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Tailoring tail risk models for clean energy
investments: a dual approach to long and short
position forecasting
Wei Kuang1,2✉

The increasing focus on sustainable finance has highlighted the critical need for accurate risk

assessment in clean energy investments. However, existing research often overlooks the

sector’s distinctive volatility characteristics, resulting in ineffective risk management

approaches that fail to distinguish between the varied risk profiles associated with long and

short positions in clean energy equities. This study addresses this gap by improving the

forecasting accuracy of tail risk assessments through novel adaptations of existing volatility

modeling frameworks. We demonstrate that different modeling paradigms, which assume

different statistical properties for price volatility and return distributions, are required for

accurate forecasting of long and short positions. Specifically, models incorporating asym-

metric volatility responses and heavy-tailed distributions excel for long holdings, while

models allowing for highly persistent volatility effects combined with skewed distributions

perform best for short positions. This differentiated approach reflects the intrinsic asym-

metries in clean energy markets. Our rigorous empirical investigation, spanning more than a

decade and including severe market upheavals, reveals that these tailored models sig-

nificantly outperform standard methods. The findings provide practical insights for investors

and regulators by demonstrating how targeted modeling methodologies can effectively

capture the complex dynamics of clean energy investments, thus supporting the broader

goals of sustainable finance.
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Introduction

The renewable energy sector has grown dramatically over
the last decade, accompanied by increased market capita-
lization and investment flows. The “Energy Transition

Investment Trends 2024" report by BloombergNEF indicates a
17% rise in global investments in the low-carbon energy transi-
tion in 2023, totaling around $1.77 trillion (BloombergNEF,
2024). In tandem, the International Energy Agency’s (IEA)
“Renewables 2023" publication reveals a nearly 50% increase in
global annual renewable capacity additions, reaching a record 510
gigawatts (IEA, 2023). This is the fastest growth rate in two
decades and the 22nd consecutive year of record-setting additions
(IEA, 2023). These trends highlight the sector’s resiliency and
critical role in promoting economic growth and innovation to
ensure a sustainable future. According to the IEA, while the world
is on track to more than double renewable energy capacity by
2030, further support is required to meet the net-zero emissions
objective by mid-century (IEA, 2024).

Despite this expansion, the clean energy stock markets have
experienced increased volatility and risk, with sharp price fluc-
tuations and market corrections. The sector experienced sub-
stantial declines in the early phases of the COVID-19 pandemic
in 2020 (Liu et al., 2022), as global markets responded to eco-
nomic instability. The sector’s fast rebound, fueled by investor
expectations of a green shift in global energy regulations, was
followed by further volatility into 2021 (NS Energy, 2021). For
example, the WilderHill Clean Energy Index (ECO), which tracks
the performance of companies in the renewable energy and
conservation sectors, has undergone major corrections after
reaching record highs (WilderShares LLC, 2022a). This volatility
continued into 2022, influenced by market forces such as supply-
chain issues, inflation concerns, and geopolitical tensions
(WilderShares LLC, 2022b). The persistent volatility highlights
the importance of investors using accurate risk assessment and
management tools to efficiently navigate the complexity of the
clean energy market.

The burgeoning field of clean energy equities has garnered
substantial scholarly attention, particularly in relation to tradi-
tional energy and financial assets like oil and technology stocks.
Existing literature extensively examines mean returns, volatility,
tail risk spillovers, and price forecasting in this domain (e.g.,
Dutta et al., 2020a; Inchauspe et al., 2015; Managi and Okimoto,
2013; Reboredo et al., 2017; Sadorsky, 2012a, 2022; Saeed et al.,
2021). However, despite the high-risk profile associated with
clean energy investments (e.g., Ortas and Moneva, 2013; Rezec
and Scholtens, 2017), there remains a critical shortcoming in the
literature regarding effective risk management strategies, parti-
cularly concerning hedging techniques and volatility risk miti-
gation (e.g., Ahmad et al., 2018; Gustafsson et al., 2022). Notably,
the prediction of tail risks in clean energy equities has been
under-explored, with limited examination of how distributional
features and volatility dynamics affect forecasting accuracy
(Pradhan and Tiwari, 2021; Zhuo et al., 2023). Furthermore, prior
research has not rigorously investigated the performance of pre-
dictive models across different investment strategies specifically
distinguishing between long and short positions, nor has it
compared the efficacy of various tail risk models like Value at
Risk (VaR) and Expected Shortfall (ES).

These research gaps are particularly significant because mod-
eling tail risk during market stress remains a major challenge in
financial econometrics. The 2008 financial crisis exposed the
limitations of standard VaR models and prompted extensive
research into more robust approaches (Berger and Missong, 2014;
Chen et al., 2012), including comparative studies aimed at iden-
tifying optimal VaR specifications for turbulent periods (Abad
et al., 2016; Louzis et al., 2014; Tran and Tran, 2023). Notably,

Halbleib and Pohlmeier (2012) showed that, although individual
VaR models often failed during crises, their performance could be
improved through data-driven forecast combination techniques,
highlighting the importance of addressing model misspecification
risk. Rather than proposing new methodologies, this study con-
tributes to the literature by systematically applying established
models to clean energy assets, an area still underexplored in risk
modeling. Specifically, we investigate whether carefully tailoring
model specifications for long and short positions can serve as an
alternative path to improving VaR forecasts, parallel to the
improvements achieved by combination methods in the existing
VaR literature (Chiu et al., 2010; Taylor, 2020). In doing so, we
extend robust post-crisis frameworks to address the unique risks
of clean energy investments.

Addressing these deficiencies is crucial for several inter-
connected reasons. As the clean energy sector experiences
unprecedented growth and attracts significant investment flows,
accurate risk assessment and management have become
increasingly vital (Demiralay et al., 2023). The absence of robust,
sector-specific risk models creates fundamental vulnerabilities
whereby investors systematically underestimate potential losses,
resulting in suboptimal capital allocation that hinders sectoral
development. This concern becomes particularly acute for tail
risk, i.e. the probability of rare but severe, high-impact events.
Empirical evidence demonstrates that clean energy asset returns
exhibit pronounced “fat tails" and negative skewness, indicating
that extreme losses occur with significantly greater frequency than
predicted by standard normal distributions (Zhang et al., 2023a).
Traditional risk frameworks that assume normality systematically
underestimate both the probability and magnitude of worst-case
scenarios, exposing investors to substantial downside risk (Sheikh
and Qiao, 2010). Consequently, developing models capable of
capturing these non-normal characteristics represents a central
methodological challenge, particularly as regulatory frameworks
evolve to support sustainable investments, creating urgent
demand for sophisticated risk measures in this inherently volatile
sector.

The asymmetric nature of volatility in clean energy markets
further compounds these modeling challenges and necessitates
increasingly nuanced analytical approaches (Zhang et al., 2023).
Financial markets exhibit a well-documented phenomenon
whereby negative news generates disproportionately larger
increases in future volatility compared to positive news of
equivalent magnitude-a relationship known as the leverage effect
(Black, 1976). This asymmetric volatility response proves parti-
cularly pronounced within the clean energy sector, which
demonstrates heightened sensitivity to adverse regulatory
announcements, supply chain disruptions, and technological
failures (Hassan, 2023; Zhao, 2020). Risk models that fail to
incorporate this asymmetric behavior will systematically mis-
calculate volatility escalation following negative market events,
thereby leaving long-position investors inadequately prepared for
subsequent market turbulence. These empirical realities provide
direct motivation for employing asymmetric volatility models
specifically designed to capture leverage effects (Engle and Ng,
1993).

The distinction between long and short position risk profiles
represents another critical dimension that has received insuffi-
cient attention in existing literature. Long positions, pre-
dominantly held by institutional investors optimistic about clean
energy prospects, require protection against sudden market
downturns. Conversely, short positions, employed by hedge funds
and risk managers for speculative or hedging purposes, face
qualitatively different exposures, including potential unlimited
losses during rapid price appreciation. Despite these divergent
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risk characteristics, the majority of financial risk literature
maintains an implicit long-only focus, concentrating on modeling
downside movements while leaving short position dynamics
under-explored. This constitutes a critical gap, as models opti-
mized for downside risk may prove ill-suited for quantifying
upside risk exposures (Angelidis and Degiannakis, 2005). The
present research addresses this limitation by proposing a dual-
risk framework that independently assesses model performance
for both strategies, providing market participants with a more
complete and practically relevant risk management toolkit.

Overall, this study fills these significant gaps by making the
following three innovative contributions:

First, we introduce and validate a dual-risk framework for the
clean energy sector. To our knowledge, this is the first study to
systematically model and backtest tail risk for both long and short
positions in clean energy equities. By demonstrating that optimal
risk models differ significantly between these two strategies, we
challenge the conventional one-size-fits-all approach and provide
more targeted, practical insights for a wider range of market
participants, from long-term investors to hedge funds.

Second, we improve the methodology of risk modeling by
tailoring volatility models to the unique characteristics of clean
energy stocks. We refine a set of established conditional volatility
models chosen to represent symmetric, asymmetric, and highly
persistent volatility structures, by integrating sophisticated dis-
tributional assumptions that more accurately capture the
observed skewness and fat tails in clean energy returns. This
methodological enhancement increases the predictive power of
these models for this specific, under-researched asset class.

Third, we provide robust empirical validation across multiple
market regimes. Our analysis is not limited to a single market
environment but draws on over a decade of data, including major
market upheavals like the 2008 financial crisis and the COVID-19
pandemic. By rigorously backtesting our models through these
periods of extreme stress, we offer strong evidence of their
reliability and real-world applicability, providing actionable
insights for investors, risk managers, and policymakers navigating
this volatile sector.

The remainder of the article is organized as follows. Section 2
provides a literature review. Section 3 outlines the models and
evaluation methods. Section 4 explains the data and presents the
empirical findings. Section 5 concludes.

Literature review
The intricate interdependencies between clean energy stock prices
and other financial assets are pivotal to understanding their risk
profiles. Pioneering work in this domain reveals that renewable
energy equities are significantly influenced by technology shares
and oil prices, suggesting a unidirectional impact (Henriques and
Sadorsky, 2008). Kumar et al. (2012) substantiates this by
revealing a stronger linkage with technology equities over oil
prices. The 2008 financial crisis exacerbated the correlation
between oil prices and the valuation of renewable and technology
companies (Sadorsky, 2012a). This trend continued, with
Inchauspe et al. (2015) observing a significant influence of the
MSCI World index and technology shares on renewable energy
investments post-2007, albeit with an increasing influence of oil
prices. In contrast, Dutta et al. (2020a) emphasizes an increased
sensitivity of green investments to oil market volatility rather than
price fluctuations. Moreover, leveraging advanced machine
learning techniques, Sadorsky (2022) has identified technical
indicators and market volatility measures as key predictors of
clean energy stock prices, highlighting the nuanced relationships
these stocks have with technology and oil assets.

The second strand of literature examines extreme risk spil-
lovers in the renewable energy sector. Tan et al. (2021) uses a
spillover index and multivariate quantile models to uncover
asymmetric and time-varying risk relationships between oil and
clean energy equities, identifying the oil market as a net recipient
of volatility. Zhang et al. (2023) builds on volatility models that
link short-term market risk to long-term macroeconomic trends,
emphasizing the importance of asymmetric market reactions and
extreme events. Studies by Di Febo et al. (2021) and Saeed et al.
(2021) contribute to the discussion of tail risk dynamics, high-
lighting the significance of considering market asymmetry during
times of stress. Other researchers such as Hassan (2023), Xia et al.
(2019), and Fu et al. (2022) investigated how external factors like
energy security and macroeconomic indicators affect the volatility
of clean energy stock during volatile market periods. Naeem and
Arfaoui (2023) and Syuhada et al. (2024) used conditional risk
models to explore systemic risk and interconnectedness in energy
markets, while Zhang et al. (2023b) and Chen et al. (2022) found
increased interconnectedness during extreme market conditions.

