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The impact of the digital economy on carbon emissions has become a topic of contention due
to the paucity of guiding theoretical and empirical research. This study presents a compre-
hensive causal mediation model based on an expanded structural equation model. Leveraging
extensive big data analysis and data sourced from developing nations, this research aims to
elucidate the precise impact of the digital economy on carbon emissions and unravel the
underlying mechanism. The findings unequivocally demonstrate the pivotal role played by the
digital economy in mitigating carbon emissions. Even after subjecting the conclusions to a
battery of robustness and endogeneity tests, their validity remains intact. The mechanism
analysis reveals that the digital economy effectively curbs carbon emissions through low-
carbon technological innovation and industrial diversification. The disproportionate dom-
inance of digital industrialization is a significant factor contributing to the emergence of the
“Digital Economy Paradox”. Consequently, this paper not only introduces a novel analytical
perspective that systematically comprehends the carbon impact of the digital economy but
also presents fresh empirical evidence that advocates for the transformation and develop-
ment of a low-carbon economy.
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Introduction

P’s “2022 World Energy Statistics Review” reveals that the

global energy system is currently facing the greatest chal-

lenges and uncertainties of the past five decades. The
growth rate of global carbon emissions has reached a peak in the
last decade, and the alignment between social demand and supply
of carbon reduction measures is increasingly misaligned. Our
world is currently following an unsustainable trajectory. Hence,
the model of sustainable low-carbon economic development has
gained unprecedented significance, and there is an urgent need
for humanity to expedite the transformation of the production
mode (Lin and Jia, 2020).

The digital economy symbolizes the forward trajectory of sci-
entific and industrial advancement, holding great promise for
reducing carbon footprints. Nonetheless, there remains an
absence of unanimous agreement concerning the precise influ-
ence of the digital economy on carbon emissions. Numerous
factors have stimulated the digital revolution: declining sensor
costs, enhanced data storage capabilities, rapid advancements in
advanced analytics, and faster and more affordable data trans-
mission (Hodson, 2018). The growing utilization of digital tech-
nology in communication, entertainment, data collection and
management, and daily life has resulted in an increased demand
for power in computing and data centers. Globally, data centers
and networks consume approximately 2% of the world’s total
power, and considering the current surge in digital technology,
this figure is expected to steadily increase (Hittinger and
Jaramillo, 2019). In China alone, data centers consume a stag-
gering 204.5 billion kWh of electricity, accounting for 2.72% and
significantly surpassing the global average (IEA, 2020).

Another source of electricity demand is blockchain technology,
which employs digital encryption networks to establish dis-
tributed ledgers of information (Howson, 2019; World Bank,
2020). This technology necessitates a substantial amount of
electricity to track and verify digital transactions. Bitcoin, a digital
currency supported by blockchain technology, consumes an
annual electricity supply of 45.8 TWh, surpassing the energy
consumption of all consumers in Nevada in 2019 (EIA, 2020).
Evidence suggests that China’s bitcoin industry is projected to
consume 296.59 TWh of energy in 2024, leading to approxi-
mately 130.5 million tons of carbon emissions (Jiang et al., 2021).
At first glance, the digital economy appears to be closely asso-
ciated with high carbon emissions. However, is this apparent
relationship truly realistic?

Studies have made significant contributions in exploring the
impact of the digital economy on carbon emissions. However, a
common limitation is the failure to consider the broader role of
the digital economy, and it is incorrect to equate the carbon
emissions of digital technology with those of the digital economy.

As early as 1999, Jorgenson and Stiroh (1999) highlighted the
complementary relationship between the development of the
digital industry and non-digital industries. In the context of the
digital economy, the scale of the digital economy cannot be solely
measured by the value added of the digital industry. According to
the White Paper on China’s Digital Economy Development, the
digital economy is an economic system based on digital tech-
nology, encompassing both digital industrialization and industrial
digitalization. Digital industrialization refers to a series of digital
industries arising from the development of digital technology,
while industrial digitalization empowers traditional industries
with digital technology and fosters new industries and models. It
drives the transformation and upgrading of traditional industries,
facilitates the integration of diverse industries, and has increas-
ingly become a crucial driving force for promoting low-carbon
development in the digital economy. Information and commu-
nication technology (ICT), data centers, and cloud servers are
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components of digital industrialization, with industrial digitali-
zation playing a greater role in China. Consequently, previous
research failing to consider the technological spillovers of the
digital industry to other sectors, the promotion of energy system
upgrades, and the adjustment and optimization of economic
systems has resulted in the erroneous conclusion that the digital
economy leads to increased carbon emissions. Our study focuses
not only on the carbon emissions associated with digital indus-
tries like blockchain or the direct emissions stemming from
information and communication facilities, equipment, and ser-
vices but also assesses the carbon reduction effects of the digital
economy on an entire region at a higher level.

A nuanced exploration unfolds as we delve deeper into the
context of developing nations, where regions with higher levels of
digital economy development often exhibit elevated carbon
emissions, giving rise to the enigmatic “Digital Economy Para-
dox” However, this phenomenon’s existence does not warrant the
blanket assertion that the digital economy inherently fuels carbon
emissions, nor does it immediately negate the potential for carbon
mitigation within this sector. Rather, it underscores the intricate
interplay of multifarious factors influencing this intricate rela-
tionship. In a bid to elucidate the intricate relationship between
digital economy development and carbon emissions, this study
draws upon granular data sourced from regions and counties
within developing nations. The endeavor is directed towards the
construction of a more comprehensive and systematic logical
framework that delineates the mechanisms underlying the inter-
play of these two pivotal dynamics. Additionally, this research
endeavors to demystify the enigmatic “Digital Economy Paradox”
by delving into the nuanced factors that potentially disrupt the
anticipated carbon mitigation effects within the realm of the
digital economy.

This paper introduces several notable innovations. Firstly,
while the literature on factors driving carbon emission reduction
is comprehensive, the relationship between the digital economy
and carbon emissions has not been effectively demonstrated. Our
study employs county-level data from China to provide theore-
tical and empirical evidence of the impact of the digital economy
on carbon emissions in transition economies. This serves as a
significant addition to the existing literature. Furthermore, the
process of digital economy development in countries worldwide
commenced relatively recently. This is a key reason why existing
research, which only considers the carbon emissions associated
with the manufacturing, operation, and processing of digital
equipment from the perspective of digital industrialization
(Williams, 2011), concludes that the digital economy is “carbon-
friendly”. Our paper attempts to examine the carbon impact of
the digital economy through the lens of low-carbon technological
innovation and industrial diversification. This provides valuable
insights for a deeper understanding of the digital economy and
offers lessons for promoting the construction of new national
competitive advantages. Finally, the scarcity of fundamental data
hinders empirical research in the field of emission reduction
within the digital economy (Haidt and Allen, 2020; Lang, 2011).
To address this, our paper employs big data analysis methods to
construct a specific dataset at the district and county levels. By
doing so, we mitigate the impact of sample selection bias on the
universality and accuracy of conclusions and provide supporting
evidence to enhance empirical research in related fields.

