic
environments.

The theoretical model and the mathematical risk analysis model constructed in this study form a
complementary analytical framework. However, this study has several limitations. Although the RIAM possesses
certain self-learning capabilities, its performance is highly dependent on the quality and quantity of the available
data. When the input data are incomplete or insufficient, the accuracy of the analysis results may be adversely
affected. To address this limitation, future research should consider integrating prior SE link relationship knowledge
as auxiliary information into the RIAM. This approach can provide additional guidance and constraints for the

model, thereby partially mitigating the issues related to insufficient or poor-quality data.
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