From a risk management perspective, the high volatility of
renewable energy stocks has attracted considerable academic
interest. Sadorsky (2012b) and Ortas and Moneva (2013) exam-
ined the key risk drivers for renewable energy companies, with
Ortas and Moneva (2013) identifying a structural shift in risk
levels during the financial crisis. More recently, Lehnert (2023)
and Ghosh et al. (2022) have drawn parallels with historical
market bubbles, suggesting that clean energy stocks may be
subject to similar market dynamics. From a hedging viewpoint,
Ahmad et al. (2018) and Gustafsson et al. (2022) investigated
optimal hedges for clean energy stocks, with the latter finding that
traditional energy metals are not effective hedges for clean energy
equities. Moreover, Troster et al. (2020), Pradhan and Tiwari
(2021) and Zhuo et al. (2023) have made notable contributions by
using the VaR or ES techniques to assess market risk, with the
research by Zhuo et al. (2023) highlighting the superior perfor-
mance of conditional volatility models, particularly during the
COVID-19 pandemic. Despite the extensive research, gaps
remain. The analysis by Troster et al. (2020), Pradhan and Tiwari
(2021) and Zhuo et al. (2023) focused on long positions while
ignoring the impact of short positions on risk modeling. The
reliance on traditional conditional volatility models by Pradhan
and Tiwari (2021) and Zhuo et al. (2023) fails to account for
critical volatility aspects such as leverage effect and long memory,
which are necessary for accurate tail risk forecasting. Further-
more, these studies lack a comparative study across different
market stress levels, as well as direct comparisons between VaR
and ES projections, both of which are crucial for determining the
relative usefulness of these risk measures. This research gap serves
as the foundation for our investigations.

Methods and models
Value at Risk (VaR) serves as a pivotal risk metric mandated by
the Basel Committee on Banking Supervision (BCBS) in 1996 for
quantifying the potential maximum loss a financial portfolio may
incur over a specified time horizon, typically one day, at a chosen
confidence level. The formula for VaR at a confidence level
1� αð Þ is Pr rtþh ≤VaR

α
tþh

� � ¼ α where rt+h denotes the return
of the portfolio at time t + h. Expected Shortfall (ES), also known
as Conditional VaR, extends the VaR concept by not only
quantifying the potential loss but also providing the expected size
of loss given that the VaR threshold has been breached. The BCBS
has recommended a shift in the regulatory framework from using
a 99% confidence level VaR to a 97.5% confidence level ES for a
more nuanced quantification of risk BCBS (2016) .
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The logarithmic daily return of a financial asset, denoted by rt,
is modeled as follows:

rt ¼ μt þ εt ¼ c0 þ c1rt�1

� �þ εt ð1Þ

εt ¼ σ tzt ð2Þ
Here, the conditional mean, μt, is modeled as a first-order

autoregressive AR(1) process to account for any serial correlation
in the returns (Troster et al., 2020). In this mean equation, c0
represents the constant term (intercept), and c1 is the auto-
regressive coefficient that captures the effect of the previous day’s
return rt−1 on the current day’s return. The term εt is the residual
at time t, which is composed of the conditional volatility, σt, and
an independent and identically distributed (i.i.d.) random vari-
able, zt, with a mean of zero and variance of one.

For the purpose of one-day ahead risk assessment, the VaR and
ES are estimated using the following expressions (Brio et al.,
2020):

VaR α
t ¼ μ̂t þ σ̂ t F̂

�1
z ðαÞ ð3Þ

ES α
t ¼ μ̂t þ σ̂ t ŜzðαÞ ð4Þ

Here, μ̂t and σ̂t represent the predicted values for the daily
conditional mean and conditional volatility, respectively. F̂

�1
z ðαÞ

signifies the inverse cumulative distribution function (CDF) of
the standardized innovations at the α quantile, and ŜzðαÞ repre-
sents the expected value of z given that z is less than its α quantile.

As demonstrated by Equations (3) and (4), the accuracy of one-
day-ahead VaR and ES forecasts depends critically on the precise
estimation of two key components: the conditional volatility σt
and the quantile of the standardized innovations F�1

z ðαÞ. The
volatility forecast scales the overall risk estimate, capturing the
time-varying magnitude of market fluctuations, while the inno-
vation distribution determines the shape of the tail risk, parti-
cularly in extreme market conditions. Inaccurate volatility
modeling leads to risk estimates that are consistently biased, while
incorrect distributional assumptions result in fundamental mis-
calculations of tail probabilities. The following subsections detail
the specific models used to estimate these two primary drivers of
tail risk.

Volatility models. A core feature of financial returns is the
phenomenon of volatility clustering, where periods of high
volatility tend to be followed by more high volatility, and calm
periods are followed by calm periods (Engle, 1982). The Gen-
eralized Autoregressive Conditional Heteroskedasticity (GARCH)
family of models is specifically designed to capture this time-
varying nature of financial risk (Bollerslev, 1986).

The decision to utilize GARCH-type models for volatility
analysis in clean energy stocks is anchored in both theoretical and
empirical considerations. They are widely recognized for their
ability to capture stylized facts of financial time series, such as
volatility clustering and leptokurtosis (Bollerslev, 1986; Engle,
1982). These features are particularly pertinent in the clean
energy sector, where returns are often characterized by rapid
technological change, policy uncertainty, and shifting investor
sentiment (Athari and Kirikkaleli, 2025; Song et al., 2019).
Moreover, GARCH models offer a practical balance between
flexibility and parsimony, delivering reliable performance while
remaining computationally efficient and interpretable for practi-
tioners (Francq and Zakoian, 2019). This transparency and
theoretical foundation are crucial for risk management, particu-
larly when compared to advanced machine learning techniques,
which often function as “black boxes" with high data require-
ments and increased risk of overfitting (Alessi and Savona, 2021;

Wang, 2024). Given their extensive validation and widespread
adoption, GARCH-type models provide a robust and comparable
framework for our analysis (Christoffersen, 2012).

In this study, we employ three distinct GARCH specifications
to test competing hypotheses about the volatility dynamics
characterizing clean energy stocks. The standard GARCH model
(Bollerslev, 1986) serves as our foundational benchmark, assum-
ing symmetric volatility responses. To test for the leverage effect,
we employ the Glosten, Jagannathan, and Runkle (GJR) GARCH
specification (Glosten et al., 1993), which allows for asymmetric
volatility responses to positive and negative news. Additionally, to
investigate whether volatility shocks exhibit exceptional persis-
tence, we use the Integrated GARCH (IGARCH) model (Engle
and Bollerslev, 1986), which allows for near-permanent effects of
market disturbances. The specific mathematical formulations for
each model are detailed in the following subsections.

Standard GARCH. The GARCH model, introduced by Bollerslev
(1986), is a widely used framework for modelling volatility in
financial time series. The GARCH(1,1) model, in particular, is
characterized by its ability to capture phenomenon of volatility
clustering, where large changes in asset prices are often followed
by further large changes, and periods of small price changes are
followed by further small changes. The GARCH(1,1) model for
the conditional variance of a time series rt is given by:

σ2t ¼ ωþ αε2t�1 þ βσ2t�1 ð5Þ
Where ω is a constant term, and α and β are parameters to be
estimated, with α + β < 1, ensuring that the conditional variance
σ2t remains positive and stationary. The persistence of volatility is
captured by the sum of α and β. Specifically, as the sum α + β
approaches 1, the decay rate of the autocorrelation associated
with the conditional variance σt decreases toward zero. This
implies that shocks to volatility have an increasingly persistent
effect.

GJRGARCH. The GJRGARCH model is an extension of the
standard GARCH model that allows for asymmetric effects of
past shocks on volatility (Glosten et al., 1993). This model is
particularly useful when the impact of negative and positive
shocks on future volatility is different, a feature known as the
leverage effect. This asymmetry is particularly relevant for clean
energy equities, which are highly susceptible to regulatory
announcements and technological developments (Li, 2023; Zhao
et al., 2018). The GJRGARCH(1,1) model is specified as follows:

σ2t ¼ ωþ αþ γI εt�1 < 0
� �� �

ε2t�1 þ βσ2t�1 ð6Þ
where I �ð Þ is an indicator function that takes the value of 1 if εt−1

< 0 and 0 otherwise, and γ captures the additional impact of
negative shocks on future volatility. If γ > 0, negative shocks
increase volatility more than positive shocks.

IGARCH. The IGARCH model (Engle and Bollerslev, 1986) is a
special case of the GARCH(1,1) model in which the sum of α and
β is constrained to equal one, implying a unit root in the GARCH
process and thus persistence of shocks to the variance over an
infinite horizon. This specification is well-suited for clean energy
markets, which often experience protracted periods of heightened
volatility during policy debates and technology development
cycles (Athari and Kirikkaleli, 2025). The IGARCH(1,1) model is
specified as follows:

σ2t ¼ ωþ αε2t�1 þ βσ2t�1 ð7Þ
where α + β = 1. This specification suggests that shocks to the
conditional variance have a persistent effect on future volatility
levels.
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Innovation models. After accounting for time-varying volatility
with a GARCH model, the remaining standardized residuals (zt in
Equation (2)) are known as innovations. The distributional
assumption made about these innovations is critical for accurately
forecasting tail risks like VaR and ES. Although GARCH-type
models with normal innovations can generate data with uncon-
ditionally fat tails, they are insufficient to account for all of the
unconditional leptokurtosis and skewness observed in financial
return series (Kuang, 2021). This is particularly important for
clean energy markets, which are often subject to extreme events
such as sudden price jumps or collapses driven by policy changes
and technological breakthroughs.

To address this empirical reality, our study follow Kuang
(2022) to evaluates four distinct innovation distributions, each
representing a different approach to capturing the true char-
acteristics of clean energy stock returns: The Normal distribution
serves as the conventional benchmark, despite its likely mis-
specification for financial data. The skewed Student’s t-distribu-
tion provides a flexible parametric framework to simultaneously
capture both asymmetry and heavy tails Fernandez and Steel
(1998). The Filtered Historical Simulation (FHS) offers a non-
parametric alternative that makes no distributional assumptions,
instead utilizing the empirical distribution of historical innova-
tions directly Barone-Adesi et al. (1999). The Cornish-Fisher
expansion represents a semi-parametric compromise, adjusting
normal distribution quantiles based on the observed higher-order
moments of the innovation series Favre and Galeano (2002). The
mathematical specifications and risk forecasting equations for
each approach are detailed in the subsequent subsections.

Normal distribution. The normal distribution assumption is both
the simplest and the most commonly used for financial return
innovations, mainly because of its analytical convenience.
Assuming that the standardized residual zt adheres to a standard
normal distribution, its cumulative distribution function deli-
neated as follows:

ΦðxÞ ¼ 1ffiffiffiffiffi
2π

p
Z x

�1
e�t2=2 ð8Þ

The next days’ risk forecasts are provided as below (Brio et al.,
2020):

VaR α
t;N ¼ μ̂t þ σ̂tΦ

�1ðαÞ ð9Þ

ES α
t;N ¼ μ̂t þ σ̂ t

1
α
ϕ Φ�1ðαÞ� � ð10Þ

In this context, ϕ represents the probability density function (pdf)
of a standard normal distribution, while Φ−1(α) denotes the
corresponding quantile for an arbitrary value of α.