Literature review

Direct effect. An increasing body of research has been dedicated
to examining the carbon impact of the digital economy, yet a
consensus remains elusive. Few doubt that digital technology has
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brought about fundamental changes to the global economy,
society, and the environment. However, given the global con-
sensus on curbing carbon emissions to address climate change, an
expanding body of literature has explored the carbon impact of
digital technology.

At the micro level, Emmenegger et al. (2006) conducted an
LCA to analyze Switzerland’s new mobile communication system,
highlighting the substantial carbon emissions generated during
transmission in mobile networks. Honée et al. (2012) also
conducted case studies to evaluate the carbon footprint of data
centers, revealing that more than half of the carbon footprint is
attributable to PC devices.

At the meso level, some scholars have identified the
considerable carbon footprint of the digital industry. The Global
Enabling Sustainability Initiative (GeSI) predicts that the ICT
industry’s carbon footprint will reach 1.25 gigatons (Gt) of carbon
emissions by 2030, accounting for 1.97% of global emissions
(Accenture Strategy, 2015). Malmodin and Lundén (2016)
demonstrated that Sweden’s ICT industry’s carbon emissions
reached 1.3% of the global level in 2007, with emissions peaking
in 2010 due to the widespread use of tablets and smartphones.

At the macro level, Moyer and Hughes (2012) suggested that
digital technology has a limited inhibitory effect on carbon
emissions. While some studies have shown an inverted U-shaped
relationship between digital technology and carbon emissions, the
turning point in developing countries is higher than in developed
countries (Higén et al., 2017). Shabani and Shahnazi (2019)
investigated the relationship between energy consumption in the
Iranian economic sector and the digital industry, revealing that
the digital industry has a significant promoting effect on carbon
emissions. Belkhir and Elmeligi (2018) evaluated the global
carbon footprint of the digital industry, highlighting that its
contribution to greenhouse gases will increase from 1.6% in 2017
to 14% in 2040.

These pieces of evidence may lead to the misconception that
the digital economy promotes carbon emissions. This misconcep-
tion stems from overlooking a crucial premise: the digital
economy is not synonymous with the digital industry. The
aforementioned scholars primarily focused on the direct impact
of the digital industry on carbon emissions, neglecting the
penetration of the digital industry into other sectors. Lange et al.
(2020) noted that there is heterogeneity in the impact of digital
industrialization and industrial digitalization on carbon emis-
sions. On one hand, the production of digital devices increases
electricity and energy consumption. On the other hand,
digitalization can drive the transition to renewable energy
sources, thereby reducing energy consumption. Importantly, the
reduction in energy consumption far outweighs the direct energy
consumption of digital devices. Bieser and Hilty (2018)
emphasized that the impact of the digital economy on carbon
emissions extends beyond changes in carbon emissions resulting
from large-scale digital industry production. The development of
the digital industry has reshaped the patterns of economic
production and consumption, leading to changes in carbon
emissions. Consequently, when calculating the scale of the digital
economy, some scholars consider not only investments in the
digital industry but also the spillover effects of the digital industry
on other sectors. When assessing the scale of China’s digital
economy, the CAICT (2020) divides it into two components:
digital industrialization and industrial digitalization. Jorgenson
and Stiroh (1999) differentiate the digital economy into its
production and application segments, with production represent-
ing the digital industry and application denoting the integration
of the digital industry into other sectors.

In summary, the digital industry itself contributes to significant
carbon emissions (Nguyen et al, 2020). However, when

comprehensively considering digital industrialization and indus-
trial digitalization, the digital economy has the potential to
mitigate carbon emissions. Thus, this paper presents Hypothesis
1: The digital economy can reduce carbon emissions.

Indirect effects

Low-carbon technological innovation. Under the wave of digita-
lization, the digital economy can facilitate the transformation of
new products, novel business forms, and innovative economic
models. Furthermore, it can pave the way for new avenues of
development and provide feasible opportunities for the effective
advancement of innovation activities across all industries. The
rapid economic growth witnessed in China over the past few
decades has primarily been accompanied by substantial energy
consumption and pollution emissions. This is primarily attributed
to the preference for a production mode that relies on the large-
scale allocation of factor resources. By integrating innovation
resources, the digital economy overcomes the constraints
imposed by the traditional economy’s supply of production fac-
tors on innovation. It fosters the upgrading of the industrial
structure and diminishes industries’ dependence on energy
inputs, thereby resulting in reduced carbon emissions. The
widespread adoption of big data and the Internet contributes
significantly to improving enterprises’ efficiency in information
collection and integration. The development of the new genera-
tion of information technology industry drives the concentration
of innovative elements, such as high-level talent, high-tech
enterprises, and research and development (R&D) capital.

The digital economy industry, exemplified by sectors like
artificial intelligence, blockchain, and the Internet of Things,
predominantly invests in knowledge and technology. It is
characterized by cost-effective diffusion, escalating marginal
returns, and economies of scale. These distinctive features
expedite its integration with traditional industries, thereby
optimizing their product structure and quality, enhancing
operational efficiency, fostering low-carbon technological innova-
tion, and facilitating structural transformation and upgrading,
consequently leading to reduced carbon emissions.

Consequently, this paper puts forth Hypothesis 2: The digital
economy can diminish carbon emissions by enhancing low-
carbon technological innovation.

Industrial diversification. The application of digital technology
initially creates a virtual space for gathering, enabling openness,
sharing, penetration, and diffusion (Cui et al., 2021; Tranos et al.,
2021). Further advancements in digital technology facilitate the
formation of industry clusters characterized by strong inter-
connections or minor typological differences in spatial patterns.
According to the theory of industrial agglomeration (Ning et al.,
2016), when regional industries gather and enhance information
transmission and technology exchange, spillover effects in terms
of knowledge and technology arise, leading to reduced input costs
and enhanced production efficiency. The profit growth and
technology sharing resulting from industrial agglomeration allow
enterprises to allocate more resources towards emission reduction
and encourage the exchange of emission-reducing technologies
among peers. The digital economy transcends geographical
boundaries and maximizes the integration of diverse resources
(Alam and Murad, 2020). Once the agglomeration level of
manufacturing enterprises empowered by digital technology
reaches a certain threshold, it effectively resolves the contra-
diction between supply and demand in social production and
mitigates spatial constraints on economic activities (Ren et al,,
2021). Agglomeration generates economies of scale, enhancing
resource utilization efficiency and curbing excessive consumption
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of tangible resources in traditional industrial production (Lange
et al, 2020), ultimately resulting in significant emission
reductions.