Skewed student distribution. The skewed Student’s t-distribution,
as proposed by Fernandez and Steel (1998), accommodates both
skewness and excess kurtosis in the distribution of innovations.
The quantile function for the skewed Student’s t-distribution can
be written as below (Lambert and Laurent, 2001):

cskstα;ν;ξ ¼
1
ξ c

st
α;ν

α
2 1þ ξ2
� �� ��m

n o
=s; if α< 1

1þξ2

�ξcstα;ν
1�α
2 1þ ξ�2� �� ��m

n o
=s; if α≥ 1

1þξ2

8><
>: ð11Þ

where cskstα;ν;ξ represents the αth quantile of the skewed student
distribution with unit variance, characterized by ν > 2 degrees of
freedom and an asymmetric parameter ξ > 0. The term cstα;ν
denotes the quantile function of the standardized Student-t
density function. In addition, m and s stand for the non-
standardized skewed student distribution’s mean and standard

deviation, respectively. Consequently, the next days’ risk forecasts
are provided as follows:

VaR α
t;skst ¼ μ̂t þ σ̂tc

skst
α;ν;ξ ð12Þ

ES α
t;skst ¼ μ̂t þ σ̂tE zjz < cskstα;ν;ξ

h i
ð13Þ

Filtered historical simulation. The Filtered Historical Simulation
(FHS) method is a semi-parametric technique Barone-Adesi et al.
(1999). This approach uses a non-parametric estimator for the
residual distribution and parametric models for the mean and
volatility dynamics. Subsequently, the next days’ risk forecasts are
provided as follows:

VaR α
t;HS ¼ μ̂t þ σ̂ tĤ

�1ðαÞ ð14Þ

ES α
t;HS ¼ μ̂t þ σ̂tE zjz < Ĥ

�1ðαÞ
h i

ð15Þ
where the α quantile of the empirical distribution of the stan-

dardized residual zt is indicated by Ĥ
�1ðαÞ.

Cornish-Fisher expansion. The Cornish-Fisher expansion, as
proposed by Favre and Galeano (2002), is a semi-parametric
method that modifies the quantiles of a normal distribution to
incorporate skewness and kurtosis. The α quantile of a distribu-
tion is defined as below.

δCFðαÞ ¼ ZðαÞ þ 1
6

ZðαÞ2 � 1
� �

Sþ 1
24

ZðαÞ3 � 3ZðαÞ� �
K � 1

36
2ZðαÞ3 � 5ZðαÞ� �

S2

ð16Þ
where Z(α) represents the standard normal distribution’s α
quantile. Additionally, S and K symbolize the innovation dis-
tribution’s excess kurtosis and skewness, respectively. The risk
forecasts for the upcoming day are shown below:

VaR α
t;CF ¼ μt þ σ̂ tδCFðαÞ ð17Þ

ES α
t;CF ¼ μ̂t þ σ̂ tE zjz < δCFðαÞ

� �
ð18Þ

Backtesting. This study adheres to the analytical framework of
Kuang (2022) by employing a dual approach to backtesting
methods. We integrate conventional VaR backtesting techniques
with advanced ES backtesting methods, which provide a more
nuanced evaluation of model performance in capturing tail risk.
This comprehensive approach is further complemented by the
evaluation of loss functions, which serve as a quantitative measure
to compare the relative efficacy of various forecasting models. By
using these robust methodologies, our analysis aims to provide a
rigorous assessment of the predictive capabilities of models,
ensuring a more accurate and reliable risk management strategy
for investors and practitioners in the clean energy sector.

Value-at-risk. The Actual over Expected (AE) Exceedance Ratio is
a simple backtesting metric that compares the number of excee-
dances to the expected number under the null hypothesis of
model adequacy. A ratio close to one indicates a well-calibrated
model, while a ratio significantly above or below than one sug-
gests over- or underestimation of risk by the model, respectively.
More strict backtesting procedures are based on the statistical
tests described below.

The Unconditional Coverage Test, denoted as LRuc by Kupiec
(1995), evaluates the congruence of exceedance proportions with
anticipated levels over a specified time frame. This test assumes
that exceedances are independently and identically distributed, an
assumption that is often not met in financial returns. Under the
null hypothesis that the model provides correct unconditional
coverage, the LRuc test statistic is asymptotically distributed as a
chi-squared χ2

� �
variable with one degree of freedom.
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The Conditional Coverage Test, proposed by Christoffersen
(1998) and referred to as LRcc, combines the Unconditional
Coverage Test with a test for exceedance independence. This
provides a joint test statistic capable of identifying both correct
coverage and temporal independence of exceedances. The
resulting LRcc test statistic follows an asymptotic chi-squared
χ2
� �

distribution with two degrees of freedom under the null
hypothesis of correct conditional coverage.

Finally, the Dynamic Quantile (DQ) test, introduced by Engle
and Manganelli (2004), uses a regression-based methodology to
assess whether VaR exceedances can be predicted on the basis of
their previous values or other data points. This provides a direct
assessment of correct conditional coverage and is adept at
incorporating dynamic elements into quantile predictions. The
DQ test statistic is also asymptotically distributed as a chi-squared
χ2
� �

variable, with the degrees of freedom equal to the number of
included lags and other explanatory variables in the test
regression (excluding the intercept).

Expected shortfall. The Exceedance Residuals (ER) test, as intro-
duced by McNeil and Frey (2000), serves as a prevalent method
for evaluating ES models. This test quantifies the ER as the dif-
ference between the actual return and the ES forecast when a VaR
breach occurs. The ER test operates under the premise that a well-
calibrated risk model should result in an ER with an expected
value of zero. To validate this, the bootstrap method, pioneered
by Efron and Tibshirani (1993), is utilized. This method employs
a one-tailed test to assess whether a negative mean ER suggests a
systematic bias in the ES forecasts, indicating that the model
consistently underestimates the ES.

The ES regression (ESR) test, proposed by Bayer and
Dimitriadis (2022), approaches the evaluation of ES forecasts by
treating the conditional ES as a linear function of returns. In this
framework, returns are the dependent variable, and the ES
forecasts, which include an intercept term, are the independent
variables. For accurate specification of ES forecasts, the intercept
and slope parameters should ideally be zero and one, respectively.
To further refine the assessment, Bayer and Dimitriadis (2022)
recommend an Intercept ESR test. This test focuses on the
intercept term, ensuring that the ES forecasts are not consistently
biased low. By constraining the slope parameter to one, the
method isolates the intercept for evaluation, providing a targeted
test for the accuracy of ES predictions.

MCS tests. The Model Confidence Set (MCS) approach, as
developed by Hansen et al. (2011), is employed in this study to
evaluate and compare the performance of various forecasting
models. The MCS method is a statistical tool designed to identify
a subset of models that outperform others at a specified con-
fidence level. In this research, MCS testing is conducted at a 90%
confidence level, utilizing different loss functions to assess the
predictive accuracy of risk forecasts. Models that exhibit lower
average loss levels over the projection period are deemed to have
superior performance, providing a more nuanced evaluation than
individual statistical tests.

The Quasi-Likelihood (QLIKE) loss function is utilized to
evaluate the accuracy of volatility predictions, with daily squared
returns serving as a surrogate for realized volatility (RV). The
QLIKE function is asymmetric, penalizing under-forecasting
more severely than over-forecasting. This property, along with
its robustness against noise in the volatility proxy, as demon-
strated by Patton (2011), makes it a preferred choice over the
Mean Squared Error (MSE) for assessing volatility forecasts. The
QLIKE function’s reduced sensitivity to outliers further enhances
its suitability for evaluating volatility models. The QLIKE

function is defined as:

QLIKEt ¼
RVt

σ̂2t
� ln

RVt

σ̂2t

 !
� 1 ð19Þ

In the context of quantile forecast evaluation, the Tick Loss
Function (TLF) is employed. This technique, derived from
quantile regression as proposed by Koenker (1978), is an
asymmetric loss function that imposes substantial penalties on
observations that fall below the VaR threshold. The TLF’s design
ensures that the evaluation of VaR forecasts is sensitive to the
magnitude of underestimations, making it a valuable tool for
assessing the reliability of quantile forecasts in risk management
applications.

TLF α
t ¼ α� Irt <VaRα

t

� �
rt � VaR α

t

� � ð20Þ
To evaluate the joint prediction of VaR and ES, we use the

Fissler-Ziegel Loss (FZL) function proposed by Fissler and Ziegel
(2016). The FZL function is a novel loss function that measures
the joint performance of VaR and ES forecasts. It rewards models
that correctly predict the loss severity when the VaR threshold is
exceeded. The FZL function is defined as:

FZLαt ¼
1

αESαt
Irt <VaRα

t
rt � VaRα

t

� �þ VaRα
t

ES α
t
þ log � ES α

t

� �� 1

ð21Þ
Empirical analysis
Data and estimation. This study focuses on two prominent clean
energy stock indices: the PowerShares WilderHill Clean Energy
Portfolio (PBW) and the Invesco Global Clean Energy ETF
(PBD). These indices were chosen for three primary reasons.
First, both indices are designed to encapsulate the entire clean
energy sector, covering a wide range of technologies and services
within this industry. This comprehensive representation facil-
itates a more precise depiction of the sector’s performance and
trends. Second, as ETFs, PBW and PBD offer high liquidity,
making them accessible to a diverse range of investors, including
individual and institutional investors. This accessibility ensures a
robust and active trading market for research purposes. Third,
their long history in tracking the performance of the clean energy
sector provides valuable insights into the risk characteristics and
market dynamics of this sector.

Daily price data for PBW and PBD has been sourced from
investing.com, spanning from the inception of each index until
December 22, 2023. Specifically, PBW has approximately 4700
data points since March 7, 2005, while PBD has around 4100 data
points since June 15, 2007. Data integrity checks confirmed that
the raw daily price series are complete, with no missing values
requiring imputation. The continuous compounded daily returns
for both PBW and PBD are calculated by taking the natural
logarithm of the difference between consecutive daily spot prices,
multiplied by 100, denoted as Rt ¼ lnPt � lnPt�1

� � � 100.
The daily price changes and percentage returns for PBW and

PBD are shown in Figs. 1 and 2, respectively. Visual inspection of
these plots reveals no anomalous data points, such as those
arising from data entry errors, that would warrant removal or
adjustment. Consequently, the unfiltered return series are used
for all subsequent analysis. A central focus of this study is the
distinct risk profiles of long and short investment positions. It is
important to clarify how the same return distribution is used to
evaluate these opposing risks. The tail risk for a long position
corresponds to the left tail of the return distribution, where large
negative returns represent significant losses. Conversely, the risk
for a short position, which profits from price declines, arises from
large positive returns. Therefore, the tail risk for a short position
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corresponds to the right tail of the distribution. This study
explicitly models both tails to investigate whether the statistical
properties governing extreme negative returns are the same as
those governing extreme positive returns, a distinction crucial for
comprehensive risk management.

This distinction becomes particularly relevant when examining
the historical volatility patterns of these indices. Both indices have
exhibited substantial volatility, marked by significant peaks and
troughs, indicative of broader market dynamics and the specific
challenges faced by the clean energy sector. In particular, they

Fig. 1 PBW daily price and return. The graphs illustrate the daily price and return series for PBW, spanning from March 7, 2005 to December 22, 2023.
Additionally, the return density graph is provided. The forecast windows of the three sub-samples are delineated by dashed lines.
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experienced significant declines during the 2008 financial crisis
and the initial phases of the COVID-19 pandemic. The more
pronounced decline during the 2008 financial crisis was attributed
to the systemic nature of the economic downturn and the sector’s
vulnerability to investor sentiment and credit availability. The
COVID 19 pandemic caused an initial sharp decline, followed by

a rapid recovery as the market anticipated a green economic
resurgence. However, the subsequent decline may be influenced
by evolving market priorities, supply chain disruptions, and the
temporary competitiveness of traditional energy sources due to
oil price volatility. The inherent volatility of the clean energy
market, characterized by significant fluctuations, underlines the

Fig. 2 PBD daily price and return. The graphs illustrate the daily price and return series for PBD, spanning from June 15, 2007 to December 22, 2023.
Additionally, the return density graph is provided. The forecast windows of the three sub-samples are delineated by dashed lines.
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need for robust risk management strategies by both market
participants and regulators.