Moreover, digital technology not only facilitates the geogra-
phical agglomeration of enterprises but also strengthens the
connections among different industries. With the progress of
digital technology, emerging digital industries driven by ICT
innovation have emerged, including electronic information
manufacturing, telecommunications, software and information
technology services, and the internet industry. These industries
have witnessed substantial growth in scale, continuously updating
and iterating. Additionally, the linkages between industries
lacking technical and economic cooperation are reinforced. For
instance, the application of Internet of Things technology in the
logistics industry enables the collection of service data that was
previously difficult to quantify, thereby facilitating real-time
infrastructure operation monitoring and previously challenging
process adjustments. This improves the service efficiency and
quality of infrastructure while fostering closer ties between the
logistics and service industries due to the introduction of digital
technology. As a result, industrial scale and interconnectivity are
expanded, leading to reduced energy waste (Prajogo and Olhager,
2012). Furthermore, the utilization of intelligent agricultural
machinery in the agricultural sector not only drives the demand
for mechanical equipment manufacturing but also enhances land
planting efficiency and reduces carbon emissions in agricultural
production (Arouna et al, 2021). In summary, the digital
economy stimulates technology sharing among similar industries,
fosters industrial clusters, strengthens inter-industry linkages, and
generates scale effects, ultimately contributing to carbon emission
reduction.

Therefore, this paper proposes Hypothesis 3: The digital
economy can reduce carbon emissions, with industrial diversifi-
cation playing a mediating role.

In conclusion, the digital economy reduces carbon emissions
through improvements in low-carbon technological innovation
and industrial diversification. However, this assertion necessitates
further empirical testing to provide detailed evidence.

Digital industrialization. In the continuum of the foregoing dis-
course, the digital economy delineates a composite spectrum
comprising digital industrialization and industrial digitization.
The former encapsulates the strategic deployment of digital
technologies across heterogeneous sectors, thereby propelling the
orchestrated digitalization and cognitive maturation of industrial
domains. This catalytic process orchestrates the metamorphosis
and contemporization of conventional industrial pursuits, with a
strategic compass oriented towards the amplification of produc-
tion efficiency, the strategic orchestration of resource endow-
ments, and the augmentation of value-addition within industrial
realms. Nevertheless, a salient caveat emerges as the veritable
relationship between digital industrialization and profligate car-
bon emissions does not subscribe to a preordained linear ortho-
doxy. Paradoxically, an assertive viewpoint espouses that the
adoption of digital industrialization is implicitly concomitant
with augmented energy imperatives, a dynamic that begets
resonating rebound effects culminating in consequential ecolo-
gical ramifications (Jin and Yu, 2022).

In consonance with the escalating arc of our reliance on the
digital episteme and its corollary service modules, the commen-
surate escalation of energy requisites to underpin the operability
of these pervasive establishments augments conspicuously.
Empirical corroboration attests to the fact that the proportionate
quantum of greenhouse gas emissions ushered by the digital
industrialization enclave surmounts 3.2% of the aggregate global
greenhouse gas inventory, thus articulating a corollary electricity
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utilization metric of 3.9%. Concomitant with the ascendancy of
cloud computing and the proliferation of data centers, the energy
appetite has surged with alacrity from a nominal tally of 62.3
billion kilowatt-hours in the annus mirabilis of 1964 to a
vertiginous crescendo of 200.7 billion kilowatt-hours in the
penultimate calendar year of 2020. Concomitantly, the trajectory
presages a sustained continuum, poised at a threshold of
consistent annual escalation encompassing a notable 9%
(Sadorsky, 2012).

Notwithstanding, an alternate polemic conveys a contrasting
thesis, wherein digital industrialization potentially presages the
recalibration of economic growth parameters, and by extension,
unshackles ecological deterioration (Amri et al.,, 2019). In this
intricate dialectic, a novel ontological axiom is promulgated,
postulating the segregation of the digital economy into discrete
taxonomies: digital industrialization and industrial digitization
(Zhang and Du, 2023). In this heuristic exegesis, it is deduced that
the latter embodies the dominant architectonics furnishing a
resolute mandate for the mitigation of carbon emissions. Thus,
within this theoretical construct, notwithstanding the ascendant
echelons of digital economic ascendancy in certain loci, should
the compositional tenor be inextricably tethered to digital
industrialization, the consequential ecological footprint resonates
in the affirmative. This trend emerges from the counterpoise
engendered by the incipient curtailment of carbon emissions vis-
a-vis industrial digitization, which, regrettably, manifests as an
insubstantial bulwark against the carbon emissions proffered by
the digital industrialization cohort. Ergo, the emergent discord
transgresses the initial envisagement of the digital economy’s
prognosticative capacity to attenuate carbon emissions, thereby
engendering the enigma epitomized by the “Digital Economy
Paradox.”

Therefore, this paper proposes Hypothesis 4: Digital indus-
trialization may impede the carbon emission mitigation efforts of
the digital economy.

Research methods
Data sources. The data sources of this paper include the
following:

Firstly, scientific data were utilized to obtain information
regarding carbon emissions and terrestrial vegetation carbon
sequestration in 2735 counties across China. Secondly, the
measurement of the digital economy relied on government work
reports from various cities. Thirdly, data on the digital financial
inclusion index were sourced from the Digital Finance Center of
Peking University, China. Fourthly, low-carbon technological
innovation data were retrieved from the IncoPat database. Lastly,
control variable data were derived from the “China County
Statistical Yearbook”. Table 1 presents the descriptive statistics of
the data. After excluding any missing values, this study compiled
a total of 19,766 observations, including unbalanced panel data
on 1579 districts and counties spanning from 2004 to 2017,
encompassing 30 provinces, municipalities, and autonomous
regions.

Variables

Explained variable (CO2). Based on data availability, the majority
of studies are limited to obtaining carbon dioxide data only at the
national, provincial, and municipal levels, lacking support for
more granular micro-level data. However, advancements in
satellite data have provided robust support for calculating carbon
emission data at the district and county levels (Chen et al., 2022).
In this study, we followed the approach of Chen et al. (2020a),
which standardized the scale of satellite imagery from the Defense
Meteorological Satellite Program/Operational Linescan System

| (2023)10:609 | https://doi.org/10.1057/s41599-023-02126-7



ARTICLE

Table 1 Descriptive statistics.

Variable Mean Std. Dev. Min Max Description

CO, 2.889 2.717 0.026 26.492 Carbon emissions

Digital 1.078 1.912 0.000 22.000 Digital economy

Li 0.047 0.328 0.000 4.575 Technological innovation

Div 1.948 0.183 1110 2.982 Industrial diversification

Din 0.440 0.496 0.000 1.000 digital industrialization

Area 7.512 0.756 1.386 1.109 Administrative area

Machine 3.451 0.878 —0.693 7.321 Total power of agricultural machinery
Popu 56.412 35.507 1.000 247.000 Household population

Str 11.918 0.882 7.863 14.145 Value added of the primary industry
Budget 1.778 0.925 8.631 15.174 General public budget expenditure
Industry 4.21 1172 0.000 8.115 Number of industrial enterprises above a designated size

(DMSP/OLS) and National Polar-Orbiting Partnership/Visible
Infrared Imaging Radiometer Suite (NPP/VIIRS) to acquire
consistent and continuous nighttime light data. To address the
issue of pseudoregression, a unit root test was employed to vali-
date the relationship between provincial carbon emissions and
nighttime light data. Additionally, training was conducted to fit
the data, and county-level carbon emissions and carbon seques-
tration data were obtained using a top-down weighted average
strategy. Due to significant disparities in value between the two
sets of nighttime light data, originating from different sensors, an
artificial neural network was utilized to calculate the relationship
between these two datasets, resulting in improved fitting
accuracy.

Core explanatory variables (Digital). The digital economy is a
relatively abstract concept, posing challenges in identifying pre-
cise indicators for its measurement in practical terms. The essence
of measuring the digital economy lies in capturing its core
aspects. The narrow definition of the digital economy encom-
passes the emergence of digital core industries driven by digital
technology, whereas the broader definition encompasses the
overall impact of digital technology on the economic system as a
whole. Therefore, the extent of digital technology adoption serves
as a tangible manifestation of digital economy development.
Cloud computing, artificial intelligence, big data, the Internet of
Things, and blockchain technology collectively form the foun-
dational elements of digital technology.

Previous studies have predominantly employed extensive data
text analysis methodologies, quantifying the frequency of terms
related to digitization in government work reports to gauge the
progression of the digital economy (Chen et al., 2012; McAfee
and Brynjolfsson, 2012; Farboodi et al., 2019; Smutradontri and
Gadavanij, 2020)'. However, this approach may engender
multifaceted criticisms. Firstly, the frequency analysis of terms
within government work reports may not directly mirror policy
execution. While an abundance of digital-centric lexicon may
feature in these reports, it predominantly serves as a manifesta-
tion of governmental policies, without aptly reflecting the tangible
outcomes of policy implementation in practice. The effectiveness
of policy enactment is predisposed to myriad factors, including
local governmental capacity, resource allocation, and balance of
interests. Subsequently, the contents of government reports could
be influenced by factors such as political propaganda. Govern-
ment work reports often serve as platforms for public
dissemination of governmental endeavors, and thus, the presence
of political underpinnings cannot be discounted. Against the
backdrop of political exigencies, governmental emphasis on the
significance of digital economic development may not necessarily
correlate with factual circumstances, introducing discrepancies
between the narrative presented and actual realities. Moreover,

government work reports merely represent a facet of govern-
mental endeavors, thereby possibly falling short of comprehensive
coverage of the myriad dimensions underpinning digital
economic growth. The trajectory of digital economy development
encompasses a spectrum of dimensions, including industrial
innovation, technological applications, and human resource
cultivation, which government work reports might not compre-
hensively encompass. Consequently, employing term frequency
analysis in government work reports to quantify the advancement
of the digital economy necessitates judicious consideration. A
holistic assessment of the digital economy mandates amalgama-
tion of supplementary datasets and information for a compre-
hensive evaluation. Substantiating this premise, this study opts to
measure the extent of digital economy development by appraising
the quantum of digital patents within regional core digital
industries. Recognizing the core of the digital economy to reside
in digital technologies, digital patents aptly showcase the
proficiency and resources a region commands in digital
technology research and application.

Mediating variables
Low-carbon technological innovation (Li): This study utilized the
IncoPat database to quantify the number of patents from the
output perspective. This database comprises over 100 million
patent records from 112 countries and organizations worldwide,
offering comprehensive data with frequent updates. Specifically,
we extracted a total of 945,078 patent records from 250,456
Chinese companies spanning the years 2010 to 2017. These
records included publication numbers, publication dates, appli-
cation numbers, applicants, application dates, applicant countries,
and patent types classified according to the International Patent
Classification (IPC). Based on the location of the applicants in
districts and counties, we analyzed the number of patents across
2659 regions in China during the aforementioned period.
Building upon this foundation, we proceeded to calculate the
level of low-carbon technological innovation (Li) in the districts
and counties. Extensive research has been conducted on green
technology patents. The cooperative patent classification (cate-
gory Y02), jointly issued by the European Patent Office and the
U.S. Patent Office, defines green technology or applications as
those that mitigate or adapt to climate change (Ghisetti and
Quatraro, 2017). Many scholars have adopted this approach
(Chen et al,, 2020b). However, accurately identifying patents
related to low-carbon technologies remains challenging using this
definition of green technological innovation. Therefore, this study
introduces a refined distinction to more precisely identify the
number of patents associated with low-carbon technologies across
different enterprises. Specifically, we refer to the Green Inventory
of the International Patent Classification published by the World
Intellectual Property Organization (WIPO) in 2010, which
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categorizes green patents into seven groups: transportation, waste
management, energy conservation, alternative energy production,
administrative regulation or design, agriculture or forestry, and
nuclear power generation.

Since the seven patents above cover a wide range of innovation,
the following three types of patents are extracted for this article:

(1) Those with a primary classification of alternative energy
production or energy conservation;

(2) Those with a secondary classification of waste management
for waste disposal patents; and

(3) Those with a secondary classification of administrative
regulation or design for carbon/emissions trading patents,
which are used to measure the low-carbon technological
innovation of enterprises.

Industrial diversification (Div): In this paper, industrial diversi-
fication is used to measure the size of a region, and the following
model is constructed by drawing on the measurement method of
the Herfindahl-Hirschman index (Dharfizi et al., 2020):

Div, = 1/55, o)

In the formula above, s;; represents the proportion of the
employment of industry j of city i in year t in the total
employment of the region, and Div; represents industrial
diversification. The larger the value is, the more types of
industries in the region, the larger the scale, and the more
balanced the development.

Control variables. Drawing on previous research (Aichele and
Felbermayr, 2012; Best et al, 2020; Chang et al., 2019), this
paper selected the following control variables at the county level:

(1) Although the total carbon emissions of large cities are
relatively high, a larger urban area also means greater
economic agglomeration, and the formation of economies
of scale will help reduce carbon emissions (Cheng et al.,
2022). Thus, the administrative area (Area) was chosen as a
control variable.

(2) In recent years, China has vigorously promoted agricultural
modernization and mechanization, and the synergistic
effect on carbon emission reduction has initially emerged
(Li et al., 2023). Therefore, the total power of agricultural
machinery (Machine) was chosen as a control variable.

(3) More population means more consumption, which inevi-
tably increases carbon emissions (Yan and Huang, 2022).
Thus, the registered population (Popu) was chosen as a
control variable.

(4) It has become an indisputable fact that developing countries
respond to climate change by adjusting their industrial
structure (Wang et al., 2020). Hence, the value added of the
primary industry (Str) was chosen as a control variable.

(5) Fiscal policy not only provides incentives for ecological
protection but also strengthens restrictions on unfriendly
development models (Zhang et al., 202la). Thus, the
general public budget expenditure (Budget) was chosen as a
control variable.