The PBW and PBD models are calibrated using a 500-
observation estimation window to generate one-step-ahead VaR
and ES forecasts for long and short positions on day 501. The

choice of a 500-observation window for model estimation in the
PBW and PBD indices is driven by two objectives: firstly, to
ensure an adequate number of data points for accurate parameter
estimation; secondly, to retain the period of the 2008 financial
crisis for subsequent forecast evaluation. This approach is
reinforced by a robustness check using a window of 1000
observations, which produces qualitatively similar results. Follow-
ing this initial estimation, the window is moved forward by one
day, and the model is re-estimated to predict day 502. This
process is repeated until the dataset has been fully exhausted,
resulting in 500 observations for model estimation and over 3500
for out-of-sample forecasting evaluation. The rolling window
approach is utilized to incorporate the latest market information
and eliminate outdated data, thereby enhancing the models’
adaptability to current market conditions.

In order to evaluate the performance of the model under
various market conditions, we divided the dataset into three
sub-samples based on the observed market movements in Figs.
1 and 2. The start and end dates for each sample period can be
found in Table 1. These sub-samples represent significant
market events such as sharp declines during the 2008 financial
crisis and COVID-19 pandemic, robust recoveries, and
sustained declines after initial recoveries. Each sub-sample
contains 500 observations for model estimation and 250 for
out-of-sample forecasting, allowing a comprehensive analysis of
the models’ forecasting capabilities during periods of high
volatility. The sub-sample periods are indicated by dashed lines
in the price histories of PBW and PBD, as shown in the figures
above. For PBD, we can’t evaluate the out-of-sample forecast in
Sample I because there are not enough data points to estimate
the model.

Table 2 presents the summary statistics for the PBW and PBD
return series across the full dataset and the three sub-sample
periods. The mean daily returns for both indices are slightly
negative during the Full sample period, reflecting a slight
underperformance. However, the mean returns are notably
negative in Sample I and Sample III, indicating periods of market
downturns, while Sample II exhibits a positive mean return,
indicating a period of market recovery. The largest standard
deviation is observed in Sample I, which is consistent with the
increased market volatility during the 2008 financial crisis.
Interestingly, the lowest return is recorded in Sample II, which
can be attributed to the market’s reaction to the initial stages of
the COVID-19 pandemic, where investor sentiment was
particularly pessimistic despite the eventual market recovery.
The rejection of the normality assumption by the Jarque-Bera
test, due to the high kurtosis and negative skewness, underlines
the need for models that take these non-normal characteristics
into account. The ADF test confirms the stationarity of the return

Table 1 Data samples.

No.of obs Sample period Forecast window

Panel A: PBW
Full Sample 4762 Mar 07, 2005 - Dec 22, 2023 Mar 02, 2007 - Dec 22, 2023
Sample I 750 Dec 30, 2005 - Dec 22, 2008 Dec 27, 2007 - Dec 22, 2008
Sample II 750 Feb 13, 2018 - Dec 31, 2020 Feb 10, 2020 - Dec 31, 2020
Sample III 750 Mar 21, 2019 - Jan 28, 2022 Feb 10, 2021 - Jan 28, 2022
Panel B: PBD
Full Sample 4189 Jun 15, 2007 - Dec 22, 2023 Jun 10, 2009 - Dec 22, 2023
Sample I 750 NA NA
Sample II 750 Feb 13, 2018 - Dec 31, 2020 Feb 10, 2020 - Dec 31, 2020
Sample III 750 Mar 21, 2019 - Jan 28, 2022 Feb 10, 2021 - Jan 28, 2022

The table shows the number of data points, the start and end dates of each sample period, and the forecasting horizon for each segment. The Full sample contains all historical data. Samples I, II, and III
are used to test the prediction of extreme risk in three turbulent periods: the 2008 financial crisis and the COVID-19 pandemic.

Table 2 Summary statistics.

Full Sample I Sample II Sample III

Panel A: PBW
Mean −0.020 −0.481 0.392 −0.381
Std 2.281 4.016 3.490 2.775
Min −15.637 −14.555 −15.637 −6.830
Max 15.820 15.820 13.503 9.135
Skew −0.305 −0.158 −0.936 0.017
Kurt 4.649 2.163 4.468 0.108
JB 4368.385 51.892 250.543 0.196
pval (0.000) (0.000) (0.000) (0.907)
LB(10) 25.391 5.587 22.820 13.483
pval (0.005) (0.849) (0.011) (0.198)
LM(10) 1158.554 82.104 63.172 41.452
pval (0.000) (0.000) (0.000) (0.000)
LM(20) 1194.308 95.954 68.352 45.025
pval (0.000) (0.000) (0.000) (0.001)
ADF −15.940 −5.970 −6.768 −5.579
pval (0.010) (0.010) (0.010) (0.010)
Panel B: PBD
Mean −0.012 na 0.328 −0.229
Std 1.927 na 2.729 1.942
Min −20.188 na −20.188 -5.680
Max 15.876 na 10.355 6.665
Skew −0.702 na −2.200 0.033
Kurt 9.984 na 15.714 0.646
JB 17763.601 na 2825.761 4.800
pval (0.000) na (0.000) (0.091)
LB(10) 19.991 na 26.164 8.125
pval (0.029) na (0.004) (0.617)
LM(10) 1043.676 na 68.912 45.719
pval (0.000) na (0.000) (0.000)
LM(20) 1141.850 na 68.919 28.308
pval (0.000) na (0.000) (0.102)
ADF −14.259 na −6.564 −5.784
pval (0.010) na (0.010) (0.010)

The table presents the mean, standard deviation (std), minimum (min), maximum (max), and
distributional shape measures (skewness and kurtosis) of daily percentage returns for PBW and
PBD across the entire dataset and three distinct time intervals. The statistical tests employed
include the Jarque-Bera test for normality, the ARCH (LM) test for up to 10th and 20th-order
autoregressive conditional heteroskedasticity, and the augmented Dickey-Fuller (ADF) test for
time series stationarity. The associated p-values are presented in parentheses. For the ADF test,
all p values consistently fall below the 0.01 significance level.
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series, while the ARCH portmanteau test reveals significant
volatility clustering, emphasizing the importance of capturing
these features for accurate tail risk forecasting.

Table 3 presents the estimation results for the GARCH,
GJRGARCH, and IGARCH models, each specified with an AR(1)
mean equation and a skewed t-distribution for the innovations.
For both the PBW and PBD indices, the significant AR(1)
coefficient suggests the presence of autocorrelation in the return
series.

The results reveal several key features of clean energy volatility
dynamics. First, for both the GARCH and GJRGARCH models,
the sum of the ARCH and GARCH coefficients α + β is close to
one, signifying a high degree of volatility persistence. Second, the
leverage parameter γ in the GJRGARCH model is positive and
significant for both indices. This confirms a pronounced leverage
effect, wherein negative shocks have a more substantial impact on
future volatility than positive shocks of the same magnitude. To
account for the high persistence observed in the data, the
IGARCH model was selected. While a Fractionally Integrated
GARCH (FIGARCH) model Baillie et al. (1996) was initially
considered for its ability to capture long-memory effects,
preliminary analysis showed a long-memory parameter close to
0.99. Given that this indicates a very slow decay of shocks, the
more parsimonious IGARCH model was chosen as a robust
specification to account for this near-unit-root behavior in the
volatility process. This is particularly relevant for clean energy
stocks, whose volatility is influenced by both immediate market
news and long-term trends in technology and regulation.

The estimated parameters for the skewed t-distribution
confirm the presence of significant fat tails and negative skewness
in the return distributions for both indices. Importantly,
diagnostic tests on the standardized residuals from all estimated
models show no remaining significant autocorrelation or ARCH
effects at a lag of 20, indicating that the chosen model

specifications are well-defined and have successfully captured
the conditional dynamics of the data.

Results. We first assess the accuracy of volatility forecasts for the
PBW and PBD indices based on the GARCH, IGARCH, and
GJRGARCH models, which include the innovations based on the
normal and skewed t-distributions. The parameters are estimated
by quasi-maximum likelihood estimation (QMLE). This method
is standard practice in financial econometrics as it provides
consistent and asymptotically normal estimators even if the
specified distribution of the innovations is incorrect, provided the
mean and variance equations are correctly specified (Bollerslev
and Wooldridge, 1992; Hamilton, 2020). The squared daily
returns are used as a reference to evaluate the forecast accuracy.
According to Table 4, the QLIKE loss function, with lower values
indicating higher precision, reveals that the GJRGARCH, parti-
cularly with skewed t-innovation, provides the most accurate
volatility forecasts for both indices. This model’s enhanced per-
formance is attributed to its ability to differentiate between the
effects of positive and negative returns on volatility, aligning with
market behavior during various market trends. Overall, the
models with skewed t innovation perform better than those with
normal innovation, suggesting that non-normal innovation
should be taken into account for more accurate volatility fore-
casting in clean energy stock markets.

The performance of the VaR and ES forecasts for PBW and
PBD is assessed at the 97.5% and 99% confidence levels,
employing a robust set of evaluation criteria. These include AE
ratios, p-values for various backtesting tests, and the MaxAD
metric (McAleer and Medeiros, 2008), which measures the
maximum absolute deviation from VaR forecasts. The MCS test
at a 90% confidence level evaluates the mean values of the Tick
and FZL functions, providing a stringent assessment of model

Table 3 Volatility estimation.

GARCH-ST GJRGARCH-ST IGARCH-ST

Coef p-val Coef p-val Coef p-val

Panel A: PBW
μ 0.028 (0.268) μ 0.004 (0.876) μ 0.026 (0.297)
ar1 0.041 (0.002) ar1 0.046 (0.000) ar1 0.040 (0.004)
ω 0.036 (0.001) ω 0.046 (0.001) ω 0.025 (0.000)
α 0.076 (0.000) α 0.049 (0.000) α 0.080 (0.000)
β 0.918 (0.000) β 0.914 (0.000) β 0.920 NA
ξ 0.902 (0.000) γ 0.055 (0.001) ξ 0.901 (0.000)
ν 11.146 (0.000) ξ 0.902 (0.000) ν 10.452 (0.000)

ν 11.035 (0.000)
LB(10) 10.472 (0.400) LB(10) 11.013 (0.356) LB(10) 10.542 (0.394)
LM(10) 22.796 (0.012) LM(10) 12.052 (0.282) LM(10) 21.411 (0.018)
LM(20) 26.418 (0.152) LM(20) 16.510 (0.685) LM(20) 24.924 (0.204)
Panel B: PBD
μ 0.042 (0.042) μ 0.022 (0.321) μ 0.042 (0.032)
ar1 0.018 (0.223) ar1 0.023 (0.114) ar1 0.018 (0.249)
ω 0.017 (0.004) ω 0.022 (0.002) ω 0.016 (0.001)
α 0.092 (0.000) α 0.048 (0.000) α 0.093 (0.000)
β 0.907 (0.000) β 0.907 (0.000) β 0.907 NA
ξ 0.894 (0.000) γ 0.081 (0.000) ξ 0.894 (0.000)
ν 7.307 (0.000) ξ 0.893 (0.000) ν 7.231 (0.000)

ν 7.374 (0.000)
LB(10) 10.952 (0.361) LB(10) 10.886 (0.366) LB(10) 10.963 (0.360)
LM(10) 10.674 (0.383) LM(10) 8.533 (0.577) LM(10) 10.360 (0.409)
LM(20) 14.218 (0.819) LM(20) 10.656 (0.955) LM(20) 14.035 (0.829)

The table provides the estimated parameters and corresponding p-values, enclosed in brackets, for the GARCH, GJRGARCH, and IGARCH models, which incorporate skewed t-distributed innovations, for
the PBW and PBD returns throughout the entire sample period. The diagnostics for the standardized residuals encompass the Ljung-Box (LB) test to assess autocorrelation up to the 10th lag, as well as
the ARCH (LM) test to examine autoregressive conditional heteroskedasticity for orders 10 and 20.
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accuracy. The VaR and ES forecasts’ mean and standard
deviations, along with backtesting outcomes, are detailed in
Tables 5 and 6 for long positions in PBW and PBD over the entire
out-of-sample forecast periods. A more granular analysis of sub-
sample periods at the 97.5% confidence level is given in Tables
7 and 8 for PBW and PBD, respectively. Due to the small sample
sizes in these sub-samples, which can affect the power of p-value
tests, we consider the AE ratio, ADMax, and loss function values
as the main indicators of model performance. The key insights for
long positions are as follows.