(6) Evidence suggests that the majority of carbon emissions
come from manufacturing rather than personal emissions
(Tu et al., 2019). Therefore, the number of industrial
enterprises above a designated size (Industry) was chosen as
a control variable.

Causal mediation model. In recent years, the goal of mediation
analysis has garnered significant attention from economists and

6

policymakers. Structural equation modeling (SEM) has been
extensively employed in numerous studies (Alacevich and
Zejcirovic, 2020; Baron and Kenny, 1986; Hanewald et al., 2021),
with tens of thousands of articles utilizing this method as of 2009.
SEM has made a profound impact on social science research, yet
researchers have seldom considered its potential pitfalls (Zhao
et al., 2010). Notably, structural equation models encounter
substantial endogeneity issues, and relying solely on traditional
exogeneity assumptions is insufficient to determine the causal
mechanism (Celli, 2022). When mediating variables and expla-
natory variables interact, the estimates of average effects become
biased. Since the average effect estimate disregards critical
information regarding direct and indirect effects, it fails to pro-
vide a comprehensive explanation of the causal mechanism
underlying the total effect (Rijnhart et al., 2021). Building upon
the research of Alan et al. (2018), this study establishes a causal
mediation model to discern the mediating effect of low-carbon
technological innovation and industrial diversification. Specifi-
cally, the causal mediation model employs a quasi-Bayesian
Monte Carlo approximation, a computer simulation-based
method that allows for the inclusion of various linear, non-
linear, or even nonparametric estimation models within the fra-
mework. The model is based on the counterfactual framework to
calculate the average causal mediation effect (ACME) and the
average direct effect (ADE) to achieve causal inference between
continuous or discrete variables, mediating variables and outcome
variables. If we try to judge the impact of event A on event B, we
should not only observe the impact of event A on event B but also
observe the situation of event B without event A. In fact, as long
as event A occurs, we cannot observe the situation of event B
without event A. By using the counterfactual framework, we can
not only solve the problem of selective bias but also avoid the
need to make assumptions about the functional form of para-
meters and ensure more flexible identification steps to obtain the
true causal mechanism (Nguyen et al, 2020). The model is as
follows:

CO2;, =y, + y,Digitaly, + > AX;, + p; + p, + €1, (2)
Me;, = ¢, + ¢, Digital, + > AX;, + p; + p, + €2, (3)

CO2;, = x, + x,Digital, + x,Me;, + 2AX; + ;- + €3
4)

The subscripts i and ¢ represent the district and vyear,
respectively, and CO2 is the explained variable of this paper,
that is, the carbon emissions of districts and counties. Digital is
the core explanatory variable, which is represented by the
development level of the digital economy of the city where the
district and county are located. X represents the set of control
variables that affect carbon emissions and changes in i and t. y;
and p, represent individual and year fixed effects, respectively,
which are used to control for individual factors that affect carbon
emissions but do not change over time and time factors that do
not change with individuals, respectively. ¢ represents the random
error term.

Learning from Imai et al. (2010), this paper adopts an
estimation method based on quasi-Bayesian Monte Carlo
approximation. The main steps are as follows: First, Egs. (3)
and (4) are fitted to simulate the latent value of the mediating
variable based on the sampling distribution of the model
parameters. Second, the potential outcome is simulated based
on the simulated value of the mediating variable. Finally, the
causal mediating effect is calculated. The effective estimate of
ACME is ¢1),, and that of ADE is y;.
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Table 2 Causal mediation estimation.

Eq. (2) Eq. (3) Eq. (4)

m (¢3)] A) (C:)) ()]
VARIABLES co2 Li Div co2 co2
Digital —0.123*** 0.025*** 0.022*** —0.951** —0.847***
Li —0.277***
Div —0.449***
Area 0.306* —0.010*** 0.041+** 0.081** 0.150***
Machine —0.382*** 0.024*** 0.004** 0.703*** 0.612***
Popu 0.007** 0.001T*** —0.001*** —0.011*** —0.003
Str 0.415 —0.003 0.064*** —0.689*** —0.689***
Budget —0.237*** —0.016*** —0.064*** 2.163*** 1.358***
Industry 0.111** —0.004*** 0.012*** 1.015*** 0.983***
Individual fixed effects Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes
Observations 19,763 1,696 19,194 1,696 19,194
R-squared 0.948 0.017 0.086 0.405 0.424
Adj R-squared 0.944 0.017 0.085 0.404 0.423
F 10.860 29.250 257.130 992.250 1761.42
***, ** and * indicate significance at the 1%, 5%, and 10% levels, respectively.

Results

The impact of the digital economy on carbon emissions.
Table 2 presents the estimation results of Eqs. (2)-(4). Regression
(1) demonstrates the impact of the digital economy on carbon
emissions, with the coefficient of Digital showing significant
negative effects at the 1% level, confirming the direct influence of
the digital economy on carbon emissions.

All control variables chosen in this study exhibit significance,
further affirming the robustness of the model. Notably, the
estimated coefficient of Area is positive, indicating that larger
administrative areas generally promote carbon emissions. Typi-
cally, higher administrative areas correspond to lower population
density. Numerous studies have revealed a negative correlation
between population density and carbon emissions (Wang et al.,
2022), with per capita emissions in low-density regions being
2-2.5 times higher than those in high-density areas (Grazi et al.,
2008). Moreover, research has shown that carbon emissions in
urban areas with high population density are 23% lower than
those in rural areas (Fremstad et al., 2018; Yi et al.,, 2021). Hence,
the findings of this paper align with previous literature.

The estimated coefficient of Machine is negative, suggesting
that the total power of agricultural machinery can restrain carbon
emissions. Some studies indicate that large-scale operators are
more inclined to adopt advanced agricultural technology, which,
despite increased power consumption, mitigates the negative
impact of agricultural practices on the ecological environment
(Ren et al., 2019). Moreover, cases demonstrate that the carbon
emissions per unit area of large farms utilizing high-power
agricultural machinery in Iran are significantly lower than those
of small-scale farms (Rakotovao et al., 2017).

The estimated coefficient of Popu is positive. It is evident that a
larger population corresponds to higher electricity consumption,
inevitably leading to increased carbon emissions. Furthermore,
the coefficient of “Str” is positive, signifying that value added in
the primary industry stimulates carbon emissions. In China,
adjusting the industrial structure is one approach to reducing
carbon emissions. The primary industry predominantly consists
of energy-intensive sectors and constitutes a major contributor to
carbon emissions (Zhu et al., 2021).

The estimated coefficient of Budget is negative, suggesting that
general public budget expenditure can restrain carbon emissions.
In most Chinese district and county governments, economic and

environmental performance are key assessment criteria. However,
in the face of fiscal deficits, officials still prioritize local economic
development, and China’s rapid economic growth over the
decades has come at the expense of environmental pollution
(Zhao and Mattauch, 2022). Governments with more substantial
financial budgets are more inclined to invest in environmental
development (Li et al., 2017) to fulfill superior-level government
environmental assessment requirements, resulting in lower
carbon emissions.

Lastly, the estimated coefficient of Industry is positive,
indicating that the number of large-scale industrial enterprises
promotes carbon emissions. Since 2017, the Chinese government
has transitioned from a high-speed development model to one
focused on high-quality development. This shift is driven by the
recognition that pursuing industrial scale without considering
industrial quality leads to adverse consequences, including
significant environmental pollution issues (Tu et al., 2019).
Consequently, one of the Chinese government’s future objectives
is gradually phasing out highly polluting, high-emission, and
high-output industrial enterprises while introducing high-tech
enterprises with advanced technology and low pollution levels
(Zhang et al., 2021b).

Robustness checks. Firstly, the objective of this paper is to vali-
date whether the advancement of a high digital economy corre-
sponds to reduced carbon emissions. In the realm of natural
science, it is possible to establish a more dependable control
group by creating an experimental environment and discerning
causal relationships through comparisons between the experi-
mental and control groups. Adhering to this notion, it is neces-
sary to establish two identical sets of experimental and control
groups. The experimental group would possess a high digital
economy, while the control group would have a low digital
economy. The ensuing changes in carbon emissions between the
two groups can then be observed. However, finding perfectly
matched control and experimental groups in all aspects proves
challenging. Therefore, this paper employs propensity score
matching. Specifically, districts and counties characterized by a
high digital economy are designated as the experimental group,
while those with a low digital economy form the control group.
Utilizing the aforementioned control variables, a logit model is
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Table 3 Robustness tests.

m 2) (3)
VARIABLES co2 CO2seq co2
Digital —0.122*** —0.059***
Dfiic —0.001*
Area 0.324** 0.133 0.246***
Machine —0.383*** 0.097*** —0.032**
Popu 0.006** —0.006*** 0.001
Str 0.417* 0.187*** 0.086*
Budget —0.238*** —0.023 0.117***
Industry 0.110*** 0.001 0.094***
Individual fixed effects Yes Yes Yes
Year fixed effects Yes Yes Yes
Observations 19,743 19,763 4538
R-squared 0.948 0.991 0.998
Adj R-squared 0.944 0.990 0.997
F 10.840 9.770 11.090
***, ** and * indicate significance at the 1%, 5%, and 10% levels, respectively.

employed to assign scores to the two groups. Based on these
scores, the experimental and control groups are paired using the
K-nearest neighbor caliper radius matching method. In this
instance, K is set at 4, and the caliper is set at 0.01. Consequently,
the closest individual from the four candidates displaying a score
difference of 1% is selected for one-to-four matching. Following
the matching process, the experimental and control groups
exhibit striking similarity, except for the digital economy variable.
Finally, the difference in carbon emissions between the treatment
and control groups is calculated, providing evidence that the high
digital economy group demonstrates lower carbon emission
levels.

Second, based on the previous discussion, this study unifies the
satellite image scales of the DMSP/OLS and NPP/VIIRS from
1997 to 2017 and calculates the carbon sequestration (CO2seq) of
terrestrial vegetation in 2735 counties in China. This variable is
used to replace the previous CO2 variable for regression.

Third, this paper draws on the county-level Digital Financial
Inclusion Index (Dfiic) issued by the Digital Finance Center of
Peking University, China. In the data, there were 1754 counties in
2014, 1754 counties in 2015, 2791 counties in 2016, 2786 counties
in 2017, 2802 counties in 2018, 2848 counties in 2019, and 2850
counties in 2020. Digital financial inclusion is calculated based on
33 indicators. We use this index to replace the digital economy
level in the regression model.

In summary, the results are shown in Table 3, and the
coefficients of the core explanatory variables are still significantly
negative at the 1% level. Thus, the conclusions above are robust.

Endogeneity test. Endogeneity poses a crucial concern that
warrants attention in this paper. While carbon dioxide, as an
energy source, may not directly impact other economic behaviors,
carbon emissions are frequently associated with regional eco-
nomic activities. A higher carbon emission intensity signifies a
greater level of economic development, which subsequently
influences the adoption of the digital economy. Conversely,
higher carbon emission intensity also signifies a more advanced
state of the manufacturing industry, and the remarkable
enhancements in manufacturing productivity are intertwined
with the rapid progress of the digital economy. Simultaneously,
the digital economy and the advancement of manufacturing
industry technology are intricately linked. A causal endogenous
relationship exists between the digital economy and manu-
facturing industry productivity.

8

Table 4 Endogeneity test.

m 2 (€)] (C))

first Second first second
VARIABLES Digital co2 Digital co2
Instrumental Fixtele Post
Variables
Digital —0.223*** —0.454***
Fixtele 0.001***
Post 0.001**
Area —0.496*** —0.127*** —-0.496** 0.013
Machine —0.085*** —0.271"** —-0.076*** —0.289***
Popu 0.002 0.012*** 0.001** 0.013***
Str —0.267*** —0.151"** —0.287*** —0.226***
Budget 0.2071*** —0.199*** 0.218** —0.152***
Industry —0.125***  0.147*** 0.126* 0.181**
Individual fixed Yes Yes Yes Yes
effects
Year fixed effects Yes Yes Yes Yes
Observations 15,502 15,502 15,502 15,502
Kleibergen-Paap rk ~ 237.795 91.521
Wald F statistic
*** ** and * indicate significance at the 1%, 5%, and 10% levels, respectively.

To address the endogeneity issue in the carbon emissions and
digital economy relationship, we employ the instrumental
variable method. Considering the historical development of
China’s digital economy, its origins can be traced back to the
establishment of fixed telephone lines. Regions with a high level
of digital economy may also exhibit high penetration rates of
fixed telephone lines. Furthermore, prior to the widespread
adoption of fixed telephone lines, information exchange
primarily relied on the postal system, which was responsible
for setting up fixed telephone lines. The distribution of post
offices directly influenced the deployment of fixed telephone
lines during the early stages. Regions with a greater number of
post offices and fixed telephone lines often possess a more
favorable foundation for digital economy development. A direct
positive correlation exists between these factors and the digital
economy, while their connection with carbon emissions is not
significant. Therefore, the two prerequisites for instrumental
variables are met.

Accordingly, this paper selects the number of fixed telephone
lines per 100 people and the number of post offices per million
people in 1984 as instrumental variables. However, considering
that the use of one-year data as an instrumental variable will
cause problems such that it will be difficult for the fixed effect
model to carry out measurements, the number of fixed telephone
lines per 100 people (Fixtele) and the number of post offices per
million people (Post) in 1984 are multiplied by the number of
Internet users per year as the instrumental variables of the digital
economy. Regressions (1)-(4) of Table 4 report the regression
results after using the two instrumental variables. In regression
(1) and regression (3), the first-stage estimation results show that
the coefficients of the instrumental variables are all significantly
positive at the 1% level, which satisfies one of the preconditions
for the instrumental variables, that is, being related to the digital
economy. In regression (2) and regression (4), the second-stage
estimation results show that the regression coefficient of the
digital economy is still significantly negative at a level of at least
1%. Therefore, after excluding the endogeneity problem, the
conclusions above are still valid.