First, the efficacy of various innovation distributions within the
GARCH model framework is critical to accurate forecasting.
Models based on the normal distribution consistently underper-
form, as evidenced by elevated AE ratios and frequent rejection of
VaR and ES p-value tests, indicating potential model

misspecification. In the context of high confidence level VaR
predictions, the historical simulation approach is outperformed
by both the Cornish-Fisher expansions and the skewed t. The
skewed t distribution, when evaluated using the loss functions, is
found to offer the most accurate combined forecasts for VaR and
ES. Conversely, the Cornish-Fisher expansion, while character-
ized by the highest mean and standard deviation for VaR and ES
forecasts, consistently delivers the most conservative estimates of
tail risk. This is attributed to the lowest AE ratio and the smallest
Mean Absolute Deviation (MAD) observed in the model’s
performance. The conservative nature of the Cornish-Fisher
expansion suggests its suitability for risk-averse investors or
institutions that prioritize the minimization of potential losses
during periods of market stress.

Second, the IGARCH model, which incorporates long-term
memory into volatility, produces higher VaR and ES forecasts
over the entire sample period for both PBW and PBD. During the
2008 Global Financial Crisis (GFC) period, the IGARCH model
outperforms the GJRGARCH model in terms of AE ratio, tick
loss, and FZL metrics. This suggests that it provides a more
accurate representation of tail risk during this period of extreme
market stress. This can be attributed to the IGARCH model’s
ability to adapt to the slow decay of shocks, which is particularly
pertinent during prolonged periods of market instability.
However, despite its performance during the GFC, the
GJRGARCH model generally produces more accurate VaR and
ES forecasts. The integration of the GJRGARCH model with
skewed t innovation outperforms all other models based on the
evaluation of tick and FZL function. This improved performance
is further corroborated by the results of the QLIKE test, which
indicates that it generates the most accurate volatility forecasts.

Third, a comparative analysis of the sub-sample periods, with
key descriptive statistics presented in Table 2 and detailed
backtesting results in Table 7, reveals distinct risk characteristics
across different market regimes. The GFC (Sample I) exhibits the
highest overall market volatility, with the largest standard
deviations in daily returns and VaR/ES forecasts, alongside
significantly higher AE ratios indicating frequent VaR breaches

Table 5 Full sample VaR and ES results for long PBW positions.

GARCH GJRGARCH IGARCH

N ST HS CF N ST HS CF N ST HS CF

Panel A: Confidence level 97.5%
mVaR −4.102 -4.376 −4.377 −4.443 −4.086 −4.387 −4.304− 4.404 −4.219 −4.512 −4.452 −4.596
stdVaR 2.038 2.167 2.177 2.253 2.071 2.230 2.182 2.276 2.148 2.263 2.254 2.376
mES −4.897 −5.599 −5.518 -5.581 −4.871 −5.598 −5.396 −5.518 −5.036 −5.826 −5.666 −5.798
stdES 2.432 2.837 2.847 2.925 2.468 2.914 2.840 2.956 2.564 2.970 2.981 3.082
AE 1.389 1.117 1.107 1.098 1.370 1.126 1.192 1.164 1.389 1.089 1.107 1.051
LRuc 0.000 0.230 0.269 0.313 0.000 0.196 0.051 0.095 0.000 0.361 0.269 0.596
LRcc 0.001 0.479 0.537 0.596 0.000 0.423 0.088 0.158 0.001 0.509 0.537 0.726
DQ 0.000 0.300 0.136 0.178 0.000 0.610 0.052 0.270 0.000 0.016 0.010 0.037
ER 0.000 0.622 0.434 0.315 0.000 0.892 0.527 0.650 0.000 0.898 0.593 0.492
ESR 0.000 0.527 0.376 0.486 0.001 0.706 0.309 0.496 0.003 0.926 0.663 0.862
ADMax 6.918 6.335 6.980 6.451 6.682 5.982 6.677 6.213 6.466 5.857 6.631 5.900
Tick 0.141 0.139 0.140 0.139 0.139 0.137 0.137 0.137 0.141 0.140 0.141 0.140
FZL 1.700 1.669 1.669 1.666 1.688 1.648 1.659 1.657 1.706 1.671 1.680 1.677
Panel B: Confidence level 99%
mVaR −4.873 −5.478 −5.364 v5.561 −4.847 −5.479 −5.240 −5.499 −5.011− 5.686 −5.467 −5.773
stdVaR 2.420 2.755 2.707 2.897 2.456 2.830 2.743 2.926 2.552 2.882 2.829 3.053
mES −5.586 −6.730 −6.381 −6.669 −5.551 −6.717 −6.211 −6.582 −5.743 −7.051 −6.548 −6.950
stdES 2.774 3.492 3.402 3.594 2.813 3.581 3.375 3.637 2.925 3.661 3.564 3.784
AE 1.924 1.126 1.290 1.103 1.924 1.126 1.361 1.103 1.947 1.056 1.220 1.079
LRuc 0.000 0.417 0.068 0.507 0.000 0.417 0.025 0.507 0.000 0.717 0.163 0.607
LRcc 0.000 0.416 0.084 0.475 0.000 0.613 0.078 0.475 0.000 0.579 0.199 0.530
DQ 0.000 0.243 0.052 0.245 0.000 0.786 0.311 0.764 0.000 0.035 0.066 0.227
ER 0.000 0.093 0.073 0.052 0.000 0.606 0.010 0.002 0.000 0.631 0.034 0.213
ESR 0.088 0.620 0.354 0.573 0.015 0.777 0.278 0.598 0.114 0.894 0.495 0.748
ADMax 5.925 4.801 4.636 4.934 5.899 4.802 4.988 5.087 5.389 4.161 4.387 4.217
Tick 0.069 0.066 0.066 0.067 0.067 0.065 0.066 0.066 0.069 0.067 0.066 0.068
FZL 1.931 1.847 1.850 1.847 1.913 1.818 1.848 1.839 1.936 1.846 1.853 1.856

The table presents the mean values and standard deviations of VaR and ES forecasts at 97.5% (Panel A) and 99% (Panel B) confidence levels for long positions in PBW. Additionally, it includes
backtesting outcomes for three GARCH variants paired with different distributions: normal (N), skewed t (ST), historical simulation (HS), or Cornish-Fisher expansion (CF), throughout the entire
forecasting horizon. The table details the AE ratio, the p-values for the LRuc, LRcc, DQ, one-sided ER, one-sided Intercept ESR tests, alongside the absolute maximum deviation (ADMax) and mean values
of the tick and FZL metrics. Models highlighted in bold denote those included in the superior set of models, which have statistically comparable VaR forecasts based on either the tick loss function or joint
VaR and ES forecasts based on the FZL function at a 90% confidence level.

Table 4 Volatility forecasts evaluation.

Full Sample I Sample II Sample III

Panel A: PBW
GARCH-N 2.373 3.320 3.450 2.976
GARCH-ST 2.372 3.320 3.428 2.975
gjrGARCH-N 2.373 3.297 3.535 2.976
gjrGARCH-ST 2.368 3.288 3.515 2.980
iGARCH-N 2.374 3.301 3.409 2.981
iGARCH-ST 2.371 3.303 3.396 2.978
Panel B: PBD
GARCH-N 1.692 na 2.697 2.209
GARCH-ST 1.687 na 2.662 2.203
gjrGARCH-N 1.684 na 2.802 2.200
gjrGARCH-ST 1.680 na 2.770 2.190
iGARCH-N 1.697 na 2.661 2.210
iGARCH-ST 1.690 na 2.651 2.202

The table presents the mean values of the QLIKE loss function across different sample forecast
durations. The forecasted volatility of each model is evaluated against the daily squared returns,
acting as a benchmark for realized volatility. The MCS test is applied to assess the precision of
the forecasts at a 90% confidence level. Models highlighted in bold denote those included in the
superior set due to their statistically equivalent volatility forecasts.
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and sustained systemic risk. In contrast, the COVID-19 period
(Sample II) presents a different risk profile characterized by
sharp, V-shaped market reactions rather than sustained volatility.
While overall volatility was lower than the GFC, this period
featured the most extreme single-day negative return and larger
maximum deviations from VaR forecasts (ADMax), indicating a
crisis defined by singular, extreme shocks rather than persistent
high volatility. Sample III shows market adaptation to a new risk
environment where mean VaR and ES forecasts remain high but
with significantly lower standard deviations, suggesting more
stable day-to-day risk fluctuations due to market resilience. These
differences highlight the importance of using risk models robust

to different crisis types-whether prolonged, systemic downturns
or sharp, sudden shocks.

Next, we assess the prediction accuracy for short positions in
PBW and PBD, as shown in Tables 9 and 10. The difference in
prediction accuracy between forecasting short position for PBW
and PBD are less pronounced than those for long positions. The
IGARCH model produces more conservative VaR and ES
forecasts than the GARCH and GJRGARCH models for both
indices. At the 99% confidence level, the IGARCH model
combined with a skewed t distribution yields the most accurate
forecasts, as assessed by the tick and FZL functions. On the other
hand, the GJRGARCH model, which surpasses the GARCH and

Table 6 Full sample VaR and ES Results for Long PBD Positions.

GARCH GJRGARCH IGARCH

N ST HS CF N ST HS CF N ST HS CF

Panel A: Confidence level 97.5%
mVaR −2.929 −3.161 −3.320 −3.286 −2.925− 3.159 −3.260 -3.261 −3.018 −3.246 −3.368 −3.411
stdVaR 1.400 1.553 1.732 1.628 1.481 1.667 1.804 1.703 1.498 1.611 1.817 1.744
mES −3.502 −4.186 −4.234 −4.271 −3.490 −4.142 −4.146 −4.211 −3.607 −4.352 −4.344 −4.460
stdES 1.669 2.149 2.151 2.237 1.763 2.287 2.223 2.331 1.785 2.229 2.269 2.396
AE 1.366 1.182 1.041 1.030 1.323 1.139 1.095 1.073 1.279 1.106 1.008 0.976
LRuc 0.001 0.085 0.692 0.771 0.003 0.187 0.362 0.480 0.009 0.311 0.935 0.814
LRcc 0.001 0.172 0.504 0.539 0.002 0.165 0.302 0.384 0.030 0.595 0.969 0.963
DQ 0.001 0.049 0.405 0.390 0.009 0.134 0.625 0.542 0.017 0.230 0.741 0.825
ER 0.000 0.878 0.450 0.544 0.000 0.930 0.788 0.873 0.000 0.926 0.444 0.816
ESR 0.000 0.494 0.507 0.560 0.000 0.601 0.525 0.606 0.003 0.758 0.651 0.828
ADMax 7.518 5.751 4.455 5.085 6.916 4.755 4.023 4.598 6.941 5.712 4.095 4.283
Tick 0.108 0.106 0.107 0.106 0.105 0.103 0.104 0.104 0.108 0.106 0.107 0.107
FZL 1.446 1.387 1.395 1.390 1.417 1.365 1.370 1.369 1.452 1.395 1.409 1.404
Panel B: Confidence level 99%
mVaR −3.485 −4.053 −4.128 −4.232 −3.473 −4.020 -4.080 −4.177 −3.589 -4.196 −4.197 −4.416
stdVaR 1.661 2.050 2.037 2.194 1.755 2.188 2.155 2.287 1.777 2.126 2.176 2.351
mES −3.999 −5.161 -4.877 −5.224 -3.980 −5.071 −4.774 −5.130 −4.118 −5.412 −5.029 −5.477
stdES 1.902 2.754 2.472 2.863 2.009 2.914 2.590 2.980 2.035 2.857 2.615 3.067
AE 2.223 1.355 1.166 1.166 2.196 1.274 1.111 1.003 2.060 1.193 1.193 0.976
LRuc 0.000 0.040 0.325 0.325 0.000 0.109 0.504 0.985 0.000 0.254 0.254 0.882
LRcc 0.000 0.112 0.505 0.371 0.000 0.246 0.624 0.688 0.000 0.306 0.438 0.657
DQ 0.000 0.000 0.000 0.000 0.000 0.109 0.136 0.598 0.000 0.024 0.006 0.068
ER 0.000 0.012 0.486 0.569 0.000 0.153 0.829 0.996 0.000 0.007 0.754 0.974
ESR 0.000 0.740 0.300 0.736 0.000 0.821 0.359 0.820 0.010 0.869 0.428 0.882
ADMax 0.906 0.707 0.812 0.727 0.803 0.618 0.741 0.723 0.905 0.697 0.783 0.759
Tick 0.055 0.050 0.051 0.051 0.052 0.048 0.049 0.049 0.055 0.050 0.051 0.052
FZL 1.752 1.566 1.579 1.577 1.705 1.541 1.557 1.551 1.761 1.569 1.608 1.603