Test of the mediating effect. In elucidating the operative
mechanisms linking the digital economy with carbon emissions,
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Table 5 ACME and ADE. Table 6 Test of the digital economy paradox.
m 2 m 2
Mediating variable Li Div VARIABLES co2 co2
ACME —0.007 —0.010 Digital —0.039*** —0.121*
[-0.013, —0.002] [-0.014, —0.005] Din —3.693"** —3.003***
ADE —0.938 —0.838 Din_Digital 0.029*** 0.033***
[-1.100, —0.834] [-0.949, —0.767] Area 0.025*** 0.036***
ATE —0.945 —0.848 Machine —0.300*** —0.367**
[-1.107, —0.840] [-0.959, —0.776] Popu —0.003 0.006***
Proportion 0.008 0.0Mm Str 0.664*** 0.401***
[0.006, 0.008] [0.010, 0.012] Budget 0.541%* —0.195***
Industry 0.050*** 0.089***
Confidence interval in parentheses. Individual fixed effects Yes Yes
Year fixed effects No Yes
an initial step involves estimating a causal mediation model. This | Observations 19,763 19,623
research employs a quasi-Bayesian approach to approximate iqufared d 8'332 8222
parameter uncertainty, with the count of simulation iterations set | - ) Rsquare 216,600 14.960
at 1000. The computational results derived from this model are : '
presented in Eqs. (3) and (4). The results from Regressions | ** indicates significance at the 1% level.

(2)-(3) presented in Table 2 delineate the influence exerted by the
digital economy on low-carbon technology innovation and
industrial diversification. The coefficient estimates for Digital
pertaining to both Li and Div exhibit significant positivity at a
level of a minimum 1%, substantiating the hypothesis that the
digital economy effectively augments all three mediating vari-
ables. Results from Regressions (4)—(5) encapsulate the outcomes
following the incorporation of the digital economy and the two
mediating variables. It is noteworthy that in these regressions, the
coefficients for Digital, Li, and Div continue to display significant
negativity at the 1% level, inferring that a larger mediating vari-
able corresponds to a reduction in carbon emissions. The out-
comes of the causal mediation model provide valuable insights
into the potential channels through which the digital economy
influences carbon emissions, a topic which is delved into further
in subsequent sections of this paper.

Moreover, this study calculates the ACME, ADE, and Average
Treatment Effects (ATE) by employing the coefficient product of
the causal mediation model. The tabulated results are displayed in
Table 5. For columns (1)-(2), the outcome variables are CO2, and
the mediating variables comprise Li and Div. The ACME of the
digital economy’s effect on carbon emissions via low-carbon
technology innovation stands at —0.007, and its corresponding
95% confidence interval surpasses 0, attesting to the presence of a
mediation effect. The ADE and ATE are —0.938 and —0.945,
respectively, with confidence intervals exceeding 0, thus establish-
ing that the proportion of the mediation effect is 0.031. In a
similar vein, the other two mediation effects are confirmed,
respectively, thereby underscoring the significance of the two
mediation pathways.

Test of the digital economy paradox. While research has
demonstrated the potential of the digital economy to reduce car-
bon emissions, an intriguing phenomenon persists—a conundrum
we shall refer to as the “Digital Economy Paradox.” Curiously,
regions characterized by elevated levels of digital economic pro-
wess often exhibit concurrent high levels of carbon emissions. This
paradox challenges the anticipated carbon mitigation benefits of
robust digital economic development. In pursuit of empirical
validation, the designed variable—digital industrialization—will be
scrutinized to determine if its presence accentuates or attenuates
the inhibitory effect of the digital economy on carbon emissions.
Such analysis holds the potential to unravel the intricate dynamics
underpinning the observed “Digital Economy Paradox,” providing
a more nuanced understanding of how digital industrialization

may potentially counteract the carbon mitigation intent embedded
within the digital economy. This paper employs the summation of
software business revenue and industrial value-added to gauge the
magnitude of digital industrialization and introduces the variable
(Din). When the magnitude exceeds the mean, Din is assigned a
value of 1; conversely, it takes on a value of 0. Table 6 presents the
results of the moderation effect analysis. In this table, Din_Digital
signifies the interaction term between digital industrialization and
the digital economy. It is discernible that the coefficient estimate
for Digital remains significantly negative. However, the coefficient
estimate for the interaction term is significantly positive. This
finding suggests that digital industrialization exerts a dampening
effect on the carbon mitigation capacity of the digital economy.
Specifically, when the prevalence of digital industrialization is
higher, the inhibitory effect of the digital economy on carbon
emissions diminishes. This signifies that such an effect is obscured
or mitigated by the pronounced prominence of digital indus-
trialization within the digital economic landscape.

Discussion

The implications of our discoveries extend to the discourse
surrounding the digital economy and carbon emissions. The
digital economy can be fractionated into two segments: the
digital industry and the traditional industry imbued with digital
technology. The academic landscape heretofore has failed to
duly recognize the distinction between the digital industry and
the digital economy. Should the carbon emissions from the
digital industry be utilized as a proxy for those of the digital
economy, it would invariably precipitate measurement inac-
curacies. Digital technology is fundamentally predicated on
electricity, and burgeoning digital industries such as cloud
computing and data centers necessitate increasingly energy-
intensive infrastructure for their development and operations.
Emblematic digital industries, typified by information services,
constitute approximately 10% of global electricity generation
(Yang et al, 2022). This voluminous electricity consumption
intensifies the usage of coal, thereby instigating substantial
carbon emissions (Salahuddin and Alam, 2015). However, it
does not equate to the notion that the digital economy is
inherently incompatible with carbon emissions reduction.
Drawing upon the insights of Jorgenson and Stiroh (1999), our
study reveals that when one considers both the digital industry
and other sectors that have been enhanced by the digital
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Fig. 1 Logical framework. The figure presents the extent to which the digital economy influences carbon emissions. It further illustrates the mediating roles
of low-carbon technological innovation, industrial diversification, and digital industrialization in this process.

industry, the net effect is a decrease in carbon emissions. Bieser
and Hilty (2018) likewise posited that the evolution of the digital
industry has transformed industrial production methodologies.
Consequently, the reduction in carbon emissions achieved by
non-digital industries will surpass that of the digital industry.
The rationale behind this is rooted in the applicability of digital
technology in traditional industries. On one hand, the permeation
of digital technology facilitates the translocation of production
factors from offset sectors to efficient ones, which enhances
resource allocation efficiency, subsequently ameliorating energy
utilization efficiency and reducing carbon emissions. On the other
hand, the digital economy actualizes cross-industry emissions
reduction through digital technology spillovers, representing a
significant conduit for digital technology to assist traditional
industries in emissions reduction. Notably, the advent of smart
home systems, eco-friendly hospitality establishments, and
remote office systems has curtailed carbon emissions in utilities
such as water supply and heating (Yadegaridehkordi et al., 2021).
The integration of sensors and chips into conventional machin-
ery, combined with the support of 5G technology, allows enter-
prises to control each machine’s operation optimally and
expeditiously at any given time, maintaining it in an ideal state
and diminishing energy consumption (Xu and Li, 2019). This
exemplifies a successful incorporation of industrial internet
technology into traditional industries. Information technology
significantly attenuates the carbon emission intensity of the
logistics industry and curbs energy wastage during transit
through strategies such as route optimization, transportation

10

capacity allocation, and the Internet of Things (Prajogo and
Olhager, 2012). When digital technology permeates the agri-
cultural sector, it also proves beneficial in carbon emissions
reduction. All these are attributable to the suppressive effect of
digital technology on the carbon emissions of traditional indus-
tries (Walzberg et al., 2020), which will counterbalance the carbon
emissions increment of the digital industry, ultimately inducing a
decrease in the aggregate carbon emissions of the digital econ-
omy. This elucidates why prior research may have concluded that
the digital economy does not contribute to carbon emissions
reduction (Zhou et al.,, 2019).

Drawing upon the aforementioned results, this paper con-
ceptualizes a theoretical framework outlining the impact of the
digital economy on carbon emissions, as depicted in Fig. 1.
Specifically, concerning the direct effects, carbon emissions
associated with digital technology as a fulcrum encompass both
the digital industry and traditional sectors enhanced by digital
technology. The coefficient delineating the impact of the digital
economy on carbon emissions registers at —0.123, demonstrating
a significant inhibitory influence. Pertaining to indirect effects,
initially, the digital economy, distinguished by technology spil-
lovers, propels the advancement of industrial structure, thereby
steering the development of comprehensive technological inno-
vation within a region. Low-carbon technological innovation
exerts the most immediate impact on carbon emissions, with its
coefficient estimated at —0.277, implying a notable inhibitory
effect. Secondly, the digital economy fosters the diversified
development of regional industries through the phenomena of
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information transmission and industrial agglomeration, culmi-
nating in a scale effect. The coefficient is estimated at 0.022,
indicating an apparent stimulatory effect. Furthermore, the
escalation of the industrial scale promotes inter-industry tech-
nology sharing across disparate regions, ameliorates resource
allocation among analogous industries, minimizes unnecessary
energy consumption, and subsequently mitigates carbon
emissions.

Essentially, this occurrence underscores the nuanced role of
digital industrialization in obscuring the carbon mitigation
potential inherent to the digital economy. The deceptive
impression that the digital economy engenders high carbon
emissions is, in actuality, a manifestation of digital indus-
trialization overshadowing the carbon reduction efficacy of the
digital economy. The coefficient of this effect is estimated to be
approximately 0.033. This approach not only enhances the
scholarly comprehension of this paradox but also informs policy
interventions that can guide regions towards harnessing the full
potential of the digital economy while effectively managing its
carbon emissions impact. Several factors contribute to this per-
plexing scenario. Firstly, the accelerated growth of the digital
economy can inadvertently lead to increased energy consumption
for powering data centers, electronic devices, and communication
networks. Despite the efficiency gains offered by digitalization,
the sheer scale of digital infrastructure deployment can result in
elevated energy demands, ultimately translating to higher carbon
emissions. Secondly, the transformation of traditional industries
into digitally-integrated systems might entail energy-intensive
processes and resource allocation, offsetting potential carbon
reductions achieved through digitalization. This could be parti-
cularly pronounced in regions that prioritize rapid digital
industrialization without concurrently addressing energy effi-
ciency measures.

It is prudent to acknowledge that the research presented herein
is not without its limitations. One can reasonably postulate that
the evolution of the digital economy will yield a myriad of nascent
industries, extending beyond the current confines of the digital
industry and traditional industries that employ digital technology.
Thus, in forthcoming research, this paper aims to delve deeper
into the carbon reduction potential of the digital economy,
shifting the lens towards a more granular perspective of indivi-
dual industries or entities.

Conclusion and policy implications

Deciphering strategies to actualize a world with diminished car-
bon emissions has seized the attention of nations globally (Ace-
moglu et al., 2016). In the quest to reduce carbon emissions, the
role of the digital economy has been not only overlooked but also
misapprehended. Our research conducts a comprehensive
examination of the direct and indirect impacts of the digital
economy on carbon emissions, providing fresh insights into the
pathways and mechanisms through which the digital economy
reduces carbon emissions. Employing data spanning from 2004 to
2017, which encompasses 1579 districts and counties in China,
this study formulates a comprehensive logical framework eluci-
dating the interplay between the digital economy and carbon
emissions. The findings reveal that the evolution of the digital
economy can indeed facilitate the reduction of carbon emissions.
Thus, in terms of data coordination, governmental entities ought
to harness the digital economy to establish a more sophisticated
data collection and oversight system to enhance the quality of
environmental supervision. Further, our mechanistic analysis
underscores that the influence of the digital economy on carbon
emissions is significantly tethered to factors such as low-carbon
technological innovation and industrial diversification, with

various tests substantiating its causal impact. Ultimately, our
research elucidated that digital industrialization possesses the
potential to obscure the inhibitory impact of the digital economy
on carbon emissions.

This investigation is intrinsically linked to the high-quality
development associated with the digital economy era and fur-
nishes several policy implications. Firstly, in spite of the con-
siderable carbon emissions attributed to the digital economy
sector itself, this industry has notably amplified its energy utili-
zation efficiency. The implementation of the “National Com-
puting Network to Synergize East and West” Project is a
compelling testimony to how the digital economy enhances inter-
regional energy allocation efficiency, propels the judicious redis-
tribution of resources, and diminishes the overarching carbon
emission levels. Governmental bodies should expedite the digital
transformation of traditional industries and the erection of
infrastructures, initiate grand schemes to establish substantial
data centers, and set up numerous data repositories in Western
China, ensuring they are effectively interconnected with those in
Eastern China. It is suggested that a dynamic and differentiated
digital economy strategy be adopted. Taking into account the
variation in resource endowments across different regions, it
would be prudent to calibrate the rate of digital economic
development in each region. This will allow the digital economy
to serve as a technical prop to efficaciously mitigate disparities in
regional development.

Data availability

Due to confidentiality agreements and sensitive information in
the dataset, the author is unable to publicly share the full data.
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Received: 25 November 2022; Accepted: 13 September 2023;
Published online: 23 September 2023

Notes
1 Note: See section 1 in the Appendices for specific steps.
2 Note: See section 2 in the Appendices for specific steps.
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