The table presents the mean values and standard deviations of VaR and ES forecasts at 97.5% (Panel A) and 99% (Panel B) confidence levels for long positions in PBD. Additionally, it includes
backtesting outcomes for three GARCH variants paired with different distributions: normal (N), skewed t (ST), historical simulation (HS), or Cornish-Fisher expansion (CF), throughout the entire
forecasting horizon. The table details the AE ratio, the p-values for the LRuc, LRcc, DQ, one-sided ER, one-sided Intercept ESR tests, alongside the absolute maximum deviation (ADMax) and mean values
of the tick and FZL metrics. Models highlighted in bold denote those included in the superior set of models, which have statistically comparable VaR forecasts based on either the tick loss function or joint
VaR and ES forecasts based on the FZL function at a 90% confidence level.

Table 7 Sub-sample VaR and ES Results for Long PBW Positions at 97.5% Confidence.

GARCH GJRGARCH IGARCH

N ST HS CF N ST HS CF N ST HS CF

Panel A: Sample I
mVaR −6.470− 6.904 −6.974 −7.137 −6.479 −7.027 −7.040 −7.175 −6.857 −7.234 −7.200 −7.627
stdVaR 4.052 4.355 4.329 4.460 4.057 4.475 4.371 4.491 4.060 4.329 4.344 4.454
mES −7.725 −8.731 −8.832 −9.049 −7.730 −8.863 −8.800 −9.118 −8.184 −9.210 −9.245 −9.753
stdES 4.834 5.524 5.423 5.602 4.835 5.644 5.373 5.667 4.845 5.479 5.457 5.572
AE 2.709 2.072 1.912 1.753 2.231 1.753 1.753 1.753 2.072 1.434 1.434 0.956
ADMax 1.083 0.987 1.003 0.972 1.243 1.025 1.047 0.931 0.932 0.960 1.057 1.076
Tick 0.223 0.212 0.210 0.209 0.219 0.209 0.210 0.208 0.208 0.203 0.206 0.204
FZL 2.275 2.175 2.155 2.141 2.238 2.138 2.142 2.126 2.143 2.099 2.114 2.095
Panel B: Sample II
mVaR −5.902 −6.613 −6.579 −6.893 −5.730 -6.354 -6.226 −6.649 −6.120− 6.813 −6.772 −7.155
stdVaR 2.884 3.128 3.214 3.234 3.197 3.601 3.430 3.519 2.917 3.202 3.248 3.265
mES −7.070 −9.088 −9.090 −9.264 −6.860 −8.762 -8.641 −8.988 −7.329− 9.409 −9.333 −9.608
stdES 3.427 4.048 4.191 4.169 3.795 4.691 4.492 4.552 3.467 4.130 4.235 4.198
AE 1.120 1.120 1.120 1.120 1.280 1.120 1.280 1.120 1.120 1.120 1.120 1.120
ADMax 6.918 6.335 6.980 6.451 6.682 5.982 6.677 6.213 6.466 5.857 6.631 5.900
Tick 0.269 0.267 0.280 0.271 0.257 0.250 0.264 0.258 0.267 0.264 0.278 0.269
FZL 2.459 2.368 2.431 2.393 2.457 2.339 2.421 2.384 2.418 2.335 2.404 2.363
Panel C: Sample III
mVaR −5.304 −5.575 −5.360 -6.074 −5.512 −5.907 −5.446 -6.250 −5.380 −5.657− 5.365 −6.180
stdVaR 1.476 1.602 1.528 1.780 1.549 1.754 1.617 1.841 1.498 1.625 1.571 1.794
mES −6.376 −7.669 −7.873 −8.211− 6.619 −8.136 −7.956 -8.454 −6.465 −7.846 −7.958 −8.377
stdES 1.757 2.251 2.366 2.474 1.843 2.447 2.441 2.545 1.783 2.272 2.384 2.476
AE 1.606 1.124 1.446 0.964 0.964 0.803 1.285 0.482 1.446 1.124 1.446 0.803
ADMax 1.928 1.819 1.981 1.467 1.706 1.510 1.925 1.237 1.952 1.819 2.078 1.481
Tick 0.155 0.155 0.156 0.156 0.152 0.154 0.154 0.158 0.155 0.155 0.159 0.157
FZL 1.903 1.897 1.915 1.900 1.868 1.883 1.900 1.906 1.897 1.901 1.932 1.905

The table presents the mean values and standard deviations of VaR and ES forecasts at 97.5% confidence level for long positions in PBW. Additionally, it includes backtesting outcomes for three GARCH
variants paired with different distributions: normal (N), skewed t (ST), historical simulation (HS), or Cornish-Fisher expansion (CF) over the sub-sample forecast horizons. The table shows the AE ratio,
the absolute maximum deviation (ADMax) and mean values of the tick and FZL metrics.
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IGARCH models in forecasting long positions, does not show
equivalent accuracy for VaR and ES at the 99% confidence level.
This discrepancy may be due to the asymmetric response of the
GJRGARCH model to market shocks, which is less relevant for
short positions.

Then, we delve into the comparative analysis of VaR and ES
forecasts to enhance our understanding of risk assessment for the
PBW and PBD indices. We adhere to the methodology proposed
by Patra (2021) by calculating the ES to VaR ratio at a 99%
confidence level, which serves as a critical metric for evaluating
the effectiveness of risk models. The results, presented in
Table 11, reveal a nuanced picture of risk sensitivity across
different market conditions. The ratio, which stands at approxi-
mately 1.15 for a normal distribution of innovations, escalates
dramatically for non-normal distributions, varying among models
and time-periods. Notably, the third sample period exhibits the
highest ratios, suggesting that market conditions during this
period were particularly conducive to a more pronounced risk

profile. The study further uncovers that the ES consistently
outperforms the VaR when estimated by the GJRGARCH model
with skewed t-innovation, surpassing it by over 40% for both long
and short positions. This large gap indicates that the ES measure has
higher sensitivity to market volatility, which can provide a more
reliable risk assessment in uncertain periods. Additionally, as shown
in Table 12, the transition from VaR to ES, which is a shift from a
99.5% to a 97.5% confidence level, leads to a modest yet notable
increase in risk prediction, particularly under normal innovation
scenarios. The increase ranges from 2 to 3% for long positions in
PBW and PBD indices estimated by GJRGARCH model, and a
similar increase for short positions estimated by IGARCH model.
These results demonstrate that skewed t distribution can be used to
capture potential losses beyond VaR threshold.

The VaR forecast plots presented in Figs. 3 and 4 provide
valuable insights into the dynamic risk profiles of clean energy
ETFs and the comparative performance of different GARCH
specifications. Several important patterns emerge from the visual

Table 8 Sub-sample VaR and ES Results for Long PBD Positions at 97.5% Confidence.

GARCH GJRGARCH IGARCH

N ST HS CF N ST HS CF N ST HS CF

Panel A: Sample II
mVaR −4.124 −4.685 −5.188 −5.118 −4.056 −4.532 −5.048 −5.005 −4.283 −4.720 −5.293 −5.344
stdVaR 2.928 3.372 3.712 3.469 3.332 3.944 4.250 3.891 3.053 3.384 3.836 3.632
mES −4.950 −6.773 −6.823 −7.259 −4.863 −6.535 −6.604 −7.121 −5.140 −6.838 −7.010 −7.621
stdES 3.492 4.636 4.559 4.673 3.973 5.403 5.062 5.236 3.640 4.654 4.696 4.917
AE 1.280 1.280 1.280 1.280 1.280 1.280 1.280 1.280 1.280 1.280 1.280 1.280
ADMax 7.518 5.751 4.455 5.085 6.916 4.755 4.023 4.598 6.941 5.712 4.095 4.283
Tick 0.226 0.215 0.220 0.220 0.219 0.205 0.207 0.214 0.219 0.213 0.215 0.211
FZL 2.254 2.032 2.084 2.083 2.326 2.080 2.113 2.134 2.174 2.017 2.049 2.018
Panel B: Sample III
mVaR −3.580 −3.683 −4.214 −4.326 −3.696 −3.864 −4.227 −4.427 −3.674 −3.754− 4.219 −4.464
stdVaR 1.225 1.270 1.427 1.565 1.293 1.371 1.489 1.626 1.254 1.303 1.435 1.600
mES −4.308 −5.327 −5.850 −6.180 −4.444 −5.579 −5.944 −6.337 −4.419 −5.487 −5.918 −6.404
stdES 1.455 1.836 2.098 2.349 1.533 1.961 2.165 2.423 1.489 1.891 2.119 2.405
AE 2.080 1.760 1.120 0.960 1.280 1.280 1.120 0.960 1.760 1.440 1.120 0.960
ADMax 1.812 1.825 1.494 1.425 1.567 1.532 1.291 1.163 1.856 1.826 1.540 1.458
Tick 0.116 0.115 0.116 0.115 0.113 0.113 0.116 0.114 0.115 0.115 0.117 0.117
FZL 1.638 1.607 1.596 1.581 1.575 1.566 1.584 1.569 1.631 1.612 1.612 1.601

The table presents the mean values and standard deviations of VaR and ES forecasts at 97.5% confidence level for long positions in PBD. Additionally, it includes backtesting outcomes for three GARCH
variants paired with different distributions: normal (N), skewed t (ST), historical simulation (HS), or Cornish-Fisher expansion (CF) over the sub-sample forecast horizons. The table shows the AE ratio,
the absolute maximum deviation (ADMax) and mean values of the tick and FZL metrics.

Table 9 Full sample VaR and ES Results for Short PBW Positions.

GARCH GJRGARCH IGARCH

N ST HS CF N ST HS CF N ST HS CF

Panel A: Confidence level 97.5%
mVaR −4.146 −3.963 −3.934 −3.945 −4.056 −3.877 −3.872 −3.880 −4.253 −4.054 −3.962 −4.031
stdVaR 2.075 2.025 2.007 1.982 2.082 2.055 2.044 2.008 2.190 2.123 2.109 2.092
mES −4.941 −4.927 −4.814 −4.764− 4.841 −4.811 −4.758 −4.703 −5.069 −5.078 −4.803 −4.881
stdES 2.470 2.559 2.423 2.442 2.480 2.613 2.494 2.498 2.606 2.687 2.518 2.579
AE 0.985 1.136 1.201 1.154 0.985 1.183 1.229 1.173 0.901 1.089 1.258 1.107
LRuc 0.879 0.165 0.041 0.115 0.879 0.064 0.020 0.078 0.293 0.361 0.010 0.269
LRcc 0.956 0.274 0.105 0.281 0.172 0.095 0.026 0.109 0.494 0.405 0.024 0.501
DQ 0.825 0.238 0.144 0.232 0.235 0.170 0.043 0.149 0.822 0.553 0.094 0.761
ER 0.005 0.294 0.062 0.004 0.000 0.010 0.032 0.000 0.024 0.702 0.122 0.068
ESR 0.162 0.196 0.042 0.022 0.051 0.075 0.024 0.013 0.431 0.499 0.073 0.210
ADMax 4.739 5.212 5.376 5.545 4.992 5.387 5.392 5.263 4.210 4.815 4.922 5.064
Tick 0.129 0.129 0.130 0.129 0.129 0.129 0.130 0.129 0.129 0.128 0.130 0.129
FZL 1.555 1.553 1.569 1.561 1.568 1.571 1.581 1.575 1.554 1.548 1.566 1.554
Panel B: Confidence level 99%
mVaR −4.917 -4.838 −4.735 −4.763 −4.817 −-4.734 −4.665 −4.700 −5.045 −4.975 −4.752− 4.877
stdVaR 2.458 2.500 2.428 2.431 2.468 2.541 2.485 2.482 2.594 2.624 2.524 2.567
mES −5.630 −5.814 −5.455 −5.546 −5.521 −5.677− 5.421− 5.488 −5.777 −6.028 −5.447 −5.695
stdES 2.812 3.067 2.730 2.897 2.825 3.138 2.852 2.985 2.967 3.225 2.840 3.060
AE 1.126 1.173 1.337 1.314 1.361 1.572 1.619 1.455 1.079 1.079 1.220 1.197
LRuc 0.417 0.269 0.035 0.049 0.025 0.001 0.000 0.005 0.607 0.607 0.163 0.211
LRcc 0.613 0.480 0.105 0.139 0.012 0.000 0.000 0.001 0.716 0.716 0.344 0.411
DQ 0.741 0.641 0.259 0.320 0.004 0.000 0.000 0.000 0.804 0.804 0.513 0.580
ER 0.000 0.097 0.001 0.000 0.001 0.258 0.002 0.000 0.004 0.258 0.000 0.009
ESR 0.030 0.176 0.022 0.027 0.016 0.070 0.006 0.027 0.147 0.467 0.007 0.077
ADMax 3.429 3.339 3.690 3.482 3.969 4.444 4.457 4.365 3.537 3.391 3.495 3.468
Tick 0.061 0.061 0.062 0.062 0.062 0.062 0.063 0.062 0.061 0.061 0.061 0.061
FZL 1.744 1.739 1.753 1.754 1.770 1.779 1.798 1.787 1.737 1.734 1.742 1.742

The table presents the mean values and standard deviations of VaR and ES forecasts at 97.5% (Panel A) and 99% (Panel B) confidence levels for short positions in PBW. Additionally, it includes
backtesting outcomes for three GARCH variants paired with different distributions: normal (N), skewed t (ST), historical simulation (HS), or Cornish-Fisher expansion (CF), throughout the entire
forecasting horizon. The table details the AE ratio, the p-values for the LRuc, LRcc, DQ, one-sided ER, one-sided Intercept ESR tests, alongside the absolute maximum deviation (ADMax) and mean values
of the tick and FZL metrics. Models highlighted in bold denote those included in the superior set of models, which have statistically comparable VaR forecasts based on either the tick loss function or joint
VaR and ES forecasts based on the FZL function at a 90% confidence level.
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analysis of the one-day-ahead VaR forecasts at 99% confidence
across the out-of-sample forecast period. Most notably, the
GARCH with normal innovation (GARCH-Normal) model
presented in the top row (Panels A and B) is visually the poorest
performer across both indices. The dense clustering of red
violation dots indicates that this baseline model systematically
underestimates risk for both long and short positions, particularly

during periods of high market volatility, underscoring the
inadequacy of assuming normal distributions when modeling
extreme risk events in the volatile clean energy sector.

A detailed examination of model performance by position type
reveals distinct patterns. For long positions (left column, Panels A,
C, E), the GJRGARCH with skewed-t innovation model (Panel C)
demonstrates visibly superior performance, with its VaR forecast

Table 10 Full sample VaR and ES Results for Short PBD Positions.

GARCH GJRGARCH IGARCH

N ST HS CF N ST HS CF N ST HS CF

Panel A: Confidence level 97.5%
mVaR −3.015 −2.888 −2.898 −2.828 −2.940 −2.816− 2.851 −2.761 −3.099 −2.940 −2.917 −2.892
stdVaR 1.411 1.377 1.369 1.328 1.480 1.456 1.452 1.415 1.510 1.437 1.461 1.418
mES −3.588 −3.701 −3.506 −3.492 −3.505 −3.584 −3.455 −3.408 −3.688 −3.810 −3.497 −3.588
stdES 1.680 1.847 1.716 1.721 1.763 1.953 1.842 1.846 1.798 1.931 1.800 1.841
AE 0.867 1.139 1.128 1.171 0.943 1.160 1.214 1.225 0.857 1.063 1.117 1.128
LRuc 0.187 0.187 0.223 0.105 0.578 0.128 0.044 0.034 0.153 0.547 0.265 0.223
LRcc 0.411 0.419 0.476 0.268 0.398 0.187 0.055 0.077 0.350 0.809 0.436 0.476
DQ 0.575 0.322 0.253 0.182 0.409 0.343 0.078 0.065 0.386 0.596 0.118 0.366
ER 0.003 0.336 0.265 0.558 0.000 0.527 0.177 0.172 0.018 0.147 0.011 0.767
ESR 0.267 0.580 0.095 0.070 0.136 0.246 0.063 0.027 0.543 0.843 0.088 0.271
ADMax 3.558 3.533 3.799 3.898 3.835 4.176 3.844 4.317 3.405 3.482 3.748 3.806
Tick 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.093 0.092 0.093 0.092
FZL 1.222 1.221 1.226 1.222 1.226 1.235 1.236 1.231 1.227 1.224 1.235 1.226
Panel B: Confidence level 99%
mVaR −3.571 −3.597 −3.438 −3.474 v3.488 −3.493 −3.400 −3.392 −3.670 −3.689 −3.481 −3.565
stdVaR 1.672 1.768 1.674 1.695 1.754 1.866 1.816 1.817 1.789 1.848 1.771 1.812
mES −4.085 −4.472 −3.969 −4.139− 3.995 −4.309 −3.890 −4.036 −4.199 −4.642 −3.953 −4.266
stdES 1.913 2.322 1.988 2.132 2.008 2.450 2.155 2.297 2.047 2.432 2.074 2.283
AE 1.139 1.111 1.437 1.247 1.382 1.355 1.491 1.437 1.139 1.111 1.464 1.274
LRuc 0.408 0.504 0.012 0.147 0.027 0.040 0.005 0.012 0.408 0.504 0.008 0.109
LRcc 0.569 0.505 0.020 0.195 0.083 0.061 0.009 0.020 0.569 0.505 0.029 0.150
DQ 0.695 0.759 0.037 0.375 0.166 0.123 0.014 0.058 0.695 0.759 0.039 0.299
ER 0.003 0.929 0.038 0.281 0.014 0.730 0.006 0.195 0.039 0.993 0.047 0.550
ESR 0.080 0.644 0.046 0.138 0.079 0.397 0.049 0.052 0.214 0.830 0.053 0.388
ADMax 2.802 2.693 2.860 2.756 2.990 3.256 3.267 3.596 2.620 2.499 2.847 2.618
Tick 0.044 0.043 0.044 0.043 0.044 0.044 0.044 0.044 0.044 0.043 0.044 0.043
FZL 1.396 1.380 1.399 1.382 1.413 1.406 1.419 1.415 1.392 1.376 1.407 1.382

The table presents the mean values and standard deviations of VaR and ES forecasts at 97.5% (Panel A) and 99% (Panel B) confidence levels for short positions in PBD. Additionally, it includes
backtesting outcomes for three GARCH variants paired with different distributions: normal (N), skewed t (ST), historical simulation (HS), or Cornish-Fisher expansion (CF), throughout the entire
forecasting horizon. The table details the AE ratio, the p-values for the LRuc, LRcc, DQ, one-sided ER, one-sided Intercept ESR tests, alongside the absolute maximum deviation (ADMax) and mean values
of the tick and FZL metrics. Models highlighted in bold denote those included in the superior set of models, which have statistically comparable VaR forecasts based on either the tick loss function or joint
VaR and ES forecasts based on the FZL function at a 90% confidence level.

Table 11 ES99 vs VaR99 ratio.

GARCH GJRGARCH IGARCH

N ST HS CF N ST HS CF N ST HS CF

Panel A: PBW
Long
Full period 1.146 1.222 1.179 1.194 1.145 1.220 1.181 1.191 1.146 1.235 1.187 1.199
Sample I 1.157 1.228 1.377 1.235 1.158 1.228 1.391 1.238 1.155 1.248 1.312 1.249
Sample II 1.159 1.422 1.350 1.314 1.163 1.432 1.380 1.318 1.158 1.424 1.340 1.313
Sample III 1.159 1.403 1.396 1.314 1.158 1.404 1.486 1.315 1.159 1.405 1.413 1.314
Short
Full period 1.145 1.197 1.156 1.160 1.146 1.193 1.167 1.162 1.145 1.208 1.149 1.163
Sample I 1.153 1.208 1.178 1.189 1.154 1.206 1.190 1.191 1.153 1.226 1.247 1.210
Sample II 1.157 1.366 1.207 1.267 1.157 1.370 1.236 1.271 1.156 1.368 1.212 1.266
Sample III 1.144 1.332 1.197 1.266 1.145 1.698 1.255 1.268 1.144 1.334 1.173 1.266
Panel B: PBD
Long
Full period 1.148 1.267 1.178 1.227 1.146 1.254 1.172 1.220 1.148 1.285 1.199 1.233
Sample I na na na na na na na na na na na na
Sample II 1.161 1.469 1.330 1.388 1.162 1.473 1.342 1.390 1.161 1.471 1.346 1.388
Sample III 1.168 1.459 1.554 1.530 1.172 1.459 1.676 1.537 1.168 1.470 1.624 1.559
Short
Full period 1.144 1.234 1.151 1.184 1.145 1.222 1.138 1.180 1.144 1.250 1.130 1.189
Sample I na na na na na na na na na na na na
Sample II 1.149 1.414 1.354 1.350 1.152 1.417 1.301 1.354 1.148 1.416 1.268 1.351
Sample III 1.150 1.403 1.276 1.646 1.151 1.418 1.275 1.658 1.150 1.413 1.259 1.716

The table presents the ratio of ES (99% confidence) to VaR (99% confidence) forecasts for both long and short positions in PBW (Panel A) and PBD (Panel B). These comparisons are made across three
GARCH-based models, each paired with either a normal distribution (N), skewed t distribution (ST), historical simulation (HS), or Cornish-Fisher expansion (CF). The table reports the average of these
ratios over the entire forecast period, as well as the maximum ratio values observed over the sub-sample periods.
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line (in blue) being more adaptive to changes in market
volatility,capturing the asymmetric response to negative shocks
and resulting in noticeably fewer violation dots compared to the
GARCH-Normal model. Conversely, for short positions (right
column, Panels B, D, F), the IGARCH with skewed t innovation
model (Panel F) emerges as the most effective specification, with its
VaR forecast line (in purple) providing more appropriate risk
boundaries for the upside return spikes characteristic of short-
selling risk, leading to the fewest violations across both indices.
These visual findings confirm that the optimal model for managing
downside risk in long positions (GJRGARCH-st) differs from the
optimal model for managing upside risk in short positions
(IGARCH-st), thereby validating the necessity of a tailored, dual-
model approach for comprehensive risk management in clean
energy investments.

Discussion. This study offers valuable insights into risk fore-
casting for the volatile clean energy stock market, with findings
that both reinforce and extend key themes from the broader VaR
literature. The key results demonstrating the necessity of non-
normal innovations and the divergent model requirements for
long and short positions provide a clear pathway toward
improving the predictive accuracy of VaR and ES for clean energy
sector stocks, which is critical for both investors and regulators.

First, our study finds that non-normal innovations, specifically
the skewed t distribution, outperform standard methods such as
filtered historical simulation and the Cornish-Fisher expansion.
The skewed t distribution excels at capturing both skewness and
kurtosis, which is particularly important in the clean energy
sector, where returns frequently exhibit asymmetric behavior and
fat tails. This characteristic stems primarily from the sector’s
heightened sensitivity to rapid technical improvements and
legislative shifts. By offering a more flexible and robust estimation
approach, especially for the smaller sample sizes common in
emerging markets, this distribution enhances the reliability of risk

forecasts. The result aligns with a significant stream of literature
emphasizing the importance of accounting for skewness in VaR
forecasting of equity indices (Abad et al., 2016; Chen et al., 2012;
Kuang, 2021). By demonstrating the superiority of the skewed t-
distribution for clean energy assets, a sector defined by high
uncertainty and frequent policy-driven shocks, our study
validates these general findings within a new and economically
significant domain.

Second, the disparity in optimal models for long and short
positions represents this study’s primary contribution to the
literature on forecast improvement. While the challenge of
producing reliable VaR forecasts during market stress has led
researchers to explore various enhancement strategies, such as
data-driven forecast combination techniques (Chiu et al., 2010;
Halbleib and Pohlmeier, 2012), our research introduces a
complementary perspective: forecast improvement through ex-
ante model tailoring. This disparity can be attributed to the
sector’s asymmetric price dynamics and risk characteristics. For
long positions, the GJRGARCH model outperforms due to its
ability to capture the leverage effect, whereby negative shocks
have a greater influence on volatility than positive shocks of
equivalent magnitude. This is especially important in the
renewable energy sector, where adverse developments, such as
regulatory rollbacks, can substantially impact investor sentiment.
In contrast, the IGARCH model is more successful for short
positions, reflecting the persistent nature of volatility during
upward trends, which are frequently driven by positive
technology breakthroughs or supportive policy announcements.
These findings suggest that a single, universally optimal model
may not exist even within a specific asset class, and that tailoring
models to the directional nature of risk exposure represents a
crucial yet underexplored avenue for enhancing forecast accuracy.

Finally, the variability in VaR and ES projections underscores
the dynamic nature of the clean energy stock market, character-
ized by pronounced volatility responses to global economic

Table 12 ES97.5 vs VaR99 ratio.

GARCH GJRGARCH FIGARCH

N ST HS CF N ST HS CF N ST HS CF

Panel A: PBW
Long
Full period 1.005 1.020 1.024 1.003 1.005 1.020 1.030 1.003 1.005 1.023 1.033 1.004
Sample I 1.005 1.020 1.130 1.008 1.005 1.020 1.153 1.008 1.005 1.025 1.108 1.011
Sample II 1.005 1.070 1.127 1.021 1.006 1.074 1.137 1.022 1.005 1.070 1.121 1.021
Sample III 1.005 1.064 1.137 1.022 1.005 1.064 1.183 1.022 1.005 1.064 1.135 1.022
Short
Full period 1.005 1.017 1.018 0.999 1.005 1.014 1.023 1.000 1.005 1.020 1.011 1.000
Sample I 1.005 1.018 1.040 1.004 1.005 1.018 1.048 1.004 1.005 1.023 1.083 1.008
Sample II 1.005 1.060 1.027 1.019 1.005 1.061 1.036 1.020 1.005 1.060 1.049 1.019
Sample III 1.005 1.052 1.076 1.019 1.005 1.292 1.096 1.019 1.005 1.053 1.058 1.019
Panel B: PBD
Long
Full period 1.005 1.031 1.021 1.008 1.005 1.028 1.017 1.007 1.005 1.036 1.034 1.009
Sample I na na na na na na na na na na na na
Sample II 1.005 1.085 1.094 1.033 1.005 1.086 1.118 1.033 1.005 1.085 1.111 1.033
Sample III 1.006 1.082 1.190 1.058 1.006 1.082 1.280 1.059 1.006 1.085 1.192 1.062
Short
Full period 1.005 1.027 1.019 1.004 1.005 1.023 1.013 1.003 1.005 1.031 1.001 1.005
Sample I na na na na na na na na na na na na
Sample II 1.005 1.074 1.121 1.034 1.005 1.075 1.068 1.034 1.005 1.075 1.079 1.034
Sample III 1.005 1.072 1.086 1.083 1.005 1.073 1.084 1.085 1.005 1.074 1.067 1.096

The table presents the ratio of ES (97.5% confidence) to VaR (99% confidence) forecasts for both long and short positions in PBW (Panel A) and PBD (Panel B). These comparisons are made across
three GARCH-based models, each paired with either a normal distribution (N), skewed tt distribution (ST), historical simulation (HS), or Cornish-Fisher expansion (CF). The table reports the average of
these ratios over the entire forecast period, as well as the maximum ratio values observed over the sub-sample periods.
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Fig. 3 Comparison of 99% VaR Forecasts for the PBW Index. The figure displays daily realized returns (grey line) against 99% VaR forecasts from three
different models. The left column (A, C, E) shows the performance for a long position. The right column (B, D, F) shows the performance for a short
position. Each row corresponds to a different model: GARCH-Normal (top), GJRGARCH-st (middle), and IGARCH-st (bottom). VaR violations, where
losses exceeded the VaR estimate, are marked with red dots.
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Fig. 4 Comparison of 99% VaR Forecasts for the PBD Index. The figure displays daily realized returns (grey line) against 99% VaR forecasts from three
different models. The left column (A, C, E) shows the performance for a long position. The right column (B, D, F) shows the performance for a short
position. Each row corresponds to a different model: GARCH-Normal (top), GJRGARCH-st (middle), and IGARCH-st (bottom). VaR violations, where
losses exceeded the VaR estimate, are marked with red dots.
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disruptions, technological developments, and policy changes
(Attarzadeh and Balcilar, 2022; Zhang et al., 2023). As investor
sentiment, technological progress, and macroeconomic factors
evolve, risk managers must remain adaptable to shifting risk
profiles. Our research demonstrates that employing both ES and
VaR, consistent with the Basel regulatory shift toward Expected
Shortfall for capturing tail risks (Taylor, 2020), facilitates a more
comprehensive assessment of tail risks. This dual approach
proves crucial for regulatory authorities seeking to refine capital
adequacy requirements and risk management guidelines. These
findings highlight the necessity for regulatory frameworks to be
responsive to the distinct volatility characteristics and systemic
risks inherent in clean energy investments. As the sector expands,
continued risk model research and adaption will be critical for
ensuring financial stability and supporting the industry’s long-
term development goals, particularly given the complex interplay
between climate risks and financial stability considerations (Dietz
et al., 2016).

Conclusion
This study contributes to the understanding of risk dynamics in
clean energy investments by addressing the persistent challenge of
tail risk modeling. By conducting a comprehensive empirical
analysis focused on the unique characteristics of clean energy
stocks, we demonstrate that a tailored, dual-model approach is
essential for accurate risk management. Our key findings show
that the GJRGARCH-skewed t model is best suited to long
positions, whilst the IGARCH-skewed t model shines at short
positions.

These findings have significant and actionable implications for
risk management and portfolio optimization in the clean energy
sector. For portfolio and risk managers, the practical benefits are
multifaceted. First, adopting superior model specifications like the
GJRGARCH-st for long positions leads to more accurate VaR and
ES forecasts. This enhanced accuracy enables more efficient
capital allocation, ensuring that capital reserves set aside to cover
potential losses are neither inadequate (exposing the firm to
unexpected risk) nor excessive (constraining profitable invest-
ment opportunities). The improved forecasting precision can
translate into substantial cost savings, as financial institutions
typically hold billions in regulatory capital that could be more
productively deployed if risk estimates were more accurate.

Second, the daily risk forecasts from these dynamic models
enable more responsive and proactive risk management strate-
gies. For instance, a spike in forecasted VaR could trigger tactical
position reductions, dynamic hedging adjustments, or the
implementation of protective derivatives strategies, allowing
investors to preemptively mitigate risk exposure in response to
evolving market conditions. This real-time risk monitoring cap-
ability is particularly valuable in the clean energy sector, where
regulatory announcements, technological breakthroughs, or pol-
icy shifts can rapidly alter risk profiles.

Furthermore, these models significantly enhance portfolio
optimization decisions across multiple dimensions. By provid-
ing more accurate measures of volatility and tail risk-critical
inputs for risk-adjusted performance metrics such as the Sharpe
ratio, modified Sharpe ratio, and Sortino ratio, investors can
make better-informed strategic asset allocation decisions
regarding clean energy exposure. This improved risk measure-
ment also facilitates more sophisticated portfolio construction
techniques, such as risk parity strategies or maximum diversi-
fication approaches, which rely heavily on accurate volatility
estimates.

From a regulatory and systemic risk perspective, our results
underscore the inadequacy of standardized, one-size-fits-all risk

models in capturing the nuanced risk characteristics of emer-
ging sectors. The empirical finding that long and short posi-
tions require fundamentally different modeling approaches
supports the ongoing regulatory shift towards more sophisti-
cated internal models for calculating capital requirements
under Basel and similar frameworks. As sustainable invest-
ments become increasingly integral to the global financial sys-
tem, accurate risk measurement in clean energy assets becomes
crucial not only for individual firm stability but also for broader
financial system resilience and the successful transition to a
sustainable economy.

Despite these contributions, our study has limitations. First,
our analysis focuses on a small number of renewable energy
indices, which may limit the generalizability of our findings.
Future research should look at a broader range of clean energy
assets, such as individual equities and sub-industry indexes, to
validate and expand on our findings. Second, our study eval-
uated several competing parametric and non-parametric dis-
tributions for the innovations within the GARCH framework. A
further refinement could be achieved by employing Extreme
Value Theory (EVT) (McNeil and Frey, 2000), a specialized
approach designed to directly model the extreme tails of the
standardized residuals. While powerful, the application of EVT
requires a very long time series to ensure the reliable estimation
of tail parameters. As more historical data becomes available,
integrating EVT to model the innovations’ tails would be a
valuable and logical extension of our work. Third, while our
focus on GARCH-type models yields valuable insights, inves-
tigating alternative methodology, such as machine learning
approaches, could improve risk forecasting in this dynamic
sector. Finally, the study’s reliance on historical backtesting
may fail to adequately account for future market changes
caused by regulatory reforms or unexpected economic uphea-
vals. Integrating scenario analysis or stress testing could be
beneficial in future investigations.

In conclusion, the insights from this research are both timely
and relevant as the world moves towards sustainable energy
investments. By refining traditional risk models to better encap-
sulate the complexities of clean energy stocks, we offer a more
precise and adaptable framework for risk assessment in this cri-
tical sector. As clean energy markets expand, our findings will
help to guide investment decisions, strengthen financial resilience,
and contribute to the overarching aims of sustainable
development.

Data availability
The datasets generated and analyzed during the current study are
available in the Harvard Dataverse repository (https://doi.org/10.
7910/DVN/KKVLJK). Source data were originally retrieved from
investing.com.
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